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Abstract 
 

Gene-Gene Interaction Analysis of  

High-dimensional Genomic Data 

 

Min-Seok Kwon 

Interdisciplinary Program in Bioinformatics 

The Graduate School 

Seoul National University 

 

With the development of high-throughput genotyping and sequencing 

technology, there are growing evidences of association with genetic variants and 

common complex traits. In spite of thousands of genetic variants discovered, such 

genetic markers have been shown to explain only a very small proportion of the 

underlying genetic variance of complex traits. Gene-gene interaction (GGI) analysis 

and rare variant analysis is expected to unveil a large portion of unexplained 

heritability of complex traits. 

In GGI, there are several practical issues. First, in order to conduct GGI 

analysis with high-dimensional genomic data, GGI methods requires the efficient 

computation and high accuracy. Second, it is hard to detect GGI for rare variants 

due to its sparsity. Third, analysing GGI using genome-wide scale suffers from a 

computational burden as exploring a huge search space. It requires much greater 

number of tests to find optimal GGI. For k variants, we have k(k-1)/2 combinations 
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for two-order interactions, and nCk combinations for n-order interactions. The 

number of possible interaction models increase exponentially as the interaction 

order increases or the number of variant increases. Forth, though the biological 

interpretation of GGI is important, it is hard to interpret GGI due to its complex 

manner. 

In order to overcome these four main issues in GGI analysis with high-

dimensional genomic data, the four novel methods are proposed. 

First, to provide efficient GGI method, we propose IGENT, Information 

theory-based GEnome-wide gene-gene iNTeraction method. IGENT is an efficient 

algorithm for identifying genome-wide GGI and gene-environment interaction 

(GEI). For detecting significant GGIs in genome-wide scale, it is important to 

reduce computational burden significantly. IGENT uses information gain (IG) and 

evaluates its significance without resampling. Through our simulation studies, the 

power of the IGENT is shown to be better than or equivalent to that of that of 

BOOST. The proposed method successfully detected GGI for bipolar disorder in 

the Wellcome Trust Case Control Consortium (WTCCC) and age-related macular 

degeneration (AMD). 

Second, for GGI analysis of rare variants, we propose a new gene-gene 

interaction method in the framework of the multifactor dimensionality reduction 

(MDR) analysis. The proposed method consists of two steps. The first step is to 

collapse the rare variants in a specific region such as gene. The second step is to 

perform MDR analysis for the collapsed rare variants. The proposed method is 

applied in whole exome sequencing data of Korean population to identify causal 

gene-gene interaction for rare variants for type 2 diabetes (T2D). 

Third, to increase computational performance for GGI in genome-wide scale, 

ii 

 



we developed CUDA (Compute Unified Device Architecture) based genome-wide 

association MDR (cuGWAM) software using efficient hardware accelerators. 

cuGWAM has better performance than CPU-based MDR methods and other GPU-

based methods through our simulation studies. 

Fourth, to efficiently provide the statistical interpretation and biological 

evidences of gene-gene interactions, we developed the VizEpis, a tool for 

visualizing of gene-gene interactions in genetic association analysis and mapping 

of epistatic interaction to the biological evidence from public interaction databases. 

Using interaction network and circular plot, the VizEpis provides to explore the 

interaction network integrated with biological evidences in epigenetic regulation, 

splicing, transcription, translation and post-translation level. To aid statistical 

interaction in genotype level, the VizEpis provides checkerboard, pairwise 

checkerboard, forest, funnel and ring chart. 

Keywords: Gene-gene interaction (GGI), Genome-wide association study (GWAS), 

Massively parallel sequencing (MPS), rare variant, Graphic processing unit (GPU), 

Visualization 

Student number: 2008-30830 
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Chapter 1 

 

Introduction 
 

1.1  Background of high-dimensional genomic data 

 

1.1.1  History of genome-wide association studies (GWAS) 

In genetic epidemiology, a genome-wise association study (GWAS) is an 

approach that detects causal variants rapidly examining genetic variants across 

genome of population [Visscher, et al. 2012]. The causal variant is sing-nucleotide 

polymorphism (SNP) that contributes to an increase or decrease in risk to disease 

arise in populations. A SNP is defined as a single nucleotide (A, T, C, or G) variation 

of DNA sequence occurring within more than 1% individuals in a population. For 

example, two sequenced DNA fragments from different individuals, GTCACGCTA 

to GTCATGCTA, contain a difference in a single nucleotide. In this case, the 

variation is called bi-allelic SNP which has two alleles (C and T) and three genotypes 

(CC, CT, and TT) (http://en.wikipedia.org/wiki/Single-nucleotide_polymorphism). 
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Risch and Merikangas proposed that modest effective variant could be 

identified with greater power by association analyses if the modest effective variant 

and causal variant were in strong linkage disequilibrium (LD). Because variants in 

strong LD are likely to be inherited together, one can use a subset of ‘tagging’ variants 

as proxies for the entire set. Using the advantage of LD between variants, ‘indirect’ 

or ‘map-based’ genome-wide association approach has the potential to identify real 

causal variant by investigating just limited number of tagging SNPs. [Risch and 

Merikangas 1996]. 

Lander proposed the common-disease common-variant hypothesis (CDCV) 

which predicted that common causal variants could be found in all populations which 

manifest a given disease [Lander 1996]. If SNPs are neutral or favorable with respect 

to survival, they become common over many generations. However, some common 

SNPs have a small additive or multiplicative effect on complex diseases. The CDCV 

GWAS strategy assumed that many different common SNPs have small effects on 

each disease and that some could be found by testing enough SNPs in large 

population [PGCC, et al. 2009]. 

For the indirect genome-wide association approach based on CDCV hypothesis, 

the Affymetrix and Illumina companies have competitively developed genotyping 

chips that assay large SNPs with high accuracy, low cost and rapid speed. Using 

high-throughput genotyping chips, International HapMap project has been 

conducted and validated more than 3.1 million variants in major 11 global ancestry 

groups, to develop a haplotype map of the human genome and discover the common 

patterns of human genetic variation [International HapMap, et al. 2007]. These 

efforts make it possible to capture the common genetic variations across the genome 

using a representative tagging SNPs. 
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The genome-wide association study (GWAS) has been successful in 

identifiying genetic variants associated with some targeted traits and complex 

diseases such as cardiovascular diseases, metabolic diseases, responses to drug and 

cancers. Since the first GWAS was reported in 2005 [Klein, et al. 2005], GWAS has 

rapidly grown in scale and complexity, and 2,051 studies and 14,836 causal variants 

(p-value ≤ 5.0 × 10-8) have been added to the catalog of published Genome-Wide 

Association Studies (See Figure 1.1) (http://www.genome.gov/gwastudies/). 

 

 

1.1.2  Missing heritability and proposed alternative methods 

 

Since first successful approach of GWAS was published in 2005 

investigating patients with age-related macular degenerations [Klein, et al. 

2005], GWAS have been facilitated with the development of SNP arrays. 

Typically, 300,000 to 1 million common variants are captured in commercial 

SNP arrays. However it was shown that genetic etiology of complex diseases 

could be rarely explained by the genetic factors identified from GWAS. That 

is, the common causal variants can explain only a small fraction of heritability. 

For example, although about 80% of the variation in height among individuals 

is known to be due to genetic factor, associated causal 40 variants can explain 

only about 5 % of height variance [Visscher 2008]. Also, in the case of type 

2 diabetes, identified 18 variants can explain about 15% of sibling recurrence 

risk [Manolio, et al. 2009]. 
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To unveil the ‘missing heritability’, Manolio et al. suggested that this 

missing heritability could be partly due to gene-gene interaction, rare variants 

and structural variants [Manolio, et al. 2009]. Specially, Zuk et al. showed 

that full heritability could not be explained without the gene-gene interaction 

effects based on simulation study [Zuk, et al. 2012]. 
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Figure 1.1  GWAS catalog. As of Nov/15/14, the catalog includes 2051 publications and 14836 SNPs. This diagram shows 

all SNP-trait associations with p-value ≤ 5.0 × 10-8. (from http://www.genome.gov/gwastudies/)  
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1.1.3  Association studies of massively parallel sequencing (MPS) 

Since massively parallel sequencing (MPS) technology was invented in 1996 

[Ronaghi, et al. 1996], the MPS has been spotlighted as called ‘next-generation 

sequencing (NGS)’. While SNP array can detect the genotype of common variants, 

MPS can genotype for both common and rare variants in entire genome.  

Recent of the advances of MPS has facilitated the association study for rare 

causal variants in common complex diseases underlying the hypothesis of rare 

variant common disease (RVCD). To detect causal rare variants, several methods are 

proposed in which a collection of rare variants might show an association with a trait. 

There are two types of methods; one is burden test method and the other is non-

burden test method. The burden test uses collapsed genotype of multiple rare variants 

for association test. These methods show good performance for many moderate 

signals with the same direction of effect. Several burden test-based methods such as 

CAST (Morgenthaler & Thilly 2007), CMC (Li & Leal 2008), WSS (Madsen & 

Browning 2009), KBAC (Liu & Leal 2010) and VT (Price et al. 2010) have been 

proposed. Non-burden test aggregates individual variant test statistics with weight 

when SNP effects are modeled linearly. This non-burden test methods such as C-

alpha (Neale et al. 2011) , SKAT (Wu et al. 2011) and SKAT-O (Lee et al. 2012) 

show powerful performance when a genetic region has both protective and 

deleterious variants. 
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1.2  Purpose and novelty of this study 

The main purpose of this thesis is to develop the methods to analyze gene-gene 

interaction of genetic variants. To overcome the limitations of traditional GWAS, 

four kinds of studies are designed.  

In the first study, we proposed an entropy-based gene-gene interaction analysis 

method in genetic variant data. This method is referred as IGENT, an Interaction 

analysis method of Genetic variants using ENTropy. IGENT is an efficient algorithm 

for identifying genome-wide gene-gene interactions and gene-environment 

interaction. For detecting significant gene-gene interactions in genome-wide scale, 

it is important to reduce computational burden significantly. IGENT uses 

information gain and evaluates its significance without resampling. We studied the 

performance of our method through simulation study and apply to real genetic data.  

In the second study, we propose a new gene-gene interaction method for the 

rare variants in the framework of the multifactor dimensionality reduction (MDR) 

analysis. The proposed method consists of two steps. The first step is to collapse the 

rare variants in a specific region such as gene. The second step is to perform MDR 

analysis for the collapsed rare variants. The proposed method is illustrated with 1080 

whole exome sequencing data of Korean population to identify causal gene-gene 

interaction for rare variants for type 2 diabetes. 

In the third study, for overcoming the computational problem in gene-gene 

interaction, we developed cuGWAM, CUDA (Compute Unified Device Architecture) 

based genome-wide association Multifactor dimensionality reduction (MDR) 

software using efficient hardware accelerators. cuGWAM has better performance 

than CPU-based MDR methods and other GPU-based methods though our 

simulation study.  
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In the fourth study, for the statistical interpretation and biological evidences of 

gene-gene interactions, we developed the VizEpis, a tool for visualizing of gene-

gene interactions in genetic association analysis and mapping of epistatic interaction 

to the biological evidence from public interaction databases. Using interaction 

network and circular plot, the VizEpis explores the interaction network integrated 

with biological evidences in epigenetic regulation, splicing, transcription, translation 

and post-translation level. To aid statistical interaction in genotype level, the VizEpis 

provides checkerboard, pairwise checkerboard, forest, funnel and ring chart. 

 

1.3  Outline of the thesis 

 

This thesis is organized as follows. Chapter 1 is an introduction of this study 

with review of GWAS and MPS. Chapter 2 presents the definition of gene-gene 

interaction and the overview of gene-gene interaction (GGI) analysis. Chapter 3 is 

the study of entropy-based GGI. Chapter 4 is the study of GGI for rare variants. 

Chapter 5 is the study of CUDA-based computational enhancement for GGI using 

graphic processing unit (GPU). Chapter 6 is the study of visualization for GGI 

interpretation. Finally the summary and conclusion are presented in Chapter 7.    
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Chapter 2 

 

Overview of gene-gene interaction 

 

2.1 Definition of gene-gene interaction 

 

The term ‘gene-gene interaction’ has multiple meaning. Generally, the meaning 

of ‘gene-gene interaction’ by biologists different is different from the one by 

statisticians. Biologists use the gene-gene interaction to refer to the deviation from 

the effect pattern expected by Mendelian inheritance model. Also some biologists 

refer the gene-gene interaction to the direct interaction physically between their 

protein products like the protein-protein interaction. This GGI can be resulted from 

protein-protein interaction, epigenetic regulation, chromosomal structural 

interaction, translational regulation, signal transduction, biochemical networks, and 

numerous other physiological and developmental pathways. This GGI referred to as 

either biological, physical or functional interaction. Statisticians often use the term 

to refer to the deviation from the additive effect of alleles from each individual locus. 

This GGI referred to as statistical, or populational GGI.  
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Koo et al. described three different biological interactions. As shown in Figure 

2.1, there are three types of biological interactions. First one is ‘synthetic-interaction’. 

Gene A and gene B have same function which produce the purple phenotype C and 

work independently. Actually, these two gene do not interact each other. Second one 

is ‘epistatic-interaction’. In the example, the wild type produce both a purple 

phenotype C and green phenotype D. If gene B is knockouted, purple phenotype C 

cannot be seen, and if gene A is knockouted, both purple and green phenotype cannot 

be seen. Last one is ‘suppressive-interaction’. In this example, gene A is act as 

antagonist to gene B [Koo, et al. 2013]. 

In this thesis, the gene-gene interaction means an ‘epistatic-interaction’ between 

genes (non-allelic). It also is referred to as ‘epistasis’. Generally, epistasis is when 

the effect of one gene depends on the presence of one or more genes. Genetic 

interaction is an interaction between multiple genes that impacts the expression of a 

phenotype. The concept of ‘epistasis’ was firstly introduced into genetics by William 

Bateson and Punnett (1910) in order to describe a masking effect whereby a variant 

or allele at one locus prevents the variant at another locus from manifesting its effect. 

In Fisher’s 1918 definition, epistasis refers to a deviation from additivity in the effect 

of alleles at different loci with respect to their contribution to a quantitative 

phenotype.  

The ultimate goals of GGIs are to recognize gene functions, identify pathways 

and discover potential drug targets. 
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Figure 2.1  Types of genetic interactions. [Koo, et al. 2013] 
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2.2 Practical issues of gene-gene interaction 

 

During the past few years, many methods for gene-gene analysis method have 

been developed as a complementary approach to GWAS (as described in chapter 2.3). 

However, there are some substantial limitations in current genome-wide scale gene-

gene interaction methods.  

First issue is that simple and powerful evaluation measure are required in GGI 

analysis, due to be rapidly computed across genome-wide scale high-dimensional 

genomic data.  

Second issue is that it is hard to detect GGI for rare variants due to the sparcity 

of rare variants. Therefore, there are proposed few methods for GGI of rare variants. 

To overcome sparcity of rare variants in genetic interaction analysis, gene-wise 

interaction analysis method such as collapsing method is required.  

Third issue is that the computational burden for gene-gene interaction analysis 

is heavy. For example, detection of 2nd order interactions for 300,000 SNPs requires 

computing 4.5 × 1010 combinations for exhaustive searching. For 3rd order 

interaction, 4.5 × 1015 combinations should be computed. Some interaction methods 

implement non-parametric permutation to calculate the observed significance, which 

takes a heavy computing time. Although MDR has a simple structure and fast 

computation, it is hard to find high-order interactions in large-scaled dataset because 

of its exhaustive searching scheme. For example, detection of 2nd order interactions 

for 300,000 SNPs requires computing 4.5 × 1010 combinations by MDR. When we 

use 10-fold cross-validation or 1000-fold permutation test, it takes 10 times or 1000 

times longer. 
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Fourth issue is that the statistical interaction is hard to be interpreted 

biologically. Phillips et al. defines three different forms of epistasis: compositional 

epistasis, statistical epistasis and functional epistasis [Phillips 2008]. Compositional 

epistasis describes the conventional usage of epistasis as the masking of one allelic 

effect by an allele at another locus. Functional epistasis is referred to the molecular 

interactions without a direct genetic link. Statistical epistasis is the usage of epistasis 

that is mentioned by Fisher, which is a deviation from additivity in the effect of 

alleles at different loci with respect to their contribution to a quantitative phenotype. 

In the cases of compositional epistasis and statistical epistasis without functional 

epistasis, it cannot take direct biological interpretation. 
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2.3 Overview of gene-gene interaction methods 

 

2.3.1 Regression-based gene-gene interaction methods 

In GWAS, it is widely used to fit a logistic regression model that includes both 

the main effects of variants and interaction effects between variants, and to test 

whether the interaction terms as equal to zero. 

log �
𝑝𝑝𝑖𝑖

1 − 𝑝𝑝𝑖𝑖
� = 𝛼𝛼 + 𝛽𝛽1𝑋𝑋1𝑖𝑖 + 𝛽𝛽2𝑋𝑋2𝑖𝑖 + 𝛽𝛽3𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖 

where 𝑝𝑝𝑖𝑖 is Pr(𝑦𝑦𝑖𝑖 = 1|𝑋𝑋), 𝛼𝛼 is the regression coefficient for intercept, coefficient 

𝛽𝛽1  and 𝛽𝛽2  are main effect of two SNPs and 𝛽𝛽3  represents the effect of an 

interaction term of two SNPs. The null hypothesis of test is H0: 𝛽𝛽3 = 0.  

The logistic regression model is a useful parametric method to model genetic 

or environmental factors with binary response such as disease status in case-control 

study. A similar approach can be applied for quantitative traits using linear regression. 

These analyses can be performed in almost any statistical analysis package such as 

SAS, SPSS and R.  

Zhao et al. proposed LD-based statistic to detect GGI between two unlinked 

loci [Zhao, et al. 2006]. The ‘fast-epistasis’ option in PLINK performs a similar test. 

Zhao et al. found that their test statistic had more powerful than a conventional four 

degrees of freedom logistic regression of GGI.  

Wan et al. proposed BOOST, which is a fast method for detecting gene-gene 

interaction using Boolean operation-based screening and testing [Wan, et al. 2010].  

BOOST is computationally efficient and detects statistical significant interactions 

based on approximated likelihood ratio statistic. Their simulation study showed that 

BOOST has higher statistical power than PLINK. 
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2.3.2 Multifactor dimensionality reduction (MDR) 

The multifactor dimensionality reduction (MDR) method proposed by Ritchie 

et al. [Ritchie, et al. 2001] is a non-parametric method that reduces the number of 

dimensions by converting a high-dimensional multi-locus model to a one-

dimensional model to avoid the sparsity problem. MDR evaluates classifiers, which 

are SNP combinations associated with the disease of interest, to predict and classify 

disease status through cross-validation and permutation testing. The k-fold cross-

validation splits the data into k subsets. The classifier is modelled on (k-1) subsets of 

the data and estimated by calculation of test accuracy on the remaining subset. This 

process is repeated for each subset. In addition to cross-validation, the permutation 

test can assess the statistical significance of MDR classifiers. However, it is 

unfeasible to use permutation tests for genome-wide scale interaction analysis 

because the permutation test is computationally intensive. To overcome this heavy 

computational burden, Pattin et al. proposed an efficient hypothesis test using 

extreme value distribution (EVD) [Pattin, et al. 2009]. Their simulation results 

showed that the proposed testing method requires at least 20 permutation data to 

keep up with similar power of 1000-fold permutation test.  

A growing number of MDR extensions has been proposed since MDR firstly 

was introduced by [Ritchie, et al. 2001]. MDR can provide GGI results only for 

binary trait or phenotype such as case and control. Most MDR extensions focused 

on other types of trait.   
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Figure 2.2  MDR scheme 
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For GGI analysis of continuous trait, Lou et al. proposed generalized MDR 

(GMDR) [Lou, et al. 2007] which permits adjustment for discrete and quantitative 

covariates such as ethnicity, sex, weight, and/or age and is applicable to both 

dichotomous and continuous phenotypes. GMDR uses the classification scheme for 

high-risk and low-risk based on the residual score statistics of a generalized linear 

model. Gui et al. proposed Quantitative MDR (QMDR) that handles continuous trait 

by modifying MDR’s constructive induction algorithm to use a T-test [Gui, et al. 

2013]. 

QMDR extends the MDR algorithm to working on continuous traits using 

comparing the mean value of each multi-locus genotype to the overall mean instead 

of comparing the case-control ratio of each multi-locus genotype to a fixed threshold. 

For ordinal traits, Kim et al. suggested ordinal-MDR (OMDR) to facilitate 

gene-gene interaction analysis for ordinal traits [Kim, et al. 2013]. OMDR uses tau-

b, a common ordinal association measure as an alternative to balanced accuracy to 

evaluate interactions. Kim et al. applied OMDR to ordinal obesity trait for body mass 

index (i.e., normal, pre-obese, mild obese and severe obese) of age-related eye 

disease study data.  

For Family-based data, Martin et al. proposed the MDR-pedigree 

disequilibrium test (MDR-PDT), which is applicable to family-based designs 

[Martin, et al. 2006]. However, like the original MDR, the MDR-PDT method does 

not permit adjustment for covariates and is applicable only to dichotomous 

phenotypes. Lou et al. suggested a pedigree-based GMDR (PGMDR) method that 

extends GMDR to family type dataset [Lou, et al. 2008]. PGMDR can provide 

covariate adjustment and a unified framework for analyzing both continuous and 

dichotomous traits. Cattaert et al. proposed a FAMily MDR method (FAM-MDR) 
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that are based on Wald-type statistics of association, whereas GMDR and PGMDR 

make use of score statistics [Cattaert, et al. 2010]. FAM-MDR showed to outperform 

PGMDR in their most of the considered simulation studies.  

For survival traits, Gui et al. proposed Surv-MDR that is an extension of the 

MDR method to the survival phenotype using the log-rank test [Gui, et al. 2011]. 

Surv-MDR replaces balanced accuracy with log-rank test statistics as the score to 

determine the best models. Lee et al. proposed Cox-MDR which is an extension of 

the GMDR to the survival phenotype using a martingale residual as a score to 

classify multi-level genotypes as high- and low-risk groups [Lee, et al. 2012]. Cox-

MDR provides covariate adjustment, but Surv-MDR cannot adjust the covariates. 

For multiple phenotypes, Choi et al. proposed multivariate GMDR (multi-

GMDR) that an extension of GMDR. Multi-GMDR determines high-risk from low-

risk groups of GMDR framework by using the score vectors from generalized 

estimating equations with multivariate phenotypes to extend generalized linear 

models of GMDR [Choi and Park 2013].  

 

2.3.3 Gene-gene interaction methods using machine learning methods 

 

In machine learning methods, neural network (NN), support vector machine 

(SVM) and random forest (RF) have been applied to GGI analysis. These machine 

learning methods cannot investigate all combinations of multiple variants because of 

their intensive computation. Therefore, the most methods can be applied to feature 

selection method, or to selected candidates from feature selection algorithms such as 

recursive feature selection and recursive feature elimination.  
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NN is a one of the learning algorithms that have been widely applied in genetic 

data. Although its long history and well-structured algorithm, it is computationally 

infeasible to conduct exhaustive search of multilocus. Ritchie et al. had utilized 

genetic programming to optimize the architecture of neural network (GPNN) and 

back propagation neural network (BPNN) to model GGIs [Ritchie, et al. 2003b]. 

Motsinger-Reif et al. proposed grammatical evolution neural network (GENN) that 

identify gene-gene and gene-environment interactions. 

SVM can be used to predict GGI by learning from the features which are known 

GGI. The training data of SVM has the two groups which are positive group with 

genetic interaction and negative group without genetic interaction. In order to detect 

gene-gene interactions, Chen et al. had applied SVM to various kinds of 

combinatorial optimization methods such as recursive feature addition (SVM-RFA), 

recursive feature elimination (SVM-RFE), local search (SVM-Local), and genetic 

algorithm (SVM-GA) [Chen, et al. 2008]. Fang and Chiu had proposed extended 

SVM and SVM based pedigree-based generalized multifactor dimensionality 

(PGMDR) for family structured genomic data [Fang and Chiu 2012]. de Oliveira 

proposed SVM extension to simultaneously select the most relevant SNPs markers 

by a continuous variable using Support Vector Regression with Pearson Universal 

kernel as fitness function of a binary genetic algorithm [de Oliveira, et al. 2014] 

Jiang et al. applied RF method to transform GGI from all possible combinations 

of genetics variants into a manageable set of candidates by reducing the search space 

for GGI [Jiang, et al. 2009]. Schwarz et al. introduced a random jungle using 

permutation importance measures to detect important SNP [Schwarz, et al. 2010]. 

Winham et al. proposed that the RF method is used to detect high-dimensional GGI 

effects and their potential effectiveness for detecting GGI [Winham, et al. 2012]. 
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Davis et al. applied RF and random jungle to filter the candidates with main effect 

for enrichment of interaction effect [Davis, et al. 2013].  

 

 

2.3.4 Entropy-based gene-gene interaction methods 

 

Recently, several approaches based on information theory for modelling GGI 

have been proposed [Chanda, et al. 2007; Dawy, et al. 2006; Ruiz-Marin, et al. 2010]. 

Shannon started the information theory in 1948 by introducing the entropy that is a 

measure for complexity in mathematical theory of communications [Shannon 1948].  

Dawy et al. [Dawy, et al. 2006] proposed a relevance-chain method to identify 

the strongly associated lower-order interactions and build high-order interaction with 

the use of conditional mutual information. This method can provide fast detection of 

high-order interaction but shows poor performance for GGI with no strong marginal 

effects. Chanda et. al. [Chanda, et al. 2007] proposed the k-way interaction 

information (KWII) metric and the total correlation information (TCI) for GGI 

identification. These entropy-based measures represent the amount of information of 

redundancy and dependency between SNPs and an environmental variable. This 

method performs a permutation test for statistical significance of detected interaction 

models. Ruiz-Marín et al. [Ruiz-Marin, et al. 2010] proposed an entropy-based test 

for identification of single-locus association analysis. Although it showed a more 

powerful performance than the conventional Fisher tests, this method needs to be 

extended to handle GGI analysis. Yee et al. [Yee, et al. 2013] proposed a modified 

entropy based method to evaluate the interactions between single SNP combinations. 
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Their method was shown to be superior to the MDR method in most simulation cases. 

However, applying this entropy based method directly to the genome-wide scale data 

would be infeasible because of computationally intensive permutations. 
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Chapter 3 

 

Entropy-based gene-gene interaction 

 

3.1 Introduction 

In this chapter, we develop a fast and efficient method, named IGENT, 

Information theory-based GEnome-wide gene-gene iNTeraction method, using 

entropy to identify the gene-gene interaction in genome-wide scale. IGENT supports 

two types of strategies to identify gene-gene interactions related with diseases in 

genome-wide scale. One is an exhaustive search approach for lower-order 

interactions such as 2nd order interaction, and the other is a stepwise selection 

approach for higher-order interaction. With tens of thousands of SNPs from 

thousands of samples, it is difficult to calculate higher-order interaction exhaustively 

because the computational burden is too heavy. IGENT provides a stepwise approach 

for higher-order interactions. The evaluation is based on the approximated gamma 

distribution of information gain without using permutation procedure, which allows 

us to overcome the computation burden for the GGI analysis in genome-wide scale 

[Goebel, et al. 2005]. In our two-way interaction simulations, we compared the 
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performances of IGENT, BOOST, MDR, and SVM. IGENT showed better 

performance than BOOST, MDR and SVM in most simulation settings. Also, 

IGENT is as fast as BOOST, and presented stable performance is various epistasis 

models even with low MAF. We successfully applied IGENT to age-ralted macular 

degeneration (AMD) data and WTCCC bipolar disorder data. 

 

3.2 Methods 

 

3.2.1  Entropy-based gene-gene interaction analysis 

For detecting GGI associated with phenotypes, our measure is based on basic 

concept of information theory. The entropy, which measures the quantity of an 

uncertainty, is defined as   

𝐻𝐻(𝑌𝑌) =  −�𝑝𝑝�𝑌𝑌 = 𝑦𝑦𝑗𝑗� log2 𝑝𝑝�𝑌𝑌 = 𝑦𝑦𝑗𝑗�
𝑗𝑗

, 

 

where the entropy H(X) of a discrete random variable Y is a function of the 

probability distribution p(Y=yj) which measures the average amount of information 

contained in Y, or equivalently, the amount of uncertainty removed upon revealing 

the outcome of Y.  

Conditional entropy of Y given another discrete random variable X is  

 

𝐻𝐻(𝑋𝑋|𝑌𝑌) =  −�𝑝𝑝(𝑋𝑋 = 𝑥𝑥𝑖𝑖)𝐻𝐻(𝑌𝑌|𝑋𝑋 = 𝑥𝑥𝑖𝑖)
𝑖𝑖

 

 

The information gain (IG) is defined as follows, 
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𝐼𝐼𝐼𝐼(𝑌𝑌|𝑋𝑋) = 𝐻𝐻(𝑌𝑌) − 𝐻𝐻(𝑌𝑌|𝑋𝑋) 

 

IG which is also called mutual information (MI) can be explained as the 

reduction in entropy (or uncertainty) of one random variable given another. It is 

known that the IG follows gamma distribution with parameter 𝑎𝑎 = (|𝑋𝑋| − 1)(|𝑌𝑌| −

1)  and 𝑏𝑏 = 1/(𝑁𝑁 ln 2)  approximately for the independent X and Y random 

variables [Goebel, et al. 2005]. 

 

𝐼𝐼𝐼𝐼�(𝑌𝑌|𝑋𝑋) ~  Γ �1
2

(|𝑌𝑌| − 1)(|𝑋𝑋| − 1), 1
𝑁𝑁 ln2

� (1) 

 

where N is the sample size and |X| and |Y| denote the number of levels of the 

random variables X and Y. For example, two-way interaction in case and control 

dataset, |X| is 9 and |Y| is 2. 

We use the information gain to detect GGI associated with phenotype. Given a 

case-control study with n individuals, let Y be the disease status and X be the SNP 

combinations, then 

 

𝐻𝐻(𝑌𝑌) =  𝐻𝐻(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

𝐻𝐻(𝑌𝑌|𝑋𝑋) =  𝐻𝐻(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝑆𝑆𝑆𝑆𝑃𝑃 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

  

IG is given as  

𝐼𝐼𝐼𝐼 = 𝐻𝐻(𝑌𝑌) − 𝐻𝐻(𝑌𝑌|𝑋𝑋) 

The value of IG represents the true association strength. Since, under the null 

hypothesis of no association, IG follows a gamma distribution approximately by (1), 
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we can assess the statistical significance of the association of SNP combinations and 

disease.  

 
3.2.2  Exhaustive searching approach and stepwise selection approach 

 

We propose IGENT, an entropy-based gene-gene interaction method for 

genome-wide interaction analysis. IGENT supports exhaustive search 

(IGENT_exhaust) for lower-order interaction and stepwise search (IGENT_stepwise) 

for higher-order interaction. In Figure 3.1, our exhaustive search approach and 

stepwise selection approach are described graphically.   

IGENT_exhaust performs an exhaustive search for all possible combinations of 

variants for the given low order. IGENT_stepwise selects higher-order interactions 

in a stepwise manner. The detailed steps are summarized as the follows. 

 

1. Initial step: for all SNPs, calculate 1st order 𝐼𝐼𝐼𝐼𝑘𝑘  when k is order (in 1st order, 

k = 1.). 

2. Select SNP or SNP combinations with 𝑝𝑝𝑘𝑘 < 𝑡𝑡 , when pk is p-value of 

hypothesis testing using the gamma distribution and  t is significant threshold. 

3. Calculate 𝐼𝐼𝐼𝐼𝑘𝑘+1  for k+1 order interactions for the combinations with 

selected SNP or combinations adding additional other single SNP. 

4. If there are significant interactions in k+1 order, let k = k + 1 and repeat step 

2~4.Otherwise, stop forward selection and repeat 2~4 step with the next 

ranked combinations.   

 

This IGENT_stepwise selection approach reduces search space dramatically. 

With large genome-wide scale data, this approach makes it feasible to discover 
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higher-order interactions. Although this stepwise algorithm is not guaranteed to find 

the global optimum interaction model, it provides at least a local optimum interaction 

model with some marginal effects. Therefore, this stepwise approach may have a 

limitation in detecting the gene-gene interactions without any marginal effects.  
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Figure 3.1  Exhaustive approach and stepwise approach in IGENT. t is 

threshold, 𝑝𝑝𝑗𝑗𝑘𝑘 is p-value for jth combination in k-order interaction. 𝑝𝑝(𝑖𝑖)
𝑘𝑘  is ith ordered 

p-value among p-values of all combinations in k-order interaction. ℎ𝑘𝑘  is the 

number passing threshold in k-order interaction. 
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3.2.3  Simulation setting 

 

The main purpose of our method is to identify epistatic interactions from 

genome-wide data. In order to detect gene-gene interaction for genome-wide data, 

computational efficiency is a key issue. In simulation 1, we compared the 

computational efficiency of IGENT and other methods such as BOOST, MDR, RF 

and SVM. Among these methods, only IGENT and BOOST was shown to be feasible 

to analyze gene-gene interaction in genome-wide scale, as shown in simulation 1 of 

Results section. Thus, we mainly compared IGENT and BOOST in genome-wide 

scale with regard to the power of identifying causal gene-gene interaction through 

simulations 2, 3, and 4. In simulation 5, we compared IGENT_exhaust and 

IGENT_stepwise.  

 

For these simulation studies, we use following three epistatic models: 

 

1) Epistatic model set 1 : Eight interaction models 

Models 1-1, 1-2, and 1-3 have different strength of genetic effects while fixing 

the interaction structure, the minor allele frequencies (MAF) and prevalence which 

have been used by Namkung et al. [Namkung, et al. 2009b]. Models 1-4, 1-5, and 1-

6 have different interaction structures and penetrance functions which were used by 

Ritchie et al. [Ritchie, et al. 2003a]. Models 1-7 and 1-8 were used by Bush et al. 

[Bush, et al. 2008]. Eight interaction models are summarized in Table 3.1. 
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Table 3.1  Eight interaction model 

  Model 1-1   Model 1-2   Model 1-3   Model 1-4 

Prevalence 0.05  0.05  0.05  0.046 

MAF 0.1  0.1  0.1  0.1 

  AA Aa aa  AA Aa aa  AA Aa aa  AA Aa aa 

BB 1.21 0.20 0.20  1.23 0.33 0.33  1.22 0.40 0.40  0.55 1.75 1.33 

Bb 0.20 5 5  0.33 3 3  0.40 2.50 2.50  1.54 0.18 0.74 

bb 0.20 5 5   0.33 3 3   0.40 2.50 2.50   1.75 0.18 0 

                

                

  Model 1-5   Model 1-6   Model 1-7   Model 1-8 

Prevalence 0.026  0.017  0.052  0.048 

MAF 0.1  0.1  0.2  0.4 

  AA Aa aa  AA Aa aa  AA Aa aa  AA Aa aa 

BB 1.16 0.38 0.76  1.15 0.40 0.17  0.84 1.35 0.80  0.52 1.07 1.89 

Bb 0.38 3.70 1.97  0.28 4.23 4.89  1.30 0.39 1.45  1.30 0.92 0.59 

bb 0.76 1.97 2.92   1.15 0.06 5.56   1.45 0.13 1.04   1.21 1.08 0.33 
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2) Epistatic model set 2 : four interaction models with main effects 

Model 2-1 is a multiplicative model. Model 2-2 is an epistasis model that has 

been used to describe handedness and the colour of swine. Model 2-3 is a classical 

epistasis model. Model 2-4 is the XOR model. The details of these four models have 

been described by Wan et al. [Wan, et al. 2010]. 

 

3) Epistatic model set 3 : Seventy interaction models without main effects 

Seventy Disease models without main effects have been proposed by Velez et 

al. [Velez, et al. 2007]. These 70 epistatic models are distributed across six 

heritability values (0.01, 0.025, 0.05, 0.1, 0.2, and 0.4) and two different MAFs (0.2 

and 0.4). 

 

Using these epistatic model sets, we conduct the following five simulation 

studies. 

 

Simulation 1: Comparing computational efficiency for genome-wide gene-gene 

interaction analysis 

To compare computational efficiency with IGENT, BOOST, MDR, SVM and 

RF, we construct simulation data using the epistatic model set 1. Each epistatic 

models contains 2000 individuals balanced between cases and controls. Various 

numbers of SNPs (50, 100, 500, 1K, 2K, 5K, 10K, 100K, 350K, and 500K) are 

considered. All analysis are carried out on single core of a 3.16 GHz CPU with 4G 

memory on LINUX. 

 

Simulation 2: Estimating type I error in null simulation  

To take an assessment in terms of type I error, we construct 1000 replicates of 

30 

 



null simulation data with 1000 SNPs and 1000 individuals based on the epistatic 

model set 1. In this null simulation data, all SNPs have no association with disease 

status. Using null simulation, we compare false positive rates of IGENT and BOOST.  

 

Simulation 3: Comparing the power of gene-gene interaction with main effects 

To compare the power of IGENT and BOOST in gene-gene interaction with 

main effects, we use the epistatic model set 2. The MAFs of disease-associated SNPs 

is set to be 0.1, 0.2, and 0.4. Each data set has 1000 SNPs with two different sample 

sizes of 800 and 1600 respectively. We generate 100 replicate data sets under each 

setting. Using this simulated data, we compare the power of IGENT and BOOST for 

gene-gene interaction with main effects. 

 

Simulation 4: Comparing the power of gene-gene interaction without main 

effects 

For evaluation of finding causal gene-gene interaction with no marginal effects, 

we use the epistatic model set 3. Using these 70 epistasis models in the set, we 

generate 100 replicate sets with 1000 SNPs (one pair is causal interaction, others are 

non-causal SNPs), and four sample sizes (200, 400, 800, and 1600 individuals). 

 

Simulation 5: Comparing the efficiency of stepwise search approach 

For comparison of the efficiency of IGENT_stepwise, we use the epistatic model 

set 1. We generate 100 replicate set with 50 SNPs from 400 individuals. Through 

this simulation, we compare the power and computational efficiency between 

IGENT_stepwise and IGENT_exhaust. 

 

 

3.2.4  Genome-wide data for Biopolar disorder (BD) 
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Using bipolar data from the Wellcome Trust Case Control Consortium (WTCCC) 

[Wellcome Trust Case Control 2007], we demonstrated genome-wide gene-gene 

interaction analysis for 2nd-order and higher-order interaction. SNPs with call rates 

<95% were excluded from the analysis. SNPs showing Hardy-Weinberg equilibrium 

(HWE) p-value<5.7×10-7 were filtered out. Of the remaining SNPs, only SNPs 

showing MAF of at least 5% were carried forward for further analysis. All quality 

control steps were conducted using PLINK version 1.07 [Purcell, et al. 2007] and R 

scripts. We performed imputation using fastPHASE version 1.2 [Scheet and Stephens 

2006] to increase the density of interrogated SNPs. After quality control and 

imputation process, WTCCC-BD dataset contained 354,022 SNPs and 4,806 samples. 

IGENT was applied to exhaustive two-way interaction analysis of 6.27×1010 

pairs of SNPs for WTCCC-BD data and stepwise selection approach for higher-order 

interactions.  

 

3.2.5  Genome-wide data for Age-related macular degeneration (AMD) 

 

For real data application, we used the AMD data set which contains 116,209 

SNPs genotyped with 96 cases and 50 controls from the Age-Related Eye Disease 

Study (AREDS) [Klein, et al. 2005]. We conducted the same quality control process 

as in the BD data analysis except for MAF < 0.01. All quality control steps were 

conducted using PLINK version 1.07 [Purcell, et al. 2007] and R scripts. After quality 

control process, we used remained 102,504 SNPs from 146 individuals. Pair-wise 

interaction analysis of all 5,253,483,756 pairs was conducted with IGENT_exhaust 

and BOOST. Also, IGENT_stepwise was performed for higher-order interactions. 
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3.3 Results 

 

3.3.1  Simulation results 

 

In this section, we perform simulation studies to evaluate the properties of 

IGENT and to compare it with other previous proposed methods. In order to detect 

gene-gene interaction with genome-wide data, computational efficiency is a key 

issue. In simulation 1, we compared the computational efficiency of IGENT and 

other methods such as BOOST, MDR, RF, and SVM. Among these methods, only 

IGENT and BOOST were shown to be feasible to analyze gene-gene interaction in 

genome-wide scale in simulation 1. We mainly compared IGENT and BOOST in 

regard to the power of identifying causal gene-gene interaction in simulations 2, 3, 

and 4. In simulation 5, we compared IGENT_stepwise and IGENT_exhaust. 

 

Simulation 1: comparing computational efficiency for genome-wide gene-gene 

interaction analysis 

In order to compare the computational efficiency of IGENT and other methods 

including BOOST, MDR, RF, and SVM, we conducted 2nd order interaction analysis 

with various the number of SNPs (50 to 500K). We used LIBSVM library [Chang 

and Lin 2011] and “randomforest” R package [Breiman 2001] for SVM and RF 

methods, respectively. All methods used an exhaustive search strategy for fair 

comparison.  
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Table 3.2  Computation time of IGENT, BOOST, MDR, RF, and SVM 

Computation time is measured in simulation 1 dataset which have 2000 individuals. All methods used an exhaustive search 

strategy for 2nd order interaction analysis. 

SNP size IGENT_exhaust BOOST MDR RF SVM  

50 <1s <1s 1s 11s 13s  

100 <1s <1s 4s 46s 53s  

500 <1s <1s 1m 8s 20m 23m  

1K 3s 1s 4m 25s 1h 15m 1h 29m  

2K 8s 6s 19m 52s 5h 5h 50m  

5K 38s 30s 2h 4m 1d 6h 1d 12h  

10K 2m 34s 2m 7s *8h 16m *5d 5h *6d 3h  

100K 4h 23m 3h 32m *35d *520d *614d  

350K 2d 4h 1d 19h *422d *6366d *7524d  

500K 4d 10h 3d 15h *861d *12992d *15353d  

* This computing time is estimated from the computing time in simulation data with 5000 SNPs.  

All analysis are carried out on single core of a 3.16 GHz CPU with 4G memory on LINUX. 
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Table 3.3  Comparison of the type I error in null simulation 

Thresholds False Positive Rate 

after Bonferroni 
correction IGENT BOOST 

0.01 0.012 0.011 

0.05 0.057 0.054 

0.10 0.112 0.108 

0.15 0.166 0.153 

0.20 0.219 0.215 

0.25 0.270 0.264 

0.30 0.321 0.318 
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Table 3.2 presents computation times to finish 2nd order interaction analysis by 

each method. In simulation data with 350K SNPs, IGENT_exhaust and BOOST can 

finish the interaction analysis within about 2.17 days and 1.8 days, respectively. 

However, due to their heavy computation times, MDR, RF, and SVM are not feasible 

to conduct the gene-gene interaction analysis with genome-wide dataset. For 

genome-wide interaction analysis, we focus on comparing the power of IGENT and 

BOOST in simulations 2, 3, and 4. 

 

Simulation 2: estimating type I error in null simulation 

The type 1 error rates of IGENT_exhaust and BOOST are shown in Table 3.3. 

Although the type I error rates of IGENT_exhaust and BOOST seem to be slightly 

higher than the nominal value, it can be shown that the type I errors of IGENT and 

BOOST agree with the nominal value lying within the confidence interval.  

 

Simulation 3: comparing the power of gene-gene interaction with main effects 

In simulation 3, we compared the IGENT_exhaust, IGENT_stepwise, and 

BOOST for detecting causal gene-gene interactions with main effects. In simulation 

data, IGENT used both exhaustive mode and stepwise mode, and BOOST used an 

exhaustive mode for searching the 2nd order interactions. The power is calculated as 

the proportion of 100 data sets in which the interactions of the disease-associated 

SNPs are detected. In all simulation data, we counted the interaction with its p-value 

(after multiple comparison procedure by Bonferroni correction) < 0.05. In stepwise 

mode, only variants with marginal p-value < 0.05 were proceeded to the next step 

for calculating the 2nd order interactions. In simulation 3, the detection probability of 

IGENT_exhaust showed the best performance in most models except for Models 2-

4 (Figure 3.2). The performance of BOOST became worse in the simulation models 
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with low minor allele frequency (MAF 0.1 and 0.2). In simulation 3, the average 

power of IGENT_stepwise was about 60% relative to IGENT_exhaust, but its 

computing time was less than 1%(only 0.43%) of IGENT_exhaust. 

 

Simulation 4: comparing the power of gene-gene interaction without main 

effects 

In simulation 4 which has causal gene-gene interaction without main effects, 

IGENT_exhaust performed better than or equivalent to BOOST in most simulation 

models. In simulation model with lower MAF and small sample size, BOOST 

showed poor performance.  However, they provided equivalent results for models 

with a MAF of 0.4 or large sample sizes (Figure 3.3).  

 

Simulation 5: comparing the efficiency of stepwise analysis and exhaust 

analysis of IGENT 

We evaluated the performance of IGENT_stepwise in simulation 5 based on 

epistatic model set 1.  All models were designed with the 2nd order interaction 

effects and no marginal effects. Although these simulation models do not include the 

higher-order interaction effects over the 2nd order, it is possible for spurious higher-

order interaction to show the large effects on phenotype. To allow for finding 

spurious higher-order interactions, we exhaustively identified interactions from 1st 

to 4th orders. By comparing the identified interactions from IGENT_exhaust to those 

from IGENT_stepwise, we were able to evaluate the performance of 

IGENT_exhaust. 
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Figure 3.2  The power comparison between IGENT and BOOST on four 
disease models with main effects. Results are shown in separate panels for each 
sample size (800 and 1600). MAF are presented on the X-axis. Model 2-1 is a 
multiplicative model. Model 2-2 is an epistasis model that has been used to describe 
handedness and the colour of swine. Model 2-3 is a classical epistasis model. Model 
2-4 is the XOR model. 
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Figure 3.3  Performance comparison with IGENT, BOOST in 70 simulation 
models 
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Figure 3.4  Performance comparison with permutation method (perm_p) and 
gamma distribution approximation based method (gamma_p) in IGENT in 70 
simulation models. In permutation method (perm_p), we conducted 1000 
permutations with 100 repeated dataset. Y-axis is detection probability of causal 
interaction pair with p<0.05.  
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Table 3.4  Efficiency of stepwise analysis 

Model Powera in 
Stepwise approach 

Power in 
exhaustive 
approach 

ratio of powerb Computation in 
stepwise approachc 

ratio of 
computationd 

1 0.69 1.00 0.69 148.4 0.12 

2 0.71 0.92 0.77 149.7 0.12 

3 0.67 0.80 0.84 154.7 0.13 

4 0.87 0.94 0.93 147.6 0.12 

5 0.62 0.88 0.70 147.0 0.12 

6 0.63 0.96 0.66 145.3 0.12 

7 0.19 0.25 0.76 167.3 0.14 

8 0.15 0.17 0.88 445.6 0.36 
a Detection probability,   
b the ratio of power between stepwise approach and exhaustive approach  
c Average number of combinations to be computed in stepwise approach  
d Computation ratio is the ratio of computation amount of stepwise approach and computation amount of exhaustive approach. The 
computation of exhaustive approach is calculated using 50C2 = 1225. 
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Table 3.4 shows IGENT_stepwise has the 66~93% of power of the 

IGENT_exhaust by using only 12~36% computation of the IGENT_exhaust. For the 

genome-wide interaction analysis, IGENT_stepwise can perform high-order 

interaction analysis very efficiently. 

 

3.3.2  Analysis of WTCCC bipolar disorder (BD) data 

 

We conducted genome-wide two-way interaction analysis and higher-order 

interactions with WTCCC-BD dataset [Wellcome Trust Case Control 2007]. The 

IGENT_exhaust completed all two-way interaction pairs (6.25 × 109) in about 74 

hours on a 3.16 GHz CPU with 4G memory on LINUX. IGENT_stepwise took about 

1.5 hour in higher order interactions on the same system. Through exhaustive two-

way interactions, IGENT_exhaust reported 39 significant interactions. Among these 

39 interactions, 26 pairs were also reported by IGENT_stepwise. Among these hub 

genes, LOC390730, DPP10, and CDC25B have been reported with strong marginal 

effects in a previous study [Wellcome Trust Case Control 2007] (Table 3.5). 

B2GALT5, PI15, TLE4, AKAP10, and CHST2 did not show significant associations 

in single locus analysis but showed strong interactions. These genes have been 

reported as causal genes associated with bipolar disorder in other studies [Djurovic, 

et al. 2010; Hamshere, et al. 2009; Iwamoto, et al. 2011; Laje, et al. 2009; 

Martinowich, et al. 2009; van Winkel, et al. 2011].  

In Figure 3.5, using two-way interaction analysis by IGENT, we constructed 

the interaction network of WTCCC-BD. In two-way interaction network, a node 

represents a gene with SNP(s), edge is interaction reported by IGENT analysis. Node 

size shows the degree of the node and edge width shows the number of SNP-SNP 
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interactions. All significant interactions were annotated by HuGE navigator database 

[Yu, et al. 2008] and GWAS catalog [Hindorff, et al. 2009]. This network graph 

represents two-way interactions of genome-wide association with bipolar disorder 

and facilitates biological interpretations. 

 

3.3.3  Analysis of age-related macular degeneration (AMD) data 

 

We conducted 2nd order interaction analysis and high-order interaction analysis 

using IGENT and BOOST for AMD data. Table 3.6 shows the top 5 interactions or 

SNPs identified by IGENT. In the case of AMD data, there are SNPs (rs380390 (CFH) 

and rs1329428 (CFH)) with strong marginal effect. These SNPs were also reported 

previously that they have strong association with AMD disorder [Klein, et al. 2005]. 

IGENT also detected two interactions (CFH (rs380390) - SGCD (rs931798) and 

CFH (rs1329428) - MED27 (rs9328536)). These two interactions also have a SNP 

with a strong marginal effect. 
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Table 3.5  Hub genes (degree of nodes ≥ 10) in two-way interactions of WTCCC-BD 

Hub gene degree location SNP(s) Referencea 

B3GALT5 115 21q22.2b rs980184 [Hamshere, et al. 2009] 

LOC442261 98 6q23.2d rs4896044  

PI15 32 8q21.11b rs2954873 [Martinowich, et al. 2009] 

LOC390730 26 16q12.2a 
rs7188309 rs11640993 rs8056052 
rs2192859 rs1344484 rs10521275 
rs11647459 rs2387823 

[Wellcome Trust Case Control 2007] 

PHF20 24 20q11.23a rs6060710  

TLE4 13 9q21.31b rs914715 rs11138278 [Laje, et al. 2009] 

DPP10 12 2q14.1b rs11123306 rs708647 rs1375144 
rs6741692  

[Djurovic, et al. 2010; Wellcome Trust Case 
Control 2007] 

AKAP10 10 17p11.2d rs203466 rs203457 rs119672 rs2108978 [Iwamoto, et al. 2011] 

CHST2 10 3q23d rs4683457 [van Winkel, et al. 2011] 

a. Reference is literature related with bipolar disorder. 
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Table 3.6 Interaction analysis result using AMD data set 

rank SNP P 

1 CFH(rs380390)  SGCD(rs931798)  8.454×10-12 

2 CFH(rs1329428)  MED27(rs9328536)  1.943×10-10 

3 CFH(rs380390)  2.087×10-7 

4 INPP4B(rs3775640) 3.128×10-7 

5 CFH(rs1329428) 1.166×10-6 
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Figure 3.5  Gene-gene interaction network for WTCCC-BD dataset. Red nodes 
represent genes reported in previous GWAS literature with bipolar disorder dataset. 
Blue nodes are the genes related with bipolar disorder in previous literature. Green 
nodes are the genes related with other psychiatric disorders (schizophrenia and 
depression disorder). Width of edge is the significance level of interaction. 
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3.4 Discussion 

 
In this chapter, we proposed a fast analysis for searching for high-order 

interactions associated with complex diseases. IGENT uses information gain which 

represents association strength with GGI and phenotype without a specific genetic 

model. The IG measure can be used to compare the association strength across 

different order of interactions. IGENT adopts an exhaustive search scheme that 

investigates all possible interactions in lower-order interactions and a stepwise 

search scheme for higher-order interactions. The permutation and exhaustive search 

schemes of the previous GGI methods are computationally too intensive to be 

employed in large genome-wide scale data set for high-order interactions.  

Note that IGENT is as fast as BOOST and shows better performance than 

BOOST. BOOST has been known to have a limitation that the degree of freedom of 

the statistical test should be reduced when the contingency table is too sparse due to 

low MAF [Wan, et al. 2010]. IGENT, however, presents stable performance in 

various epistasis models even with low MAF. 

To evaluate significance of IGENT’s result, we used hypothesis testing 

framework by approximating the gamma distribution. It is known that IG follows the 

gamma distribution under the null hypothesis. Using approximation to the gamma 

distribution instead of permutation, we can easily calculate statistical significant 

interactions and save the computation time remarkably. To find more accurate 

significant causal interactions, this approximation of the gamma distribution can be 

used for screening step. After screening step, the permutation for selected pairs gives 

more accurate significant value. 

A stepwise approach is more efficient than exhaustive approach in terms of 

computation. However, this stepwise approach has a trade-off between 

computational efficiency and detection of optimal gene-gene interactions. Our 

stepwise approach, IGENT_stepwise, reduced a search space extremely for detecting 
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GGI with marginal effects. Although GGI without marginal effects can be generated 

mathematically [Botstein and Risch 2003; Culverhouse, et al. 2002; Kotti, et al. 

2007], it is still unclear in practice how the GGI model without marginal effect is 

biologically associated with a complex disease [Cordell 2009].   

In MDR and IGENT methods, a pair with strong marginal effects and week 

interaction effect can be detected as a significant interaction pair. In this case, we 

excluded the pair by calculating the marginal effect and interaction effect.  

In an exhaustive search scheme, our simulation result showed that 

IGENT_exhaust consistently had better performance than BOOST, as shown in 

Figures 2 and 3. Although both BOOST and IGENT showed efficient and fast 

computational performances, IGENT showed power higher than or equivalent to that 

of BOOST. 

 

 

 

3.5 Conclusion 

 
In conclusion, we proposed a fast and efficient enhanced entropy-based GGI 

analysis method. Due to its fast and efficient computation scheme, it can easily 

identify the gene-gene interaction in genome-wide scale. Through real GWAS data 

analysis, IGENT successfully identified low order and high order interactions. 

IGENT has been implemented with C++.   
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Chapter 4 

 

Gene-gene interaction for rare variants 

 

 

4.1 Introduction 

 
In recent years, studies support the ‘common-disease rare-variants’ (CDRV) 

hypothesis which claims that complex disorders are caused by multiple rare variants. 

Type 2 diabetes mellitus (T2D) is a complex disease which is caused by both genetic 

composition and environmental factors. The exact biochemical mechanism is yet to 

be unveiled, however, impairments in insulin action and secretion certainly take parts. 

Unlike Type 1 diabetes, T2D is characterized primarily by ‘insulin resistance’; and 

a vast majority of this resistance is shown as defects at the postreceptor level (Kroc 

et al.).  Heterogeneity in T2D’s pathological and physiological symptoms leads to 

a variety of complications such as coronary heart disease, retinopathy, nephropathy, 

etc. [Flannick, et al. 2014]  

Due to rare variants having low frequencies and existing in large number, 
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traditional single-marker association tests generally lacked power in these variants. 

In recent studies, several methods have been developed based on collapsing rare 

variants in specific regions of interest, i.e. a gene or genes from a specific pathway. 

This is followed by a region-based test rather than association tests on individual loci. 

Methods such as Combined Multivariate and Collapsing (CMC) method, Weighted 

Sum (WS) method, Variable Threshold (VT), etc. and many other variations of these 

methods have been published.  

In this chapter, we proposed the GGI method for rare variants. The proposed 

method consists of collapsing step and MDR step. In collapsing step, the rare variants 

were collapsed and recoded in gene-based genotype. Using the gene-based collapsed 

genotypes, we performed the MDR step. In simulations, MDR with information gain 

(IG) showed better performance than SPA and MDR with other measures. And, we 

conducted GGI for rare variants in type 2 diabetes data.  
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4.2 Methods 

 

4.2.1  Collapsing-based gene-gene interaction  
 

As a gene-level association test for rare variants, we proposed collapsing-based 

MDR method. In collapsing step, we used three collapsing method, MAF-based 

collapsing (MDRcol), functional-region-based collapsing (MDRcol_func) and 

weight-based collapsing (MDRcol_weight). 

We used balanced accuracy (BA) and information gain (IG) as the evaluation 

measure in MDR framework.  

𝐵𝐵𝐵𝐵 = �
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
+

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

� /2 

𝐼𝐼𝐼𝐼(𝑌𝑌|𝑋𝑋) = 𝐻𝐻(𝑌𝑌) − 𝐻𝐻(𝑌𝑌|𝑋𝑋) 

Also, for weight of variants’ interaction, we used four interaction effect models 

which are extended by Marchini’s three gene-gene interaction effect models (Figure 

4.1) (Marchini et al. 2005). 

 

4.2.2  Simulation setting  
 

The statistical efficiency of the proposed method was evaluated through a set 

of gene-gene interaction simulation settings. We incorporated Marchini’s four 

interaction models for rare variants: multiplicative, additive, maximum and 

minimum threshold effects models. The genotypes were generated under HWE with 
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20 rare SNPs in each genes. As for the phenotypes, 2 cases were considered; GGI 

with and without marginal effects. Also, to handle the directions of SNP effects, 

deleterious vs. protective, we analyzed under unidirectional and bidirectional 

conditions. Lastly, different weighting schemes were also applied to the phenotypes 

to reflect the characteristics of real data. Here, MAF based and conservation score 

based weighting schemes have been considered, and various combination of the 

above parameters have been used for simulation models. The following are the 

details of each simulation settings: 

In order to compare with our method and SPA, we conducted the simulations 

with the genotype of two genes in 2000 individuals. We generated the genotype of 

20 rare SNPs (MAF < 0.01) in each gene under Hardy–Weinberg equilibrium. 

The phenotype was generated as followed equation.  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑦𝑦 = 1) = 𝛼𝛼0 + ��(−1)𝑖𝑖𝛽𝛽𝑖𝑖

𝑘𝑘∙𝑚𝑚1

𝑖𝑖=1

𝑋𝑋𝑖𝑖 + �(−1)𝑗𝑗𝛽𝛽𝑗𝑗

𝑘𝑘∙𝑚𝑚2

𝑗𝑗=1

𝑋𝑋𝑗𝑗� + � �(−1)𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖

𝑘𝑘∙𝑚𝑚2

𝑗𝑗=1

𝑘𝑘∙𝑚𝑚1

𝑖𝑖=1

𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗 

which 𝑚𝑚1 and 𝑚𝑚2 are the number of rare SNPs in gene1 and gene2, respectively, 

𝑘𝑘 is the proportion of effective rare SNPs which is 0.5 or 0.7, 𝛽𝛽𝑖𝑖 , 𝛽𝛽𝑗𝑗 and 𝛽𝛽𝑖𝑖𝑖𝑖 are 

weight for SNPi of gene1 and SNPj of gene2.  

In this simulation, we used MAF weight and conservation weight as weight of 

variants.  

We generated MAF weight as following equation. 

𝛽𝛽𝑖𝑖 = ln
5
4
∙ |log10𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖| 

 

We generated the conservation weight of a variant using PhastCons score 

distribution (Figure 4.2) in T2D Korean data as following equation. 

𝛽𝛽𝑖𝑖 = 𝑐𝑐|log10(1 − 𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖)| 
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For MAF and conservation weight, we used linear combination with ratio (𝛾𝛾 is 

[0,1]) as followed. 

𝛽𝛽𝑖𝑖 = 𝛾𝛾 ∙ �ln
5
4
∙ |log10 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖| � + (1 − 𝛾𝛾)(𝑐𝑐|log10(1 − 𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖)|) 

In this simulations, we generated five different simulation scenarios.  

 scenarios 1 - no effect weight, only interaction effect, unidirectional 

 scenarios 2 - no effect weight, interaction + marginal effect, unidirectional 

 scenarios 3 - no effect weight, only interaction effect, bi-directional 

 scenarios 4 - MAF weight, only interaction effect, uni-directional 

 scenarios 5 - CONS weight (0.5), only interaction effect, uni-directional 

In order to measure type I error, we generated 100,000 repeated dataset which 

has no effective causal SNP interactions. 

53 

 



 

Figure 4.1  Four effect models of variant interaction 

 

 

Figure 4.2  PhastCons score distribution as MAF and MAF bin 
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4.3 Results 

 
4.3.1  Simulation study 
 

In most simulation settings, the power of MDRcol outperformed than SPA method. 

(Figure 4.3 ~ Figure 4.12) 

In table 4. , our methods with IG and BA can control type I error in null dataset 

which has 100,000 repeated dataset with no effective causal SNP interaction.  

 

4.3.2  Real data analysis of the Type 2 diabetes data 
We studied 13,124 individuals from multiple ancestries as part of five whole-exome 

sequencing studies: the Type 2 Diabetes Genetic Exploration by Next-generation 

sequencing in multi-Ethnic Samples (T2D-GENES) study wave 3. Here, we utilized 

the Korean subjects in the project, which consists of 1,072 individuals and 488,457 

autosomal variants. After quality control with HWE, missingness filtering, and 

MAF<0.01 (rare variants); 414,193 variants remained for the analysis. The rare 

variants were collapsed under three different schemes: MAF-based, Functional 

region-based, and Weight-based collapsing. In MAF-based collapsing, the variants 

inside the genes are collapsed based on their MAFs; 0.01 < MAF < 0.05 and 

MAF<0.01. For the Functional region-based collapsing, the variants in a gene are 

collapsed to their annotated functional regions, such as coding region, splice 

junctions, etc. This reflects the importance of gene structure and region specific 

variants. And, the weight-based method collapses the variants to their according 

genes and multiply functional weight information, such as risk scores or 

conservation scores to each genotypes. The MAF has been used as weights on the 

hypothesis that “disease-promoting variants should be rare” (Gibson, 2011). The two 

functional risk weights are from annotated scores of PolyPhen2 and SIFT, however, 

these scores have poor coverage (only 60 and 81% of human proteome, respectively). 

55 

 



Finally, the conservation scores calculated from PhastCons and phyloP are utilized; 

this is based on the claims of Ng and Henikoff that “disease-causing mutations are 

more likely to occur at positions that are conserved throughout evolution”. 
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Figure 4.3 Detection probability in simulation 1 with no effect weight and only unidirectional interaction effect 
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Figure 4.4 Detection probability in simulation 1 with no effect weight and only unidirectional interaction effect 
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Figure 4.5 Detection probability in simulation 2 with no effect weight and unidirectional interaction effect and 

marginal effect 
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Figure 4.6 Detection probability in simulation 2 with no effect weight and unidirectional interaction effect and 

marginal effect 
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Figure 4.7 Detection probability in simulation 3 with no effect weight and bidirectional interaction effect and 

marginal effect 
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Figure 4.8 Detection probability in simulation 3 with no effect weight and bidirectional interaction effect and 

marginal effect 
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Figure 4.9 Detection probability in simulation 4 with MAF weight and only unidirectional interaction effect 
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Figure 4.10 Detection probability in simulation 4 with MAF weight and only unidirectional interaction effect 
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Figure 4.11 Detection probability in simulation 5 with conservation weight and only unidirectional interaction effect 

65 

 



 

Figure 4.12 Detection probability in simulation 5 with conservation weight and only unidirectional interaction effect 
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Table 4.1 Type I error  

 
MDRcol 

(IG) 
MDRcol 

(BA) 

MDRcol 
Func 
(IG) 

MDRcol 
Func 
(BA) 

MDRcol 
Weight 

(IG) 

MDRcol 
Weight 

(BA) 

Type 
I 

error 
0.047 0.055 0.045 0.044 0.045 0.044 
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4.5  Discussion and Conclusion 

In this paper, we proposed a collapsing-based gene-gene interaction method 

which was extended from MDR method. Using five different simulation scenarios, 

we showed that our method has better performance than SPA method. Using our 

methods, we applied to T2D dataset with 1072 Koreans.  

We used annotation information of all variants predicted by SNPeff, SIFT, 

Polyphen2 and Condell for functional region-based collapsing.  

Functional weight-based collapsing method is expected to remove artifact rare 

variants. Because the sparcity of rare variant, artifact false variants are called 

sometimes in the sequencing alignment procedure or variant calling process. To 

filter out the called false variants, we used functional weight-based collapsing 

method because the variants tend to have low functional scores. All variants cannot 

have an effect on their related protein function. Only variants on the specific 

functional region can affect their related protein function. There are specific 

genomic regions that affect their protein function. A variant on the specific 

functional region has an effect on the function of protein which is encoded in the 

region or regulated by the region. Therefore, the deleterious effects of variants are 

closely related with the genomic region. 

In our simulations, MDRcol (IG) method has better performance than SPA. 

The IG measure is known to have better performance than BA.   
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Chapter 5 

 

Computation enhancement for gene-gene interaction 

 

5.1 Introduction 

The original MDR software was implemented by JAVA programming language 

and had graphical user interface [Hahn, et al. 2003]. Because this MDR JAVA 

version is designed to run on only single workstation, it is suitable for candidate 

gene studies with a small number (<500) of genetic variables, such as single 

nucleotide polymorphisms (SNPs). In order to handle large dataset, Bush et al. 

proposed parallel MDR (pMDR) which employs parallel computing environment 

and can analyze pair-wise interactions for GWAS [Bush, et al. 2006]. In this 

approach, the large scaled cluster system is required for interaction analysis of 

genome-wide data.  

Recently, an efficient alternative computing method is proposed by general-

purpose scientific computation on graphics processing units (GPGPUs). GPUs are 

specialized microprocessors developed for accelerating graphic rendering.  Their 

highly parallel structure makes them more effective for a range of complex 
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algorithms than general-purpose CPUs. In fact, the computational power of the most 

recent GPUs is comparable to that of a cluster with hundreds of CPU cores [Dematte 

and Prandi 2010]. Using this modern GPUs, MDRGPU implemented MDR method 

based on pyCUDA library [Sinnott-Armstrong, et al. 2009]. However, MDRGPU 

has some limitations in direct application to GWAS in that it reports only one single 

best MDR classifier, while most complex traits are multifactorial. 

To address this limitation, we have developed cuGWAM with many special 

features for GWAS; effective memory handling, top-K report, 3-methods for 

missing genotype and various performance measures. Furthermore, cuGWAM is 

much faster than previous MDR software. In our estimation, cuGWAM performs 

2~5 times faster than MDRGPU and up to 500 times faster than CPU-based MDR 

software for one million variants. 
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5.2 Methods 

 
5.2.1  MDR implementation 

The MDR method is accompanied with a classification procedure to classify 

samples into high and low risk groups based on their genotype combinations of 

genetic variables. A cross-validation (CV) approach is implemented in MDR to 

detect the best classifiers via classification performance and predictability. For 

example, the whole data is partitioned into 10 equal-sized sub-datasets in 10-fold CV. 

At each CV step, one subset is used as a testing set while the remaining nine subsets 

form a training set. Then, MDR classifiers are fitted based on the training set for 

each order of interactions. Their classification and prediction performances can be 

evaluated with training and test sets, respectively, via an evaluation measure, such 

as classification accuracy (CA), balanced accuracy (BA), and cross-validation 

consistency (CVC; Ritchie et al. 2001). Then, the best MDR classifier is selected 

based on the performance evaluation. A voting algorithm, such as CVC, is used to 

suggest the single best MDR classifier that is most strongly supported in CV. 

Along with CA and BA, we implemented eight additional evaluation measures, 

including tau-b, likelihood ratio, and normalized mutual information, three of which 

are known to improve the MDR performance [Namkung, et al. 2009b]. Also, three 

popular approaches were implemented for handling missing genotypes inside 

cuGWAM by specifying one of the missing-handling options, such as ‘complete’ 

(deleting all samples with missing data and using a complete dataset), ‘available’ 

(using all available samples for each combination under consideration), and ‘missing 

category’ (treating missing genotypes as a new genotype category) [Namkung, et al. 
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2009a]. 

In order to report multiple candidates, each candidate is evaluated respectively 

with training and testing datasets via user-selected evaluation measure. Then, a pre-

defined number (K) of the best candidates with largest evaluation measures with 

training set are selected. 

 

5.2.2  Implementation using high-performance computation based on 

GPU 
There are two types of GPU based developing platforms, CUDA by NVidia 

(http://developer.nvidia.com) and CTM by AMD (http://ati.amd.com). In order to 

design MDR implementation, we selected NVidia graphic card with CUDA 

programming environment which has been successfully applied in scientific field 

[Dematte and Prandi 2010; Liu, et al. 2010; Stivala, et al. 2010]. 

The MDR implementation scheme in cuGWAM, shown in Figure 5.1, has four 

steps as follows. 

Step1. Calculate all combinations. In this step, all possible combinations are 

constructed by function ‘combi’ running on host side. 

Step2. Reduce dimensionality. The function which is running on GPU device 

is called kernel. The kernel ‘countTable’ constructs an m-dimensional contingency 

table where each of all possible multi-locus genotypes of m given SNPs is 

represented. The binary MDR classifier with two levels of high/low risk groups 

reduces the m-dimensional space to one dimensional space. After this dimensionality 

reduction, the contingency table is stored to host memory from shared memory. In 
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this time, all parallel job streams on GPU, which are called threads, are synchronized 

to prevent misallocation of data. 

Step3. Calculate evaluation measures. Each MDR classifier is evaluated, 

respectively, with training and testing datasets via an evaluation measure (e.g. 

training BA and test BA). The evaluation measures of each model are estimated in 

kernel ‘calc’. After this step, all threads were synchronized. 

Step4. Store top-K classifiers. All MDR classifiers are ordered by their 

evaluated measures and a user-specified number (K) of the best MDR classifiers is 

stored.  

Because host device memory has higher latency and lower bandwidth than GPU 

chip memory, host device memory accesses should be minimized to increase 

performance of most CUDA applications. But, since GPU chip memory is of limited 

size, it is important to allocate proper data in proper memory space. There are six 

memory spaces (e.g. global, constant, shared, local, texture and register memory) to 

access from chip. cuGWAM was designed to optimize global, constant, and shared 

memory  as follows. 

Global memory. The global memory is large (1 GB), but has high latency, low 

bandwidth and is not cached. In cuGWAM, whole genotype data is stored in this 

global memory because of its large size. 

Constant memory. The constant memory can be only read by kernels. In our 

implementation, individual’s phenotype information and address of contingency 

table from dimensional reduction are stored in this constant memory.  
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Figure 5.1.  Implementation scheme in cuGWAM 
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Shared memory. The shared memory space is much faster than the local and 

global memory spaces, but it has small size (16K bytes). After dimensional reduction 

step by ‘countTable’ kernel, the contingency table data is produced and stored in this 

shared memory.  

Our cuGWAM was developed with focus on memory optimization and effective 

memory allocation for large scaled genome-wide data. 

 

5.2.3  Environment of performance comparison 

We installed MDR (JAVA version) [Ritchie, et al. 2001] and pMDR [Bush, et 

al. 2006] on 2-GHz Dual Core AMD Opteron(tm) Processor with 8 GB RAM in 

Linux cluster system with openMPI. MDR (JAVA) was run on single node. For 

pMDR, we used 100 cores in the cluster system. We tested with different sample 

sizes (500, 1K, 2K and 5K) and numbers of SNPs (500, 1K, 2K and 5K). In this test, 

we tested all MDR applications for two-way interaction. 

In order to compare the cuGWAM with MDRGPU, we have tested on a 

workstation, having Intel Core i7 2.66GHz Processor, 12GB RAM  and three 

NVIDIA GeForce GTX285 graphic card in Linux system with various sample sizes 

(500, 1K, 2K, 5K and 10K) and numbers of SNPs (100, 500, 1K, 2K, 5K and 20K). 

Two-way interaction was considered for comparing all programs and three-way 

interactions were considered for comparing GPU based programs.  

To be optimized in various hardware systems, cuGWAM provides user-defined 

number of threads and blocks. In three GTX 285 cards, we set 145 threads and 200 

blocks. 
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5.3 Results 

 

5.3.1  Computational improvement 
Exhaustive searching tests were performed to compare our implementation of 

MDR in CUDA with MDR (JAVA), pMDR and MDRGPU. As published by Sinnott-

Armstrong et al. [Sinnott-Armstrong, et al. 2009], this performance result shows that 

the both GPU solutions, cuGWAM and MDRGPU, are faster than standard CPUs 

(Table 1 and 2). The execution time has linear relationship with the combinations of 

markers as shown Table 5.1. Especially, cuGWAM has faster ~650 times than MDR 

(JAVA version) in test data with 2000 markers and 5000 samples. Also two GPU 

applications (cuGWAM and MDRGPU) perform better than cluster application 

(pMDR) on 100 cores cluster. Because this test shows that execution time has linear 

relationship with sample size and combinations of markers, we estimate that 

cuGWAM has equivalent performance with cluster system with about 200 cores. 

For three-way interaction based on single GPU devices, cuGWAM showed 

better performance than MDRGPU in both different marker size (100, 500 and 1K) 

and different sample size (500, 1K, 2K, 5K and 10K), as shown in  Figure 5.2 and 

5.3. The performance was improved by ~2.9 fold when all three-way interactions of 

100 markers were executed with a sample size of 10K. Also, since the linear 

increment in execution time was observed as sample size or marker size increases, 

the more samples and markers were examined, the larger benefits of performance 

was gained by cuGWAM. 
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Table 5.1  Execution time (sec) in marker size 500, 1K, 2K and 5K for 
sample size of 2K 

system methods 
marker size 

500 1K 2K 5K 

CPU-based MDR (JAVA) 195 1054 4997 17540 

Cluster a pMDR 6 10 48 289 

1GPU 
MDRGPU 9 16 35 115 

cuGWAM 2 3 10 55 

a. 100 cores were used in this performance testing 

 

 

Table 5.2  Execution time (sec) in sample size 500, 1K, 2K and 5K for 
marker size of 2K 

system methods 
sample size 

500 1K 2K 5K 

CPU-based MDR (JAVA) 910 1725 4997 11090 

Cluster a pMDR 10 23 48 126 

1GPU 
MDRGPU 10 19 35 86 

cuGWAM 6 7 10 17 

a. 100 cores were used in this performance testing 
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Figure 5.2  Performance comparison with sample size 10K  on single GPU 

for three-way interaction 

 

Figure 5.3  Performance comparison with marker size 1K on single GPU for 

three-way interaction 
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We have measured the performance by running the applications on single, two 

and three GPU configurations. In both cuGWAM and MDRGPU, we observed a 

nearly linear performance improvement as adding more graphic boards to the system. 

But cuGWAM is slightly better performance than MDRGPU (Figure 5.4). 

For high order interactions, more memory space is needed after calculation of 

count table. In two-way interaction, one count table uses 3×3×2 bytes = 18 bytes but,  

in three-way interaction, single count table uses 3×3×3×2 bytes = 54 bytes. Since 

graphic card has limited shared memory space (16K bytes), the number of threads 

loaded on shared memory at once is 888 (16K bytes / 18 bytes) in two-way 

interaction, but 296 (16K bytes/ 54 bytes) in three-way interaction. As this 

calculation, the performance will be decreased 1/3 times from two-way to three-way 

interaction. We observed the reduced performance from two-way interaction to 

three-way interaction in both cuGWAM and MDRGPU (Figure 5.5). The 

performance losses of cuGWAM and MDRGPU are about 45.2% and 63.4% 

respectively. Note that cuGWAM has lower decrease rate of performance than 

MDRGPU from two-way to three-way interaction. 

To evaluate in real data set with 327,632 SNPs and 6,417 samples, cuGWAM 

completed 5.4 × 1010 classifiers (e.g., pairwise interactions between 327,632 SNPs) 

in ~4.1 days on 3 GPUs. We expect that cuGWAM can evaluate 5 × 1011 classifiers 

(e.g., pairwise interactions between one million SNPs) with 10k samples and 10 

cross validation in ~17.7 days on 3 GPUs while MDRGPU completed the same 

evaluation in ~69.3 days. 
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Figure 5.4  Performance increment as adding graphic boards (sample size 

10K, marker size 1K) 

 

 

Figure 5.5  Performance loss in high-order interaction (sample size 5K, 

marker size 20K on single GPU) 
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Table 5.3  Computational and construction cost for 1M SNPs and 2K individuals 

system Construction cost ($) MDR applications Expected execution time (day) Computational cost ($) 

1 node  1000 MDR (JAVA) 8122 7417 

Cluster  50000 pMDR 134 6111 

1GPU 2300 
MDRGPU 53 112 

cuGWAM 25 53 

2GPU 2900 
MDRGPU 27 71 

cuGWAM 13 34 

3GPU 3500 
MDRGPU 18 57 

cuGWAM 8 27 
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The expected execution time for 1M SNPs and 2K individuals derive from 

the execution time for 5K markers and 2K samples in table 1. We assume that 

life span of every system is three years. The computation cost is calculated as 

(computation cost) = (execution time) × (construction cost) / (3 years × 365 days). 

We do not consider any management cost. 

In Table 5.3, we compared the computational cost for 1million SNPs and 

2000 individuals. If we assumed that life span of every system is three years, we 

calculated computational cost as depreciation cost. The three GPU (GTX-285) 

system costs approximately $3500, but cluster system with 100 cores costs 

approximately $50000. If we calculate two-way interaction for 1 million SNPs 

and 2000 individuals, computational cost is $7417 for MDR(JAVA), $6111 for 

pMDR, $57 for MDRGPU (3GPU) and $27 for cuGWAM (3GPU).  In this test, 

cuGWAM is more cost-effective 274 times than MDR(JAVA), 226 times than 

pMDR (100 cores cluster) and 2 times than GPUMDR. 
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Figure 5.6. SNP-SNP interaction network using two-way interaction results by cuGWAM. 
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5.4 Discussion 

In this chapter, we presented the computing capability of CUDA-enabled GPUs 

for accelerating MDR algorithm. Our cuGWAM has various features that distinguish 

from existing MDR application for GWAS as follows. First, it implements an 

effective memory handling algorithm and efficient procedures for MDR to make 

joint analysis of multiple genes feasible for GWAS. Second, it can report multiple 

candidates for causal gene-gene interactions. Third, various performance measures, 

including tau-b, likelihood ratio, and normalized mutual information, were 

implemented to evaluate MDR classifiers [Namkung, et al. 2009b]. Finally, it 

implements three methods for handling missing genotypes: complete, available and 

missing category [Namkung, et al. 2009a].  

This features of our method can lead to vast speed-up and, enable gene-gene 

interaction analysis on millions variant data that presently cannot be performed due 

to computing time limitations in traditional computing systems. We obtained ~500 

fold performance improvement over original MDR and equivalent performance of 

about 200 cores cluster system in one GPU system. Also, by porting the MDR onto 

high-performance graphic cards using the CUDA environment, we obtained up to ~5 

fold acceleration compared with MDRGPU. Especially, cuGWAM has better 

performance than MDRGPU in every types of testing (sample size, marker size and 

high-order interaction). Even though a Python-based GPU compute code was 

expected to show the same full performance of GPU hardware as a C-controlled GPU 

compute code (http://mathema.tician.de/software/pycuda/), our test results showed 

that there was different performance between Python-base MDRGPU and C-base 

cuGWAM. We expect that this difference was derived from optimal utilization of 

hardware memory. Because MDR is exhaustive algorithm with exploring all 
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combinations of variants, memory optimization is critical in performance of software. 

Especially in GPU system, the optimization of shared memory determines the 

performance of the application. Because cuGWAM uses binarized count values in 

shared memory to save memory space, it can run more threads with restricted shared 

memory space and input/ouput (IO) transaction load between threads and memory 

is minimized. 

When higher order interaction is searched exhaustively, MDR algorithm 

maintains higher dimensional count table, which occupies more memory space and 

restricts the number of threads running on GPU device in parallel. The decrease of 

the number of threads means the decrease of performance. The performance loss in 

both cuGWAM and MDRGPU was observed in our results. But, cuGWAM showed 

less performance loss than MDRGPU from two-way to three-way interactions. This 

better performance of cuGWAM is due to loop unrolling technique which reduces 

loop procedure to increase a program’s speed (Nvidia, CUDA programming guide, 

http://developer.nvidia.com). 

Our optimized GPU-based MDR application produced reasonably stable 

performance even in large sample size (e.g. 10K) and large variants size (e.g. 320K). 

Unlike other MDR applications, cuGWAM converts text-typed data file to binarized 

and compressed data format which facilitates load and process large data set stably. 

One of the distinguishing features of cuGWAM is to report multiple candidates 

for causal gene-gene interactions. It is inapplicable to report one single best 

candidate when causal gene-gene interactions are searched for complex phenotypes 

in a genome-wide scale. User cannot know only the best interaction but also possible 

strong candidate interactions via cuGWAM. Also, using multiple candidate pairs, 
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SNP-SNP interaction network can be generated with node (SNP) and edge 

(interaction). Figure 5.6 shows SNP-SNP interaction network with top 1000 

interaction pairs reported from two-way interaction analysis by cuGWAM. In this 

network, since node size means number of interactions, we can easily identify hub 

SNPs which interact with many SNPs and deserve to be inspected more. This 

interaction network is potentially useful for the biological interpretations. 
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5.5 Conclusion 

cuGWAM is high-performance software for gene-gene interaction analysis of 

large genome-wide data. It is C++ parallel implementations of MDR method using 

CUDA runtime application programming interface. With reduced data transaction by 

binarization, efficient usage of the global memory bandwidth and optimized loop 

transformation technique by loop unrolling, cuGWAM showed best performance 

both in our simulation data and 320K real dataset. Since our results on GPU show 

that it is possible to detect gene-gene interaction in genome-wide scale with one 

million variants, our optimized GPU implementation is especially encouraging. 

Furthermore, we have investigated optimized GPU-based MDR implementation 

which reports a list of candidate causal gene-gene interactions and various 

performance measures to evaluate MDR classifiers, including tau-b, likelihood ratio, 

normalized mutual information as well as balanced accuracy. Executable cuGWAM 

are freely available at http://bibs.snu.ac.kr/cugwam from system with CUDA-

enabled GPU devices. 
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Chapter 6 

 

Visualization for gene-gene interaction interpretation 

 

6.1 Introduction 

Many methods have been proposed to analyze gene-gene interactions, including 

logistic regression, logic regression, recursive partitioning, multifactor 

dimensionality reduction, ReleifF, and Bayesian model selection [Cordell 2009]. 

However, interpretation of identified gene-gene interactions is not straightforward.  

Visualization or graphical representation can be a powerful tool for biological 

characterization of interactions because it provides an effective way to recognize 

multi-locus genotype combinations that enhance/repress a trait and to display the 

polygenic structure of interactions. In addition, visualization can aid prior 

exploration of interaction patterns among genes of interest. Unfortunately, there is 

no software specifically designed for visualizing gene-gene interactions. In order to 

aid the interpretation of such gene-gene interactions, we developed the VizEpis, for 

use in genetic association analysis. 
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When gene-gene interactions are analyzed for a binary trait, such as disease 

susceptibility, biological interpretation of identified interactions is often based on 

odds ratios (ORs) between case and control groups for each multi-locus genotype 

combination. Therefore, visualization of genotype-wide ORs can aid in exploring 

and/or characterizing (especially high-order) interactions among multiple genes. The 

VizEpis can effectively visualize gene-gene interactions based on genotype-wide 

ORs as well as raw data.  

In high-dimensional multivariate data, visualization is essential to pattern 

recognition and characterization. With certain modification and/or extension, some 

of those tools can be employed to graphical representation of high-order genetic 

interactions. Examples include techniques for displaying multi-way contingency 

tables (e.g., mosaic maps), for plotting effects and their significance in meta-analysis 

(e.g., forest and funnel plots), and for an effective representation of raw high-

dimensional multivariate data (e.g., parallel coordinate plots). In the VizEpis, various 

graphical tools used for high-dimensional multivariate data were tailored for gene-

gene interaction analyses. Also, 3D lattice plot was developed especially to 

investigate 3-way interactions. Based on case studies, we illustrated the usage of the 

VizEpis and demonstrated its benefits. 
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Figure 6.1  Interaction data sources of VizEpis for biological interpretation 

of statistical interaction 

 

 

 
Figure 6.2  VizEpis working flow 
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6.2 Methods 

In the VizEpis, we implemented six plots to visualize patterns in gene-gene 

interactions: checkerboard (CB), pairwise CB, forest, funnel, ring chart. These plots 

display the summarized information, including ORs for each multi-locus genotype 

of multiple variants, such as single nucleotide polymorphisms (SNPs). Note that red 

and blue are used consistently to indicate multi-locus genotypes with high and low 

risks or to specify cases and controls. The gradation in colors illustrates the 

magnitude of ORs. 

 

6.2.1  Interaction mapping procedure 

 
VizEpis is web-based system to provide integrated biological relation data  

which are provided by 13 resources (Figure 6.1). These resources are for disease 

relations (OMIM, GWAS catalog and HUGEnet), eQTL relations (SCAN), Co-

expression relations (COXPRESdb), regulatory relations (is-rSNP), protein-protein 

interaction (IntAct), chromatin interaction (HiC), gene ontology (GO), MSigDB 

(GeneSet) and pathway (KEGG). VizEpis searches the biological relation in 

collected relation data for user’s inputted SNP list (Figure 6.2). 

 
6.2.2  Checker board plot 

 
A heat map was designed to display the quantitative values of one variable as 

colors on a 2D map of other variables, and its variants have been popular for 

visualization in many areas. For example, in a mosaic plot, a tiled heat map has been 

employed for graphical representation of contingency tables and hence for visual 
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investigation of multi-way interactions in categorical data analysis [Friendly 1994]. 

However, the mosaic plot may be not practical for visual investigation of more than 

three variables because it displays multivariate data via multiple heat maps that are 

hierarchically organized.  

We developed a new variant of the mosaic plot, called a CB plot, in which high-

order gene-gene interactions can be investigated on a single 2D heat map. In CB 

plots, all possible multi-locus genotypes are represented in two dimensions, and their 

corresponding ORs are encoded as colors. For instance, when an m-way interaction 

among m SNPs is under investigation, users can specify row and column dimensions 

with k and (m-k) SNPs, respectively to view the m-way interaction on a 3k×3(m-k) 

CB plot, where k is user-defined number of rows on CB plot. Optionally, hierarchical 

clustering can be done over each dimension to group genotypes having similar OR 

patterns. This feature provides users with further help in capturing underlying 

patterns within gene-gene interactions. We also implemented a pairwise CB plot that 

consists of 3×3 CB plots for all two-way interactions of m SNPs. The pairwise CB 

plot provides a quick scan of all possible two-way interactions in one shot (Figure 

6.3). 
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Figure 6.3  Checkerboard plot in VizEpis 

 

 

 

 

 

Figure 6.4  Forest plot in VizEpis 
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6.2.2  Forest and funnel plot 
 

The forest and funnel plots were originally developed to display a meta-analysis 

of multiple studies in medical research [Lewis and Clarke 2001; Sterne and Egger 

2001]. For example, in a meta-analysis of epidemiological studies, the result is 

summarized with an OR and its precision (e.g., inverse standard error) for each study. 

We adopted these plots to represent ORs with their significance for multi-locus 

genotypes. In the forest plot, the 95% confidence interval of the OR for each multi-

locus genotype is represented by a horizontal line (Figure 6.4). The graph is plotted 

on a natural logarithmic scale so that the confidence intervals are symmetrical about 

the observed ORs, which are indicated with squares. The funnel plot is a scatter plot 

of the OR against its precision (Figure 6.5 and Figure 6.6). In both plots, the area of 

each square is proportional to the number of samples having each multi-locus 

genotype. Whereas the forest plot is useful in investigating ORs for each multi-locus 

genotype, the funnel plot is apt for detecting multi-locus genotypes with a specific 

feature (e.g., a large OR with high precision). In these two plots, each multi-locus 

genotype is displayed as a box, whose size corresponds to the sample size. The red 

box is for number of cases and, the blue box is for number of controls. 
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Figure 6.5  Funnel plot in VizEpis 

 

Figure 6.6  Funnel plot in VizEpis 
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Figure 6.7  Interaction heapmap in VizEpis 
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Figure 6.8  Diesease relation plot in VizEpis 

 

 

Figure 6.9  Diesease relation plot in VizEpis 
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Figure 6.10  workflow of VizEpis 
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Table 6.1 Comparison of genotype-wise plot 

 CB 
Pairwise  

CB 
Forest Funnel 

represent OR color color X-axis X-axis 

represent sample size X X box size box size 

represent high-order 
interaction 

O 2nd order O O 

detect genotype with 
highest/lowest OR 

by color by color 
easy to 
detect 

easy to 
detect 

represent CI X X O X 
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6.3 Case Study 

 

6.3.1 Interpretation of gene-gene interaction in WTCC bipolar disorder 

data 

 
In previous studies [Kwon, et al. 2011; Oh, et al. 2012], we conducted a 

genome-wide interaction analysis with WTCCC-BD dataset by using GWAS-

GMDR. The LOC390730 (rs2192859) and MYH13 (rs2320796) were reported to 

show the best two-way interaction. This two-way interaction was visualized via 

checkerboard and forest plots (Figure 3). The checkerboard plot suggests a 

multiplicative epistatic pattern of the two SNPs. Recently, MYH13 has been reported 

to be associated with formal thought disorder (FTD) or disorganized speech which 

is one of the central signs of schizophrenia [12]. No functional annotation has not 

yet been assigned to LOC390730 . It is worth investigating this LOC390730 further 

as a potential candidate gene for bipolar disorder. 

In Figure 6.6, PC and funnel plots display four-locus genotypes of SNPs 

(rs4744513, rs1755991, rs290253, rs10991725) in SYK which has been reported to 

be related with dopamine receptors-related diseases, such as Schizophrenia, 

Parkinson’s disease or bipolar disorder [Oh, et al. 2012; Seol, et al. 2004].The PC 

plot shows that (1,1,1,1)  is the most common genotype in case samples, and 

(1,1,1,0) is the one in control sample. In the funnel plot, we can easily discover that 

(1,1,1,0) and (1,1,1,1) have high precision and, while(1,2,0,2) and (1,0,2,2) have 

large and small OR, respectively. 
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6.3.2 Interpretation of gene-gene interaction in Age-related macular 

degeneration (AMD) data 

 
In AMD dataset [Klein, et al. 2005], CFH has been reported to have strong 

association with AMD. Figure 6.5 presents the two-way interaction patterns between 

CFH and other genes, such as (CFH, SGCD) and (CFH, MED27). We observed that 

the marginal effect of CFH is predominant in both two-interactions with SGCD and 

MED27. While SGCD has been reported to be associated with AMD [Tang, et al. 

2009], the relationship between MED27 and AMD has been uncovered. 
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6.4 Conclusion 

In the analysis of gene-gene interaction, the characterization is as important as 

the identification because it can provide insight into a mechanism for how a gene-

gene interaction influences a trait of interest. However, such characterization can be 

a challenge, especially for high-order gene-gene interactions. The VizEpis provides 

visualization tools that facilitate graphical representation of gene-gene interactions 

in various ways, and hence enables ones to effectively characterize and interpret 

(especially high-order) gene-gene interactions in details. 
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Chapter 7 

 

Summary and Conclusion 

With high-throughput detection technique of genetic variants, main focuses of 

genetic research for unveiling complex etiology of disease go over to gene-gene 

interaction and rare variant association. Although many gene-gene interaction 

methods have been proposed, there are still some unsolved critical issues including 

heavy computation, biological misunderstanding and absence of method for rare 

variant’s interaction for statistical genetic interactions. In this thesis, we focus on 

gene-gene interaction of common variants and rare variants.  

In chapter 3, we proposed IGENT, a fast analysis for searching for high-order 

interactions associated with complex diseases. IGENT can detect gene-gene 

interactions using information gain which represents association strength with 

phenotype and gene-gene interaction without the assumption of a specific genetic 

model. IGENT adopts an exhaustive search scheme and stepwise search scheme. In 

the exhaustive search, IGENT investigates all possible interactions in lower-order 

interactions. And, IGENT can identify high-order interaction using the stepwise 

search scheme. The permutation and exhaustive search schemes of the previous GGI 

methods are computationally too intensive to be employed in large genome-wide 
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scale data set for high-order interactions. In our simulation, IGENT is as fast as 

BOOST and shows better performance than BOOST. Also, IGENT can evaluate 

significance of the interaction result using hypothesis testing framework by 

approximating the gamma distribution that information gain value follows under the 

null hypothesis. Using approximation to the gamma distribution instead of 

permutation, IGENT can easily calculate statistical significant interactions and save 

the computation time remarkably. Through real WTCCC and AMD data analysis, 

IGENT successfully identified low order and high order interactions. 

In chapter 4, we propose a new gene-gene interaction method for the rare 

variants in the framework of the multifactor dimensionality reduction (MDR) 

analysis. The proposed method consists of two steps. The first step is to collapse the 

rare variants in a specific region such as gene. The second step is to perform MDR 

analysis for the collapsed rare variants. The proposed method is illustrated with 1080 

whole exome sequencing data of Korean population to identify causal gene-gene 

interaction for rare variants for type 2 diabetes. 

In chapter 5, we presented the computing capability of CUDA-enabled GPUs 

for accelerating MDR algorithm. Our cuGWAM has various features that distinguish 

from existing MDR application for GWAS as follows. First, it implements an 

effective memory handling algorithm and efficient procedures for MDR to make 

joint analysis of multiple genes feasible for GWAS. Second, it can report multiple 

candidates for causal gene-gene interactions. Third, various performance measures, 

including tau-b, likelihood ratio, and normalized mutual information, were 

implemented to evaluate MDR classifiers (Namkung et al., 2009a). Finally, it 

implements three methods for handling missing genotypes: complete, available and 

missing category (Namkung et al., 2009b). These features of our method can lead to 
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vast speed-up and, enable GGI analysis on millions variant data that presently cannot 

be performed due to computing time limitations in traditional computing systems. 

We obtained ~500 fold performance improvement over original MDR and equivalent 

performance of about 200 cores cluster system in one GPU system. Also, by porting 

the MDR onto high-performance graphic cards using the CUDA environment, we 

obtained up to ~5 fold acceleration compared with MDRGPU. Especially, cuGWAM 

has better performance than MDRGPU in every types of testing (sample size, marker 

size and high-order interaction). Even though a Python-based GPU compute code 

was expected to show the same full performance of GPU hardware as a C-controlled 

GPU compute code (Klockner et al., 2009), our test results showed that there was 

different performance between Python-base MDRGPU and C-base cuGWAM. We 

expect that this difference was derived from optimal utilization of hardware memory. 

Because MDR is exhaustive algorithm with exploring all combinations of variants, 

memory optimization is critical in performance of software. Especially in GPU 

system, the optimization of shared memory determines the performance of the 

application. Because cuGWAM uses binarized count values in shared memory to 

save memory space, it can run more threads with restricted shared memory space 

and input/ouput (IO) transaction load between threads and memory is minimized. 

In chapter 6, we developed the VizEpis, a tool for visualizing of GGIs in genetic 

association analysis and mapping of epistatic interaction to the biological evidence 

from public interaction databases. Using interaction network and circular plot, the 

VizEpis provides to explore the interaction network integrated with biological 

evidences in epigenetic regulation, splicing, transcription, translation and post-

translation level. To aid statistical interaction in genotype level, the VizEpis provides 

checkerboard, pairwise checkerboard, forest, funnel and ring chart. 
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In summary, we developed GGI analysis methods of high-dimensional genomic 

data. First, for more efficient analysis, we developed the entropy-based gene-gene 

interaction method. Second, we suggested gene-gene analysis method of rare 

variants. Third, we implemented CUDA-based gene-gene interaction software for 

high performance computation. Finally, we proposed the visualization methods for 

interpretation of gene-gene interaction.  

There are some more future study issues in GGI analysis. Although IGENT and 

cuGWAM are fast and high-performed methods, they still cannot cover high-order 

interaction in whole genome-wide scale due to tremendous computational burden. 

To conduct high-order GGI analysis, the practical alternatives are statistical feature 

selections or biological feature selections. The examples of the statistical feature 

selections are marginal effect-based forward selection, regularization-based 

selection, genetic algorithm-based selection and ant-colony algorithm-based 

selection. The instances of the biological feature selections are functional region 

based selection, gene based selection and pathway based selection. Although the 

efforts of the mapping and interpretation of GGI have been tried, the interpretation 

of GGI is not simple. Specially, lots of variants are located in inter-genic region. The 

variants in inter-genic region cannot be annotated to their functions. It means that 

unknown or uninterpretable genomic regions have larger portion than the unknown 

or interpretable regions. As increasing of biological evidence of GGI, the biological 

databases update their data or change their data format. For persistently providing of 

the interpretation of GGI in VizEpis, we need to update the biological knowledge, 

constantly.  
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초    록 

 
지노타이핑(genotyping)과 시퀀싱(sequencing)기술이 발전하면

서 복합질환 및 복합형질과 연관성이 있는 유전 변이(genetic variants)

를 점차 밝혀 가고 있다. 이러한 연구를 통해 이미 형질과의 연관성이 

있는 수 천개 이상의 유전변이를 발굴하였음에도 불구하고, 발굴된 유전

변이만으로는 유전율(heritabiltiy)의 전체를 설명하지 못하는 것으로 밝

혀졌다. 따라서 아직 설명이 안된 복합형질의 유전율의 많은 부분을 설

명하기 위해 유전자-유전자 상호작용(gene-gene interaction) 분석과 

희귀유전변이 분석의 중요성이 대두되었다.  

유전자-유전자 상호작용에는 여러 해결해야 할 이슈가 있다. 첫

째로 유전자 상호작용 분석은 많은 수의 테스트(test)를 수행해야 한다. 

만약 k개의 변이자료가 있다면, k(k-1)/2개의 상호작용을 계산해야 한

다. 따라서 상호작용의 차수가 증가하게 된다면 계산해야 할 상호작용 

수는 기하급수적으로 늘어난다. 그리므로 상호작용 분석에서 효율적인 

알고리즘이 필요하다. 둘째로 희귀유전변이는 그 특징상 발생 이벤트가 

극히 드물기 때문에 희귀유전변이간의 상호작용을 찾기가 쉽지 않다. 셋

째로 상호작용 분석에서 빠른 계산력을 가진 시스템이 필요하다. 넷째로 

유전자 상호작용의 생물학적인 해석이 중요함에도 불구하고, 상호작용의 

복잡성 때문에 해석이 쉽지 않다.  

본 논문에서는 정보학 이론에 기반한 전장유전체를 포괄할 수 있

는 상호작용 분석 방법인 Information theory-based GEnome-wide 
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gene-gene iNTeraction(IGENT)를 개발하였다. IGENT는 유전자-유

전자 상호작용과 유전자-환경 상호작용을 분석할 수 있는 효과적인 알

고리즘이다. 전장유전체 수준에서 유전자 상호작용을 분석하기 위해서는 

계산시간을 단축시키는 것이 중요하다. IGENT는 순열(permutation) 방

법과 같은 리샘플링(resampling) 방법을 사용하지 않고, 보다 계산이 

간단한 IG(information gain)을 사용한다. 시뮬레이션 연구를 통해서 

IGENT의 파워가 BOOST와 비슷하거나 더 좋은 것을 밝혔다. 그리고 

제안된 방법을 사용하여 WTCCC의 조울증 자료와 노인성 황반변성 

(AMD)자료에서 성공적으로 유전자 상호작용 분석을 수행하였다.  

유전자-유전자 상호작용 분석은 공통 변이(common variant)에 

대해 방법론과 분석이 많이 이루어 졌으나, 상대적으로 희귀변이(rare 

variant)에 대해서는 상호작용 분석 방법이 발전이 거의 없다시피 하다. 

본 논문에서 Multifactor dimensionality reduction(MDR) 프레임을 사

용한 희귀유전변이를 위한 새로운 유전자 상호작용 방법을 제안한다. 첫

번째 단계에서는 유전자 영역 안의 희귀변이들을 유전자 단위로 변환

(collapsing)시키고, 두번째 단계에서는 변환된 유전자 단위변이를 이용

하여 MDR 분석을 수행한다. 제안된 방법은 1072명 한국인의 제2형 당

뇨 자료를 이용하여 희귀유전변이의 상호작용을 분석하였다.  

전장유전체 수준에서 상호작용 분석을 하기 위해, 본 논문에서는 

CUDA를 적용하여 MDR 기반의 상호작용을 분석할 수 있는 cuGWAM

을 개발하였다. cuGWAM은 모든 시뮬레이션에서 CPU 기반으로 하는 

MDR 소프트웨어나 다른 GPU기반의 상호작용 분석 소프트웨어보다 우

수한 성능을 보였다. 

유전자 상호작용을 보여주는 많은 방법이 나왔음에도 불구하고, 

상호작용의 해석은 그리 쉽지 않다. 이러한 유전자 상호작용은 유전자의 

결과물과의 생화학적 상호작용을 의미하지는 않다. 이러한 유전자 상호
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작용은 단백질-단백질 상호작용, 후성유전체적인 조절, 크로모좀상의 구

조적 상호작용, 번역과정의 조절(translational regulation), 신호 전단, 

생화학적 네트워크 그리고 발달상의 신호전달과정(developmental 

pathways)의 원인이 될 수 있다. 따라서 효과적으로 유전자 상호작용의 

통계적인 해석과 생물학적인 증거를 제공하기 위해서, 본 논문에서는 

VizEpis을 개발하였다. VizEpis은 유전자 상호작용을 공개적인 상호작용 

데이터베이스에 맵핑(mapping)함으로써 시각화하는 프로그램이다. 

VizEpis은 상호작용 네트워크를 이용하여 후성유전적 조절,  스플라이싱

(splicing), 전사, 변역, 변역후 과정에서 생물학적 상호작용을 표시해 

준다. 유전자형(genotype) 수준에서 통계적 해석을 돕기 위해, VizEpis

은 checkerboard plot, forest, funnel and ring chart를 제공해준다. 

이렇게 본 연구에서는 효과적인 유전자 상호작용의 방법들을 제

시하였고 실제 데이터에 적용하였다. 본 연구에서 제시된 방법은 복합 

질환에 영향을 미치는 유전인자의 집합을 효과적으로 발굴하고 질병이 

발생하는 기작을 연구하는데 활용될 수 있을 것으로 기대된다. 

 

주요어: 유전자-유전자 상호작용, 전장유전체연관성분석, 대량병렬시퀀싱, 

희귀변이, 그래픽 연산 유닛(GPU), 시각화 
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