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Abstract 

The functional imaging of neuroelectromagnetic sources of 

electroencephalographic (EEG) and magnetoencephalographic (MEG) based on 

distributed source models requires additional information and constraints on the 

source in order to overcome the ill-posedness and to obtain a plausible solution.  

In this dissertation, we present two methods to enhance accuracy of MEG and 

EEG source reconstruction.  

We propose a new cortical source imaging algorithm for integrating 

simultaneously recorded EEG and MEG, which takes into account the different 

sensitivity characteristics of the two modalities with respect to cortical source 

orientations. It is well known that MEG cannot reliably detect neuronal sources with 

radial orientation, whereas EEG is relatively less dependent on the source 

orientations than MEG. However, this intrinsic difference has not previously been 

taken into account in the integrative cortical source imaging using simultaneously 

recorded EEG and MEG data.   

On the other hands, most imaging algorithms explicitly favor either spatially more 

focal or diffuse current source patterns. Naturally, in a situation where both focal and 

extended sources are present or the source is arbitrary distributed, such 

reconstruction algorithms may yield inaccurate estimate. The other algorithm 

proposed in this dissertation improves accuracy of bio-electromagnetic source 

estimation regardless the extension of source distribution. The additional maximum 
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amplitude constraint does successively enhance the localization accuracy in 

EEG/MEG source imaging. The proposed approaches are validated through 

numerical simulations and applied to practical epilepsy measurements and compared 

to the resection region. From the extensive analysis, it will be shown that the 

proposed approaches can enhance the source localization accuracy considerably, 

compared to the conventional approaches. Therefore the proposed methods in this 

dissertation are expected to be a promising approach on the research of inverse 

problem and many clinical applications of EEG and MEG. 

 

Keywords : bioelectromagnetics, source reconstruction method, inverse problem, 

noninvasive functional brain imaging, EEG, MEG, 
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1. Introduction 

1.1 Motivation and Aim 

The functional neuroimaging is a technology to measure an aspect of brain 

function, often with a view to understanding the relationship between activity in 

certain brain area and specific brain function. It is primarily used as a research tool in 

cognitive neuroscience, cognitive psychology, neuropsychology, and social 

neuroscience and has also been used as powerful tools for studying neural processes 

in the normal brain as well as clinical applications including treatment of serious 

neurological and neuropsychological disorders such as epilepsy, depression, and 

Parkinson’s and Alzheimer’s diseases. 

Brain metabolism and neurochemistry can be studied using radioactively labeled 

organic molecules, or probes, that are involved in glucose metabolism or dopamine 

synthesis [1]. Images of dynamic changes in the spatial distribution of these probes 

transported and chemically modified within the brain can be visualized using 

positron emission tomography (PET). These images have spatial resolutions as high 

as 2 mm; however, temporal resolution is highly limited to several minutes. For more 

direct studies of neural activity, one can investigate local hemodynamic changes. As 

neurons become active, they induce much localized changes in blood flow and 

oxygenation levels that can be regarded as the neural activity. Hemodynamic changes 

can be detected using PET [1], functional magnetic resonance imaging (fMRI) [2], 

and transcranial optical imaging [3]. Among these, fMRI is currently the most widely 
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used imaging technique and it can be readily performed using a 1.5T clinical MRI 

magnet, which can be seen in any general hospitals around us. fMRI studies are 

capable of producing spatial resolutions as high as 1-3 mm; however, temporal 

resolution is limited to approximately 1s because of the relatively slow hemodynamic 

response, when compared to electrical neural activity. In addition to the limited 

temporal resolution, interpretation of fMRI data is hampered by the complex 

relationship between the blood oxygenation level dependent (BOLD) changes that 

are detected by fMRI and the underlying neural activity. Regions of BOLD changes 

in fMRI images do not necessarily have one-to-one correspondence with regions of 

electrical neural activity. 

Contrary to the techniques described above, the electro-encephalography (EEG) 

and magnetoencephalography (MEG) measure the electrical neural activity from 

outside of the head. The MEG measures magnetic field generated by the neural 

current inside the head using very sensitive magnetic field sensors based on 

superconductivity [4]. The EEG measures potential differences generated on scalp 

surface by the neural current and its secondary current flowing through volume 

conductors (scalp, skull, CSF, and brain) [5]. EEG and MEG have been widely used 

in clinical and cognitive neuroscience as powerful neuroimaging modalities that can 

estimate neuronal electrical activities with millisecond temporal resolutions 

compared to that of PET, fMRI, and NIRS. In particular, EEG and MEG source 

imaging plays major roles in pre-surgical evaluation and surgical planning for 

patients with intractable drug-resistant epilepsy, because epileptogenic zones are 
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only infrequently identified as lesions on structural MR images. In these 

applications, accurate estimation of neuronal electrical sources is of particular 

importance to reduce the size of the intracranial EEG grids and to avoid 

misplacement of the grid electrode locations [6]. 

Despite their excellent temporal resolution of EEG and MEG, the spatial 

resolutions provided by EEG and MEG are not comparable to that provided by fMRI, 

due to limited spatial samplings, uncertainties in the forward modeling and additive 

noise/artifacts. The spatial resolutions of EEG or MEG can be substantially improved 

by performing source imaging or by solving an inverse problem to estimate the EEG 

or MEG sources [7].  

Recently developed MEG instruments allow for simultaneous recording of 

magnetic and electrical fields originating from brain electric activities, and 

simultaneous EEG and MEG data are routinely recorded in several clinical 

applications [8]. Several new approaches have been proposed to integrate 

simultaneously recorded EEG and MEG signals since Wood [9] first used single-

channel MEG together with simultaneously recorded EEG to identify underlying 

neuronal sources in the somatosensory cortex. The use of more physical recordings is 

expected to enhance the overall localization accuracy compared to single-modality-

based localization [10]. However, several studies show that the integrated EEG/MEG 

imaging method does not always guarantee enhanced localization accuracy [11-16]. 

Therefore, to successfully integrate EEG and MEG data, a new source imaging 

algorithm that can accurately estimate neuronal current distributions is required. To 
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achieve the maximum synergy effect from the multimodal integration of EEG and 

MEG and thus develop a new imaging algorithm, we considered the different 

directional sensitivity characteristics of neuroelectromagnetic source. 

The methods for solving the EEG/MEG source imaging problems can be 

categorized in to several models of neuronal source. First, the equivalent current 

dipole (ECD) model assumes small numbers of current dipoles to approximate the 

distribution of electrical current in brain. In many studies, it has been successfully 

applied for estimating neural source activation. The ECD model is very simple to 

implement and robust to noise. However, the number of ECDs should be determined 

a priori, which is often difficult due to lack of preliminary information. In addition, 

final solutions are highly dependent upon initial locations of the ECDs, even when 

small numbers are localized. Another disadvantage of the ECD model is that it is 

impossible to estimate the distribution of source in the brain. 

In the case of no prior knowledge of the number of source clusters, the current 

density reconstruction (CDR) approach is known to be appropriate for obtaining 

reliable solutions. This model assumes numerous current dipoles located in source 

spaces, usually on tessellated cerebral cortex. Compared to the number of EEG or 

MEG sensors limited to less than 500, the unknown source activities are usually 

much more than 5,000 in the CDR model. Therefore, the source estimation problem 

is known to be underdetermined and ill-posed problem requiring additional 

constraint on the solution in order to obtain a unique solution. One of the 

successfully applied constraints which have been used for the CDR models is that 
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based on the minimum norm of source density. Two famous and popular algorithms, 

minimum norm estimation (MNE) and minimum current estimation (MCE) choose 

the source where the L2 and L1 norm of the current distribution is minimized 

respectively [17, 18]. Various inverse algorithms are proposed to reconstruct the 

neural source as variations of MNE and MCE, for example, low-resolution 

electromagnetic tomography (LORETA) [19] and focal underdetermined system 

solver (FOCUSS) [20]. The reconstructed source with l2 norm minimization, i.e., 

MNE and LORETA is usually distributed over the whole cortical surface region and 

blurred. When the source is concentrated to several regions of the brain, L1 norm 

minimization, i.e., MCE and FOCUSS reconstruct the source more accurately than 

MNE. Naturally, in a situation when sources are distributed with moderate extension 

or both focal and extended sources are distributed on the brain, such reconstruction 

algorithms may yield inaccurate estimate. In this dissertation, we propose a new 

imaging algorithm to reconstruct the focal or spatially extended sources by adding a 

constraint of maximum current amplitude to the inverse problem. This algorithm 

aims at reconstruction the distribution of neural source accurately regardless focal or 

extended source pattern.  

To verify the advantages of two proposed approaches, we applied algorithms to 

MEG and EEG data simulated with a realistic head model and also applied an 

algorithm to localize the epileptic activity in a patient with medically intractable 

epilepsy requiring a respective surgery.  
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1.2 Overview of Chapters 

This dissertation is divided into 5 chapters, references and appendices.   

In chapter 2, basic knowledge on physical models for neuroelectromagnetism, 

which is helpful in order for readers to understand this dissertation is explained. 

Section 2.1 introduces various techniques that have been developed for imaging 

brain functionalities. Section 2.2 explains brief history and measuring equipment of 

EEG and MEG. Section 2.3 describes how neural electrical sources in brain are 

generated and the several properties of neural source currents.  

In chapter 3, conventional mathematical algorithms to solve neuroelectromagnetic 

forward and inverse problems are introduced. Section 3.1 introduces basic concepts 

and equations to define the forward problem. Section 3.2 presents conventional 

inverse methods to reconstruct the source distribution.  

Chapter 4 presents the preprocessing steps and quantification metrics to evaluate 

the reconstructed distributed source. In section 4.1, basic simulation set-ups used in 

this study and preprocessing step for EEG and MEG analysis are described. In 

section 4.2, conventional and proposed metrics which is useful to evaluate and 

quantify the reconstructed sources is presented.  

Chapter 5 presents a new cortical source imaging algorithm for integrating 

simultaneously recorded EEG and MEG, which takes into account the different 

sensitivity characteristics of the two modalities with respect to cortical source 

orientations. Numerical simulation results also provided. Numerical case study and 

massive simulation are presented to evaluate the proposed inverse method. 
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Chapter 6 presents a new inverse algorithm for the improvement of bio-

electromagnetic source estimation regardless the extension of source distribution. 

The proposed methods is evaluated and compared to the conventional methods 

through the massive simulation and applied to practical MEG measurements to 

localize the epileptic zone.  

In chapter 7, conclusion of this dissertation is stated based on the results given in 

chapter 5 and 6. 
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2. Basics of Functional Neuroimaging 

2.1 Functional Neuroimaging 

Modern imaging technologies provide the opportunity for non-invasive in vivo 

study and can provide measurements of local neuronal activity of the human brain. 

These brain imaging modalities can be divided into two global categories.  

Structural imaging represents a range of measurement techniques which can 

display anatomical information of the human brain. These modalities include X-ray, 

computed tomopraghy (CT), magnetic resonance imaging (MRI)  and ultrasound 

scanning (US). 

The other category is functional imaging which investigates human brain function 

in a noninvasive way. Modalities in this category are based on electrophysiology 

(EEG/MEG), metabolism (fMRI), and neurochemistry (PET). The imaging 

techniques have been used as powerful tools for studying neural processes in 

cognitive neuroscience, cognitive psychology, neuropsychology, and social 

neuroscience as well as clinical applications including treatment of serious 

neurological and neuropsychological disorders such as epilepsy, depression, and 

Parkinson’s and Alzheimer’s diseases.  

Functional imaging represents a range of measurement techniques in which the 

aim is to extract quantitative information about physiological function. Although 

high-resolution images are desirable, the emphasis is on the extraction of 

physiological parameters rather than the visual interpretation of the Structural images. 
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PET and fMRI measure changes in the composition of blood near a neural event. 

Because measurable blood changes are slow (on the order of seconds), these methods 

are much worse at measuring the time-course of neural events, but are generally 

better at measuring the location. In addition to the limited temporal resolution, 

interpretation of fMRI data is hampered by the complex relationship between the 

blood oxygenation level dependent (BOLD) changes that are detected by fMRI and 

the underlying neural activity. Regions of BOLD changes in fMRI images do not 

necessarily correspond one-to-one with regions of electrical neural activity [7]. 

Contrary to fMRI and PET, EEG and MEG measures the electrical brain activity. 

The EEG measures potential differences generated on scalp surface by the neural 

current flowing through volume conductors (scalp, skull, CSF, and brain). The MEG 

measures magnetic field generated by the neural current inside the head using very 

sensitive magnetic field sensors based on superconductivity (SQUID – 

Superconducting QUantum Interference Device). They directly measure electrical 

brain activity and offer superior temporal resolution compared to PET or fMRI. 

Sampling of electromagnetic brain signals at millisecond intervals is readily achieved 

and is limited only by the analog-to-digital (AD) conversion rate of the 

measurements. Resolution is limited by the relatively small number of spatial 

measurements (a few hundred in MEG or EEG versus tens of thousands or more in 

PET or fMRI) and the inherent ambiguity of the electromagnetic inverse problem 

when ECD model is adapted. Table 2.1 summarizes main features of functional 

neuroimaging modalities 
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Table 2.1. Comparison of functional neuroimaging modalities 

Modalities Physics Spatial 
resolution (mm) 

Temporal 
resolution 

PET neurochemistry 2 ~ 10 20s ~ 1min 

fMRI hemodynamics 1 ~ 3 1s ~ 8s 

MEG neuromagnetics 3 ~ 10 > 1 ms 

EEG neuroelectrics 5 ~ 20 > 1 ms 
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2.2 Measurement of EEG and MEG 

2.2.1 EEG 

Electroencephalography (EEG) proposed by hans Berger in 1924 is a non-invasive 

technique and refers to the recording of the brain's spontaneous electrical activity 

over a short period of time, usually 20–40 minutes, as recorded from multiple 

electrodes placed on the scalp [21, 22]. A typical adult human EEG signal is about 

10µV to 200 µV in amplitude when measured from the scalp. A commonly used 

sensitivity of EEG device is 5-10 µV. Since EEG has millisecond-range temporal 

resolution, EEG has been the most successful clinical tool, especially in studying 

epilepsy, where seizures are characterized by highly abnormal electrical behavior in 

neurons in epileptogenic regions. From the initial stages of EEG, the epileptic studies 

have been main applications of EEG [23, 24].  

Many EEG devices are significantly cheaper than all other techniques, therefore, 

can be used in more places than fMRI, PET or MEG, as these techniques require 

heavy and immobile equipment. For example, MEG requires equipment consisting of 

liquid helium-cooled detectors that can be used only in magnetically shielded rooms, 

altogether costing upwards of several million dollars and fMRI requires the use of a 

1-ton magnet in, again, a shielded room. Recenly mobile and wireless EEG recording 

devices with dry electrodes in Figure 2.1 (a) have been prensented in the field of 

brain computer interfaces and neurofeedback. [25, 26] 

 However, the spatial resolution of the EEG techniques is limited due to layers of 

CSF, skull, and scalp between the electrodes and the current source in the brain. 
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Consequently, the electrical potential distribution on the scalp is blurred and it is 

difficult to determine the location of regions of electrically activity. To enhance the 

spatial resolution, the number of sensor has been increased. As for the sensor 

configurations illustrated in Figure 2.2 (a), 10-20 electrodes system has been widely 

used as an international standard, where electrodes are placed at 10 and 20% 

fractions of the distances between anatomical landmarks of the skull, being nasion, 

inion, and the pre-auricular points. Recent EEG system provides high density EEG 

recordings with 256 electrodes as shown Figure 2.2 (b).  
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Figure 2.1. EEG device with 1 channel (produced by NeuroSky) 

 

 

 

Figure 2.2. EEG headcaps: (a) 32 channels (international 10/20 layout) (b) 256 channels 

(produced by BioSemi) 
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2.2.2 MEG 

EEG scalp voltages are on the order of tens of microvolts and thus readily 

measured using relatively low-cost scalp electrodes and amplifiers. In contrast, 

magnetic field generated by neural currents, MEG first measured by David Cohen is 

very weak, which is ranged from 10fT to 1pT [4]. Note that The Strength of Earth's 

magnetic field at 0° latitude is about 31µT. To reduce the magnetic background noise, 

the measurements were made in a magnetically shielded room. At first, a single 

SQUID detector was used to successively measure the magnetic field at a number of 

points around the subject’s head. This was cumbersome, and in the 1980s, MEG 

manufacturers began to arrange multiple sensors into arrays to cover a larger area of 

the head. Recent MEG arrays are set in helmet-shaped dewar that typically contain 

about 300 sensors, covering most of the head as shown in Figure 2.3. In this way, 

MEG signals of a subject or patient can now be accumulated rapidly and efficiently.  

MEG is much more expensive than EEG, due to expensive equipment with 

shielded chambers, cryostats, and SQUIDs. On the other hand, MEG measurements 

are easier to perform without attached electrodes to the skin and spatial resolution is 

higher than EEG. While EEG is extremely sensitive to the effect of the secondary or 

volume currents, MEG is more sensitive to the primary current sources in which we 

are typically more interested.  

More recently, MEG and EEG have come to be viewed as complementary rather 

than competing modalities. Recent MEG systems are equipped for simultaneous 

acquisition of both MEG and EEG data. As we shall see, inverse methods for the two 
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modalities are very closely related and can be combined and optimized for hybrid 

source localization in Chapter 5.  

 

 

 

 

 

Figure 2.3. Whole-head MEG system produced by Elekta Neuromag (left), and MEG 

sensors using low-temperature electronics cooled by liquid helium (right). EEG and MEG 

are recorded simultaneously with 306 MEG channels and 128 EEG channels. 
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2.3 Anatomy of Human Brain  

The human brain consists of about one hundred thousand million nerve cells called 

neurons. Each neuron consists of a cell body, many short processes of the soma, and 

a long nerve fiber. The nucleus is embedded in the body or soma of the cell. The cell 

membrane forms branches called dendrites that project out from the further branches. 

Furthermore, a single fiber called the axon starts from the stem of the soma. A large 

number of afferent nerve fibers connect the soma and the dendrites with other 

neurons or receptor cells via specialized junctions, the synapses. The axon is 

responsible for transmitting the electrical impulses known as action potentials to 

other neurons. In the brain, axons typically terminate at synapses on the dendrites, 

although other types of connections also exist. Figure 2.4 (a) shows a schematic 

structure of a typical cortical neuron and Figure 2.4 (b) shows arrangement of a 

neuron. As seen from the figure, the dendrites of cortical neurons generally called 

pyramidal neurons are parallel to each other, so that they tend to be perpendicular to 

the cortical surface. Since neurons guide the current flow, the resultant direction of 

the electrical current flowing in the dendrites is also perpendicular to the cortical 

sheet of gray matter [28]. 
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(a)                             (b) 

Figure 2.4. (a) Schematic structure of a typical cortical neuron, and (b) Arrangement of 

neurons  

Most of neurons in human brain (over 90%) are located in the gray matter of 

cerebral cortex and, as we know, EEG and MEG measures electrical activities 

generated by the neurons. Thus, to know the structures of cerebral cortex, especially 

along cortical surface, is very important for neuroelectromagnetic inverse problem. 

Figure 2.5 shows a human brain viewed from the left side, with main anatomical 

features identified. In EEG and MEG, we are usually concerned with the uppermost 

layer of the brain, the cerebral cortex, which is a 2~4 mm thick sheet of gray matter. 

The cortex has a total surface area of about 2500cm2, folded in a very complicated 

way. The folded cortex structure consists of small valleys (sulcus and gyrus) and 

large grooves called fissures. The longitudinal fissure divides the brain into two 

hemispheres. The left and right halves are divided into lobes by two deep grooves. 

The Rolandic fissure runs down the side of both hemispheres, while the Sylvian 

fissure is almost horizontal. There are four lobes in both halves of the cortex: frontal, 
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parietal, temporal, and occipital. Most regions of the cortex have been mapped 

functionally. For example, the occipital lobe is mainly related to visual stimuli 

(visual cortex). The temporal lobe and parietal lobe are related to auditory stimuli 

(auditory cortex) and motor-somatosensory stimuli (motor cortex and somatosensory 

cortex), respectively. The frontal lobe is generally believed to be related to higher 

brain functions. For more information on the brain anatomy and functions, refer to 

[28]. 
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(a) 

 

(b) 

Figure 2.5. Basic anatomical structures of human brain: (a) View from left side; (b) Cross-

sectional view.  



 - 28 - 

From the previous explanations on the mechanisms of neuroelectromagnetic fields, 

it can be readily imagined that considering volume conduction is very important to 

calculate electromagnetic field quantities generated by neural currents (usually 

referred to as forward problems). With respect to different conductivity profiles, the 

structures of a human head are roughly classified into four different regions: brain, 

cerebrospinal fluid (CSF), skull, and scalp. Table 2.2 shows typical conductivity 

values, when assumed that each region has homogeneous and isotropic conductivity 

[4].  

The most important point in the above conductivity profile is that the conductivity 

of the skull is smaller than the other parts. MEG measures magnetic field generated 

by the secondary current, and thus the irregular and weak currents in the skull and on 

the scalp can be ignored as contributors to the magnetic field. Instead, the MEG 

mainly measures magnetic field produced by primary current.  

Table 2.2. Typical conductivity values for different regions 

Regions 
Absolute Conductivity 

(S/m) 
Relative Conductivity 

Brain 0.22 1 

CSF 1.79 8 

Skull 0.014 1/16 

Scalp 0.22 1 
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2.4 Generation of Neuroelectromagnetic Fields 

It is believed that most measurable extracranial fields are generated by the 

postsynaptic potential, not by the action potential, because the action potentials are 

not very likely to occur synchronously in large numbers [5, 21]. Also postsynaptic 

potentials tend to cancel each other in radially symmetric neurons. If, however, large 

numbers of dendrites are arranged in a parallel way, net effect can be observed. As 

stated before, dendrites of large pyramidal neurons are arranged perpendicularly to 

the cortical surface in gray matter. Therefore, if they are activated synchronously, 

measurable electromagnetic fields can be induced outside the head. 

For the cerebral cortex, researchers first focused on clarifying the strength and 

extension of the actual current source. In a pioneer work, Cooper concluded that a 

synchronous activation of a cortical area of 6 cm2 is required to produce observable 

signal in the human EEG data [29], The threshold cortical area for an interictal spike 

to be seen by the scalp electrodes is 10 cm2 [30, 31]. More contemporary studies 

using simultaneous magnetoencephalographic (MEG) and subdural EEG recordings 

revealed that just an area of about 4 cm2 of synchronized cortical activity is 

necessary to produce an observable MEG signal [32, 33].  

Usually, the current-dipole moments required to explain the measured magnetic-

field strengths outside the head is 10nAm [4] or 100nAm [34]. Therefore, about a 

million synapses must be simultaneously active during a typical evoked response. 

Since there are approximately 105 pyramidal cells per mm2 of cortex and thousands 

of synapses per neuron, the simultaneous activation of as few as one synapse in a 
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thousand over an area of one square mil1imeter would suffice to produce a detectable 

signa1. In practice, activation of larger areas is necessary because there is partial 

cancellation of the generated electromagnetic fields owing to source currents flowing 

in opposite directions in neighboring cortical regions. This is also illustrated by a 

more realistic estimate based on measured current densities, 100-250 nA/mm2 [4]. 

Assuming this estimate over the cortical sheet thickness of 1 mm [35], a dipole moment 

of 10 nAm would correspond to 40 mm2 of active cortex.  
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3. Forward and Inverse Problems 

In order to estimate neural current sources with measured EEG or MEG signal, 

mathematical formulation for generation of neuro-electromagnetic fields should be 

preceeded.  

 

3.1 Neuroelectromagnetic Forward Problem 

3.1.1 Quasi-Static Approximation 

The useful frequency spectrum for electrophysiological signals in MEG and EEG 

is typically below 1kHz, and most studies deal with frequencies between 0.1 and 100 

Hz. Consequently, the physics of MEG and EEG can be described by the quasi-static 

approximation of Maxwell equations. The quasi-static approximation can be justified 

simply by calculating characteristic wavelength of the neuro-electromagnetic fields 

[4]: When we assume frequency of the neural signals as 100 Hz, the wavelength is 

65m, which is much longer than the diameter of the head.  

On the other hand, please note that the permeability of the head is that of free 

space, i.e., μ = μ0. By synthesizing these facts, we can rewrite the Maxwell’s 

equations as follows: 

0/ερ=⋅∇ E ,                        (3.1) 

0=×∇ E ,                          (3.2) 
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0=⋅∇ B ,                          (3.3) 

JB 0µ=×∇ ,                        (3.4) 

where E is the electric field intensity, B is the magnetic flux density, J is the current 

density, and ρ is the charge density. From (3.2), the electric field can be expressed 

with a scalar potential,  

V∇−=E .                         (3.5) 

The use of V considerably simplifies derivations of formulas for electromagnetic 

fields. 

3.1.2 Analytic Formulation 

The forward problem in neuroelectromagnetism is to calculate magnetic field B(r) 

or electric potential V(r) outside the head from a given primary current distribution 

Jv(r′) within the brain. We will assume the whole intracranial volume as piecewise 

homogeneous conductors. If we assume that the head consists of a set of contiguous 

regions with constant isotropic conductivity σi, i = 1,…,3, representing the brain, 

skull and scalp for instance, we can derive, from the Biot-Savart law, a relationship 

between measured magnetic field B(r) and electric potential on the interfaces of 

adjacent regions V(r′) as: 

∑ ∫ ×−+=
ij

S ijji
ij R
V 'dSRrrBrB 3

0
0 )'()(

4
)()( σσ

π
µ ,        (3.6) 

where r is the point where the field is computed, R = |R| = | r – r′ |, and the primed 
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symbols refer to quantities in the source region. The B0(r) is the magnetic field due 

to the primary current only. The second term is the volume current contributions to 

the magnetic field formed as a sum of surface integrals over the brain-skull, skull-

scalp, and scalp-air boundaries. The B0(r) can be evaluated as 

∫ ×= ')'(
4

)( 3
0

0 dv
R

p
G

RrJrB
p
µ .              (3.7) 

From (3.7), we can see that potentials on interface surfaces should be known to 

calculate magnetic field at the measuring point r. The interface potentials can be 

calculated by solving the following integral equation: 

0 0( ) ( ) 2 ( )

1 '( ) ( ') ( ') ,
2 ij

i j

i j S
ij

V V

V d

σ σ σ

σ σ
π

+ =

+ − Ω∑ ∫ r

r r

r r
         (3.8) 

where ijS∈r , and σ 0 is the unit conductivity σ 0 = 1/(Ωm). Note that 

'
r dSrrrrr ijd ⋅−−−=Ω − )'(|'|)'( 3               (3.9) 

is the solid angle subtended at r by the surface element 'dS ij  at r′.  

V0(r) is a primary potential due to the primary current in an infinite homogeneous 

medium with unit conductivity and can be expressed as 

∫
⋅∇

=
G

p

dv
R

V ')'('
4

1)(
0

0
rJr

pσ
.               (3.10) 
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The simplest approach to calculate magnetic fields or electric potentials outside 

the head is to assume the head as a single sphere or a set of nested concentric 

homogeneous spherical shells. Then, the basic equations given in (3.6) and (3.8) can 

be solved by simple analytic formulas. This rough assumption is sometimes useful 

for many clinical and research applications, especially when heavy iterative 

processes are required. 

In the homogeneous single sphere, the magnetic field induced by a current dipole 

Q can be expressed as 

0
2

( ) ( , )
( )

4 ( , )
Q Q Q

Q

F F
B r

F
µ
π

× − × ⋅ ∇
=

Q r Q r r r r
r r

,           (3.11) 

where 

2( , ) ( )Q QF a ra r= + − ⋅r r r r ,                (3.12) 

with a = (r – rQ), a = | a |, and r = | r | [36]. An interesting point in (3.11) is that radial 

primary current does not generate any magnetic field. This is true for any axially 

symmetric current in an axially symmetric conductor. Recent studies have insisted 

that the spherical volume conductor model could substitute for a realistic head model, 

especially in MEG study [37]. 
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Likewise, the surface electric potential generated by the current dipole Q can be 

expressed as 

3 2

cos1{ 2 [ ]}
4 cos

Q Q

Q

r r
V

a r a r a r
ϕ

πs ϕ
−

= + +
+ −

r rQ a r ,        (3.13) 

where φ is the angle between r and rQ [38]. Contrary to MEG cases, to use the 

spherical conductor model in EEG, positions of electrodes should be modified. 

However, such modification may yield rather severe errors because general shapes of 

the heads are close to ellipsoids, not spheres. Moreover, the results of forward 

calculation in EEG are highly influenced by the relatively low conductivity of the 

skull, and thus the rough approximation has proved to be inadequate for EEG studies.  

3.1.3 Numerical Approach 

The boundary element method (BEM) offers the opportunity to account for the 

individual, non-spherical shape of the main inter-tissue boundaries within the head, 

such as scalp surface, inner and outer boundaries of the skull, surface of the brain, 

and possibly ventricles. Each of the boundaries is discretized into triangular elements. 

Figure 3.1 shows an example of a typical 3-layer model [39]. 
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Figure 3.1. A typical boundary element model of human head. Brain surface is generally 

excluded in the BEM model. 

To calculate magnetic fields induced by neural source in MEG, equation (3.6) 

should be solved. To calculate (3.8), surface potentials should be evaluated at all 

elements using (3.8). The process is very straightforward and thus the magnetic fields 

can be easily evaluated using simple surface integrations. In EEG, the surface 

potentials calculated from (3.8) can be directly used to evaluate the scalp potentials. 

In any cases, the equation (3.8) should be solved using the BEM. 

For a node k, the (3.8) can be discretized as 

( ) ( )
, , 0 0,

1

1( ) 2 ( ) ( ') '
2

e

ie

N
ie ie

i k j k k k i j ie
ie

V V V dσ σ σ σ σ
π ∆

=

+ = + −∑ ∫ r S ,  (3.14) 

where Ne is the number of elements, ie is the element index, and the integration term 

represents a surface integral over the element. 

Although the finite element method (FEM) is the most widely used approach to 
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solve various kinds of differential equations in many engineering research fields, it 

has rarely been applied to the analysis of neuroelectromagnetic fields [40, 41]. The 

main reason is that generating tetrahedral elements is much more difficult than 

generating triangular elements for the BEM. Moreover, to detail complex structures 

inside the human head, great number of elements and nodes are required, yielding 

higher memory requirement and heavy computational burden. The main advantage of 

the FEM is that it can consider the inhomogeneity and anisotropy of the brain tissue, 

especially anisotropy of white matter originated from neuronal fibers. To estimate the 

fiber track, recently developed technique based on diffusion tensor MRI (DT-MRI) 

technology has been studied. The DT-MRI probes the microscopic diffusion 

properties of water molecules within the tissues of the brain. The conductivity of the 

tissues can then be estimated by the diffusion values [42]. However, this technique is 

still under investigation and at the present level of analysis, we largely ignore these 

complications. 

Some researchers have tried to apply the finite volume method (FVM) for the 

MEG/EEG forward problems [43, 44]. The FVM can also consider anisotropic 

volume conduction. Contrary to the FEM, the FVM can always ensure continuity of 

secondary current flow, which is physiologically more plausible. However, it has a 

critical problem that kinds of possible elements are highly restricted – either prism 

elements or brick elements.  

When all the above facts are considered, the BEM is thought to be currently the 

most adequate method to solve the MEG/EEG forward problems. Hence, all the 
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forward calculations that will be presented in this dissertation are based on the BEM. 

 

3.1.4 Linearization of Forward Problem 

Regardless of the head model, the electric potential and the magnetic field 

measurements are often assumed to be linear with respect to the dipoles moment j. 

The electric potential or magnetic field observed at r can be expressed as: 

( ) ( , ')r a r r j= Ts ,                       (3.15) 

where a(r,r') is a gain vector obtained as the solution to either the electric or 

magnetic forward problem for a dipole located at r'. For multiple dipoles located at ri, 

the observation is simply linear of the individual contributions given by 

( ) ( , ') .r r r=∑ i i
i

s a j                      (3.16) 

For The EEG or MEG measurements at ns sensor, the observation generated by nx 

dipoles can be expressed with matrix multiplication as follows: 
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        (3.17) 

In this dissertation, EEG and MEG leadfield matrix, A is calculated using (3.6) and 

(3.8).   
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3.2 Neuroelectromagnetic Inverse Problem  

Finding underlying neural sources from given EEG/MEG data is called EEG/MEG 

inverse problems which are known to be ill-posed problems. The ill-posed problems 

can generally be solved by introducing priors on the solutions. This chapter describes 

several approaches in EEG/MEG inverse problem with CDR model. source imaging 

with CDR model assume that unknown sources are distributed in space and the 

unknwon parameters are the strengths of the distributed sources. 

 

3.2.1 Distributed Source Model  

Distributed source model, sometimes referred to as current density reconstruction, 

assumes a lot of scattered (or distributed) dipole sources with fixed locations and/or 

orientations in the whole brain volume or on the cortical surface, and then estimates 

their amplitudes from the data. This approach does not require any a priori 

information on the numbers and locations of dipoles.  

Dale and Sereno [45] first proposed constraining the source space into 

anatomically known locations (interface between white and gray matter of cerebral 

cortex) and orientations (perpendicular to the cortical surface). The anatomically 

constrained distributed source model is usually called a cortically distributed source 

model. Therefore the distributed source reconstruction problem can be stated as 

As x= ,                          (3.18) 

where s is ns by 1 measurement vector containing the electric potentials or magnetic 

field, x is a nx by 1 solution vector representing magnitude of normally oriented 
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neuronal current density distributed on the cortical surface, A is the leadfield matrix 

representing the system transfer coefficients from each source to each measuring 

point.  

Although the measured data s do not give the source strengths x unambiguously if 

the number of discretized sources is larger than the number of sensors, a minimum 

norm estimate of x can be calculated as a solution of  

min subject to x     s x.A=                 (3.19) 

This approach has different forms depending on which norm is selected. 

 

3.2.2 L2 Norm Minimization Approach 

The concept of the distributed source model was originated by Hämäläinen and 

Ilmoniemi’s study [46]. They assumed a lot of dipole sources distributed at regular 

points, or volume pixel (voxel), and estimated the orientations and magnitudes of 

their moment vectors using minimum norm estimation (MNE), which selects the 

solution where the L2 norm of the current distribution was smallest. When the L2 

norm is adapted, the minimum L2 norm solution solves optimization problem  

2
min subject to A= x     s x.                 (3.20) 

A well-known procedure for determining the minimum or maximum of a function 

subject to equality constraints is the Lagrange multiplier method.      

We introduce Lagrange multipliers: 

( , ) ( )T TL Aλ λ= + −x x x x s                   (3.21) 
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and optimality conditions are 

2 0TL A λ∂
= + =

∂
x

x
,                     (3.22) 

0L A
λ
∂

= − =
∂

x s .                       (3.23) 

From (3.22), 

2

TA λ
= −x ,                         (3.24) 

by substitute into (3.23) to get  

12( )TAAλ −= − s ,                      (3.25) 

Hence the L2 norm minimum solution is  

1( )T TA AA −=x s .                     (3.26) 

Under the situation that sensor data is corrupted by noises can be found in 

Appendix A. 
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3.2.3 L1 Norm Minimization Approach 

 The minimum current estimate minimizes the sum of the absolute currents 

(L1 norm) [18, 47]. This leads to more focal source estimates than estimates 

using Euclidean (L2) norm and can represent well the relatively compact 

source areas typically activated. L1 and L2 solutions are presented and 

compared in Chapter 6. 

When the L1 norm is adapted, the minimum L1 norm solution solves optimization 

problem  

1
min subject to A= x     s x.              (3.27) 

But iterative methods would be needed to calculate L1 norm minimization 

problem. Well-known procedures for determining this L1 minimum solution subject 

to equality constraints are simplex method and interior point method [48, 49]. The 

conversion of (3.27) to general linear programming (LP) problem under the noise 

corrupted situation can be found in Appendix C. 
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4. Preprocessing and Quantitative 

Evalution Metrics 

4.1 Preprosessing 

Neuroelectromagnetic inverse problems are hard to verify using in vivo 

experiments because exact source locations inside a human brain are not known a 

priori. Therefore, artificially-constructed forward data have been widely used to 

validate MEG and EEG inverse algorithms. Hence, we applied the new inverse 

method introduced in the previous section to artificially constructed EEG and MEG 

data sets. The MEG sensor layout used for the simulation was adopted from a 

commercial 148-channel whole-head magnetometer system (Magnets 2500 WH; 

Biomagnetic Technologies, San Diego, CA). EEG sensors were generated by 

projecting the 148 MEG sensors to the nearest points on the scalp surface to allow 

for a direct comparison of the performances of the two modalities.  
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Figure 4.1.  Layout of 148 channel EEG and MEG sensors 

 

We extracted the interface between the white and gray matter from structural MRI 

images of a standard brain atlas (180*217*180 pixels, 1*1*1 mm) provided by the 

Montreal Neurological Institute (MNI). To extract and tessellate the cortical surface, 

we used CURRY6 for Windows (Compumedics, Inc., El Paso, TX). Although 

advances in medical image processing and high resolution structural MRI allow high 

resolution cortical surfaces with sub-millimeter modeling errors to be obtained, it is 

computationally inefficient to use whole cortical surface vertices for source 

reconstruction purposes because of the underdetermined relationship between a 

limited number of sensors and a larger number of source locations. To reduce the 

number of possible source locations, a smaller number of vertices was downsampled 

from the cortical surface as regularly as possible and used only for source 
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reconstruction purposes, whereas the original mesh information was used only for 

visualization purposes. In the simulation study, we sampled 11,373 vertices and 

22,774 triangular elements from the original dense cortical vertices. For the accurate 

forward calculation, we applied a first-order node-based boundary element method 

(BEM) to calculate the forward magnetic field and electric potential distributions 

[50]. We obtained EEG and MEG leadfield matrices by applying BEM to three-layer 

tessellated boundary surfaces, consisting of the inner and outer skull boundaries and 

scalp surface, which were generated from the same MRI data using CURRY6. A total 

of 3,393 nodes were used for the node-based BEM computation. The relative 

conductivity values of the brain, skull, and scalp were assumed to be 1, 1/16 and 1 

(S/m), respectively, as mentioned in Table 2.2.  

We assumed that current sources were constant cortical patches composed of a set 

of dipoles with constant dipole moments and orientations perpendicular to the 

cortical surface. To generate activation patches and construct a forward data set, we 

adopted the concept of a virtual area. The activation patch was generated using the 

following process: 1) a point was selected as a seed of an activation patch; 2) the 

patch was then extended to include neighboring vertices around the patch; 3) if the 

total virtual area of the cortical patch exceeded the targeted surface area, the 

extension of the activation patch was terminated [51]. Because some cortical surface 

regions were too distant from sensors to generate detectable EEG and MEG signals 

in a noisy environment, a limited numbers of source patches were chosen, from 

which the distance to the scalp surface did not exceed 30 mm. Source patches on the 
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cerebellum were also excluded.  

The numerical simulation is performed using MATLAB 2012a on Microsoft 

Windows 7 with Intel Core 2 Duo 3.16G MHz CPU clock rate and 8G RAM.  

 

4.2 Techniques of Quantification of Distributed Source 

When a new source imaging algorithm is proposed, the performance of the inverse 

algorithm need to be verified and compared with those of the existing ones. For the 

evaluation of the reconstructed sources, evaluation metrics or error metrics need to 

be introduced to measure the similarity between the simulated and reconstructed 

sources. The well-known evaluation metrics are root mean square error (RMSE), shift 

of the maximum (Smax), shift of the center of mass (Scm), and the correlation 

coefficient (CC) [51, 52]. Each metric has its own advantages and disadvantages. In 

contrast to the conventional geometric error metrics such as Smax, Scm and DF, RMSE 

and CC do not reflect the geometry of the cortical surface. However, compared to 

Smax, Scm and DF, RMSE and CC are reliable specifically when the source 

distributions are not concentrated to a single peak and several cluster of sources are 

existed. For more accurate and robust estimation of the accuracy of reconstructed 

EEG/MEG sources, we modified CC by giving the geodesic distance weights to the 

reconstructed sources to reflect the geometric information of cortical surface. To 

validate the new evaluation metric, named weighted correlation coefficient (WCC), 

some representative examples were used [53]. 

We assume that both the simulated true sources j and the estimated sources j  are 
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distributed on the 3D cortical surface. We firstly summarize four conventional 

evaluation metrics, having been frequently used for assessing the accuracy of the 

source estimates. 

 

4.2.1. Root Mean Square Error 

 The root mean square error (RMSE) is the most well-known and convenient way 

to measure the error between the actual source and the estimated source. RMSE is 

formulated as  

 2

1

1 ,
n

i i
i

RMSE j j
n



                          (4.1)
 

where ji and ij  are the i-th elements of j and j respectively. 

This metric is easy to implement and can be used regardless of the shapes of the 

source distributions. However, RMSE does not reflect the geometry of the cortical 

surface since RMSE is computed with just vectored values. 

 

4.2.2. Shift of the Maximum  

The shift of the maximum (Smax) is the simplest measure which reflects the 

geometry of the source space. Smax indicates the distance between the locations where 

the maximum intensities of sources are generated. The maximum intensities of the 

actual and reconstructed source are assumed to be located at maxr  and maxr  

respectively, 
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   max , maxi ij j
i i

max maxr r
r r  

 ,                    (4.2) 

where ri is the coordinate of i-th node, then Smax is defined as 

 2
maxS  max maxr r ,                        (4.3) 

and ranged from 0 to dmax, the maximum distance within the brain. 

This measure is reliable only when the actual source is concentrated around the 

location of the maximum source intensity because it does not consider the 

distributions of the cortical sources. When Smax is adopted as a measure, the merit of 

distributed source modeling disappears. For example, even when the extents of the 

true source and the reconstructed sources are largely different, identical maximum 

location makes the Smax value be 0. 

 

4.2.3. Shift of the Center of Mass  

The center of mass has been widely used for evaluating various algorithms 

adopted not only in EEG and MEG but also other functional brain imaging 

techniques such as functional magnetic resonance imaging (fMRI) and positron 

emission tomography (PET). The center of mass of the actual source rcm and the 

center of mass of the reconstructed source cmr  are computed as 
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                   (4.4) 

As assuming the distributed source to be a dipole source placed on the center of 
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mass of the source, the shift of center of mass (Scm) is defined as the distance 

between rcm and cmr  

 2 .cmS cm cmr r                        (4.5) 

Scm is similar to Smax in that the distributed source is considered as a point source 

placed at a single location. Therefore, Scm is also reliable only when the simulated 

source is concentrated around rcm. If the distribution of the source has a radial 

symmetry, Scm becomes equivalent to Smax. 

 

4.2.4. Degrees of Focalization 

We assessed the accuracy of source estimation using the criterion called degrees of 

focalization (DF), which quantifies how much of the reconstructed source is contained in the 

reference source patch [45]. This validation metric was defined as follows and ranged in 

value from 0 to 100: 

2
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∈Ω

= ×
∑
∑

                       (4.6) 

where Ω denotes the whole source space and Π denotes the reference source patch. When the 

reconstructed source is distributed containing the actual source region, DF evaluates the 

accuracy of reconstruction well. However, When the reconstructed sources are concentrated 

in the region of actual source, the DF values are always 100.  
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4.2.5. Correlation Coefficient  

The correlation coefficient (CC), a concept adopted from statistics, is a measure of 

linear dependency between two variables, and the value ranges between -1 and 1. It 

has been widely employed as a standard measure in various fields of engineering and 

sciences. The conventional CC is defined as the covariance of j and j  divided by 

the product of their standard deviations: 

cov( , )

cov( , ) cov( , )
CC j j

j j j j




 

 ,                 (4.7) 

where the covariance is defined as 
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and j* represents the mean value of the source j: 

1 1

1 1* , * .
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j j j j
n n

 

                      (4.9) 

If the distribution of the reconstructed sources is similar to that of the actual 

sources, the value of CC is close to 1; if the distribution of the reconstructed sources 

is different from that of the actual sources, CC is close to -1. CC is reliable even 

when the source distribution is not concentrated to a single location or when the true 

source has many distinct peaks. However, similar to RMSE, CC cannot reflect the 

real geometry of the cortical surface.  
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4.2.6. Weighted Correlation Coefficient  

To combine the advantages of both geodesic and statistic conventional measures, 

we modified CC by giving the source vector a weight reflecting geometrical 

information of cortical surface. The new evaluation measure, named weighted 

correlation coefficient (WCC), is defined as 

cov( , ) .
cov( , ) cov( , )

WCC j j

j j j j

W W

W W W W




 

            (4.10)
 

and W is an n by n weighting matrix that can be computed as 

max

max
,

d
d

nI D
W


                  (4.11) 

where In is an n by n identity matrix. D is an n by n distance matrix whose element is 

given as 

,ij k
D i jr - r                  (4.12) 

and dmax is the maximum value in D. If k=2, the Euclidean distance is employed and 

if k=geo then the geodesic distance is employed to obtain the distance matrix. The 

geodesic distance was computed by solving the Eikonal equation on the tessellated 

cortical surface [54]. The main diagonal of the weight matrix W was filled with 1 and 

the off-diagonal elements were filled with values between 0 and 1. By multiplying 

weight matrix W to the source vector j, the geometric information of cortical surface 

is considered. 

Additionally, Euclidean or geodesic distance can be employed in the definition of 

the distance matrix D. Since the cortical surface of a human brain is folded, the 
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geodesic distance is more suitable to reflect the geometric information of the cortical 

surface than the Euclidean distance. The Euclidian distance is computed by the 

Cartesian coordinates regardless of the geometrical feature of the cortical surface. 

However, as the geodesic distance implies the minimum distance along the surface, 

the geodesic distance between the two adjacent gyri should be greater than the 

Euclidian distance. Figure 4.1 is an example of the Euclidean and geodesic distance 

between each cortical surface vertex and a reference point located at right 

dorsolateral prefrontal cortex, corresponding to a column of the distance matrix. 

 

 

 

 
Figure 4.2. one column of (a) Euclidean and (b) Geodesic distance matrix visualized on the 

cortical surface 
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The characteristics of the conventional and proposed measures are summarized in 

Table 1. Low values of RMSE, Smax or Scm and high values of CC and WCC indicate 

the accurate reconstruction. Only WCC is applicable to the case of multi peak and 

can consider the geometry of source space.  

 

 

Table 4.1. The merits and demerits of measures 

measures reflection of  
geometry multiple peaks bound unit 

RMSE no yes 0~∞ no unit 
Smax yes no 0~dmax mm 
Scm yes no 0~ dmax mm 
DF no no 0~1 no unit 
CC no yes -1~1 no unit 

WCC yes yes -1~1 no unit 

 

 

To compare and verify the conventional and proposed measures, a simple two-

dimensional example was simulated as shown in Figure 4.3. The source space was 

defined as a two-dimensional rectangle. The actual source distribution x is given in 

Figure 4.3 (a) and five reconstructed sources are given in Figures 4.3 (b)-(f), each of 

which was denoted as y1, y2, y3, y4 and y5. The source current intensities are 

indicated with different colors. If we evaluate the reconstructed sources based on 

visual inspection, anyone would agree that y1 is the most accurate reconstruction and 

y2 is the second best one. y5 seems to be the worst reconstruction as the peak location 

is farthest from the actual one and no reconstructed source is overlapped with the 
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actual one. y3 and y4 seems to be better matched than y5 but it is difficult to judge 

which result is better. The result y3 has no commonly activated region with the actual 

source but the distribution is close to the actual source distribution; whereas y4 has 

slightly overlapped region but other regions are located far from the actual source 

location. If we assume visual inspection (VI) as a qualitative measure, the rank of the 

reconstructed sources can be expressed as VI(x,y1)>VI(x,y2)> VI(x,y3)≥VI(x,y4)> 

VI(x,y5). 

We then employed the conventional and proposed quantitative measures for the 

evaluation of the reconstructions depicted in Figure 4.3 and summarized the result in 

Table 4.2. All measures commonly indicated that y1 is the best reconstruction and y5 

is the worst reconstruction. However, the different metrics showed different 

evaluation results for y2, y3 and y4. In the case of RMSE, y3 was evaluated as the 

worst reconstruction and y4 and y2 had an identical RMSE value, which was because 

RMSE was affected by the commonly activated regions regardless of the source 

geometry. In the case of Smax, which considers only the maximum location of the 

source, the results of y2 and y4 were equivalent. Similar to RMSE, CC classified y3 as 

the worst reconstruction and y4 and y2 had an identical CC value. Both Scm and WCC 

evaluated the reconstruction results identically to the visual inspection results. 

However, if the actual source has multiple peaks, Scm cannot be accurately evaluated.  
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Figure 4.3. Example of a simulated two dimensional source space : (a) the actual source 

distribution (b)-(f) the reconstructed sources 

  
 

 

 

 

Table 4.2. Evaluation of reconstructions depicted in Figure 4.3 

 y1 y2 y3 y4 y5 

RMSE 2.12 2.53 2.98 2.73 2.98 

Smax 1.00 1.41 2.00 1.41 4.24 

Scm 1.00 1.41 2.00 2.87 4.24 

DF 52.38 28.57 0.00 28.57 0.00 

CC 0.40 0.13 -0.19 0.25 -0.19 

WCC 0.89 0.80 0.48 -0.31 -0.79 
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5. Algorithm Considering  

the Directional Characteristics 

5.1 Proposed Algorithm 

Our goal in the chapter is to develop a new multimodal source imaging algorithm 

that can integrate simultaneously recorded EEG and MEG data to enhance overall 

localization accuracy, even under circumstances in which a specific directional 

component of the neuronal source is dominant. To account for the different 

directional sensitivities of EEG and MEG, we decomposed the sensor and source 

spaces into radial and tangential components conceptually and developed a new 

explicit formulation to solve the inverse problem. 

While trivial in a spherical head model, the radial directions of cortical sources in 

a realistic geometric head model need to be defined differently. In the present study, 

the radial direction r of a cortical source was defined as the orientation along which 

the total magnetic flux density generated by a unit dipole placed at a source location 

is minimized. To identify the radial direction, singular value decomposition (SVD) 

was applied to the MEG leadfield matrix and the singular vector corresponding to the 

weakest singular value was assigned to the radial directional vector [55]. Because the 

cortical current is generally assumed to be oriented perpendicularly to the cortical 

surface, the unit normal directional vector n can be explicitly defined at every 

location on the cortical surface. Using the Gram-Schmidt orthogonal process, the 
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tangential direction t at the i-th cortical vertex (1 ≤ i ≤ m) can be uniquely determined 

as 
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where <x, y> denotes the inner product of the two vectors x and y, ||x|| denotes the 

Euclidian norm of the vector x, indices in parentheses represent the vertex number, 

and m is the number of cortical vertices.  

After evaluating the tangential, radial, and normal directions at every cortical 

vertex, we define m by m diagonal matrices Pt and Pr, whose (i, i)-th elements 

represent the ratios of tangential and radial components to the normal component of 

the i-th cortical source, respectively, that is 
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for each 1 ≤ i, j ≤ m. Then, Pt and Pr satisfy 

，IPP rt =+ 22                           (5.4)  

where I denotes an identity matrix of order m. 

In the source space, the cortical source j = [j1, j2,…, ji ,…, jm]T, oriented 

perpendicularly to the cortical surface, can be decomposed into tangential source 
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components jt = [jt,1, jt,2,…, jt,i ,…, jt,m]T and radial source components jr = [jr,1, jr,2,…, 

jr,i ,…, jr,m]T using Pt and Pr, in the form of 
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                             (5.5) 

Using (5.4) and (5.5), the cortical sources can be rewritten as 

.jjjjjjj r t rtrrttrt PPPPPPPPI +==+== + )()()( 22           (5.6) 

The leadfield matrices corresponding to EEG and MEG project the source space to 

the sensor space so that 
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where v represents the electric potential recorded at scalp electrodes, b represents the 

magnetic flux density recorded at SQUID sensors, and Keeg and Kmeg represent the 

leadfield matrices of EEG and MEG, respectively, each of which can be obtained by 

solving EEG and MEG forward problems. 

In the sensor space, the electric potential v at the scalp EEG sensors is 

conceptually decomposed into vt and vr, which are generated by jt and jr, 

respectively, and the magnetic flux density b passing through MEG sensors is also 

decomposed into bt and br, generated by jt and jr, respectively; that is  
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+=

                          (5.8) 

Then, the relations between sources and the directional components of v and b can 

be described as 



 - 59 - 

,,
,,

,,

,,

rrtt

rrtt

jbjb
jvjv

megrmegt

eegreegt

KK
KK

==
==

                    (5.9) 

where the directional leadfield matrices, Kt,eeg, Kr,eeg, Kt,meg, and Kr,meg have the 

following relationships: 
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When linear inverse estimation is applied, the tangential component of cortical 

sources tĵ  can be estimated using either 

  tt vj t,eegG=ˆ                         (5.11) 

or 

,bj tt t,megG=ˆ                        (5.12) 

where Gt,eeg and Gt,meg represent the tangential inverse operators with respect to EEG 

and MEG, respectively. Similarly, the radial components of cortical sources rĵ  can 

be estimated using either 

,vj rr r,eegG=ˆ                        (5.13) 

or 

,bj rr r,megG=ˆ                        (5.14) 

where Gr,eeg and Gr,meg represent the radial inverse operators of EEG and MEG, 

respectively. The derivations of the directional inverse operators are provided in the 

Appendix B. 
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We consider the decomposition of the estimated source ĵ . Similarly to (5.5) and 

(5.6), the estimated source ĵ  can also be decomposed into tangential and radial 

components; that is, 

.jj
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rt ˆˆ
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rt

rt

PP

PP 22

+=

+=
                       (5.15) 

The tangential component tĵ  was estimated from (5.12) and the radial 

component rĵ  was estimated from (5.13). Substituting (5.12) and (5.13) into (5.15) 

gives 

,ˆ rt vbj r,eegrt,megt GPGP +=                   (5.16) 

and applying (5.5) and (5.9) to (5.16) gives 

.ˆ jjj rr,eegr,eegrtt,megt,megt PKGPPKGP +=               (5.17) 

When define the error between the exact and reconstructed sources e as 

,ĵje −=                         (5.18) 

we can rewrite (5.17) as 

.ejjj ++= rr,eegr,eegrtt,megt,megt PKGPPKGP             (5.19) 

Rearranging (5.19), 

{ } ,:j je QPKGPPKGPI rr,eegr,eegrtt,megt,megt =−−=          (5.20) 

where .rr,eegr,eegrtt,megt,megt PKGPPKGPIQ −−=   

Now, we consider a general constrained minimization problem for weighted 

minimum norm estimation (WMNE) [56], 

              ,subject to,min 2 jy   j
j

K
W

=                   (5.21) 
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where W represents the source weighting matrix and 

 .:2 jjj WT
W
=                        (5.22) 

Then, the solution of (5.21) j~  is known to be 

[ ] .~ 11 yj −−= TT-1 KKWKW                  (5.23) 

In our problem, we need to minimize the error between the exact and 

reconstructed sources e, defined in (5.18); thus the definition of our problem 

becomes 

.subject to,min
2

jy   e
j

K=                  (5.24) 

In our problem, y represents the combined EEG and MEG data ,

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K  and j is the source strength 

that we need to estimate. In the linear equation y = Kj, each of the leadfield matrices 

of EEG and MEG as well as each of the EEG and MEG signal datasets are 

normalized so that the elements in the combined leadfield matrix equation have 

equivalent orders [57-65]. To accomplish this, the leadfield matrices of EEG and 

MEG (Keeg and Kmeg) are first normalized by the matrix norms of EEG and MEG, 

respectively. Then, the same scale factors are applied to the EEG and MEG signal 

data (v and b), respectively. The normalized leadfield matrices and data sets are then 

stacked into a single leadfield matrix K and a data vector y. 

If set the source weighting matrix W in (5.21) to 
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                 ,: QQW T=                            (5.25) 

we can transform the general WMNE problem in (3.38) into our problem in (5.24), 

because the equation (5.22) becomes 

.)( 22 eeejjjj j ==== TTT
W

QQW                (5.26) 

Then, we can directly utilize the known solution of WMNE written in (5.23). Thus, 

the solution of our problem given in (5.24) can be found by substituting (5.25) into 

(5.23):  

( ) ( )[ ] ,~ 11 yj
−−

= TTT-1T KQQKKQQ                 (5.27) 

where  

.rr,eegr,eegrtt,megt,megt PKGPPKGPIQ −−=              (5.28) 

When additive noise is present in the signals, a regularization term needs to be 

introduced. Then the expression for the solution becomes 

( ) ( )[ ] ,~ 11 yj
−−

+= IKQQKKQQ TTT-1T λ                (5.29) 

where λ is a regularization parameter and was determined using the generalized cross 

validation method [66]. Note that the notation ĵ  is a dummy variable used only to 

construct the source weighting matrix W during the formulation, and j~  denoted in 

(5.27) is the final source estimate [67]. 
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5.2 Numerical Experiment of Proposed Method 

To further investigate the influence of the orientations of the cortical sources on 

localization accuracy, the 4,568 source patches were classified on the basis of the 

proportion of the radial component γ, defined as 
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2
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=
i i

ir

j
j

γ                          (5.30) 

where Π denotes the source patch area, i represents the i-th cortical vertex, jr,i is 

the amplitude of the radial component of a cortical source at the i-th vertex, and γ 

ranges from 0 to 1. A value of γ close to 0 indicates that a cortical source patch is 

oriented in the tangential direction, whereas a value of γ close to 1 indicates that a 

source patch is oriented in the radial direction. The histogram depicted in Figure 5.1 

shows the distribution of the number of source patches with respect to γ with a bin 

size of 0.05. From this figure, it is clear that more cortical sources are oriented in a 

tangential direction than are oriented in a radial direction. Because the number of 

source patches whose γ value exceeding 0.8 was not sufficient to estimate average 

localization accuracies, which was smaller than a third of the smallest number of 

source patches in a single bin in which the γ value was less than 0.8, we excluded 

those patches when analyzing the simulation results shown in Figure 5.3. 
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Figure 5.1. Distribution of cortical source patches with respect to the proportion of the radial 

component of sources.  
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We first evaluated source localization accuracies for four different cases: 1) source 

imaging with only EEG data (EEG alone case); 2) source imaging with only MEG 

data (MEG alone case); 3) source imaging using conventional integration method 

based on a simple order normalization to combine the EEG and MEG data sets 

(conventional method); and 4) source imaging using the proposed multimodal 

integration method (proposed method) shown in Figure 5.2.  

 

 

 

Figure 5.2. (a) The simulated actual source and the corresponding reconstructed results 

using different methods, (b) EEG, (c) MEG, (d) conventional combined method and (d) 

Proposed combined method 
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We reconstructed cortical source distributions using the EEG/MEG forward data 

sets simulated for each of the 4,568 cortical patches. White Gaussian noise was 

added to the simulated EEG and MEG signals. We set the signal-to-noise ratio (SNR) 

values of EEG and MEG to 10 and 30, respectively, considering that EEG data 

generally contains more noise than MEG data in practice when the SNR values were 

defined as ten times of the log-scaled square root of the ratio of the simulated signal 

power to the noise power. The variations in the DF values averaged in each bin with 

respect to the proportion of the radial component (γ) values are shown in Figure 5.3. 

The localization accuracy of the EEG alone case increased and that of the MEG 

alone case decreased as the γ value increased, demonstrating that EEG and MEG 

source localization results are dependent upon the source orientations when constant 

background noise is added to the neural electrical signals. These results indicate that 

MEG is better than EEG at estimating tangential sources whereas EEG is better than 

MEG at estimating radial sources.  

The conventional method generally yielded more accurate source estimation 

results than either EEG alone or MEG alone cases, but it did not always enhance 

localization accuracy, particularly when the radial source component was dominant 

(γ > 0.6). In contrast, our proposed method enhanced the localization accuracy for 

every γ value and moreover, resulted in a significant improvement in localization 

accuracy, particularly when either the radial or tangential components of the cortical 

sources were dominant. 
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Figure 5.3. Average localization accuracies in four cases with respect to the proportion of the 

radial component: (case A) Cortical sources estimated with EEG data alone; (case B) 

Cortical sources estimated with MEG data alone; (case C) The conventional combined EEG-

MEG source estimation method was applied; (case D) The proposed EEG-MEG integration 

method was applied. 
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The spatial distributions of the DF values measured at each cortical source patch 

for the four cases listed above are shown in Figure 5.4; the DF value of the source 

patch was assigned to the center of the patch. Figure 5.4 (a) and (b) show that the 

EEG alone and MEG alone cases provided relatively more accurate source estimates 

only around some specific cortical areas. Interestingly, the cortical areas with high 

DF values in the EEG alone case (Figure 5.4 (a)) and the MEG alone case (Figure 

5.4(b)) were separated and complementary to each other. In contrast, the 

conventional method enhanced the localization accuracy in cortical areas in which 

either the EEG alone or MEG alone cases could not accurately reconstruct source 

distributions (Figure 5.4 (c)). However, the enhancement in the absolute DF values 

was comparable to those obtained from either of the two modalities, showing that an 

additional synergy effect was not obtainable using the conventional approach. In 

contrast, our proposed method showed significantly enhanced localization accuracy 

compared to that of the conventional integration method (see Figure 5.4 (d)). 
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Figure 5.4. Localization accuracy of four cases mapped on the cortical surface: (A) EEG 

method; (B) MEG method; (C) conventional integration method; (D) proposed integration 

method. The color code indicates the DF value assigned at the center of each reference 

source patch. The color map of the DF value was thresholded at 3%. 
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6. Algorithm Considering the Maximum 

Current Density 

6.1 Proposed Algorithm 

The MNE algorithm is one of the earliest algorithms developed for cortical source 

imaging and is based on the L2 norm minimization. The general form of the function 

to be minimized can be expressed as 

   2
min   subject to , K ,=

j
j b j                 (6.1) 

where K is an m by n leadfield matrix that relates m sensors and n sources, j is an n 

by 1 vector representing the strength of n sources. The general MNE solution can be 

expressed in the form of linear equations and thus can be readily obtained without 

any iterative processes. The MNE solution is usually diffused over the whole cortical 

surface. 

The reconstructed source with MCE adapts L1 norm minimization as 

1
min   subject to , K ,=

j
j b j           (6.2) 

and the MCE solution is usually concentrated to the center of the source compared to 

that with MNE. 

To estimate the distribution of the source as well, we employ additional constraint 

term of maximum bound of source amplitude to the minimization problem: 

1
min   subject to   &  i, K j p,= ≤

j
j b j              (6.3) 
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where p denotes the estimated maximum bound of current source. The proposed 

method is named as bounded minimum current estimate (BMCE). The conversion 

process to general form of linear programming (LP) is able to solve this minimum 

problem efficiently [48, 68-76]. In the simulation, Open source linear programming 

system, LP solve [77] based on the revised simplex method and the Branch and 

bound method is applied to solve (6.3). 

And the maximum bound of current source (p) can be estimated by L-curve 

analysis of L1 norm of reconstructed source against the values p and the process is 

explained in chapter 6.2.    

Moreover the additional constraint term of maximum bound of source amplitude 

also can be combined to the weighting algorithm proposed in chapter 5. Then the 

constraint minimum norm problem becomes 

1
min   subject to   &  iW , K j p,= ≤

j
j b j               (6.4) 

where the W is the matrix which is consisted by the directional characteristics of 

source, K is the combined leadfield matrix of EEG and MEG and b is combined EEG 

and MEG data.  
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6.2 Numerical Experiment of Proposed Method 

The goal of the proposed method in Chapter 6.1 was to reconstruct the source 

regardless of the extension of the distribution. Motivated by general situation that the 

reconstructed source with MNE is blurred and the maximum current density (pMNE) is 

small, contract to that with MCE is focal and the maximum current density (pMCE) is 

much greater than that of actual source (p*), we investigate the distribution of 

reconstructed sources as changing the maximum bound of BMCE (p) from pMNE to 

pMCE. Figure 6.1 shows the reconstructed source for various maximum bounds. We 

can observe that if the maximum bound is less than the actual bound, the source is 

weighed down to be distributed out of the actual patch. And source is getting 

focalized as the maximum bound increases. When the maximum bound is equal to 

the maximum of actual source, the reconstructed source is very close to the actual 

source distribution. And the source is getting focalized as the maximum bound 

approaches to pMCE. If p is getting greater than pMCE, the solution of MCE and BMCE 

is equivalent and the L1 norm of the BMCE solution becomes stabilized.   
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Figure 6.1. Reconstructed sources for various maximum bound  
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Therefore, in Figure 6.2 (a), we plotted a graph of maximum bound and L1 norm 

of the reconstructed source with the result of Figure 6.1. The graph is L-shaped and 

we expect the corner of graph to be the actual bound. The L-curve method for 

parameter selection is to pick the value corresponding to the “corner” of the L-curve. 

The curvature which indicate the degree of rapid change is defined as 

2 3/2 ,
(1 )

y
k

y
′′

=
′+

                          (6.5) 

and usually employed in L-curve method [77-80]. Figure 6.2 (b) shows the curvature 

with respect to the maximum bound. We employ the maximum bound corresponding 

to the maximum curvature. In this case the estimated maximum bound for BMCE is 

decided to 9.6 and the actual bound was 10. Figure 6.2 (c) shows the evaluation 

metric WCC proposed in Chapter 4.2 with respect to the maximum bound. The 

accuracy of reconstructed source with the actual maximum bound is marked with a 

square and that with estimated maximum bound is marked with a disk.  
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Figure 6.2. (a) The graph of the L1 norm of the reconstructed source with respect to the 

maximum bound (b) The curvature of (a) and dot line is the estimated maximum bound (c) 

WCC with respect to the maximum bound  
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In Figure 6.3, we show the comparison between MNE, MCE and BMCE for 

various source’s area. The simulated current source is displayed in the first column 

of Figure 6.3. After solving the forward problem, each inverse algorithm 

reconstructed the distributed source. BMCE* and BMCE localize sources with the 

actual maximum bound and the estimated maximum bound respectively. The MNE 

produces overly diffuse source estimates because of the L2 norm constraint. MCE 

generates focal source estimate regardless of the distributed pattern of source due to 

the nature of the L1 norm constraint on the estimated source strength. On the other 

hand, the source estimate of BMCE can more accurately reconstruct the distribution 

of the simulated sources.  
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Figure 6.3. Comparison of conventional and proposed methods with various extensions of th

e actual source area.  
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To further validate our hypothesis, we performed extensive computer simulation 

for 4,568 source locations on the cortical surface and quantified the improvement of 

the proposed method regardless of activated source area on the EEG source imaging. 

At each source location, four extended source patches with different areas were 

generated as shown in the previous example (Figure 6.3). The white Gaussian noise 

corresponded to 10% of the magnitude of the simulated EEG data are added. 

Table 6.1 summarizes the result of massive simulation. Depending on the 

activated area, averaged values of RMSE, Smax, Scm, DF, CC and WCC of 

reconstruction sources of conventional and proposed methods are presented. It could 

be readily observed from the table that MNE is accurate for the extended source and 

MCE is accurate for the focalized source. BMCE is much more accurate than two 

conventional methods regardless the extension of the source area. The intuitive and 

quantitative comparisons suggest that the proposed BMCE enhances the estimation 

accuracy.  

Compared to MNE which computes directly the linear inverse operator, other 

methods based on the L1 minimum problem compute the solution iteratively by the 

revised simplex method [48]. In the view of computational time, MNE is very 

efficient and capable to be applied to the real time monitoring when the linear 

inverse operator is computed in advance. The computational time of MCE and 

BMCE is almost same. However, BMCE* is required additional process to estimate 

the maximum bound p which is ranged from the maximum of MCE and MNE and 

divided by 10 sections in this simulation. Therefore the BMCE* costs the 10 times 
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computational cost compared to the BMCE and MCE. The trade-off between the 

accuracy and computational time are existed for the proposed method. 

 

 

 

Table 6.1. The result of massive simulation 

 

   area method RMSE Smax Scm DF CC WCC T (s) 

 MNE 15.91 5.14 17.4 21.15 0.53 0.66 0.12 

11.3 MCE 5.13 2.43 1.75 95.12 0.67 0.52 0.52 

(mm2) BMCE* 1.56 2.52 1.32 97.93 0.74 0.84 0.51 

 BMCE 1.63 2.65 1.55 96.24 0.73 0.83 5.12 

69.6 

MNE 22.44 6.45 15.03 43.4 0.83 0.87 0.12 

MCE 39.82 4.95 1.08 86.39 0.66 0.70 0.53 

BMCE* 14.88 4.36 0.95 88.8 0.90 0.92 0.52 

BMCE 20.01 4.44 1.03 88.4 0.84 0.91 5.22 

689.12 

MNE 34.35 6.53 14.54 40 0.85 0.89 0.12 

MCE 54.83 5.74 1.91 95 0.54 0.42 0.53 

BMCE* 13.14 4.27 1.74 91 0.89 0.91 0.54 

BMCE 15.25 4.47 1.41 93 0.87 0.91 5.42 
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Table 6.2 summarizes the result of massive simulation with respect to different 

noise levels. The averaged area of activated source is 69.6 mm2. Depending on 

different noise levels, averaged values of RMSE, Smax, Scm, DF, CC and WCC of 

reconstruction sources of conventional and proposed methods are presented. It could 

be readily observed from the BMCE is more accurate than conventional methods. 

 

 

Table 6.2. The result of massive simulation with respect to the noise level 

 

  noise method RMSE Smax Scm DF CC WCC T (s) 

10% 

MNE 22.44 6.45 15.03 43.43 0.83 0.87 0.12 

MCE 39.82 4.95 1.08 86.39 0.66 0.70 0.53 

BMCE* 14.88 4.36 0.95 88.82 0.90 0.92 0.52 

BMCE 20.01 4.44 1.03 88.44 0.84 0.91 5.22 

20% 

MNE 25.37 6.90 15.90 40.41 0.73 0.80 0.12 

MCE 41.22 5.23 2.10 84.62 0.59 0.68 0.53 

BMCE* 15.18 4.61 1.14 86.84 0.88 0.88 0.52 

BMCE 16.11 4.82 1.33 83.53 0.81 0.87 5.22 

30% 

MNE 38.51 7.93 16.11 40.10 0.69 0.76 0.12 

MCE 55.11 6.34 2.51 80.52 0.54 0.60 0.53 

BMCE* 14.48 4.74 1.84 85.24 0.83 0.86 0.54 

BMCE 16.10 4.98 1.89 84.13 0.79 0.81 5.42 
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 In Figure 6.4, we simulated the combination of compact and extended sources. 

Diffused MNE solution cannot reflect the focal source region and MCE solution 

focalized to the center of main extended source but failed to reconstruct the focal 

source region. However, the reconstructed source by BMCE is much more accurate 

as reconstructing both focal and extended patterns of the source. 

 

 
Figure 6.4.  (a) Simulated actual sources and the corresponding reconstructed results using 

different methods, (b) MNE, (c) MCE and (d) BMCE 
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Figure 6.5, we simulated the case that two clusters have different amplitudes. 

MNE solution again distributed around and between of two sources. And MCE 

solution localized to the center of each sources but failed to recover the extension of 

two sources as focalized to the center of sources On the other hand, the reconstructed 

source by BMCE is much more accurate as reconstructing two extended patterns of 

the actual source. 

 

Figure 6.5. (a) Simulated actual sources and the corresponding reconstructed results using 

different methods, (b) MNE, (c) MCE and (d) BMCE  
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Table 6.3 summarizes the result of massive simulation with two clusters have 

different amplitudes. Two clusters are selected among the almost uniformly 

distributed 200 source locations on the cortical surface of right and left hemispheres. 

Therefore 100*100 samples are simulated and evaluated by quantitative measures. 

The amplitudes of source in each cluster are defined 10 and 20 and the area of 

activated source is averagely 11.3 and 69.6 mm2 correspondingly. It could be readily 

observed from the table that MNE is accurate for the extended source and MCE is 

accurate for the focalized source. BMCE is much more accurate than two 

conventional methods regardless the extension of the source area. The intuitive and 

quantitative comparisons suggest that the proposed BMCE enhances the estimation 

accuracy. 

 

Table 6.3. The result of massive simulation with two peaks 

 

method RMSE DF CC WCC T (s) 

MNE 51.64 11.15 0.23 0.33 0.12 

MCE 45.13 25.12 0.33 0.42 0.54 

BMCE* 10.46 59.73 0.79 0.73 0.55 

BMCE 12.82 55.72 0.72 0.69 5.51 
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6.3 Application to Localization of Epileptic Zone 

The clinical uses of EEG and MEG are in detecting and localizing pathological 

activity in patients with epilepsy, and in localizing eloquent cortex for surgical 

planning in patients with brain tumors or intractable epilepsy. The goal of epilepsy 

surgery is to remove the epileptogenic tissue while sparing healthy brain areas [81-

84]. Knowing the exact position of essential brain regions (such as the primary motor 

cortex and primary sensory cortex, visual cortex, and areas involved in speech 

production and comprehension) helps to avoid surgically induced neurological 

deficits. EEG and MEG source localization play a major role in the prognosis and 

surgical planning for patients with intractable partial epilepsy. Therefore, we also 

applied the proposed BMCE method to localize the epileptic activity in a patient with 

medically intractable epilepsy requiring a respective surgery. Since Accurate 

estimation of activated region is crucial in planning the surgery, BMCE is expected 

to be promising. 

The MR images of the patient were acquired using a regular T1-weighted 

sequence for head image. The slice thickness was 1.5 mm with acquisition in the 

sagittal orientation with matrix size of 256 by 256. Using scanned MR images, BEM 

models and a cortical source space were extracted using Brainstorm. MEG signal 

were acquired by the whole-head MEG system (MEG center, SNU hospital), which 

consists of 306 channels arranged in triplets of two planar gradiometers (204 

channels) and one magnetometer (102 channels). The sampling frequency was 

600.615Hz, and the signal was filtered by a band-pass filter in the range of 
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0.1~200Hz. Series of interictal spikes were classified and the base line of signal is 

corrected shown in Figure 6.6.  

 

 

 
Figure 6.6. averaged interictal spike of MEG 
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Since the post-operative MR images of the patient (Figure 6.7) were also acquired, 

we thus know where the epileptogenic zone is, and therefore, the method can be 

verified against the exact location of epileptogenic zone. The resection area, the part 

of right temporal lobe, is marked with the cross lines in Figure 6.7 (a) sagittal, (b) 

transverse and (c) coronal view of the head. Note that the medical MR images are 

usually flipped horizontally. 

 

 

 
 

Figure 6.7. Post-surgery MR images of the patient. The cross lines in (a) sagittal, (b) 

transverse and (c) coronal views imply the center of the resection area. 
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As shown in Figure 6.8(a), we segmented the resection region from the post-

operative MR images and co-registered the resection region to the segmented by pre-

operative MR images using Brainstorm software. 

For the head source modeling, the source space is consisted of 7,497 dipoles with 

1.5mm distance between the nearest two dipoles. A piecewise homogeneous and 

isotropic approximation with constant conductivity, 0.3, 0.06, 0.3 S/m was adopted 

for boundary element method to calculate the forward magnetic field and electric 

potential distributions with 729, 843 and 986 points for skin, outer skull and inner 

skull respectively. The region of interest is also restricted to the part of cortical 

surface which is further than 5mm from the inner skull surface. The generation of 

cortical surface, boundary element meshes and leadfield matrix for MEG forward 

problems is computed with Brainstorm.  

Figure 6.8 (b) shows that the reconstructed source obtained from MNE is overly 

distributed over whole cortical surface. MCE estimated source which is very 

concentrated to the center of the resection region. However, the BMCE seems to be 

more effective, it obtains more focused source distribution and the epileptic zone is 

well localized.  
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Figure 6.8. (a) The actual resection region co-registered on the cortical surface and 

reconstructed source by (b) MNE, (c) MCE and (d) BMCE 
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5. Conclusion 

This dissertation focused on the localization of the neuroelectromagnetic source 

distributed on the human cortical surface and proposed two algorithms solving 

inverse problems of EEG/MEG data based on the directional characteristics of 

EEG/MEG source and the constraint of maximum current density.  

First we proposed a new multimodal cortical source imaging method to integrate 

simultaneously recorded EEG and MEG recordings, which takes into account the 

directional sensitivities of the two modalities. The different sensitivities of EEG and 

MEG to source orientations have been investigated by several research groups. 

However, consideration of the directional sensitivity characteristics in the integrated 

EEG/MEG source imaging has not been reported prior to our study. Previous studies 

concerning integrated EEG and MEG source imaging have focused only on how to 

preprocess EEG and MEG leadfield matrices to reduce the condition number of the 

combined linear system. We developed an explicit formulation based on WMNE 

with a source weighting matrix reflecting the decomposed directional components of 

EEG and MEG, yielding results robust to the cortical source orientations. Our 

simulation studies showed that the proposed method can enhance the source 

localization accuracy significantly, regardless of the cortical source locations. 

Second we proposed a new inverse algorithm for the improvement of source 

estimation regardless the extension of source distribution. The additional maximum 

amplitude constraint in MCE does successively enhance the localization accuracy in 
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EEG/MEG source imaging and the maximum bound of sources is also estimated 

through L-curve analysis of the L1 norm of sources with respect to the maximum 

bound. To overcome weakness of L1 minimization approach in regularization, we 

introduced an intrinsic regularization method without any additional parameters. 

The proposed approaches are applied to various realistic computer simulation and 

practical experiment and evaluated by the quantitative analysis and comparison with 

conventional methods. For the accurate and reliable simulation closed to real 

problem, instead of simple sphere model, the complex geometry of head and 

conductivities obtained by a MR image and practical experiments respectively is 

employed to describe the current sources and induced the electromagnetic fields.  

Under various conditions of source and situation, i.e., directional properties of 

sources, position and extension of sources, addition of sensor noise, multiple clusters 

of sources with different size or strength, we performed numerous simulation of 

source reconstruction with the conventional and proposed methods. Then to analyze 

the results quantitatively, we introduced several conventional evaluation methods and 

proposed a new method named weighted correlation coefficient (WCC) to verify the 

performance of proposed reconstruction algorithms. Moreover, we applied the 

proposed method to MEG practical measurement to estimate the epileptic zone in a 

patient with medically intractable epilepsy requiring a respective surgery. Since 

Accurate estimation of epileptic zone is crucial in planning the surgery, the proposed 

method is expected to be promising. As a result, compared to the reconstructed 

source obtained from conventional methods is overly distributed over whole cortical 
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surface or very concentrated to the center of the resection region, the proposed 

method successfully reconstructed the position and extension of the resection region. 

In the future, more researches are expected to be continued. First, two proposed 

algorithms can be combined. When EEG and MEG data are recorded simultaneously, 

the additional constraint term of maximum bound of source amplitude also can be 

combined with the weight considering the directional characteristics of source. 

Second, the proposed algorithm can be extended to solve the spatio-temporal 

EEG/MEG estimation problem under the situation that noise level is varying. In 

addition, the computation time of BMCE can be reduced by estimating the maximum 

bound in one step process without pre-computation of the maximum bound.  
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Appendix A. Derivation of L2 Norm 
Minimization Problem 

 

The L2 linear inverse operator that used in this dissertation can be derived in 

various ways. All derivations arrive at equivalent inverse operators, when certain 

initial conditions are given. 

The minimization of expected error begins with a set of measurements  

= +x As n                            (A.1) 

where x is the measurement vector, A is the gain matrix, s is the strength of each 

dipole component, and n is the noise vector. One would like to calculate a linear 

inverse operator W that minimizes the expected difference between the estimated 

and the correct source solution. The expected error can be defined as: 

2|| ||=< − >WErr Wx s .                     (A.2) 

Here we assume that both n and s are normally distributed with zero mean. Using 

their corresponding covariance matrices C and R, the expected error can be rewritten 

as: 

2|| ( ) ||=< − >WErr W As + n s                    (A.3) 

2|| ( ) ) ||=< − >WA I s + Wn                 (A.4) 

2|| ( ) ||=< >Ms + Wn                      (A.5) 

where M = WA  I 
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2 2|| || || ||=< > < >Ms + Wn                    (A.6) 

= tr( ) tr( )T T+MRM WCW                  (A.7) 

where tr(A) is the trace of A and is defined as the sum of the diagonal entries. Re-

expanding the expression gives: 

=tr( ) tr( )T T T T T− − + +WARA W RA W WAR R WCW .       (A.8) 

This expression can be explicitly minimized by taking the derivative with respect 

to W, setting it to zero and solving for W. 

0= 2 2 2T T− +WARA RA WC                  (A.9) 

Solving for W: 

T T+ =WARA WC RA                   (A.10) 

( )T T+ =W ARA C RA .                  (A.11) 

This yields the expression for the linear inverse operator: 

1( )T T −= +W RA ARA C .                 (A.12) 

The Bayesian linear inverse derivation begins with the expression for conditional 

probability: 

P( )P( )P( )
P( )

=
x | s ss | x

x
                   (A.13) 

which one would like to maximize. Beginning with a measurement vector x: 

= +x As n                        (A.14) 
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where A is the gain matrix, s is the strength of each dipole component, and n is the 

noise vector. Assuming both n and s are normally distributed with zero mean and 

covariance matrices C and R, respectively, one can rewrite P(x|s) and P(s): 

1( ) ( )P( )αe
T −− − −As x C As xx | s                     (A.15) 

1

P( )αe
T −−s R ss .                        (A.16) 

This gives a simplified Bayesian expression: 

1 1( ) ( )(e )(e )max[P( )] max
P( )

T T− −− − − − 
=  

  

As x C As x s R s

s | x
x

                (A.17) 

1 1max[ ( ) ( ) ]T T− −= − − − −As x C As x s R s             (A.18) 

1 1min[( ) ( ) ]T T− −= − − +As x C As x s R s              (A.19) 

1 1 1 1 1min[ ]T T T T T T T− − − − −= − − + +s A C As s A C x x C As x C x s R s .     (A.20) 

Taking the derivative with respect to s and setting it to zero: 

1 1 12 2 2 0T T− − −− + =A C As A C x R s .                (A.21) 

Solving for s gives: 

1 1 1 1( )T T− − − −= + =s A C A R A C x Wx                (A.22) 

which yields the expression for the Bayesian linear operator 

1 1 1 1( )T T− − − −= +W A C A R A C .                 (A.23) 

The above Bayesian linear operator is very similar to that derived using Tikhonov 

regularization. Again, one begins with a measurement vector x: 
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=As x .                         (A.24) 

A smoothing functional F is defined as: 

2 2|| || λ || ||= − +F As x Ms                   (A.25) 

where λ  and M are added for regularization. To calculate the operator, the 

smoothing functional is explicitly minimized (taking its derivative and setting it to 

zero). Solving for s: 

0 2 2 2λT T T= − +A As A x M Ms                (A.26) 

( λ )T T T+ =A A M M s A x                  (A.27) 

1( λ )T T T−= + =s A A M M A x Wx               (A.28) 

1( λ )T T T−= +W A A M M A .                (A.29) 

This is equivalent to the Bayesian linear operator when C = C-1 = I and 
1λ T −=M M R . Wiener filtering (also known as the Kalman-Bucy method) filtering 

uses an optimal linear filter to minimize the expected error between the actual source 

(i.e., input) and the estimated source (i.e., noisy output): 

2|| ||=< − >WErr Wx s .                    (A.30) 

The operator must satisfy the Wiener-Hopf equation: 

Ysx = WYx                         (A.31) 

where Ysx = <sxT> and Yx = <xxT>. Expanding the covariance terms gives: 

[ ] [ ][ ]T T< + > = < + + >s As n W As n As n              (A.32) 
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.T T T T T T T T< + > = < + + + >ss A sn W Ass A ns A Asn nn        (A.33) 

Because the signal and noise are independent, the signal-noise covariance terms 

(e.g., <snT>) equal zero, leaving: 

.T T T T T< > = < + >ss A W Ass A nn               (A.34) 

Again, because the signal and noise are independent, we can separate the terms on the 
right side: 

( )T T T T T< > = < > + < >ss A W Ass A nn            (A.35) 

( ).T T= +RA W ARA C                   (A.36) 

Thus, the inverse operator is: 

1( )T T −= +W RA ARA C                  (A.37) 

 
 

  



 - 105 - 

Appendix B. Derivation of Directional 
Inverse Operators 

 

The directional inverse operator, Gt,eeg, can be computed as follows. Applying (5) 

and (11), the estimated source can be written as 

 .ˆ ,
1

tbj megtt GP −=                         (B.1) 

Using (9), (A.1) can be rewritten as 

,ˆ ,,
1

tjj megtmegtt KGP −=                     (B.2) 

and from (5) 

.ˆ ,,
1 jj tmegtmegtt PKGP −=                    (B.3) 

When we define the error between the exact and reconstructed sources ɛ as 

ε j j.ˆ= −                        (B.4) 

We can rewrite (A.3) as 

 .,,
1 εjj += −

tmegtmegtt PKGP                  (B.5) 

Rearranging (A.5), we have the following relationship: 

 { } .,,
1 jε tmegtmegtt PKGPI −−=                 (B.6) 

To find Gt,meg that minimizes the error ɛ for any j, we consider the following 

minimization problem: 

 
( ) ( ){ },min ,,

1
,,

1

,

T
tmegtmegtttmegtmegtt

G
PKGPIPKGPItr

megt

−− −−      
 (B.7) 

where tr{·} is the trace of a matrix and is defined as the sum of the main diagonal 

entries. This expression can be explicitly minimized by taking the derivative with 
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respect to Gt,meg using the following properties: 

 
TTTTT

T

CAXBCABX
X

CAXBXtr

BA
X
AXBtr

+=
∂

∂

=
∂

∂

)(

,)(
               (B.8)

 

and the derivative set to zero. Then, we have 

 .)( 1
,,,,

22 −= TT
megttmegtmegttmegt KPKKPG                (B.9) 

The explicit formulations for Gt,eeg, Gr,eeg, and Gr,meg can be derived in a similar 

way. Then, we have 

.)(
,)(

,)(

1
,,,,

1
,,,,

1
,,,,

22

22

22

−

−

−

=

=

=

TT

TT

TT

megrrmegrmegrrmegr

eegrreegreegrreegr

eegtteegteegtteegt

KPKKPG
KPKKPG

KPKKPG
             (B.10) 
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Appendix C. Derivation of L1 Norm 
Minimization Problem 

 
This appendix presents the way to solve the bounded and weighted L1 norm 

minimization problem with sensor noise. The problem is 

1
min   subject to   &  i, K j pT

j
c j b j e= + ≤ ,             (C.1) 

where c is a weighting vector and e is the sensor noise. 

Since one of general form in linear programming (LP) is 

imin ( )   subject to   & 0, K jT

j
c j b j= ≥ ,               (C.2) 

(C.1) is required to be converted to the form of (C.2).  

1) Regularization  

Conventional regularization approach in L1-norm minimization problem is 

singular value decomposition of leadfield matrix. Let the leadfield matrix, K 

decomposed as following:  

TK USV= .                          (C.3) 

The minimum L1-norm solution is seeking the source distribution j that satisfies  

T
ng ng ngU S Vb j= ,                        (C.4) 

where Sng, Ung and Vng contain the ng largest singular values and the associated 

singular vector, respectively. The optimal value for the regularization parameter ng 

depends on the signal-to-noise ratio of the measurements. The smaller ng is, the 
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greater the allowed mismatch between b and Kj can be while still satisfying 

constraint (C.4). The cutoff index ng is also the number of constraints in the LP 

problem; thus the maximum number of source locations having nonzero current is ng. 

This cutoff index has been determined by the user depending on the noise level 

without any guideline. In the paper which proposed MCE, the cutoff index is 30 

when the noise is 10 % of the variance of the simulated data.  

We introduce an intrinsic regularization method without any additional parameters. 

When the noise added on the measurements:  

  K ,= +b j e                          (C.4) 

though almost randomly generated noise is impossible to separate but in many 

physical experiments the noise is bounded by certain level. If we only estimate or 

experientially assume the maximum bound of noise level then the equation can be 

written in 

 max( )K− <b j e i ,                       (C.4) 

where i is the vector whose element is 1. 

This approach is much more intrinsic than the norm of noise or regularization 

parameter and easy to deal with the sensor noise. When the noise bounded by e* is 

added to the measurement then (C.1) yields 

1
min   subject to   &  i, K * j p− < ≤T

j
c j b j e ,           (C.5) 

which can be converted to the general form of linear programming.  
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2) L1 norm constraint 

Because the current density can be either positive or negative, an additional step is 

needed to deal with the absolute values. It has been proposed to introduce two new 

non-negative variables; one can rewrite the L1 norm constraint term as 

( )-

T T

1 ,
min   = min

+

+ -+
j j j

c j c j j ,                   (C.5) 

where 

-+= -j j j ,                         (C.4) 

and 

0 ,  0i ij p j p+ −≤ ≤ ≤ ≤ .                   (C.6) 

3) The maximum bounded condition 

The maximum bounded condition is also required to introduce two new non-

negative variables. We can rewrite the bound condition 

 ij p≤ ,                          (C.5) 

to 

0

0
i i

i i

p , x
p , x .

+ + +

− − −

− = >

− = >

j x i
j x i

                     (C.7) 
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국문초록 

뇌전도 및 뇌자도를 이용한 신경전자기 신호원 영상법은 분포전류원 모

델의 경우, 추가적인 정보와 제한조건이 주어져야만 유일한 신호원을 복원

할 수 있는 역문제이다.  

본 학위 논문에서는 뇌전도 및 뇌자도를 이용한 신호원 영상법의 정확

도를 향상시키기 위한 새로운 방법을 제안한다.  

뇌자도는 대뇌피질상에 존재하는 반지름 방향의 신호원에 둔감한 반면 

뇌전도는 뇌자도에 비해 상대적으로 방향성에 큰 영향을 받지 않는 것으

로 알려져 있다. 이러한 신호원 고유의 방향 특성은 현재까지 분포전류원 

모델의 신호원 추정에 적용되지 않았다. 본 학위 논문에서는 뇌전도와 뇌

자도를 동시 측정한 경우에 대해 신호원의 방향성을 고려해 대뇌피질 상

에 존재하는 신호원을 복원하는 방법을 제안하였다. 

기존의 뇌전도/뇌자도 신호원 영상법을 통해 복원된 신호원은 실제 신

호원과 비교했을 때 한점에 집중되거나 넓은 영역에 퍼져 있다. 따라서 다

양한 분포 형태를 가진 신호원의 경우 기존 복원법을 통해서는 신호원의 

분포 형태를 추정하기 힘들다는 단점이 있었다. 본 학위 논문에서는 신호

원의 최대값을 추정해 이러한 한계를 극복하여 신호원의 분포를 복원할 

수 있는 새로운 신호원 영상법을 제안하였다.  

제안된 방법들을 다양한 상황의 시뮬레이션을 통해 정확도를 평가했으
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며 간질환자의 데이터에 적용해 수술로 제거된 뇌부위와 뇌자도를 이용해 

복원된 신호원의 위치와 분포영역을 비교하였다. 그 결과, 본 논문에서 제

안한 방법들은 기존 방법에 비해 뇌자도 및 뇌전도의 국지화 정확도를 향

상시켰 수 있었으며 앞으로 뇌영역 활성부위를 추정하는 의학 분야 및 역

문제 연구에서 널리 사용될 것으로 기대된다.  

 

주요어 : 생제전자기학, 신호원 복원법, 역문제, 비침습적 뇌기능영상법, 뇌

전도, 뇌자도 

학번 : 2008-30136 
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