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Abstract

Numerical simulation of cavity
flow by using conforming and
nonconforming finite elements

Roktaek Lim

Interdisciplinary Graduate Program Computational Science

Technology

The Graduate School

Seoul National University

This thesis presents a numerical method for solving the incompressible flow in a

square cavity without smoothing the corner singularities. Since nonconforming

finite element method can avoid vertex degree of freedom, the values at the

upper corners of the cavity are not required to solve the problem. By taking this

advantage it is possible to compute accurate numerical solution of the cavity

flow without any modification of the problem. The stable nonconforming P1-P0

pair used to solve the incompressible flow problem. DSSY finite elements are

added to elements which are on the top corners in the cavity to obtain a more

accurate approximation of the boundary condition. Numerical solutions by

using conforming finite element are computed for the purposes of comparison.

The numerical results are compared with those in the literature and show good

agreement. Numerical results computed by using the stable nonconforming P1-

P0 pair show excellent accuracy.

Keywords : conforming finite element method, nonconforming finite element

method, stable nonconforming P1-P0 pair, DSSY finite element, the incom-
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Chapter 1

Introduction

1.1 Motivation

Two pairs of finite element spaces for the stationary incompressible Stokes

problem are introduced in [32]. These pairs are based on square mesh. The

finite element space for the velocity field is composed of the P1 nonconforming

quadrilateral [37] element or added by one additional macro DSSY[16] bubble

functions. The pressure field is approximated by the piecewise constant func-

tion. The stability and optimal convergence results for these element pairs can

be found in [32].

The lid driven square cavity is one of the most popular benchmark problem

for new numerical methods for the incompressible Navier-Stokes equations in

terms of accuracy, numerical efficiency and so on. The stable nonconforming

P1-P0 element pair will be employed for solving the lid driven square cavity

problem. The presence of singularities in upper corners of the cavity give nu-

merical difficulties for solving the cavity flow problem. It might be dangerous
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to use high-order methods without handling of the corner singularities due

to Gibbs phenomenon. Many studies have been carried out to overcome this

difficulty. Various high-order methods have been employed to control of oscil-

lations near corner singularities. Other studies change the boundary condition

to overcome this difficulty. This is the so-called regularized lid driven cavity

problem. The constant boundary condition for velocity is replaced by a func-

tion that vanishes at the upper corners of cavity [23, 44]. Botella and Peyret

[6] solved regularized cavity problem by using a subtraction method of the

leading terms of the asymptotic expansion of the solution of the Navier-Stokes

equations in the vicinity of the corners, where the velocity is discontinuous.

Sahin and Owens [42] insert leaks across the heights of the finite volumes in

the corners between lid and the vertical walls to handle corner singularities.

We try to solve the lid driven cavity problem without any modification. A

numerical method is presented for solving the incompressible flow in a square

cavity without regularizing the boundary condition on the top of the cavity.

When the nonconforming finite element is used to solve the lid driven cavity

problem, we do not consider values at the upper corners in the square cavity.

Implementation method for this will be described in Section 4.3. We solve

the lid driven cavity problem with unregularized boundary condition by using

the stable nonconforming P1-P0 finite element. Numerical solutions by using

conforming finite element, Q2-Q1, are computed for the purposes of compari-

son. Indicators to check accuracy of the numerical solutions will be presented

in this thesis. Numerical solutions of steady steady incompressible flow in a

square cavity will be presented Section 4.4.

2



1.2 Model equations

In this section we shall briefly derive equations governing the motion of

an incompressible Newtonian fluid. The governing equations of incompressible

Newtonian fluid are derived from the conservation of mass, momentum, and

energy. We denoted by u(x, t) the velocity of the fluid and ρ(x, t) the density.

Conservation of mass Consider a domain Ω in the fluid which is fixed in

space and time in an Euclidean coordinate system, a closed surface Γ which

enclose Ω, and the unit vector n normal to Γ pointing from inside of Ω to

outside. The conservation of mass states that the rate of change of mass in Ω

equals the amount of fluid flowing through Γ. Then, we have

∫

Ω

∂ρ

∂t
dΩ+

∫

Γ
ρu · n dΓ. (1.1)

Applying the divergence theorem to the surface integral in (1.1), (1.1) can be

written ∫

Ω

∂ρ

∂t
+∇ · (ρu) dΩ = 0. (1.2)

(1.2) is the integral form of mass conservation. Since Ω can be arbitrary,

∂ρ

∂t
+∇ · (ρu) = 0. (1.3)

(1.3) implies that
∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0. (1.4)

The material derivative is defined as

D

Dt
=

∂

∂t
+ u · ∇ (1.5)

3



where u is the velocity of the fluid. Then (1.4) can be written

Dρ

Dt
+ ρ∇ · u = 0. (1.6)

(1.3) and (1.6) are referred to as the continuity equation. If the fluid is in-

compressible, the density ρ is constant with respect to both space and time,

Dρ
Dt = 0 and the continuity equation reduced to

∇ · u = 0 (1.7)

which is the incompressible condition for the fluid.

Conservation of momentum Conservation of momentum is implied by

Newton’s second law F = dp
dt , where p = mv is momentum. The conservation

of momentum states that the rate of change of momentum in Ω plus the flux

of momentum out through Γ is equal to the rate of change of momentum due

to body forces and surface stresses. Then, we have

∂

∂t

∫

Ω
ρu dΩ+

∫

Γ
ρn · uu dΓ =

∫

Ω
ρf dΩ+

∫

Γ
σ · n dΓ (1.8)

where f is body force and σ is the stress tensor, uu represents for the dyadic

product. Applying the divergence theorem to the surface integral in (1.8), (1.8)

can be written

∫

Ω

∂

∂t
ρu+∇ · (ρuu) dΩ =

∫

Ω
ρf +∇ · σ dΩ. (1.9)

Since Ω can be arbitrary, we have

∂

∂t
ρu+∇ · (ρuu) = ρf +∇ · σ. (1.10)

4



And (1.10) implies that

ρ
∂u

∂t
+ u

∂ρ

∂t
+ ρu · ∇u+ u∇ · (ρu) = ρf +∇ · σ. (1.11)

For Newtonian fluids, the constitutive relationship for the stress tensor σ is

given by Newton’s law,

σ = −pI + τ,

τ = λ(∇ · u)I + 2µǫ,

ǫ =
1

2

[
∇u+ (∇u)T

]
,

(1.12)

where p is the pressure, µ is the coefficient of dynamic viscosity, λ is the second

coefficient of viscosity, ǫ is the strain tensor. If the fluid is incompressible

and homogeneous, then µ and λ are constant and ǫ = ∇u. Also using the

incompressible condition, we can obtain

∇ · σ = −∇p+ µ△u. (1.13)

Then, (1.11) can be written

∂u

∂t
+ u · ∇u = −

1

ρ
∇p+ ν△u+ f (1.14)

where ν = µ/ρ is the kinematic viscosity. (1.14) is the governing equation in

fluid dynamics, known as the Navier-Stokes equation.

Conservation of energy The conservation of energy states that the rate

of change of energy in Ω plus the flux of energy out through Γ is equal to

the flux of heat in through Γ plus the rate of change of energy due to surface

5



stresses. Then, we have

∂

∂t

∫

Ω
ρE dΩ+

∫

Γ
ρE(u · n) dΓ = −

∫

Γ
q · n dΓ +

∫

Γ
(σ · u) · n dΓ (1.15)

where q is heat flux vector. In (1.15), E is the total specific energy given by

E = e+
1

2
u2 − f · u (1.16)

where e is the specific internal energy, 1
2u

2 is the specific kinetic energy, and

−f ·u is the specific potential energy. Applying the divergence theorem to the

surface integral in (1.15), (1.15) can be written

∫

Ω

∂

∂t
ρE +∇ · (ρEu) dΩ =

∫

Ω
−∇ · q+∇ · (σ · u) dΩ. (1.17)

Since Ω can be arbitrary, we have

∂

∂t
ρE +∇ · (ρEu) = −∇ · q+∇ · (σ · u). (1.18)

In this thesis we consider the isothermal fluid. In this case, temperature is

uniform in space and time. Hence the energy equation will not mentioned

hereafter.

Dimensionless formulation We have derived the Navier-Stokes equations

for incompressible flow,

ρ
∂u

∂t
− µ△u+ ρ(u · ∇)u+∇p = f , in Ω× (0, T ),

∇ · u = 0, in Ω× (0, T )

(1.19)

6



with boundary condition

u = w on ∂ΩD, ν
∂u

∂n
− np = s on ∂ΩN .

We can obtain the following dimensionless formulation by introducing u = V û,

x = Lx̂, t = L/V t̂, p = V 2ρp̂, and f = V 2/Lf̂ with a characteristic velocity V

and a characteristic length L,

∂û

∂t̂
− ν̂△̂û+ (û · ∇̂)û+ ∇̂p̂ = f̂ , in Ω× (0, T ),

∇̂ · û = 0, in Ω× (0, T ),

(1.20)

where

ν̂ =
1

Re
=

µ

ρLV
,

with the dimensionless Reynolds number Re. The boundary conditions on

∂Ω = ∂ΩD ∪ ∂ΩN are given by

û = ŵ on ∂ΩD, ν
∂û

∂n̂
− n̂p̂ = ŝ on ∂ΩN .

For simplicity in notation we will omit hats in (1.20). Dropping the convection

term (u · ∇)u and setting ∂u
∂t = 0 gives the stationary Stokes equations

−ν△u+∇p = f , in Ω,

∇ · u = 0, in Ω,
(1.21)

with boundary conditions

u = w on ∂ΩD, ν
∂u

∂n
− np = s on ∂ΩN .

7



Chapter 2

Preliminaries

2.1 Finite element discretization

We consider numerical solutions of two dimensional incompressible flow in

a square domain, then Ω = [0, 1]2. Set

L2
0(Ω) =

{
q ∈ L2(Ω) |

∫

Ω
q dx = 0

}
. (2.1)

Let us denoted by

(u, v) =

∫

Ω
uv dx (2.2)

the inner product in L2
0(Ω) and by

‖v‖0,Ω =
√

(v, v) (2.3)

the corresponding norm.

8



Given any integer m ≥ 0, let

Hm(Ω) = {v | v ∈ L2(Ω), ∂αv ∈ L2(Ω), |α| ≤ m} (2.4)

be the usual Sobolev space provided with the norm

‖v‖m,Ω =




∑

|α|≤m

‖∂αv‖20,Ω




1/2

, (2.5)

and the seminorm

|v|m,Ω =


 ∑

|α|=m

‖∂αv‖20,Ω




1/2

. (2.6)

Let

H1
0 =

{
v ∈ H1(Ω) | u = 0 on ∂ΩD

}
. (2.7)

Let [L2(Ω)]N and [Hm(Ω)]N be the space of vector functions v = (v1, . . . , vN )

with components vj in L2(Ω) and Hm(Ω). The inner product in [L2(Ω)]N is

given by

(u,v) =

∫

Ω
u · v. (2.8)

Let

H1
0 =

{
u ∈ [H1(Ω)]2 | u = 0 on ∂ΩD

}
. (2.9)

Bilinear forms a(·, ·) : H1 × H1 → R and b(·, ·) : H1 × L2
0(Ω) → R, are

defined by

a(u,v) = ν

∫

Ω
∇u : ∇v dx,

b(v, q) = −

∫

Ω
q∇ · v dx.

(2.10)

9



Trilinear form c(· ; ·, ·) : H1 ×H1 ×H1 → R is defined by

c(w;u,v) =

∫

Ω
(w · ∇)u · v dx. (2.11)

The weak formulation of (1.20) with the Dirichlet boundary condition

u = w on ∂ΩD is to find u ∈ H1 and p ∈ L2
0(Ω) such that

(
∂u

∂t
,v

)
+ a(u,v) + c(u;u,v) + b(v, p) = (f ,v), ∀v ∈H1

0,

b(u, q) = 0, ∀q ∈ L2
0(Ω).

(2.12)

Let Vh
0 and Qh be the finite dimensional subspace of H1

0 and L
2
0(Ω). Then,

we can find approximation of uh and ph in the finite dimensional subspaces

Vh and Qh by solving the following discrete problems:

Find uh ∈ Vh and ph ∈ Q
h such that

(
∂uh

∂t
,vh

)
+ a(uh,vh) + c(uh;uh,vh) + b(vh, ph) = (f ,vh), ∀vh ∈ Vh

0 ,

b(uh, qh) = 0, ∀qh ∈ Q
h.

(2.13)

2.2 The stable nonconforming P1-P0 element pair

Two pairs of stable cheapest nonconforming finite element pairs which

approximate the stationary Stokes equations are introduced in [32].

2.2.1 The P1-nonconforming quadrilateral element

We use the approximate space for the velocity is based on the P1-nonconforming

quadrilateral element [37]. Let Q be the general quadrilateral with vertices,
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vj, j = 1, . . . , 4 and the midpoints of edge Q, mj, j = 1, . . . , 4 such that

mj =
vj−1 + vj

2
, 1 ≤ j ≤ 4 (2.14)

with identification v0 = v4. Set P1(Q) = Span{1, x, y}. We recall useful lemma:

Lemma 1 ([37]). If u ∈ P1(Q), then u(m1) + u(m3) = u(m2) + u(m4). Con-

versely, if uj , j = 1, . . . , 4 are given at mj and satisfy u1 + u3 = u2 + u4, then

there exists a unique function u ∈ P1(Q) such that u(mj) = uj, j = 1, . . . , 4.

For 1 ≤ j ≤, let φ̂j ∈ P1(Q) be defined such that

φ̂j(mk) =





1, k = j, j + 1,

0, otherwise.

(2.15)

Then Span{φ̂1, φ̂2, φ̂3, φ̂4} = P1(Q). Indeed, any three of φ̂1, φ̂2, φ̂3, φ̂4 span

P1(Q).

According to Lemma 1, dim(P1(Q)) = 3 and any three of φ̂1, φ̂2, φ̂3, φ̂4

form a local basis for the P1-nonconforming quadrilateral element space.

Let Th be a family of regular partition of Ω into disjoint quadrilaterals

Qj, j = 1, . . . , NQ. The global basis functions of NCh0(Ω) is defined by

NCh0 = {v ∈ L2(Ω) | v|Qj ∈ P1(Qj) ∀Qj ∈ Th, v is continuous at

the mid point of each interior edge in Th and v vanishes at

the mid point of each boundary edge in Th},

The global basis functions ofNCh0(Ω) can be defined vertex-wise. φj ∈ NC
h
0(Ω)

for each interior vertex (xj, yj) is defined such that it has value 1 at the

midpoint of each interior edge whose end points contain their vertex (xj , yj)

and value 0 at the midpoint of every other edge in Th.
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In this thesis, we only consider square domain and uniform and square

mesh with h = 1/N . Then, Q is the square with size h× h. And φ̂j which are

define on Qj ∈ Th with center of Qj, (cx,j, cy,j) have the form

φ̂1 =
1

2
−
cx,j
h
−
cy,j
h

+
x

h
+
y

h
,

φ̂2 =
1

2
+
cx,j
h
−
cy,j
h
−
x

h
+
y

h
,

φ̂3 =
1

2
−
cx,j
h
−
cy,j
h
−
x

h
−
y

h
,

φ̂3 =
1

2
−
cx,j
h

+
cy,j
h

+
x

h
−
y

h
.

(2.16)

2.2.2 The piecewise constant element

The approximate space for the pressure is the piecewise constant element,

P h = {q ∈ L2
0(Ω) | q|Q ∈ P0(Q) ∀Q ∈ Th},

where P0(A) denotes the space of piecewise constants on the set A. The

([NCh0 ]
2, P h) approximation is unstable[34]. In [32], the stable pair of spaces

([NCh0 ]
2, P h

cf ) is proposed. P
h
cf is removed a global checkerboard pattern from

P h.

A example of P h
cf is the following. Th is treated as a checkerboard with red

and black squares. Let R = {QR1
, . . . , QRNQ/2

} and B = {QB1
, . . . , QBNQ/2

}

be the set of red and black squares such that R∪B = Th. Let ψk be the basis

12



Table 2.1: Number of degrees of freedom for different pairs (velocity/pressure)

N Q2-Q1 Q2-P0 Rotated Q1-P0 Stable PNC
1 -P0

24 2178/289 2178/256 1088/256 450/254
25 8450/1089 8450/1024 4224/1024 1922/1022
26 33282/4225 33282/4096 16640/4096 7938/4094
27 132098/16641 132098/16384 66048/16384 32256/16382

function of P h
cf . Then,

ψk(x) =





1, x ∈ QRk

−1, x ∈ QRk+1

0, otherwise

for k = 1, . . . ,
NQ

2
− 1,

ψNQ/2−1+k(x) =





1, x ∈ QBk

−1, x ∈ QBk+1

0, otherwise

for k = 1, . . . ,
NQ

2
− 1.

(2.17)

For details see [32].

2.2.3 The stable cheapest finite element pair

There are several stable quadrilateral finite element pairs satisfying the

inf-sup condition [15, 31, 38]. Table 2.1 shows Number of degrees of freedom

for different pairs. The stable nonconforming P1-P0 element pair has the lowest

number of degrees freedom. The dimension of the pair of spaces ([NCh0 ]
2, P h

cf )

is 2N i
v+NQ−2. N i

v is the number of interior vertices in Th. Let stable P
NC
1 -P0

denote the stable nonconforming P1-P0.
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Chapter 3

Numerical methods for the

discretized Navier-Stokes

problems

We are interested in steady state solutions of lid driven square cavity flow

with various Reynolds numbers. Setting ∂u
∂t = 0 in (1.20) gives the steady state

incompressible Navier-Stokes,

−ν△u+ (u · ∇)u+∇p = f , in Ω,

∇ · u = 0, in Ω,
(3.1)

with boundary conditions

u = w on ∂ΩD, ν
∂u

∂n
− np = s on ∂ΩN .
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We only consider the incompressible Navier-Stokes equations with Dirichlet

boundary condition in this thesis.

The weak formulation of (3.1) is to find u ∈H1 and p ∈ L2
0(Ω) such that

a(u,v) + c(u;u,v) + b(v, p) = (f ,v), ∀v ∈ H1
0,

b(u, q) = 0, ∀q ∈ L2
0(Ω).

(3.2)

Solving (3.2) requires nonlinear iteration with linearized problem. Given initial

guess (u(0), p(0)) ∈ H1 × L2
0(Ω)), a sequence of iterates

(u(1), p(1)), (u(2), p(2)), . . . ∈ H1 × L2
0(Ω)

is computed which converges to the solution of the weak formulation (3.2).

The nonlinear residual of the k-th iterate (u(k), p(k)) is produced by

r(k)v = (f ,v)− a(u(k),v) − c(u(k);u(k),v) − b(v, p(k)), ∀v ∈ H1
0,

r(k)p = −b(u(k), q), ∀q ∈ L2
0(Ω).

(3.3)

Let u = u(k) + δu(k) and p = p(k) + δp(k) be the solution of (3.2). Since

δu(k) ∈ H1
0 and δp(k) ∈ L2

0(Ω), it follows that

r(k)v = c(δu(k); δu(k),v) + c(δu(k);u(k),v) + c(u(k); δu(k),v)

+ a(δu(k),v) + b(v, δp(k)), ∀v ∈ H1
0,

r(k)p = b(δu(k), q), ∀q ∈ L2
0(Ω).

(3.4)

After dropping the quadratic term in (3.4) we can obtain the following linear

problem:
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Find δu(k) ∈ H1
0 and δp(k) ∈ L2

0(Ω) such that

r(k)v = c(δu(k);u(k),v) + c(u(k); δu(k),v)

+ a(δu(k),v) + b(v, δp(k)), ∀v ∈ H1
0,

r(k)p = b(δu(k), q), ∀q ∈ L2
0(Ω).

(3.5)

(3.5) is referred as Newton correction. The discrete form of (3.5) is to find

corrections δu
(k)
h ∈ Vh and δp

(k)
h ∈ Qh such that

r(k)v = c(δu
(k)
h ;u

(k)
h ,vh) + c(u

(k)
h ; δu

(k)
h ,vh)

+ a(δu
(k)
h ,vh) + b(vh, δp

(k)
h ), ∀vh ∈ Vh

0 ,

r(k)p = b(δu
(k)
h , qh), ∀qh ∈ Q

h.

(3.6)

(3.6) can be converted into algebraic problems. Let φj be the basis func-

tions for V h
0 and ψj be the basis functions for Qh. We can represent uh ∈ Vh

by

uh =

Nv∑

j=1

ξj

(
φj
0

)
+

Nv∑

j=1

ηj

(
0

φj

)
+

N∂∑

j=1

αj

(
φj
0

)
+

N∂∑

j=1

βj

(
φj
0

)

where α and β are coefficients for the boundary data on ∂ΩD. And ph ∈ Q
h

is written as

ph =

Nq∑

j=1

qjψj .

Then, we have


νA+N +W BT

B 0





δu

(k)

δp(k)


 =


r

(k)
v

r
(k)
p


 (3.7)
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where

A =


Ax 0

0 Ay


 , [Ax]j,k =

∫

Ω
∇φj · ∇φk, Ay = Ax,

B =
(
Bx By

)
, [Bx]k,j = −

∫

Ω
ψk
∂φj
∂x

, [By]k,j = −

∫

Ω
ψk
∂φj
∂y

,

N =


Nx 0

0 Ny


 , W =


Wxx Wxy

Wyx Wyy


 ,

[Nx]j,k =

∫

Ω
(u

(k)
h · ∇φj) · φk, Ny = Nx,

[Wxx]k,j =

∫

Ω

∂u
(k)
1

∂x
φkφj, [Wxy]k,j =

∫

Ω

∂u
(k)
1

∂y
φkφj,

[Wyx]k,j =

∫

Ω

∂u
(k)
2

∂x
φkφj , [Wyy]k,j =

∫

Ω

∂u
(k)
2

∂y
φkφj,

u
(k)
h =

(
u
(k)
1

u
(k)
2

)
.

(3.8)

The right-hand side vector in (3.7) can be evaluated by using (3.3).

Picard iteration method is derived by dropping both the nonlinear term

c(δu(k); δu(k),v) and the linear term c(δu(k);u(k),v) in (3.4). Then, we have

the following linear problem:

Find δu(k) ∈ H1
0 and δp(k) ∈ L2

0(Ω) such that

a(δu(k),v) + c(u(k); δu(k),v) + b(v, δp(k)) = r(k)v , ∀v ∈ H1
0,

b(δu(k), q) = r(k)p , ∀q ∈ L2
0(Ω).

(3.9)

The discrete version of (3.9) is to find δu
(k)
h ∈ Vh and δp

(k)
h ∈ Qh such that

a(δu
(k)
h ,vh) + c(u

(k)
h ; δu

(k)
h ,vh) + b(vh, δp

(k)
h ) = r(k)v , ∀vh ∈ Vh,

b(δu
(k)
h , qh) = r(k)p , ∀qh ∈ Q

h.
(3.10)
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Solving (3.10) gives the Picard correction. We can also have the system of

linear equations corresponding to (3.9),


νA+N BT

B 0





δu

(k)

δp(k)


 =


r

(k)
v

r
(k)
p


 . (3.11)

Substituting δu(k) = u(k+1) − u(k) and δp(k) = p(k+1) − p(k) into (3.9) gives

the following problem:

Find δu(k+1) ∈ H1 and δp(k+1) ∈ L2
0(Ω) such that

a(u(k+1),v) + c(u(k);u(k+1),v) + b(v, δp(k+1)) = (f ,v), ∀v ∈ H1
0,

b(u(k+1), q) = 0, ∀q ∈ L2
0(Ω).

(3.12)

This is the Oseen problem. Also we have the system of linear equations for

(3.12) 
νA+N BT

B 0





u(k+1)

p(k+1)


 =


f

g


 . (3.13)

The solution of the Stokes problem can be used as an initial guess for both

Newton and Picard correction. The solution of the Stokes problem can be

obtained by solving 
νA BT

B 0





u

p


 =


f

g


 . (3.14)

Newton’s method gives quadratic convergence whereas Picard’s method gives

linear convergence. The radius of convergence of Newton’s method is propor-

tional to the viscosity parameter ν [18]. For high Reynolds numbers, Newton’s

method does not converge due to a bad initial guess. On the other hand, Pi-

card’s method has a much larger radius of convergence [30]. Picard’s method

can be used to obtain a good initial guess.
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3.1 Iterative solvers

The numerical solutions of the incompressible Navier-Stokes problem can

be obtain by solving linear systems such as (3.7), (3.11). Solving (3.14) gives

an initial guess for the Newton or Picard correction. (3.7), (3.11), and (3.14)

are linear systems with saddle point structure.

In this section we briefly review iterative solvers for large and sparse linear

systems with saddle point structure.

3.1.1 Krylov subspace methods

Suppose we have the following linear system

Ax = b (3.15)

where A is a nonsingular square matrix and b is given. The j-th Krylov sub-

space Kj is

Kj(A,b) = span{b, Ab, . . . , Aj−1b}. (3.16)

The Krylov subspace methods for solving Ax = b is to find an approximate

solution xk from affine subspace x0 + Kk(A, r0) where r0 = b − Ax0. There

are two different classes

• The minimum residual approach

min
xk∈x0+Kk(A,r0)

‖b−Axk‖ .

• The orthogonal residual approach

xk ∈ x0 +Kk(A, r0) and (b−Axk)⊥Lk

(Lk suitable subspace of dimension k)
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Algorithm 1 Preconditioned GMRES, Ax = b with preconditioner M

1: Compute r0 = b−Ax0 and z0 =M−1r0
2: β = ‖z0‖2 and v1 = z0/β
3: Set d1 = −q1 = Bu1 − g
4: for j = 1, 2, . . . until m do
5: Compute wj =M−1Avj

6: for i = 1, 2, . . . until j do
7: hi,j = (wj,vi)
8: wj = wj − hi,jvi

9: end for
10: hj+1,j = ‖wj‖2. If hj+1,j = 0, set m = j and go to 13
11: vj+1 = wj/hj+1,j

12: end for
13: Define the (m+ 1)×m Hessenberg matrix H̄m = {hi,j}1≤i≤m+1,1≤j≤m

14: Compute ym the minimizer of ‖βe1 − H̄mym‖2
15: xm = x0 + Vmym where Vm = [v1 · · ·vm]

GMRES and MINRES method are based on the minimum residual approach.

CG, BiCG, and QMR are based on the orthogonal residual approach. Lk =

Kk(A, r0) for CG and Lk = Kk(A
T , r0) for BiCG and QMR.

MINRES/GMRES The general minimum residual (GMRES) is introduced

in [41]. GMRES is generalization of the MINRES method. GMRES is to find

approximate solution xm by solving the following least square problem: Find

y ∈ R
m such that

min ‖b−A(x0 + Vkym)‖2.

This method is based on long recurrences and satisfies an optimal property.

GMRES is a stable method and no breakdown occurs. When hj+1,j = 0 at step

j, the residual vector is zero. This means xj has reached the solution [40]. When

number of iteration increases, the work per iteration and memory requirements

increase. In order to avoid this disadvantage, the restarted GMRES is used in

practice.

20



Algorithm 2 Preconditioned MINRES, Ax = b with preconditioner M

1: v0 = 0, w0 = w1 = 0
2: Compute v1 = b−Ax0 and z1 =M−1v1

3: γ1 =
√

(z1,v1), η1 = γ1 γ0 = 1
4: s0 = s1 = 0, c0 = c1 = 1
5: for j = 1, 2, . . . until ‖b−Axj‖2/‖b‖2 < TOL do
6: zj = zj/γj
7: δj = (Azj , zj)
8: vj+1 = Azj − (δj/γj)vj − (γj/γj−1)vj−1

9: zj+1 =M−1vj+1

10: γj+1 =
√
(zj+1,vj+1)

11: a0 = cjδj − cj−1sjγj

12: a1 =
√
a20 + γ2j+1

13: a2 = sjδj + cj−1cjγj
14: a3 = sj−1γj
15: cj+1 = a0/a1, sj+1 = γj+1/a1
16: wj+1 = (zj+1 − a2wj − a3wj−1)/a1
17: xj = xj−1 + cj+1ηwj+1

18: η = −sj+1η
19: end for

When A is symmetric, then the matrix H̄m reduces to a tridiagonal matrix.

This property can be exploited to obtain short recurrence relations. MINRES

is optimal solver when A is symmetric and indefinite. The matrix system is

positive definite, preconditioned CG is the preferred method.

BiCGstab The stabilized bi-conjugate gradient method (BiCGstab) was in-

troduced in [48]. If A is symmetric positive definite, orthonormal basis of

Kk(A, r0) can be computed by using the Lanczos algorithm. The Lanczos

algorithm can not be applicable for nonsymmetric matrices. BiCG is based

on bi-orthogonal Lanczos algorithm. This algorithm solves the both system

Ax = b and ATy = x. BiCG uses a short recurrence for the construction

of the orthonormal basis of the Krylov subspace. BiCG requires less memory

storage than GMRES. However, BiCG shows irregular convergence in some
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Algorithm 3 Preconditioned BiCGstab, Ax = b with preconditioner M

1: Compute r0 = b−Ax0 and z0 =M−1r0
2: Choose arbitrary s0 such that s0 · r0 6= 0, for example s0 = r0
3: ρ0 = (s0, r0) and p0 = r0
4: for j = 0, 1, 2, . . . until ‖b−Axj‖2/‖b‖2 < TOL do
5: zj =M−1pj

6: α = ρj/(s0, Azj)
7: qj = rj − αAzj
8: if ‖qj‖2 is small enough then xj+1 = xj + αzj , quit
9: yj =M−1qj

10: tj = Ayj

11: ω = (tj,qj)/(tj , btj)
12: xj+1 = xj + αzj + ωyj

13: rj+1 = qj − ωtj
14: ρj+1 = (s0, rj+1)
15: β = (ρj/ρj+1)(α/ω)
16: pj+1 = rj+1 + β(pj − ωAzj)
17: end for

cases. BiCSGstab is developed to remedy this difficulty.

3.1.2 Uzawa method

We consider the solution of the systems of linear equations with saddle-

point structure 
A BT

B 0





u

p


 =


f

g


 , (3.17)

where

A ∈ R
n×n and B ∈ R

m×n (n ≥ m).

First, we assume that A is symmetric positive definite and B is a matrix of

full rank. Let BA−1BT = S. A widely known iterative method for (3.17) is
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the Uzawa method [8]. The Uzawa method solves the following equations,

Auk = f −BTpk−1,

pk = pk−1 + α (Buk − g) ,
(3.18)

in each iteration. Reformulating the iteration formula (3.18), we can obtain

the following relation for pk,

pk = pk−1 + α(BA−1f − g − Spk−1). (3.19)

This is a Richardson iteration for solving the linear system

BA−1Bp = BA−1f − g. (3.20)

If residue is defined by rk = p− pk, then

rk = (I − αS)kr0. (3.21)

Since S is symmetric, spectral radius of I − αS is

ρ(I − αS) = ‖I − αS‖2. (3.22)

Then,

‖rk‖2 = ρ(I − αS)k‖r0‖2. (3.23)

Let λM and λm be the maximum and the minimum eigenvalues of BA−1BT .

The Uzawa method is convergent when 0 < α < 2/λM . The optimal rate of

convergence is obtained with the choice of α = 2/(λm + λM ). Solving (3.18)
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requires the solution of the linear system

uk = A−1(f −BTpk−1). (3.24)

This operation is expensive and is implemented as an iteration. The inexact

Uzawa methods introduced to avoid the calculation of A−1 [4, 9]. The linear

system in (3.17) can be factored as


A BT

B 0


 =


A 0

B I





A

−1 0

0 −S





A BT

0 I


 . (3.25)

The inexact Uzawa method replaces the matrices A and S in (3.25) by the

symmetric positive definite matrices Â and Ŝ. This leads to the approximation

of saddle point problem given by


Â 0

B I





Â

−1 0

0 −Ŝ





Â BT

0 I


 =


Â BT

B Ĉ


 (3.26)

where BÂ−1BT − Ŝ = Ĉ. Then the iterative method for (3.17) can be written

as


uk+1

pk+1


 =


uk

pk


+


Â BT

B Ĉ




−1



f

g


−


A BT

B 0





uk

pk





 . (3.27)

(3.27) gives Algorithm 4.

3.2 Preconditiong

Convergence of Krylov subspace method depends on the spectrum of the

linear system. Krylov subspace methods show the best convergence if all eigen-
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Algorithm 4 Inexact Uzawa method [4]

1: Compute residual r = f − (Au+BTp) and s = g −Bu
2: Choose Â
3: for k = 0, 1, . . . until

√
‖r‖22 + ‖s‖

2
2 < ǫTOL do

4: Compute w = BÂ−1r− s
5: Compute an approximate solution ẑ of linear equation BÂ−1BT z = w
6: Compute d = Â−1(r−BT ẑ)
7: Update u = u+ d and p = p+ ẑ
8: end for

values are clustered around 1 or away from zero. (3.7), (3.11), and (3.14) are

indefinite and the condition numbers of these matrices are large. Therefore,

some techniques are required that change the spectrum of (3.7), (3.11), and

(3.14).

3.2.1 Algebraic multigrid preconditioner

Multigrid method is one of the most effective iterative solvers for discrete

Poisson problems. If multigrid parameters are appropriately chosen, the rate

of convergence does not depend on the mesh size h [14, 27, 28].

Also multigrid method can be used as an efficient preconditioner for an

iterative solvers. Combining multigrid method with iterative method such as

CG, BiCGstab, GMRES is very popular method to solve a system of linear

equations. A multigrid preconditioner is a very good preconditioner better

than standard one-level ILU-type preconditioner. The major reason is due to

the fact that aims at the efficient reduction of all error components, short

range as well as long range [46].

In this section, we briefly introduce the multigrid method and the algebraic

multigrid method for the P1-nonconforming quadrilateral element.
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Multigrid method Multigrid methods are based on a sequence of meshes

obtained by successive refinement. Suppose we have two level grids Ωh with

width h and Ω2h with width 2h. Let Ah the second order difference operator

defined on Ωh. A two-level grid method solves the linear systems of equations

Ahuh = fh. (3.28)

The basic multigrid consists of two ingredient, smoother and coarse grid cor-

rection. Smoother is an iterative method that reduces the fine grid component

of the error. Many classical iterative methods, for example, Jacobi, damped

Jacobi, Gauss-Seidel, SOR, and so on are effective. Then we need to approx-

imate the error on Ωh by suitalbe procedure on Ω2h. We need the suitable

interpolation operator Ih2h which satisfies

Ih2hv2h = vh ∈ Ωh ,∀v2h ∈ Ω2h (3.29)

and prolongation operator I2hh which satisfies

I2hh vh = v2h ∈ Ω2h ,∀vh ∈ Ωh. (3.30)

Then we can obtain the discrete operator A2h relative to Ω2h

A2h = I2hh AhI
h
2h. (3.31)

It is impossible to compute the error in Ωh, we have to work with residual. Let

M be the smoother. For example, we consider Gauss-Seidel smoother, M is

lower triangular of Ah. After ν steps the smoothed redsidual r(ν) is computed

by

r(ν) = Ahe
(ν) = Ah(I −M

−1Ah)
νe(0). (3.32)
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Then the smoothed residual to the coarse grid can be written as

r̃ = I2hh r(ν). (3.33)

Since I2hh Ahe = I2hh r, e = Ih2hẽ. This gives the coarse grid correction,

I2hh AhI
h
2hẽ = r̃. (3.34)

We can update the solution by using (3.34)

u(ν) ← u(ν) + Ih2hẽ. (3.35)

The two-level grid method solves (3.28) by Algorithm 5

Algorithm 5 Two-level grid methods

1: Choose u0

2: for j = 0, 1, . . . until convergence do
3: Set u(0) = uj

4: Pre-smoothing u(k) = (I −M−1A)u(k−1) +M−1fh, k = 1, . . . , ν
5: Compute residual r(ν) = fh −Ahu

(ν)

6: r̃ = I2hh r(ν)

7: Compute ẽ = A−1
2h r̃

8: Update ũ = u(ν) + Ih2hẽ, Set u
(0) = ũ

9: Post-smoothing u(k) = (I −M−1A)u(k−1) +M−1fh, k = 1, . . . , ν
10: uj+1 = u(ν)

11: end for

Algebraic multigrid for the P1-nonconforming quadrilateral finite

element Since the P1-nonconforming quadrilateral finite element is noncon-

forming and NCh−1
0 6⊂ NCh0 . It is difficult to define the prolongation and in-

terpolation operators. It is possible to describe the algebraic multigrid in the

same way as a geometric multigrid by replacing the terms grids, subgrids, and
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grid points by set of variables, subsets of variables, and single variables [46].

Thus, AMG(Algebraic Multi Grid) is applicable to the matrix which is gener-

ated by nonconforming finite element discretization of the Poisson equation.

The application of AMG consists of two processes. The first process is an au-

tomatic setup phase splitting the set of variables into a set of coarse variables

and a set of fine variables, and defining the interpolation operators. Details

can be found [11, 39, 46]. The second process is to compute the approximate

solution by performing normal multigrid cycling.

In this thesis, we use Stüben’s standard coarsening method to split coarse

and fine variables [47]. Consider a linear system, Ahuh = fh. h represents

the fine level and H represents the coarse level. Let Ωh be the index set

{1, 2, 3, . . . , n}, C be the index set which contains the coarse level indices, and

F be the index set which contains the fine level indices. Then, Ωh = C ∪ F ,

C ∩ F = ∅ and ΩH = C. Define a variable j ∈ Ωh to be strongly n-coupled to

the another variable k, if

−(Ah)j,k ≥ ǫ max
(Ah)j,l<0

|(Ah)j,l| (3.36)

with 0 < ǫ1. Denote the set of all strong n-couplings of variable j by Sj

Sj = {k ∈ Nj | j strongly n-coupled to k} (3.37)

where Nj is neighborhood of a point j defined by

Nj = {k ∈ Ωh | k 6= j, (Ah)j,k 6= 0}, j ∈ Ωh. (3.38)

And introduce the set ST
j of strong transpose n-couplings of j consisting of all
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variables k which are strongly n-coupled to j,

ST
j = {k ∈ Ωh | j ∈ Sk}. (3.39)

Then, we have the following C/F splitting method Algorithm 6.

Algorithm 6 Standard coarsening method

1: C = ∅, F = ∅, U = Ωh

2: Compute λj for j ∈ U
3: if λj 6= 0 then
4: Pick j ∈ U with maximum λj , C = C ∪ {j} and U = U\{j}
5: For all k ∈ ST

j ∩ U , F = F ∪ {k} and U = U\{j}
6: Go to 2
7: end if
8: λj =

∣∣∣ST
j ∩ U

∣∣∣+ 2
∣∣∣ST

j ∩ F
∣∣∣ , j ∈ U

To define interpolation, we use Stüben direct interpolation formula. Let

Cj = C ∩Nj, C
s
j = C ∩ Sj,

Fj = F ∩Nj, F
s
j = F ∩ Sj.

(3.40)

For each j ∈ F , we define the set of interpolatory variables by Pj = Cs
j and

approximate

(Ah)j,jej + αj

∑

k∈Pj

(Ah)j,kek = 0 (3.41)

with

αj =

∑
k∈Nj

(Ah)j,k∑
l∈Pj

(Ah)j,l
. (3.42)

This leads to the interpolation formula

ej =
∑

k∈Pj

wj,kek with wj,k = −αj
(Ah)j,k
(Ah)j,j

. (3.43)
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Since we consider the uniform square mesh with h = 1/N , then the Lapla-

cian matrix obtained by the P1-nonconforming quadrilateral finite element has

the form

[Ax]j,k =

∫

Ω
∇φj · ∇φk =





−2, k = j − (N − 1)− 1,

−2, k = j − (N − 1) + 1,

8, k = j,

−2, k = j + (N − 1)− 1,

−2, k = j + (N − 1) + 1,

0, otherwise.

(3.44)

Note that coefficients of Ax are independent of h. We applied Algorithm 6 to

Ax with ǫ = 0.25. According to [45], the concrete value of ǫ is not critical in

practice and ǫ = 0.25 being a reasonable default value. The coarse and fine

splitting result is shown in Figure 3.1.

3.2.2 Block preconditioners for saddle point problems

There is a class of preconditioners that is applied in the form of sub-blocks

for the velocity and pressure systems separately. These preconditioners are

block preconditioners.

Symmetric case Since νA in (3.14) is symmetric and positive definite,

(3.14) can be solved by using MINRES or Uzawa method. Krylov subspace

method tends to work well only if appropriate preconditioning is used. In [33],

the following theoretical observations are introduced.

30



Figure 3.1: The finest(black circle) and three consecutive AMG levels created
by standard coarsening for N = 24.
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Theorem 2 ([33]). Let

Au =


A BT

C 0





x

y


 =


f

g


 , (3.45)

where A ∈ R
n×n and B,C ∈ R

m×n with n ≥ m.

If A is preconditioned by

P =


A 0

0 CA−1BT


 , (3.46)

then the preconditioned matrix T = P−1A satisfies

T (T − I)(T 2 − T − I) = 0. (3.47)
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It follows that T has at most the four distinct eigenvalues 0, 1, 12 ±
√
5
2 . If T is

nonsingular then it has the three nonzero eigenvalues.

If consideration of symmetry is not important then a similar argument to the

above shows that the choice

P =


A BT

0 CA−1BT


 (3.48)

yield a preconditioned system with exactly the 2 eigenvalues ±1.

Also good approximation of A and BA−1BT are essential when the inexact

Uzawa method is used for solving (3.14).

The suggested preconditioner for the Stokes problem is the block diagonal

matrix 
AMG

0 Q


 (3.49)

where AMG is multigrid cycle for the Laplacian and Q is the pressure mass

matrix [18]

[Q]j,k =

∫

Ω
ψjψk. (3.50)

Also AMG and Q can be used as Â and Ĉ in Algorithm 4.

We have studied the performance of AMG preconditioner previous section.

This preconditioner convergence is independent of h.

Theorem 3 ([18]). For any Stokes problem with ∂Ω = ∂ΩD, discretized using

a uniformly stable mixed approximation on a shape regular, quasi-uniform sub-

division of R2, the pressure Schur complement matrix BA−1BT is spectrally

equivalent to the pressure mass matrix Q:

β2 ≤
(BA−1BTq,q)

(Qq,q)
≤ 1 ∀q ∈ R

m. (3.51)
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Table 3.1: Estimated β2 for Stable PNC
1 -P0

Grid β2

24 × 24 0.2052
25 × 25 0.1926
26 × 26 0.1941
27 × 27 0.1912
28 × 28 0.1893
29 × 29 0.1879

Table 3.2: Extremal eigenvalues for the matrix Q−1BA−1BT for stable PNC
1 -

P0 mixed approximation

Grid λmin λmax

24 × 24 0.2052 1.0000
25 × 25 0.1926 1.0000
26 × 26 0.1941 1.0000
27 × 27 0.1912 1.0000
28 × 28 0.1893 1.0000
29 × 29 0.1879 1.0000

β is the inf-sup constant, is bounded away from zero independently of h, and

the effective condition number satisfies κ(BA−1BT ) ≤ C/(cβ2), where C and

c are the constants given by

ch2 ≤
(Qq,q)

(q,q)
≤ Ch2 ∀q ∈ R

m. (3.52)

Theorem 3 states that the eigenvalues of BA−1BT are bounded below

and above by positive constant for the stable discretization of the stationary

Stokes problem (1.21). Since (3.51) is independent of mesh size h, if we use

(3.49) as a preconditioner for (3.14), then MINRES iteration converges at a

rate independent of h.

To illustrate the tightness of the bounds in (3.51), computed extremal

eigenvalues for the stable PNC
1 -P0 mixed approximations on a sequence of

uniform square grids are given Table 3.2. The upper bound of unity is clearly
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tight. Table 3.1 shows the inf-sup eigenvalue seems to be converging to an

asymptotic value.

Nonsymmetric case Since N in (3.7) and (3.11) are nonsymmetric, pre-

conditioned Krylov method such as GMRES or BiCGstab can be used to solve

the system of linear equations (3.7) and (3.11). Let

F = νA+N or F = νA+N +W. (3.53)

The left and right preconditioners are given by

PR =


F BT

0 Ŝ


 , PL =


F 0

B Ŝ


 , (3.54)

where Ŝ is an approximation to the Schur complement

S = −BF−1BT .

If Ŝ = S, then


F BT

B 0


P−1

R =


F BT

B 0





F

−1 −F−1BT Ŝ−1

0 Ŝ−1


 =


 I 0

BF−1 I




(3.55)

and

P−1
L


F BT

B 0


 =


 F−1 0

−Ŝ−1BF−1 Ŝ−1





F BT

B 0


 =


I F−1BT

0 I


 .

(3.56)

Thus, the convergence of preconditioned Krylov subspace method is guaran-

teed in at most 3 iterations [33]. We need a good approximation of the Schur
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complement to solve (3.7) and (3.11). Elman [17] suggested the approximation

Ŝ−1 = (BBT )−1BFBT (BBT )−1 ≈ S (3.57)

is called the least squares commutator preconditioner. Convergence of GMRES

iteration is mildly dependent on mesh size and Reynolds number [17].

3.3 Test problems

We made FORTRAN and MATLAB programs which implement the stable

PNC
1 -P0 pair for (3.1). Before solving the lid driven square cavity problem, we

solved two test problems to validate our programs. We ran our programs on a

PC with Intel(R) Core(TM) i5 CPU and 8192 MB RAM.

3.3.1 Algebraic multigrid preconditioner

We first test the performance of the AMG preconditioner for the Lapla-

cian matrix obtained by the P1-nonconforming quadrilateral finite element.

Preconditioned CG is applied to solve the two-dimensional Poisson problem

−△u = f, in Ω

u = 0, on ∂Ω
(3.58)

where Ω = [0, 1]2 and the exact solution

u(x, y) = sin(2πx) sin(2πy)(x3 − y4 + x2y2). (3.59)

We construct 5 grid levels and use Gauss-Seidel smoother. The number of

Gauss-Seidel pre-smoothing and post-smoothing steps is 2. We stop the iter-

35



Table 3.3: Convergence results for the Poisson problem, Error

Grid ‖u− uh‖0 order |u− uh|1 order

24 × 24 4.2951E-03 - 3.9914E-01 -
25 × 25 1.0682E-03 2.01 2.0028E-01 0.99
26 × 26 2.6670E-04 2.00 1.0023E-01 1.00
27 × 27 6.6653E-05 2.00 5.0126E-02 1.00
28 × 28 1.6662E-05 2.00 2.5064E-02 1.00
29 × 29 4.1654E-06 2.00 1.2532E-02 1.00

Table 3.4: Convergence results for the Poisson problem, # of iterations

Grid No preconditioning MILU0 AMG

24 × 24 32 14 5
25 × 25 67 21 5
26 × 26 135 32 6
27 × 27 272 48 6
28 × 28 549 70 6
29 × 29 1110 102 6

ation process when
‖rk‖2
‖f‖2

< 10−8 (3.60)

where rk = f −Axk.

Optimal order convergence is observed Table 3.3. Table 3.4 shows that

the AMG preconditioner gives a grid independent convergence for the Poisson

problem.
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Table 3.5: Convergence results for the Stokes problem

Grid ‖u− uh‖0 order |u− uh|1 order ‖p − ph‖0 order

24 × 24 1.0724E-04 - 8.8719E-03 - 2.9449E-02 -
25 × 25 2.6795E-05 2.00 4.4498E-03 1.00 1.4730E-02 1.00
26 × 26 6.6975E-06 2.00 2.2266E-03 1.00 7.3655E-03 1.00
27 × 27 1.6743E-06 2.00 1.1135E-03 1.00 3.6828E-03 1.00
28 × 28 4.1857E-07 2.00 5.5679E-04 1.00 1.8414E-03 1.00
29 × 29 1.0466E-07 2.00 2.7840E-04 1.00 9.2071E-04 1.00

3.3.2 The stationary Stokes problem

The second test is carried out for determining the performance of the block

preconditioner for the Stoke problem.

−ν△u+∇p = f , in Ω

∇ · u = 0, in Ω

u = 0, on ∂Ω

(3.61)

where Ω = [0, 1]2 and the exact solution is

u(x, y) =


−2x

2(x− 1)2y(y − 1)(2y − 1)

2y2(y − 1)2x(x− 1)(2x − 1)


 , (3.62)

p = x2 + y2 −
2

3
(3.63)

and ν = 1. Table 3.5 shows the convergence results for (3.61). Optimal or-

der convergence is observed. Table 3.6 shows that inexact Uzawa method is

efficient iterative solver for the Stokes problem.
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Table 3.6: # of MINRES and inexact Uzawa iteration for the Stokes problem.
In brackets is the number of seconds of CPU time.

Grid MILU0-MINRERS AMG-MINRES inexact Uzawa

24 × 24 53(0.0021) 31(0.0029) 5(0.0015)
25 × 25 82(0.0142) 32(0.0145) 6(0.0082)
26 × 26 119(0.0873) 35(0.0651) 6(0.0370)
27 × 27 184(0.6836) 38(0.3280) 6(0.1841)
28 × 28 277(3.8658) 40(1.3491) 7(0.8288)
29 × 29 418(24.418) 43(6.3345) 7(3.7117)
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Chapter 4

Numerical simulation of lid

driven cavity flow

In this chapter, we discuss how to implement the stable PNC
1 -P0 element

for the lid driven incompressible viscous flow in a square cavity. We compute

the steady state solutions of lid driven cavity flow by using conforming, Q2-Q1

and nonconforming, the stable PNC
1 -P0 finite element and compare our results

with those in published literature to validate the our implementation method.

4.1 Lid driven square cavity flow problem

The lid driven cavity problem is a very well known benchmark problem

for two dimensional steady incompressible Navier-Stokes equations. Numerous

numerical solutions can be found for this problem.
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The lid driven square cavity flow problem is defined as follows:





∂u

∂t
− ν△u+ (u · ∇)u+∇p = 0, in Ω× (0, T ),

∇ · u = 0, in Ω× (0, T ),

u = u0, t = 0,

u = g on ∂Ω× (0, T ),

(4.1)

with Ω = (0, 1) × (0, 1) and T ∈ (0,∞]. The Dirichlet boundary condition is

defined as

g(x, y, t) =





(1, 0), if 0 < x < 1 and y = 1

0, elsewhere on ∂Ω
, ∀t > 0. (4.2)

g is discontinuous at top two corners (0, 1) and (1, 1). The presence of these

singularities where velocity is discontinuous makes difficult to implement nu-

merical methods. There are several ways to overcome corner singularities.

This difficulty has been overcome by regularizing boundary conditions on

the upper lid. g is replaced by a function that vanishes at the corners where

the lid and stationary walls meet. For example, Glowinski [23] solved the lid

driven cavity problem by using the following boundary condition on the top

of the cavity,

fa(x) =





sin
(πx
2a

)
, if 0 ≤ x < a

1, if a ≤ x ≤ 1− a

sin

(
π(1− x)

2a

)
, if 1− a < x ≤ 1

. (4.3)

Shen [44] used the boundary condition for the regularized driven cavity flow,

(16x2(1− x2), 0) on the upper lid.
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Barragy and Carey [5] used a p-type finite element formulation combined

with a strongly graded and refined element mesh. They computed the numer-

ical solutions on 256 × 256. They used weighted integral of velocity at corner

singularities.

The lid driven cavity problem can be solved by using the Chebyshev col-

location method [7]. This method is to subtract off the leading part of the

known asymptotic form of the Navier-Stokes singularities.

Sahin and Owens [42] handled the corner singularities by introducing leaks

over the height of the upper corner finite volumes.

Different numerical solutions of cavity flow yield about the same results for

Re ≤ 1000. However, they start to deviate from each other for large Reynolds

number [19]. The published numerical results in the literature are obtained

by using different numerical methods, the numbers of grids, and boundary

conditions. These factors can affect numerical results of the lid driven cav-

ity problem, comparing our numerical results with those in the literature in

not enough to estimate the accuracy of the numerical results. We will com-

pute numerical solutions of the lid driven cavity problem with and without

modification of the problem. These numerical solutions are different from each

other. Another test for the measurement of accuracy of the numerical solution

is needed.

4.2 Indicators for accuracy

We use three indicators to check the accuracy of numerical solutions.
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Incompressible condition Since we solve the lid driven cavity problem by

using the incompressible condition, numerical solution uh should satisfy

∇ · uh = 0. (4.4)

It is possible to check the incompressible condition by computing

∫

Ω
∇ · uh. (4.5)

Let Th be a partition of Ω into disjoint squares Qj , j = 1, . . . , N2. Since

∇ · u = 0 for all x ∈ Ω,

max
j

∣∣∣∣∣

∫

Qj

∇ · uh

∣∣∣∣∣ (4.6)

is also a good indicator to check the accuracy. (4.5) and (4.6) of the numerical

solution uh should be close to zero.

Compatibility condition for stream function ψ Let u = (u, v). Vortic-

ity ω is defined as

ω =
∂v

∂x
−
∂u

∂y,
(4.7)

and the velocity components have to be

u =
∂ψ

∂y
, v = −

∂ψ

∂x
(4.8)

in relation to the stream function ψ. Then, we have

−△ψ = ω in Ω,

∂ψ

∂n
= g on Γ(= ∂Ω)

(4.9)
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with
∂ψ

∂y
= 0, for y = 0,

∂ψ

∂y
= g, for y = 1,

∂ψ

∂x
= 0, for x = 0,

∂ψ

∂x
= 0, for x = 1

. (4.10)

Compatibility condition gives

∫

Ω
ω dΩ = −

∫

∂Ω
g dΓ. (4.11)

Since g is known and we can compute
∫
Ω ω by using the numerical solution uh,

we can compare two values to check the accuracy of the numerical solutions.

Volumetric flow rate Aydin and Fenner [2] suggested a measurement of the

accuracy of numerical solutions. They computed the net volumetric flow rate,

Q, passing through a vertical line and horizontal line to check the continuity

of the fluid. Let Qu,c and Qv,c be the volumetric flow rate passing through a

vertical line, x = c and horizontal line, y = c, respectively. The volumetric

flow rate values, Qu,c and Qv,c can be computed by

Qu,c =

∣∣∣∣
∫ 1

0
u(c, y) dy

∣∣∣∣ , (4.12)

Qv,c =

∣∣∣∣
∫ 1

0
v(x, c) dx

∣∣∣∣ . (4.13)

4.3 Implementation of the stable P
NC
1

-P0 element

Since nonconforming finite element methods can avoid vertex degrees of

freedom, the boundary values at top left and right corner are not required.
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Thus, we can solve the lid driven cavity problem without modification of the

boundary condition.

Let Ω = [0, 1] × [0, 1] and Th be a partition of Ω into disjoint squares

Qj, j = 1, . . . , N2 with size h × h, h = 1/N . Let NQ be the number of

squares in Th, NQ = N2. The barycenter of Q(k−1)N+j is (jh−h/2, kh−h/2),

j, k = 1, . . . , N . Let N i
v be the number of interior vertices in Th. Then, N

i
v =

(N − 1)2. There are (N + 1)2 nodes on the Ω. Let cj,k be an node located at

(x, y) = ((j − 1)h, (k − 1)h) for j, k = 1, . . . , N + 1.

The approximate solution uh in PNC
1 is represented by

uh =

N i
v∑

j=1

ξj

(
φj
0

)
+

N i
v∑

j=1

ηj

(
0

φj

)
+

N∂∑

j=1

αj

(
φj
0

)
+

N∂∑

j=1

βj

(
0

φj

)
(4.14)

where φj is the global basis functions for P1-nonconforming quadrilateral finite

element, N∂ = (N + 1)2 −N i
v, and α, β, ξ, η ∈ R. We are using the boundary

condition (4.2), the approximate solution uh can be written as

uh =

Nv∑

j=1

ξj

(
φj
0

)
+

Nv∑

j=1

ηj

(
0

φj

)
+

N−1∑

j=1

0.5

(
φj,T
0

)
(4.15)

where φj,T is the global basis functions for P1-nonconforming quadrilateral

finite element located at cj+1,N+1. But

N−1∑

j=1

0.5

(
φj,T
0

)
(4.16)

is not sufficient approximation of the boundary condition on the top of the

cavity. We can have a sufficient approximation of the the boundary condition

on the top of the cavity by introducing DSSY nonconforming finite element

on the top left and right corner elements. This can be achieved as follows:
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Replacing nonconforming P1 by DSSY nonconforming finite element on the

top left and right corner elements. DSSY in reference element, have the form

φ̂1,DSSY =
1

4
+

1

2
x−

3

8
(θ(x)− θ(y)),

φ̂2,DSSY =
1

4
+

1

2
y +

3

8
(θ(x)− θ(y)),

φ̂3,DSSY =
1

4
−

1

2
x−

3

8
(θ(x)− θ(y)),

φ̂4,DSSY =
1

4
−

1

2
y +

3

8
(θ(x)− θ(y)),

(4.17)

where θ(x) = x2− 5
3x

4. Since the continuity across the inter-element interfaces,

the top left element is approximated by

φ̂1,DSSY + φ̂4,DSSY =
1

2
+
x

2
−
y

2
, (4.18)

and the top right element is approximated by

φ̂3,DSSY + φ̂4,DSSY =
1

2
−
x

2
−
y

2
. (4.19)

(4.18) and (4.19) are local basis functions of nonconforming P1 on the top left

and right corner elements. Replacement nonconforming P1 by DSSY noncon-

forming finite element on the top left and right corner element does not affect

coefficients of (3.7), (3.11), and (3.14). Let φ̃j,Q be the DSSY nonconforming

basis functions for element Q. Then, we can obtain the approximate solution,

uh has the form

uh =

Nv∑

j=1

ξj

(
φj
0

)
+

Nv∑

j=1

ηj

(
0

φj

)
+

N−1∑

j=1

0.5

(
φj,T
0

)
+0.5

(
φ̃2,TL + φ̃2,TR

0

)
(4.20)

where TL and TR represent the top left and right corner elements for the

cavity.
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4.4 Numerical simulation

We have computed the steady state solutions of lid driven cavity flow from

Re = 100 to Re = 5000 by using the Piacard correction. The Picard iteration

is terminated when

∥∥∥∥∥∥


f − νAu(k) −Nu(k) −BTp(k)

g −Bu(k)



∥∥∥∥∥∥
≤ 10−10


f

g


 . (4.21)

We solved the regularized driven cavity problem by using the stable PNC
1 -

P0 finite element and Q2 − Q1 conforming finite element. The approximate

solution uh has the form

uh =

Nv∑

j=1

ξj

(
φj
0

)
+

Nv∑

j=1

ηj

(
0

φj

)
+

N−1∑

j=1

γj

(
φj,T
0

)
(4.22)

for the stable PNC
1 -P0 finite element. We used (4.3) as the boundary condition

for the top of the cavity and a parameter a = 1/32 for (4.3).

We computed numerical solutions for the unregularized driven cavity prob-

lem by using the stable PNC
1 -P0 finite element. The approximate solution uh

has the form

uh =

Nv∑

j=1

ξj

(
φj
0

)
+

Nv∑

j=1

ηj

(
0

φj

)
+

N−1∑

j=1

0.5

(
φj,T
0

)
+0.5

(
φ̃2,TL + φ̃2,TR

0

)
(4.23)

for the stable PNC
1 -P0 finite element when unregularized boundary condition

is used. We also computed numerical solutions by using Q2-Q1 conforming

finite element for the lid driven cavity problem with boundary condition which

satisfies

−

∫

∂Ω
g dΓ = −1. (4.24)
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It is required to evaluate values at the top left and right corner points on Ω for

Q2-Q1 conforming finite element. In [18], there are two boundary conditions

for the cavity problem which satisfy (4.24). A leaky cavity boundary condition

is defined as

g =





(1, 0), if 0 ≤ x ≤ 1 and y = 1

0, elsewhere on ∂Ω
(4.25)

and a watertight cavity boundary condition is defined as

g =





(1, 0), if 0 < x < 1 and y = 1

0, elsewhere on ∂Ω
. (4.26)

g(0, 1) = (0, 0) and g(1, 1) = (0, 0) for a watertight cavity boundary condition.

We computed the numerical solutions of lid driven cavity problem with (4.25)

and (4.26) by using Q2-Q1 conforming finite element.

We developed our own FORTRAN and MATLAB codes for the lid driven

cavity problem by using the stable PNC
1 -P0 finite element. And we used IFISS

[36] to compute the numerical solutions of the lid driven cavity problem by

using Q2-Q1 conforming finite element.

For an assessment of the accuracy of the numerical results, (4.5), (4.6),

and (4.11) for the stable PNC
1 -P0 and Q2-Q1 are computed and compared

with the exact values of incompressible and compatibility conditions. Since

∇ · u = 0, the exact values of (4.5) and (4.6) are zero. For unregularized,

leaky, and watertight boundary conditions,

∫

Ω
ω dΩ = −

∫

∂Ω
g dΓ = −1. (4.27)
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Table 4.1: Incompressible and compatibility conditions for the stable PNC
1 -P0.

Grid (4.5) (4.6) (4.11) Regularization
Re = 100
PNC
1 -P0 128× 128 6.1427E-18 4.7684E-07 -1.000000 no
PNC
1 -P0 128× 128 1.3565E-17 9.4849E-08 -0.976776 (4.3)
PNC
1 -P0 256× 256 2.5218E-18 5.9605E-08 -1.000000 no
PNC
1 -P0 256× 256 1.1686E-17 5.8705E-09 -0.977161 (4.3)

Re = 400
PNC
1 -P0 128× 128 2.5167E-17 4.7684E-07 -1.000000 no
PNC
1 -P0 128× 128 2.5129E-17 9.4849E-08 -0.976776 (4.3)
PNC
1 -P0 256× 256 5.1101E-18 5.9605E-08 -1.000000 no
PNC
1 -P0 256× 256 4.8115E-17 5.8705E-09 -0.977161 (4.3)

Re = 1000
PNC
1 -P0 128× 128 5.2660E-18 4.7684E-07 -1.000000 no
PNC
1 -P0 128× 128 7.5021E-18 9.4849E-08 -0.976776 (4.3)
PNC
1 -P0 256× 256 6.5539E-20 5.9605E-08 -1.000000 no
PNC
1 -P0 256× 256 1.7428E-17 5.8705E-09 -0.977161 (4.3)

Re = 2500
PNC
1 -P0 256× 256 2.1456E-17 5.9605E-08 -1.000000 no
PNC
1 -P0 256× 256 1.9819E-17 5.8705E-09 -0.977161 (4.3)

Re = 3200
PNC
1 -P0 256× 256 2.1456E-17 5.9605E-08 -1.000000 no
PNC
1 -P0 256× 256 2.7092E-17 5.8705E-09 -0.977161 (4.3)

Re = 5200
PNC
1 -P0 256× 256 4.7180E-18 5.9605E-08 -1.000000 no
PNC
1 -P0 256× 256 1.7666E-20 5.8705E-09 -0.977161 (4.3)

If we use (4.3),

∫

Ω
ω dΩ = −

∫

∂Ω
g dΓ = −

(
1

8π
+

15

16

)
≈ −0.97728884. (4.28)

As seen in Table 4.1 and Table 4.2, numerical solutions of the lid driven

cavity problem by using both the stable PNC
1 -P0 and Q2-Q1 seem to satisfy

the incompressible condition well. (4.5) of both the stable PNC
1 -P0 and Q2-Q1

are very small. When viewing Table 4.1, one can see that the values of (4.5)

computed by using the stable PNC
1 -P0 finite element are almost zero.

Let Th be treated as a checkerboard with red and black squares. Let R =

{QR1
, . . . , QRNQ/2

} and B = {QB1
, . . . , QBNQ/2

} be the set of red and black
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Table 4.2: Incompressible and compatibility conditions for Q2-Q1.

Grid (4.5) (4.6) (4.11) Regularization
Re = 100
Q2-Q1 128× 128 3.1913E-16 3.3407E-04 -1.000000 leaky
Q2-Q1 128× 128 3.0737E-16 6.1596E-04 -0.997396 watertight
Q2-Q1 128× 128 3.4624E-16 8.0701E-05 -0.977289 (4.3)

Re = 400
Q2-Q1 128× 128 3.8272E-16 3.9730E-04 -1.000000 leaky
Q2-Q1 128× 128 3.9996E-16 6.6730E-04 -0.997396 watertight
Q2-Q1 128× 128 3.7101E-16 8.7626E-05 -0.977289 (4.3)

Re = 1000
Q2-Q1 128× 128 3.8955E-16 5.0746E-04 -1.000000 leaky
Q2-Q1 128× 128 4.0018E-16 7.2274E-04 -0.997396 watertight
Q2-Q1 128× 128 4.0690E-16 1.1443E-04 -0.977289 (4.3)

Re = 2500
Q2-Q1 128× 128 3.3339E-16 5.9441E-04 -1.000000 leaky
Q2-Q1 128× 128 3.6711E-16 1.1836E-03 -0.997396 watertight
Q2-Q1 128× 128 3.0629E-16 3.1994E-04 -0.977289 (4.3)

Re = 3200
Q2-Q1 128× 128 2.7409E-16 6.0657E-04 -1.000000 leaky
Q2-Q1 128× 128 3.1724E-16 1.3685E-03 -0.997396 watertight
Q2-Q1 128× 128 3.7416E-16 2.6122E-04 -0.977289 (4.3)

Re = 5000
Q2-Q1 128× 128 2.0491E-16 6.7909E-04 -1.000000 leaky
Q2-Q1 128× 128 2.0838E-16 1.6240E-03 -0.997396 watertight
Q2-Q1 128× 128 2.4286E-16 4.2536E-04 -0.977289 (4.3)
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squares such that R ∪B = Th. Set QR1
= Q1 and QB1

= Q2. We can observe

that ∣∣∣∣∣

∫

Qj

∇ · uh

∣∣∣∣∣ (4.29)

are the same values for j = 1, . . . , NQ and

∫

QRj

∇ · uh = α, j = 1, . . . , NQ/2,

∫

QBj

∇ · uh = β, j = 1, . . . , NQ/2,

(4.30)

α+ β = 0.

Theorem 4. Let uh be (4.22) or (4.23). And

∫

Ω
qh(∇ · uh) = 0, ∀qh ∈ P

h
cf . (4.31)

Then ∫

Ω
∇ · uh = 0. (4.32)

Proof. Since ∫

Ω

∂

∂x
φ̃2,TL =

∫

Ω

∂

∂x
φ̃2,TR = 0, (4.33)

it is enough to consider (4.22) only.

Let N = 2j , j = 1, . . ., h = 1/N , and NQ = N2. The basis function of P h
cf ,
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ψk has the form

ψk(x) =





1, x ∈ QRk

−1, x ∈ QRk+1

0, otherwise

for k = 1, . . . ,
NQ

2
− 1,

ψNQ/2−1+k(x) =





1, x ∈ QBk

−1, x ∈ QBk+1

0, otherwise

for k = 1, . . . ,
NQ

2
− 1.

(4.34)

where R = {QR1
, . . . , QRNQ/2

} and B = {QB1
, . . . , QBNQ/2

} be the set of red

and black squares such that R∪B = Th. Since φj is linear, ∇ ·uh is constant.

Since
∫
Ω qh(∇ · uh) dx = 0 for all qh ∈ P

h
cf ,

∫

QRj

∇ · uh = α and

∫

QBj

∇ · uh = β for j = 1, . . . ,
NQ

2
. (4.35)

By using

∇φ(k−1)(N−1)+j =





(
1
h ,

1
h

)
, on Q(k−1)N+j

(
− 1

h ,
1
h

)
, on Q(k−1)N+j+1

(
− 1

h ,−
1
h

)
, on QkN+j+1

(
1
h ,−

1
h

)
, on QkN+j

(4.36)
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for j, k = 1, . . . , N − 1, we can obtain

NQ/2∑

l=1

∫

QRl

∇ · uh = h
N−1∑

k=1

(−1)kγk =
NQ

2
α,

NQ/2∑

l=1

∫

QBl

∇ · uh = h
N−1∑

k=1

(−1)k+1γk =
NQ

2
β.

(4.37)

Thus, α+ β = 0. We can obtain

∫

Ω
∇ · uh =

NQ

2
(α+ β) = 0. (4.38)

For PNC
1 -P0 with unregularized boundary condition on 128 × 128 grid,

α = −β = 2×
1

128
×

1

1282
×

N−1∑

k=1

(−1)kγk = −4.7684E-07 (4.39)

and on 256× 256 grid,

α = −β = 2×
1

256
×

1

2562
×

N−1∑

k=1

(−1)kγk = −5.9605E-08. (4.40)

For PNC
1 -P0 with (4.3) on 128× 128 grid,

α = −β = 2×
1

128
×

1

1282
×

N−1∑

k=1

(−1)kγk = −9.4849E-08 (4.41)

and on 256× 256 grid,

α = −β = 2×
1

256
×

1

2562
×

N−1∑

k=1

(−1)kγk = −5.8705E-09. (4.42)
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These values are matched with the results in Table 4.1. In terms of (4.6),

numerical results for the stable PNC
1 -P0 finite element are more accurate than

numerical results of Q2-Q1. Moreover, values of (4.6) for the stable PNC
1 -P0

finite element are independent on Reynolds number. And (4.6) is getting close

to zero as N increases by Theorem 4, when the stable PNC
1 -P0 finite element

is used. In contrast, Table 4.2 shows an increasing tendency of values of (4.6)

for Q2-Q1 as the increase of Reynolds number.

When regularize boundary condition (4.3) is used, (4.11) forQ2-Q1 is closer

to the exact value than (4.11) for the stable PNC
1 -P0. Numerical results of the

stable PNC
1 -P0 with the unregularized boundary condition and Q2-Q1 with the

leaky cavity boundary condition, satisfy the compatibility condition precisely.

The volumetric flow rate values for the the stable PNC
1 -P0 in Table 4.3 and

Table 4.4 are close to zero. Qu,xc and Qv,yc for Q2-Q1 are very large compared

with Qu,xc−h/2, Qu,xc+h/2, Qv,yc−h/2, and Qv,yc+h/2 for the stable PNC
1 -P0.

These three indicators for the accuracy show that our numerical solutions

are accurate. Judged by the incompressible and compatibility conditions, the

numerical solutions computed by using the stable PNC
1 -P0 are more accurate

than those obtained by using Q2-Q1 conforming finite element.

In Table 4.6–Table 4.10, we present the location of the center of the pri-

mary vortex, the stream function ψ, and vorticity ω at vortex center. These

data are provided for 100 ≤ Re ≤ 5000 and available comparison data from

the literatures are also given. We evaluate values of the stream function ψ and

vorticity ω at the center of meshes when the stable PNC
1 -P0 is nonconform-

ing finite element is used. Our numerical solutions computed by using both

the stable PNC
1 -P0 and Q2-Q1 exhibit a good agreement with the literature

data except in the case of the numerical solutions computed by using Q2-Q1

with leaky cavity boundary condition. ψ and ω for the stable PNC
1 -P0 with
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Table 4.3: Volumetric flow rates through vertical lines, (xc, yc): the geometric
center of the cavity.

Grid Qu,xc−h/2 Qu,xc+h/2 Regularization
Re = 100
PNC
1 -P0 128× 128 3.1225E-17 8.8471E-17 no
PNC
1 -P0 128× 128 5.8113E-17 7.4593E-17 (4.3)
PNC
1 -P0 256× 256 1.2120E-13 1.1341E-13 no
PNC
1 -P0 256× 256 1.1432E-15 1.0881E-15 (4.3)

Re = 400
PNC
1 -P0 128× 128 2.8883E-16 1.9863E-16 no
PNC
1 -P0 128× 128 3.1919E-16 1.6220E-16 (4.3)
PNC
1 -P0 256× 256 1.2214E-14 1.2363E-14 no
PNC
1 -P0 256× 256 9.9747E-18 6.2016E-17 (4.3)

Re = 1000
PNC
1 -P0 128× 128 2.0903E-16 2.2551E-17 no
PNC
1 -P0 128× 128 3.1919E-16 1.6220E-16 (4.3)
PNC
1 -P0 256× 256 3.5432E-16 3.6559E-16 no
PNC
1 -P0 256× 256 3.3090E-16 1.6870E-16 (4.3)

Re = 2500
PNC
1 -P0 256× 256 3.2504E-16 3.1507E-16 no
PNC
1 -P0 256× 256 1.3401E-16 2.7279E-16 (4.3)

Re = 3200
PNC
1 -P0 256× 256 3.1485E-16 7.1167E-16 no
PNC
1 -P0 256× 256 1.7998E-16 4.1200E-17 (4.3)

Re = 5000
PNC
1 -P0 256× 256 1.3661E-16 3.3133E-16 no
PNC
1 -P0 256× 256 7.7629E-17 1.3964E-16 (4.3)
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Table 4.4: Volumetric flow rates through horizontal lines, (xc, yc): the geomet-
ric center of the cavity.

Grid Qv,yc−h/2 Qv,yc+h/2 Regularization
Re = 100
PNC
1 -P0 128× 128 1.4250E-14 1.4504E-14 no
PNC
1 -P0 128× 128 7.0072E-15 7.2908E-15 (4.3)
PNC
1 -P0 256× 256 1.5536E-10 1.5424E-10 no
PNC
1 -P0 256× 256 5.0167E-14 5.0838E-14 (4.3)

Re = 400
PNC
1 -P0 128× 128 1.8380E-14 1.8338E-14 no
PNC
1 -P0 128× 128 1.8687E-14 1.8968E-14 (4.3)
PNC
1 -P0 256× 256 5.2912E-12 5.3314E-12 no
PNC
1 -P0 256× 256 3.3504E-15 3.4528E-15 (4.3)

Re = 1000
PNC
1 -P0 128× 128 2.2944E-14 2.2427E-14 no
PNC
1 -P0 128× 128 2.3881E-14 2.4729E-14 (4.3)
PNC
1 -P0 256× 256 5.9878E-14 5.8596E-14 no
PNC
1 -P0 256× 256 2.4952E-14 2.4661E-14 (4.3)

Re = 2500
PNC
1 -P0 256× 256 1.2042E-13 1.2203E-13 no
PNC
1 -P0 256× 256 1.3188E-13 1.3211E-13 (4.3)

Re = 3200
PNC
1 -P0 256× 256 3.3047E-14 3.5256E-14 no
PNC
1 -P0 256× 256 2.2349E-14 2.3200E-14 (4.3)

Re = 5000
PNC
1 -P0 256× 256 4.4101E-14 4.5367E-14 no
PNC
1 -P0 256× 256 5.4802E-14 5.4890E-14 (4.3)

55



Table 4.5: Volumetric flow rates through horizontal lines, (xc, yc): the geomet-
ric center of the cavity.

Grid Qu,xc
Qv,yc

Regularization
Re = 100
Q2-Q1 128× 128 1.3114E-03 9.7804E-08 leaky
Q2-Q1 128× 128 9.3009E-06 6.5662E-08 watertight
Q2-Q1 128× 128 9.3013E-06 6.5937E-08 (4.3)

Re = 400
Q2-Q1 128× 128 1.3170E-03 1.1132E-06 leaky
Q2-Q1 128× 128 1.4876E-05 1.2495E-06 watertight
Q2-Q1 128× 128 1.4889E-05 1.2449E-06 (4.3)

Re = 1000
Q2-Q1 128× 128 1.3264E-03 2.5407E-06 leaky
Q2-Q1 128× 128 2.4097E-05 2.8794E-06 watertight
Q2-Q1 128× 128 2.4155E-05 2.8561E-06 (4.3)

Re = 2500
Q2-Q1 128× 128 1.3431E-03 4.8544E-06 leaky
Q2-Q1 128× 128 4.0694E-05 5.7553E-06 watertight
Q2-Q1 128× 128 4.0864E-05 5.6905E-06 (4.3)

Re = 3200
Q2-Q1 128× 128 1.3494E-03 5.8405E-06 leaky
Q2-Q1 128× 128 4.6986E-05 7.0223E-06 watertight
Q2-Q1 128× 128 4.7202E-05 6.9434E-06 (4.3)

Re = 5000
Q2-Q1 128× 128 1.3634E-03 8.2691E-06 leaky
Q2-Q1 128× 128 6.1055E-05 1.0206E-05 watertight
Q2-Q1 128× 128 6.1368E-05 1.0107E-05 (4.3)
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Table 4.6: Properties of the primary vortex; minimum values of stream function
(ψ), vorticity (ω), and location (x, y) for Re = 100.

Grid ψ ω (x, y) Regularization
PNC
1 -P0 128× 128 -0.103559 3.15120 (0.6133,0.7383) no
PNC
1 -P0 128× 128 -0.103560 3.15336 (0.6133,0.7383) (4.3)
PNC
1 -P0 256× 256 -0.103531 3.16206 (0.6152,0.7363) no
PNC
1 -P0 256× 256 -0.103531 3.16061 (0.6152,0.7363) (4.3)
Q2-Q1 128× 128 -0.102872 3.15485 (0.6172,0.7383) leaky
Q2-Q1 128× 128 -0.103519 3.18101 (0.6172,0.7383) watertight
Q2-Q1 128× 128 -0.103520 3.18085 (0.6172,0.7383) (4.3)
[21] 129× 129 -0.103423 3.16646 (0.6172,0.7344) -
[23] 128× 128 -0.103435 - (0.6172,0.7344) (4.3)
[26] 81× 81 -0.103 - (0.6188,0.7375) -
[29] 256× 256 -0.1030 - (0.6196,0.7373) [29]
[42] 257× 257 -0.103471 3.1655 (0.6189,0.7400) [42]

unregularized boundary condition are bigger than the others results. It might

be due to unregularized boundary condition. We can see the similar situation

that ψ and ω with watertight cavity boundary condition are bigger than ψ

and ω with (4.3).

In Figure 4.1–Figure 4.6, we present the u-velocity profiles along the line

x = 0.5 and the v-velocity profiles along the line y = 0.5 computed by using

the stable PNC
1 -P0 with unregularized boundary condition and Q2-Q1 with

watertight boundary condition for Reynolds numbers ranging from 100 to

5000 and compared our results with those from [19] and [21]. The comparison

shows good agreement for both the stable PNC
1 -P0 and Q2-Q1. As seen from

Figure 4.1 to Figure 4.6, as Reynold number increases the extreme values of

u and v increase in magnitude. We can observe that near linearity of those

profiles in the central core of the cavity in Figure 4.1–Figure 4.6. This is

indicative of a large uniform vorticity region [24].
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Table 4.7: Properties of the primary vortex; minimum values of stream function
(ψ), vorticity (ω), and location (x, y) for Re = 400.

Grid ψ ω (x, y) Regularization
PNC
1 -P0 128× 128 -0.114313 2.30535 (0.5508,0.6055) no
PNC
1 -P0 128× 128 -0.114287 2.30683 (0.5508,0.6055) (4.3)
PNC
1 -P0 256× 256 -0.114071 2.29821 (0.5527,0.6035) no
PNC
1 -P0 256× 256 -0.114048 2.29904 (0.5527,0.6035) (4.3)
Q2-Q1 128× 128 -0.111900 2.26041 (0.5547,0.6055) leaky
Q2-Q1 128× 128 -0.113990 2.29476 (0.5547,0.6055) watertight
Q2-Q1 128× 128 -0.113969 2.29476 (0.5547,0.6055) (4.3)
[21] 257× 257 -0.113909 2.29469 (0.5547,0.6055) -
[23] 128× 128 -0.113909 - (0.5547,0.6094) (4.3)
[26] 81× 81 -0.113 - (0.5500,0.6125) -
[29] 256× 256 -0.1121 - (0.5608,0.6078) [29]
[42] 257× 257 -0.113897 2.2950 (0.5536,0.6075) [42]

Table 4.8: Properties of the primary vortex; minimum values of stream function
(ψ), vorticity (ω), and location (x, y) for Re = 1000.

Grid ψ ω (x, y) Regularization
PNC
1 -P0 128× 128 -0.119888 2.08605 (0.5273,0.5664) no
PNC
1 -P0 128× 128 -0.119783 2.08584 (0.5273,0.5664) (4.3)
PNC
1 -P0 256× 256 -0.119185 2.07215 (0.5293,0.5645) no
PNC
1 -P0 256× 256 -0.119084 2.07146 (0.5293,0.5645) (4.3)
Q2-Q1 128× 128 -0.115376 2.00941 (0.5313,0.5664) leaky
Q2-Q1 128× 128 -0.118941 2.06779 (0.5313,0.5664) watertight
Q2-Q1 128× 128 -0.118846 2.06660 (0.5313,0.5664) (4.3)
[6] 160× 160 -0.118937 2.06775 - [6]
[13] 1024× 1024 -0.11892 2.0674 - [13]
[19] 601× 601 -0.118781 2.06553 (0.5300,0.5650) -
[21] 257× 257 -0.117929 2.04968 (0.5313,0.5625) -
[23] 128× 128 -0.119173 - (0.5313,0.5625) (4.3)
[26] 81× 81 -0.117 - (0.5250,0.5625) -
[29] 256× 256 -0.1178 - (0.5333,0.5647) [29]
[42] 257× 257 -0.118800 2.0664 (0.5335,0.5639) [42]
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Table 4.9: Properties of the primary vortex; minimum values of stream function
(ψ), vorticity (ω), and location (x, y) for Re = 2500.

Grid ψ ω (x, y) Regularization
Re = 2500
PNC
1 -P0 256× 256 -0.122157 1.98920 (0.5215,0.5449) no
PNC
1 -P0 256× 256 -0.121894 1.98509 (0.5215,0.5449) (4.3)
Q2-Q1 128× 128 -0.115717 1.88476 (0.5195,0.5430) leaky
Q2-Q1 128× 128 -0.121492 1.97645 (0.5195,0.5430) watertight
Q2-Q1 128× 128 -0.121250 1.97314 (0.5195,0.5430) (4.3)
[19] 601× 601 -0.121035 1.96968 (0.5200,0.5433) -

Table 4.10: Properties of the primary vortex; minimum values of stream func-
tion (ψ), vorticity (ω), and location (x, y) for Re = 3200.

Grid ψ ω (x, y) Regularization
PNC
1 -P0 256× 256 -0.122726 1.97796 (0.5176,0.5410) no
PNC
1 -P0 256× 256 -0.122407 1.97308 (0.5176,0.5410) (4.3)
Q2-Q1 128× 128 -0.115310 1.85833 (0.5195,0.5430) leaky
Q2-Q1 128× 128 -0.121860 1.96186 (0.5195,0.5391) watertight
Q2-Q1 128× 128 -0.121565 1.95776 (0.5195,0.5391) (4.3)
[21] 257× 257 -0.120377 1.98860 (0.5165,0.5469) -
[23] 128× 128 -0.121768 - (0.5165,0.5352) (4.3)
[26] 161× 161 -0.122 - (0.5125,0.5375) -
[42] 257× 257 -0.121628 1.9593 (0.5201,0.5376) [42]

Table 4.11: Properties of the primary vortex; minimum values of stream func-
tion (ψ), vorticity (ω), and location (x, y) for Re = 5000.

Grid ψ ω (x, y) Regularization
PNC
1 -P0 256× 256 -0.123698 1.96709 (0.5137,0.5371) no
PNC
1 -P0 256× 256 -0.123270 1.96058 (0.5137,0.5371) (4.3)
Q2-Q1 128× 128 -0.114120 1.81321 (0.5156,0.5352) leaky
Q2-Q1 128× 128 -0.122368 1.94277 (0.5156,0.5352) watertight
Q2-Q1 128× 128 -0.121905 1.93620 (0.5156,0.5352) (4.3)
[13] 1024× 1024 -0.12200 1.9343 - [13]
[19] 601× 601 -0.121289 1.92660 (0.5150,0.5350) -
[21] 257× 257 -0.118966 1.86016 (0.5117,0.5352) -
[23] 128× 128 -0.121218 - (0.5156,0.5352) (4.3)
[26] 161× 161 -0.122 - (0.5125,0.5375) -
[29] 256× 256 -0.1214 - (0.5176,0.5373) [29]
[42] 257× 257 -0.122050 1.9392 (0.5134,0.5376) [42]
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Figure 4.1: Profiles of u-velocity along the line x = 0.5 and v-velocity along
y = 0.5 computed by using the stable PNC

1 -P0 with unregularized boundary
condition and Q2-Q1 with watertight boundary condition, Re = 100.
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Figure 4.2: Profiles of u-velocity along the line x = 0.5 and v-velocity along
y = 0.5 computed by using the stable PNC

1 -P0 with unregularized boundary
condition and Q2-Q1 with watertight boundary condition, Re = 400.
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Figure 4.3: Profiles of u-velocity along the line x = 0.5 and v-velocity along
y = 0.5 computed by using the stable PNC

1 -P0 with unregularized boundary
condition and Q2-Q1 with watertight boundary condition, Re = 1000.
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Figure 4.4: Profiles of u-velocity along the line x = 0.5 and v-velocity along
y = 0.5 computed by using the stable PNC

1 -P0 with unregularized boundary
condition and Q2-Q1 with watertight boundary condition, Re = 2500.
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Figure 4.5: Profiles of u-velocity along the line x = 0.5 and v-velocity along
y = 0.5 computed by using the stable PNC

1 -P0 with unregularized boundary
condition and Q2-Q1 with watertight boundary condition, Re = 3200.
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Figure 4.6: Profiles of u-velocity along the line x = 0.5 and v-velocity along
y = 0.5 computed by using the stable PNC

1 -P0 with unregularized boundary
condition and Q2-Q1 with watertight boundary condition, Re = 5000.
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Table 4.12: Values used to plot the contours of the stream function, the vor-
ticity and the pressure

Contours Values
Stream function -0.1175, -0.1150, -0.11, -0.1, -0.09, -0.07, -0.05, -0.03, -0.01,

-1.0E-04, -1.0E-05, -1.0E-07, -1.0E-10, 1.0E-08, 1.0E-07,
1.0E-06, 1.0E-05, 5.0E-05, 1.0E-04, 2.5E-04, 5.0E-04,
1.0E-03, 1.5E-03, 3.0E-03

Vorticity -5.0, -4.0, -3.0, -2.0, -1.0, -0.5, 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0
Pressure -0.1, -0.09, -0.08, -0.07, -0.06, -0.05, -0.04, -0.03, -0.02, -0.01,

0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1

We present computed streamlines in Figure 4.7–Figure 4.14 for Reynolds

number from 100 to 5000. The figures of streamline contours computed by us-

ing the stable PNC
1 -P0 with unregularized boundary condition are very much

like those computed by using Q2-Q1 with watertight boundary condition. We

present results of ψmax and location of the centers of secondary vortices in

Table 4.13–Table 4.15. The values of ψmax and location of ψmax computed by

using both the stable PNC
1 -P0 and Q2-Q1 show a good agreement compared

with those in [19] and [42]. These figures in Figure 4.7–Figure 4.14 show that

the primary vortex starts to move towards the cavity center as Reynolds num-

ber increases. We can observe that the counter-rotating secondary vortices at

the bottom left and right. Both bottom left and right vortices grow in size

as Reynolds number increases. Growth of the bottom right vortex is greater

and its strength becomes greater than those of the bottom left vortex. It can

be seen from Table 4.13 and Table 4.14. The secondary vortex at the top left

is appeared as Reynolds number increases. It grows in size and strength as

Reynolds number increases in Figure 4.11 and Table 4.15.

The vorticity contours are presented in Figure 4.15–Figure 4.17. We can

observe that the gradient in vorticity is negligible in the center of cavity and the

region of very low gradient in vorticity grows as Reynolds number increases.

This shows that the fluid begins to rotate like a rigid body with constant
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Figure 4.7: Streamline computed by using the stable PNC
1 -P0 with unregu-

larized boundary condition and Q2-Q1 with watertight boundary condition,
Re = 100, 400.
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Figure 4.8: Streamline computed by using the stable PNC
1 -P0 with unregu-

larized boundary condition and Q2-Q1 with watertight boundary condition,
Re = 1000, 2500.
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Figure 4.9: Streamline of bottom left vortex computed by using the stable
PNC
1 -P0 with unregularized boundary condition and Q2-Q1 with watertight

boundary condition, Re = 1000, 2500.
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Figure 4.10: Streamline of bottom right vortex computed by using the stable
PNC
1 -P0 with unregularized boundary condition and Q2-Q1 with watertight

boundary condition, Re = 1000, 2500.
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Figure 4.11: Streamline computed by using the stable PNC
1 -P0 with unregu-

larized boundary condition and Q2-Q1 with watertight boundary condition,
Re = 3200, 5000.
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Figure 4.12: Streamline of bottom left vortex computed by using the stable
PNC
1 -P0 with unregularized boundary condition and Q2-Q1 with watertight

boundary condition, Re = 3200, 5000.
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Figure 4.13: Streamline of bottom right vortex computed by using the stable
PNC
1 -P0 with unregularized boundary condition and Q2-Q1 with watertight

boundary condition, Re = 3200, 5000.
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Figure 4.14: Streamline of top left vortex computed by using the stable PNC
1 -P0

with unregularized boundary condition and Q2-Q1 with watertight boundary
condition, Re = 3200, 5000.
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Table 4.13: ψmax and location of the centers of bottom left vortex

Grid ψmax (x, y) Regularization
Re = 100
PNC
1 -P0 256× 256 1.7368E-06 (0.0332,0.0332) no
PNC
1 -P0 256× 256 1.7368E-06 (0.0332,0.0332) (4.3)
Q2-Q1 128× 128 3.0941E-07 (0.0273,0.0313) leaky
Q2-Q1 128× 128 1.7934E-06 (0.0352,0.0352) watertight
Q2-Q1 128× 128 1.7933E-06 (0.0352,0.0352) (4.3)
[42] 257× 257 1.7930E-06 (0.0332,0.0352) [42]

Re = 400
PNC
1 -P0 256× 256 1.4100E-05 (0.0488,0.0488) no
PNC
1 -P0 256× 256 1.4101E-05 (0.0488,0.0488) (4.3)
Q2-Q1 128× 128 1.0052E-05 (0.0469,0.0469) leaky
Q2-Q1 128× 128 1.4329E-05 (0.0508,0.0469) watertight
Q2-Q1 128× 128 1.4330E-05 (0.0508,0.0469) (4.3)
[42] 257× 257 1.4272E-05 (0.0508,0.0461) [42]

Re = 1000
PNC
1 -P0 256× 256 2.3223E-04 (0.0840,0.0762) no
PNC
1 -P0 256× 256 2.3193E-04 (0.0840,0.0762) (4.3)
Q2-Q1 128× 128 2.0364E-04 (0.0820,0.0781) leaky
Q2-Q1 128× 128 2.3337E-04 (0.0820,0.0781) watertight
Q2-Q1 128× 128 2.3312E-04 (0.0820,0.0781) (4.3)
[42] 257× 257 2.3301E-04 (0.0826,0.0776) [42]

Re = 2500
PNC
1 -P0 256× 256 9.2794E-04 (0.0840,0.1113) no
PNC
1 -P0 256× 256 9.2503E-04 (0.0840,0.1113) (4.3)
Q2-Q1 128× 128 8.4410E-04 (0.0859,0.1094) leaky
Q2-Q1 128× 128 9.3084E-04 (0.0859,0.1094) watertight
Q2-Q1 128× 128 9.2841E-04 (0.0859,0.1094) (4.3)
[19] 601× 601 9.2541E-04 (0.0850,0.1100) -

Re = 3200
PNC
1 -P0 256× 256 1.1108E-03 (0.0801,0.1191) no
PNC
1 -P0 256× 256 1.1068E-03 (0.0801,0.1191) (4.3)
Q2-Q1 128× 128 1.0141E-03 (0.0820,0.1172) leaky
Q2-Q1 128× 128 1.1151E-03 (0.0820,0.1172) watertight
Q2-Q1 128× 128 1.1116E-03 (0.0820,0.1172) (4.3)
[42] 257× 257 1.1121E-03 (0.0799,0.1203) [42]

Re = 5000
PNC
1 -P0 256× 256 1.3671E-03 (0.0723,0.1387) no
PNC
1 -P0 256× 256 1.3611E-03 (0.0723,0.1387) (4.3)
Q2-Q1 128× 128 1.2489E-03 (0.0742,0.1328) leaky
Q2-Q1 128× 128 1.3782E-03 (0.0742,0.1367) watertight
Q2-Q1 128× 128 1.3710E-03 (0.0742,0.1367) (4.3)
[42] 257× 257 1.3689E-03 (0.0720,0.1382) [42]
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Table 4.14: ψmax and location of the centers of bottom right vortex

Grid ψmax (x, y) Regularization
Re = 100
PNC
1 -P0 256× 256 1.2597E-05 (0.9434,0.0605) no
PNC
1 -P0 256× 256 1.2606E-05 (0.9434,0.0605) (4.3)
Q2-Q1 128× 128 7.4329E-06 (0.9453,0.0586) leaky
Q2-Q1 128× 128 1.2705E-05 (0.9414, 0.0625) watertight
Q2-Q1 128× 128 1.2715E-05 (0.9414, 0.0625) (4.3)
[42] 257× 257 1.2658E-05 (0.9424,0.0610) [42]

Re = 400
PNC
1 -P0 256× 256 6.4495E-04 (0.8848,0.1230) no
PNC
1 -P0 256× 256 6.4515E-04 (0.8848,0.1230) (4.3)
Q2-Q1 128× 128 5.8921E-04 (0.8867,0.1211) leaky
Q2-Q1 128× 128 6.4393E-04 (0.8867,0.1250) watertight
Q2-Q1 128× 128 6.4415E-04 (0.8867,0.1250) (4.3)
[42] 257× 257 6.6404E-04 (0.8835,0.1203) [42]

Re = 1000
PNC
1 -P0 256× 256 1.7319E-03 (0.8652,0.1113) no
PNC
1 -P0 256× 256 1.7299E-03 (0.8652,0.1113) (4.3)
Q2-Q1 128× 128 1.6103E-03 (0.8672,0.1133) leaky
Q2-Q1 128× 128 1.7286E-03 (0.8633,0.1133) watertight
Q2-Q1 128× 128 1.7267E-03 (0.8633,0.1133) (4.3)
[42] 257× 257 1.7240E-03 (0.8658,0.1119) [42]

Re = 2500
PNC
1 -P0 256× 256 2.6662E-03 (0.8340,0.0918) no
PNC
1 -P0 256× 256 2.6598E-03 (0.8340,0.0918) (4.3)
Q2-Q1 128× 128 2.4696E-03 (0.8359,0.0898) leaky
Q2-Q1 128× 128 2.6621E-03 (0.8320,0.0898) watertight
Q2-Q1 128× 128 2.6560E-03 (0.8320,0.0898) (4.3)
[19] 601× 601 2.6561E-03 (0.83505,0.0917) -

Re = 3200
PNC
1 -P0 256× 256 2.8326E-03 (0.8223,0.0840) no
PNC
1 -P0 256× 256 2.8246E-03 (0.8223,0.0840) (4.3)
Q2-Q1 128× 128 2.6157E-03 (0.8281,0.0859) leaky
Q2-Q1 128× 128 2.8292E-03 (0.8242,0.0859) watertight
Q2-Q1 128× 128 2.8217E-03 (0.8242,0.0859) (4.3)
[42] 257× 257 2.8234E-03 (0.8259,0.0847) [42]

Re = 5000
PNC
1 -P0 256× 256 3.0653E-03 (0.8027,0.0723) no
PNC
1 -P0 256× 256 3.0541E-03 (0.8027,0.0723) (4.3)
Q2-Q1 128× 128 2.8099E-03 (0.8086,0.0742) leaky
Q2-Q1 128× 128 3.0765E-03 (0.8047,0.0742) watertight
Q2-Q1 128× 128 3.0640E-03 (0.8047,0.0742) (4.3)
[42] 257× 257 3.0651E-03 (0.8081,0.0741) [42]
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Table 4.15: ψmax and location of the centers of top left vortex

Grid ψmax (x, y) Regularization
Re = 2500
PNC
1 -P0 256× 256 3.3939E-04 (0.0410,0.8887) no
PNC
1 -P0 256× 256 3.5485E-04 (0.0449,0.8926) (4.3)
Q2-Q1 128× 128 4.1818E-05 (0.0352,0.8789) leaky
Q2-Q1 128× 128 3.4219E-04 (0.0430,0.8906) watertight
Q2-Q1 128× 128 3.5718E-04 (0.0430,0.8906) (4.3)
[19] 601× 601 3.4455E-04 (0.0433,0.8900) -

Re = 3200
PNC
1 -P0 256× 256 7.0799E-04 (0.0527,0.9004) no
PNC
1 -P0 256× 256 7.2547E-04 (0.0527,0.9004) (4.3)
Q2-Q1 128× 128 2.7067E-04 (0.0469,0.8945) leaky
Q2-Q1 128× 128 7.0781E-04 (0.0547,0.8984) watertight
Q2-Q1 128× 128 7.2466E-04 (0.0547,0.9023) (4.3)
[42] 257× 257 7.0580E-04 (0.0530,0.8984) [42]

Re = 5000
PNC
1 -P0 256× 256 1.4582E-03 (0.0645,0.9082) no
PNC
1 -P0 256× 256 1.4680E-03 (0.0645,0.9121) (4.3)
Q2-Q1 128× 128 8.2649E-04 (0.0586,0.9063) leaky
Q2-Q1 128× 128 1.4477E-03 (0.0625,0.9102) watertight
Q2-Q1 128× 128 1.4511E-03 (0.0625,0.9102) (4.3)
[42] 257× 257 1.4383E-03 (0.0621,0.9108) [42]
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angular velocity [42].

The contours of pressure fields are presented in Figure 4.18–Figure 4.20.

It can be seen that the regions of high gradient in pressure become smaller

at the top left and right corner in the cavity as Reynolds number increases.

Especially, the regions of high gradient in pressure at the top left corner is

negligible when Re = 5000.

The figures of vorticity and pressure fields contours computed by using

the stable PNC
1 -P0 with unregularized boundary condition are very much like

those computed by using Q2-Q1 with watertight boundary condition. These

vorticity and pressure contours are well known in the literature, for example

those in [23].
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Figure 4.15: Contours of vorticity computed by using the stable PNC
1 -P0 with

unregularized boundary condition and Q2-Q1 with watertight boundary con-
dition, Re = 100, 400.
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Figure 4.16: Contours of vorticity computed by using the stable PNC
1 -P0 with

unregularized boundary condition and Q2-Q1 with watertight boundary con-
dition, Re = 1000, 2500.
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Figure 4.17: Contours of vorticity computed by using the stable PNC
1 -P0 with

unregularized boundary condition and Q2-Q1 with watertight boundary con-
dition, Re = 3200, 5000.

−5 −5
−5

−
5

−5
−4 −4

−4

−
4

−4

−4

−4

−3 −3
−3

−3

−3

−3

−3

−3

−2 −2
−2

−
2

−2

−2

−2

−2

−2
−2

−2

−2

−2

−2

−2
−2

−2

−1
−1

−1

−1

−1

−1

−1

−1
−

1

−
1

−
1

−1

−
1

−0.5 −0.5

−0.5

−0
.5

−0.5

−0.5

−0.5

−0
.5

−0
.5

−0
.5

−
0.5

−0.5
−0.5

−
0.5

0

0

0

0

0

0

0
0

0

0

0
0

0
0.5

0.5

0.
5

0.5

0.5

0.5

0.
5

0.
5

0.
5

0.5

0.5

0.
5

1

1

1

1

1

1

1
1

1

1

1
1

1
2

2

2

2

2

2

2
2

2

2

2
2

2

3

3 3

3

3

3

3

3
3

3

3

3

3

4
4

4

4

4

4

4

4
4

4

4

5

5

5

5
5

5

5

5 5

5

Re=3200, Stable P
1
NC−P

0
 (256x256), no regularization

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−5 −5

−5

−5

−5

−
5

−5

−5
−5

−5

−4

−4

−4

−4
−

4

−4

−4

−4
−4 −4

−4

−3

−3

−3

−3

−
3

−3 −3

−
3

−3

−3

−3

−3
−

3

−2

−2

−2

−2

−2

−2

−
2

−2

−2

−2

−2
−2

−2

−1

−1

−1

−1

−1

−1

−
1

−1

−1

−1

−1
−

1

−1

−0.5
−0.5

−0
.5

−0.5

−0.5

−0
.5

−0.5

−0.5

−0.5

−0
.5

−
0.

5

−0
.5

0 0

0

0

0

0

0

0
0

0

0

0

0
0

0

0.5 0.5

0.5

0.
5

0.5

0.5

0.5

0.
5

0.
5

0.5
0.5

0.
5

0.
5

0.5

1 1
1

1

1

1

1

1

1
1

1

1
1

1

2 2
2

2

2

2

2

2

2

2

2

2

2

2
2

2

2
2

3 3
3

3

3

3

3

3

4 4
4

4
4

4

4

5 5 5

5

5

5

5

Re=3200, Q
2
−Q

1
 (128x128), watertight

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−5 −5 −5

−
5

−5
−

5

−5

−4 −4
−4

−4
−4

−
4

−4

−3 −3 −3

−
3

−3

−3

−3
−

3

−3

−2 −2
−2

−2

−2

−2

−2

−2

−2−2

−2

−2

−2

−2

−2
−

2−
2

−
2

−2

−1 −1
−1

−1

−1

−1

−1

−1

−1
−

1

−
1

−
1

−1

−
1

−0.5 −0.5

−0.5

−0
.5

−0.5

−0.5

−0.5

−0
.5

−
0.

5

−0
.5

−
0.5

−0.5
−0.5

−
0.5

0 0

0

0

0

0

0

0
0

0

0

0
0

0
0

0.5 0.5

0.5

0.
5

0.5

0.5

0.5

0.
5

0.
5

0.
5

0.5

0.5
0.5

0.
5

1

1

1

1

1

1

1
1

1

1

1
1

1

2

2

2

2

2

2

2
2

2

2

2
2

2

3
3

3

3

3

3

3

3

3
3

3

3

3

3

4

4
4

4

4

4

4

4
4

4

4

4

4

5

5
5

5

5

5

5

5

5
5

5

5

Re=5000, Stable P
1
NC−P

0
 (256x256), no regularization

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−5

−5

−5

−5

−
5

−
5

−5

−5

−5
−5 −5

−5

−4

−4

−4

−4

−4

−4
−4

−
4

−4

−4

−4

−4
−

4

−3

−3

−3

−3

−3

−3

−3

−3

−
3

−3

−3

−3

−
3

−3

−2

−2

−2

−2

−2

−2

−
2

−2

−2

−2

−2
−

2

−2

−1

−1

−1

−1

−1 −1

−1

−
1

−1

−1

−1

−
1

−
1

−1

−0.5

−0.5

−0.5

−0
.5

−0.5 −0.5

−0.5

−
0.

5

−0.5

−0.5

−0.5

−0
.5

−
0.

5

−0
.5

0 0

0

0

0
0

0 0

0

0

0

0

0

0
0

0

0.5 0.5
0.5

0.5

0.
5

0.5

0.5

0.5

0.
5

0.
5

0.5

0.5

0.
5

0.5

0.5

1 1
1

1

1

1

1

1

1
1

1
1

1
1

1

1

2 2
2

2

2

2

2

2

2

2

2

2

2

2
2

2

2
2

2

3 3 3

3

3

3

3
3

3

3
3

4 4 4

4

4
4

4

4

4

5 5 5

5
5

5

5

Re=5000, Q
2
−Q

1
 (128x128), watertight

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

81



Figure 4.18: Contours of pressure fields computed by using the stable PNC
1 -P0

with unregularized boundary condition and Q2-Q1 with watertight boundary
condition, Re = 100, 400.
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Figure 4.19: Contours of pressure fields computed by using the stable PNC
1 -P0

with unregularized boundary condition and Q2-Q1 with watertight boundary
condition, Re = 1000, 2500.
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Figure 4.20: Contours of pressure fields computed by using the stable PNC
1 -P0

with unregularized boundary condition and Q2-Q1 with watertight boundary
condition, Re = 3200, 5000.
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Chapter 5

Conclusion

This thesis has attempted to solve the incompressible flow in a square cav-

ity without smoothing singularities at the top corners of the cavity. Since PNC
1

is to employ the degrees of freedom associated with values at the mid points

of edges, it is not required to impose the values at the vertices. By using this

property, PNC
1 -P0 is possible to solve the lid driven cavity problem without

modification of boundary condition on the top of the cavity. In implemen-

tation of the PNC
1 -P0 for solving the lid driven cavity problem, PNC

1 is not

enough to approximate the unregularized boundary condition on the top of

cavity. DSSY nonconforming finite element has been introduced to approxi-

mate the the boundary condition on the top of the cavity. By adding DSSY

finite element to the elements which are on the top corners in the cavity, it is

possible to approximate the unregularized boundary condition on the top of

the cavity sufficiently. Numerical solutions have been computed by using the

stable PNC
1 -P0 with and without modification of boundary condition. Numer-
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ical solutions have been computed by using conforming Q2-Q1 finite elements

with a leaky, watertight, and regularized boundary conditions for the purpose

of comparison. Three indicators for accuracy of the numerical solution have

been presented. The incompressible condition for a fluid and compatibility

condition for the Poisson equation for the stream function with the Neumann

boundary condition are used to check the accuracy of the numerical solutions.

Our numerical solutions computed by using both the stable PNC
1 -P0 and Q2-

Q1 are in good agreement with those in the literature except in the case of

the numerical solutions computed by using Q2-Q1 with leaky cavity boundary

condition. And our numerical solutions satisfy the incompressible and com-

patibility condition precisely. Numerical results computed by using the stable

PNC
1 -P0 with unregularized boundary conditions show the best results in terms

of satisfying incompressible and compatibility conditions.
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국문초록

본 논문에서는 공동 구조 속의 비압축 유동 문제를 풀 때, 공동 위쪽 양 끝에

존재하는 특이점을 조정하지 않고 수치해를 구할 수 있는 방법을 제시하였다.

비순응 유한 요소법은 유한 요소 끝 점에서 자유도가 부여되지 않으므로, 공동

위쪽 양 끝점에서의 값을 고려하지 않아도 된다. 이 때문에 비순응 유한요소를

이용하면 원래 문제를 수정하지 않고도 정밀한 수치해를 구할 수 있다. 비압축

유동 문제를 풀 때 안정 비순응 P1-P0를 사용하였다. 공동 위쪽의 경계 조건을

정확하게근사하기 위해,공동위쪽양끝에있는유한요소에 DSSY비순응유한

요소를더하였다. 비교를 위해순응유한 요소를 이용하여 수치해를 구하였다. 다

른 연구에서 제시한 수치해와 비교하여 이 논문에서 구한 수치해를 검증하였고,

정확한 해를 구하였음을 확인하였다. 특히 안정 비순응 P1-P0를 사용하여 구한

수치해가 매우 정밀한 것을 알 수 있었다.

주요어: 순응 유한요소, 비순응 유한요소, 안정 비순응 P1-P0 유한요소, DSSY

유한요소 비압축 나비에-스토크스 방정식, 공동구조 유동 문제

학번: 2008-20491
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