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Abstract 
 

A Hamiltonian system is symplectic. To simulate a Hamiltonian system, 

symplectic time integrators are generally applied; otherwise, the energy or the 

generalized energy is not conserved in the volume of interest. In this study, the 

symplectic nature of the acoustic wave system is proven. Then, a symplectic 

scheme that can be extended arbitrarily in temporal dimensions is suggested. 

The method is based on the Lax-Wendroff expansion of the time differentiation 

of acoustic wave variables, such as pressure and velocity, existing on the 

staggered time axis, i.e., one is on the integer grid, and the other is defined on 

the half integer of the time step. The series can be reduced to the pseudo-

differential operator, which enables the application of other approximation 

techniques, such as the Jacobi-Anger expansion. By virtue of considering the 

property of the nature of the acoustic wave phenomena, the scheme is more 

stable and accurate than methods that do not consider symplecticity. Moreover, 

the phase error per time step can be kept sufficiently small to conduct 

simulation over long periods of time. According to the analysis of the scheme, 

the larger the time strides are, the more efficient the simulation is in terms of 

computing power when a sufficient number of multiplications of the map are 

accumulated. The effectiveness and accuracy are verified through simulation 

results using a homogeneous model in which the computed wavefield is 

equivalent to the analytic solution. The numerical results of the wavefield in the 

heterogeneous model also yield equivalent results irrespective of the time step 

lengths. The scheme can be applied to the source problems; however, the time 

step is confined to describing the entire frequency component of the wavelet.  
 

Keywords : Symplectic time integrator, acoustic wave equation, pseudo-

spectral method, extremely accurate simulation  

Student number : 2012-30910 
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1. Introduction 

 

1.1. Background 

Imaging via migration techniques or inverse problems plays an essential role 

in characterizing the interior of a medium that does not allow direct inspection 

(e.g., the biopsy of body parts, drilling of land or slicing of complex mechanical 

parts) because of safety or economic issues, allowing decision-makers to 

understand the properties of the medium. The resulting images help decision-

makers accurately evaluate the conditions because the data acquired via direct 

examination are reliable. However, locally confined information presents 

difficulties in realizing the broad tendency of the subsurface structure. 

Numerical simulation of the wave propagation is the essential technique of 

imaging algorithms because it requires iteratively applying forward and adjoint 

wave modeling procedures once or many times (Baysal et al. 1983; Whitmore 

1983; Tarantola 1983; Tarantola 1984; Pratt et al. 1998; Shin and Cha 2008; 

Shin and Cha 2009). We usually refer to the modeling algorithm as a ‘modeling 

engine’ because it generates the results (here, quality of the resulting image), 
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just as car engines do. The more accurate the modeling engine, the higher the 

resolution of the obtained image. To this end, various methodologies have been 

developed to improve the accuracy of wave phenomena simulations. 

Discretization of the wave equation yields numerical errors, i.e., phase and 

amplitude errors. Such errors cause the simulation results to violate the 

dispersion relation of the wave phenomena. Marfurt (1984) analyzed the 

dispersion characteristics of the standard 5-point finite-difference (FD) method 

and 9-point finite-element method (FEM) using linear elements. The results of 

Marfurt’s work suggest that the eclectic mass matrix, the weighted summation 

of the lumped mass matrix and the consistent mass matrix, decreases the 

dispersion error of standard FEM. Virieux (1986) introduced a FD scheme 

termed the staggered-grid finite-difference method (SGFDM) to simulate the 

seismic wave equation represented by a first-order system of stress and velocity 

fields. This method defines the wavefields and material properties in the 

staggered grids separately and updates the stress and velocity fields 

alternatively. Such grid and time stepping was adopted by Yee (1966) to 

simulate electromagnetic waves. Such gridding enables the even-odd 

decoupling to be suppressed to avoid generating high-frequency oscillation.  

The scheme was extended by Levander (1988) using a fourth-order 

differential operator in space. This work confirmed that enlarging the stencil 

can reduce the dispersion error due to the discretized spatial operator. The 

coefficients of the large stencil operator are determined by solving equations of 

Taylor series expansion at the points (Fornberg 1988). Instead of the standard 

high-order FD coefficients, schemes using optimized coefficients to fit the 



 

 3

dispersion relation of the wave were introduced. (Tam and Webb 1993, Geller 

and Takeuchi 1998, Liu and Sen 2009, Liu and Sen 2011). A diamond shaped 

stencil was introduced by Liu and Sen (2013) and Tan and Huang for solving 

collocated and staggered grids, respectively. Using the dispersion-optimized 

coefficients, this scheme effectively reduces the numerical anisotropy. Liu and 

Sen (2013) also noted that the gridding relaxes the stability criterion allowing 

for a larger time step than that of the conventional FD scheme with the same 

order of accuracy in space. Ghost cell points are required outside of the 

computational domain address boundary condition when using large stencil 

schemes. 

FEM-based schemes enlarge stencils in a different manner; they increase the 

density of the local nodes in the element. This approach enables the definition 

of a high-order basis to fit the solution function, which leads to a spectral 

convergence with respect to the order of accuracy. In the field of seismology, 

the spectral element method (SEM), a type of FEM technique is used in global 

seismic modeling (Komatitsch 1998). This method usually uses high-order 

Gauss-Lobatto collocation nodes to define nodal basis functions, which 

generates a diagonal global mass matrix naturally, allowing effective massive 

time-domain modeling. De Bassabe (2008) compared the dispersion 

characteristics of the elastic wave equation of the discontinuous Galerkin (DG) 

method with that of the SEM. DG schemes are non-conforming methods that 

evaluate the wave solution of each element separately and compensate the 

discontinuity of the solution with numerical flux terms such, as Godnov or Lax-

Freidrich flux (Arnold et al. 2002; Hesthavan and Warburton 2007). Such 
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methods are used for special purposes when studying models that contain 

complex geometry, i.e., models with complex topography or interfaces of 

different phases, which is almost impossible to solve with FD schemes 

(Hermann et al. 2010). 

A stability issue accompanies FEM-based schemes using high-order basis 

functions for the effective grid space, inversely proportional to the order of the 

basis function; the Courant Friedrichs Lewy (CFL) number can easily increase 

to exceed the stability criterion. The use of implicit methods, such as the Crank-

Nicolson method (Crank and Nicolson 1947), alternating direction implicit 

(ADI) method (Fairweather and Mitchell 1967) or implicit locally one-

dimensional (LOD) method (Kim and Lim 2007), can be a feasible solution. 

The implicit schemes are unconditionally stable in general, but they necessitate 

additional computational cost to conduct matrix inversion. Using a high-order 

explicit scheme is another potential solution. The Lax-Wendroff method (Lax 

and Wendroff 1964) expands the time derivative term using a Taylor expansion 

series and converts it to high-order spatial terms. This method has been 

successfully implemented to FEM-based schemes (Dumbser and Käser 2005; 

Käser and Dumbser 2006; Dumbser et al. 2007; Hermann et al. 2010; De 

Basabe and Sen 2010). Cohen and Joly (1986) and Dablain (1986) evaluated 

FD schemes of fourth-order accuracy in temporal dimensions using the Lax-

Wendroff method; they found that method resolves stability and alleviates the 

time dispersion error. Tan and Huang (2014) extended the SGFDM to use the 

fourth- and sixth-order terms in time. Although they omitted certain high-order 

spatial derivative terms, the scheme enables the CFL relaxation effects, which 
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allows a larger time step. Such expansion can be implemented in a recursive 

manner, and we can arbitrarily increase the order of accuracy in time. 

Representation of the operator via exponential matrix form, i.e., pseudo-

differential operator, provides different options in terms of the time-domain 

modeling philosophy to geophysicists such that, once the time step length is 

determined, the number of expansions can be determined to satisfy the stability 

and dispersion error criterion. 

Tal-Ezer (1986) introduced the new concept of a wave marching technique 

to achieve spectral accuracy in the time domain. His method numerically 

expands the exponential matrix operator using a modified version of the Jacobi-

Anger expansion to the extent of covering the highest spatial mode of the 

wavefield. Although it is clear that the Jacobi-Anger expansion is a best-fit 

approximation of sinusoidal functions, the Taylor expansion of the matrix 

operator produces similar solutions and is equivalent to the Lax-Wendroff 

method of arbitrary order. This point is addressed in the work of Pestana and 

Stoffa (2010), who adapted the one-step rapid expansion method (REM) of 

Kosloff et al. (1989) into a finite time-stepping method accommodating multi-

source problems. Because of the freedom achieved in the time domain-

dispersion error, pseudo-spectral (PS) methods are chiefly used. PS methods 

usually offer spectral accuracy in the spatial domain, which implies that the 

scheme is dispersion free within the describable band of wavenumber. The 

scheme incurs a pair of discrete Fourier transforms, i.e., forward and inverse, 

which can be accelerated using the fast Fourier transform (FFT) algorithm. 

Using PS, it is possible to achieve spectral accuracy in both the time and spatial 
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domains. However, reiteration of the FFT is required to calculate the pseudo-

differential operator, which can be burdensome in certain applications. 

Although Etgen and Bradsberg-Dahl (2009) introduced a pseudo-analytic 

method to calculate the operator matrix in an effective manner, it is relatively 

error-prone in the high-wavenumber region using the heterogeneous model.  

Lu and Schmid (1997) adopted symplectic integrators to solve the acoustic 

wave equation. Symplecticity is an intrinsic property of the fundamental laws 

of physics that have a conservative quantity such as mechanical energy in a 

closed system; the symplectic integrator is the time marching technique 

corresponding to such physics. The symplecticity is not equivalent to the 

accuracy of the model but the physical property to be obeyed, which confines 

the variables bounded in some level on the phase space and yields much more 

stable and improved solutions in long-term simulations. (Hairer et al. 2006). 

Alternatively, the accuracy simply means the approximation order. There exists 

a non-symplectic method of a given order, as well as the symplectic integrator. 

The latter is always better than the former. Symplectic time operators have been 

successfully applied to numerous problems in diverse fields, such as astronomy, 

modern physics, fluid dynamics, molecular dynamics and wave modeling. 

Geophysicists are familiar with the Störmer–Verlet method, a second-order 

symplectic integrator, because the scheme is equivalent to the time marching 

strategy of the SGFDM, which alternatively updates stresses and velocities. To 

improve the accuracy, higher-order schemes have been devised. Ruth (1983) 

and Forest and Ruth (1990) invented the third- and fourth-order symplectic 

integrators. Another forth-order scheme, the symplectic Nyström method 
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(Okunbor and Skeel 1992), was implemented with an acoustic wave equation 

by Chen (2009). The result verified that the symplectic Nyström method yields 

better solutions than the explicit Lax-Wendroff method of the same order of 

accuracy. Yosida (1990) suggested methodology to derive higher-order 

symplectic schemes using the Baker-Campbell-Hausdorff (BCH) formula. 

However, the derivation process of the optimal coefficients is extremely 

cumbersome and yields multiple solutions. Another strategy is to expand and 

combine low-order symplectic integrators with well-known explicit time 

marching schemes, which is expected to be much easier than the schemes 

derived using the approach of Yosida (1990). Ma et al. (2011) applied a 

symplectic version of the Runge-Kutta (RK) method to the 2D seismic wave 

problem. Araujo et al. (2014) combined the velocity-Verlet scheme with the 

REM, which was successfully applied to the reverse time migration (RTM). Ma 

et al. (2015, 2016) extended the RK scheme up to the fourth order of accuracy, 

and it was also adapted to the RTM algorithm by Li et al. (2015).  
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1.2. Overview 

This work is essentially an extension of the study of a high-order symplectic 

time integrator for the wave equation solver in the time domain. I invented a 

symplectic time integrator that can be extended to an arbitrary order of accuracy 

in the temporal dimension. The scheme is implemented for a first-order system 

of wave equations. Two types of wave equations are considered. One is the 

system dynamics of pressure and time derivative of pressure vectors, and the 

other is of pressure and velocity vectors. As the established symplecticity 

condition (Hairer et al. 2006) is valid only for the bilinear system, I generalized 

the condition to accommodate the multilinear system to determine whether the 

scheme is applicable to acoustic wave systems with respect to pressure and 

velocity fields. The suggested scheme combines the Störmer–Verlet method 

with the Lax-Wendroff method. The series of spatial derivatives is found to be 

the sine hyperbolic function series of the characteristic matrix, which can be 

approximated by another series such as one generated by the Jacobi-Anger 

expansion. The stability criterion of the suggested scheme when using PS 

approaches is calculated and proven to be more stable than the non-symplectic 

scheme of equivalent computational cost. The phase error (which is also termed 

the dispersion error) is analyzed, and the result illustrates the relation between 

the error and the degree of the approximation of the symplectic map with 

respect to given modeling geometries. These characteristics are also compared 

to those of the non-symplectic method to provide evidence of improvement in 

terms of accuracy and efficiency when considering symplecticity. Based on the 

analysis, a strategy to use the scheme is suggested and applied to several p-
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wave velocity models to yield seismograms and time traces. 
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1.3. Outline 

In the following section, I briefly review the system of the acoustic wave and 

prove the symplecticity of the system. The conventional symplectic integrators 

are introduced to be compared by the formulation of the arbitrary-order 

symplectic time integrator that is suggested in this study. In section 3, stability 

and dispersion characteristics of the suggested scheme are analyzed. Phase 

error analysis is also conducted to illustrate the quantitative effect of increasing 

the order of accuracy in time, which introduces the strategy to use this scheme 

effectively and efficiently. In section 4, the arbitrary-order symplectic time 

integrator is applied to the homogenous and synthetic model to verify the 

properties derived in the analysis section. 
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2. Theory 

2.1. Acoustic wave equation 

In this chapter, I briefly review the formulation method of the linearized 

acoustic wave motion. We consider the control volume in 3D space,  

 

Figure 2.1 Control volume  bounded by a surface  with  normal to . 

 

where  is the control volume,  is the surface of the volume and  is the 

normal vector on the surface. The acoustic wave equation is formulated by 

representing the conservative relation of the fluid motion. First consider the 

mass conservation in the control volume  and its surface  as follows: 

 

∙  (2.1.1) 
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where  is the density perturbation field,  is the gauge density of the media, 

and , ,  is the velocity vector of the wave. Equation (2.1.1) 

implies that the mass change rate inside the volume  is equivalent to the net 

mass flow rate across the surface .  

By applying Gauss’ theorem,  

is derived. We secondly consider the momentum conservation law as follows: 

where  is the pressure field. The meaning of the acoustic wave as linearized 

motion is a natural assumption for the weakly perturbed field, and the relation 

between  and  is deduced as follows: 

where  is the wave propagation speed. With this relation, the mass 

conservation law (2.1.2) is reformulated as follows: 

We can rewrite equations (2.1.5) and (2.1.3) in the first-order system equation 

form as follows: 

The system equation is considered to be fundamental for the implication of 

the physical law itself (LeVeque 2002) and adequate for modeling the 

multicomponent wavefields. 

∙  (2.1.2) 

 (2.1.3) 

 (2.1.4) 

c ∙  (2.1.5) 

0 c ∙
1 0

 (2.1.6) 
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The wave equation itself is primarily described as a second-order form with 

respect to pressure or displacement vector, which is also termed the standard or 

primal form. A familiar formulation of the acoustic wave, i.e., the scalar partial 

differential equation (PDE) form with respect to pressure, is derived by 

eliminating the velocity term from equations (2.1.5) and (2.1.3) as follows: 

If we assume that the density or wave velocity is locally homogeneous or 

constant in space, equation (2.1.7) can be replaced by the standard form as 

follows: 

Such an assumption yields inaccurate wave simulation with the model rapidly 

changing in the space dimension; however, the errors are generally negligible 

for practical cases (Tan and Huwang 2014). 

If we substitute the density  for pressure  using (2.1.4), we obtain 

As the differentiation of the wave equation also satisfies the wave equation and 

is proportional to the gradient of pressure, particle velocity also satisfies (2.8) 

as follows:  

where  of (2.1.10) is the vector Laplacian. We can conjecture that the 

displacement vector also satisfies the wave equation if we integrate (2.10) over 

time	 .  

1
∙
1

0 (2.1.7) 

1
0 (2.1.8) 

1
0 (2.1.9) 

1
0 (2.1.10) 
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  In addition, by taking the curl of (2.1.3), 

is derived, which implies that the curl of the particle velocity vector is constant. 

It is valid from the initial state of rest, i.e., 0; thus,  

is satisfied, which implies that the wave motion is irrotational and that the 

velocity potential function can be defined as follows:  

In some cases, it is convenient to express the wave motion with respect to , 

which guarantees the curl-free constraint of the wavefield. The momentum 

conservation law can be rewritten in terms of  as follows: 

or 

because we can set  arbitrarily as the sum of the pressure field and set 

⁄  to be zero. Moreover,  also satisfies the wave equation if we take 

the gradient of (2.1.10) as follows: 

Irrespective of the fact that the unstable weak motion of all the physical 

quantities satisfies the standard second-order wave equation, among the various 

formulations, (2.1.6) and (2.1.8) are used most frequently in practical problems. 

In the following sections, we manage the structure of the acoustic wave in 

0 (2.1.11) 

0 (2.1.12) 

 (2.1.13) 

0 (2.1.14) 

 (2.1.15) 

1
0 (2.1.16) 
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the first-order system formulation. The standard second-order wave equation of 

various physical quantities above can be easily modified to a bilinear system 

equation of first order by introducing , the time derivative of , as follows: 

or 

Thus we can rewrite the acoustic wave system in a general form as follows: 

where  is the vector of wave variables and  is the linear operator of the 

acoustic wave equation.  is referred to as the characteristic matrix of the 

system PDE because the eigenvalues of the operator determine the type of the 

PDE. The acoustic wave system is hyperbolic, as the eigenvalues  are all 

real values (Strikwerda 2004). The general solution of the initial value problem 

in the infinite media is 

where  is the initial condition and  is the transformation matrix of the 

acoustic wave system. 

In the following section, we analyze the interesting property of the 

symplecticity of the acoustic wave system and the transformation map using 

the first-order acoustic system formulations below: 

 

 

(2.1.17) 

0
0

 (2.1.18) 

∂
∂

 (2.1.19) 

. (2.1.20) 
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In the following, I refer the wavefield of interest as 

where  is the counterpart of the pressure such as  or . The characteristic 

matrix  is composed of two submatrices  as follows:  

where  corresponds to  and  corresponds to . I also define  to be 

the matrix filled with zero, except , as follows:  

Then, the system equation of the acoustic wave is 

For instance, system (2.1.21a) satisfies the following: 

0 c ∙
1 0

 (2.1.21a) 

0 1
0

 (2.1.21b) 

 (2.1.20) 

0
0  (2.1.22) 

0
0 0

 

0 0
0  

(2.1.23) 

∂
∂

 

∂
∂

 

(2.1.24) 

 

0 c ∙	
1 0

 

c ∙ , 1  

(2.1.25) 
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0 c ∙
0 0

,
0 0

1 0  

∂
∂

 

∂
∂
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2.2. Symplecticity and symplectic time integrator 

In this section, I briefly introduce the concept of symplecticity. Many 

problems in physics can be represented with Hamiltonian mechanics, which 

delineate the motion of mass via a bilinear system with respect to generalized 

coordinates and momentum. Symplecticity is an important property of 

Hamiltonian systems and indicates that the total mechanical energy in the 

system is conserved. As del Castilo and Linares (2003) confirmed, we can 

define the equivalent Hamiltonian structure for each standard acoustic wave 

equation in various physical quantities. However, (2.1.21a) is not a Hamiltonian 

system because the system is not in bilinear form;  is the scalar and  is the 

vector in 2- or 3-dimensions. Thus, in this work, I extend the definition of 

symplecticity to the multilinear map and show that (2.1.21a) is symplectic. For 

a deeper exposition, look for Goldstein (1980) and Hairer et al. (2006). 

 

2.2.1. Symplecticity of the transformation map 

Consider the system of ,  and  in , if there exist three vectors ,  

and  in  that can be defined as follows: 

A parallelepiped  spanned by the three vectors in  space is 

The volume of  in , ,  is calculated by a tensor product in Einstein 

	

	

	

,	 ,  (2.2.1) 

, ,  

0 1, 0 1, 0 1 . 
(2.2.2) 
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notation as follows: 

where is the Levi-Civita symbol, which is defined as follows: 

The essential meaning of the symplecticity of the mapping is the preservation 

of area or volume in the state space, , ,  in this case, which means that a 

linear transformation matrix :	 →  is symplectic if 

Equation (2.2.5) is reduced to a simple relation as follows: 

Although the transformation map is nonlinear, we can approximate the map by 

a locally linear map using a Taylor series, which implies that a differentiable 

function :	 →  is symplectic at , , ∈  if the Jacobian matrix 

′ is symplectic: 

This result implies that the infinitesimal parallelepiped  at , ,  

preserves the volume after the transformation. If the structure  in 

the state space where ⊂ , its volume Ω  is the integration of small 

parallelepipeds spanned by three vectors defined at , , ∈  as 

Then, the volume of the transformed structure via symplectic mapping  

, , ∶

	

	

	

 (2.2.3) 

			1
1

			0
   

if even permulation of , ,
if odd permutation of , ,
otherwise

 (2.2.4) 

, , , ,  for all , , ∈  (2.2.5) 

 (2.2.6) 

, , ′ , ,   or   (2.2.7) 

Ω ≔	 , ,  (2.2.8) 
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satisfies 

because ∘ ′ ′ and by the symplecticity condition of . 

Now, recall the acoustic system PDE (2.1.21b) and define a flow  to be 

the Jacobian matrix of the wavefield vector with respect to its initial values , 

 and  as follows: 

The system equation of  is as follows: 

which can be derived by applying the Gâteaux derivative to (2.1.21a) with 

respect to the initial values. Then, it can be shown that flow  is symplectic 

for all sufficiently small  if the flowing relation is satisfied. 

This result implies that the symplectic relation  is 

satisfied elsewhere and at any time because  is the identity matrix at 0 

Ω
∘

,
∘

,
∘

	Ω  

(2.2.9) 

 (2.2.10) 

∂
∂

0

1
0 0

1
0 0

 (2.2.11) 

	
∂
∂

 

0 

(2.2.12) 
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for any initial values in the phase space , , . 

  The symplectic condition (2.2.6) can be extended to a system of arbitrary 

dimension. In general, if a linear map :	 →  is symplectic, 

is satisfied. For instance, the two-dimensional system 

is satisfied, which proves that system (2.1.21b) is also symplectic.  

 

2.2.2. Symplectic time integrator 

A symplectic time integrator is a special time marching scheme that is only 

applicable to a symplectic system, e.g., an acoustic wave system.  

For relation (2.1.20),  is the transformation matrix of the acoustic 

wavefields, which is symplectic as shown in section 2.2.1. If we consider the 

propagation of the wavefields during a single time step , 

is satisfied, where  and  are the wavefield vectors at  and , 

respectively. We cannot apply the transformation map in the exponential matrix, 

thus, an approximate map obtained from a Taylor series is typically used. The 

first-order Taylor series of  is 

The linear formulation using map (2.2.15) is 

which is known as the explicit Euler method. This scheme is unconditionally 

unstable. The approximate map  is not symplectic, i.e. the scheme is 

… … …  (2.2.13) 

 (2.2.14) 

 (2.2.15) 

≃  (2.2.16) 

 (2.2.17) 
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not a symplectic integrator, because the transformation map (2.2.15) does not 

satisfy the symplectic condition (2.2.13). It is not a matter of the order of 

accuracy that the high-order Taylor series of  does not satisfy (2.2.13) 

either.  

Now, I consider the split operator  as follows: 

The Taylor series of the first order of each split operator leads to a linear 

formulation as follows: 

which is known as the symplectic Euler method. Although the order of accuracy 

with respect to time is the same as in the explicit Euler method, the scheme is 

conditionally stable. As we expect, the system is symplectic since the split 

operator satisfies (2.2.13).  

The characteristic feature of the symplectic Euler method is the alternate 

update of the variables, i.e., we update one variable first and then update the 

other using the updated variable. In the case of the acoustic system, the 

symplectic Euler method updates  and  alternatively by two stages as 

follows: 

 The second-order symplectic integrator, the Störmer–Verlet method, is 

generally used and approximates the transform map in three alternating stages 

as follows: 

≃  (2.2.18) 

 (2.2.19) 

 

. 
(2.2.20) 
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Then,  

or 

is satisfied. This scheme consists of three stages to march one time step, and 

this approach can easily be modified to a two-step method if the operator is 

adapted as follows: 

Then,  

is satisfied. I define the acoustic wave vector  as 

which sets the variables on the staggered grid on the time axis. Then, equation 

(2.2.25) is 

or 

≃  (2.2.21) 

2 2
 (2.2.22) 

⁄
1
2

 

⁄  

⁄
1
2

 

(2.2.23) 

 

≃  

(2.2.24) 

 

 

(2.2.25) 

⁄
 (2.2.26) 

 (2.2.27) 
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Yosida (1990) suggested methodology to approximate the symplectic map 

 in the general order of accuracy as follows: 

where ∑ ∑ 1. The coefficients  and  are determined by 

applying the BCH formula repeatedly to build higher-order symplectic schemes 

using the coefficients of the lower-order method. However, it is not unique in 

determining the coefficients of the scheme, particularly for higher orders. As 

confirmed in Table 2.1, several different ways to approximate the symplectic 

map in third-order accuracy have been suggested. 

The symplectic time integrator mentioned above requires multiple stages to 

update one time step. For instance, the third order of the accurate symplectic 

integrator discovered by Ruth (1983) approximates the transform map in six 

separate stages as follows: 

This approach is relatively cumbersome to implement and is inflexible when 

one is attempting to alter the order of accuracy of the scheme because it is 

impossible to find any rule of the composition and order of the coefficients 

between each scheme in different orders. 

In the next section, I suggest a symplectic time integrator that is governed by 

a simple and consistent rule to arbitrarily increase the order of accuracy in time. 

 

 

 

 (2.2.28) 

≃ ∏  (2.2.29) 

≃  (2.2.30) 
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2.3. Arbitrary-order symplectic time integrator 

In this section, an arbitrary-order symplectic time operator is suggested. 

Consider the Taylor series of vector  at /2  and /2  with 

respect to  as follows: 

If we subtract the two equations, we obtain the expression of ⁄  as 

follows: 

We can obtain a similar equation of  by the Taylor series of vector  at 

 and  with respect to /2 as follows: 

For (2.3.2) and (2.3.3), high-order time derivatives of  and  are required to 

update the variables. By replacing the time derivatives with the spatial ones, we 

can easily implement the high-order time marching scheme (Lax and Wendroff 

1960). Via (2.1.19), we obtain the relation between the time and spatial 

differential operators: 

/ 2 8 48
⋯

! 2
⋯ 

/ 2 8 48
⋯

! 2

⋯ 

(2.3.1) 

/ / 24 1920
⋯

2
2 1 ! 2

⋯ 

(2.3.2) 

24 1920
⋯

2
2 1 ! 2

⋯ 

(2.3.3) 
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The power of the characteristic matrix  is 

 and 	  are equivalent in block structure, which enables the time 

marching scheme to retain the alternating nature of variable updates mentioned 

in the previous section. Using (2.3.5), equations (2.3.2) and (2.3.3) are reduced 

as follows: 

The transformation matrix of (2.3.6) is expressed in the split form of the 

resulting operator as follows: 

where 

 (2.3.4) 

0
0  

0
0  

0
0  

⋮ 

0
0

 

(2.3.5) 

⁄ ⁄ 2
2 1 ! 2

 

2
2 1 ! 2 ⁄  

(2.3.6) 

≃  (2.3.7) 

≃ 2
2 1 ! 2

 (2.3.8) 
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Subscripts 1 and 2 are defined in the same manner as the definition of  and 

, which contains only the upper-right and lower-left submatrices, 

respectively. Then, 

is obtained. The map satisfies the symplectic condition (2.3.7), and the 

approximated transformation map can be regarded as an extension of the two-

stage Störmer–Verlet method in arbitrary order.  

  The suggested transformation operator can be calculated efficiently using the 

recurrence relation by defining  as follows: 

where 

In a similar manner, we can define  as follows: 

where 

Increasing the order of accuracy of the approximate symplectic map only 

≃ 2
2 1 ! 2

 

 (2.3.9) 

2
2 1 ! 2

 (2.3.9) 

 

	
8 2 1

, 1, 2, 3,⋯  
(2.3.10) 

2
2 1 ! 2 ⁄  (2.3.11) 

⁄  

	
8 2 1

, 1, 2, 3,⋯  
(2.3.12) 
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requires the repetitive calculation of the second-order spatial operators and 

additional memory to contain the wavefields of the previous step.  

In addition, the series of the characteristic matrix can be represented as the 

pseudo-differential operator as follows: 

Then, the transformation map is 

where subscripts 1 and 2 are defined in the same manner as the definition of 

 and , which contains only the upper-right and lower-left submatrix, 

respectively. By introducing the pseudo-differential operator we can use any 

polynomial expansion to approximate (2.3.14). For example, Tal-Ezer (1986) 

used the Jacobi-Anger expansion to approximate the matrix operator in the 

sinusoidal function 

where  is the Bessel function of the first type and  is the modified 

Chebyshev polynomial that satisfies the following recurrence formula as 

follows: 

and 

Algorithms (2.3.16) and (2.3.17) require extra memory to contain two extra 

2 1 ! 2 2
 (2.3.13) 

≃ 2	
2

2
2

 (2.3.14) 

2
2

2
 (2.3.15) 

 

4 3  
(2.3.16) 

2 2 1  (2.3.17) 
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wavefields vectors to expand. However, it is known that the convergence speed 

is much faster than the Taylor expansion, and a lower value of  is required to 

achieve an equivalent error criterion to that of equation (2.3.8).  
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3. Analysis 
 

In this section, I analyze the stability and dispersion characteristics of the 

arbitrary-order symplectic time operator. In general, the numerical integrators 

that increase the time order of accuracy by the Lax-Wendroff method offer 

better stability properties than the normal time marching methods. I confirm 

that this finding holds true for the suggested algorithm by analyzing the 

amplification factor of the transformation map . Satisfying the 

symplecticity of the acoustic wave system suggests that the scheme is much 

more stable than explicit methods, such as the Tal-Ezer (1986) or ADER 

schemes (Dumbser et al. 2007), for the same order of accuracy in time. 

Dispersion can also be improved via arbitrary-order symplectic time operator. 

Stability is shown to be the necessary condition for modeling, while the 

dispersion criterion is a sufficient condition to achieve because the criterion of 

dispersion is always stricter than that of stability. In the following, I refer to the 

arbitrary-order symplectic time operator that expands the series  times as the 

‘ -th scheme.’ 
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3.1. Stability analysis 

In the previous section, I suggested the following time marching scheme, 

arbitrary-order symplectic time integrator formulated as equations (2.3.8) and 

(2.3.9). In this section, I analyze the stability of the method by applying the 

system of an acoustic wave (2.1.21b). The split operators are defined as follows: 

The Laplacian operator  is the spatial differential operator, which can be 

evaluated via several methods. The PS method is an accurate and simple way 

to differentiate a given function using a pair of fast Fourier transform algorithm 

applications (Trefethen 2000). The Laplacian operator is written as follows: 

where and  are the wavenumbers of the  and  directions, 

respectively. The amplification factor of the method  is equivalent to the 

eigenvalue of the transformation matrix . The 2-norm of the wavefield after 

 time steps satisfies the relation 

where  is the initial value. Thus, the following should be guaranteed for the 

stable solution: 

The determinant of the approximated transformation map is equivalent to the 

≃ 1 2
2 1 ! 2

0 1

 

≃

1 0

2
2 1 ! 2

1  

(3.1.1) 

 (3.1.2) 

‖ ‖ | | ‖ ‖ ,   1, 2 (3.1.3) 

| | 1,   1, 2 (3.1.4) 
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product of the eigenvalues of the map  

As the main property of the symplectic transformation map is the structure 

preservation, the determinant of the transformation map is equal to one. This 

fact can also be derived from the symplectic condition (2.2.13). The physical 

implication of equation (3.1.5) is that the acoustic energy in the domain is 

conserved during the time stepping, which enables stable long-term simulation. 

Not only the product of the eigenvalues but also the absolute value of each 

eigenvalue must be equal to one. As this is the only possible way for the 

eigenvalues to conjugate each other, the stability of the modeling process is 

retained under the symplectic condition. Thus, the criterion in which the 

eigenvalues are conjugate complex values is the stability criterion of the 

symplectic time integrator. For instance, if , the number of expansions of the 

pseudo-differential operator, is equal to one, the transformation map of the 

scheme is 

The determinant of the approximate map is one, as those of the split operator 

 and 	are each equal to one. Two conjugate eigenvalues of (3.1.6) 

represent the function of , which is proportional to the CFL number 

To satisfy the stability condition, the value in the root should be negative to 

,
1 (3.1.5) 

1 0

24
1

1
24

0 1
 (3.1.6) 

,
1

1152
1152 576 48

1327104 1152 24  

(3.1.7) 
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make the eigenvalues a complex numbers. Then, the stability of the scheme is 

guaranteed if | | 5.694644204.  

The conventional Störmer–Verlet method, the 0th scheme, has a stability 

criterion of | | 2. In general, the stability criterion becomes larger as the 

order of accuracy of the scheme increases, which is called the CFL relaxation. 

This fact implies that a larger time step can be allowed for a scheme of a higher 

order of accuracy. The circle markers in Figure 3.1 represent the maximum  

of the arbitrary-order symplectic time integrator with respect to , which 

broadly tends to increase with the number of expansion . Because the 

eigenvalues are approximated with the high-order polynomial, the effect of 

nonlinearity occurs at some  in which the stability criterion shrinks despite 

the increase in .  

To confirm the effect of symplecticity, I conduct the same analysis for the 

numerical method with the non-symplectic time marching scheme, which can 

be derived by the Lax-Wendroff expansion of the central difference method as 

follows: 

where 

The order of accuracy in time and required computational costs of the scheme 

(3.1.8) are equivalent to those of the symplectic scheme of the given . The 

amplification factor  of system (3.1.8) is: 

2  (3.1.8) 

2 1 ! 2
 (3.1.9) 
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where  is the eigenvalue of . It is well known that the scheme is stable 

when | | 1. As  is the function of , the stability criterion can also be 

represented with respect to the variable. The square markers in Figure 3.1 

shows the stability criterion of the non-symplectic scheme with respect to . 

The allowed maximum  tends to increase with  despite some oscillations 

due to the nonlinearity of the eigenvalue. However the symplectic scheme has 

a stability region that is as much as twice as large as that of the non-symplectic 

method (3.1.8), which means that a much larger time step can be allowed for 

the symplectic time integrator which leads to the instability of the non-

symplectic method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 , 1, 2 (3.1.10) 
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3.2. Dispersion analysis 

In this section, I conduct a dispersion analysis of the suggested scheme. The 

acoustic wave solution at  can be represented by separating the spatial and 

temporal variables as follows: 

Then, the solution at ∆  can be written as 

which is equivalent to the extrapolation of the solution at  with ∆  at the 

entire domain of interest as follows: 

If we recall the time-stepping algorithm (2.3.9), the eigenvalue of the system 

 acts as the analytic time extrapolation factor ∆ , the complex number 

that has a unit length as noted in the previous section. The exact change of phase 

of the wave solutions during ∆  is ∆ , which we pursue by expanding the 

operator  with the Lax-Wendroff or Jacobi-Anger expansion. We 

find that the angular frequency of the acoustic wave  can be approximated 

by ′, and the phase change of the wavefield by the numerical modeling is 

′∆ . The following is an argument of  

where ′ is the approximated angular frequency 

̂ ,
,

 (3.2.1) 

,
,

∆  (3.2.2) 

∆ =  (3.2.3) 

∆ ≃ ′∆ tan  (3.2.4) 

′
1
∆
tan  (3.2.5) 
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The phase velocity is derived as follows: 

The phase velocity is typically normalized by the real velocity value as follows: 

In the ideal case, the normalized phase velocity is one, which means that there 

is no error between the analytic phase change and that of the numerical 

calculation result during ∆ . The eigenvalue is a function of , i.e., ∆ , as 

shown in the previous section. If the grid size in each spatial direction is 

equivalent,  can be rewritten as 

where  is the wavelength,  is the grid size,  is the CFL number, and  

is the number of grids per wavelength. Then, the normalized phase velocity can 

be represented as a function of  and  as follows: 

Figure 3.2 shows the normalized phase velocity error, 1, of the zeroth, 

first, second, and third schemes with respect to 1/  for several  values 

below 1.25. The normalized phase velocity error decreases dramatically as the 

order of the scheme increases. The error is almost negligible for the second and 

third schemes with low  values of 0.25 or 0.5, even for the Nyquist sampling 

rate in the spatial domain, i.e., 1/  is 0.5. This means the simulation under 

′ 1
∆
tan  (3.2.6) 

1
tan  (3.2.7) 

∆
2

∆
2 ∆ 2

 (3.2.8) 

2
tan

2

2
 (3.2.9) 
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the condition yields a wavefield almost identical to the analytically derived 

solution, which might be deemed as the method with spectral accuracy. A 

deeper analysis of the spectral accuracy is presented in section 3.1.4. 

The group velocity of the wave denotes the velocity of the wave packet or 

envelope of the wave propagating in the media. It is derived by differentiating 

the approximated angular frequency with wavenumber  as follows: 

Then, the normalized group velocity is also derived as follows: 

Because the  is a function of , (3.2.10) can be represented as follows: 

which can also be rewritten as a function of  and  using equation (3.2.8). 

Figure 3.3 presents the normalized group velocity error, 1, of the 

zeroth, first, second, and third schemes, with respect to 1/  for the same set 

of  as Figure 3.3. The normalized group velocity error is confirmed to be 

larger than that of the normalized phase velocity. However, the scale of the error 

is almost equivalent to that of the phase velocity, which can be regarded as 

negligible for the second or third schemes. In the previous section, it was 

confirmed that the stability criterion is relaxed as the order of the scheme 

increases, and much larger  values can be used. Figure 3.4 and Figure 3.5 

show the normalized phase and group velocity errors for  inside the stability 

′ 1
∆

tan  (3.2.10) 

1
∆

tan  (3.2.11) 

tan  (3.2.12) 
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criterion delineated in Figure 3.1. The error curves show that the error increases 

sharply as  approaches the stability criterion. 
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3.3. Phase analysis 

  In this section, I conduct a phase error analysis of the suggested time 

marching scheme. The objective of the analysis is not different from that of the 

dispersion or group velocity error analysis. The point of this section is to 

estimate the error of the numerical modeling with respect to the phase of the 

wavefield and then determine the time step length and the number of time steps 

satisfying the phase error criterion. 

Again, I start the analysis from the eigenvalue of the approximated 

transformation matrix, . As noted in section 3.1, each eigenvalue of the 

symplectic map has a unit length due to its condition (2.2.13), which means that 

the symplectic scheme is free from dissipation error. Thus, it is sufficient to 

analyze the phase error. Recall the relation of the change of phase and  

For example, recall the eigenvalues of the symplectic map of the first scheme  

The phase change after one time step ∆  equals  as , and the 

phase shift of the numerical scheme is approximated as follows: 

The arctangent function can be rewritten as a polynomial series by Taylor series 

∆ ≃ ′∆ tan  (3.3.1) 

,
1

1152
1152 576 48

	 1327104 1152 24  

(3.3.2) 

≃ tan
1152 576 48

1327104 1152 24

 (3.3.3) 
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expansion as follows: 

Equation (3.3.4) indicates that the phase change error per time step ∆  is 

/120 and the total phase change error  after  is calculated as follows: 

The error depends on , and the maximum error ∆  occurs at higher 

wavenumbers as follows: 

If  at , the phase of the wavefield is opposite the analytic 

wavefield. Thus, it is reasonable to set  to be less than . Once  

is set, the following inequality is expected to be satisfied 

In addition, , the minimum number of time steps to reach , is derived using 

the relation ∆ /   

tan
1152 576 48

1327104 1152 24

≃
1920

 

(3.3.4) 

∆
∆

∆ 1920 120
∆ ∆  (3.3.5) 

1920
∆

1
1920

∆
1
∆

1
∆

∆  

(3.3.6) 

1
1920

∆
1
∆

1
∆

 (3.3.7) 
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For instance, if we perform the modeling until 10  using the third scheme 

in the computational domain of the grid size of each dimension with ∆

∆ 10  and the maximum p-wave velocity of the model is 5 / ,  

should be larger than 10750 so that the  is less than /10. Then, ∆  

needs to be smaller than 0.9 .  

The total phase change error of the arbitrary -th scheme after  is also 

calculated as follows: 

and the minimum time step  necessary for the phase change error of the  

wavefield at  to be less than  is 

It is natural that ∆  is proportional to the normalized phase velocity error 

addressed in the previous section, and this methodology enables the design of 

the optimal modeling configuration under the given circumstances. The total 

computational cost depends on the total number of multiplications of the 

symplectic map , which can be derived by equation (3.3.8) as follows: 

Note that  decreases as the expansion number  increases if  is 

1920
1
∆

1
∆

 (3.3.8) 

∆ 4 2 3 !
∆  (3.3.7) 

4 2 3 !
1
∆

1
∆

, 0, 1, 2 … (3.3.8) 

2 1
4 2 3 !

1
∆

1
∆

 (3.3.9) 
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sufficiently large. This implies that if we wish to obtain accurate wavefields 

with high resolution, it is more effective to conduct numerical simulation using 

a higher-order scheme with a larger time step length than that using a lower-

order scheme with small time steps. For instance, if c 5km/s, ∆

∆ 0.01 km, 20 s and 0.01 , then 4.4 10  and 

 with respect to  decreases rapidly to a certain level as illustrated in 

Figure 3.6, which supports the implication of equation (3.3.9).  and ∆  can 

also be calculated using equation (3.3.8) and dividing  by  with respect to 

. Figure 3.7 represents the ∆  under the modeling conditions above and it 

shows that 0.01 is an excessively strict tolerance because the order 

of ∆  is 10 s, i.e., 0.001ms, for the zeroth scheme and 10 s, i.e., 0.1ms, 

for the second to fourth schemes. Then, we can calculate  under the given 

condition (Figure 3.8) which enables us to estimate the error between the 

analytic eigenvalue and that of the approximate transformation matrix. Table 

3.1 shows that the length of the eigenvalue error remains under the order of 

10  for each  from zero to thirty, which indicates that the simulation is 

sufficiently accurate if  is confined to less than 0.01. 

In addition, the non-symplectic time discretization method expressed as 

equation (3.1.8) is also analyzed to compare the computational efficiency in 

terms of  and ∆ . The total phase change error of the arbitrary -th 

scheme after  of equation (3.1.8) is also calculated as follows: 

Then, the minimum number of time steps  necessary for  to be less than 

∆ 2 3 !
∆  (3.3.10) 
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 is 

From equation (3.3.11), it is possible to determine the ∆  under the given 

restriction. The total number of multiplications of the characteristic matrix 

 for equation (3.1.8) is 

Figure 3.9 illustrates ∆  with respect to the expansion number  for the non-

symplectic scheme as equation (3.1.8) (purple square markers) with that of the 

arbitrary-order symplectic time operator (blue circle markers), which satisfies 

 to be less than 0.01 under the modeling geometries of c 5km/s, 

∆ ∆ 0.01km, and 20s. ∆  for the non-symplectic scheme is half 

of that of the arbitrary-order symplectic time integrator;  of the non-

symplectic scheme is exactly twice that of the symplectic scheme as shown in 

Figure 3.10. The results imply that considering symplecticity can considerably 

improve both the dispersion characteristic and the stability (Figure 3.1) under 

equivalent modeling conditions. 

 

  

2 3 !
1
∆

1
∆

, 0, 1, 2 … (3.3.11) 

2 1
2 3 !

1
∆

1
∆

 (3.3.12) 
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3.4. Spectral accuracy and compromise 

The objective of this section is to suggest a strategy to attain not only high 

accuracy but also efficiency using the arbitrary-order symplectic time integrator. 

If the result of numerical simulation achieves spectral accuracy, then the 

numerical solution is highly accurate for both the spatial and temporal 

dimensions such that the wavefields in the spectral domain almost correspond 

to the theoretical solution. Because I use the PS method, any spatial errors arise 

not from the discretization of the computational domain, but instead from the 

time marching. Thus, spectral accuracy can be easily achieved using the 

arbitrary-order symplectic time integrator merely by increasing the order of 

accuracy in the time domain, as shown in Figure 3.2. As noted in section 2.3, 

the approximated symplectic map can be represented as equation (2.3.14), 

which is expanded recursively by the Jacobi-Anger expansion, the series of the 

product of the Bessel function of the first type  and the modified 

Chebyshev function  formulated as equation (2.3.15). Tal-Ezer (1986) 

noted that the series converges to be negligible and the asymptotic behavior of 

the numerical result starts from ; the number of expansions of the map reaches 

. This implies that the numerical simulation result can be regarded 

as within spectral accuracy if the number of the series expansion  satisfies  

This criterion holds true for the Taylor series expansion such that the phase 

error of the scheme converges to zero at . Accurate as the result may be, 

a high computational cost is incurred when expanding the series. The 

eigenvalue error is negligibly small for any  under the modeling condition of 

 (3.4.2) 



 

 57

c 5km/s, ∆ ∆ 0.01km, and 20s, which is represented by 

Table 3.2. The phase error per time step, i.e., ∆  can also be calculated, which 

has the equivalent order to the eigenvalue error as shown by Table 3.3. ∆  

approaches zero as  increases; the order of ∆  is 10 , which means that 

the simulation results are excessively accurate in that the maximum phase error 

theoretically reaches one percent after 10  time steps. Thus, a tradeoff 

technique is required to ensure the efficiency of the modeling. 

In section 3.3, I quantified the phase change error of the numerical result with 

respect to modeling configurations, i.e. p-wave velocity, grid length, and factors 

needed to be designed such as the number of expansion  and tolerance of 

phase change error ∆  and recording time . In general, as the number of total 

time steps is larger than 10000, it is reasonable to set ∆  to be less than 0.0001 

for the total phase error to be less than 1. Then, we can find the minimum  

that satisfies 

for each scheme. Alternatively, merely finding , the minimum  that 

satisfies 

produces almost equivalent results. Figure 3.11, 3.12, 3.13 and 3.14 depict 

curves of cos , Re  and its difference of even-order schemes from 

zero to fourteenth. Re  approaches cos  for large , which means 

that the scheme yields accurate solutions for larger time steps as the order of 

the scheme increases. Figure 3.15 illustrates  for each scheme from the 

|∆ | cos Re cos cos 10  (3.4.3) 

|∆Re | Re cos 10  (3.4.4) 
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zeroth to thirtieth by the purple square marker. The relation of  and  

satisfying the spectral accuracy is plotted with the olive diamond marker. Figure 

3.15 convinces us that the strategy that follows the compromised method can 

reduce the computational costs of performing the simulation because the 

required number of expansions is smaller than that of the scheme that follows 

equation (3.4.2). For instance, if the maximum  calculated by the modeling 

geometry is 20,  should be 20 to achieve spectral accuracy, but should be 16 

according to the blue marker that ensures that ∆  is less than 10 . 

In addition,  can be rewritten by the modeling geometries as follows: 

Then, the total number of time steps is 

The total number of matrix multiplications can be written as follows: 

Figure 3.16(a) illustrates , i.e., computational cost, with respect to  

from zero to thirty, which is normalized by the  of the zeroth scheme. 

The figure shows that it is more effective to perform numerical simulation using 

a higher-order scheme with a larger time step length, as noted in the previous 

section. Figure 3.16(b) represents the inverse of the normalized , i.e., 

computational speed. This implies that numerical simulation using higher-order 

schemes increases the speed by almost 4.5 times faster compared with the speed 

using zeroth order with small a time stride length.   

∆  (3.4.5) 

 (3.4.6) 

2 1  (3.4.7) 
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3.5. Source wavelet issue 

These long, representative characteristics of the arbitrary-order symplectic 

time integrator are analyzed using the initial value problem of the PDE. In this 

section, I discuss important issues regarding the effects of the source wavelet 

on modeling configuration designs, i.e., grid size, time step length, and the 

order of the scheme. 

In fact, the conventional method to impose the source wavelet is imperfect. 

If we consider the inhomogeneous solution of the acoustic wave equation  

where  is the input vector, i.e., a source wavelet, then the analytic solution is 

represented as follows: 

If the simulation is started from the state of tranquility, the convolutional term 

is the solution of the system. However, the convolutional term is cumbersome 

to calculate, and only a single source problem can be solved by this expression, 

which cannot be applied to the adjoint modeling process in the majority of 

applications, such as imaging or inverse problems. To solve this problem, 

Pestana and Stoffa (2010) convert the source problem to the discretized initial 

value problems with impulsive source signals at the source points. This 

approach requires the time step length to be confined to a certain level. In 

addition, the source wavelet is the design factor for controlling the resolution 

of the image via RTM. Thus, fine discretization on the time axis is required to 

guarantee high-resolution results, which may devalue the main advantage of the 

∂
∂

 (3.5.1) 

∗  (3.5.2) 
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suggested scheme that allow a large time step length.  

As explained in the previous section, the quality of the modeling result is 

controlled by the number of expansions  to the given phase change per time 

step  of the modeling geometry. Thus, we first need to determine maximum 

 that is produced. When we set the maximum frequency component of the 

source wavelet as the Nyquist frequency, , the maximum allowable time 

step length ∆  is 

Otherwise, the modeling result is inaccurate due to aliasing, which may reduce 

the effectiveness of the scheme. ∆  is not a sufficient condition but is a 

necessary condition for the reliable result of the source problem. This implies 

that the result can be inaccurate under certain modeling conditions, such as high 

p-wave velocity models. 

The next thing to consider is the determination of , which is the number of 

expansions of the symplectic map to satisfy a level of quality that we set. The 

describable maximum  depends on the grid sizes as follows: 

where  and  are the grid size of the computational domain. Thus, the 

maximum  is written as follows: 

Then, it is possible to determine  as the nearest large integer of  to 

∆
1

2
 (3.5.3) 

, ,
1 1

 (3.5.4) 

∆
2

1 1
 (3.5.5) 
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ensure the spectral accuracy or corresponding value to achieve ∆ ≃ 10  

using the relation illustrated in Figure 3.15. 

In addition, it is necessary to design the maximum grid size  of the domain 

to avoid degrading the result of the modeling. The acoustic wavefield at any 

position is governed by the dispersion relation as follows: 

where  is the angular frequency of the wavefield. If the wave is generated by 

external sources imposed on the media, the frequency of the wave depends on 

that of the wavelet of the source imposed on the isotropic media without 

dispersion or dissipation. Then, the maximum wavenumber due to the source 

signature is  

which should be equal to or less than . Then, the grid size should satisfy 

if .  

  

 (3.5.6) 

2
 (3.5.7) 

√2
 (3.5.8) 
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4. Numerical Examples 

In this section, numerical examples of the arbitrary-order symplectic time 

integrator are presented to verify the properties of the schemes explained in the 

analysis section. First, the numerical results of the initial value problem in 

homogeneous media are introduced with the periodic boundary condition 

naturally imposed on the PS method using the fast Fourier transform to 

calculate spatial differentiation terms. Several time steps are used to confirm 

the relaxation nature of the scheme this is of a high order in time. The accuracy 

of each result is compared to the analytic solution of the initial value problem. 

Next, source problems are dealt with separately. In this case, the pretty good 

sponge boundary invented by Lavelle and Thacker (2007) is applied.  
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4.1. Initial value problems 

4.1.1. Homogeneous model 

The initial value problem is conducted using a 4 4 	km2 computational 

domain composed of 512 equally spaced grid points with a grid length of 

0.2454 km for each spatial dimension. I use the p-wave velocity model with a 

homogeneous 5 km/s to make the modeling geometry sufficiently severe for  

to be large. For the initial value, I impose a Gaussian profile of , where 

 equals 80 and  is the distance from the center of the computational domain. 

For the numerical simulation, four different ∆  values are used (1 ms, 10 ms, 

20 ms, and 40 ms) to yield an acoustic wavefield over 20 s. Table 4.1 represents 

the maximum , the order of the scheme required by  to maintain the phase 

error within 10 , the number of total time steps , and the number of total 

multiplication steps of the characteristic matrix  for each case of ∆ . As 

 increases with ∆ , a higher-order scheme is required to accommodate . As 

we know the total number of time steps, we can calculate the total number of 

matrix multiplication steps. We can confirm that the scheme using a higher 

order with large ∆  is more efficient in terms of . The computational cost 

of wave simulation with 4ms is less than a quarter of that with 1 . Although 

the ratio of the total number of operator multiplication steps approaches one, 

which implies that the efficiency of modeling is not improved dramatically as 

∆  or  increases,  decreases at all events. The wavefield at 5 s, 10 s, 

15 s and 20 s is illustrated in Figure 4.1(b), 4.2(b), 4.3(b) and 4.4(b), 

respectively, with results of different ∆  values shown at each quadrant. These 
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figures can be compared to the analytic wavefield solution at the same point 

depicted in Figure 4.1(a), 4.2(a), 4.3(a) and 4.4(a), respectively. The wavefield 

results are notably equivalent to the analytic solutions in terms of the scale and 

location of the events. The L2 error of the wavefield is calculated at the time 

points as shown in Table 4.2; the error is negligibly small. It is also confirmed 

that phase lead or lag does not occur even for the result of a large time step of 

20 ms at 20 s. This finding is also shown by the time traces illustrated in Figure 

4.5, 4.6, 4.7 and 4.8 and at four different receiver positions at (0.074, 0.049), 

(2.352, 0.049), (3.92, 0.049) and (5.488, 0.049), respectively. The figures show 

that the events are synchronized without any dispersive errors separated from 

the main events. 

 

4.1.2. Synthetic heterogeneous model: Marmousi-2 

Numerical simulation of the acoustic wavefield in the heterogeneous model 

is now performed. The purpose of this test is to confirm the feasibility of the 

scheme for the transformation map of heterogeneous media. The Marmousi-2 

model is used for the simulation, which is illustrated in Figure 4.9. The model 

is 17 km long and 3.5 km deep with a grid size of 12.5 m. The maximum and 

minimum p-wave velocities are 4.7 km/s and 1.028 km/s, respectively. The 

Gaussian profile , where  equals 80 and  is the distance from the 

center of the computational domain, is imposed as the initial value. Similarly, 

for the initial value problem of the homogeneous model, 1 ms, 10 ms, 20 ms 

and 40 ms are used as the time step lengths. The  for each ∆  and  

required to achieve a phase change error per time step less than 10  is shown 
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in Table 4.3. The total number of operator multiplications decreases as expected. 

Time traces are recorded at the four receiver points, (1.0625, 0.025), (3.1875, 

0.025), (5.3125, 0.025) and (7.4375, 0.025); Figure 4.10, 4.11, 4.12, and 4.13 

illustrate the traces at each receiver. Again, the figures show that all events are 

synchronized without any dispersive errors separated from the main events. 
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Table 4.1 The phase change per time step , required , total number of time steps 

and total number of multiplications of the operator with respect to each time step 

length of the simulation using a homogeneous model with a 24.5m grid space. 

 
∆  1ms 10ms 20ms 40ms 

 0.905 9.051 18.102 36.204 

 2 8 14 27 

 20000 2000 1000 500 

 100000 34000 29000 28000 

CPU time (s) 5829.62 2097.18 1786.56 1667.06 
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Table 4.2 L2 norm of the error of the wavefield at 5 s, 10 s, 15 s and 20 s. 
 

∆  5 s 10 s 15 s 20 s 
L2 error (1ms) 6.81e-8 9.55e-8 1.14e-7 1.30e-7 

L2 error (10ms) 2.19e-9 9.09e-13 2.36e-10 2.24e-9 

L2 error (20ms) 1.19e-9 4.03e-10 8.72e-10 8.15e-10 

L2 error (40ms) 6.71e-10 7.13e-10 2.28e-9 3.60e-9 
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Table 4.3 The phase change per time step , required , total number of time steps 

and total number of multiplications of the operator with respect to each time step 

length of the simulation using the Marmousi2 model with a 12.5m grid space. 

 
∆  1ms 10ms 20ms 40ms 

 1.671 16.705 33.411 66.822 

 8 14 25 49 

 20000 2000 1000 500 

 340000 58000 51000 49500 

CPU time (s) 37416.59 5748.11 5044.08 5029.57 
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4.2. Source problems 

4.2.1. Homogeneous model 

As mentioned in section 3.5, there is a limitation on the time step length 

because the wavefield should cover the maximum frequency of the designed or 

real source signal. Thus, a dramatically large time step length cannot be used. 

The size of the velocity model is equivalent to the model utilized in section 

4.1.1, and the velocity is a homogeneous 1 km/s elsewhere. A Ricker wavelet 

1 2 , where  is used as a source wavelet 

with 10 Hz and 1.00, as illustrated in Figure 4.14(a). Figure 4.14(b) 

shows that the most energetic frequency component is 10 Hz and that the 

frequency band of the wavelet is confined within approximately 30 Hz. Thus, 

it is reasonable to set  as 30 Hz, and ∆  (to satisfy that  is the 

Nyquist frequency) is 16.667 ms. For the numerical simulation, 1ms, 10ms and 

∆  are used. To ensure that the wavefield is smooth, the source is 

distributed in the Gaussian profile , . Table 4.4 

shows that the computational cost reduces as ∆  increases, which is in 

accordance with . Figure 4.15 illustrates the combined seismogram of 

each time step length recorded by the line receivers located horizontally at a 

depth of . The seismogram shows that three results are in agreement in terms 

of the scale and location of the event. To precisely visualize the results, traces 

recorded at (3.1415, 3.1415), (4.7124, 3.1415) and (6.2832, 3.1415) are plotted 

in Figure 4.21. The traces of each time step length are confirmed to be 

equivalent. What if a ∆  value larger than ∆  is used? In fact, a time step 
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length slightly longer than ∆  has little effect, as the energy of the source 

near 30 Hz is relatively small. However, an effectively larger ∆  deteriorates 

the solution, causing the aliasing depicted in Figure 4.17 when ∆  is 50 ms. 

Figure 4.18 illustrates the traces at the three receivers at the same location, and 

the effect of aliasing is clearly shown in the form of oscillations after the event 

has passed. Figure 4.19 shows the spectral energy distribution of each trace for 

different time steps. Although 20 ms and 25 ms are larger than ∆  and the 

describable frequencies are 25 Hz and 20 Hz, which are less than 30 Hz, the 

effect on the simulation is negligible, as seen in the spectral distribution, and 

the result of 50 ms is substantially inaccurate. 

 

4.2.2. Synthetic heterogeneous model: Marmousi-2 

  For numerical modeling with the synthetic model, the Marmousi2 model is 

used in section 4.1.2. An equivalent source wavelet is applied with the source 

distribution in the Gaussian profile , , where  is the distance 

from the center of the computational domain. As the equivalent source wavelet 

is used, the same set of time step lengths are applied to the computational 

modeling as 1ms, 10ms and ∆  16.667 ms. Similar to the previous cases, 

the computational cost and time decrease as ∆  as shown in Table 4.5. Figure 

4.20 shows the combined seismogram of each time step length and indicates 

that the kinematics are in agreement. For a detailed comparison, time traces 

recorded at (3.75, 0.875), (5.00, 0.875) and (6.25, 0.875) (referred to as the 

receivers 1, 2 and 3) are plotted in Figure 4.21. Early arrivals are almost 

equivalent irrespective of the step lengths, while some misfits are found after a 
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few seconds. It is strikingly revealed in Figure 4.21(b) and (c) that the results 

of 1 ms and 10 ms have smaller amplitudes at 1.5 s and 1.7 s than those of 

∆ . Figure 4.22 depicts the spectral energy distribution of the traces at three 

receivers; the small misfit in the time trace affects the mid-range of the 

spectrum from 10 Hz to 20 Hz. These disparities are caused by the effectiveness 

of the absorbing boundary condition such that the larger time step modeling 

dampen the solution in the absorbing layer less because of the small number of 

large time steps used to apply the exponential damping. To verify the effect, 

simulation was conducted under the same conditions but without the absorbing 

layer. Figure 4.23 illustrates the combined seismograms of each time step 

length. The time traces are similar to one another at each receiver, as shown in 

Figure 4.24, and the spectral energy distribution illustrated in Figure 4.25 of the 

traces at each receiver confirm this finding. Some misfits of the traces at the 

extremum points in Figure 4.24 and the slight offsets in the high-frequency 

region in Figure 4.25 stem from the large time sampling rate and the sparse 

source wavelet signal because of it. In any case, an effective absorbing 

boundary for large time strides is required for more accurate modeling of the 

acoustic wavefield. 
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Table 4.4 The phase change per time step , required , total number of time steps 

and total number of multiplications of the operator with respect to each time step 

length of the simulation using a homogeneous model with a 24.5m grid space. 

 
∆  1ms 10ms 16.67ms 

 0.181 1.813 3.017 

 1 3 4 
 8500 850 510 

25500 5950 4590 

CPU Time (s) 1358.88 324.08 272.53 
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 Figure 4.15 Combination of seismograms of each time step 

length. 
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 Figure 4.17 Seismogram of the modeling using a homogeneous 

velocity model using a time step length of ∆ . 
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(a) 

 
(b) 

 
(c) 

 Figure 4.19 Spectral energy distribution of the traces at receivers 1 (a), 2 (b) and 

3 (c) of each time step length. 
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Table 4.5 The phase change per time step , required , total number of time steps 

and total number of multiplications of the operator with respect to each time step 

length of the simulation using the Marmousi2 model with a 12.5m grid space. 

 
∆  1ms 10ms 16.67ms 

 1.671 16.705 27.842 

 8 14 21 
 5000 500 300 

85000 14500 12900 

CPU Time (s) 8332.45 1488.29 1312.90 
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 Figure 4.20 Combination of seismograms of each time step 

length. 
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(a) 

 
(b) 

 
(c) 

 Figure 4.21 Traces at receivers 1 (a), 2 (b) and 3 (c) of each time step length. 
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(a) 

 
(b) 

 
(c) 

 Figure 4.22 Spectral energy distribution of the traces at receivers 1 (a), 2 (b) and 

3 (c) of each time step length. 
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 Figure 4.23 Combination of seismograms of each time step 

length. The absorbing boundary condition is not applied.  

 

 

 

 

 

 

 

 



 

 105

 

  

 

 
(a) 

 
(b) 

 
(c) 

 Figure 4.24 Traces at receivers 1 (a), 2 (b) and 3 (c) of each time step length. The 

absorbing boundary condition is not applied. 
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(a) 

 
(b) 

 
(c) 

 Figure 4.25 Spectral energy distribution of the traces at receivers 1 (a), 2 (b) and 

3 (c) of each time step length. The absorbing boundary condition is not applied. 
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4.3. Discussion on factors debasing the accuracy 

These long, numerical results of the initial value and source problems are 

presented. As illustrated in section 4.1, accurate results can be calculated by the 

arbitrary-order symplectic time integrator. However, some issues are found 

from the results of the source problems. First, sponge boundary layers do not 

work well under certain modeling conditions. The only remedy for this problem 

is to use thicker absorbing layers unless a more effective absorbing boundary is 

imposed, such as the perfectly matched layer (PML). However, by numerous 

simulations, I concluded that the PML does not fit to the PS method with a large 

time step length because of the unstable nature of the system defined in the 

PML, which can be found in the appendix section. 

The second problem is the misfit of the acoustic wave signals. This problem 

appears in two major ways: the amplitude errors at the extremum points as 

shown in the previous section and the aliasing of the signal. To examine the 

causes of the problem, several source problems are performed under the 

equivalent modeling conditions of section 4.2.1 except p-wave velocity; four 

different values from 2 to 5 are used. Figure 4.26 illustrates the traces of each 

time step length recorded at (4.7124, 3.1415). It is clear that there can be 

substantive relationships between the accuracy of the source problem and ∆  

and p-wave velocity; the figure shows that as ∆  and p-wave velocity increase, 

spiky signals are obtained and aliasing even occurs for the velocity of the model 

higher than 3 km/s even ∆  satisfies the Nyquist sampling theory. Such 

errors on traces are clearly noted for the results of ∆  at the region over 

8Hz as illustrated in Figure 4.27. In my experience, 10 ms is appropriate for the 
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source problem when imposing the wavelet with maximum frequency of 30 Hz 

for the simulation with the realistic velocity model found in nature. In general, 

30 Hz covers the band of interests for the inverse problems, such as tomography 

or FWI. Thus, it is reasonable to set ∆  equal to or less than 10 ms to guarantee 

the accuracy of the result. Then, what of the high-resolution image via RTM? 

In fact, amplitude error does not affect the quality of the migration image at all; 

such a sharpened signal without a severe phase shift increases the definition of 

the reflectors. However, aliasing should be avoided such that a fluctuating 

signal lagging the event significantly deteriorates the resolution of the image. I 

presume that the sparsity of the source wavelet due to a large time step, as 

shown in Figure 4.28(b) and (c), causes the spiky results. Then, it would be 

helpful to select ∆  less than ∆  if there are high-velocity structures at 

the locations of the sources. In my experience, two-thirds of ∆  would be 

sufficient; however, more consideration is required to determine the appropriate 

∆  for given modeling conditions. 
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(a) 

 
(b) 

 
(c) 

 

 
 (d) 

 Figure 4.26 Time traces of each time step length recorded at (4.7124, 3.1415) in the 

homogeneous model of 2 km/s (a), 3 km/s (b), 4 km/s (c) and 5 km/s (d). 
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(a) 

 
(b) 

 
(c) 

 

 
 (d) 

 Figure 4.27 Spectral energy distribution of the time traces of each time 

step length recorded at (4.7124, 3.1415) in the homogeneous model of 2 

km/s (a), 3 km/s (b), 4 km/s (c) and 5 km/s (d). 
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(a) 

 
(b) 

 
(c) 

 Figure 4.28 Ricker wavelet when the time step length is 1 ms (a), 10 ms (b) and 

∆ . 
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5. Conclusions 

An arbitrary-order symplectic time operator is a useful scheme to simulate 

the acoustic wave equation, which intrinsically satisfies the symplecticity 

condition irrespective of the variables representing the system PDE. The order 

of accuracy of the suggested scheme can be increased recursively such that the 

quality of the result can be easily controlled by the simple choice of the 

expansion number of the transformation matrix for the given modeling 

geometries.  

The representative characteristics of the arbitrary-order symplectic time 

operator, such as stability, dispersive characteristic and cumulative phase error, 

are analyzed by solving the eigenvalue problems of the approximate symplectic 

map of each expansion order. A non-symplectic time discretization method that 

has the equivalent computational cost per time step to the suggested scheme is 

also analyzed to compare the effect of symplecticity. The stability criterion and 

the allowed time step length to obey the given error restriction are twice when 

considering the property. This enables the computational cost of the suggested 

method to be reduced as much as half compared with the scheme not 

considering symplecticity. A strategy to select the number of the expansion of 
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the symplectic map is suggested that is based on the similarity of an actual 

eigenvalue and that of the approximate matrix; the suggested strategy is more 

effective in terms of quality and computational cost when the allowed 

maximum time step length is applied. 

The numerical simulation results provide evidence that precise modeling is 

possible using the arbitrary-order symplectic time operator with a large time 

step length. However, several issues are found when the scheme is applied to 

the source problem because of the intrinsic limitation on the time discretized 

solution of a source problem. Thus, numerical results are inaccurate when 

performing a simulation with a large time step length when the source is 

imposed at high velocity region. In addition, a large time step length or high p-

wave model causes the acoustic wave to pass the absorbing boundary layer that 

is not dampened sufficiently. A practical remedy for these problems is to use a 

thicker boundary condition or reduce the time stride. Spiky events due to the 

sparse sampling of the source wavelet do not affect the quality of RTM results. 

However, aliasing should be avoided by reducing the time step length; two-

thirds of the maximum value is recommended based on my experience. 

The arbitrary-order symplectic time integrator can be applied to practical 

problems, i.e., the high-resolution imaging via RTM or FWI of multicomponent 

data. Other types of problems, such as elastodynamics or electromagnetics, are 

also Hamiltonian systems; the suggested scheme can be extended to those fields 

in future works. Although the PS method is used to differentiate the variable, it 

would be meaningful to use other discretization techniques, such as finite 

difference or finite element methods, which remains for future works. In this 



 

 114

case, the scheme’s characteristics are expected to be considerably different from 

the analysis results of this study because of the effect of spatial dispersion errors.  
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Appendix A. Additional formulations 

A1. Absorbing boundary conditions 

Absorbing boundary conditions (ABCs) terminate undesired waves reflected 

from the edges of a computational domain. As a result of the absorbing 

boundary, we can confine the domain within the zone of interest to perform 

numerical modeling of unbounded media. The PML is a type of absorbing 

boundary, introduced by Berenger (1994), and it is known as the most effective 

such boundary condition. The PML can dampen waves within a layer with a 

thickness of tens of nodes regardless of the frequency and incidence angle. 

Among the variants on the PML schemes, I consider the method invented by 

Park et al. (2014) and Grote and Sim (2010) for systems (2.1.21a) and (2.1.21b), 

respectively. Note that the system equation in the PML layer is clearly not 

symplectic as the determinant of the characteristic matrix  cannot be equal 

to one because of the dissipation of the wavefield. Nevertheless, PML schemes 

have been applied to wave equation. In the following, I introduce a technique 

to impose a PML using an arbitrary-order symplectic time integrator. 

Park et al. (2014) extended the first-order system of an acoustic wave in the 

PML zone by dividing the pressure field  into  and  as follows: 
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where  and  are damping profiles with respect to the  and  

directions. The scheme is simple to implement. An increase in the variable does 

not incur additional computational cost because we can reuse the spatial 

derivatives once it is calculated.  and  are identical in the domain of 

interest but yield different values in the PML zone. Thus, we can choose either 

of them as the pressure field. The characteristic matrix of (A1.1) is: 

and  where 

It is necessary to decompose  into a spatial derivative operator matrix  

and the remainder  to determine whether the new characteristic matrix  

leads to the symplectic structure in the PML layer. If not, the PML cannot be 

∂
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applied, and another absorbing condition must be imposed. In that case, wave 

phenomena in the PML layer retain the symplecticity. The remainder matrix  

acts as a sponge boundary condition that can be independently considered by 

simply multiplying by  or  at the update of each variable. For 

instance, the transformation operator of a second-order symplectic scheme 

applied to the PML is 

where  and  are the matrices that contain only the upper-right and 

lower-left submatrices of , and  and  are the matrices that contain the 

upper-left and the lower-right submatrices of .  

The PML scheme for the standard second-order equation is considered for 

system (2.1.21b). The simplest formula invented by Grote and Sim (2010) is 

where  and  are the auxiliary variables. The characteristic matrix  in 

the PML zone is: 

≃  (A1.4) 
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and  where 

However, the first-order system of  is not symplectic; it is impossible to 

apply a symplectic time integrator in the PML zone. Other absorbing boundary 

conditions such as a spongy layer (Cerjan 1995) can be used in the system 

because the system of  retains a symplectic structure in the layer.  

 As mentioned in section 4.3, the system in the PML zone is prone to diverge 

when using a PS method with a large time step. This is why I applied the pretty 

good sponge boundary invented by Lavelle and Thacker (2007); the system 

equation in the absorbing layer is slightly different from that of the PML as 

follows: 
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The system is stable. Although a damping of the wavefield is less effective than 

the PML, this yields better performance than the conventional sponge layers.  
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A2. Analytic solution 

We can derive the analytic solution of the acoustic wave equation in a 

homogeneous model using the PS method. Two dimensional system of equation 

(2.1.21a) can be rewritten as follows: 

This equation can be converted into system ordinary differential form (ODE) 

via Fourier transformation of the spatial derivatives as follows: 

Then, the acoustic wave solution in the time-wavenumber domain is 

where 

and  is a system matrix of equation (A.2.2).  is an initial value in the 

time-wavenumber domain that can be easily calculated by Fourier transform in 

the - and -directions.  is a solution vector in the time-wavenumber 

0 c c
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domain that requires the inverse Fourier transform to convert into the wavefield 

in the spatial domain at time  as follows: 

 

 

  

. ( A.2.5) 
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Appendix B. Matlab codes 

B1. Arbitrary-order symplectic time integrator 
 

clear all; 
close all; 
clc; 
  
% Computational domain 
Nx = 512; 
Nz = 512; 
Lx = 4*pi; 
Lz = 4*pi; 
hx = Lx/Nx; 
hz = Lz/Nz; 
x = hx*(1:Nx)'; 
z = hz*(1:Nz); 
[xx,zz] = meshgrid(x,z); 
  
% Wavenumber domain 
kx0 = 2*pi/Lx*[0:Nx/2-1 0 -Nx/2+1:-1]; 
kz0 = 2*pi/Lz*[0:Nz/2-1 0 -Nz/2+1:-1]; 
[kx,kz] = meshgrid(kx0, kz0); 
  
% physical properties 
cp  = 5*ones(Nz,Nx); 
rho = ones(Nz,Nx); 
  
% Time stepping 
Tmax = 20; 
dt = 0.02; 
t = dt:dt:Tmax; 
  
% physical variables 
p = exp(-80*((xx-Lx/2).^2 + (zz-Lz/2).^2)); 
u = zeros(Nz,Nx); 
w = zeros(Nz,Nx); 
  
% intermediate variables for symplectic & Lax-wendroff 
du_0 = zeros(Nz,Nx); 
du_2 = zeros(Nz,Nx); 
dw_0 = zeros(Nz,Nx); 
dw_2 = zeros(Nz,Nx); 
dp_0 = zeros(Nz,Nx); 
dp_2 = zeros(Nz,Nx); 
  
% non-symplectic method 
p_new = zeros(Nz,Nx); 
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u_new = zeros(Nz,Nx); 
w_new = zeros(Nz,Nx); 
  
  
%CFL 
CFL_sqare = pi^2*max(max(cp))^2*dt^2*(1/hx^2+1/hz^2); 
theta = sqrt(CFL_sqare) 
  
m_expansion = 14; 
  
%%% start time stepping %%% 
  
tic 
  
% Half time stepping 
du_0 = - 0.5*dt./rho.*real(ifft2(1i*kx.*fft2(p))); 
dw_0 = - 0.5*dt./rho.*real(ifft2(1i*kz.*fft2(p))); 
u = u + du_0; 
w = w + dw_0; 
% Lax-Wendroff 
for m=1:m_expansion 
    du_2 = 
0.125*dt*dt/(m*(2*m+1))./rho.*(real(ifft2(1i*kx.*fft2(rho
.*cp.*cp.*(real(ifft2(1i*kx.*fft2(du_0)))))))+real(ifft2(
1i*kx.*fft2(rho.*cp.*cp.*real(ifft2(1i*kz.*fft2(dw_0)))))
));        
    dw_2 = 
0.125*dt*dt/(m*(2*m+1))./rho.*(real(ifft2(1i*kz.*fft2(rho
.*cp.*cp.*(real(ifft2(1i*kx.*fft2(du_0)))))))+real(ifft2(
1i*kz.*fft2(rho.*cp.*cp.*real(ifft2(1i*kz.*fft2(dw_0)))))
)); 
    u = u + du_2; 
    w = w + dw_2; 
    du_0 = du_2; 
    dw_0 = dw_2; 
end 
  
for i=1:length(t) 
  
    % i=0 : 2nd order symplectic 
    dp_0 = - 
dt*rho.*cp.*cp.*(real(ifft2(1i*kx.*fft2(u)))+real(ifft2(1
i*kz.*fft2(w)))); 
    p = p + dp_0; 
    % i>0: Lax-Wendroff expansion 
    for m=1:m_expansion 
        dp_2 
=0.125*dt*dt/(m*(2*m+1))*rho.*cp.*cp.*(real(ifft2(1i*kx.*
fft2(1./rho.*real(ifft2(1i*kx.*fft2(dp_0))))))+real(ifft2
(1i*kz.*fft2(1./rho.*real(ifft2(1i*kz.*fft2(dp_0))))))); 
        p = p + dp_2; 
        dp_0 = dp_2; 
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    end 
  
     
    % i=0 : 2nd order symplectic 
    du_0 = - dt./rho.*real(ifft2(1i*kx.*fft2(p))); 
    dw_0 = - dt./rho.*real(ifft2(1i*kz.*fft2(p))); 
    u = u + du_0; 
    w = w + dw_0; 
    % i>0: Lax-Wendroff expansion 
    for m=1:m_expansion 
        du_2 = 
0.125*dt*dt/(m*(2*m+1))./rho.*(real(ifft2(1i*kx.*fft2(rho
.*cp.*cp.*(real(ifft2(1i*kx.*fft2(du_0)))))))+real(ifft2(
1i*kx.*fft2(rho.*cp.*cp.*real(ifft2(1i*kz.*fft2(dw_0)))))
));        
        dw_2 = 
0.125*dt*dt/(m*(2*m+1))./rho.*(real(ifft2(1i*kz.*fft2(rho
.*cp.*cp.*(real(ifft2(1i*kx.*fft2(du_0)))))))+real(ifft2(
1i*kz.*fft2(rho.*cp.*cp.*real(ifft2(1i*kz.*fft2(dw_0)))))
)); 
        u = u + du_2; 
        w = w + dw_2; 
        du_0 = du_2; 
        dw_0 = dw_2; 
    end 
  
     % plot animation "mesh" 
     if mod(i,2) == 0 
       mesh(xx,zz,p); 
       xlim([0 Lx]); 
       ylim([0 Lz]); 
       zlim([-0.5 1]); 
       pbaspect([Lx Lz Lz*0.5]); 
       caxis([-0.2, 1]);  
       title(num2str(i*dt, '%10.5e\n')); 
       pause(.00001) 
     end 
     
end 
  
toc 
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B2. Analytic solution 

clear all; 
clc; 
  
% Computational domain 
Nx = 512; 
Nz = 512; 
Lx = 4*pi; 
Lz = 4*pi; 
hx = Lx/Nx; 
hz = Lz/Nz; 
x = hx*(1:Nx)'; 
z = hz*(1:Nz); 
[xx,zz] = meshgrid(x,z); 
  
% Wavenumber domain 
kx0 = 2*pi/Lx*[0:Nx/2-1 0 -Nx/2+1:-1]; 
kz0 = 2*pi/Lz*[0:Nz/2-1 0 -Nz/2+1:-1]; 
[kx,kz] = meshgrid(kx0, kz0); 
  
% target mement t 
t = 20; 
  
% physical variables 
p_0 = exp(-80*((xx-Lx/2).^2 + (zz-Lz/2).^2)); 
u_0 = zeros(Nz,Nx); 
w_0 = zeros(Nz,Nx); 
  
% variables in wavenumber domain  
p_k0 = zeros(Nz,Nx); 
u_k0 = zeros(Nz,Nx); 
w_k0 = zeros(Nz,Nx); 
p_k1 = zeros(Nz,Nx); 
u_k1 = zeros(Nz,Nx); 
w_k1 = zeros(Nz,Nx); 
  
% solution at 't' 
p = zeros(Nz,Nx); 
u = zeros(Nz,Nx); 
w = zeros(Nz,Nx); 
  
% physical properties 
cp  = 5*ones(Nz,Nx); 
rho = ones(Nz,Nx); 
  
% onestep solution % 
p_k0 = fft2(p_0); 
u_k0 = fft2(u_0); 
w_k0 = fft2(w_0); 
p_k1 = cos(cp.*sqrt(kx.^2+kz.^2)*t).*p_k0 - 
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1i*kx.*rho.*cp.*sin(cp.*sqrt(kx.^2+kz.^2)*t)./sqrt(sqrt(k
x.^2+kz.^2)).*u_k0 - 
1i*kz.*rho.*cp.*sin(cp.*sqrt(kx.^2+kz.^2)*t)./sqrt(sqrt(k
x.^2+kz.^2)).*w_k0; 
u_k1 = - 
1i*kx./cp./rho.*sin(cp.*sqrt(kx.^2+kz.^2)*t)./sqrt(sqrt(k
x.^2+kz.^2)).*p_k0 + 
(kz.^2+kx.^2.*cos(cp.*sqrt(kx.^2+kz.^2)*t))./(kx.^2+kz.^2
).*u_k0 + (kx.*kz.*(1-
cos(cp.*sqrt(kx.^2+kz.^2)*t)))./(kx.^2+kz.^2).*w_k0; 
w_k1 = - 
1i*kz./cp./rho.*sin(cp.*sqrt(kx.^2+kz.^2)*t)./sqrt(sqrt(k
x.^2+kz.^2)).*p_k0 + (kx.*kz.*(1-
cos(cp.*sqrt(kx.^2+kz.^2)*t)))./(kx.^2+kz.^2).*u_k0 + 
(kx.^2+kz.^2.*cos(cp.*sqrt(kx.^2+kz.^2)*t))./(kx.^2+kz.^2
).*w_k0; 
% Nan check 
p_k1(1,1) = p_k0(1,1); 
p_k1(1,1+Nx/2) = p_k0(1,1+Nx/2); 
p_k1(1+Nx/2,1) = p_k0(1+Nx/2,1); 
p_k1(1+Nx/2,1+Nx/2) = p_k0(1+Nx/2,1+Nx/2); 
% Nan check 
u_k1(1,1) = u_k0(1,1); 
u_k1(1,1+Nx/2) = u_k0(1,1+Nx/2); 
u_k1(1+Nx/2,1) = u_k0(1+Nx/2,1); 
u_k1(1+Nx/2,1+Nx/2) = u_k0(1+Nx/2,1+Nx/2); 
% Nan check 
w_k1(1,1) = w_k0(1,1); 
w_k1(1,1+Nx/2) = w_k0(1,1+Nx/2); 
w_k1(1+Nx/2,1) = w_k0(1+Nx/2,1); 
w_k1(1+Nx/2,1+Nx/2) = w_k0(1+Nx/2,1+Nx/2); 
% solution 
p = real(ifft2(p_k1)); 
u = real(ifft2(u_k1)); 
w = real(ifft2(w_k1)); 
  
% plot 
figure(11); 
mesh(xx,zz,p); 
%axis equal; 
xlim([0 Lx]); 
ylim([0 Lz]); 
zlim([-0.5 1]); 
pbaspect([Lx Lz Lz*0.5]); 
caxis([-0.2, 1]);  
title(num2str(t, '%10.5e\n')); 
  
 % Binary file write 
fileID_p = 
fopen('output_analytic_5000mps_512/p_analytic_5000mps_512
_20s.bin','w'); 
fwrite(fileID_p, p, 'float32'); 
fclose(fileID_p);  
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초록 
 

음향 파동방정식에 적용된 유사 스펙트럴 방법
을 이용한 임의 차수의 심플렉틱 시간 적분법 

 

이 재 준 

협동과정 계산과학전공 

서울대학교 대학원 
 

해밀토니안 역학으로 표현된 시스템은 일반적으로 심플렉틱하다. 

해밀토니안 시스템을 정확히 모사하기 위해서 심플렉틱 시간 적분

법을 사용한다. 이 때, 수치적으로 계산된 해의 에너지 혹은 일반화 

에너지의 총량, 즉, 해밀토니안이 보존되기 때문이다. 본 연구에서는 

음향파동 방정식이 심플렉틱 시스템임을 밝힌다. 이 후 임의의 시간 

차수로 확장이 가능한 심플렉틱 시간 적분법을 제시한다. 이는 랙스

-웬드로프 전개법을 기반으로 하며, 압력장 그리고 이와 다른 종류

의 변수, 가령 속도 혹은 압력장의 시간 변화율 등을 서로 엇갈린 

시간 축에 배치시킨 후 이를 이산화하여 정리 된 식이다. 랙스-웬

드로프 전개는 선형화된 시스템의 변환 매트릭스의 테일러 전개이

며, 음향 파동방정식은 위와 같은 전개에서 유사 미분 오퍼레이터로 

환원되는데 이는 쌍곡 사인함수임을 밝혔다. 이를 이용하면 테일러 

전개 외에 자코비-앵거 전개 등의 수렴 속도가 뛰어난 다른 전개법

을 사용하여 파동 방정식 시스템의 오퍼레이터를 근사할 수 있다. 

본 연구에서 제시된 시간 적분법은 우수한 안정 특성을 보이며 이

는 심플렉틱이라는 성질을 만족하지 않는 시간 차분 방식에 비해 

같은 조건에서 더욱 안정적이다. 더불어 시간 스텝 당 위상 변화 오

차가 적기 때문에 장시간 시뮬레이션에 적합하다. 위상 분석 결과를 

통해 시간 스텝 간격이 크고 시간 차수가 높을수록 컴퓨팅 파워를 

줄일 수 있음을 도출하였다. 다만 소스 웨이브렛 문제를 풀 경우 소
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스를 정확히 모사하기 위한 최대 시간 간격을 고려해야 한다. 임의 

차수 심플렉틱 시간 적분법을 상속도 속도 모델을 이용한 초기값 

문제에 적용하였으며 해석해와 비교한 결과 시간 스텝길이가 충분

히 긴 경우에도 해석해와 동등한 계산 결과를 도출할 수 있다. 비균

질 모델이서도 마찬가지로 시간 간격과 관계 없이 동일한 모델링 

결과를 산출함을 확인하였다. 이는 제안된 방법은 소스 문제에도 효

율적으로 적용할 수 있다. 다만 다소 긴 시간 간격을 사용한 경우 

스펀지 흡수 경계조건이 효율적으로 작동하지 않을 수 있으며 해결

을 요구하는 문제로 남아있다.  

 

 

주요어 : 심플렉틱 시간 적분법, 음향 파동방정식, 유사 스펙트럴 방

법, 스펙트럴 정확도  
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