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NLR-Finder: An Easy and Efficient Annotation Tool 

for the NLR Superfamily in Plant Genomes

JIEUN PARK

INTERDISCIPLINARY PROGRAM IN AGRICULTURAL GENOMICS

THE GRADUATE SCHOOL OF SEOUL NATIONAL UNIVERSITY

ABSTRACT

Gene annotation is an essential process to identify gene structures and define 

biological functions. It is an important step for subsequent analyses including gene 

cloning and identification of genes for agricultural traits. However, current gene 

annotation misrepresents the whole gene repertoire due to biased gene model construction. 

Nucleotide-binding and leucine-rich repeat (NLR) superfamily is one of the poorly

annotated gene families in plants. The NLR family tends to be clustered in genomes by 

segmental and tandem duplications, which makes the gene annotation challenging. The 

NLR-Finder was developed for unbiased genome-wide identification of the NLR 

superfamily in assembled plant genomes. The NLR-Finder firstly detects candidate NLR 

gene regions by extending 30 kb to both sides of all the identified NB-ARC domain 



ii

regions. Secondly, evidence-based NLR genes are predicted by aligning published 

proteins and transcriptome sequences to the candidate gene regions. Thirdly, additional

NLR genes are extracted using an ab initio prediction approach. Lastly, final NLR gene 

models are generated by integration of the evidence- and ab initio-based NLR genes. The 

re-annotation was performed using the NLR-Finder on 17 different plant genomes. On 

average, public annotation tools identified about 310 genes, whereas the NLR-Finder 

annotated about 497 genes. In Gossypium hirsutum and Vigna radiata, the number of re-

annotated genes tripled compared to that of publicly available data. The re-annotated 

genes were successfully validated by comparing with high-quality annotations of 

Arabidopsis thaliana, Brachypodium distachyon, and Solanum lycopersicum. This study 

demonstrated that the NLR-Finder provides an easy-to-use and efficient method to 

annotate the NLR superfamily in plant genomes. 

Keywords: annotation, ab initio gene prediction, HMMER, nucleotide-binding and 

leucine-rich repeat (NLR) gene, protein mapping

Student number: 2015-21804
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INTRODUCTION

A mass of genome sequences from prokaryote to eukaryote have been 

accumulated as consequence of improvement in DNA sequencing technologies.

However, the gene annotation is still inaccurate and challenging. Many studies have 

pointed out that annotated genes have been released prematurely and misrepresented the 

whole gene repertoire (Devos and Valencia, 2001; Gilks et al., 2002; van den Berg et al., 

2010; Gotoh et al., 2014). In particular, gene annotation in plant genomes is challenging

due to the large genome size and repetitive sequences. Furthermore, the gene contents 

are also complex, as shown by the presence of large gene families and abundant 

pseudogenes which are nearly identical sequences derived from recent whole genome 

duplication events and transposon activity (Schatz et al., 2012). A previous study 

analyzed annotation quality of 47 plant genomes and reported that 50-60% of annotated 

gene structures include errors such as inherently fragmented genes in incomplete 

sequencing regions, and pseudogenes (Gotoh et al., 2014).

Nucleotide-binding and leucine-rich repeat (NLR) superfamily is one of the 

poorly annotated gene families in plants due to the repetitive nature of the genes

(Meyers et al., 2003). Previous studies have shown that public gene prediction software

does not detect up to 40% of the total NLR genes (Jupe et al., 2013; Andolfo et al., 

2014). The genes are the most representative type of disease resistance genes (Meyers et 

al., 2003), and contain leucine-rich repeat (LRR) domains in their C-terminal and NB-
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ARC (nucleotide-binding adaptor shared by APAF-1, Resistance proteins, and CED-4) 

domains in central regions (van Ooijen et al., 2008; Seo et al., 2016). NLR genes can be 

classified into two types, CC-NLR and TIR-NLR, based on the presence of an N-

terminal Coiled-coil (CC) motif or Toll/interleukin-I receptor-like (TIR) domain (Eitas 

and Dangl, 2010). NB-ARC domains are highly conserved and play roles in ATP 

binding and hydrolysis (Lukasik and Takken, 2009). For the LRR and TIR/CC domains, 

they are involved in activation and interaction with signaling partners, respectively 

(Lukasik and Takken, 2009). 

In this study, the NLR-Finder was developed as a high-accuracy tool for a 

NLR superfamily annotation. In order to test the performance of the NLR-Finder, the 

tool was run with 17 plant genomes. The re-annotated genes were compared to public

annotation data. On average, public annotation tools identified about 310 genes, 

whereas the NLR-Finder annotated about 497 genes. In some species, the number of re-

annotated genes tripled compared to that of publicly available data. Annotated genes 

were validated with proven high-quality gene annotations including Arabidopsis 

thaliana, Brachypodium distachyon, and Solanum lycopersicum. This study 

demonstrated that the NLR-Finder provides an easy-to-use and efficient method to 

annotate the NLR gene family. 
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LITERATURE REVIEWS

Gene annotation

Gene annotation is the process of finding the location of genes and 

determining the biological functions of the genes in assembled genomes. Genome 

sequencing has become easy to perform, and costs have dramatically fallen by 

technological advances. A major challenge in the post-genome sequencing era is to 

obtain reliable annotations of these genomes (Jupe et al., 2013). However, gene 

annotation is still challenging and complex (Yandell and Ence, 2012). The annotation of 

eukaryotic genomes is especially more complicated than that of prokaryotic genomes 

due to larger genome size and the complexity of gene structure. In order to annotate 

more easily, a lot of public annotation pipelines such as EVM (Haas et al., 2008), 

GLEAN (Elsik et al., 2007), Maker (Cantarel et al., 2008), and JIGSAW (Allen and 

Salzberg, 2005) have been developed. 

The annotation has multiple steps. The first step in most of annotation 

pipelines is repeat masking (Yandell and Ence, 2012). The repeat sequences including 

transposable elements (TEs) as well as simple repeats are identified and masked in this 

step. Repeat masking is divided into two methods, hard-masking and soft-masking. In 

hard-masking, complex repeats are completely removed from any further consideration 

of future phases in the annotation process (Kielbasa et al., 2011), and replaced with the 

letter N. In soft-masking, repeats with low-complexity are transformed to lowercase 
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letters so that this prevents alignment programs from using repeats as seeds but allows 

alignments in non-masked regions to extend into the soft-masked regions (Cantarel et 

al., 2008). In the second step, proteins, ESTs, and transcriptome are aligned to the 

assembled genome using alignment tools such as Exonerate (Slater and Birney, 2005), 

GeneWise (Birney and Durbin, 2000), and Bowtie (Langmead et al., 2009). The results 

of alignments are filtered by percent identity or percent similarity (Yandell and Ence, 

2012). In the step of ab initio gene prediction, construction of training sets is the most 

important because the gene predictor depends on the number and the variety of genes in 

the training sets to find genes in assembled genomes (Goodswen et al., 2012). 

Annotation errors

Annotation quality is one of the most important factors for many subsequent 

analyses since most analyses are performed based of the annotation. However, a lot of 

studies have argued that majority of published gene annotations are still low in quality.

A previous study reported that more than half of annotated genes in plants include 

variety of annotation errors (Gotoh et al., 2014). The gene models contain pseudo- and 

fragmented genes annotated in low quality areas of sequencing (Gotoh et al., 2014). 

Additionally, the annotation error rate is at least 8% in Mycoplasma genitalium (Brenner, 

1999). However, the rate was calculated via comparison of annotations generated by 

three different groups. This indicates that the error rate was estimated without 

consideration of innate error in the annotation. Most importantly, there are errors in 
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public databases which are used when annotating genes. These errors will exacerbate 

the issue since these databases will inevitably lead to further errors, making the post-

annotation analysis unreliable. Even one of the most commonly used databases, Gene 

Ontology (GO) sequence database (GOSeqLite), contains errors ranging from a rate of 

28% to 30% (Jones et al., 2007).

Even though annotation accuracy is steadily improving, there are many critical 

errors that still need to be corrected. To reduce the error of annotation, re-annotation 

should be performed using the updated data (van den Berg et al., 2010). It should be 

avoided to use databases including errors for protein mapping or ab initio prediction. 

However, if an errorless database is unavailable, one should be sure to always use the 

most up-to-date data in order to achieve the best results (van den Berg et al., 2010).

Nucleotide-binding and leucine-rich repeat (NLR) genes

In nature, plants are attacked by diverse pathogens such as fungi, bacteria, 

viruses, and insects. To protect themselves from these harmful pathogens, plants use 

defense mechanisms they have developed over millions of years of evolution. The 

defense systems can be divided into two layers (Dodds and Rathjen, 2010). In the first 

layer, pathogen-associated molecular patterns (PAMPs) of pathogens are recognized by 

pattern-recognition receptors (PRRs) located in plasma membranes (Dangl et al., 2013).

In consequence, PAMP-triggered immunity (PTI) is induced to limit microbial 

colonization. To suppress PTI, some pathogens deliver virulence proteins known as 
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effectors into host cells (Dangl et al., 2013). In response, plants that have the second 

layer of defense recognize the effectors and induce a strong immune response called

effector-triggered immunity (ETI) to suppress pathogen growth. As a result of ETI 

responses, programmed cell death called hypersensitive response (HR) are often 

observed (Fei et al., 2016). The second layer is governed by intracellular resistance (R) 

genes. Most of the R genes belong to the nucleotide-binding and leucine-rich repeat 

(NLR) gene family (Glowacki et al., 2011). 

As the name suggests, these genes include nucleotide-binding (NB) domains 

and leucine-rich repeat (LRR) domains. NLR genes are divided into two subclasses, 

CC-NLR and TIR-NLR, based on the presence of an N-terminal Coiled-coil (CC) motif 

or Toll/interleukin-I receptor-like (TIR) domain (Eitas and Dangl, 2010). Plant NLR 

genes are generally known to detect pathogens through direct or indirect interaction, 

although the precise mechanism of the genes remains an open question (DeYoung and 

Innes, 2006). In NLR genes, different domains have specific roles. For example, a NB 

domain possess ATP binding and hydrolysis capabilities, while CC/TIR plays a role in 

interaction with signaling partners, and LRR domains are implicated in the activation of 

partners (Lukasik and Takken, 2009).

The repetitive structure of the gene causes difficulty to annotate the genes 

(Steuernagel et al., 2015). Additionally, the genes tend to cluster in genomes by 

segmental and tandem duplications (McHale et al., 2006), which makes the gene 

annotation more challenging. The number of NLR genes in many genomes tends to be 
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underestimated, and the genes need to be improved through re-annotation (Jupe et al., 

2013).
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MATERIALS AND METHODS

Plant genomes, protein data, and transcriptome collection 

In order to represent the whole clades of the plants, the genomes were evenly 

chosen from monocot to dicot. Eight plant genomes (Arabidopsis thaliana, 

Brachypodium distachyon, Glycine max, Gossypium raimondii, Oryza sativa, Solanum 

lycopersicum, Vitis vinifera, and Zea mays) were selected for re-annotation first by the 

selection criteria; 1) pseudomolecules and transcriptome data are available, 2) scaffold 

N50 is more than 1 Mb, 3) contig N50 is around 30 kb. To test performance of the

pipeline, nine other genomes were additionally chosen (Ananas comosus, Brassica 

oleracea, Capsicum annuum, Citrullus lanatus, Citrus sinensis, Gossypium hirsutum, 

Solanum tuberosum, Vigna angularis, and Vigna radiata). The species were annotated 

with EVM (Haas et al., 2008), GLEAN (Elsik et al., 2007), and Maker (Cantarel et al., 

2008), which are commonly used as annotation pipelines, and compared their 

annotations with gene models of the NLR-Finder after re-annotation. Genome fasta files

and protein data were downloaded from Phytozome (https://phytozome.jgi.doe.gov/) 

except for C. annuum and C. lanatus. In-house genome and protein data were used for C.

annuum. For C. lanatus, data were downloaded from the Cucurbit Genomics Database 

(http://www.icugi.org/cgi-bin/ICuGI/index.cgi) (Table 1).

Transcriptome data were downloaded from NCBI (http://www.ncbi.nlm.nih.gov/).

These were paired sequence data, and the read lengths were over 80 bp. Bacterial
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Table 1. Genomic resources used to test the performance of the NLR-Finder.

Species

Genome Protein

ReferenceAssembled 

size (Mb)
Version # of genes

Ananas comosus 526 V3.0 27,024 (Ming et al., 2015)

Arabidopsis thaliana 115 TAIR10 27,416 (Arabidopsis Genome Initiative, 2000)

Brachypodium distachyon 270 V3.1 34,310 (International Brachypodium Initiative, 
2010)

Brassica oleracea 630 V1.0 35,400 (Liu et al., 2014)

Capsicum annuum 3,060 V1.6 34,897 (Kim et al., 2014)

Citrullus lanatus 354 V1.0 23,440 (Guo et al., 2013)

Citrus sinensis 367 V1.0 29,406 (Xu et al., 2013)

Glycine max 955 Wm82.a2.v1 56,044 (Schmutz et al., 2010)

Gossypium hirsutum 2,500 V1.1 70,478 (Zhang et al., 2015)

Gossypium raimondii 775 V2.1 37,505 (Wang et al., 2012)

Oryza sativa 390 V7.0 42,189 (Goff et al., 2002)

Solanum lycopersicum 782 iTAGv2.3 34,727 (Sato et al., 2012)

Solanum tuberosum 727 V3.4 35,119 (Potato Genome Sequencing Consortium, 
2011)

Vigna angularis 612 V3.0 26,857 (Kang et al., 2015)

Vigna radiata 543 V6.0 22,368 (Kang et al., 2014)

Vitis vinifera 498 Genoscope.12X 26,346 (Jaillon et al., 2007)

Zea mays 2,048 6a 63,480 (Schnable et al., 2009)
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sequences, duplicated short reads, and low-quality sequences below Q20 (quality score) 

were filtered out in the preprocessing step. Bacterial genomes from GenBank were used 

for reference, and Bowtie2 v2.0.0-beta7 (--local -D 15 -R 2 -N 0 -L 20 -i S,1,0.65) was 

used for mapping sequences to reference bacteria genomes. To eliminate low-quality 

sequences, in-house Perl scripts were used. After preprocessing, sequences were 

assembled using TopHat v2.0.12 and Cufflinks v2.2.1 (Ghosh and Chan, 2016) with a 

default parameter (Table 2).

Workflow of the NLR-Finder

Gene annotation was carried out using the NLR superfamily annotation 

pipeline (NLR-Finder). The NLR-Finder consists of five steps: 1) identification of 

candidate gene regions, 2) domain search, 3) identification of candidate NLR gene 

regions, 4) structural annotation, 5) gene model integration/filtering (Figure 1).

Step 1: Identification of candidate gene regions

The NLR-Finder performed a six-frame translation from a genomic FASTA 

data to identify candidate gene regions. After the translated sequences were cut by stop-

codon, the fragments were generated in FASTA format.

Step 2: Domain search

HMMERv.3 (Finn et al., 2011), was used to search all NB-ARC domains in 
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Table 2. Properties of transcriptome used for gene annotation.

Species
Raw data

(Gb)

Preprocessed 

data (Gb)
Tissue SRR ID

Ananas comosus 18 11 Whole plant, leaf SRR1165179, SRR2983923, SRR2984781

Arabidopsis thaliana 66 42 Flower, leaf, root, seed, stem
SRR633726, SRR633727, SRR1773569, 

SRR1773570, SRR1773572, SRR1773573, 
SRR2187609

Brachypodium distachyon 10 7 Shoot, stem SRR1635409, SRR1797575

Brassica oleracea 13 7 Flower, leaf, root, stem SRR630923, SRR630924, SRR630925, 
SRR630927

Capsicum annuum 33 14 Fruit, root, stem In-house resources

Citrullus lanatus 20 7 Flower, bud, stem SRR494474, SRR494479, SRR2033940, 
SRR2033941, SRR2033942, SRR2033943

Citrus sinensis 20 8 Fruit, leaf SRR867166, SRR867397, SRR867425, 
SRR867435

Glycine max 36 14 Flower, leaf, root, seed, stem SRR1174205, SRR1174207, SRR1174216, 
SRR1174219, SRR1174226

Gossypium hirsutum 23 16 Leaf, root, stem SRR2081039, SRR2081040, SRR2081042, 
SRR2081045

Gossypium raimondii 17 7 Seed, leaf, ovule SRR389181, SRR389182, SRR389183, 
SRR959890, SRR959899

Oryza sativa 64 22 Ear, leaf, panicle, root SRR1179192, ERR855945, ERR855947, 
DRR013723

Solanum lycopersicum 14 8 Fruit, root, leaf, bud, flower SRR1514810, SRR3031978, SRR3031982

Solanum tuberosum 14 3 Flower, leaf, root, tuber SRR122109, SRR122122, SRR122124, 
SRR1207290

Vigna angularis 40 24 Flower, leaf, root, stem DRR031872, DRR031873, DRR031876, 
DRR031877

Vigna radiata 18 8 Whole plant, seed SRR1653637, SRR1867748

Vitis vinifera 36 20 Flower, leaf, pooled RNA SRR519455, SRR519456, SRR520374, 
SRR522298, SRR2043222

Zea mays 28 10 Leaf, ovule, pollen, root, shoot SRR254171, SRR255405, SRR445651, 
SRR445656, SRR2886947
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Figure 1. Workflow of the NLR-Finder. 
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the results of Step 1. To build training sets, thirty NB-ARC domains with the least e-

values were extracted from public protein data of the genome using Pfam database

(PF00931). Alignment of the nucleotide sequences of the domains was generated with 

MEGA 6 (default parameter) (Tamura et al., 2013) using ClustalW algorithm (Larkin et 

al., 2007), and the results were converted from FASTA format to Stockholm format in 

IBIVU (http://www.ibi.vu.nl/). The aligned NB-ARC domain sequences were used as 

the training sets to run HMMERv.3. The domains identified in this step were not filtered 

by any other methods such as e-value cut-off to avoid missing any candidates.

Step 3: Identification of candidate NLR gene regions

The average NLR gene length is 3.2 kb and the longest one is approximately

20 kb. To mask unnecessary parts in genomes and reduce computing time, the NLR-

Finder defined candidate NLR gene regions by extending 30 kb to both sides of the 

identified NB-ARC domain regions, and mask other regions without the domain.

Step 4: Structural annotation 

This step is divided into three parts: 1) protein mapping, 2) transcripts 

alignment using Integrated Structural Gene Annotation Pipeline (ISGAP) (Kim et al., 

2015), 3) ab initio gene prediction. From 33 plant genomes, 9,557 NLR genes (average 

length: 882 bp) were collected to perform the protein mapping. To find gene structures, 

the NLR genes were aligned to the masked genome of Step 3 using Exonerate v.2.2.0 
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with parameters –percent 50 and –maxintron 20000 (Slater and Birney, 2005). Gene 

models having early stop-codons were filtered. In the gene models without stop-codons,

3 bp from the 3’-end region were extended to find the stop-codons. Consensus 

sequences were then constructed from the extended and partial gene models by merging 

same sequences. To remove redundant gene models in the same locus of the genome, 

the longest full-type genes among the consensus gene models were extracted as 

representative gene models. If a full-type gene was not found, the longest partial gene 

was selected as the representative model. For transcripts alignment, reference assembly 

was performed using masked genomes of Step 3 and followed the ISGAP method of 

previous study (Kim et al., 2015). To build a training set of Augustus, an ab initio gene 

prediction program, NLR genes of the species identified by Pfam database (PF00931)

were integrated with full-type genes generated by the protein mapping and transcripts 

alignment. After then, the Augustus was run using the training set.

Step 5: Gene model integration/filtering

After the structural annotation, the gene models without the NB-ARC domains 

identified in Step 2 were filtered out, and then integrated into the final gene model. The 

merging order is as followed: 1) full-type NLR genes of the protein mapping, 2) NLR 

genes annotated in the transcripts alignment, 3) the results of the Augustus, 4) partial-

type NLR genes of the protein mapping. Finally, the final gene model was filtered with 

HMMERv.3 by using the same training sets of Step 2 to determine surely the gene 
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model containing the NB-ARC domains.
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RESULTS

Transcriptome raw data preprocessing and reference assembly 

Transcriptome sequences were obtained from 17 species, and the sequence 

size ranged from 10 to 66 Gb (Table 2). This data were collected from diverse tissues 

such as flower, fruit, leaf, root, seed, and stem. The data were paired-end reads, and 

their read lengths were more than 80 bp. After preprocessing, the sequences ranging 

from 3 to 42 Gb remained and were used for reference assembly (Table 2). For details, 

see the materials and methods section.

Re-annotation of NLR genes with the NLR-Finder

In order to test the performance of the NLR-Finder, the pipeline was run on 17

plant genomes. Among the 17 species, genomes of Arabidopsis thaliana, Brachypodium 

distachyon, and Solanum lycopersicum were used for validation (see below). A six-

frame translation was conducted in the genomes to find candidate gene regions. All 

candidate NB-ARC domains were then identified in the translated sequences using 

HMMERv.3. Citrullus lanatus contained the smallest number of the domains with 88 

domains, whereas Gossypium hirsutum had the largest number of the domains with 

1,861 domains (Table 3). On average, there were 858 NB-ARC domains in the 14

genomes.

After defining candidate gene regions using the position of all the NB-ARC 
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Table 3. Numbers of identified NB-ARC domains and annotated NLR genes.

Species

# of NBa domains # of NBa domains # of NLR genes

HMMERv.3 NLR-Finder Public datab NLR-Finder Public datab

Ananas comosus 299 280 233 218 174

Brassica oleracea 530 429 203 301 155

Capsicum annuum 1,856 1,391 1,071 910 766

Citrullus lanatus 88 78 71 50 46

Citrus sinensis 1,288 1,082 673 778 516

Glycine max 938 747 668 528 476

Gossypium hirsutum 1,861 1,355 434 994 316

Gossypium raimondii 803 677 418 471 303

Oryza sativa 953 893 820 595 539

Solanum tuberosum 921 732 449 556 343

Vigna angularis 401 351 150 286 104

Vigna radiata 544 468 143 369 96

Vitis vinifera 1,201 984 455 704 326

Zea mays 329 289 270 194 177

aNB: NB-ARC domain.

bPublic data: NLR genes including NB-ARC domains among publicly available data.
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domains, the structural annotation was performed with protein mapping, transcripts 

alignment, and ab initio gene prediction. All gene models were merged into final gene 

models and filtered by HMMERv.3 to remove genes which have no NB-ARC domains. 

To compare the gene models with publicly available data in equal conditions, public

annotation data without the NB-ARC domain identified in the domain search step were 

filtered out. Afterwards, the genes having no NB-ARC domains were filtered out once 

again by HMMERv.3 using the same training sets used in the domain search step. The 

filtering methods of public annotation data were same for Step 5 of the NLR-Finder in 

materials and methods.

The number of NB-ARC domains identified by the NLR-Finder ranged from 

78 to 1,391, and 71 to 1,071 in the public data (Table 3). The NLR-Finder identified an 

average of 264 domains more than the domains of the publicly available data (Figure 

2A). For NLR genes, the number annotated by the NLR-Finder was immensely diverse 

from 50 to 994 (Table 3). In the publicly available data, the number of identified NB-

ARC domains ranged from 46 to 766. The NLR-Finder found more annotated genes 

ranging from 4 to 678 (Figure 2B), and on average, annotated about 187 more genes. In 

G. hirsutum, Vigna angularis, and Vigna radiata, the number of re-annotated genes 

tripled compared to that of publicly available data (Figure 2B). Additionally, the NLR-

Finder could generally detect longer NLR genes compared to the pre-existing annotated 

genes, even though the length of genes annotated by the NLR-Finder was shorter than 

public data in some species (Table 4).
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Figure 2. The NLR-Finder identifies more NB-ARC domains and NLR genes 

compared to those of publicly available annotations. (A) The bar graph labeled in 

black indicates the number of identified NB-ARC domains by the NLR-Finder. The 

white bars show the number of NB-ARC domains in publicly available data. (B) The 

grey bar graph shows the number of annotated NLR genes by the NLR-Finder. The 

white bars indicate the number of NLR genes including NB-ARC domains from

publicly available data.
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Table 4. Lengths and numbers of annotated NLR genes.

Species
NLR-Finder

(Average length, bp)

Public dataa

(Average length, bp)

Ananas comosus 218 (1,052) 174 (1,018)

Brassica oleracea 301 (764) 155 (662)

Capsicum annuum 910 (615) 766 (588)

Citrullus lanatus 50 (905) 46 (888)

Citrus sinensis 778 (882) 516 (927)

Glycine max 528 (892) 476 (898)

Gossypium hirsutum 994 (938) 316 (947)

Gossypium raimondii 471 (984) 303 (1,000)

Oryza sativa 595 (899) 539 (880)

Solanum tuberosum 556 (715) 343 (698)

Vigna angularis 286 (978) 104 (1,027)

Vigna radiata 369 (1,017) 96 (1,007)

Vitis vinifera 704 (989) 326 (848)

Zea mays 194 (752) 177 (745)

aPublic data: NLR genes including NB-ARC domains among publicly available data.
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For a detailed comparison, the number of the domains identified by the NLR-

Finder and public annotation pipelines was calculated in each species with the basis of 

all candidate domains (100%) identified by HMMERv.3 (Figure 3). Next, overlapped 

domains discovered by both the NLR-Finder and public annotation tools were 

confirmed, and specific domains identified by either the NLR-Finder or public 

annotation pipelines were found among all the candidates. In the 14 species, the number 

of domains in the “NLR-Finder specific” were greater than those of “Public data 

specific” (Figure 3A). Regarding Brassica oleracea, G. hirsutum, V. angularis, and V. 

radiata, there were even a greater number of domains found in “NLR-Finder specific” 

than those of “Both NLR-Finder and public data” (Figure 3A). On average, the NLR-

Finder identified approximately 707 (83%) of NB-ARC domains among 858 (100%) 

total domains, while the public annotation tools identified approximately 454 (53%) 

domains (Figure 3B). The number of the domains searched by both the NLR-Finder and 

public annotation tools was 433 (51%) among all 858 domains (100%). The number of 

specifically identified domains was 273 (32%) and 20 (2%) in the NLR-Finder and 

public annotation tools, respectively.

Validation of the NLR-Finder using high-quality plant genomes

To evaluate the annotations performed by the NLR-Finder, gene models 

annotated by the NLR-Finder were compared with the public annotations of A. thaliana, 

B. distachyon, and S. lycopersicum, which are commonly considered as high-quality
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Figure 3. The number of NB-ARC domains found only by the NLR-Finder is 

greater than the number identified only by public annotation pipelines. (A) “Both 

NLR-Finder and public data” indicates the number of NB-ARC domains identified by 

both the NLR-Finder and public annotation pipelines. “NLR-Finder specific” represents 

domains found only by the NLR-Finder, while “Public data specific” means domains 

identified only by public annotation pipelines. “No-hit” shows domains unidentified by 

neither the NLR-Finder nor public annotation pipelines. (B) The Venn diagram shows

the average number of the domains from public annotations and the NLR-Finder results 

in 14 plant genomes.
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plant genomes. The number of the NLR genes and NB-ARC domains identified by the 

NLR-Finder in three species were nearly identical to the genes and domains of public 

annotation tools (Table 5). 

In a more detailed comparison, the number of domains found by the NLR-

Finder and public annotation tools were calculated on the basis of all the NB-ARC 

domains (100%) identified by HMMERv.3 (Figure 4). In A. thaliana, 227 domains were 

identified by both NLR-Finder and public annotation tools. “NLR-Finder specific” 

contained five domains, and “Public data specific” contained four. “No-hit” domains 

contained 21. For B. distachyon, 680, 25, and 27 were contained in each of “Both NLR-

Finder and public data”, “NLR-Finder specific”, and “Public data specific”. “No-hit”

domains were 33. For S. lycopersicum, the number of domains found by both NLR-

Finder and public annotation tools were 355. “NLR-Finder specific”, “Public data 

specific”, and “No-hit” were 25, 31, and 99 in each. Therefore, even in comparison with 

the high-quality genomes, the performance of the NLR-Finder was comparable with 

those of public annotation tools. 

In A. thaliana, one NLR gene was annotated only by public annotation tools 

among 171 annotated NLR genes (Figure 5A). The NLR-Finder annotated two novel 

NLR genes. For B. distachyon, seven NLR genes were identified only by public 

annotation pipelines, whereas 18 novel genes were annotated only by the NLR-Finder

(Figure 5B). Regarding S. lycopersicum, public annotation tools found specifically 14 

NLR genes, and the NLR-Finder annotated 20 novel NLR genes (Figure 5C).
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Table 5. Numbers of identified NB-ARC domains and annotated NLR genes in 

high-quality plant genomes.

Species

# of NBa domains # of NBa domains # of NLR genes

HMMER NLR-Finder Public datab NLR-Finder Public datab

Arabidopsis thaliana 257 229 229 170 171

Brachypodium distachyon 765 702 701 390 382

Solanum lycopersicum 510 373 374 268 267

aNB: NB-ARC domain.

bPublic data: NLR genes including NB-ARC domains among publicly available data.
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Figure 4. The number of NB-ARC domains identified only by the NLR-Finder is 

comparable to that found only by public annotation pipelines in three high-quality 

plant genomes. ”Both NLR-Finder and public data” indicates the number of NB-ARC 

domains identified by both the NLR-Finder and public annotation pipelines. “NLR-

Finder specific” represents domains found only by the NLR-Finder, while “Public data 

specific” means domains identified only by public annotation pipelines. “No-hit” shows 

domains not identified by neither the NLR-Finder nor public annotation pipelines.
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Figure 5. Validation with high-quality plant genomes, Arabidopsis thaliana, 

Brachypodium distachyon, and Solanum lycopersicum. ”Overlap” indicates the 

number of NLR genes annotated by both the NLR-Finder and public annotation 

pipelines. “Partially overlap” represents the number of NLR genes, which are partially 

overlapped among the genes annotated by the NLR-Finder and public annotation 

pipelines. “Non-overlap” shows non-overlapped NLR genes. The pie graph represents 

the validation results of A. thaliana, B. distachyon, and S. lycopersicum.
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DISCUSSION

By using the NLR-Finder on seventeen plant genomes including three high-

quality plant species for validation, annotation results demonstrated that the NLR-

Finder provides an effective tool to identify NLR genes in diverse plant genomes of 

monocot and dicot class. Identification of all candidate domains was performed using 

HMMERv.3, the domain search program. This is the most important part in the re-

annotation process since the pipeline is based on the domains of the NLR gene family 

for gene annotation. The domain search step was performed to identify NB-ARC 

domains in genomes and defining potential NLR gene regions from the position of 

domains. Therefore, all domains identified in the domain search step were not filtered, 

and potential regions to annotate as NLR gene were not missed.

For an accurate comparison of performance of public annotation tools, it is 

needed to establish the entire domain number quantity and position within the genome. 

All the NB-ARC domains found by HMMERv.3 were assumed as whole domains in the 

genome since it includes all the possible NB-ARC domains. The performance of the 

NLR-Finder was compared with that of public annotation tools on the basis of the total 

NB-ARC domains. As a result, there were some NB-ARC domains that were not 

identified by both the NLR-Finder and public annotation tools. Most of the “no-hit”

domains were false-positive domains which cannot be identified even in the protein 

mapping step in the NLR-Finder.
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In the gene models of the NLR-Finder and public annotation tools, the number 

of NB-ARC domains tends to be overestimated since the number of the domains was 

counted in the final gene models on the basis of the total NB-ARC domains searched in 

the domain search step, and the total domains were identified in genomic DNA, not 

CDS sequence. This method for counting the NB-ARC domains is for performance 

comparison between the NLR-Finder and public annotation tools based on one criterion. 

However, the domains in the final gene model were not split like the number of the 

domains in Table 3. 

In a validation analysis performed with three high-quality genomes (Figure 5), 

non-overlapped genes were found. A non-overlapped NLR gene in public annotation of

A. thaliana was not identified by the NLR-Finder even in the step of protein mapping. It 

seems not to be annotated since the splicing sites of the NLR gene are not conserved in 

the genome. For two non-overlapped NLR genes of the NLR-Finder in A. thaliana, 

NLR homologs were identified in other species. Non-overlapped NLR genes in public 

annotation of B. distachyon and S. lycopersicum, there were diverse reasons for not 

detecting by the NLR-Finder. Some NLR genes were not found in the step of protein 

mapping. However, a BLAST search using the coding sequence (CDS) revealed that the

NLR genes were in the genomes. The public software used in the protein mapping step 

seems to miss the NLR genes. Other NLR genes were filtered out due to a frame-shift 

mutation, and the others were not annotated since the splicing sites were not conserved 

in the genomes. For about 78 percent of non-overlapped NLR genes in the NLR-Finder 
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of B. distachyon, NLR homologs were identified in other species. In S. lycopersicum, 95 

percent of non-overlapped NLR genes in the NLR-Finder have NLR homologs in other 

species. For partially overlapped NLR genes, detailed in-depth analysis is needed. 

RGAugury (Li et al., 2016), NLR-parser (Steuernagel et al., 2015) have 

previously been reported as tools to annotate NLR genes. However, the RGAugury still 

misses NLR genes which were not annotated in a genome, since the tool uses protein 

sequence files from a whole genome annotation or manually annotated sequence data as 

a data input. The NLR-parser can identify NLR genes even though the NLR genes are 

not in an annotation of a genome, since the input is a protein sequence translated into all 

six reading frames. The tool annotates NLR genes using Motif Alignment and Search 

Tool (MAST) (Bailey et al., 2009), whereas the NLR-Finder identifies NLR genes using 

a lot of evidence proteins and transcripts after defining NLR candidate gene regions 

based on NB-ARC domains. The NLR-Finder would be a useful tool to annotate the 

NLR gene family and improve the annotation quality in plant genomes.
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초 록

유전자 어노테이션이란 유전체에서 유전자의 구조를 찾고 생물학적

기능을 정의하는 것을 의미한다. 이는 유전체를 활용한 거의 모든 추후

분석에서 사용되기 때문에 매우 중요하다. 하지만 알고리즘의 한계와

현존하는 오류 때문에, 현재의 어노테이션은 불완전하며 전체 유전자를

대변하지 못하고 있다. NLR 유전자군은 병 저항성에 관여하며, 식물에서

어노테이션이 잘 되어있지 않은 대표적인 유전자군이다. 이 유전자군은

반복서열을 포함하고 있으며 유전체 내에서 인접해있어 동정이 어렵다. NLR-

Finder 는 NLR 유전자군의 어노테이션을 위하여 개발된 생물정보

프로그램이다. 이 프로그램의 가장 큰 특징은 유전체에서 유전자의 후보

지역을 먼저 설정한 후 어노테이션을 수행한다는 것이다. 어노테이션에는

단백질과 전사체 데이터를 사용하였으며, 이 단계에서 찾지 못한 유전자는

ab initio gene prediction 이라는 방법을 통해 추가적으로 어노테이션하였다.

식물 17 종의 유전체 서열에서 NLR 유전자의 어노테이션을 새로 수행하였고,

애기장대, 야생잔디, 토마토 등 3 종은 식물에서 어노테이션이 상대적으로

가장 잘 되어있다고 여겨지는 종이기 때문에 프로그램의 타당성을

검증하는데 사용하였다. 이 3 종을 제외한 14 종에서 평균적으로 187 개의

유전자를 더 찾았으며, 타당성 검증 또한 성공적으로 수행되었다. 이를 통해

본 연구는 NLR-Finder 가 NLR 유전자군을 동정하기 위한 쉽고 효율적인

생물정보 프로그램이라는 것을 증명하였다.
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