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Abstract

A Hamiltonian system is symplectic. To simulate a Hamiltonian system,
symplectic time integrators are generally applied; otherwise, the energy or the
generalized energy is not conserved in the volume of interest. In this study, the
symplectic nature of the acoustic wave system is proven. Then, a symplectic
scheme that can be extended arbitrarily in temporal dimensions is suggested.
The method is based on the Lax-Wendroff expansion of the time differentiation
of acoustic wave variables, such as pressure and velocity, existing on the
staggered time axis, i.e., one is on the integer grid, and the other is defined on
the half integer of the time step. The series can be reduced to the pseudo-
differential operator, which enables the application of other approximation
techniques, such as the Jacobi-Anger expansion. By virtue of considering the
property of the nature of the acoustic wave phenomena, the scheme is more
stable and accurate than methods that do not consider symplecticity. Moreover,
the phase error per time step can be kept sufficiently small to conduct
simulation over long periods of time. According to the analysis of the scheme,
the larger the time strides are, the more efficient the simulation is in terms of
computing power when a sufficient number of multiplications of the map are
accumulated. The effectiveness and accuracy are verified through simulation
results using a homogeneous model in which the computed wavefield is
equivalent to the analytic solution. The numerical results of the wavefield in the
heterogeneous model also yield equivalent results irrespective of the time step
lengths. The scheme can be applied to the source problems; however, the time

step is confined to describing the entire frequency component of the wavelet.

Keywords : Symplectic time integrator, acoustic wave equation, pseudo-
spectral method, extremely accurate simulation

Student number : 2012-30910
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1. Introduction

1.1. Background

Imaging via migration techniques or inverse problems plays an essential role
in characterizing the interior of a medium that does not allow direct inspection
(e.g., the biopsy of body parts, drilling of land or slicing of complex mechanical
parts) because of safety or economic issues, allowing decision-makers to
understand the properties of the medium. The resulting images help decision-
makers accurately evaluate the conditions because the data acquired via direct
examination are reliable. However, locally confined information presents
difficulties in realizing the broad tendency of the subsurface structure.

Numerical simulation of the wave propagation is the essential technique of
imaging algorithms because it requires iteratively applying forward and adjoint
wave modeling procedures once or many times (Baysal et al. 1983; Whitmore
1983; Tarantola 1983; Tarantola 1984; Pratt et al. 1998; Shin and Cha 2008;
Shin and Cha 2009). We usually refer to the modeling algorithm as a ‘modeling
engine’ because it generates the results (here, quality of the resulting image),
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just as car engines do. The more accurate the modeling engine, the higher the
resolution of the obtained image. To this end, various methodologies have been
developed to improve the accuracy of wave phenomena simulations.
Discretization of the wave equation yields numerical errors, i.e., phase and
amplitude errors. Such errors cause the simulation results to violate the
dispersion relation of the wave phenomena. Marfurt (1984) analyzed the
dispersion characteristics of the standard 5-point finite-difference (FD) method
and 9-point finite-element method (FEM) using linear elements. The results of
Marfurt’s work suggest that the eclectic mass matrix, the weighted summation
of the lumped mass matrix and the consistent mass matrix, decreases the
dispersion error of standard FEM. Virieux (1986) introduced a FD scheme
termed the staggered-grid finite-difference method (SGFDM) to simulate the
seismic wave equation represented by a first-order system of stress and velocity
fields. This method defines the wavefields and material properties in the
staggered grids separately and updates the stress and velocity fields
alternatively. Such grid and time stepping was adopted by Yee (1966) to
simulate electromagnetic waves. Such gridding enables the even-odd
decoupling to be suppressed to avoid generating high-frequency oscillation.
The scheme was extended by Levander (1988) using a fourth-order
differential operator in space. This work confirmed that enlarging the stencil
can reduce the dispersion error due to the discretized spatial operator. The
coefficients of the large stencil operator are determined by solving equations of
Taylor series expansion at the points (Fornberg 1988). Instead of the standard

high-order FD coefficients, schemes using optimized coefficients to fit the



dispersion relation of the wave were introduced. (Tam and Webb 1993, Geller
and Takeuchi 1998, Liu and Sen 2009, Liu and Sen 2011). A diamond shaped
stencil was introduced by Liu and Sen (2013) and Tan and Huang for solving
collocated and staggered grids, respectively. Using the dispersion-optimized
coefficients, this scheme effectively reduces the numerical anisotropy. Liu and
Sen (2013) also noted that the gridding relaxes the stability criterion allowing
for a larger time step than that of the conventional FD scheme with the same
order of accuracy in space. Ghost cell points are required outside of the
computational domain address boundary condition when using large stencil
schemes.

FEM-based schemes enlarge stencils in a different manner; they increase the
density of the local nodes in the element. This approach enables the definition
of a high-order basis to fit the solution function, which leads to a spectral
convergence with respect to the order of accuracy. In the field of seismology,
the spectral element method (SEM), a type of FEM technique is used in global
seismic modeling (Komatitsch 1998). This method usually uses high-order
Gauss-Lobatto collocation nodes to define nodal basis functions, which
generates a diagonal global mass matrix naturally, allowing effective massive
time-domain modeling. De Bassabe (2008) compared the dispersion
characteristics of the elastic wave equation of the discontinuous Galerkin (DG)
method with that of the SEM. DG schemes are non-conforming methods that
evaluate the wave solution of each element separately and compensate the
discontinuity of the solution with numerical flux terms such, as Godnov or Lax-

Freidrich flux (Arnold et al. 2002; Hesthavan and Warburton 2007). Such



methods are used for special purposes when studying models that contain
complex geometry, i.e., models with complex topography or interfaces of
different phases, which is almost impossible to solve with FD schemes
(Hermann et al. 2010).

A stability issue accompanies FEM-based schemes using high-order basis
functions for the effective grid space, inversely proportional to the order of the
basis function; the Courant Friedrichs Lewy (CFL) number can easily increase
to exceed the stability criterion. The use of implicit methods, such as the Crank-
Nicolson method (Crank and Nicolson 1947), alternating direction implicit
(ADI) method (Fairweather and Mitchell 1967) or implicit locally one-
dimensional (LOD) method (Kim and Lim 2007), can be a feasible solution.
The implicit schemes are unconditionally stable in general, but they necessitate
additional computational cost to conduct matrix inversion. Using a high-order
explicit scheme is another potential solution. The Lax-Wendroff method (Lax
and Wendroff 1964) expands the time derivative term using a Taylor expansion
series and converts it to high-order spatial terms. This method has been
successfully implemented to FEM-based schemes (Dumbser and Késer 2005;
Kiser and Dumbser 2006; Dumbser et al. 2007; Hermann et al. 2010; De
Basabe and Sen 2010). Cohen and Joly (1986) and Dablain (1986) evaluated
FD schemes of fourth-order accuracy in temporal dimensions using the Lax-
Wendroff method; they found that method resolves stability and alleviates the
time dispersion error. Tan and Huang (2014) extended the SGFDM to use the
fourth- and sixth-order terms in time. Although they omitted certain high-order

spatial derivative terms, the scheme enables the CFL relaxation effects, which



allows a larger time step. Such expansion can be implemented in a recursive
manner, and we can arbitrarily increase the order of accuracy in time.
Representation of the operator via exponential matrix form, i.e., pseudo-
differential operator, provides different options in terms of the time-domain
modeling philosophy to geophysicists such that, once the time step length is
determined, the number of expansions can be determined to satisfy the stability
and dispersion error criterion.

Tal-Ezer (1986) introduced the new concept of a wave marching technique
to achieve spectral accuracy in the time domain. His method numerically
expands the exponential matrix operator using a modified version of the Jacobi-
Anger expansion to the extent of covering the highest spatial mode of the
wavefield. Although it is clear that the Jacobi-Anger expansion is a best-fit
approximation of sinusoidal functions, the Taylor expansion of the matrix
operator produces similar solutions and is equivalent to the Lax-Wendroff
method of arbitrary order. This point is addressed in the work of Pestana and
Stoffa (2010), who adapted the one-step rapid expansion method (REM) of
Kosloff et al. (1989) into a finite time-stepping method accommodating multi-
source problems. Because of the freedom achieved in the time domain-
dispersion error, pseudo-spectral (PS) methods are chiefly used. PS methods
usually offer spectral accuracy in the spatial domain, which implies that the
scheme is dispersion free within the describable band of wavenumber. The
scheme incurs a pair of discrete Fourier transforms, i.e., forward and inverse,
which can be accelerated using the fast Fourier transform (FFT) algorithm.

Using PS, it is possible to achieve spectral accuracy in both the time and spatial



domains. However, reiteration of the FFT is required to calculate the pseudo-
differential operator, which can be burdensome in certain applications.
Although Etgen and Bradsberg-Dahl (2009) introduced a pseudo-analytic
method to calculate the operator matrix in an effective manner, it is relatively
error-prone in the high-wavenumber region using the heterogeneous model.
Lu and Schmid (1997) adopted symplectic integrators to solve the acoustic
wave equation. Symplecticity is an intrinsic property of the fundamental laws
of physics that have a conservative quantity such as mechanical energy in a
closed system; the symplectic integrator is the time marching technique
corresponding to such physics. The symplecticity is not equivalent to the
accuracy of the model but the physical property to be obeyed, which confines
the variables bounded in some level on the phase space and yields much more
stable and improved solutions in long-term simulations. (Hairer et al. 2006).
Alternatively, the accuracy simply means the approximation order. There exists
a non-symplectic method of a given order, as well as the symplectic integrator.
The latter is always better than the former. Symplectic time operators have been
successfully applied to numerous problems in diverse fields, such as astronomy,
modern physics, fluid dynamics, molecular dynamics and wave modeling.
Geophysicists are familiar with the Stormer—Verlet method, a second-order
symplectic integrator, because the scheme is equivalent to the time marching
strategy of the SGFDM, which alternatively updates stresses and velocities. To
improve the accuracy, higher-order schemes have been devised. Ruth (1983)
and Forest and Ruth (1990) invented the third- and fourth-order symplectic

integrators. Another forth-order scheme, the symplectic Nystrdm method



(Okunbor and Skeel 1992), was implemented with an acoustic wave equation
by Chen (2009). The result verified that the symplectic Nystrom method yields
better solutions than the explicit Lax-Wendroff method of the same order of
accuracy. Yosida (1990) suggested methodology to derive higher-order
symplectic schemes using the Baker-Campbell-Hausdorftf (BCH) formula.
However, the derivation process of the optimal coefficients is extremely
cumbersome and yields multiple solutions. Another strategy is to expand and
combine low-order symplectic integrators with well-known explicit time
marching schemes, which is expected to be much easier than the schemes
derived using the approach of Yosida (1990). Ma et al. (2011) applied a
symplectic version of the Runge-Kutta (RK) method to the 2D seismic wave
problem. Araujo et al. (2014) combined the velocity-Verlet scheme with the
REM, which was successfully applied to the reverse time migration (RTM). Ma
et al. (2015, 2016) extended the RK scheme up to the fourth order of accuracy,

and it was also adapted to the RTM algorithm by Li et al. (2015).



1.2. Overview

This work is essentially an extension of the study of a high-order symplectic
time integrator for the wave equation solver in the time domain. I invented a
symplectic time integrator that can be extended to an arbitrary order of accuracy
in the temporal dimension. The scheme is implemented for a first-order system
of wave equations. Two types of wave equations are considered. One is the
system dynamics of pressure and time derivative of pressure vectors, and the
other is of pressure and velocity vectors. As the established symplecticity
condition (Hairer et al. 2006) is valid only for the bilinear system, I generalized
the condition to accommodate the multilinear system to determine whether the
scheme is applicable to acoustic wave systems with respect to pressure and
velocity fields. The suggested scheme combines the Stérmer—Verlet method
with the Lax-Wendroff method. The series of spatial derivatives is found to be
the sine hyperbolic function series of the characteristic matrix, which can be
approximated by another series such as one generated by the Jacobi-Anger
expansion. The stability criterion of the suggested scheme when using PS
approaches is calculated and proven to be more stable than the non-symplectic
scheme of equivalent computational cost. The phase error (which is also termed
the dispersion error) is analyzed, and the result illustrates the relation between
the error and the degree of the approximation of the symplectic map with
respect to given modeling geometries. These characteristics are also compared
to those of the non-symplectic method to provide evidence of improvement in
terms of accuracy and efficiency when considering symplecticity. Based on the

analysis, a strategy to use the scheme is suggested and applied to several p-
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wave velocity models to yield seismograms and time traces.



1.3. Outline

In the following section, I briefly review the system of the acoustic wave and
prove the symplecticity of the system. The conventional symplectic integrators
are introduced to be compared by the formulation of the arbitrary-order
symplectic time integrator that is suggested in this study. In section 3, stability
and dispersion characteristics of the suggested scheme are analyzed. Phase
error analysis is also conducted to illustrate the quantitative effect of increasing
the order of accuracy in time, which introduces the strategy to use this scheme
effectively and efficiently. In section 4, the arbitrary-order symplectic time
integrator is applied to the homogenous and synthetic model to verify the

properties derived in the analysis section.
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2. Theory

2.1. Acoustic wave equation

In this chapter, | briefly review the formulation method of the linearized

acoustic wave motion. We consider the control volume in 3D space,

S

Figure 2.1 Control volume 8V bounded by a surface S with n normal to S.

where 6V is the control volume, S is the surface of the volume and n is the
normal vector on the surface. The acoustic wave equation is formulated by
representing the conservative relation of the fluid motion. First consider the

mass conservation in the control volume 8V and its surface S as follows:

9
sv2P - —f pov -1 dS @.1.1)
ac -

11



where p isthe density perturbation field, p, isthe gauge density of the media,
and v = {vy,v,,v3} is the velocity vector of the wave. Equation (2.1.1)
implies that the mass change rate inside the volume &V is equivalent to the net
mass flow rate across the surface S.

By applying Gauss’ theorem,

dp
= —poV-v (2.12)

is derived. We secondly consider the momentum conservation law as follows:

ov
—=_V 2.13
Po e P ( )

where p is the pressure field. The meaning of the acoustic wave as linearized
motion is a natural assumption for the weakly perturbed field, and the relation

between p and p is deduced as follows:

— I — 2

where ¢ is the wave propagation speed. With this relation, the mass
conservation law (2.1.2) is reformulated as follows:

ap

T = —poczv-v (215)

We can rewrite equations (2.1.5) and (2.1.3) in the first-order system equation

form as follows:

9 0 —poC?V-
CT R | @19

The system equation is considered to be fundamental for the implication of
the physical law itself (LeVeque 2002) and adequate for modeling the

multicomponent wavefields.
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The wave equation itself is primarily described as a second-order form with
respect to pressure or displacement vector, which is also termed the standard or
primal form. A familiar formulation of the acoustic wave, i.e., the scalar partial
differential equation (PDE) form with respect to pressure, is derived by
eliminating the velocity term from equations (2.1.5) and (2.1.3) as follows:

192%p 1

~ 9P v-(—)v ~0 2.1.7
C2 atz Po Do p ( )
If we assume that the density or wave velocity is locally homogeneous or

constant in space, equation (2.1.7) can be replaced by the standard form as

follows:

19%p
C_ZF_VZP =0 (2.1.8)

Such an assumption yields inaccurate wave simulation with the model rapidly
changing in the space dimension; however, the errors are generally negligible
for practical cases (Tan and Huwang 2014).

If we substitute the density p for pressure p using (2.1.4), we obtain

109%p
C_ZF_VZP =0 (2.1.9)

As the differentiation of the wave equation also satisfies the wave equation and
is proportional to the gradient of pressure, particle velocity also satisfies (2.8)

as follows:
—  _V2py = (2.1.10)

where V2 of (2.1.10) is the vector Laplacian. We can conjecture that the
displacement vector also satisfies the wave equation if we integrate (2.10) over

time t.
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(% 2. 1 . 1 1

is derived, which implies that the curl of the particle velocity vector is constant.
It is valid from the initial state of rest, i.e., v = 0; thus,

Vxv=0 (2.1.12)
is satisfied, which implies that the wave motion is irrotational and that the
velocity potential function can be defined as follows:

v=Vop (2.1.13)
In some cases, it is convenient to express the wave motion with respect to ¢,
which guarantees the curl-free constraint of the wavefield. The momentum

conservation law can be rewritten in terms of ¢ as follows:

do
V( —_ ) =0 2.1.14
Pog TP ( )
or
do
= _p,— 2.1.15
P="Pog, ( )

because we can set ¢ arbitrarily as the sum of the pressure field and set
pPo 0@ /0t to be zero. Moreover, ¢ also satisfies the wave equation if we take

the gradient of (2.1.10) as follows:
—— Vg = (2.1.16)

Irrespective of the fact that the unstable weak motion of all the physical
quantities satisfies the standard second-order wave equation, among the various
formulations, (2.1.6) and (2.1.8) are used most frequently in practical problems.

In the following sections, we manage the structure of the acoustic wave in

14



the first-order system formulation. The standard second-order wave equation of
various physical quantities above can be easily modified to a bilinear system

equation of first order by introducing £, the time derivative of a, as follows:

% = ¢?V?«q
(2.1.17)
da
Frimts
or
0
&[Z] = Czovz G] [Z] (2.1.18)

Thus we can rewrite the acoustic wave system in a general form as follows:

d
—y=M 2.1.19
57 y ( )

where y is the vector of wave variables and M is the linear operator of the
acoustic wave equation. M is referred to as the characteristic matrix of the
system PDE because the eigenvalues of the operator determine the type of the
PDE. The acoustic wave system is hyperbolic, as the eigenvalues M are all
real values (Strikwerda 2004). The general solution of the initial value problem
in the infinite media is

y =e™My,. (2.1.20)

Mt g the transformation matrix of the

where y, is the initial condition and e
acoustic wave system.
In the following section, we analyze the interesting property of the

symplecticity of the acoustic wave system and the transformation map using

the first-order acoustic system formulations below:
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0 0 —poc?V -
Zll=ly e % |E) e1z19)

%[g] _ [czovz t] [g] (2.1.21b)

In the following, I refer the wavefield of interest as

4
v =gl (2.1.20)
where g is the counterpart of the pressure such as v or p. The characteristic

matrix M is composed of two submatrices S; as follows:

0 S,

s, 0 (2.1.22)

|

where S; correspondsto g and S, correspondsto p.Ialso define M; to be

the matrix filled with zero, except S;, as follows:

Sy
0

0 0
MZ‘[SZ 0]

Then, the system equation of the acoustic wave is

M, = [8
(2.1.23)

dp
At = M;y = S1q

(2.1.24)
dq
E = M,y = Sp

For instance, system (2.1.21a) satisfies the following:

v =[]

0 —poc?V ]

- (2.1.25)
1/00 v 0

o

S; = —poc?V-, S, = _1/p0V

16



M, = [O _POCZV'] My = -1 0
0 0 /0,
ap
ot =My = 5;v
dq
9t Myy = S2p
17
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2.2. Symplecticity and symplectic time integrator

In this section, I briefly introduce the concept of symplecticity. Many
problems in physics can be represented with Hamiltonian mechanics, which
delineate the motion of mass via a bilinear system with respect to generalized
coordinates and momentum. Symplecticity is an important property of
Hamiltonian systems and indicates that the total mechanical energy in the
system is conserved. As del Castilo and Linares (2003) confirmed, we can
define the equivalent Hamiltonian structure for each standard acoustic wave
equation in various physical quantities. However, (2.1.21a) is not a Hamiltonian
system because the system is not in bilinear form; p is the scalar and v is the
vector in 2- or 3-dimensions. Thus, in this work, I extend the definition of
symplecticity to the multilinear map and show that (2.1.21a) is symplectic. For

a deeper exposition, look for Goldstein (1980) and Hairer et al. (2006).

2.2.1. Symplecticity of the transformation map

Consider the system of p, g and r in R, if there exist three vectors &, 1

and ¢ in R3 that can be defined as follows:

fp np zp
S=l& | n=|ng| ¢=1|¢ (2.2.1)
fT Tlr ZT

A parallelepiped L spanned by the three vectors in R3 space is

L= {(sfp + tnp + udy, s&p + tng + uly, s&p +tng + u(r)|
(2.2.2)
0<s<1,0<t<1,0<u<1}

The volume of L in (p,q,r) is calculated by a tensor product in Einstein

18



notation as follows:

fp Np {p
4CU/RORE fq Ng {q = EmnéiMmSn (2.2.3)
¢r Ny ¢

where ;i is the Levi-Civita symbol, which is defined as follows:
1  if even permulation of i, ], k

&ijr =1—1 if odd permutation of i, j, k (2.2.4)
0  otherwise

The essential meaning of the symplecticity of the mapping is the preservation
of area or volume in the state space, (p,q,r) in this case, which means that a
linear transformation matrix A: R® - R3 is symplectic if

V(AE, An,A0) = V(&,n,Q) forall &1, € R3 (2.2.5)
Equation (2.2.5) is reduced to a simple relation as follows:

EmnAiAmjAnk = Eijik (2.2.6)

Although the transformation map is nonlinear, we can approximate the map by
a locally linear map using a Taylor series, which implies that a differentiable
function g: R3 —» R3 is symplectic at (£,71,{) € R3 if the Jacobian matrix
g’ is symplectic:

V(g'$&.9'ng' ) =VENG or emnd ;19 9 i = € (2.2.7)
This result implies that the infinitesimal parallelepiped dL at (&,71,)
preserves the volume after the transformation. If the structure H = ¢@(K) in
the state space where K c R3, its volume Q(H) is the integration of small

parallelepipeds spanned by three vectors defined at (s,t,u) € K as

Q(H) = fff g‘f Z‘f a;’:)d dt du (2.2.8)

Then, the volume of the transformed structure via symplectic mapping g
19



satisfies

a(g(H)) =ﬁfK V<a(g°(p) ACAL) a(go¢)>ds dt du

s ' at ' ou (2.2.9)
= Q(H)
because (g ° @) = g(p)'e’ and by the symplecticity condition of g.
Now, recall the acoustic system PDE (2.1.21b) and define a flow ¥ to be

the Jacobian matrix of the wavefield vector with respect to its initial values p,,

uy and v, as follows:

[dp  Op  0p]
dpy Ouy vy
_|{ou ou ou
Y= a_po 6_uo 6_170 (2.2.10)
dv dv Odv
0py Oy 9o
The system equation of ¥ is as follows:
2 2 1
0 —Pocz% _Pocz%
d 1 92
alP= _EW 0 0 y (2.2.11)
1 02
|~ 5y 922 0

which can be derived by applying the Gateaux derivative to (2.1.21a) with
respect to the initial values. Then, it can be shown that flow ¥ is symplectic

for all sufficiently small t if the flowing relation is satisfied.

d
a (8lmn lpmilynj lplk)
(2.2.12)

= Slmnljjmilpnjqjlk + glmnqlmilpnqulk + elmnlpmiqlnjlplk =0

This result implies that the symplectic relation &y, ¥1i%¥m;j¥Pnk = Emn 18

satisfied elsewhere and at any time because ¥ is the identity matrix at t = 0

20



for any initial values in the phase space (p,u,w).
The symplectic condition (2.2.6) can be extended to a system of arbitrary
dimension. In general, if a linear map A: R™ — R™ is symplectic,
€ty AL Alyiy - Algiy = Eiyiy iy (2.2.13)
is satisfied. For instance, the two-dimensional system
JmnAmiAnj = Jij (2.2.14)

is satisfied, which proves that system (2.1.21b) is also symplectic.

2.2.2. Symplectic time integrator

A symplectic time integrator is a special time marching scheme that is only
applicable to a symplectic system, e.g., an acoustic wave system.

For relation (2.1.20), eM® is the transformation matrix of the acoustic
wavefields, which is symplectic as shown in section 2.2.1. If we consider the
propagation of the wavefields during a single time step A4t,

Yni1 = €My, (2.2.15)
is satisfied, where y, and y,.; are the wavefield vectors at ¢ and t + At,
respectively. We cannot apply the transformation map in the exponential matrix,
thus, an approximate map obtained from a Taylor series is typically used. The
first-order Taylor series of e4t™ is

edt™M ~ | + AtM (2.2.16)
The linear formulation using map (2.2.15) is

Yne1 = U+ AtM)y, (2.2.17)

which is known as the explicit Euler method. This scheme is unconditionally

unstable. The approximate map [ + AtM is not symplectic, i.e. the scheme is
21



not a symplectic integrator, because the transformation map (2.2.15) does not
satisfy the symplectic condition (2.2.13). It is not a matter of the order of
accuracy that the high-order Taylor series of e4*™ does not satisfy (2.2.13)
either.

Now, I consider the split operator e4t™ as follows:

@AM — o At(Mp+My) ~ oAtMz o AtMy | ()(At2) (2.2.18)
The Taylor series of the first order of each split operator leads to a linear
formulation as follows:

VY1 = U+ AtMy) (I + AtMy)y, (2.2.19)
which is known as the symplectic Euler method. Although the order of accuracy
with respect to time is the same as in the explicit Euler method, the scheme is
conditionally stable. As we expect, the system is symplectic since the split
operator satisfies (2.2.13).

The characteristic feature of the symplectic Euler method is the alternate
update of the variables, i.e., we update one variable first and then update the
other using the updated variable. In the case of the acoustic system, the
symplectic Euler method updates p and g alternatively by two stages as

follows:

Pnt+1 = Pn + 4AtS1q,
(2.2.20)

Gn+1 = Gn + AtS2Dpy1-

The second-order symplectic integrator, the Stormer—Verlet method, is
generally used and approximates the transform map in three alternating stages

as follows:
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pAM o pZAtMy L ALM, p30tMy 0(4t%) 2.2.21)
Then,
At At
Yn+1 = (1 + 71\’11) (I + AtM,) (1 + 7M1> Y (2.2.22)

or

1
Pn+1/2 =DPn t EAtslqn

Gn+1 = Gn + AtS2Dn41/2 (2.2.23)

1
Pn+1 = Pn+1/2 T EAtslqul

is satisfied. This scheme consists of three stages to march one time step, and
this approach can easily be modified to a two-step method if the operator is

adapted as follows:

1 1
eEAtMleAtheEAtMl
(2.2.24)
1 1
~ 24tM1 p AtM, p AtMy , —54AtM,
Then,
Latm “Latm
yn+1 — ez leAtheAtMle 2 1yn
(2.2.25)
—lAtM —lAtM
e ZAM1y, = @AMy g AtM; g =F My,
is satisfied. I define the acoustic wave vector y —as
1 p
- —SAtM n
= e M1y, — [ ] 2.2.26
Yn In dn-1/2 ( )

which sets the variables on the staggered grid on the time axis. Then, equation
(2.2.25) is

Y, = e’tMeedtMy (2.2.27)

or
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Vpe1 = U+ AtM) T + AtMy)y,, (2.2.28)
Yosida (1990) suggested methodology to approximate the symplectic map

Mt

e”" in the general order of accuracy as follows:

eAtM = QAt(Ma+My) o T[K  oidtM; ciAtMy 4 O(Atk“) (2.2.29)
where Y'¥_ . ¢; = Y%, d; = 1. The coefficients ¢; and d; are determined by
applying the BCH formula repeatedly to build higher-order symplectic schemes
using the coefficients of the lower-order method. However, it is not unique in
determining the coefficients of the scheme, particularly for higher orders. As
confirmed in Table 2.1, several different ways to approximate the symplectic
map in third-order accuracy have been suggested.

The symplectic time integrator mentioned above requires multiple stages to
update one time step. For instance, the third order of the accurate symplectic
integrator discovered by Ruth (1983) approximates the transform map in six

separate stages as follows:

7 2 3 2 1
QAtM o o7 AtMy ZAtMy [ZAtMy [ —ZAtMy ,—2AtMy , AtM, (2.2.30)

This approach is relatively cumbersome to implement and is inflexible when
one is attempting to alter the order of accuracy of the scheme because it is
impossible to find any rule of the composition and order of the coefficients
between each scheme in different orders.

In the next section, I suggest a symplectic time integrator that is governed by

a simple and consistent rule to arbitrarily increase the order of accuracy in time.
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2.3. Arbitrary-order symplectic time integrator

In this section, an arbitrary-order symplectic time operator is suggested.
Consider the Taylor series of vector q at t+ At/2 and t — At/2 with

respect to t as follows:

At At? At3 Atk
n+1/2 = qn + > de + —g et + g et + et T2k 200 + -
At At? At3 (—At)* (2.3.1)

An-1/2 = qn — 7% + ?CIU: - eqtt +t WCI(k)
+
If we subtract the two equations, we obtain the expression of ¢niq/, as
follows:
At3 AtS

Gn+1/2 = Gn-1/2 + 4tq: + g et + 1970 deteet + -

(2.3.2)

T2 @mt Dz dami

We can obtain a similar equation of p,,; by the Taylor series of vector g at
t + At and t with respectto t + At/2 as follows:

At3 At®
Pn+1 = Pn + Atp: + ﬁpttt + mpttttt + -

(2.3.3)
At2m+1

T2 amy Dz Pemn t o
For (2.3.2) and (2.3.3), high-order time derivatives of p and g are required to
update the variables. By replacing the time derivatives with the spatial ones, we
can easily implement the high-order time marching scheme (Lax and Wendroff
1960). Via (2.1.19), we obtain the relation between the time and spatial

differential operators:
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n

Sy = My (2.3.4)

The power of the characteristic matrix M is

0 S
M=|s, ol
S, 0
0 55,8
3 _ 192v1
M= [525152 o
M5 = [ 0 5152515251] (2.3.5)
5,515,555, 0
M2m-1 — [ 0 (5152)m51]
(Slsl)mSZ 0

M and M?™~1 are equivalent in block structure, which enables the time
marching scheme to retain the alternating nature of variable updates mentioned
in the previous section. Using (2.3.5), equations (2.3.2) and (2.3.3) are reduced
as follows:

L At2m+1
Gn+1/2 = qn-1/2 + 2 z 2m + 1)1 22m+ (S5251)™S2 P
m=0

(2.3.6)
At2m+1

!
Pn+1 =Pn +2 Z 2m + 1)1 22mH (5152)™S1 Gn+1/2
m=0

The transformation matrix of (2.3.6) is expressed in the split form of the

resulting operator as follows:

@AtM ~ oAtM; o AtM; (2.3.7)
where
L Ap2m+1
eAtM1 ~ [ 4 2 ZO @m T D12 Mzt (2.3.8)
m=
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2m+1
eAtMZ ~[+2 At 2m+1

(2m + 1)1 22m+1
m=0

2
Subscripts 1 and 2 are defined in the same manner as the definition of M; and
M, , which contains only the upper-right and lower-left submatrices,
respectively. Then,
Y, = eitMzedtMy (2.3.9)

is obtained. The map satisfies the symplectic condition (2.3.7), and the
approximated transformation map can be regarded as an extension of the two-
stage Stormer—Verlet method in arbitrary order.

The suggested transformation operator can be calculated efficiently using the

recurrence relation by defining a,, as follows:

2 (2m + 1)1 22m+1 ($281)™S2 pn = Z am (2.3.9)
m=0 m=0
where
Ag = AtSZPTL
_ At? o5 =123 (2.3.10)
U= Bk(2k + 1) 1My KT B4
In a similar manner, we can define b, as follows:
L At2m+1 l
2 z (2m + 1)1 22m+1 (5152)™S1 Gny1y2 = z b, (2.3.11)
m=0 —
where
by = AtS1qn+1/2
by = At? csh =123 (2.3.12)
k_8k(2k+1)12k—1J — L e

Increasing the order of accuracy of the approximate symplectic map only
28



requires the repetitive calculation of the second-order spatial operators and
additional memory to contain the wavefields of the previous step.

In addition, the series of the characteristic matrix can be represented as the
pseudo-differential operator as follows:

Z (2m + 1)l 22m+1
m=0

At
M?m* = Sinh (7 M) (2.3.13)

Then, the transformation map is
At At
eAtMz o AtM: ~ (1 + 2 Sinh (7M) )(1 + 2 Sinh (7M> ) (2.3.14)
2 1

where subscripts 1 and 2 are defined in the same manner as the definition of
M; and M,, which contains only the upper-right and lower-left submatrix,
respectively. By introducing the pseudo-differential operator we can use any
polynomial expansion to approximate (2.3.14). For example, Tal-Ezer (1986)
used the Jacobi-Anger expansion to approximate the matrix operator in the

sinusoidal function

s (2m) =2 s (R @ () @319
m=0

where J,, is the Bessel function of the first type and Q,, is the modified

Chebyshev polynomial that satisfies the following recurrence formula as

follows:
Qi(w) =w
(2.3.16)
Q;(w) = —4w3 + 3w
and
Qom+1 (W) = 22w? 4+ 1)Qzm-1(W) — Qzm—3(W) (2.3.17)

Algorithms (2.3.16) and (2.3.17) require extra memory to contain two extra
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wavefields vectors to expand. However, it is known that the convergence speed
is much faster than the Taylor expansion, and a lower value of [ is required to

achieve an equivalent error criterion to that of equation (2.3.8).
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3. Analysis

In this section, I analyze the stability and dispersion characteristics of the
arbitrary-order symplectic time operator. In general, the numerical integrators
that increase the time order of accuracy by the Lax-Wendroff method offer
better stability properties than the normal time marching methods. I confirm
that this finding holds true for the suggested algorithm by analyzing the
amplification factor of the transformation map e4*™ . Satisfying the
symplecticity of the acoustic wave system suggests that the scheme is much
more stable than explicit methods, such as the Tal-Ezer (1986) or ADER
schemes (Dumbser et al. 2007), for the same order of accuracy in time.
Dispersion can also be improved via arbitrary-order symplectic time operator.
Stability is shown to be the necessary condition for modeling, while the
dispersion criterion is a sufficient condition to achieve because the criterion of
dispersion is always stricter than that of stability. In the following, I refer to the
arbitrary-order symplectic time operator that expands the series n times as the

‘n-th scheme.’
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3.1. Stability analysis

In the previous section, I suggested the following time marching scheme,
arbitrary-order symplectic time integrator formulated as equations (2.3.8) and
(2.3.9). In this section, I analyze the stability of the method by applying the

system of an acoustic wave (2.1.21b). The split operators are defined as follows:

2
et ~ |12 Z Gm+ Dz V"
m=0
0

1
(3.1.1)
1 0

! 2 1
e“”"’z ~ 2 At m (VZ)m+1 1
X (2m + 1)1 22m+1
m=

The Laplacian operator V2 is the spatial differential operator, which can be

evaluated via several methods. The PS method is an accurate and simple way
to differentiate a given function using a pair of fast Fourier transform algorithm
applications (Trefethen 2000). The Laplacian operator is written as follows:
V2= —(k,® + ky?) = —k? (3.1.2)
where k; and k, are the wavenumbers of the x and 2z directions,
respectively. The amplification factor of the method u; is equivalent to the
eigenvalue of the transformation matrix A;. The 2-norm of the wavefield after
n time steps satisfies the relation
Iynllz = 14" lyoll2,  i=1,2 (3.1.3)
where y, is the initial value. Thus, the following should be guaranteed for the
stable solution:
A4l <1, i=1,2 (3.1.4)

The determinant of the approximated transformation map is equivalent to the
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product of the eigenvalues of the map

det(e4tMz2o4tMs) — 1_[ Ai=1 (3.1.5)
i=1,2

As the main property of the symplectic transformation map is the structure
preservation, the determinant of the transformation map is equal to one. This
fact can also be derived from the symplectic condition (2.2.13). The physical
implication of equation (3.1.5) is that the acoustic energy in the domain is
conserved during the time stepping, which enables stable long-term simulation.
Not only the product of the eigenvalues but also the absolute value of each
eigenvalue must be equal to one. As this is the only possible way for the
eigenvalues to conjugate each other, the stability of the modeling process is
retained under the symplectic condition. Thus, the criterion in which the
eigenvalues are conjugate complex values is the stability criterion of the
symplectic time integrator. For instance, if [, the number of expansions of the
pseudo-differential operator, is equal to one, the transformation map of the

scheme is

1 0 21,2 At3 41,4
eAtM; o AtM3 [At 3 A_t3€2k2 1] [1 —Atcck* + EC k (3.1.6)
24 0 1

The determinant of the approximate map is one, as those of the split operator

e4t™z and e“'™s are each equal to one. Two conjugate eigenvalues of (3.1.6)

represent the function of 8 = ckAt, which is proportional to the CFL number

2 =1 (1152 — 57662 + 480* — 9°
127 1152
(.1.7)

+ J—1327104 + (—1152 + 2(—24 + 92))2)

To satisfy the stability condition, the value in the root should be negative to
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make the eigenvalues a complex numbers. Then, the stability of the scheme is
guaranteed if |6] < 5.694644204.

The conventional Stérmer—Verlet method, the Oth scheme, has a stability
criterion of || < 2. In general, the stability criterion becomes larger as the
order of accuracy of the scheme increases, which is called the CFL relaxation.
This fact implies that a larger time step can be allowed for a scheme of a higher
order of accuracy. The circle markers in Figure 3.1 represent the maximum 6
of the arbitrary-order symplectic time integrator with respect to I, which
broadly tends to increase with the number of expansion [. Because the
eigenvalues are approximated with the high-order polynomial, the effect of
nonlinearity occurs at some [ in which the stability criterion shrinks despite
the increase in [.

To confirm the effect of symplecticity, I conduct the same analysis for the
numerical method with the non-symplectic time marching scheme, which can
be derived by the Lax-Wendroff expansion of the central difference method as
follows:

Vi1 = 2M'yn + yn_q (3.1.8)
where

At2m+1

r 2 1
M= (2m + 1)!22m+1 MAm (3.1.9)
m=0

The order of accuracy in time and required computational costs of the scheme
(3.1.8) are equivalent to those of the symplectic scheme of the given [. The

amplification factor y; of system (3.1.8) is:
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W=+ /1+AL~2, i=1,2 (3.1.10)

where A; is the eigenvalue of M'. It is well known that the scheme is stable
when |1;] < 1. As 4; is the function of 8, the stability criterion can also be
represented with respect to the variable. The square markers in Figure 3.1
shows the stability criterion of the non-symplectic scheme with respect to L.
The allowed maximum 6 tends to increase with m despite some oscillations
due to the nonlinearity of the eigenvalue. However the symplectic scheme has
a stability region that is as much as twice as large as that of the non-symplectic
method (3.1.8), which means that a much larger time step can be allowed for
the symplectic time integrator which leads to the instability of the non-

symplectic method.
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3.2. Dispersion analysis

In this section, I conduct a dispersion analysis of the suggested scheme. The
acoustic wave solution at t can be represented by separating the spatial and

temporal variables as follows:

— _[RP(x,2)] iw
n [.‘R(j(x,z)]e t 3.2.1)

Then, the solution at t + At can be written as

Y — :Rf(x, Z) iw
= [:Rg G Z)]e (t+40) (3.2.2)

n+1
which is equivalent to the extrapolation of the solution at t with e!®At at the
entire domain of interest as follows:

V1= plwAt v, = e AtM o AtM, v, (3.2.3)

If we recall the time-stepping algorithm (2.3.9), the eigenvalue of the system
A; acts as the analytic time extrapolation factor e'®2f, the complex number
that has a unit length as noted in the previous section. The exact change of phase
of the wave solutions during At is wAt, which we pursue by expanding the
operator e4tMzg4tM1 ith the Lax-Wendroff or Jacobi-Anger expansion. We
find that the angular frequency of the acoustic wave w can be approximated

by w’, and the phase change of the wavefield by the numerical modeling is

w'At. The following is an argument of A;

, . Im(4)
wAt ~ w'At = Arg(};) = tan™?! (W) (3.2.4)
where w' is the approximated angular frequency
1 Im(4;)
'=—tan"! (—) 3.2.5
C=a ™ \Re) (3.2.5)
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The phase velocity is derived as follows:

B w' 1 tan-1 (Im(li)) (3.2.6)
“phase = 1" = a0 \Re(n,) -

The phase velocity is typically normalized by the real velocity value as follows:

(3.2.7)

Cphase — 1 an~—1! <1m(/1i(9))>
c 0

0 Re(2,(0))
In the ideal case, the normalized phase velocity is one, which means that there
is no error between the analytic phase change and that of the numerical
calculation result during At. The eigenvalue is a function of 6, i.e., ckAt, as
shown in the previous section. If the grid size in each spatial direction is

equivalent, 8 can be rewritten as

0 = ckAt = ZHAt_chAt_Zn 12.8
=c —CC = -’ (3.2.3)

where { is the wavelength, h is the grid size, y is the CFL number, and G
is the number of grids per wavelength. Then, the normalized phase velocity can

be represented as a function of G and y as follows:

21
o m (1 (%))
phase — _—_tan~1 (3.2.9)
c 2y 2n
Re (Ai (T y))

Figure 3.2 shows the normalized phase velocity error, — 1, of the zeroth,

Cphase
c
first, second, and third schemes with respect to 1/G for several y values
below 1.25. The normalized phase velocity error decreases dramatically as the
order of the scheme increases. The error is almost negligible for the second and
third schemes with low y values of 0.25 or 0.5, even for the Nyquist sampling

rate in the spatial domain, i.e., 1/G is 0.5. This means the simulation under
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the condition yields a wavefield almost identical to the analytically derived
solution, which might be deemed as the method with spectral accuracy. A
deeper analysis of the spectral accuracy is presented in section 3.1.4.

The group velocity of the wave denotes the velocity of the wave packet or
envelope of the wave propagating in the media. It is derived by differentiating

the approximated angular frequency with wavenumber k as follows:

_dw' 10 can-1 (Im(li)) 3210
orowr = g1 T acak\ " \Re(n,) (3.2.10)
Then, the normalized group velocity is also derived as follows:
——=——t 3.2.11
c cAt ok an Re(4;) ( )

Because the A; is a function of 6, (3.2.10) can be represented as follows:

Cgrowp _ 9 tan~! (Im(liw))> (3.2.12)

c 80 Re(2,(6))
which can also be rewritten as a function of G and y using equation (3.2.8).
Figure 3.3 presents the normalized group velocity error, cgr% — 1, of the

zeroth, first, second, and third schemes, with respect to 1/G for the same set
of y as Figure 3.3. The normalized group velocity error is confirmed to be
larger than that of the normalized phase velocity. However, the scale of the error
is almost equivalent to that of the phase velocity, which can be regarded as
negligible for the second or third schemes. In the previous section, it was
confirmed that the stability criterion is relaxed as the order of the scheme
increases, and much larger y values can be used. Figure 3.4 and Figure 3.5

show the normalized phase and group velocity errors for y inside the stability
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criterion delineated in Figure 3.1. The error curves show that the error increases

sharply as y approaches the stability criterion.
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3.3. Phase analysis

In this section, I conduct a phase error analysis of the suggested time
marching scheme. The objective of the analysis is not different from that of the
dispersion or group velocity error analysis. The point of this section is to
estimate the error of the numerical modeling with respect to the phase of the
wavefield and then determine the time step length and the number of time steps
satisfying the phase error criterion.

Again, | start the analysis from the eigenvalue of the approximated
transformation matrix, A;. As noted in section 3.1, each eigenvalue of the
symplectic map has a unit length due to its condition (2.2.13), which means that
the symplectic scheme is free from dissipation error. Thus, it is sufficient to
analyze the phase error. Recall the relation of the change of phase and A;

Im(io)

wAt ~ w'At = Arg(};) = tan™?! (Re(ﬂi)

(3.3.1)

For example, recall the eigenvalues of the symplectic map of the first scheme

A -1 1152 — 57662 + 486* — ¢
127 1152
(3.3.2)

+ ﬁ\/1327104 — (~1152 + 62(—24 + 92))2>

The phase change after one time step wAt equals 8 as w = ck, and the

phase shift of the numerical scheme is approximated as follows:

1 1152 — 57662 + 486* — 9°
6 = tan (3.3.3)

J1327104 — (—1152 + 2(=24 + 62))"

The arctangent function can be rewritten as a polynomial series by Taylor series
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expansion as follows:

1152 — 576602 + 480% — 6°

-1

tan

\/1327104— (—1152 + 62(—24 + 62))" (3.3.4)

5

=0+ 1920

+0(87)

Equation (3.3.4) indicates that the phase change error per time step A8 is
6°/120 and the total phase change error 1 after t is calculated as follows:

t t 6° tcok®
Y =—ANA0

= = 4 6 3.3.5
At At 1920 120 A"+ 0(a%) ( )

The error depends on k, and the maximum error A6,,,, occurs at higher

wavenumbers as follows:
5
tC®Kmax

— 4
lpmax - 1920 At

5 (3.3.6)

1 11
= t5cSAct| |—+— | +o0(ate
1920 ° ¢ Az tagz | TOM0)

If Yyaxr =m at t, the phase of the wavefield is opposite the analytic
wavefield. Thus, it is reasonable to set 1,4, to be less than . Once Y4y

is set, the following inequality is expected to be satisfied

5

1 1
Ymax > ———tm3cSAt? (3.3.7)

1920 AxZ g2

In addition, N, the minimum number of time steps to reach t, is derived using

the relation At = t/N;
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1

l/)max_1 # 1 1 33.8
N b (33.8)
£ < 1920 ) \ ™" a2 T 222

For instance, if we perform the modeling until ¢t = 10s using the third scheme
in the computational domain of the grid size of each dimension with Ax =
Az = 10m and the maximum p-wave velocity of the model is 5km/s, N;
should be larger than 10750 so that the 4, is less than m/10. Then, At
needs to be smaller than 0.9ms.

The total phase change error of the arbitrary [-th scheme after t is also

calculated as follows:

t 62["'2

V= a2+ 3]

+0(Ac?H1) (3.3.7)

and the minimum time step N; necessary for the phase change error of the

wavefield at t to be less than Y4, 1S

21+3
21+2

1
e b2 11 _ (3.3.8)
Ne = <4l+1(21 +3)! et et agz| 0Lz

It is natural that A6 is proportional to the normalized phase velocity error
addressed in the previous section, and this methodology enables the design of
the optimal modeling configuration under the given circumstances. The total
computational cost depends on the total number of multiplications of the

symplectic map N,,,;, which can be derived by equation (3.3.8) as follows:

21+3
21+2

1
_ [ 11 (3.3.9)
Nmae = (2L +1) <4l+1(21 +3)! Tt [ T Az

kmax is

Note that N,,,; decreases as the expansion number m increases if
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sufficiently large. This implies that if we wish to obtain accurate wavefields
with high resolution, it is more effective to conduct numerical simulation using
a higher-order scheme with a larger time step length than that using a lower-

order scheme with small time steps. For instance, if ¢4, = S5km/s, Ax =

Az =0.01km, t=20s and Ypyqe = 0.01, then Emax — 4.4 %106 and

max

Npq¢ With respect to | decreases rapidly to a certain level as illustrated in
Figure 3.6, which supports the implication of equation (3.3.9). N; and At can
also be calculated using equation (3.3.8) and dividing t by N; with respect to
[. Figure 3.7 represents the At under the modeling conditions above and it
shows that Y4, = 0.01 is an excessively strict tolerance because the order
of At is 107%s, i.e., 0.001ms, for the zeroth scheme and 10~ %s, i.e., 0.1ms,
for the second to fourth schemes. Then, we can calculate 6 under the given
condition (Figure 3.8) which enables us to estimate the error between the
analytic eigenvalue and that of the approximate transformation matrix. Table
3.1 shows that the length of the eigenvalue error remains under the order of
10™* for each [ from zero to thirty, which indicates that the simulation is
sufficiently accurate if ;4. 1s confined to less than 0.01.

In addition, the non-symplectic time discretization method expressed as
equation (3.1.8) is also analyzed to compare the computational efficiency in
terms of N, and At. The total phase change error of the arbitrary [-th

scheme after t of equation (3.1.8) is also calculated as follows:

“ai+ o(at?+1) (3.3.10)

Y

Then, the minimum number of time steps N, necessary for 1 to be less than
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ll]max is

21+3
1 2042

oo (Yma TNER(NL LN (3.3.11)
LT\ +3)! Ax?2 ~ Az2 ’ P

From equation (3.3.11), it is possible to determine the At under the given
restriction. The total number of multiplications of the characteristic matrix

Npae for equation (3.1.8) is

21+3

o -1 - ) ) 21+2
Nmat = (2l + 1) (%) nct E + F (3‘3'12)

Figure 3.9 illustrates At with respect to the expansion number [ for the non-
symplectic scheme as equation (3.1.8) (purple square markers) with that of the
arbitrary-order symplectic time operator (blue circle markers), which satisfies
WYimax to be less than 0.01 under the modeling geometries of ¢4, = Skm/s,
Ax = Az = 0.01km, and t = 20s. At for the non-symplectic scheme is half
of that of the arbitrary-order symplectic time integrator; N, of the non-
symplectic scheme is exactly twice that of the symplectic scheme as shown in
Figure 3.10. The results imply that considering symplecticity can considerably
improve both the dispersion characteristic and the stability (Figure 3.1) under

equivalent modeling conditions.
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3.4. Spectral accuracy and compromise

The objective of this section is to suggest a strategy to attain not only high
accuracy but also efficiency using the arbitrary-order symplectic time integrator.
If the result of numerical simulation achieves spectral accuracy, then the
numerical solution is highly accurate for both the spatial and temporal
dimensions such that the wavefields in the spectral domain almost correspond
to the theoretical solution. Because I use the PS method, any spatial errors arise
not from the discretization of the computational domain, but instead from the
time marching. Thus, spectral accuracy can be easily achieved using the
arbitrary-order symplectic time integrator merely by increasing the order of
accuracy in the time domain, as shown in Figure 3.2. As noted in section 2.3,
the approximated symplectic map can be represented as equation (2.3.14),
which is expanded recursively by the Jacobi-Anger expansion, the series of the
product of the Bessel function of the first type J,(x) and the modified
Chebyshev function Q,(x) formulated as equation (2.3.15). Tal-Ezer (1986)
noted that the series converges to be negligible and the asymptotic behavior of
the numerical result starts from [; the number of expansions of the map reaches
CmaxKmaxAt. This implies that the numerical simulation result can be regarded
as within spectral accuracy if the number of the series expansion [ satisfies

12 Opmax (= Cmaxkmax4t) (3.4.2)
This criterion holds true for the Taylor series expansion such that the phase
error of the scheme converges to zero at [ = 6. Accurate as the result may be,
a high computational cost is incurred when expanding the series. The

eigenvalue error is negligibly small for any [ under the modeling condition of
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Cmax = Skm/s, Ax = Az = 0.01km, and t = 20s, which is represented by
Table 3.2. The phase error per time step, i.e., A@ can also be calculated, which
has the equivalent order to the eigenvalue error as shown by Table 3.3. A6
approaches zero as | increases; the order of A8 is 10~1* which means that
the simulation results are excessively accurate in that the maximum phase error
theoretically reaches one percent after 102 time steps. Thus, a tradeoff
technique is required to ensure the efficiency of the modeling.

In section 3.3, I quantified the phase change error of the numerical result with
respect to modeling configurations, i.e. p-wave velocity, grid length, and factors
needed to be designed such as the number of expansion [ and tolerance of
phase change error A8 and recording time t. In general, as the number of total
time steps is larger than 10000, it is reasonable to set A8 to be less than 0.0001
for the total phase error to be less than 1. Then, we can find the minimum 6

that satisfies

|AG| = |cos‘1 (Re(/li(ﬂ))) —cos (cos@)| <107* (3.4.3)
for each scheme. Alternatively, merely finding 6,, the minimum 6 that
satisfies

|ARe(1)| = |Re(2;(8)) — cos @] < 107* (3.4.4)

produces almost equivalent results. Figure 3.11, 3.12, 3.13 and 3.14 depict
curves of cosé, Re()li(G)) and its difference of even-order schemes from
zero to fourteenth. Re(/ll- (9)) approaches cos 8 for large 6, which means

that the scheme yields accurate solutions for larger time steps as the order of

the scheme increases. Figure 3.15 illustrates 6, for each scheme from the

o7



zeroth to thirtieth by the purple square marker. The relation of 6 and [
satisfying the spectral accuracy is plotted with the olive diamond marker. Figure
3.15 convinces us that the strategy that follows the compromised method can
reduce the computational costs of performing the simulation because the
required number of expansions is smaller than that of the scheme that follows
equation (3.4.2). For instance, if the maximum 6 calculated by the modeling
geometry is 20, [ should be 20 to achieve spectral accuracy, but should be 16
according to the blue marker that ensures that A8 is less than 107%.

In addition, 8, can be rewritten by the modeling geometries as follows:

t
0,(1) = ckAt = ck’;—jx (3.4.5)

Then, the total number of time steps is

t
N, = ck 9’”&’3 (3.4.6)
e

The total number of matrix multiplications can be written as follows:

cktmax
6.(D

Npae = 2L+ 1) (3.4.7)

Figure 3.16(a) illustrates N,,,;, i.€., computational cost, with respect to [
from zero to thirty, which is normalized by the N, ; of the zeroth scheme.
The figure shows that it is more effective to perform numerical simulation using
a higher-order scheme with a larger time step length, as noted in the previous
section. Figure 3.16(b) represents the inverse of the normalized N4, i.€.,
computational speed. This implies that numerical simulation using higher-order
schemes increases the speed by almost 4.5 times faster compared with the speed

using zeroth order with small a time stride length.
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3.5. Source wavelet issue

These long, representative characteristics of the arbitrary-order symplectic
time integrator are analyzed using the initial value problem of the PDE. In this
section, I discuss important issues regarding the effects of the source wavelet
on modeling configuration designs, i.e., grid size, time step length, and the
order of the scheme.

In fact, the conventional method to impose the source wavelet is imperfect.

If we consider the inhomogeneous solution of the acoustic wave equation

0
—yv=M 3.5.1
5 y+q ( )

where g is the input vector, i.e., a source wavelet, then the analytic solution is
represented as follows:
y(t) = eMy, +et™M % g (3.5.2)

If the simulation is started from the state of tranquility, the convolutional term
is the solution of the system. However, the convolutional term is cumbersome
to calculate, and only a single source problem can be solved by this expression,
which cannot be applied to the adjoint modeling process in the majority of
applications, such as imaging or inverse problems. To solve this problem,
Pestana and Stoffa (2010) convert the source problem to the discretized initial
value problems with impulsive source signals at the source points. This
approach requires the time step length to be confined to a certain level. In
addition, the source wavelet is the design factor for controlling the resolution
of the image via RTM. Thus, fine discretization on the time axis is required to

guarantee high-resolution results, which may devalue the main advantage of the
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suggested scheme that allow a large time step length.

As explained in the previous section, the quality of the modeling result is
controlled by the number of expansions [ to the given phase change per time
step 8 of the modeling geometry. Thus, we first need to determine maximum
0 that is produced. When we set the maximum frequency component of the
source wavelet as the Nyquist frequency, fiax, the maximum allowable time

step length At,,,, is

1

Atmax = T
max

(3.5.3)

Otherwise, the modeling result is inaccurate due to aliasing, which may reduce
the effectiveness of the scheme. At,,,, is not a sufficient condition but is a
necessary condition for the reliable result of the source problem. This implies
that the result can be inaccurate under certain modeling conditions, such as high
p-wave velocity models.

The next thing to consider is the determination of [, which is the number of
expansions of the symplectic map to satisfy a level of quality that we set. The

describable maximum k,,,, depends on the grid sizes as follows:

(3.5.4)

where h, and h, are the grid size of the computational domain. Thus, the

maximum 6 is written as follows:

TCmax | 1 1
Omax = CmaxkmaxBtmax = T F + F (3.5.5)
max x z

Then, it is possible to determine [ as the nearest large integer of 6,,,, to
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ensure the spectral accuracy or corresponding value to achieve A8 ~ 10™*
using the relation illustrated in Figure 3.15.

In addition, it is necessary to design the maximum grid size h of the domain
to avoid degrading the result of the modeling. The acoustic wavefield at any

position is governed by the dispersion relation as follows:

k = (3.5.6)

1)
<
where w is the angular frequency of the wavefield. If the wave is generated by
external sources imposed on the media, the frequency of the wave depends on
that of the wavelet of the source imposed on the isotropic media without

dispersion or dissipation. Then, the maximum wavenumber due to the source

signature is

2
k, = 2max (3.5.7)

Cmin
which should be equal to or less than k,,,,. Then, the grid size should satisfy

h< Cmin

B \/ifmax

(3.5.8)

if hy =h, =h.
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4. Numerical Examples

In this section, numerical examples of the arbitrary-order symplectic time
integrator are presented to verify the properties of the schemes explained in the
analysis section. First, the numerical results of the initial value problem in
homogeneous media are introduced with the periodic boundary condition
naturally imposed on the PS method using the fast Fourier transform to
calculate spatial differentiation terms. Several time steps are used to confirm
the relaxation nature of the scheme this is of a high order in time. The accuracy
of each result is compared to the analytic solution of the initial value problem.
Next, source problems are dealt with separately. In this case, the pretty good

sponge boundary invented by Lavelle and Thacker (2007) is applied.
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4.1. Initial value problems

4.1.1. Homogeneous model

The initial value problem is conducted using a 4w X 4w km? computational
domain composed of 512 equally spaced grid points with a grid length of
0.2454 km for each spatial dimension. I use the p-wave velocity model with a
homogeneous 5 km/s to make the modeling geometry sufficiently severe for 6

a2
ar” where

to be large. For the initial value, I impose a Gaussian profile of e
a equals 80 and r is the distance from the center of the computational domain.
For the numerical simulation, four different At values are used (1 ms, 10 ms,
20 ms, and 40 ms) to yield an acoustic wavefield over 20 s. Table 4.1 represents
the maximum 6, the order of the scheme required by [ to maintain the phase
error within 107%, the number of total time steps N, and the number of total
multiplication steps of the characteristic matrix N,,,; for each case of At. As
0 increases with At, a higher-order scheme is required to accommodate 6. As
we know the total number of time steps, we can calculate the total number of
matrix multiplication steps. We can confirm that the scheme using a higher
order with large At is more efficient in terms of N,,,;. The computational cost
of wave simulation with 4ms is less than a quarter of that with 1ms. Although
the ratio of the total number of operator multiplication steps approaches one,
which implies that the efficiency of modeling is not improved dramatically as
At or 6 increases, N, decreases at all events. The wavefield at 5 s, 10 s,

15 s and 20 s is illustrated in Figure 4.1(b), 4.2(b), 4.3(b) and 4.4(b),

respectively, with results of different At values shown at each quadrant. These
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figures can be compared to the analytic wavefield solution at the same point
depicted in Figure 4.1(a), 4.2(a), 4.3(a) and 4.4(a), respectively. The wavefield
results are notably equivalent to the analytic solutions in terms of the scale and
location of the events. The L2 error of the wavefield is calculated at the time
points as shown in Table 4.2; the error is negligibly small. It is also confirmed
that phase lead or lag does not occur even for the result of a large time step of
20 ms at 20 s. This finding is also shown by the time traces illustrated in Figure
4.5, 4.6, 4.7 and 4.8 and at four different receiver positions at (0.074, 0.049),
(2.352,0.049), (3.92, 0.049) and (5.488, 0.049), respectively. The figures show
that the events are synchronized without any dispersive errors separated from

the main events.

4.1.2. Synthetic heterogeneous model: Marmousi-2

Numerical simulation of the acoustic wavefield in the heterogeneous model
is now performed. The purpose of this test is to confirm the feasibility of the
scheme for the transformation map of heterogeneous media. The Marmousi-2
model is used for the simulation, which is illustrated in Figure 4.9. The model
is 17 km long and 3.5 km deep with a grid size of 12.5 m. The maximum and
minimum p-wave velocities are 4.7 km/s and 1.028 km/s, respectively. The

. - 2
Gaussian profile e~ %"

, where @ equals 80 and r is the distance from the
center of the computational domain, is imposed as the initial value. Similarly,
for the initial value problem of the homogeneous model, 1 ms, 10 ms, 20 ms

and 40 ms are used as the time step lengths. The 8 for each At and

required to achieve a phase change error per time step less than 10™* is shown
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in Table 4.3. The total number of operator multiplications decreases as expected.

Time traces are recorded at the four receiver points, (1.0625, 0.025), (3.1875,
0.025), (5.3125, 0.025) and (7.4375, 0.025); Figure 4.10, 4.11, 4.12, and 4.13
illustrate the traces at each receiver. Again, the figures show that all events are

synchronized without any dispersive errors separated from the main events.
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Table 4.1 The phase change per time step 8, required [, total number of time steps

and total number of multiplications of the operator with respect to each time step

length of the simulation using a homogeneous model with a 24.5m grid space.

At Ims 10ms 20ms 40ms
0 0.905 9.051 18.102 36.204
[ 2 8 14 27
N, 20000 2000 1000 500
Npar 100000 34000 29000 28000
CPU time (s) 5829.62 2097.18 1786.56 1667.06
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(b)

(a)

Figure 4.1 Analytic solution (a) and numerical results of each time step length (b) at 5 s.
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Figure 4.2 Analytic solution (a) and numerical results of each time step length (b) at 10 s.
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Table 4.2 L2 norm of the error of the wavefield at 5s, 10 s, 15 s and 20 s.

At 5s 10 s 155 20s |
L2 error (1ms) 6.81e-8 9.55e-8 1.14e-7 1.30e-7

L2 error (10ms) 2.19¢-9 9.09¢-13 2.36e-10 2.24e-9
L2 error (20ms) 1.19¢-9 4.03e-10 8.72¢-10 8.15¢-10
L2 error (40ms)  6.71e-10 7.13e-10 2.28e-9 3.60e-9
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Table 4.3 The phase change per time step 8, required [, total number of time steps

and total number of multiplications of the operator with respect to each time step

length of the simulation using the Marmousi2 model with a 12.5m grid space.

At Ims 10ms 20ms 40ms
0 1.671 16.705 33411 66.822
l 8 14 25 49
N, 20000 2000 1000 500
Npat 340000 58000 51000 49500
CPU time (s)  37416.59 5748.11 5044.08 5029.57
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4.2. Source problems

4.2.1. Homogeneous model

As mentioned in section 3.5, there is a limitation on the time step length
because the wavefield should cover the maximum frequency of the designed or
real source signal. Thus, a dramatically large time step length cannot be used.
The size of the velocity model is equivalent to the model utilized in section

4.1.1, and the velocity is a homogeneous 1 km/s elsewhere. A Ricker wavelet

qt) = (1 - 2k2)e_k2, where k = m(fyt — ) is used as a source wavelet
with fy = 10 Hzand B = 1.00, as illustrated in Figure 4.14(a). Figure 4.14(b)
shows that the most energetic frequency component is 10 Hz and that the
frequency band of the wavelet is confined within approximately 30 Hz. Thus,
it is reasonable to set f;,,,, as 30 Hz, and At,,,, (to satisfy that f,,,, is the
Nyquist frequency) is 16.667 ms. For the numerical simulation, 1ms, 10ms and

At,,., are used. To ensure that the wavefield is smooth, the source is

distributed in the Gaussian profile f(x,z) = e=200((x—2m)*+(z-2m)*) Taple 4.4
shows that the computational cost reduces as At increases, which is in
accordance with N,,,;. Figure 4.15 illustrates the combined seismogram of
each time step length recorded by the line receivers located horizontally at a
depth of m. The seismogram shows that three results are in agreement in terms
of the scale and location of the event. To precisely visualize the results, traces
recorded at (3.1415, 3.1415), (4.7124, 3.1415) and (6.2832, 3.1415) are plotted
in Figure 4.21. The traces of each time step length are confirmed to be

equivalent. What ifa At wvalue larger than At,,,, is used? In fact, a time step
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length slightly longer than At,,,, has little effect, as the energy of the source
near 30 Hz is relatively small. However, an effectively larger At deteriorates
the solution, causing the aliasing depicted in Figure 4.17 when At is 50 ms.
Figure 4.18 illustrates the traces at the three receivers at the same location, and
the effect of aliasing is clearly shown in the form of oscillations after the event
has passed. Figure 4.19 shows the spectral energy distribution of each trace for
different time steps. Although 20 ms and 25 ms are larger than At,,,, and the
describable frequencies are 25 Hz and 20 Hz, which are less than 30 Hz, the
effect on the simulation is negligible, as seen in the spectral distribution, and

the result of 50 ms is substantially inaccurate.

4.2.2. Synthetic heterogeneous model: Marmousi-2

For numerical modeling with the synthetic model, the Marmousi2 model is

used in section 4.1.2. An equivalent source wavelet is applied with the source

— 2 . .
2007% where 7 is the distance

distribution in the Gaussian profile f(x,z) = e
from the center of the computational domain. As the equivalent source wavelet
is used, the same set of time step lengths are applied to the computational
modeling as 1ms, 10ms and At,,,, 16.667 ms. Similar to the previous cases,
the computational cost and time decrease as At as shown in Table 4.5. Figure
4.20 shows the combined seismogram of each time step length and indicates
that the kinematics are in agreement. For a detailed comparison, time traces
recorded at (3.75, 0.875), (5.00, 0.875) and (6.25, 0.875) (referred to as the

receivers 1, 2 and 3) are plotted in Figure 4.21. Early arrivals are almost

equivalent irrespective of the step lengths, while some misfits are found after a
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few seconds. It is strikingly revealed in Figure 4.21(b) and (c) that the results
of 1 ms and 10 ms have smaller amplitudes at 1.5 s and 1.7 s than those of
Aty Figure 4.22 depicts the spectral energy distribution of the traces at three
receivers; the small misfit in the time trace affects the mid-range of the
spectrum from 10 Hz to 20 Hz. These disparities are caused by the effectiveness
of the absorbing boundary condition such that the larger time step modeling
dampen the solution in the absorbing layer less because of the small number of
large time steps used to apply the exponential damping. To verify the effect,
simulation was conducted under the same conditions but without the absorbing
layer. Figure 4.23 illustrates the combined seismograms of each time step
length. The time traces are similar to one another at each receiver, as shown in
Figure 4.24, and the spectral energy distribution illustrated in Figure 4.25 of the
traces at each receiver confirm this finding. Some misfits of the traces at the
extremum points in Figure 4.24 and the slight offsets in the high-frequency
region in Figure 4.25 stem from the large time sampling rate and the sparse
source wavelet signal because of it. In any case, an effective absorbing
boundary for large time strides is required for more accurate modeling of the

acoustic wavefield.
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Table 4.4 The phase change per time step 6, required [, total number of time steps

and total number of multiplications of the operator with respect to each time step

length of the simulation using a homogeneous model with a 24.5m grid space.

At Ims 10ms 16.67ms
0 0.181 1.813 3.017
m 1 3 4
N 8500 850 510
Ninat 25500 5950 4590
CPU Time (s) 1358.88 324.08 272.53
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Figure 4.15 Combination of seismograms of each time step

length.
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4.5

Figure 4.17 Seismogram of the modeling using a homogeneous

velocity model using a time step length of At = 50 ms.
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Figure 4.19 Spectral energy distribution of the traces at receivers 1 (a), 2 (b) and

3 (¢) of each time step length.
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Table 4.5 The phase change per time step 8, required [, total number of time steps

and total number of multiplications of the operator with respect to each time step

length of the simulation using the Marmousi2 model with a 12.5m grid space.

At 1ms 10ms 16.67ms
] 1.671 16.705 27.842
[ 8 14 21
N 5000 500 300
Ninat 85000 14500 12900
CPU Time (s) 8332.45 1488.29 1312.90
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Figure 4.20 Combination of seismograms of each time step
length.
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time (s)

Figure 4.23 Combination of seismograms of each time step

length. The absorbing boundary condition is not applied.
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Figure 4.24 Traces at receivers 1 (a), 2 (b) and 3 (c) of each time step length. The
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4.3. Discussion on factors debasing the accuracy

These long, numerical results of the initial value and source problems are
presented. As illustrated in section 4.1, accurate results can be calculated by the
arbitrary-order symplectic time integrator. However, some issues are found
from the results of the source problems. First, sponge boundary layers do not
work well under certain modeling conditions. The only remedy for this problem
is to use thicker absorbing layers unless a more effective absorbing boundary is
imposed, such as the perfectly matched layer (PML). However, by numerous
simulations, I concluded that the PML does not fit to the PS method with a large
time step length because of the unstable nature of the system defined in the
PML, which can be found in the appendix section.

The second problem is the misfit of the acoustic wave signals. This problem
appears in two major ways: the amplitude errors at the extremum points as
shown in the previous section and the aliasing of the signal. To examine the
causes of the problem, several source problems are performed under the
equivalent modeling conditions of section 4.2.1 except p-wave velocity; four
different values from 2 to 5 are used. Figure 4.26 illustrates the traces of each
time step length recorded at (4.7124, 3.1415). It is clear that there can be
substantive relationships between the accuracy of the source problem and At
and p-wave velocity; the figure shows thatas At and p-wave velocity increase,
spiky signals are obtained and aliasing even occurs for the velocity of the model
higher than 3 km/s even At,,,, satisfies the Nyquist sampling theory. Such
errors on traces are clearly noted for the results of At,,,, at the region over

8Hz as illustrated in Figure 4.27. In my experience, 10 ms is appropriate for the
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source problem when imposing the wavelet with maximum frequency of 30 Hz
for the simulation with the realistic velocity model found in nature. In general,
30 Hz covers the band of interests for the inverse problems, such as tomography
or FWI. Thus, it is reasonable to set At equal to or less than 10 ms to guarantee
the accuracy of the result. Then, what of the high-resolution image via RTM?
In fact, amplitude error does not affect the quality of the migration image at all;
such a sharpened signal without a severe phase shift increases the definition of
the reflectors. However, aliasing should be avoided such that a fluctuating
signal lagging the event significantly deteriorates the resolution of the image. I
presume that the sparsity of the source wavelet due to a large time step, as
shown in Figure 4.28(b) and (c), causes the spiky results. Then, it would be
helpful to select At less than At,,,, if there are high-velocity structures at
the locations of the sources. In my experience, two-thirds of At,,,, would be
sufficient; however, more consideration is required to determine the appropriate

At for given modeling conditions.

108



~ 0.0010} ]
€
X
o 0.0005f ]
'g — 1ms
2
= 0.0000 — 10ms
5 —0.0005 ] Atrnax
0 1 2 3 4 5
Time (s)
, @ ,
’g 0.0010 1
<
@ 0.0005¢
'g — 1ms
2
Z 00000 — 10ms
E —0.0005 ] Atrax
0 1 2 3 4 5
Time (s)
‘ b .
0.0010} ]
€
< 0.0005) ]
[}
° — 1ms
2 0.0000 '
s — 10ms
£
< -0.0005} ] Atmax
0 1 2 3 4 5
Time (s)
. ,
0.0010} ]
€
< 0.0005] ]
S — 1ms
2 00000 A oot
3 " ; o — 10ms
g
< _0.0005} 3 Atrmax
0 1 2 3 4 5
Time (s)
()
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5. Conclusions

An arbitrary-order symplectic time operator is a useful scheme to simulate
the acoustic wave equation, which intrinsically satisfies the symplecticity
condition irrespective of the variables representing the system PDE. The order
of accuracy of the suggested scheme can be increased recursively such that the
quality of the result can be easily controlled by the simple choice of the
expansion number of the transformation matrix for the given modeling
geometries.

The representative characteristics of the arbitrary-order symplectic time
operator, such as stability, dispersive characteristic and cumulative phase error,
are analyzed by solving the eigenvalue problems of the approximate symplectic
map of each expansion order. A non-symplectic time discretization method that
has the equivalent computational cost per time step to the suggested scheme is
also analyzed to compare the effect of symplecticity. The stability criterion and
the allowed time step length to obey the given error restriction are twice when
considering the property. This enables the computational cost of the suggested
method to be reduced as much as half compared with the scheme not

considering symplecticity. A strategy to select the number of the expansion of
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the symplectic map is suggested that is based on the similarity of an actual
eigenvalue and that of the approximate matrix; the suggested strategy is more
effective in terms of quality and computational cost when the allowed
maximum time step length is applied.

The numerical simulation results provide evidence that precise modeling is
possible using the arbitrary-order symplectic time operator with a large time
step length. However, several issues are found when the scheme is applied to
the source problem because of the intrinsic limitation on the time discretized
solution of a source problem. Thus, numerical results are inaccurate when
performing a simulation with a large time step length when the source is
imposed at high velocity region. In addition, a large time step length or high p-
wave model causes the acoustic wave to pass the absorbing boundary layer that
is not dampened sufficiently. A practical remedy for these problems is to use a
thicker boundary condition or reduce the time stride. Spiky events due to the
sparse sampling of the source wavelet do not affect the quality of RTM results.
However, aliasing should be avoided by reducing the time step length; two-
thirds of the maximum value is recommended based on my experience.

The arbitrary-order symplectic time integrator can be applied to practical
problems, i.e., the high-resolution imaging via RTM or FWI of multicomponent
data. Other types of problems, such as elastodynamics or electromagnetics, are
also Hamiltonian systems; the suggested scheme can be extended to those fields
in future works. Although the PS method is used to differentiate the variable, it
would be meaningful to use other discretization techniques, such as finite

difference or finite element methods, which remains for future works. In this
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case, the scheme’s characteristics are expected to be considerably different from

the analysis results of this study because of the effect of spatial dispersion errors.
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Appendix A. Additional formulations

Al. Absorbing boundary conditions

Absorbing boundary conditions (ABCs) terminate undesired waves reflected
from the edges of a computational domain. As a result of the absorbing
boundary, we can confine the domain within the zone of interest to perform
numerical modeling of unbounded media. The PML is a type of absorbing
boundary, introduced by Berenger (1994), and it is known as the most effective
such boundary condition. The PML can dampen waves within a layer with a
thickness of tens of nodes regardless of the frequency and incidence angle.
Among the variants on the PML schemes, I consider the method invented by
Park et al. (2014) and Grote and Sim (2010) for systems (2.1.21a) and (2.1.21b),
respectively. Note that the system equation in the PML layer is clearly not
symplectic as the determinant of the characteristic matrix M cannot be equal
to one because of the dissipation of the wavefield. Nevertheless, PML schemes
have been applied to wave equation. In the following, I introduce a technique
to impose a PML using an arbitrary-order symplectic time integrator.

Park et al. (2014) extended the first-order system of an acoustic wave in the

PML zone by dividing the pressure field p into p, and p, as follows:

ap, , (Ou  Ov

5 = (5 5,) ~ e

dp Ju OJdv

e = e (5o + 50 ) — dop, (ALD)
Ju 1 0py d
ot p, 0x x4

121



dov 1 0dp,
9t~ pg oz xY

where d, and d, are damping profiles with respect to the x and z
directions. The scheme is simple to implement. An increase in the variable does
not incur additional computational cost because we can reuse the spatial
derivatives once it is calculated. p, and p, are identical in the domain of
interest but yield different values in the PML zone. Thus, we can choose either

of them as the pressure field. The characteristic matrix of (Al.1) is:

d d7
- 22 2
dx 0 pOC ax pOC aZ
d d
0 —d, _Pocza _9002&
M= 1 9 (A1.2)
- 0 —d 0
Po Ox g
0 L9 0 d
po 0z ?
and M = N + D where
d 07
— 2 _ 2
0 0 PoC 5% TP 5
0 d
- 2__ 2
v 0 0 PoC 5 TP G
- 10
- 0 0 0
po Ox
10 Al.3
1 . (A13)
Po 0z
-d, 0 0 0
|0 —d, ©0 0
b= 0 0 —-d, O
0 0 0 —d

Z

It is necessary to decompose M into a spatial derivative operator matrix N
and the remainder D to determine whether the new characteristic matrix N

leads to the symplectic structure in the PML layer. If not, the PML cannot be
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applied, and another absorbing condition must be imposed. In that case, wave
phenomena in the PML layer retain the symplecticity. The remainder matrix D
acts as a sponge boundary condition that can be independently considered by

—d At —d At

simply multiplying by e or e at the update of each variable. For
instance, the transformation operator of a second-order symplectic scheme

applied to the PML is

eAtM ~ o AtDy o AN, 5 ALDy o ALNy (A1.4)
where N; and N, are the matrices that contain only the upper-right and
lower-left submatrices of N,and D; and D, are the matrices that contain the
upper-left and the lower-right submatrices of D.

The PML scheme for the standard second-order equation is considered for

system (2.1.21b). The simplest formula invented by Grote and Sim (2010) is

ap %p 02 0 d
p_ 2( p _p>_|_ ¢x+ ¢Z—(dx+dz)lj_dxdzp

ot S \ox2 T9z2) T ax "oz
f0) op
atx = _dx¢x + (dz - dx)a
(A1.5)

ap ap
atz = _dz¢z + (dx - dz)&

op

ac P

where ¢, and ¢, are the auxiliary variables. The characteristic matrix M in

the PML zone is:
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_ (d, +d,) c? o + o d.d 9 g
x Tl C\Gxz T o2) T B Gy oz
al L6
- 0 —d, 0 (d;—dy)o-
0
0 0 —d, (dx - dz) a
1 0 0 0 g
and M = N + D where
o 22,9 2 0
“\ox2 T 922) ox oz
0
N =10 0 0 (d;—dx) o
0
0 0 0 (d, _dZ)E (AL7)
1 0 0
_(dx + dz) _dxdz 0 0
D= 0 —d, 0 0
0 0 —d, 0
0 0 0 0

However, the first-order system of N is not symplectic; it is impossible to
apply a symplectic time integrator in the PML zone. Other absorbing boundary
conditions such as a spongy layer (Cerjan 1995) can be used in the system
because the system of N retains a symplectic structure in the layer.

As mentioned in section 4.3, the system in the PML zone is prone to diverge
when using a PS method with a large time step. This is why I applied the pretty
good sponge boundary invented by Lavelle and Thacker (2007); the system

equation in the absorbing layer is slightly different from that of the PML as

follows:
dp , (Ou Ov
- T I Al.8
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The system is stable. Although a damping of the wavefield is less effective than

the PML, this yields better performance than the conventional sponge layers.

125



A2. Analytic solution

We can derive the analytic solution of the acoustic wave equation in a
homogeneous model using the PS method. Two dimensional system of equation

(2.1.21a) can be rewritten as follows:

0 2l 29]
PoC Ox PoC 9z
a [p 1 d p] (4.2.1)
Zlul=l-1 2 0 0 u A2.1
atl,, Po gx w
_1, 0
| /Poa 0 0

This equation can be converted into system ordinary differential form (ODE)

via Fourier transformation of the spatial derivatives as follows:

- 0 i poc?k, 1poc?k,]. -

o01|P 1 p

=z = [pokx 0 0 |la (A22)
wl o il/p ke, 0 o |'W

Then, the acoustic wave solution in the time-wavenumber domain is

7 =etMy,. (A23)
where
etM
[ (ckt) fipck, sin(ckt) fipck, sin(ckt) 1
cos(c _— _—
— . ¥ g (A2.4)
_ fipck, sin(ckt)  k,” + k,“ cos(ckt) ki k,(—1 + cos(ckt))
k k2 k2
ipck, sin(ckt) kyk,(—=1+ cos(ckt))  k,* + k,? cos(ckt)
k k2 k2

and M is a system matrix of equation (A.2.2). ¥, is an initial value in the
time-wavenumber domain that can be easily calculated by Fourier transform in

the x- and z-directions. ¥ is a solution vector in the time-wavenumber
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domain that requires the inverse Fourier transform to convert into the wavefield

in the spatial domain at time t as follows:

y = FFT~* [ FFT[y,]]. (A2.5)
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Appendix B. Matlab codes

B1. Arbitrary-order symplectic time integrator

clear all;
close all;
clc;

% Computational domain

Nx = 512;
Nz = 512;
Lx = 4*pi;
Lz = 4*pi;

hx = Lx/Nx;

hz = Lz/Nz;

X = hx*(1l:Nx)';

z = hz*(1:Nz);

[xx,zz] = meshgrid(x,z);
% Wavenumber domain

kx0 = 2*pi/Lx*[0:Nx/2-1 0 -Nx/2+1:-11];
kz0 = 2*pi/Lz*[0:Nz/2-1 0 -Nz/2+1:-1];
[kx,kz] = meshgrid(kx0, kzO0);

% physical properties

cp = 5*ones (Nz,Nx);

rho = ones (Nz,Nx) ;

% Time stepping
Tmax = 20;

dt = 0.02;

t = dt:dt:Tmax;

% physical variables

p = exp(-80* ((xx-Lx/2) .72 + (zz-Lz/2)."2));
u = zeros (Nz,Nx);

w = zeros (Nz,Nx);

% intermediate variables for symplectic & Lax-wendroff

du 0 = zeros(Nz,Nx);
du 2 = zeros(Nz,Nx);
dw 0 = zeros(Nz,Nx);
dw 2 = zeros(Nz,Nx);
dp 0 = zeros(Nz,Nx);
dp 2 = zeros(Nz,Nx);

% non-symplectic method
p new = zeros (Nz,Nx);
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u _new = zeros (Nz,Nx);
w_new = zeros (Nz,Nx);

igiisqare = pi”2*max (max (cp)) "2*dt"2* (1/hx"2+1/hz"2);
theta = sqrt (CFL_sgare)

m_expansion = 14;

%%% start time stepping %$%%

tic

% Half time stepping

du 0 = - 0.5*dt./rho.*real (1fft2 (li*kx.*fft2(p)));
dw 0 = - 0.5*dt./rho.*real (ifft2 (li*kz.*fft2(p)));
u=u+ du 0;
w=w + dw_0;

% Lax-Wendroff
for m=1:m expansion

du 2 =
0.125*dt*dt/ (m* (2*m+1)) ./rho.* (real (1fft2 (1i*kx.*fft2 (rho
.*cp.*cp.*(real (1fft2 (1i*kx.*fft2(du 0)))))))+real (1fft2 (

li*kx.*fft2 (rho.*cp.*cp.*real (1 fft2 (1li*kz.*fft2(dw_0)))))
))

dw 2 =
0.125*dt*dt/ (m* (2*m+1)) ./rho.* (real (1fft2 (1li*kz.*fft2 (rho
.*cp.*cp.*(real (1fft2 (li*kx.*fft2(du 0)))))))+real (1fft2 (

li*kz.*fft2 (rho.*cp.*cp.*real (1 fft2 (1li*kz.*fft2(dw_0)))))
));
u=u + du 2;

=w + dw_2;

for i=l:length(t)

% 1=0 : 2nd order symplectic

dp 0 = -
dt*rho.*cp.*cp.* (real (1fft2 (1li*kx.*fft2(u)))+treal (ifft2(1
i*kz  *FEE2(w)))) ;

p =p + dp_0;

% 1>0: Lax-Wendroff expansion
for m=1:m expansion

dp 2
=0.125*dt*dt/ (m* (2*m+1) ) *rho.*cp.*cp.* (real (1 fft2 (1i*kx.*
fft2(1./rho.*real (1fft2(li*kx.*fft2(dp 0))))))+real (ifft2

(li*kz.*fft2(1./rho.*real (ifft2 (li*kz.*fft2(dp 0)))))));

p=p + dp 2;
dp 0 = dp_2;
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end

% i=0 : 2nd order symplectic

du 0 = - dt./rho.*real (1fft2 (1i*kx.*fft2(p)));

dw 0 = - dt./rho.*real (ifft2 (li*kz.*fft2(p)));

u=u+ du 0;

w=w + dw_0;

% i>0: Lax-Wendroff expansion

for m=1:m expansion

du 2 =

0.125*dt*dt/ (m* (2*m+1)) ./rho.* (real (1fft2 (1i*kx.*fft2 (rho
.*cp.*cp.*(real (ifft2 (li*kx.*fft2(du 0)))))))+real (1££ft2(

li*kx.*fft2 (rho.*cp.*cp.*real (1 fft2 (1li*kz.*fft2(dw_0)))))
));

dw 2 =
0.125*dt*dt/ (m* (2*m+1)) ./rho.* (real (1fft2 (1li*kz.*fft2 (rho
.*cp.*cp.*(real (1fft2 (li*kx.*fft2(du 0)))))))+real (1fft2 (

li*kz.*fft2 (rho.*cp.*cp.*real (1 fft2 (1li*kz.*fft2(dw_0)))))
));

u=u+ du 2;

w=w + dw_2;

end

% plot animation "mesh"

if mod(i,2) ==

mesh (xx,zz,p);

x1lim ([0 Lx]);

ylim ([0 Lz]);
zlim([-0.5 11);
pbaspect ([Lx Lz Lz*0.5]);
caxis([-0.2, 11);
title (num2str (i*dt, '%10.5e\n'));
pause (.00001)

end

end

toc
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B2. Analytic solution

clear all;
clc;

% Computational domain

Nx = 512;
Nz = 512;
Lx = 4*pi;
Lz = 4*pi;

hx = Lx/Nx;

hz = Lz/Nz;

X = hx* (1l:Nx)';

z = hz*(1:Nz);

[xx,zz] = meshgrid(x,z);

$ Wavenumber domain

kx0 = 2*pi/Lx*[0:Nx/2-1 0 -Nx/2+1:-11];
kz0 = 2*pi/Lz*[0:Nz/2-1 0 -Nz/2+1:-1];
[kx,kz] = meshgrid (kx0, kzO0);

% target mement t
t = 20;

% physical variables

0 = exp(-80* ((xx-Lx/2) .72 + (zz-Lz/2)
0 = zeros (Nz,Nx) ;

0 zeros (Nz,Nx) ;

% variables in wavenumber domain
p_kO = zeros (Nz,Nx);

u kO = zeros(Nz,Nx);
w kO = zeros(Nz,Nx);
p_kl = zeros (Nz,Nx);
u _kl = zeros (Nz,Nx);
w_kl = zeros(Nz,Nx);

% solution at 't
p = zeros (Nz,Nx);
u = zeros (Nz,Nx)
w = zeros (Nz,Nx)

’

r

o

% physical properties
cp = 5*ones (Nz,Nx);
rho = ones (Nz,Nx) ;

% onestep solution %
p kO = fft2(p 0);

= fft2(u 0);
fft2(w _0);

5 C
~ A
o o
I

.2))

p k1 = cos(cp.*sqgrt (kx.”2+kz."2)*t) .*p k0O -
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li*kx.*rho.*cp.*sin(cp.*sqrt (kx."2+kz."2)*t)./sqrt (sqgrt (k
x."2+kz."2)) .*u_k0 -

li*kz.*rho.*cp.*sin(cp.*sqrt (kx."2+kz."2)*t) ./sqrt (sqgrt (k

x."2+kz.%2)) .*w_kO;

u kl = -

11i*kx. /cp./rho.*sin(cp.*sqgrt (kx."2+kz."2)*
x."2+kz."2)) .*p_kO0 +
(kz."2+kx."2.*cos (cp.*sgrt (kx."2+kz."2)*t)) ./ (kx."2+kz."2

) .*u kO + (kx.*kz.*(1-

cos (cp.*sqrt (kx."2+kz."2)*t))) ./ (kx."2+kz."2) .*w_kO;

w kl = -

li*kz./cp./rho.*sin(cp.*sqrt (kx."2+kz."2)*

X."2+kz."2)) .*p_kO0 + (kx.*kz.*(1-

) ./sqgrt (sgrt (k

) ./sqgrt (sgrt (k

cos(cp.*sqgrt (kx."2+kz."2)*t))) ./ (kx. A2+kz A2) *u k0 +
(kx."2+kz."2.*%cos (cp.*sgrt (kx."2+kz."2) ./ (kx."2+kz."2
) .*w_kO;

% Nan check

p_k1(1,1) = p_kO0(1,1);

pikl(l,l+Nx/2) = pikO(l,l+Nx/2);

p k1 (1+Nx/2,1) = p kO (1+Nx/2,1)

p_ k1 (14Nx/2,14Nx/2) = p k0 (1+Nx/2,1+Nx/2)
Nan check

u k1(1,1) = u kO0(1,1);

u k1l(1, 1+Nx/2) = uikO(l,l+Nx/2);

u kil (1+Nx/2,1) = u kO(l+Nx/2,l)

u k1 (1+Nx/2, 1+Nx/2 = u_ k0 (1+Nx/2,1+Nx/2)
% Nan check

w k1(1,1) = w k0(1,1);

wikl(l,l+Nx/2) = wikO(l,l+Nx/2);
w_k1(14Nx/2,1) = w_kO(14+Nx/2,1)
w_k1(14Nx/2,1+Nx/2) = w_kO (1+Nx/2,1+Nx/2)

o

% solution

oe

p = real (ifft2(p_k1));
u = real (1fft2(u k1))
w = real (ifft2(w_k1));
% plot

figure (11);

mesh (xx,zz,p);

%axis equal;

x1lim ([0 Lx]);

ylim ([0 Lz]);

zlim([-0.5 171);

pbaspect ([Lx Lz Lz*0.5]);
caxis ([-0.2, 11);

title (num2str(t, '%10.5e\n'));

[)

% Binary file write

fileID p =

fopen ('output analytic 5000mps 512/p analytic 5000mps 512
_20s.bin', 'w'");

fwrite(fileID p, p, 'float32');

fclose (fileID p);
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