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ABSTRACT

Development and oviposition models, life table, and
functional response of Amblyseius eharai

(Amitai et Swirski) (Acari: Phytoseiidae)

Young-gyun Park
Entomology Program, Department of Agricultural Biotechnology

Seoul National University

Many species of Phytoseiidae have been used to control the pest
such as mites, thrips and white flies in agricultural crop systems. Amblyseius
eharai is a native Phytoseiidae in Korea and known for a biological control
agent of spider mites in the early season in apple orchards. To evaluate the
potential of A. eharai as a biological control agent, ecological characteristics
of A. eharai were studied by using Tetranychus urticae (Koch) (Acari:
Tetranychidae) as prey. First, development and fecundity of A. eharai were
studied at different temperatures and its temperature-dependent

development and oviposition models were developed. Second, life table of



A. eharai was constructed at various temperatures to analyze its population
growth characteristics. Third, functional response of A. eharai was studied
against larvae of T. urticae.

Development of A. eharai was examined at 11 constant
temperatures (18.0, 20.1, 21.6, 24.0, 24.1, 27.4, 28.6, 30.2, 32.0, 33.2 and
35.9 °C) and oviposition of A. eharai was examined at six constant
temperatures (18.0, 21.6, 24.1, 27.4, 30.2 and 33.2 °C). Development of A.
eharai was well described by the Briere 1 function. Lower threshold, optimal,
and upper threshold temperatures of development of total immature stage
were 13.2, 30.6, and 35.9 °C, respectively. Developmental variation of
immature stages was well described by the two-parameter Weibull function.
Fecundity was well described by the Extreme Value function. Optimal and
Bso temperatures of fecundity were 24.3 and 20.5 ~ 27.4 °C, respectively.
Adult developmental rate model, cumulative oviposition model and age-
specific survival rate model were well described by the equation from the
TableCurve 2D library, Weibull function and reverse sigmoid function,
respectively.

Life table analysis of A. eharai was conducted at six constant
temperatures (18.0, 21.6, 24.1, 27.4, 30.2 and 33.2 °C) according to the
age-stage, two-sex life table theory. Age-stage specific survival rate, age-

stage specific fecundity, age-stage specific reproductive value, age-specific

II



survival rate, age-specific fecundity and population projection were
estimated. The intrinsic rate of increase was the highest at 27.4 °C as
0.2619. Mean generation time was longest at 18.0 °C as 26.9 days, and
shortest at 30.2 °C as 10.5 days.

Functional response of A. eharai was conducted at 10, 30, 50, 70
and 130 larvae of T. urticae. Functional response of A. eharai was the Type
2. The attack rate of female and male A. eharai was 0.109 and 0.019,
respectively. The handling time of female and male was 0.164 h and 0.234
h, respectively. The attack rate was significantly different between males
and females at 95% confidence interval. However, handling time was not

statistically different.

Key words: Amblyseius eharai, development model, oviposition model, life
table, functional response, Phytoseiidae, biological control, Tetranychus

urticae

Student number : 2015-21773
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1. General introduction

The mites in Phytoseiidae are generally considered as very useful
biological control agents against small-sized pests (McMurtry and Croft
1997). Phytoseiid mites have five life stages, egg, larva, protonymph,
deutonymph, and adult. Phytoseiid mites can be divided into four types
according to the prey preference (McMurtry and Croft 1997). Type 1 is a
specialist to Tetranychus spp. Type 2 is broadly specific and tetranychids
are most favored. Type 3 is a generalist. Type 4 is a generalist and a pollen
feeder. A. eharai is a type 3 generalist species (McMurtry and Croft 1997).
In addition, for the larval stage, Phytoseiidae can be classified to three types
according to feeding traits, obligatory feeding larva (OFL), nonfeeding larva
(NFL) and facultative feeding larva (FFL), and A. eharai is the OFL type
(Chittenden and Saito 2001).

Amblyseius eharai (Amitai et Swirski) (Acari: Phytoseiidae) is a
native species and most common in the early crop season in Korea (Kim et
al. 2003). A. eharai is also native in Japan, China, Taiwan, and Malaysia
(Ehara 2002). A. eharai had been misidentified to A. newsami, A.
cantonensis, A. deleoni, or A. largoensis until 1980s (Waite and Gerson

1994). Then, Amitai and Swirski distinguished and classified A. eharai from



them through the difference of dorsal setae length (Amitai and Swirski 1981).
A. eharai was known for a biological control agent of Panonychus citri
(McGregor) (Acari: Tetranychidae) (Ji et al. 2013), which could damage
citrus. A. eharai is also known for a biological control agent of spider mites
in apple orchards in the early season (Kim et al. 2003). A. eharai prefers to
glaborous leaves as a habitat (McMurtry et al. 2013) even though they are
frequently found on various plants such as deciduous trees, conifers, shrubs,
herbs and vines (Ryu et al. 1997). Moreover, A. eharai is the most abundant
phytoseiid mites in Korea (Ryu et al. 1997) and may maintain their lives with
their minor preys such as thrips, whiteflies, spider mites, rust mites, and so
on (Waite and Gerson 1994, Kakimoto et al. 2004, Ji et al. 2013). Thus, A.
eharai can be a good candidate as a biological control agent for controlling
various pest species. However, no detailed ecological studies such as
development and fecundity characteristics, life table at various temperature
conditions and its functional response were not conducted before. These
are important ecological characteristics for evaluating A. eharai as a
biological control agent as well as for understating its population dynamics.

Thus, ecological characteristics of A. eharai were studied by using
Tetranychus urticae (Koch) (Acari: Tetranychidae) as prey. First,
development and fecundity of A. eharai were studied at different

temperatures and its temperature-dependent development and oviposition



models were developed. Second, life table of A. eharai was constructed at
various temperatures to analyze its population growth characteristics. Third,

functional response of A. eharai was studied against larvae of T. urticae.



2. Temperature-dependent development and
oviposition models of Amblyseius eharai (Amitai et

Swirski) (Acari: Phytoseiidae)

2-1. Introduction

Population dynamics of insects and mites is significantly affected by
temperature because it changes their behavior, development, survivorship,
and fecundity (Bale et al. 2002, Crozier 2004). This is because they are
ectotherms and thus their physiological function is determined by
environmental temperature (Chapman 1982).

Amblyseius eharai is natural enemy of phytophagous insects and
mites such as thrips, whiteflies, spider mites, and rust mites (Waite and
Gerson 1994, Kakimoto et al. 2004, Ji et al. 2013). Temperature-dependent
development and oviposition models are important to understand
population dynamics of A. eharai in the agricultural crop systems because
these two components are essential for the population model. In addition,
by these models, we can estimate threshold temperature of development

and fecundity, optimal temperature, and Bso which is operative thermal



range with over 80% performance of maximum (Lutterschmidt and
Hutchison 1997).
In this part, temperature-dependent development and oviposition

models of A. eharai were developed.



2-2. Materials and Methods

2-2-1. Mite culture

A. eharai were collected from overwintering grapevine buds in
rainshield vineyards in Hwaseong, Korea in 2015. Rearing was started with
150 individuals of female A. eharai. To maintain vitality of the A. eharai
colony, 30 ~ 50 individuals of wild A. eharai, which were also collected at
the same vineyards in Hwaseong, were supplemented to the colony at 3 to
4 months interval. A. eharai were reared in petri dishes (93 mm diameter,
42 mm height, SPL Life Science, Pocheon-si, Korea) on which a water-
saturated cotton pad was placed and excised kidney bean leaves were
placed. Rearing condition was 26 ~ 28 °C, 60 ~ 80% RH and a photoperiod
of 16:8 (L:D) h. Before the experiment began, at least 10 generations were

cycled.



2-2-2. Development

For development experiments of A. eharai, 18 ~ 20 female A. eharai
from the stock colony were randomly selected and transferred to 10 petri
dishes each (93 mm diameter, 42 mm height) on which a water-saturated
cotton pad was placed and then a kidney bean leaf disc (70 mm diameter)
with T. urticae was placed on the cotton pad. Thus, total 180~200 females
were prepared. Then, they were allowed to lay eggs for eight hours. Total
twenty-five eggs were randomly collected from 10 dishes. The collected 25
eggs were transferred individually to 25 test petri dishes (50 mm diameter,
15 mm height, SPL Life Science, Pocheon-si, Korea) on which a water-
saturated cotton pad was placed and a kidney bean leaf disc (35 mm
diameter) with T. urticae was placed on the pad as prey. Thus, one egg was
placed per dish. This procedure was executed two or three times for each
temperature to meet the required number of eggs for experiment.

Development experiments were conducted in two sets. The first
experiment was conducted at 5 temperatures (20.1, 24.0, 28.6, 32.0, and
35.9 °C). This experiment examined only development of immatures. The
second experiment was conducted at 6 temperatures (18.0, 21.6, 24.1, 27 .4,

30.2, 33.2 °C). This experiment examined development of immatures,



longevity of adults, and adult fecundity. In addition, the data were used for
the life table analysis. Both experiments were conducted in incubators (HAN
BAEK Scientific Technology, Bucheon-si, Korea) at 60 ~ 80% RH and a
photoperiod of 16:8 (L:D) h. The initial sample size were 72, 41, 74, 47, 66,
67, 42, 70, 40, 57, and 50 individuals at 18.0, 20.1, 21.6, 24.0, 24.1, 27 4,
28.6, 30.2, 32.0, 33.2 and 35.9 °C, respectively. The temperature inside the
incubator chambers was measured using a temperature logger (HOBO,
OnSet Computer, Pocasset, MA, USA). Development and survivorship were
checked every eight hours until completion of their development or deaths.
The effect of temperatures on the development time was analyzed by the

PROC GLM in SAS (SAS Institute 2013).

2-2-3. Oviposition

Oviposition experiment was successively conducted from the
second development experiment. Thus, examined temperatures were 18.0,
21.6, 24.1, 27.4, 30.2, and 33.2 °C at 60~80 % RH and a photoperiod of
16:8 (L:D) h. Newly molted female and male adults were transferred to petri
dishes (50 mm diameter, 15 mm height) on which a water-saturated cotton

was placed and a kidney bean leaf disc (35 mm) with T. urticae was placed



on it. In each petri dish, one female and one male adults were placed. When
females or males were missing or dead, new individual was replenished.
For replenishment, more than 30 eggs were reared individually at each
temperature condition when the second development experiment was
conducted. If the 8 hourly molted male and female numbers were not
matched, then individual adults from the reared spawning petri dishes were
added to match the numbers of male and female for mating. For all replaced
or added adult individuals, their longevity and fecundity were not checked.
Fecundity and survival of each adult individuals that were not replenished
were checked every eight hours until they died. The effect of temperatures
on longevity, pre-oviposition, oviposition, and post-oviposition periods, and
fecundity of adults was analyzed by the PROC GLM in SAS (SAS Institute

2013).

2-2-4. Development and oviposition models

Development rate model
Development rates were expressed as reciprocals of development
times (1/day) of each immature stage. Development rates of linear portion

for each stage were fitted against temperature using TableCurve 2D



(SYSTAT Software Inc. 2002). The lower threshold temperatures for
development of each stage were calculated as the x-intercept of the fitted

equation for each stage (Arnold 1959). The equation is:

r(T)=adl +b (Equation 1)

where r(T) is the mean development rate at temperature T (°C). a and b
are the parameters. .

For construction of non-linear development rate model,
development rates at each temperature were fitted against temperatures
with the Briere1 model (Briere et al 1999) using TableCurve 2D (SYSTAT

Software Inc. 2002):

r(T) = aT(T —To)(Ti—T)V? (Equation 2)

where r(T) is the mean development rate at temperature T (°C). To is the
lower threshold temperature, and T is the upper threshold temperature. a
is the parameter. Bso also was determined (Lutterschmidt and Hutchison

1997).

10



Distribution model of development time

The variation in the development time of each immature stage was
fitted with the two-parameter Weibull function (Wagner et al. 1984) against
the physiological time (px ) using the cumulative proportion of daily
transferred individuals from one stage to the next stage at a particular

physiological time.

F(px) =1 — exp[—(px /a)A] (Equation 3)

where F(px) is the cumulative proportion of development completion at a
physiological time px. a and 8 are parameters. Parameter estimation was

conducted using TableCurve 2D (SYSTAT Software Inc. 2002).

The physiological time (px ) of each stage was calculated by the rate

summation method:

” (Equation 4)

pr= ) r(T)

i=1

11



where r(T;) is the development rate at temperature T (°C) of ith day for a

particular stage.

Fecundity model

The mean total number of eggs laid per female was fitted against
temperatures with an Extreme Value function (Kim and Lee 2003) using

TableCurve 2D (SYSTAT Software Inc. 2002):

f(T) =a exp[l+ (b—> — exp (—)] (Equation 5)

where f(T) is the total number of eggs laid by a female at temperature T (°C).
a is the maximum fecundity of female individuals and b is the optimal

temperature of fecundity, kis the parameter.

Adult longevity and physiological time

Adult longevity was regarded as adult development, and thus the

reciprocal of mean longevity (1/day) of adult A. eharai was used as adult

12



development rate, and fitted against temperature with a function from the

library of TableCurve 2D (SYSTAT Software Inc. 2002):

r(T) = 1/(a + BT 2) (Equation 6)

where r(T) is the mean development rate at temperature T (°C). a and b
are parameters. Parameter estimation was conducted by using TableCurve
2D (SYSTAT Software Inc. 2002). The physiological time of female adults
was calculated by the rate summation method (eq. 4) using this model (eq.

6).

Age-specific cumulative oviposition rate model

The cumulative oviposition rate was fitted against the adult
physiological time by the three-parameter Weibull function (Wagner et al.

1984);

p(px) = 1 —exp[—{(px —y)/a}/] (Equation 7)

13



where p(px) is cumulative oviposition rate at a physiological time (px) of a
female adult. y, a, and B are parameters. Parameter estimation was

conducted by using TableCurve 2D (SYSTAT Software Inc. 2002).

Age-specific survival rate model

The adult survival rate at a particular physiological time was
calculated by dividing the number of adults alive at a given physiological
time with the initial number of adults, and was fitted to the reverse sigmoid

function:

S(px) = exp[—{(px — a)/b}] (Equation 8)

where S(px) is adult survival rate at a physiological time (px). a, b, and ¢
are parameters. Parameter estimation was conducted by using TableCurve
2D (SYSTAT Software Inc. 2002). Data of survival rate at 33.2 °C was
excluded in model fitting because mortality occurred very high in early time
and thus the shape was significantly different from those at other

temperatures examined.

14



Daily egg production

The number of eggs laid by an adult female at ith day was calculated

with the oviposition model (Kim and Lee 2003):

f(M)[p(pxi+1) — p(Ex)]{S(pxi) + S(pxiv1)}/2] (Equation 9)

15



2-3. Results

2-3-1. Development model

A. eharai successfully developed from eggs to adults at 18.0 ~
33.2 °C (Table 1). Survival rates of each immature stages of A. eharai are
presented in Table 2. No eggs survived at 35.9 °C, and all eggs survived at
20.1 and 24.0 °C. Low survival rate of total immature stage was observed
at 18.0 and 33.2 °C, and was 55.56 and 38.60%, respectively. Development
time was significantly different according to the temperature (egg, Fo, 530 =
960.70, P < 0.0001; larva, Fo,481 = 96.46, P < 0.0001; protonymph, Fo, 454 =
52.19, P <0.0001; Deutonymph, Fg, 437 = 89.42, P < 0.0001; total immature,
Fo, 437 = 387.04, P < 0.0001; total immature (female), Fo, 243 = 237.17, P <
0.0001; total immature (male), Fo, 193 = 160.20, P < 0.0001). Development
time of the total immature stage was longest at 18.0 °C (14.84 days), and

shortest at 30.2 °C (4.40 days).

Linear development relationship against temperature for each stage
of A. eharai and estimates of model parameters are shown in Fig. 1 and

Table 3, respectively. Non-linear development relationship against

16



temperature was well described by the Briere 1 model (Fig. 2). Estimates of
model parameters are given in Table 4. Lower threshold, optimal, and upper
threshold temperatures, and Bso are presented in Table 5. Lower threshold,
optimal, and upper threshold temperatures of total immature stage were
13.2, 30.6, and 35.9 °C, respectively. Developmental variation model and
estimates of model parameters for each stage are shown in Fig. 3, and Table

6, respectively.

17



Table 1. Development times (days, mean * SEM) of immature stages of Amblyseius eharai

Temperature Total Total Total
o Egg Larva Protonymph  Deutonymph Immature Immature
(°C) Immature
(Female) (Male)
18.0 4.31 £ 0.045a 5.05 + 0.289a 3.15 £ 0.154a 243+0.059a 14.84 +£0.393a 14.54£0.386a 15.40 +0.869a
(n=72) (n=48) (n=43) (n=41) (n=40) (n=40) (n=26) (n=14)
201 3.20 + 0.052b 2.58 £ 0.193b 2.49 +0.121b 2.01+£0.036b 10.33+0.211b 10.70+0.247b 9.82 + 0.330b
(n =41) (n=41) (n = 35) (n=32) (n=31) (n=31) (n=18) (n=13)
21.6 2.85+0.028¢c 217+0124b 2.13+0.108bc 1.67 £ 0.073c 8.81 £ 0.174c 9.15+0.279¢ 8.37 £ 0.138¢c
(n=74) (n=71) (n = 69) (n = 69) (n = 69) (n = 69) (n = 39) (n = 30)
24.0 213+0.028d 1.51+0.094c 1.52+0.066cd 1.23+0.028de 6.41+0.090d 6.58+0.097d 6.17 + 0.155d
(n=47) (n =47) (n =47) (n =45) (n=44) (n =44) (n = 26) (n=18)
241 222+0.030d 1.65+0.095c 1.85+0.089c 1.39+0.049d 7.10+0.106d 7.18+0.120d 7.00 + 0.184de
(n= 66) (n=61) (n = 48) (n = 43) (n=41) (n=41) (n=22) (n=19)
27.4 1.62+0.018¢ 1.15+0.053cd 1.26 +0.041d 1.02 £ 0.019ef  5.06 + 0.062¢e 5.12 + 0.093e 4.99 + 0.076f
(n=867) (n=66) (n=64) (n=60) (n=60) (n=60) (n=33) (n=27)
28.6 1.41 £ 0.038f 0.85 + 0.050d 1.15+£0.070d 1.04 £ 0.051ef 4.44 +£0.099ef 4.40+0.101e 447 +0.173f
(n=42) (n=41) (n=39) (n=38) (n=38) (n=38) (n=19) (n=19)
30.2 1.35+0.026f 0.92+0.040d 1.26+0.055d 0.94 +0.025fg 4.40+0.062f 4.50+0.088¢  4.31 + 0.086f
(n=70) (n =66) (n=63) (n=60) (n=58) (n =58) (n=28) (n=230)
32.0 1.32+0.023f 1.15+0.070cd 1.10+0.059d 0.98 +0.045eg 4.56 +0.112ef 4.67 + 0.144e 4.44 + 0.174f
(n = 40) (n=238) (n=36) (n=235) (n=35) (n=35) (n=19) (n=16)
33.2 1.38 £0.021f 1.32+0.065cd 1.31+0.079d 1.26 £0.076de 4.97 +0.087ef 4.90+0.081e 5.08 + 0.197ef
(n=57) (n=52) (n=238) (n=32) (n=22) (n=22) (n=14) (n=8)
35.9 - ) ) ) ) ) )
(n=50) (n=150)

Means followed by the same letter within a column are not significantly different at a=0.05, Tukey's studentized range test.

18



Table 2. Survival rate (%) of each stages of A. eharai at different temperatures

Temperature
°C) Egg Larva Protonymph Deutonymph Total Immature
18.0 66.67 89.58 95.35 97.56 55.56
(n=72) (48 /72) (431 48) (411 43) (407 41) (40/72)
20.1 100 85.37 91.43 96.88 75.61
(n=41) (417 41) (357 41) (32/35) (31/32) (31/41)
21.6 95.95 97.18 100 100 93.24
(n=74) (71174) (69/71) (69/69) (69/69) (69/74)
24.0 100 100 95.74 97.78 93.62
(n=47) (47 | 47) (47 | 47) (45 1 47) (44 1 45) (44 1 47)
241 92.42 78.69 89.58 95.35 62.12
(n =66) (61/66) (48/61) (43/48) (41/43) (41/66)
27.4 98.51 96.97 93.75 100 89.55
(n=67) (66 / 67) (64 / 66) (60 / 64) (60 / 60) (60/67)
28.6 97.62 95.12 97.44 100 90.48
(n=42) (411742) (39/41) (38/39) (38/38) (38/42)
30.2 94.29 95.45 95.24 96.67 82.86
(n=70) (66 / 70) (63 /66) (60/63) (58 / 60) (58 /70)
32.0 95.00 94.74 97.22 100 87.50
(n = 40) (38/40) (36/38) (35/36) (35/35) (35740)
33.2 91.23 73.08 84.21 68.75 38.60
(n=57) (52/57) (38/52) (32/38) (22/32) (22/57)
35.9 0 ) ) ) )
(n = 50) (0/50)
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Fig. 1. Linear development rate model of A. eharai
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Table 3. Estimates of parameters of linear development rate model

Stage

Parameters (Estimate £+ SEM)

a

b

Egg

Larva

Protonymph

Deutonymph

Total Immature

0.0410 £ 0.00207

0.0836 + 0.00840

0.0527 £ 0.00462

0.0554 £ 0.00376

0.0139 +0.00070

-0.5156 + 0.05276

-1.3337 + 0.19897

-0.6547 + 0.10947

-0.5897 + 0.09237

-0.1836 + 0.01717
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Table 4. Estimates of parameters of the non-linear development rate model

Stage

Parameters (Estimate £+ SEM)

To

TL

Egg

Larva

Protonymph

Deutonymph

Total Immature

0.0007 £ 0.00004

0.0012 + 0.00016

0.0006 + 0.00011

0.0008 +0.00010

0.0002 £+ 0.00001

14.7526 + 0.75002

16.3650 + 0.91591

12.0767 = 1.63957

12.2721 £ 1.15005

14.1353 £ 0.51310

35.8900 + 0.00136

34.4671 + 0.45810

36.6620 + 1.05299

35.3528 £ 0.47943

35.8900 + 0.00086
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Table 5. Threshold, optimal and Bso temperatures (°C) of development of immature stages of A. eharai

Stage Lower threshold Optimal Upper threshold Bso
Egg 12.6 30.7 35.9 25.7~34.0
Larva 16.0 29.8 34.5 255~32.8
Protonymph 12.4 30.8 36.7 25.2~346
Deutonymph 10.7 29.8 35.4 245~334

Total Immature 13.2 30.6 35.9 25.5~34.0

24



Cumulative proportion

0.8 -
0.6 -
0.4 -
0.2 -

] Total Immature

{Protonymph

0 0.5 1 1.5

F=0.96

0 0.5 1

1.5

2

0.8 -
0.6 -
0.4 -
0.2 -

] Deutonymph
%o
F =0.96
0 0.5 1 1.5 2 2.5
e Observed

— Estimated

Physiological time

Fig. 3. Distribution model of development time of each stage of A.
eharai

25



Table 6. Estimates of parameters of distribution model of development
time of A. eharai

Parameters (Estimate £ SEM)

Stage
a B
Egg 0.9621 £ 0.00416 13.0809 + 1.02647
Larva 0.9869 £ 0.01196 2.5134 £ 0.10975
Protonymph 0.9414 £ 0.00853 4.1562 + 0.20825
Deutonymph 0.9170 + 0.00920 6.8172 + 0.54998

Total Immature 1.0029 + 0.00317 10.1467 £ 0.42688
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2-3-2 Oviposition model

Mean adult longevity, oviposition periods, fecundity, and number of
daily laid eggs of A. eharai at each temperature are given in Table 7. They
were significantly affected by temperatures except for the post-oviposition
period (adult longevity, Fs, 198 = 41.11, P < 0.0001; adult longevity (female),
Fs, 114 = 22.44, P < 0.0001; adult longevity(male), Fs, 83 = 20.76, P < 0.0001;
pre-oviposition period, F4,99 = 27.60, P < 0.0001; oviposition period, F4, 99 =
15.87, P < 0.0001; post-oviposition period, Fa, 99 = 2.22, P = 0.0728;
fecundity, Fs, 114 = 26.02, P < 0.0001; number of daily laid eggs per female,
Fs, 114 = 43.76, P < 0.0001). Adult longevity decreased as temperature
increased, and it decreased sharply above 30.2°C. Thus, it was longest at
18.0 °C (30.04 days), and shortest at 33.2 °C (3.73 days). Pre-oviposition
period was 3.57 days at 18.0 °C, and 1.21 days at 27.4 °C. Oviposition
period was 24.20 days at 18.0 °C, and 9.20 days at 30.2 °C. Fecundity was

highest at 24.1 °C as 42.31 eggs, and no eggs were laid at 33.2 °C.

Components of the oviposition model of A. eharai (adult
development rate, fecundity, age-specific cumulative oviposition rate, and
age-specific survival rate) were well described by respective models (Figs.

4,5, 6,7, respectively; Table 8). Simulated daily egg production curve of A.
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eharai in relation to adult age (days) and temperature (°C) was presented
in Fig. 8. Highest daily reproduction was observed at 23 ~ 28 °C within 10

days.
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Table 7. Longevity, oviposition period and fecundity of A. eharai (mean * SEM)

Temperature Longevity (day) Pre-oviposition Oviposition .POSF'. Fecundity Daily eggs
(°Q) period (day) period (day) ow_posmon (egg number) per female
Adult Female Male period (day)

18.0 30.04 +2.725a 30.19 + 3.567a 29.70 £+ 4.183a 3.57 £ 0.174a 24.20 + 2.734a 4.07 £ 1.278a 26.53 +2.841bc 0.87 + 0.064a
: (n = 28) (n=19) (n=9) (n=18) (n=18) (n=18) (n=19) (n=19)
216 29.76 + 1.933a 31.38 £ 2.748a 28.05 £ 2.735a 2.40 £ 0.144b 22.85 +2.114a 6.13 £ 1.768a 36.40 + 3.247ab 1.22 £ 0.079a
: (n = 39) (n = 20) (n=19) (n =20) (n = 20) (n = 20) (n = 20) (n = 20)
24 1 24.00 + 1.463a 25.33+1.791a 22.22 +2.432ab 1.52 £ 0.096¢ 19.65 + 1.344a 4,17 £ 1.361a 42.31+2.731a 1.73+0.112b
: (n = 28) (n=16) (n=12) (n=16) (n = 16) (n =16) (n=16) (n=16)
274 16.28 + 0.822b 15.41 £ 1.168b 17.30 £ 1.136b 1.21 £ 0.066¢cd 12.29 £ 1.109b 2.44 + 0.639a 33.80 + 3.057ab 2.15+0.139b
’ (n=46) (n=25) (n=21) (n=24) (n=24) (n=24) (n=25) (n=25)
30.2 10.61 £0.876bc  13.26 + 0.597bc 6.73 £ 1.508¢c 2.08 £0.273bc 9.20 £ 0.793b 1.98 + 0.393a 16.86 + 1.653c 1.25+0.104a
’ (n=237) (n=22) (n=15) (n=22) (n=22) (n=22) (n=22) (n=22)

332 3.73+£0.709c 5.18 £ 0.936¢ 1.38 £0.231c ) ) ) 0d Oc
: (n=21) (n=13) (n=8) (n=13) (n=13)

Means followed by the same letter within a column are not significantly different at a=0.05, Tukey's studentized range test.

Daily eggs per female was fecundity divided by female longevity.
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Table 8. Estimates of parameters of oviposition models

Models Parameters Estimate (+ SEM) r’
a 42.1307 = 1.36221
Fecundity b 24.3166 + 0.24145 0.99
k -5.2075 + 0.28455
a 44.3108 + 1.01863
Adult 0.99
development rate
b -0.0369 + 0.00093
y 0.0385 £+ 0.01065
Age-specific
cumulative a 0.4642 + 0.01222 0.98
oviposition rate
B 1.5083 + 0.04834
a 448.9095 + 22.90661
Age-specific b -447 7471 + 22.91110 0.97
survival rate

-1209.5671 + 137.94086
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2-4. Discussion

In larval stage, the lower development threshold temperature,
16.0 °C, was higher than other immature stage (egg, 12.6 °C; protonymph,
12.4 °C; deutonymph, 10.7 °C; total immature, 13.2 °C) and upper
development threshold temperature, 34.5 °C, was lower than other
immature stage (egg, 35.9 °C; protonymph, 36.7 °C; deutonymph, 35.4 °C;
total immature, 35.9 °C). Thus, larval stage seems to be most susceptible
to temperature. The optimal development temperature of total immature
stage, 30.6 °C, was similar to other phytoseiid mites such as Galendromus
occidentalis (Nesbitt) (Tanigoshi et al. 1975), Neoseiulus fallacis (Garman)
(Kwon et al. 1998), Iphiseius degenerans (Berlese) (Tsoukanas et al. 2006),
and it was lower than N. californicus that of which was 34.4 °C (Kim et al.
2009), and N. womersleyi that of which was 33 °C (Lee and Ahn 2000).
Development time of A. eharai appeared to vary according to the prey
species. For example, development time of A. eharai fed with Panonychus
citri. was 6.5 days at 25 °C. In this study, when fed on larval T.
urticaeestimation by using the development rate model at 25 °C was 5.8

days. Optimal and threshold temperature of development were compared
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with Tetranychus urticae (Kim et al. 2001) and Calepitrimerus vitis (Walton
et al. 2010) as prey. Their optimal temperatures were in range of Bso of A.
eharai (T. urticae, 32.5 °C; C. vitis, 31.3 °C). Upper threshold temperature
of C. vitis, 34.2 °C, was lower than that of A. eharai. Thus, A. eharai seems

to be good biological agent of T. urticae and C. vitis.

A. eharai successfully laid eggs at temperature range of 18.0 ~
30.2 °C. The optimal temperature of total fecundity was 24.3 °C, and it was
similar to N. californicus, 25 °C (Kim et al. 2013), and it was lower than N.
womersleyi, 32.1 °C (Lee and Ahn 2000). Other phytoseiid mites such as N.
womersleyi (Lee and Ahn 2000), A. swirskii (Lee and Gillepie 2011) and N.
californicus (Kim et al. 2013) successfully laid eggs over 33.2 °C. However,
adult A. eharai showed high mortality within few days and no fecundity at
33.2 °C, this results was similar to Euseius finlandicus (Broufas and Koveos
2001). In this results, A. eharai might be not suitable at high temperature. It
may be explanation about report of Kim et al. (2003) that A. eharai occurred
at early season. Combined Bso range of development and fecundity was
25.5~27.4 °C. In this results, A. eharai seems to be suitable natural enemy

for early and late crop seasons in Korea.
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3. Age-stage, two-sex life table of Amblyseius eharai

(Amitai et Swirski) (Acari: Phytoseiidae)

3-1. Introduction

Life table is a useful tool for comparison of population potential at
specific condition (Krebs 2009). Through the life table, we can predict the
population dynamics for a target insect or mite at particular condition (Krebs
2009, Huang and Chi 2012). Moreover, it is possible to decide optimal
conditions for population growth among various condition (Krebs 2009,
Huang and Chi 2012). For insects and mites, a cohort life table is commonly
employed (Jones and Parrella 1984, Abou-Setta and Childers 1987, Lee
and Ahn 2000, Tsai and Wang 2001, Farhadi et al. 2011, Huang and Chi

2012).

A traditional life table is biased to females, and certain age-specific
(Chi and Liu 1985, Chi 1988). However, males do not exist just for mating.
Males can also damage plants in the pest species and feed on the prey in

the predator species. Insects and mites have distinctive life stages through

38



molting. Each life stages may differ in biological traits (i.e., active stages
such as instars and adults; inactive stages such as eggs or pupae) (Istock
1981, Carey 1993). Thus, traditional life table seems to insufficient for mites

and insects (Chi and Liu 1985, Chi 1988).

In this study, age-stage, two-sex life table studies of A. eharai were

conducted at different constant temperatures.
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3-2. Materials and Methods

3-2-1. Data

Data for the life table analysis of A. eharai were obtained from the
second experiment of the development of immatures and the oviposition
experiment of adults in Chapter 2. Since the experimental procedure was
described in detail in Chapter 2, here brief description is presented.
Experimental conditions were six temperatures (18.0, 21.6, 24.1, 27.4, 30.2
and 33.2 °C) at 60 ~ 80% RH and a photoperiod of 16:8 (L:D) h.
Development, survivorship, fecundity, oviposition period, and longevity of
each individuals were observed from eggs to later stages until they died. In
the life table analysis, the data of missed individuals during the adult stage

was excluded.
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3-2-2. Life table analysis

Life table analysis was conducted using by TWOSEX — MSChart
(Chi 2016) that was based on age-stage, two-sex life table theory (Chi and
Liu 1985, Chi 1988). The age-stage specific survival rate (S,;, x = age in
days, j = stage), the age-stage specific fecundity (f,r, f = adult female
stage), the age-stage specific reproductive value (v,;), the age specific
survival rate () and the age specific fecundity (m,) at each temperature

were estimated. Population projection at each temperature was made using

TIMING — MSChart (Chi 2008).

3-2-3. Population parameters

The intrinsic rate of increase (r), finite rate of increase (A), net
reproductive rate (Ro) and mean generation time (T) were calculated. To
calculate standard error of population parameters, the bootstrap method
(100,000 times repeated) (Efron and Tibshirani 1993, Chi 2016) was used.

To verify effects of temperature on population parameters, the paired
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bootstrap test (Efron and Tibshirani 1993, Chi 2016) was conducted. All

analyses were conducted by using TWOSEX — MSChart (Chi 2016).

The intrinsic rate of increase (r)

[o e}

Z e Tt m, =1 (Equation 10)
x=0
l, = Zij (Equation 11)
j=1
K Syifei
j=1°xj/)xj .
my = ——F——— (Equation 12)
X Z?=1Sx'

where x is age, and k is the number of stages.

The finite rate of increase (A)

A = e (Equation 13)
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The net reproductive rate (Ro)

Ry, = lemx (Equation 14)
x=0

The mean generation time (7)

T =(nRy/r) (Equation 15)
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3-3. Results

Age-stage specific survival rates (S,;) at each temperature are
presented in Fig. 9. The survival rates were expressed separately by stage
and sex. Low survival rate was observed at 33.2 °C. Age-stage specific
fecundity (f.r ), age-specific survival rate (l,) and age-specific fecundity (m,)
at each stage are given in Fig. 10. Fecundity showed a decreasing tendency

with increasing age. Age-stage specific reproductive value (v,;), that

indicates the effect of individuals of age x and stage j to future population,
at each temperature are presented in Fig. 11. The value was high at young
female and old-aged deutonymph. Population projections, population
growth at age-stage specific, at each temperature are given in Fig. 12.

Population growth rate at 27.4 °C was highest.

Population parameters and standard error are presented in Table 9.
Estimates of population parameters were significantly different among
temperatures at 95% confidential limit. The intrinsic rate of increase was
highest at 27.4 °C as 0.2619 days™', and lowest at 18.0 °C as 0.0792 days™.
The net reproductive rate was 16.55 eggs at 21.6 °C, and was 7.57 eggs at

30.2 °C. Mean generation time was longest at 18.0 °C as 26.86 days, and
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shortest at 30.2 °C as 10.47 days. However, there was no significant

difference between 27.4 °C, and 30.2 °C.
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Table 9. Estimates of population parameters of A. eharai (mean £ SEM)

Population parameters 18.0 °C 21.6 °C 241 °C 27.4 °C

30.2 °C

Intrinsic rate of increase (r)  0.0792 + 0.00003¢c  0.1538 + 0.00004b  0.1679 + 0.00005b 0.2619 + 0.00006a

Finite rate of increase (A) 1.0825 £ 0.00003c  1.1663 + 0.00004b  1.1828 + 0.00006b 1.2994 + 0.00007a

Net reproductive rate (Ro) 8.4 £ 0.006b 16.5 £ 0.010a 12.8 £ 0.009ab 15.9 £ 0.009a

Mean generation time (T) 26.9 + 0.002a 18.2 + 0.002b 15.2 +0.001c 10.6 £ 0.001d

0.1933 + 0.00006b

1.2133 + 0.00008b

7.6 £ 0.004b

10.5+0.001d

Means followed by the same letter within a row are not significantly different at a=0.05, Paired bootstrap test.
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3-4. Discussion

In traditional life tables, stage and sex are ignored. In that case,
some problems can be occurred. For example, when calculating m,, some
female individuals laid eggs at age x, but some individuals could be still in
the pre-adult stage (Chi and Liu 1985, Chi 1988). Thus, it cannot correctly
calculate the intrinsic rate of increase. In this study, the age-stage, two-sex
life table theory (Chi and Liu 1985, Chi 1988) was applied. To calculate I,

and m,, difference of stage and sex were considered.

Ji et al. (2013) constructed the life table of A. eharai at 25 °C using
Panonychus citri as prey. The intrinsic rate of increase from Ji et al. (2013)
was 0.1711. In the present study, the similar value was at 24.1 °C as 0.1679.
The difference could be due to various factors such as different prey species

and life stages of prey used.

The mean generation time of A. eharai decreased with increasing
temperature. The intrinsic rate of increase was highest at 27.4 °C, and then
decreased above 27.4 °C. This indicates that A. eharai may not be proper
to control pests during the high temperature season or in the high

temperature region. Using the population parameter of A. eharai at each
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temperature, we can estimate the future population size. Estimated future
population size can apply to decision the condition for mass-rearing. Thus,

27 .4 °C is recommended for mass-rearing temperature.

In comparison with the intrinsic rate of N. womersleyi (Lee and Ahn
2000), which is a commercialized native phytoseiid mite against T. urticae
(Fig. 13), similar rate was observed at medium temperature range (24 ~
27 °C). At high temperature, the intrinsic rate of N. womersleyi increased
until 33 °C and could be calculated until 38 °C. At low temperature (below
24.0 °C), the intrinsic rate of A. eharai was slightly higher than that of N.
womersleyi. A. eharai could be a more effective biological agent against T.
urticae than N. womersleyi at low temperature conditions. A. eharai might
be a good candidate as a native natural enemy in early or late crop seasons,

and low temperature cultivation farm lands.
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4. Functional response of Amblyseius eharai (Amitai
et Swirski) (Acari: Phytoseiidae) to larval

Tetranychus urticae (Koch) (Acari: Tetranychidae)

4-1. Introduction

T. urticae is one of most notorious pests in agricultural and
ornamental systems (Hussey and Parr 1963, van de Vrie et al. 1972,
Raworth 1986, Kim et al. 2001, Khanjani 2005, Lim et al. 2008). For
controlling T. urticae, use of predatory mites has been continuously
increasing (Port and Scopes 1981, Cross 1984, Nihoul et al. 1991, Greco
et al. 1999, Opit et al. 2004, Fitzgerald et al. 2007).

Predation ability of predators can be altered by environmental
factors and prey densities, and is frequently evaluated as functional
responses (Krebs 2009). The functional response is a relationship between
predation rates of single predator and different prey densities per unit time
(Solomon 1949). Predation amount, attack rate, and handling time, that are
estimated by functional response analysis (Juliano 2001), are basic

information for evaluation of biological agents (Price 1997, Price et al. 2011,
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Seiedy et al. 2012).

There has been only one study (Kakimoto et al. 2004), related with
predation abilities of A. eharai, in which thrips were used as a prey. However,
Kakimoto et al. (2004) did not reveal all important parameters in the
functional responses of A. eharai. Thus, in this study, the feeding abilities of
adult A. eharai were studied according to different densities of T. urticae to
estimate important parameters related with the functional responses of A.

eharai.
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4-2. Materials and Methods

4-2-1. Experiments

To obtain same aged adult females and males of A. eharai, 60 eggs
were randomly selected from the stock colony at each test group (2
preference test group, 5 different prey density group). Randomly selected
eggs were transferred to petri dishes (90 mm diameter, 42 mm height, SPL
Life Science, Pocheon-si, Korea) on which a water-saturated cotton pad
was placed and a kidney bean leaf disc (70 mm diameter) with T. urticae
was placed on the pad as prey. Development of these eggs was observed
every day. Newly molted adults were transferred to new petri dishes and
they were allowed to mate and consume prey for 3 days. After 3 days, they
were transferred to petri dishes with no prey for starvation. Adults starved
during 24 hours were used for tests.

Before the functional response experiments, a preference test
between eggs and larvae of T. urticae was conducted, and the life-stage of
T. urticae as a prey was determined. Prey preference and functional
response test were conducted at petri dishes (50 mm diameter, 15 mm

height, SPL Life Science, Pocheon-si, Korea) on which a water-saturated
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cotton pad was placed and a kidney bean leaf disc (35 mm diameter) with
T. urticae was placed on the pad as prey. Environmental conditions are
26.4 °C, 60 ~ 80% RH, and a photoperiod of 16:8 (L:D) h. The temperature
and relative humidity inside the incubator chambers were measured using
a temperature logger (HOBO, OnSet Computer, Pocasset, MA, USA).
Starved adults A. eharai were allowed to feed on prey for 24 hours. Prey
preference test of A. eharai was conducted between eggs and larvae of T.
urticae. In the experiment 1, on separate petri dishes, 50 eggs or 50 larvae
of T. urticae were transferred by using brush, and number of prey consumed
by female A. eharai was observed. Ten replications were conducted for
experiment 1. In the experiment 2, on the same petri dishes, 25 eggs and
25 larvae of T. urticae were transferred by using brush, and numbers of prey
consumed by adult A. eharai was observed. Eleven replications for females,
and ten replications for males were conducted in the experiment 2.

Since A. eharai preferred larval T. urticae in the preference test,
functional response experiments for female and male A. eharai were
conducted with larvae of T. urticae. Treated prey densities were 10, 30, 50,
70, and 130 larvae. Ten to twelve replications were conducted for each

treatment. Number of consumed prey was checked.
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4-2-2. Data analysis

To determine preference of A. eharai to prey life-stages and effects
of prey densities on predation amount, ANOVA test was conducted by using
PROC GLM in SAS (SAS Institute 2013).

Functional response was analyzed in two steps according to Juliano
(2001) by using PROC GENMOD in SAS (SAS Institute 2013). To determine
the shape of the functional response, a logistic regression was conducted.
The equation is:

Ne _ exp(Po+PiNo + P,N¢ + P;Ng) (Equation 16)

N, 1+ exp(Py + PNy + P,NZ + P;NQ)

where Ne is the number of preys consumed per predator, No is the initial
prey number, Ne/No is the probability of being consumed. Po, P1, P2 and P3
are parameters. Maximum-likelihood estimates of parameters Po to P3 was
obtained by using the logistic regression. The parameter of logistic model
was evaluated by log likelihood test and it determined the type of functional
response. If P1< 0, it describes a type two functional response. If P1> 0 and
P2< 0, it describes a type three functional response (Juliano 2001). Values

of P1 of female and male A. eharaiin this study were negative. Thus, random
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predator equation (Rogers 1972) was used to present the type two

functional response. The equation is:

N, = Ny[1 — exp(aTyN, — aT)] (Equation 17)

where Ne is the number of prey consumed per predator during test period T

(24 h), No is the initial number of the prey, a is the attack rate and Tk is the

handling time of predator. The attack rate and handling time between male

and female were compared at 95% confidence interval.

59



4-3. Results

Female A. eharai consumed significantly more number of larvae
than eggs of T. urticae (T1s = 4.71, P = 0.0002) (Table 10), and both female
and male adult A. eharai appeared to prefer larvae (female, T2o = 2.52, P =
0.0204; male, T1s = 2.16, P = 0.0447) (Table 11).

The number of consumed larvae of T. urticae per adult A. eharai at
different larval densities is shown in Table 12. The consumed prey number
was significantly different among prey densities (female, F4,51 = 90.73, P <
0.0001; male, F4, 52 = 24.37, P < 0.0001). Female consumed significantly
more larvae of T. urticae than male at all larval density levels (10 larvae, T19
= 4.15, P = 0.0005; 30 larvae, T19 = 17.52, P < 0.0001; 50 larvae, T20 =
16.19, P <0.0001; 70 larvae, T1s = 10.69, P <0.0001; 130 larvae, T19 = 6.90,
P < 0.0001). Maximum likelihood estimates from logistic regression are
presented in Table 13. Values of P1 of female and male adult A. eharai were
negative, indicating type Il functional response. The functional response
curves of female and male, and parameter estimates are presented in Figs.
14 and 15, and Table 14, respectively. The attack rate (a) of female was
0.109 and male was 0.019. The handling time (Tn) of female was 0.164 h

and male was 0.234 h. The attack rate (a) was significantly different but
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handling time (7Th) was not different between males and females at 95%

confidence level.
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Table 10. Comparison of consumed eggs and larvae number (* SEM)
by female A. eharai at 50 initial density

Eggs Larvae
26.9 + 2.29a 39.6 £ 1.43b
(n=10) (n=10)

Means followed by the same letter within a row are not significantly different at a=0.05
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Table 11. Comparison of consumed eggs and larvae number (* SEM)
by adult A. eharai at 25 eggs and 25 larvae

Sex Eggs Larvae
Female 19.1 + 1.30a 22.7 +0.62b
(n=11)

Male
(0= 10) 7.8+1.19a 11.8 + 1.42b

Means followed by the same letter within a column are not significantly different at o=0.05
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Table 12. Number (* SEM) of larval T. urticae consumed by adult A.
eharai

Prey density Female Male

10 9.4 £ 0.20a* A** 6.1 £0.80a B
(n=11) (n=10)

30 26.7 £ 0.30b A 12.4 £ 0.79ab B
(n=11) (n=10)

50 39.6+1.43cA 13.0£0.91ab B
(n=10) (n=12)

20 58.1+2.74d A 21.2+2.10b B
(n=10) (n=10)

130 85.5+6.47e A 33.9+4.04cB
(n=10) (n=11)

* mean separation by prey density at 95% confidence level, Tukey's studentized range test.

** mean separation by sex at 95% confidence level.
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Table 13. Maximum likelihood estimates (* SEM) from logistic
regression of the proportion of T. urticae larvae consumed by adult A.
eharai as a function of initial prey densities

Sex Parameters Estimated values e P
Po 4.179 £ 0.7199 33.7 <0.0001
P1 -0.124 £ 0.0387 10.23 0.0014
Female
P2 0.002 + 0.0006 8.63 0.0033
Ps -8.1E-06 + 2.76E-06 8.66 0.0033
Po 1.510 £ 0.3619 17.4 < 0.0001
P+ -0.105 £ 0.0216 23.73 < 0.0001
Male
P2 0.001 £ 0.0004 15.24 < 0.0001
Ps -6.0E-06 + 1.72E-06 12.03 0.0005
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Table 14. Parameter estimates (* SEM) of the random predator equation for A. eharai preying on T.
urticae larvae at different prey densities

Sex Attack rate (a) Handling time (Th) r’ P
Female 0.109 £ 0.0231a 0.164 £ 0.0310a 0.97 <.0001
Male 0.019 £ 0.0037b 0.234 £ 0.1227a 0.89 <.0001

mean separation by sex at 95% confidence level.
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4-4. Discussion

The attack rate and handling time can be differently estimated as
the prey species and prey stage because of the preference to a certain life-
stage and species of preys (Xiao et al. 2013, Ganjisaffar and Perring 2015,
Song et al. 2016). In this study, A. eharai preferred larvae than eggs of T.
urticae. Appearance was not much different between starved females (A)
and egg consumed females (B). However, the larva consumed females (C)
look more healthier than starved or egg consumed females (Fig. 16). For
normal development of A. eharai, T. urticae eggs may have less nutritional
values than larvae.

In many functional response test, male predatory mites were not
often tested (Laing and Osborn 1974, Shipp and Whitfield 1991, Koveos
and Broufas 2000, Gotoh et al. 2004, Ahn et al. 2010, Seiedy et al. 2012,
Xiao et al. 2013, Ganjisaffar and Perring 2015, Song et al. 2016). However,
in the present study both sexes were tested to compare their predation
efficacy, and female A. eharai consumed more than males. It might be due
to the larger body size and requirement of more nutrients for oviposition in
females. The functional response test by using male seems to be fully

worthy, because they exist with female and they have predation ability. The
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functional response type of A. eharai was estimated as the type Il, which is
the common type of predatory mites (Laing and Osborn 1974, Shipp and
Whitfield 1991, Koveos and Broufas 2000, Gotoh et al. 2004, Ahn et al. 2010,
Seiedy et al. 2012, Xiao et al. 2013, Ganjisaffar and Perring 2015, Song et

al. 2016).

In comparison with N. californicus (Ahn et al. 2010) (Table 15),
attack rate and handling time of A. eharai were better than N. californicus.
Even though there were differences in plant leaf disc and temperature
between this experiment and experiment of Ahn et al. (2010), the handling
time and attack rate of A. eharai were much higher than those of N.
californicus. However, further study is necessary to compare feeding
abilities between A. eharai and N. californicus against T. urticae in the field
conditions. The present information on the functional response of A. eharai
should be helpful for evaluation of A. eharai for a biological control agent

against T. urticae.

70



Fig. 16. Photo comparison of female A. eharai as the condition of prey consumed

(A) Starved female for 24 hours.
(B) Female that consumed T. urticae eggs for 24 hours.
(C) Female that consumed T. urticae larvae for 24 hours.
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Table 15. Comparison of functional response parameters of A. eharai and N. californicus both of which
feed on T. urticae larvae

Species Attack rate (a) Handling time (Th) Reference
A. eharai 0.1087 0.1642 This study
N. californicus 0.0678 1.5855 Ahn et al. 2010

Ahn et al. (2010) conducted at 25 °C and strawberry leaf disc (30 mm diameter).
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