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Abstract

One of the basic research goals in life science is to understand the complex re-

lationships between biological factors and phenotypes, and to identify the various

factors affecting the phenotype. In particular, genomic sequences play a significant

role in determining the phenotype, such as gene expression and a susceptibility to

disease, so the studies for the fundamental information stored in genome is essential

to understanding biological processes. Previous genomic sequence analyses mainly

focused on identification of a single associated factor or pairwise relationships with

significant effects. Recent development of high-throughput technologies has made it

possible to identify the causal factors by carrying out genome-wide analysis. How-

ever, it still remains as a challenge to discover higher-order interactions of multiple

factors because this involves huge search spaces and computational costs.

In this dissertation, we develop effective methods for identifying the higher-order

relationships of sequence elements affecting the phenotype, by combining statisti-

cal learning with evolutionary computation. The methods are applied to finding

the associated combinatorial factors and dysfunctional modules in various genome-

wide sequence analysis problems. Firstly, we show statistical learning-based methods

to detect co-regulatory sequence motifs and to investigate combinatorial effects of

DNA methylation, affecting on downstream gene expression. Next, to examine the

sequence datasets with a huge number of attributes on human genome, we apply evo-

lutionary computation approaches. Our methods search the problem feature space

based on machine learning techniques using training datasets in evolutionary com-

putation processes and are able to find candidate solution well in computationally

expensive optimization problems. The experimental results show that the approaches

are useful to find the higher-order relationships associated to disease using genomic
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and epigenomic datasets. In conclusion, our studies would provide practical methods

to analyze complex interactions among sequence elements in genomic/epigenomic

studies.

Keywords: Higher-order interaction, Evolutionary computation,

Genome-wide sequence analysis, Machine learning,

Genomics, Epigenomics

Student Number: 2004-20623
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Chapter 1

Introduction

1.1 Motivation

The post-genomic era is characterized by a tremendous revolutionary expansion in

biological data. Over past few decades, there has been rapid development in biolog-

ical research and technologies, as a result, a huge amount of data have been pro-

duced. In particular, with the advances of sequencing technologies, a large amount

of datasets have been deposited in repositories (Metzker, 2009). Understanding and

exploiting these data is now a key to success of advancing biological research, and the

requirements have stimulated development and expansion of applying computational

approaches in biology.

The large expansion of genome-wide measurement data poses the research ques-

tion of how to retrieve the valuable knowledge from the genomic sequences (Hut-

tenhower and Hofmann, 2010; Chin et al., 2011). Traditionally, genomic studies

mainly focused on central dogma in molecular biology, namely from genome to tran-

scriptome. Experimentally determined catalogues of genes only tell us about a basic

building block of the biological regulatory processes. They do not tell us much about

1
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how the biological processes operate as a system, such as higher order functional be-

haviors (Chuang et al., 2010). Although many computational approaches have dealt

with high-throughput biological datasets generated in multi-dimensional forms, it is

still important to search the large datasets efficiently and effectively (Palsson and

Zengler, 2010; Kouskoumvekaki et al., 2013).

Actually, most biological problems are complex and hard to be understood. One

problem is to investigate the interactions of the various factors, since the biologi-

cal processes are affected by multiple factors. Although genome-wide analysis can be

possible with the development of high-throughput technologies, an exhaustive search

of all potential solutions is still challenging, and most likely impossible. The stan-

dard constructive and approximate approaches are usually impractical in terms of a

huge search space and lots of computational costs. Thus, the genome-wide sequence

analyses mainly focused on identification of a single associated factor or pairwise

relationships with significant main effects (Cordell, 2009; Bush and Moore, 2012).

The genome-wide sequence analyses have contributed to ability to identify ge-

nomic sequence elements that are associated with phenotypes such as gene expres-

sion and disease (Feero et al., 2010; Heap et al., 2009; Kim et al., 2012; Kang et al.,

2011). It has been possible to find a single sequence element that has statistically

significant association with phenotype. To date, many associated genes or sequence

elements were found, but there were not clear explain the complex biological pro-

cesses (McCarthy et al., 2008; Stranger et al., 2011). Thus, there has been increased

interest in discovering combinations of the sequence elements that are strongly asso-

ciated with a phenotype even if each element has little or even no individual effect.

Thus, an alternative research view of post-genomic/epigenomic era would be to go

up eventually to still higher levels, i. e. biological systems.
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Figure 1.1: Schematic concept for higher-order interaction and its effects on pheno-

type

1.2 Approaches

In this dissertation, we present computational approaches to predict higher-order

relationships of disease genes or sequence elements and identify dysfunctional mod-

ules, based on machine learning and evolutionary computation using phenotype and

sequence information. Our goal is to discover and study the combinations of se-

quence elements affecting on phenotype. In particular, we focus on discovering the

interactions, especially high-order ones beyond size 2, that are strongly associated

with a phenotype and yield information on interpretable statistical and functional

interactions (Figure 1.1).

At first, we show a way to search co-regulatory sequence motifs using a sta-

tistical learning method, kernel canonical correlation analysis (kernel CCA) (Rhee
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et al., 2009). One of the major challenges in gene regulation studies is to identify

regulators affecting the expression of their target genes in specific biological pro-

cesses. Despite their importance, regulators involved in diverse biological processes

still remain largely unrevealed. In the study, we propose a kernel-based approach

to efficiently identify core regulatory elements and their combinations involved in

specific biological processes using gene expression profiles. We develop a framework

that can detect correlations between gene expression profiles and the upstream se-

quences on the basis of the kernel canonical correlation analysis (kernel CCA). We

show that upstream sequence patterns are closely related to gene expression profiles

based on the canonical correlation scores obtained by measuring the correlation be-

tween them. The experimental results show that our method is able to successfully

identify regulatory motifs and their co-regulatory pairs involved in specific biological

processes.

Secondly, we investigated the combinatorial effects of DNA methylation on down-

stream gene expression using machine learning approaches (Rhee et al., 2013). Aber-

rant DNA methylation of CpG islands (CGIs), CGI shores, and first exons is known

to play a key role in the altered gene expression patterns in all human cancers.

To date, a systematic study on the effect of DNA methylation on gene expression

using high resolution data has not been reported. In this study, we conducted an

integrated analysis of MethylCap-sequencing data and Affymetrix gene expression

microarray data for 30 breast cancer cell lines representing different breast tumor

phenotypes. We develop methylome data analysis protocols for the integrated analy-

sis of DNA methylation and gene expression data on the genome scale and we present

comprehensive genome-wide methylome analysis results for differentially methylated

regions and their potential effect on gene expression in 30 breast cancer cell lines

representing three molecular phenotypes, luminal, basal A, and basal B. Our inte-
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grated analysis demonstrates that methylation status of different genomic regions

may play a key role in establishing transcriptional patterns in molecular subtypes

of human breast cancer.

These two genome-wide approaches were useful for identification of co-regulatory

interactions or combinatorial effects, associated to downstream gene expression.

However, sometimes, it might need another approach to examine a huge number

of sites on whole genome and to discover higher-order relationships of sequence

elements associated with complex disease. Then, we applied evolutionary computa-

tion approaches to identify higher-order interaction of multiple factors associated to

disease. Evolutionary computation is a general purpose search approach that uses

principles inspired by natural genetic populations to evolve solutions to problems

(Simon, 2013). The basic idea is to maintain a population of individuals which rep-

resent plausible solutions to the problem, which evolves over time through a process

of competition and controlled variations.

In the framework of evolutionary machine learning, the main idea is that the

evolutionary computation method has stored training data to search problem feature

space and population information during the iterative evolutionary process. Then,

the machine learning technique is helpful in analyzing these data for enhancing the

search performance.

We propose an approach to search the higher-order interaction for genome-wide

association studies based on the evolutionary machine learning. Searching for the

relationship between the genetic variant and its phenotypic effects is important to

understand the genetic basis and mechanism of many complex genetic diseases.

There have been a lot of research to analyze the causality and, in many studies,

it have led to succeed to discover the associations of genes with diseases. Although

there exist lots of the genetic variants with major effects and they can be linked to
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complex diseases, however, it is still challenging to find the multiple interactions from

a millions of SNPs and their association with a disease. Here, we present an approach

to analyze higher-order interactions of the genetic variations, which associated with

a disease. The method searches combinatorial feature spaces of the genetic variants

and selects the higher-order variables which are distinctive to classify the disease

and normal samples by evolutionary learning. We test the method and illustrate

the advantages with genetic variant datasets for type 2 diabetes. As a result, our

approach could identify the higher-order interaction of SNPs associated with type 2

diabetes, and especially detect several interactions specific in Korean population.

Finally we introduced probabilistic concepts in the evolutionary computation

for identification of DNA methylation modules. By exploring the problem space by

building and sampling explicit from probabilistic graphical models, the approach

would be proper to find the higher-order relationships or biological modules.

Considerable studies have been made to elucidate effects of genetic variability in

complex disease, but it is still challenging to discover molecular pathogenesis clearly.

The epigenetic factor would be another candidate to make up the complex regula-

tory mechanism. Especially it is well-known that DNA methylation could lead to

inhibition of downstream gene expression. Although many researchers are trying to

clarify the relationships between DNA methylation and gene expression, recently,

more efforts are required to find the multiple interactions from a lot of DNA methy-

lation sites and their association with a disease. To assess DNA methylation modules

potentially relevant to disease, we use an estimation of distribution algorithm (EDA)-

based learning method identifying high-order interaction of DNA methylation sites.

It finds a solution which is a set of discriminative methylation sites by building a

probabilistic dependency model. The algorithm is applied to array- and sequencing-

based high-throughput DNA methylation profiling datasets, and the experimental
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Figure 1.2: Organization of chapters

results show that it has a good search ability to identify the DNA methylation

modules for a specific disease.

Our approaches would provide practical methods to integrate large amount of

datasets and to analyze complex interactions among building blocks and with dy-

namic environments.

1.3 Organization of the dissertation

This dissertation is organized as follows (Figure 1.2):

• In Chapter 2, we briefly introduces informatics and computational approaches

in genomic analysis. We describe background of genome biology, and explain

what the machine learning and evolutionary computation are. Then, the basic

concepts and their several applications in biological domains are described.

• In Chapter 3, we search co-regulatory sequence motifs by a kernel-based cor-

relation analysis. We identify regulatory sequences affecting the expression of

their downstream genes. And we investigate pairwise relationships of the se-
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quence motifs closely related to gene expression profiles in a specific biological

process.

• Chapter 4 discribes analysis protocols to investigate effects of DNA methy-

lation in various sites on downstream gene expression. Using high resolu-

tion sequencing-based methylation profiling datasets, we show comprehensive

genome-wide methylome analysis results for their potential effect on gene ex-

pression. The analysis results present that methylation status of different ge-

nomic regions may play combinatorial effects on transcriptional patterns via a

statistical learning approach.

• In Chapter 5, we propose an evolutionary learning method for identifying

higher-order interaction of multiple SNPs in genome-wide association studies.

We show that the proposed evolutionary learning method searches combina-

torial feature spaces and identifies the higher-order variables which are related

to disease.

• In Chapter 6, we use a probabilistic evolutionary learning to find higher-order

relationships from a lot of DNA methylation sites, which is potentially relevant

to disease. Instead of crossover or mutation operators in traditional evolution-

ary computation, we build a probabilistic distribution model and are sam-

pled from the model in the evolutionary learning processes. The experimen-

tal method and results represent that the approach can be a new systematic

way to identifying high-order interaction of DNA methylation sites and DNA

methylation modules which is associated to disease.

• Finally, we summarize the dissertation and discuss our research in Chapter 7.



Chapter 2

Genome biology and

computational analysis

2.1 Fundamentals of genome biology

2.1.1 DNA, gene, chromosomes and cell biology

DNA (deoxyribonucleic acid) is a biomolecule that includes information for how

organisms are genetically built. DNA is a double strand structure that contains

complementary genetic information encoded by 4 bases, adenine (A), guanine (G),

thymine (T) and cytosine (C). A gene is a segment of DNA that can be inherited

from parents to children and can confer a trait to the offspring. The genes are

organized and packaged in chromosomes. In case of human, there exist 23 pairs of

chromosomes.

One set of chromosomes for each pair comes from a person’s mother, and the

other set is from father. New cells get their chromosomes from old cells through cell

division, mitosis. The chromosome in cell nucleus is divided into two identical sets by

mitosis of cell cycle. The primary result of mitosis is the transferring of the parent

9
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cell’s genome into two daughter cells. Cell cycle is the series of events leading to

its growth, replication (duplication) and division of a eukaryotic cell. The cell cycle

can be divided into several phases: G1, S, G2 and M phases. At G1 and G2 phases,

cells increase in size and DNA replication occurs at S phase. M phase is a periods of

mitosis which is cell division state. The cell growth stops at this stage and the cell

divides itself into two distinct daughter cells.

2.1.2 Gene expression and regulation

Gene expression is a fundamental step at which a genotype gives rise to a phenotype.

The gene expression means a process that the genetic information from a gene is

used in production of a functional gene product (protein or RNA). The process is

generally described by that a gene is transcribed into RNA and this transcript may

then be translated into protein.

Regulation of gene expression includes mechanisms to increase or decrease the

production of specific gene products. The program of gene expression is very so-

phisticate. A complex set of interactions between genes, RNA molecules, proteins

(including transcription factors) and other components of the expression system de-

termine when and where specific genes are activated and the amount of protein or

RNA product produced. Some genes are expressed continuously, as they produce

proteins involved in basic metabolic functions; some genes are expressed as part of

the process of cell differentiation; and some genes are expressed as a result of cell

differentiation.

Specific DNA sequences are accessible for specific proteins to bind. Many of these

proteins are activators, while others are repressors. Such proteins are often called

transcription factors (TFs). Transcription factors are proteins that play a role in

regulating the transcription of genes by binding to specific regulatory nucleotide



CHAPTER 2. BASIS OF GENOME INFORMATICS 11

sequences. Each TF has a specific DNA binding domain that recognizes a 6-10 base-

pair motif in the DNA, as well as an effector domain (Matys et al., 2003; Sandelin

et al., 2004).

For an activating TF, the effector domain recruits RNA polymerase II, the eukary-

otic mRNA-producing polymerase, to begin transcription of the corresponding gene.

TFs bind at the promoters just upstream of eukaryotic genes. However, they also

bind at regions called enhancers, which can be oriented forward or backwards and

located upstream or downstream or even in the introns of a gene, and still activate

or repress the gene expression. Studying gene expression across the whole genome

via microarrays or massively parallel sequencing allows investigators to see which

groups of genes are co-regulated during differentiation, cancer, and other states and

processes.

2.1.3 Genomics

Genome is the entirety of all genes and information contained within the noncod-

ing regions from an organism, mainly encoded by DNA. Genomics usually describe

studies to determine the entire DNA sequence of organisms and genomic structures.

The field also includes studies of various genomic phenomena. In contrast to the

classical molecular biology or genetics to investigate the roles and functions of single

gene, genomics aim to elucidate its effects on the entire genomic networks with its

genetic and functional information (Lander, 1996).

A major branch of genomics is concerned with sequencing the genomes of various

organisms. A rough draft of the human genome was completed in 2001 (Venter et al.,

2001; Lander et al., 2001). Since then, there have been much more studies for human

genome. Also, the genomic information of many other species has been successfully

achieved. The knowledge of full genomes has created the possibility for the field
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of functional genomics, mainly concerned with patterns of gene expression during

various conditions. For the purpose, computational approaches would be the most

important tools here.

2.1.4 Epigenomics

The classical biology states that DNA is transcribed to RNA, RNA is translated

to protein, and it regulates various cellular processes and functions. In the tradi-

tional views, phenotypic alteration has been caused by aberrant sequence variants

or an inherited genomic allele. However, in the recent view, cells with identical DNA

sequences can have a variety of distinct functions and phenotypes, by epigenetic

modification including DNA methylation and histone modification (Murrell et al.,

2005; Holliday, 2006). That is, the epigenetic modifications affect gene expression

without altering the DNA sequences and play an important role in numerous cellu-

lar processes such as in differentiation, development and tumorigenesis (Bernstein

et al., 2007; Baylin and Jones, 2011).

One of the most characterized epigenetic modifications is DNA methylation. DNA

methylation is a process by which a methyl group is added to DNA. The methylation

is most commonly found on cytosine residues adjacent to guanine, termed CpG

dinucleotides (Laird, 2010). It is well-known that the DNA methylation can control

gene expression. Usually the DNA methylation represses gene expression by a multi-

step process, although the exact mechanim is unknown.

Epigenomic research tries to identify and characterize epigenetic modifications

on a global level. The study of epigenetics on a global level has been made possible

recently through high-throughput assays. To manage a huge size of datasets and

to clarify the complex mechanism on the fields, as in the other genomics fields,

epigenomics also relies heavily on bioinformatics, which combines the disciplines of
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biology, mathematics and computer science.

2.2 Evolutionary machine learning

2.2.1 Machine learning and evolutionary computation

Machine learning is a study to give computers abilities to learn from existing data.

Usually, it can be used to discover patterns and rules from data, and predict fu-

ture events. Machine learning techniques generally involves statistical methods, in-

terpolation and regression, supervised classification algorithms, clustering analysis,

reinforcement learning, and so on.

The ideas and techniques from machine learning can be hybridized with evolu-

tionary computation. Evolutionary computation with machine learning techniques

would be a promising research direction to search optimal solution from the machine

learning point of view (Zhang et al., 2011). Evolutionary computation is a kind of

optimization methodology inspired by mechanisms of biological evolution. It can be

widely used as an optimization tool in recent years.

The first step of the evolutionary computation is initialization of population.

Next, it enters iterative evolutionary step with fitness evaluation, selection, and

population reproduction. The newly generated population is evaluated again and

the iteration continues until a termination criterion is satisfied.

2.2.2 Evolutionary computation in biology

The genomic revolution is generating a huge amount of data in rapid speed but it

has become made difficult for biologists to decipher. In addition, many problems

in biology are too large to solve with standard methods. Evolutionary computation

can be a solution for the current bioinformatics problems (Fogel and Corne, 2002;
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Pal et al., 2006). Although bioinformatics present a number of difficult optimiza-

tion problems, evolutionary computation can rapidly search very large and complex

spaces and return reasonable solutions.

The evolutionary computation has experienced a large growth in applications

for bioinformatics with several advantages. For example, the errors generated in

biological experiment data might be handled with no significant problem in the

evolutionary computation. The errors can contribute to genetic diversity, a desirable

property in the evolutionary learning processes. Thus, it might be more tolerable

in using evolutionary computation than other deterministic algorithms. Sometimes,

several tasks of bioinformatic studies do not require the exact optimum answer.

Instead, they require robust and close approximate solutions. Also, local optimal

solution can be helpful to understand biological processes. Evolutionary computation

approaches can be also efficient to provide the solution in this case. In addition, EAs

can process, in parallel, population billions times larger than is usual expectation

is that larger populations can sustain larger range of genetic variation, and thus

can generate high-fitness individuals in fewer generation. Laboratory operations on

DNA inherently involve errors. These are more tolerable in executing evolutionary

algorithms than executing deterministic algorithms.

Evolutionary computation has been profitably used in traditional bioinformatic

problems. Several application areas follow:

• Sequence alignments

Multiple sequence alignment helps to infer evolutionary history or discover

conserved regions among closely related sequences. The problem is known as

NP-hard. Genetic algorithms can be used to find optimal solutions in this

problem (Notredame and Higgins, 1996; Nguyen et al., 2002).

• Motif finding
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An instance of genetic algorithms can be used for motif finding, similar to

Gibbs sampling. The motifs can generated from randomly selected sequences,

and then alignment scores has been computed between the sequence fragments

and the motifs. It increases the chance to find the real sequence motifs (Liu

et al., 2004; Das and Dai, 2007).

• Protein structure prediction

Evolutionary computation methods for protein structure prediction have been

developed in the last decades. These have attempted to optimize the energy

function of the peptide chain and to determine the optimal protein folding

(Unger and Moult, 1993; Cooper et al., 2003).

• Protein-protein interaction and docking

Protein interaction and docking represents fundamental function of biomolecules.

Although it is possible now to determined by experimental methods, it is dif-

ficult to predict the recognition exactly ascertaining the structure of protein

complexes. The evolutionary computation approaches can help to solve the

problem (Morris et al., 1998; Wang et al., 2010).

The applications suggest that a variety of problems in biological domains can be

well-suited for evolutionary computation approaches and be analyzed well by the

methods.



Chapter 3

Identifying co-regulatory

sequence motifs

3.1 Background

One of the major challenges in current biology is to elucidate the mechanism govern-

ing the gene expression. Gene expression programs depend mainly on transcription

factors which bind to upstream sequences by recognizing short DNA motifs called

transcription factor binding sites (TFBSs) to regulate their target gene expression

(Lee et al., 2002). Transcription factors bind to upstream sequences to regulate gene

expression. They recognize short DNA motifs called transcription factor binding

sites (TFBSs). Although many regulatory motifs have been identified, large amount

of functional elements still remain unknown (Xie et al., 2005).

Many genome-wide approaches have been developed in attempt to discover regu-

latory motifs from upstream sequences. The early computational approach for identi-

fying regulatory motifs is based on statistical analyses using only upstream sequences

of genes. Statistical methods such as maximum-likelihood estimation or Gibbs sam-

16
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pling, are effective for searching directly significant sequence motifs from multiple

upstream sequences (Hughes et al., 2000; Bailey and Elkan, 1994). Several computa-

tional approaches based on machine learning methods have also been implemented.

A SOM (self-organizing map)-based clustering method can find regulatory sequence

motifs by grouping relevant sequence patterns (Mahony et al., 2005) and a graph-

theoretic approach has tried to identify regulatory motifs by searching the maximum

density subgraph (Fratkin et al., 2006).

More advanced approaches have been developed that can identify regulatory mo-

tifs by linking gene expression profiles and motif patterns. The main advantage of

these approaches is that they can identify motifs correlated to specific biological

processes. Most early trials used a unidirectional search, such as approaches that

search for shared patterns with upstream sequences in a set of co-expressed genes

that were found by clustering algorithms (Tavazoie et al., 1999; Brāzma et al., 1998)

or those that determine whether genes with common regulatory elements are co-

expressed (Pilpel et al., 2001; Park et al., 2002). In addition, it is also possible to

link motifs to gene expression patterns using linear regression models or regression

trees (Bussemaker et al., 2001; Keles et al., 2002). Recently, several techniques for a

bidirectional search to detect the relationship between the regulatory motifs and the

gene expression profiles have been emerged (Segal et al., 2003; Jeffery et al., 2007).

They search regulatory motifs more efficiently than unidirectional approaches since

they search similar expression patterns and regulatory motifs correlated to them

simultaneously.

In this study, we propose a novel bidirectional approach using a kernel-based

method, kernel CCA (kernel canonical correlation analysis), to analyze the rela-

tionship between regulatory sequences and gene expression profiles (Hardoon et al.,

2004; Akaho, 2006; Bach and Jordan, 2003). The expression and sequence features
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are mapped from the original input space to a higher dimension space using a ker-

nel trick, and the relationship between the two projected objects is interpreted to

identify highly correlated motifs (Figure 3.1). Our method has advantages that it

can detect core motifs relevant to a specific cellular process without the additional

efforts of clustering and intensive motif sampling process in upstream sequences.

We applied the kernel CCA to a paired set of upstream sequence motifs of

genes and their expression profiles in yeast Saccharomyces cerevisiae cell cycle,

and explored significant relationships between motifs and expression profiles. We

also searched for regulatory motifs correlated with specific expression patterns. We

also searched for regulatory motifs correlated with specific expression patterns. Our

method retrieved regulatory motifs that play an important role in cell cycle reg-

ulation including several well-known cell cycle regulatory motifs: MCB, SCB and

SFF’. Furthermore, we identified motif pairs associated with the gene expression to

construct a map of combinatorial regulation of regulators.

3.2 Methods

3.2.1 Investigation of the relationship between regulatory sequence

motifs and expression profiles

Kernel CCA (Canonical correlation analysis) is a version of the nonlinear CCA,

where the kernel trick is utilized to find nonlinearly correlated features from two

datasets (Hardoon et al., 2004; Akaho, 2006; Bach and Jordan, 2003). Canonical

correlation analysis (CCA) CCA is a classical multivariate statistical method for

finding linearly correlated features from a pair of datasets (Hotelling, 1936). Suppose

there is a pair of multivariates x and y, CCA finds a pair of linear transformations

such that the correlation coefficient between extracted features is maximized. How-
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Figure 3.1: The basic scheme of the kernel CCA. The sequence and expression data

are transformed to Hilbert space by φ function. By taking inner products, uexp and

useq were derived, which maximize the correlation between the upstream sequences

and the expression profiles.

ever, if there is a nonlinear relationship between the variates, CCA does not always

extract useful features.

Kernel CCA offers a solution for overcoming the linearity by first projecting

the data into a higher dimensional feature space. While CCA is limited to linear

features, kernel CCA can capture nonlinear relationships. Kernel CCA has been

used for several applications including text retrieval and biological data analysis

(Hardoon et al., 2004; Yamanishi et al., 2003).
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Figure 3.1 illustrates the basic scheme of the kernel CCA for our integrated

analysis of DNA sequence motif and gene expression data. Using kernel CCA, we

tried to find maximally correlated features between the gene expression and the

sequence motifs. Here, a gene set X is represented by two separate profiles in terms

of its transcriptional behavior and upstream sequences, xexp and xseq. These are

composed of the expression profile, xexp = (e1, e2, ..., eN ) and the sequence profile,

xseq = (m1,m2, ...,mM ) of each gene. Here ei (1 ≤ i ≤ N) is the expression value

of the gene in the i-th sample or experimental condition from microarray data, and

mj (1 ≤ j ≤M) denotes the occurrence frequency of the j-th sequence motif in the

upstream region of the gene. For the detection of the correlated features between

the two datasets, xexp and xseq are first mapped to Hilbert space, H, by function

φ. That is, each x is projected into two directions, fexp and fseq, in Hilbert space

according to its representation:

uexp =
〈
fexp, φexp(xexp)

〉
(3.1)

useq =
〈
fseq, φseq(xseq)

〉
, (3.2)

where
〈
·, ·

〉
denotes the dot product. Kernel CCA looks for maximally correlated

features between xexp and xseq:

γ(fexp, fseq) =

max
cov(uexp,useq)

(var(uexp)+λexp‖fexp‖2)
1
2 (var(useq)+λseq‖fseq‖2)

1
2
, (3.3)

where λexp and λseq are regularization parameters. The kernel CCA can be given by

solving a generalized eigenvalue problem:
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 0 KexpKseq

KseqKexp 0

 αexp

αseq

 =

ρ

 (Kexp +
nλexp

2 I)2 0

0 (Kseq +
nλseq

2 I)2

 αexp

αseq

 , (3.4)

where I denotes the identity matrix, Kexp is the kernel matrix for expression profile

data, and Kseq is the kernel matrix for sequence motif data. When given αexp and

αseq as the solution of the above generalized eigenvalue problem with the largest

eigenvalue, canonical correlation scores (CC scores) for xseq and xseq are estimated

by useq = Kseqαseq and uexp = Kexpαexp. The CC scores are the low dimensional

mapping of genes in terms of two separate representations and can be used to show

the salient correlation between the two. Once we have obtained the α vector, the

weights of the motif and expression profile, Wseq and Wexp, are obtained as follows:

Wexp = xTexpαexp (3.5)

Wseq = xTseqαseq. (3.6)

A high weight value of the specific sequence motif means that the motif is strongly

correlated with the expression patterns of genes whose upstream region includes the

motif and whose CC scores are high. If a weight of a specific motif has a high absolute

value, the motif is more likely to be investigated further.

3.2.2 Preparation of the gene expression datasets

Expression profiles of all ORFs (open reading frames) during the yeast cell cycle that

consists of 18 time points in the alpha factor synchronization case [18] were used

as the expression dataset. To map from the expression profiles to high dimensional



CHAPTER 3. CO-REGULATORY SEQUENCE MOTIFS 22

Table 3.1: Known regulatory motifs in yeast Saccharomyces cerevisiae.

Motif Name

RAP1 RPN4 GCN4 MCB

HAP234 MIG1 AFT1 STRE’

CCA CSRE PHO4 STE12

HSE ABF1 ATRepeat GAL

Leu3 LYS14 MET31-32 OAF1

PAC PDR PHO REB1

STRE ECB ndt80(MSE) Yap1

SCB Gcr1 zap1 MCM1’

MCM1 SFF SFF’ BAS1

Ume6(URS1) SWI5 ALPHA1’ ALPHA1

ALPHA2’ ALPHA2

space, we converted them to the kernel matrix. We applied a gaussian RBF kernel

to the expression profile matrix by: k(xexp,x
′
exp) = exp[−d(xexp,x′

exp)
2σ2 ], where σ is a

parameter and function d(·, ·) is a Euclidean distance.

3.2.3 Preparation of the gene sequence datasets

The sequence data was used in two ways. In the first case, we used the sequences

of a total of 42 known motifs (Table 3.1) extracted by Pilpel (Pilpel et al., 2001).

It was composed of 42 motifs (Table 1). We then scanned the upstream regions of

ORFs for the presence of these motifs using the AlignACE program (Hughes et al.,

2000). The sequence profile was represented by the occurrence of these motifs in the

promoters of each gene in the genome.
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In the second case, we analyzed the relationship between the expression profiles

and the raw upstream sequences. We extracted gene upstream sequences ∼ 1kb from

each gene. From these sequences, we calculated the frequency of all possible l-mers

in each gene. For l = 5, each gene had 1024 (= 45) base combinations. The sequence

profile was encoded in the frequency of l-mers.

We applied the kernel as k(xseq,x
′
seq) = (xTseqx

′
seq)

d to the sequence data. When

d = 1, it is the linear kernel, and when d > 1, it is the polynomial kernel.

3.2.4 Measurement of the effect of motif combinations

To measure the effect of the motif pairs, we defined the ECRScore (Expression

Coherence coRrelation Score) calculated by a Pearson correlation coefficient of ex-

pression profiles for all possible pairs of genes whose upstream regions had the two

motifs, mi and mj :

ECRScore(mi,mj) =
Nτ (mi

⋂
mj)

N(mi
⋂
mj)

, (3.7)

where N(mi
⋂
mj) is the number of all pairs of genes whose upstream regions have

the two motifs, and Nτ (mi
⋂
mj) is the number of gene pairs whose correlation

coefficient is larger than the threshold τ . The threshold was chosen based on the

fifth percentile of the distribution for correlation coefficients of randomly sampled

gene pairs.

3.3 Results

We applied a computational method, kernel CCA, to the identification of novel

transcriptional regulatory elements. The main purpose of our experiments was to

find regulatory motifs that were associated with gene regulation in specific biological

processes. Using the kernel CCA, we first found highly correlated features between
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expression profiles and the sequence motifs. The key motifs in gene regulation were

then identified from the weight scheme by the kernel CCA (see Methods section).

Furthermore we demonstrate that it is possible for our method to be applied for

identification of motif pairs using raw upstream sequences.

3.3.1 Identification of the relationship between gene expression and

known motifs

We first explored the relationship between gene expression profiles and known motifs

using a yeast gene expression dataset related to the cell cycle (Spellman et al., 1998)

and a set of known motifs (see Table 3.1) extracted by AlignACE (Pilpel et al., 2001).

A total of 551 ORFs (open reading frames) in the expression dataset contained at

least one known motif. In the parameter setting, the degree of polynomial kernel was

set to 3, the parameter σ in Gaussian RBF kernel was 0.5, and the regularization

parameter was 0.1. These parameters were chosen based on the parameter setting

that produced a high correlation from multiple runs.

The results from the kernel CCA were visualized using the CC1 (first canonical

correlation) score (Figure 3.2). In Figure 3.2, each point corresponds to a gene, and

a cloud of the diagonal points illustrated the correlation between the expression and

the motifs. The shape of diagonal points and the high correlation coefficient (0.996)

indicated that the kernel CCA was able to find the close relationship between the

expression profiles and the sequence motifs. We then performed the linear canoni-

cal correlation analysis using the same datasets. The correlation coefficient (0.612)

obtained from the linear CCA was much lower. As shown in Figure 3.3, the linear

CCA could not identify the significant correlation between expression profiles and

motifs. This further supports that kernel CCA improve significantly in finding the

correlation between the two datasets.
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Figure 3.2: Relationship between gene expression profiles and regulatory sequence

motifs. (a) The plot shows the correlation between gene expression profiles and the

regulatory sequence motifs. Each dot represents one gene in the dataset, and x-axis

means the value of uexp, y-axis is useq. (b) The plot is a close-up view of the boxed

area in (a).

The motifs were searched by the weight function of Equation 3.6 (see Methods

section) with the model obtained by the kernel CCA and the top ranked motifs are

shown in 3.2. SWI5 motif, a binding site of SWI5 protein, has the highest weight

value. SWI5 has been known to act in G1 phase and in the M/G1 boundary in

the cell cycle (Dohrmann et al., 1992, 1996). SFF’ motif is a binding site of FKH1
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Table 3.2: The list of top ranked motifs based on the weight scheme by the kernel

CCA.

Motif Weight Function

SWI5 0.89026 Transcription Activation in G1 phase

SFF’ 0.45399 FKH1 binding site that regulate the cell cycle

MCB 0.29633 MBF binding site that activates in late G1 phase

LYS14 0.21796 Lysine biosysthesis pathway

ALPHA2 0.16532 Encoding a homeobox-domain

Figure 3.3: Relationship between gene expression profiles and regulatory motifs from

the linear CCA

transcription factor that affects the expression of genes controlling the cell cycle

during the G2-S phase change (Morillon et al., 2003). The MCB motif is one of
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the well-known motifs in the yeast cell cycle as a binding site in the MBF protein

complex. MBF protein is composed of MBP1 and SWI6, and MBP1 is a DNA

binding component while SWI6 has regulatory roles. It is well known that the MBF

protein complex regulates the transcription of many genes in the late G1 phase

(Dohrmann et al., 1992; Simon et al., 2001). ALPHA2 protein also plays a role in the

cell cycle. It operates synergistically with MCM1 protein to repress the expression

of its target genes (Vershon and Johnson, 1993; Zhong et al., 1999). MCM1 protein

is a key regulator involved in the transcription of several M/G1 genes during the

cell cycle (Simon et al., 2001; Lydall et al., 1991). A high weight value of ALPHA2

is supported by the evidence that ALPHA2 protein binds to the MCM1 protein and

influences the regulation of other cell cycle-related genes (Keleher et al., 1989; Mead

et al., 1996). Using the set of known motifs, our results are consistent with previous

reports, validating the analysis method employed.

To further validate the result of top-ranked motifs extracted by kernel CCA, we

compared the weights obtained from cell cycle-related ORF set with those obtained

from randomly selected set. We performed the same procedure using random ORFs

that are not known to be related to the cell cycle. Figure 3.4 shows the highly

weighted motifs obtained from our method in cell cycle-related gene set and non cell

cycle set, and the relative positions of those motifs are presented in the weight distri-

bution of all motifs. The weight values obtained from random set were significantly

lower than those obtained from cell cycle-related ORF set. We could infer that the

significantly correlated motifs were not extracted from these random datasets. In

summary, our method could identify the regulatory motifs that have high weights

indicating high correlation between the upstream sequences and the gene expression

profiles.
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Figure 3.4: Weight distributions for MCB, SFF’ and SWI5 motifs derived from cell

cycle and non cell cycle-related datasets The dotted line indicates the weight distri-

bution from the non-cell cycle datasets and the solid line from cell cycle datasets.

3.3.2 Identification of cell cycle-related motifs

We then applied the linear kernel to the motif sequence data containing a total of

1,024 features (window size l = 5) extracted from the raw upstream sequences of

genes and Gaussian RBF kernels with parameter σ values of 0.3 to the expression

data. The regularization parameter was set to 0.1. These parameters are also em-

pirically chosen based on the fact that they produced a high correlation. Figure

3.5 shows the CC1 score which represents the correlation between the expression

profiles and the sequence patterns. When the linear kernel was applied to the se-

quence dataset, the expression data is closely related to the motif data using the
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Figure 3.5: Correlation between expression profiles and motifs derived by using the

raw upstream sequence data. The plot on (b) is an enlargement of the boxed area

in (a).

raw sequences of 5-mers.

The 5-mer motif patterns with high weights are listed in Table 3.3. The 5-mer

with the highest weight is 5’-GCGTG-3’, which is similar to the MCB motif (5’-

ACGCGT-3’). As described previously, MCB is an important motif involved in the

cell cycle. The second-ranked sequence (5’-CGTGT-3’) matched to the first five

bases of the ALPHA2 motif sequence. From the second component, we also found

several significant sequences, including a consensus sequence (5’-CGCGT-3’) that
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Table 3.3: High-scored motifs in the first and the second components using 5-mer

raw upstream sequences.

Sequence Motif Description Weight Component Rank

GCGTG MCB (ACGCGT) 0.079567 1 1

CGTGT MATalpha2 (CRTGTWWWW) 0.075340 1 2

CATGT MATalpha2 (CRTGTWWWW) 0.046299 1 12

CCGGA MCM1 (CCNNNWWRGG) 0.044133 1 13

TAAGG MCM1 (CCNNNWWRGG) 0.042387 1 15

CCACG SCB (CACGAAA) 0.018992 2 4

CGCGT MCB (ACGCGT) 0.017870 2 5

GTGTT MATalpha2 (CRTGTWWWW) 0.016595 2 9

is identical to the MCB motif (5’-ACGCGT-3’). This further confirmed that the

MCB motif affects gene expression in the cell cycle. Another interesting motif is 5’-

CCACG-3’, which is a sequence block with one base shift from the known SCB motif

(5’-CACGAAA-3’). The SCB motif is a binding site of the SBF protein, which is a

complex of SWI4 (a DNA-binding component) and SWI6 (a regulatory component)

(Simon et al., 2001), and SBF is a major regulator in the G1/S transition.

3.3.3 Combinational effects of regulatory motifs

We searched the motif pairs that have synergistic or co-regulatory combination ef-

fects in the yeast cell cycle. The regulatory mechanisms of eukaryotes are highly

complex since most genes are normally synergistically regulated by different tran-

scription factors. Therefore, identifying the synergistic motif combinations can con-

tribute to systematically understanding the regulatory circuit.
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In the present study, using the kernel CCA we calculated the weight value for

each motif pair of 42 known motifs. The heat map of weight values of all motif

pairs is provided in Figure 3.6. Table 3.4 presents the top ten motif pairs with the

highest weight values and with occurrence of more than ten in all the investigated

upstream sequences. It also shows ECRScores which represent gene expression co-

herence. All these scores are relatively high compared to the previously identified

synergistic motif pairs (ECRScores > 0.075). As shown in Table 3.4, the pair with

the highest weight value is MCB-MCM1. According to a previous study, MCB and

MCM1 were characterized as a significantly cooperative motif pair in the regulation

of the cell cycle (Das et al., 2004). Other highly ranked pairs, such as ECB-ALPHA2

and MCM1-ALPHA2, are already known that they are required for transcriptional

regulation of early cell cycle genes. MCM1 activates transcription of ECB (early

cell cycle box)-dependent genes during M/G1 phase (MacKay et al., 2001), and the

MCM1 protein can interact with the ALPHA2 factor regulating the expression of

mating-type-specific genes (Keleher et al., 1989; Mead et al., 1996). These evidences

support that two ALPHA2-related motif pairs act synergistically in the expressional

regulation of the yeast cell cycle process. The REB1 motif, a binding site of REB1

protein, is frequently found among the pairs of motifs with the highest weights. The

REB1 protein is an RNA polymerase I enhancer-binding protein and binds to genes

transcribed by both RNA polymerase I and RNA polymerase II (Morrow et al.,

1989). It is a general regulator rather than a condition specific one. Therefore, it

is reasonable that this protein shows a high frequency in our results. REB1-SWI5,

REB1-MCM1’ and REB1-ALPHA1 motif pairs are already identified as acting syn-

ergistically in the yeast cell cycle regulation (Banerjee and Zhang, 2003; Tsai et al.,

2005; Hvidsten et al., 2005). Most of our results are consistent with the previous

reports. In addition, it’s worth noting that several previously uncharacterized motif
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Figure 3.6: Heat map of weight values of motif pairs related to cell cycle regulation.

Dark colors represent motif combinations of high weight values.

pairs were identified by our kernel CCA methods.
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Table 3.4: The top 10 ranked motif pairs were extracted from the analysis of motif

combination.

Weight Motif Pair ECRScore Num. of ORFs

2.5368 MCB MCM1 0.390 15

2.5018 MCB ECB 0.439 12

2.0177 PHO MCM1’ 0.088 17

1.848 ECB ALPHA2 0.088 14

1.7535 MCM1 ALPHA2 0.074 17

1.7263 ATRepeat MCM1 0.076 12

1.6995 PHO ECB 0.127 11

1.6823 REB1 SWI5 0.099 14

1.6476 REB1 MCM1’ 0.115 13

1.4256 REB1 ALPHA1 0.067 15

3.4 Discussion

We presented a novel method that can identify the candidate conditional specific

regulatory motifs by employing kernel-based methods. The application of the kernel

CCA enables us to detect correlations between heterogeneous datasets, consisting

of upstream sequences and expression profiles. From a data-mining perspective, our

work is regarded as a new approach for detecting important features from regulatory

sequences and gene expression profiles. We demonstrated that major motifs in a

specific biological process can be extracted by a CC score via modelling a close

relationship between two datasets related to gene regulation.

As genome-wide datasets of various types become available, it’s important to
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analyze these datasets in an integrated manner (Kasturi and Acharya, 2005). It is

possible to come up with novel biological hypotheses by integrating diverse biolog-

ical resources generated for specific research purposes. In these aspects, the kernel

CCA is regarded as a useful method that can extract the biological factors with

significant roles by integrating different types of biological data. Many studies for

identifying motifs have been based on sequence conservation or sequence character-

istics, regardless of the biological processes. Therefore our method can be regarded

as complementary approach in the analysis of gene regulation.

Our method found important motifs related to the cell cycle by using raw up-

stream sequences as well as known motif sets. In the present study we used the raw

sequences of window size, l=5. If we enlarged the window size, the dimension for se-

quence features increased exponentially, whereas the frequency of motifs decreased.

Although the window size used in our experiments was shorter than the length of

several known transcription factor binding sequences, it was long enough to obtain

worthwhile results.

In the future research, we will apply the proposed method to diverse gene ex-

pression datasets, especially cancer-related datasets. The cancer-related regulatory

program can be elucidated by analyzing regulatory motifs from a set of enriched

genes in the cancer transcriptome (Rhodes et al., 2005). Using the kernel CCA, a

correlation analysis between regulatory sequences and the cancer transcriptome may

directly catch regulatory motifs related to the abnormal gene regulatory program.



Chapter 4

Investigation of combinatorial

effects of DNA methylation

4.1 Background

The addition of a methyl group to cytosine residues in the context of CpG dinu-

cleotides (i.e., 5-methylcytosine) by the DNA methyltransferease (DNMT) enzymes

is the most well studied epigenetic event. DNA methylation is known to play sig-

nificant roles in many cellular processes, including embryonic development, genomic

imprinting, X-chromosome inactivation, and preservation of chromosome stability.

In addition, aberrant DNA methylation has been shown to disrupt many cellular pro-

cesses and is frequently observed in most human diseases, including cancer (Suzuki

and Bird, 2008; Robertson, 2005; Esteller, 2008; Keshet et al., 2006).

Methylation in CpG islands (CGIs), particularly in the promoter and first exon

regions, is known to block genomic binding sites of activating transcription factors

or other proteins and it is strongly associated with gene repression (Suzuki and

Bird, 2008; Jones and Takai, 2001). In particular, the effect of DNA methylation

35
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on tumor suppressor genes (TSGs) has been extensively studied (Ueki et al., 2002).

Transcriptional silencing of this key class of genes could contribute to defective reg-

ulatory processes in cancer, and the promoter CGI hypermethylation of TSG has

been observed in a various types of cancers (Sakai et al., 1991; Merlo et al., 1995).

However, few studies have examined the complex relationship between DNA methy-

lation and gene expression on a genome-wide scale using accurate, high-resolution

DNA methylation data.

Profiling of methylated CpG sequences is now possible by using next generation

sequencing technologies and a number of recent studies have used high-throughput

approaches to study DNA methylation (Chavez et al., 2010; Kim et al., 2011). Al-

though generating enormous amounts (terabytes) of data is possible, single-base

pair resolution of bisulfite-converted DNA is still costly and highly labor intensive.

Recently, cost effective, genome-wide methylation approaches that do not rely on

bisulfite-treated DNA have been developed, including methylation-sensitive restric-

tion enzymes approaches (Zuo et al., 2009). One approach, the methylated-CpG

island recovery assay (MIRA) (Rauch and Pfeifer, 2010) followed by sequencing

(mCpG-seq), utilizes methylated-CpG-binding protein complexes with high affin-

ity to methylated CpG dinucleotides in genomic DNA. Now a technique known as

MBDCap-seq (Brinkman et al., 2010) is able to utilize double-stranded DNA, does

not depend on the application of methylation-sensitive restriction enzymes, and gen-

erates DNA sequence variation data (Robinson et al., 2010).

The availability of high resolution DNA methylation and gene expression data

on a genome scale now allows scientists to investigate the functional consequence

of DNA methylation in various genomic regions, including CGIs which have been

extensively investigated in the literature (Esteller, 2007; Bell et al., 2011; Pai et al.,

2011). CGIs are often found near the promoter regions of genes and the CGI hy-
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permethylation is known to have significant inhibitory effect on gene expression. In

normal cells, CGIs are protected from methylation. However, hypermethylation of

promoter CGIs of important genes, i.e. TSGs, is frequently observed in cancer cells

(Sproul et al., 2011). In addition to CGIs, recent studies have reported that DNA

methylation of other genomic regions can alter downstream gene expression. It was

recently reported that methylation of CGIs near transcription start sites (TSSs) of

genes (Sproul et al., 2011) or in CGI shores (Irizarry et al., 2009), regions about

2kb outside of CGIs, were both strongly associated with gene expression. In addi-

tion, a strong correlation between methylation in the first exon and expression of

the corresponding genes was demonstrated (Brenet et al., 2011). Although these

recent studies have clearly shown an association between DNA methylation at vari-

ous genomic regions and gene expression, several questions remain to be answered.

Specifically, in our study on the breast cancer cells, research questions are: How does

DNA methylation in the different genomic regions contribute to gene expression? Are

there subtype specific DNA methylation-gene expression patterns in breast cancer?

Does the methylation of transcription factor binding sites impact transcription factor

binding and subsequent gene expression?

To answer these questions, we used genome-wide profiling data from 30 breast

cancer cell lines from the Integrated Cancer Biology Program (ICBP, http://icbp.nci.nih.gov/).

We integrated MBDCap-seq methylation data and Affymetrix microarray gene ex-

pression data (Neve et al., 2006). The important goals of our study were:

1. Genomic studies have established major breast cancer intrinsic subtypes that

show significant differences in incidence, survival and response to therapy

(Koboldt et al., 2012). Basal-like breast tumors display aggressive clinical

behavior and belong to the high-risk breast cancers that typically carry the

poorest prognoses (Fadare and Tavassoli, 2008; Toft and Cryns, 2011). To
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investigate whether phenotype specific methylation and expression patterns

exist in the basal A, basal B, and luminal breast cancer molecular subtypes,

we used an information-theoretic approach to identify genes with differentially

methylated DNA regions and differential expression levels.

2. To perform an integrated analysis of DNA methylation and gene expression

data on a genome-wide scale and to detect subtype-specific effects of DNA

methylation in breast cancer cells. We examined relationships between DNA

methylation and gene expression using step-wise analysis starting from genes

whose expression was significantly altered in a particular subtype.

3. We used Pearson’s correlation analysis and decision tree learning to investigate

the effect of DNA methylation in various regions (CGIs, CGI shores, promoter

regions, 1st exons, 1st introns, and 2nd exons) on the breast cancer subtype

differential gene expression.

4. To investigate relationship between transcription factors and DNA methylation

in promoter regions, we examined the relationship between DNA methylation

specifically at transcription factor binding sites (TFBSs) and gene expression

in the breast cancer molecular subtypes.

4.2 Materials and methods

4.2.1 Data

We prepared methylation and gene expression data from 30 breast cancer cell lines

representing three tumor phenotypes found in patients (Neve et al., 2006): basal A,

basal B, and luminal subtypes. Among 30 cell lines, 17 were basal-like and 13 were

luminal-like subtypes (Table 4.1). The basal-like 17 cell lines were further subdivided
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into 7 basal A and 10 basal B subtypes.

Gene expression data from Affymetrix microarray experiments (Neve et al., 2006)

was downloaded. Genome-wide methylation profiles were measured using the MBDcap-

seq technique. The double stranded methylated fragments were sequenced and reads

were mapped to the human reference genome. Methylation levels were calculated by

measuring the density of the read coverage (Rao et al., 2013), as we have described

previously.

The microarray gene expression data were processed and analyzed using R and

Bioconductor. The expression values were centered by mean-adjusting each log abun-

dance value (subtracting each value from the mean expression value in the cell line).

4.2.2 Profiling of DNA methylation patterns

To investigate DNA methylation characteristics across the 30 breast cancer cell

genomes, methylation profiles were measured on ± 10 kb genomic regions around

the TSS of each gene. We divided the genomic regions into bins with a size of 100

bases. DNA methylation levels were then measured as the number of mapped reads

within each bin.

4.2.3 Identifying differentially methylated/expressed genes by in-

formation theoretic analysis

We identified differentially methylated and expressed genes in the three breast cancer

subtypes using normalized entropy. Entropy is a measure of uncertainty, defined as

follows:

H = −
n∑
i=1

pi log pi
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Table 4.1: 30 Breast cancer cell lines and molecular subtypes

Cell line Subtype Cell line Subtype

BT549 BaB HCC1569 BaA

HCC1937 BaA HCC1143 BaA

HCC1428 Lu HCC202 Lu

MDAMB436 BaB SUM185PE Lu

600MPE Lu HCC1500 BaB

MDAMB231 BaB SUM225CWN BaA

SKBR3 Lu MDAMB453 Lu

SUM1315MO2 BaB SUM52PE Lu

HSS78T BaB MCF12A BaB

MDAMB157VII Lu HCC70 BaA

HCC1954 BaA SUM149PT BaB

GCC2185 Lu LY2 Lu

MCF7 Lu BT20 BaA

MCF10A BaB BT474 Lu

SUM159PT BaB AU565 Lu

Lu: luminal; BaA: basal A; BaB: basal B

where pi denotes the probability of the state i, and n is the total number of the

states. In this study, the state i is a cancer phenotype, i.e. i = (basalA, basalB, Lu).

For methylation profiles, the probability pi is measured by tji/cj , where cj is sum of

read counts for cell lines in a genomic region j and tji is sum of reads for a phenotype

i in the region j. For gene expression, cj is sum of expression values for cell lines in

a gene j and tji is sum of expression for a phenotype i in the gene j. The entropy H
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achieves its maximum value when all states are equally probable, that is, it exhibits

the lowest degree of uncertainty. If there is only one state, then the entropy H is

zero.

Normalized entropy is the ratio of entropy to maximum entropy as follows:

H0 (x) = H (x) /Hmax

where Hmax is maximum entropy value where the probabilities are all equal.

We measured the normalized entropy and identified differentially methylated re-

gions and differentially expressed genes. To avoid errors on the probability calcula-

tion, we introduced pseudo-probability to every zero-valued position.

4.2.4 Identifying downregulated genes in each subtype for integra-

tive analysis

Genes differentially expressed in each different molecular subtype were further iden-

tified as follows. Suppose that egl is an expression level of a gene g in a cell line

l. Since the cell line l is clustered into a specific subtype i, we calculate the me-

dian values Median(eg, i) for the expression levels in each subtype i per gene g. In

this study, we measured three median value Median(eg, Lu), Median(eg, BasalA),

Median(eg, BasalB) for each gene g.

If the median value Median(eg, i) of a gene g in a type i was significantly lower

than those of other two types, we defined the gene g as down-regulated in a specific

type. In our study, log-ratio 1.5 was the criterion for significance.

4.2.5 Correlation between DNA methylation and gene expression

To investigate the relationship between methylation in various regions and gene

expression in the 30 breast cancer cells, we examined methylation levels in gene
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Figure 4.1: Genomic regions for studying DNA methylation profiles. A gene body is

composed of promoter and coding regions including exons and introns. CGIs as well

as these regions were studied for the effect of DNA methylation on gene regulation.

promoter regions (2kb upstream regions from TSSs), CGIs, CGI shores, the first

and second exon and the first intron (Figure 4.1). The association between gene

expression and methylation values of these datasets was measured by a Pearson’s

correlation coefficient. It was calculated on the paired data of a gene expression level

and the methylation level in the genomic region.

4.2.6 Combinatorial effects of DNA methylation in various genomic

regions

To identify which regions have dominant effects on downstream gene expression and

also to investigate on the combinatorial roles of DNA methylation of the various

genomic regions in each subtype, a decision tree was constructed using the methyla-

tion profiles in each region. For the learning purpose, a gene was an instance of data

and gene expression was considered as a class variable, i. e., up or down regulated

genes. The methylation value in each genomic region was an attribute. For binary
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classification, in training dataset of each subtype, the class values were discretized

to high and low, i. e., upregulated or downregulated genes. If a gene was significantly

downregulated in a subtype but the gene was upregulated in the other subtypes, the

class values of the genes in the cell lines within the subtype were designated as low.

For example, assume that the expression of a gene is significantly downregulated in

Lu subtype. Then among 30 cell lines, 13 instances with Lu subtype are marked as

low and 17 with the other types are high. The trees were built using REPTree in

WEKA software (Hall et al., 2009).

4.2.7 Analysis of transcription factor binding regions possibly blocked

by DNA methylation

For the integrative analysis of TFs, DNA methylation and gene expression, we used

four datasets: gene expression, methylation profiles, cell specific DNA sequences

and information for TF binding sites (TFBSs; TRANSFAC database (Matys et al.,

2006)). We considered only downregulated genes in each subtype, as we were most

interested in DNA methylation of TFBSs, possible interference on TF binding, and

subsequent negative effect on gene expression. We referred to these downregulated

as target genes. Differentially methylated genomic regions of the target genes were

identified by statistical testing (t-test) of methylation levels at each 100bp-bin for the

promotor regions. Cell-specific consensus sequences were computed by assembling

short reads in the promotor regions of these genes. TFBSs were searched on the

cell-specific consensus sequences corresponding to the hypermethylated bins, using

′minimize false positive′ option of the match tool in the TRANSFAC package (Kel

et al., 2003).

Among the collected TFs that could be potentially blocked by TFBS methylation

in the promotor region, we selected TFs whose expression levels were not significantly
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different in each phenotype (by t-test), as to exclude cases where the down-regulation

of the target genes is as a result by difference in the expression levels of TF, an

activator gene. In this way, we compiled cases where down-regulation of the target

genes was due only to the hypermethylation in the promotor region, not other factors,

such as the genomic sequences on the TFBSs and the expression levels of the TF.

4.3 Results

4.3.1 DNA methylation in 30 ICBP cell lines

We measured and compared the methylation density of 2kb promoter regions for all

genes in 30 breast cancer cell lines. Figure 4.2 shows subtype-specific density plots of

promoter regions, excluding unmethylated genes. Overall, the methylation density

was similar in each subtype. We observe that the number of highly methylated (>

50) promoter regions tended to be lower in BaB. The density of the regions whose

methylation levels were over 50 was around 10% in Lu and BaA, but 4% in BaB.

Next, we investigated CGI methylation around each gene. CGIs are defined as

regions of DNA of greater than 500 bp with a G+C equal to or greater than 55% and

observed CpG/expected CpG of 0.65 (Takai and Jones, 2002). Using the position

information of the CGIs from UCSC genome browser, we checked the methylation

profile in the CGI near each gene. In the 30 breast cancer cell lines, approximately

47% of CGIs were methylated; however, distinct methylation density for each sub-

type was not apparent (Figure 4.3).
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Figure 4.2: Methylation density of promoter regions in 30 breast cancer cell lines.

Density was measured for each subtype. The methylation levels are on the x-axis

and the y-axis is probabilistic density. Unusual bulbs around 100 on the x-axis were

because methylation levels over 100 were truncated to 100. Lu, luminal; BaA, basal

A; BaB, basal B.

4.3.2 Information theoretic analysis of phenotype-differentially methy-

lated and expressed genes

To identify differentially methylated and expressed genes across the breast cancer

genome, we measured normalized entropy. Lower entropy corresponded to genes
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Figure 4.3: Average number of methylated and unmethylated CGIs in each cell. The

unmethylated means that the mapped read count is zero in the CGI. BaA: basal A,

BaB: basal B, Lu: luminal.

more differentially methylated or expressed in each subtype. First, we determined

which genes were differentially methylated. Considering only genes with >3 mapped

reads, there were 241 differentially methylated genes with the entropy threshold

0.2 and 564 differentially expressed genes with entropy threshold 0.5. Among these,

only three genes were common to both the differentially methylated and expressed

gene sets (Table 4.2) Thus, we concluded that separate analysis of differentially

methylated and expressed gene sets based on information theory is not effective for

the integrated analysis of methylation and gene expression, although these methods

were effective to highlight genes and genomic regions that were different according

to phenotypes.
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Table 4.2: Genes that were both differentially methylated and expressed

Gene Name Description

PLA2G12A phospholipase A2, group XIIA

FAT1 FAT tumor suppressor homolog 1

PARP8 poly (ADP-ribose) polymerase family, member 8

4.3.3 Integrated analysis of DNA methylation and gene expression

To perform the integrated analysis of DNA methylation and gene expression, we

used a two-step analysis process: (1) identify differentially expressed genes in each

subtype, and (2) for each genomic region, test if there is a strong negative correlation

between methylation level at the genomic region and the expression level of the gene.

To select differentially expressed genes in each subtype, we measured median

values of expression levels for each of the three breast cancer phenotypes. If the

median value of a gene in one subtype was significantly higher or lower than the

median value in the other two subtypes, the gene was considered to be differentially

expressed in a specific type. For such differentially expressed genes, variations of

methylation levels were then investigated.

As DNA methylation is known to inhibit gene expression and an inverse correla-

tion between the DNA methylation and gene expression has been shown to exist, we

were most interested in a negative correlation between DNA methylation and gene

expression for the integrated analysis. As an example, Caveolin 1, CAV1, represents

a negative relationship between DNA methylation and gene expression (Figure 4.4).

The CAV1 gene has been shown by us and others to regulate breast tumor growth

and metastasis and is overexpressed in basal-like subtypes (Sloan et al., 2004; Savage

et al., 2007; Rao et al., 2013). CAV1 expression levels were clearly different in each
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Figure 4.4: CGI methylation and gene expression of the CAV1 gene. Methylation

and gene expression values from the 30 cell lines are grouped into luminal (Lu), basal

A (BaA) and basal B (BaB) subtypes. (a) A plot showing the density of methylation

in the CGI and shore regions located near the TSS of the CAV1 gene. The black

bar shows the location of the CGI and the small orange triangle is the TSS. (b) A

boxplot showing the expression of the CAV1 gene.

breast cancer subtype, higher in BaB subtypes and lower in Lu subtypes. However,

when the DNA methylation profiles of the CAV1 TSS and CGI were examined,

methylation levels were significantly higher in the Lu compared to BaA and BaB.

Furthermore, differential methylation of CGI shores, but not CGIs, significantly reg-

ulated CAV1 expression, and breast cancer aggressiveness was associated with CAV1
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(a) (b) 

Figure 4.5: An example of the paired input data used to measure the Pearson corre-

lation between gene expression and methylation. This paired data is for CAV1 gene.

(a) Gene expression and CGI methylation across 30 cell lines. (b) Plot of gene ex-

pression profiles (y-axis) v.s. methylation levels (x-axis). Each pair in the cells is

represented as a cross sign (Lu), a diamond (BaA) and a circle (BaB). A regression

line is shown.

CGI shore methylation levels (Rao et al., 2013). The above negative correlation was

measured by computing Pearson correlation coefficients. The Pearson correlation

is measured by paired input data between DNA methylation profiles and gene ex-

pression levels across the 30 breast cancer cell lines. As an example, a correlation

coefficient from CGI methylation and gene expression levels was calculated across
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30 cell lines (Figure 4.5). The scatter plot for CAV1 gene shows that gene expression

and CGI methylation levels were negatively correlated.

We measured the methylation correlation for various genomic regions of downreg-

ulated genes in Lu and BaB subtype (Figures 4.6 - 4.7). Since only two genes were

detected as downregulated in BaA subtype, the correlation results for BaA subtype

were not included. Interestingly, when methylation in promoter regions was consid-

ered, several genes showed a clear negative correlation at the proximal regions of

TSSs. Figure 4.6 is heatmaps that visualize promoter region methylation and down-

stream gene expression (light red colors mean that two vectors (methylation profiles

and expression levels) were highly negatively correlated and bright green were posi-

tively correlated). In both Lu and BaB subtypes, strong negative correlations were

observed in promotor regions, and methylation in the promotor regions near TSS

showed strongest negative correlations. However, there were significant differences

in promotor methylation patterns in Lu and BaB subtypes. In Lu subtypes, weaker

negative correlations were observed at genomic regions further away from TSS. On

the contrary, in BaB subtypes, consistently strong negative correlations were ob-

served in entire promotor regions. This result implies that the DNA methylation on

the promoter region has stronger epigenetic inactivation in Basal-like subtypes and

the methylation of this regions may contribute to breast cancer progression.

Moreover, in most genes, first exon and CGI methylation levels were negatively

correlated with expression levels (Figure 4.7). From the multi-exon genes, we mea-

sured correlation coefficients between the DNA methylation profiles for each exon

and intron, and the expression level of the corresponding gene. A clear negative cor-

relation was observed in the first exon, but this was not the case for second exons

and first introns, a result consistent with a previous study showing that first exon

methylation was closely associated with low gene expression (Brenet et al., 2011).
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Figure 4.6: Correlation between promoter region methylation profiles and expression

levels of genes downregulated in (a) Lu and (b) BaB subtypes. Unmethylated genes

in the whole promoter region of 30 cell lines were excluded. Light red color was used

for negative correlation and light green for positive correlation. Columns from right

to left denote positions getting away from TSS. Each row is a downregulated gene

in the subtype.

When we examined CGIs and CGI shore regions, negative patterns were also ap-

parent. CGI and CGI shore DNA methylation levels were negatively correlated with

gene expression levels in most genes, but in CGIs, much stronger relationships were

shown in our datasets.
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Figure 4.7: Correlation between methylation profiles on CGI, CGI shore, intron, and

exon regions and expression levels of genes down-regulated in (a) Lu subtypes and

(b) BaB subtypes.

4.3.4 Investigation of the combinatorial effects of DNA methylation

in various regions on downstream gene expression levels

As DNA methylation occurs in many genomic regions, it was of interest to examine

the effect of the various regions on downstream gene expression, particularly which

regions may have a dominant effects on gene expression and whether the effects

of the regions were similar in each subtype. Towards this goal, we performed a

comprehensive study using six distinct genomic regions: promoter regions, CGIs,

CGI shores, first and second exons, and first introns. Using the DNA methylation
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profiles in these regions, we performed a machine learning analysis.

The decision tree is a classification method that uses conjunctions of features for

predicting target values in a tree-like hierarchical decision process. As decision tree

learning identifies the most informative attributes for classification, this approach

was used to discover regions with dominant and combinatorial effects on expression

levels. We normalized the methylation levels of each region in a gene by adjusting

the scale, then carried out the decision tree analysis.

The decision tree was constructed with a constraint of a maximum tree depth

of three excluding leaf nodes, and in this case, the classification accuracy for genes,

downregulated in Lu subtype, was 0.649 in a 10-fold cross validation (Figure 4.8

(a)). In the decision tree, the right-most branch means that the nodes in this branch

were hypermethylated, and the left-most that the regions were hypomethylated.

Consistent with the correlation analysis, CGIs were the most informative feature.

In the BaB subtype whose classification accuracy was 0.746 with the same max-

imum depth, the promoter regions and the first exons had combinatorial effects

on gene expression (Figure 4.8 (b)). In the left branch of the decision tree where

TSS1001-2000 were hypomethylated, it is intuitive that genes were unregulated.

However, in the left branch, when TSS1-1000 was hypermethylated and also the

first exons were hypermethylated, genes were down regulated. Note that TSS1001-

2000 region had the dominant effect on the gene expression in the BaB subtype.

This was consistent with our previous correlation analysis showing a clear negative

correlation in much broader regions (Figure 4.6). Since CGI overlaps the first exon

or promoter regions, we carried out the analysis again by separating into two cases:

(1) CGI overlaps with the regions and (2) CGI does not overlap with the regions.

Even when we separated CGI overlapping cases, the dominant factors (CGI for the

Lu subtype and TSS1001-2000 for the BaB subtype) remained the same as when
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Figure 4.8: Decision tree analysis with downregulated genes in (a) Lu subtypes and

(b) in BaB. The attributes are represented by circles, in where Exon1 is the first

exon and CGIShore means 2kb outside region from CGI. TSS1-1000 means 1 to 1000

bp upstream region from TSS and TSS1001-2000 means 1001 to 2000 bp upstream.

The Down in leaf nodes (rectangular boxes) means the gene is downregulated and

Up means upregulated.
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Figure 4.9: In case of down-regulation in Lu subtype, decision tree analysis separated

by genomic regions of CGI. (a) Overlap with the first exon (The classification accu-

racy, Acc. is 0.737), (b) Nonoverlap with the first exon (Acc. is 0.590),(c) Overlap

with TSS1-1000 (Acc. is 0.687), (d) Nonoverlap with TSS1-1000 (Acc. is 0.644), (e)

Overlap with TSS1001-2000 (Acc. is 0.644) and (f) Nonoverlap with TSS1001-2000

(Acc. is 0.644).

we did not separate CGI overlapping cases. The decision trees when we did not sep-

arate CGI overlapping cases were presented in the main text (Figure 4.8) and the

decision trees when we separated CGI overlapping cases were presented in Figures

4.9 and 4.10. The decision tree results suggest that altered gene expression in the

two subtypes is associated with not only different promoter methylation profiles but

also different combinatorial effects in various genomic regions.
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Figure 4.10: In case of down-regulation in BaB subtype, decision tree analysis sepa-

rated by genomic regions of CGI. (a) Overlap with the first exon (Acc. is 0.773), (b)

Nonoverlap with the first exon (Acc. is 0.760),(c) Overlap with TSS1-1000 (Acc. is

0.810), (d) Nonoverlap with TSS1-1000 (Acc. is 0.708), (e) Overlap with TSS1001-

2000 (Acc. is 0.824) and (f) Nonoverlap with TSS1001-2000 (Acc. is 0.741).

4.3.5 Integrative analysis of transcription factors, DNA methyla-

tion and gene expression

We next sought to investigate the effect of DNA methylation on the interaction

between TF and DNA, i.e. binding of a TF to the promotor region of a gene. To

investigate this important concept, we developed a rigorous data mining protocol to

compile a list of TF that are potentially blocked by DNA methylation. The schematic
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Figure 4.11: Schematic overview of the phenotype-comparative analysis for interfer-

ence of TF binding by DNA methylation resulting in the suppression of downstream

gene expression

overview of the protocol is illustrated in Figure 4.11.

We first identified differentially methylated genes among the downregulated genes,

60 genes in BaB subtype and 52 genes in Lu subtype. Based on the results of the

one side standard t-test with a criterion for being significant as p-value<0.005, we

observed eight genes with significant hypermethylation in at least one 100bp-bin as

follow: CDH1, CLDN4, ESRP1, GRHL2, KRT19, PRR15L, AKR1B1, and PLOD2.

Figure 4.12 shows the promotor regions of the eight genes that are differentially

methylated according to the p-values.

Next, for the hypermethylated regions of the eight genes, we generated cell line-

specific consensus sequences by assembling short reads mapped to the regions and
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Figure 4.12: Differentially methylated promoter regions of down-regulated genes.

Each rectangle in the upstream region means a 100bp-bin.

searched candidate TFs which can be bound to these consensus sequences by match

tool (Kel et al., 2003) on the consensus sequences. To exclude the possibility that

higher expression of an activator gene might result in upregulation of target genes,

we discarded TFs whose expression levels were significantly different across cell lines

of different phenotypes.

Table 4.3 summarizes the final selection of TFs and their target genes. TFs ap-

peared in at least 50% of cell lines of the same phenotype (TFBS Support Rate in

the table is percentage of the number of TF-containing cell lines). Interestingly the
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genes CDH1, ESRP1 and GRHL2 have been shown to play critical roles in epithelial-

mesenchymal transition (EMT), a process associated with metastatic events in can-

cer and also highly relevant to tumor progression (Thiery, 2002; Thiery et al., 2009).

Lombaerts et. al. (Lombaerts et al., 2006) reported that CDH1 is downregulated by

promoter methylation and related to EMT in breast cancer cell lines. A study by

Dumont et. al. (Dumont et al., 2008) showed that the induction of EMT was accom-

panied by repression of CDH1 expression and subsequent DNA hypermethylation

at its promoter in basal-like breast cancer. Additionally, recent studies showed that

GRHL2 and CDH1 in human breast cancer cells were highly correlated and sup-

pressed EMT by repressing expression of the ZEB1 gene (Xiang et al., 2012; Cieply

et al., 2012). ESRP1 was shown to regulate a switch in CD44 alternative splic-

ing, an event required for EMT and breast cancer progression (Brown et al., 2011).

Moreover, there might be potential interplay between target genes. Over-expression

of GRHL2 up-regulated ESRP1 expression (Xiang et al., 2012), and GRHL2 was

shown to be essential for adequate expression of the CDH1 and CLDN4 (Werth

et al., 2010). Thus, our approach may be useful to elucidate cell-specific regulatory

mechanism using the genome-wide methylation data from the MBDCap-seq.

4.4 Discussion

Recent developments in sequencing technologies have made it possible to analyze

genome-wide DNA methylation profiles at high resolution. Although altered DNA

methylation patterns are a hallmark of cancer, and promoter CGI hypermethyla-

tion is known to repress gene expression, only a few studies have examined DNA

methylation-gene expression relationships using genome-wide integrated analyses

(Ruike et al., 2010; Fang et al., 2011; Sun et al., 2011). Several researchers have

attempted to investigate the association of the DNA methylation with the molec-
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Table 4.3: Downregulated target gene with transcription factor binding sites on

hypermethylated region

Target Gene Binding TF TFBS Support Rate

CDH1 SMAD1 100.0

CDH1 FOXO1 100.0

CLDN4 CEBPA 62.5

CLDN4 CEBPB 62.5

CLDN4 CEBPD 62.5

CLDN4 CEBPE 62.5

CLDN4 CEBPG 62.5

ESRP1 CUX1 90.0

GRHL2 PDX1 100.0

KRT19 PAX6 60.0

PRR15L IKZF1 50.0

AKR1B1 E2F1 91.7

PLOD2 PAX3 100.0

ular subtypes in breast cancer cells (Bloushtain-Qimron et al., 2008; Holm et al.,

2010). However high resolution sequencing data were not used in those studies. To

better understand the relationship between DNA methylation and gene expression

in breast cancer molecular subtypes, we used next generation DNA methylation

sequencing data and gene expression profiles for 30 ICBP cell lines representing

molecular subtypes of the disease to perform a systematic analysis.

We first compared genome-wide methylation profiles of breast cancer phenotypes.

Although overall DNA methylation profiles were similar in Lu, BaA and BaB, spe-
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cific genomic regions were differentially methylated among the three subtypes. We

then explored computational methods for integrating DNA methylation and gene

expression data and started with differentially expressed genes for discovering genes

whose expressions were influenced by DNA methylation.

DNA methylation of different genomic regions has recently been associated with

altered expression of downstream genes. To better understand possible transcrip-

tional regulatory roles of DNA methylation, we performed a comprehensive study

considering distinct genomic regions: CGIs, CGI shores, promoter regions, 1st exons,

1st introns, and 2nd exons. Based on Pearson’s correlation coefficients, we verified

that the DNA methylation of several genomic regions including CGI and CGI shores

were negatively correlated with downstream gene expression.

To investigate combinational effects of DNA methylation in these regions and

to identify subtype-specific events, we applied a decision tree algorithm using genes

downregulated in each subtype. Interestingly, we found potential combinatorial ef-

fects of the first exon methylation and promoter region methylation on the down-

stream gene expression (BaB subtype) and potential combinatorial effects of CGI

methylation and CGI shore methylation (Lu subtype). As gene expression is reg-

ulated by many factors, it is difficult to predict gene expression levels using only

the DNA methylation profiles. However, the classification accuracy was significantly

high enough to elucidate the contribution of each genomic region and combinatorial

effects of the regions. We showed that DNA methylation had combinatorial roles on

gene expression and the effects of DNA methylation in each genomic region differed

among the subtypes. Moreover, our studies further imply that the aberrant DNA

methylation state of the TF-associated regions could be another contributing factor

to gene repression, a subject of future experimental validation.

It is now well established that different gene expression patterns contribute to
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breast cancer heterogeneity (Koboldt et al., 2012). In the current study, our inte-

grated analysis further demonstrates that methylation status of different genomic

regions may play a key role in establishing transcriptional patterns in three molecular

subtypes of human breast cancer. Understanding the functional impact of distinct

regions of DNA methylation on gene expression patterns may provide additional

insight into breast cancer progression and response to therapy, both critical for im-

proving management of the disease.



Chapter 5

Detecting multiple SNP

interaction via evolutionary

learning

5.1 Background

Genome-wide association study (GWAS) examines genetic variations on the whole

genome of individuals and investigates how the variants frequently occur in popula-

tion with a particular phenotype such as disease. The main purpose of the GWAS

is to identify the genetic variations which influence to phenotypic changes or are

susceptible to diseases. One of the most popular variants to use in the GWAS is

single-nucleotide polymorphism (SNP). SNPs were relatively easy to be identified,

and many people believed that the cause of disease would be discovered by the vari-

ants. In reality, there have been a lot of research to capture the genetic variants

which are statistically associated disease or traits, and as a result of GWASs, it has

been reported that hundreds of loci are associated for more than 70 common diseases

63
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and traits (Donnelly, 2008).

However, comprehensive understanding for the relationship of genotypes to phe-

notypes, is still challenging. The complex traits including cancers and diabetes are

believed to be affected by the interactions of multiple genetic factors (Cordell, 2009).

In many cases, the single genetic variants did not fully explain a cause of the complex

disease.

To understand the complexity of mapping from genotype to phenotype, many

researchers have focused on genetic interaction and relationships of more amount of

variants, instead of a single genetic marker (Heidema et al., 2007; Cordell, 2009).

Especially, machine learning approaches could be a useful solution of the problem

(Szymczak et al., 2009; Moore et al., 2010). For example, logic regression and decision

trees could be applied for the analysis of the interaction of variants (Ruczinski et al.,

2004; Fiaschi et al., 2010). Another widely used technique is MDR (multifactor

dimensionality reduction) approach (Ritchie et al., 2001) which has been developed

with the idea of CPM (combinatorial partitioning method). However, these have

limitations in efficiently handling higher order interactions from a large number of

SNPs.

Here, we address the multiple SNP associations to disease, by the construction of

a classifier based on evolutionary learning. One of the important steps to improve the

performance of a classifier is to identify the informative feature sets. Especially, in the

association study, the number of features is very high, and in the case of concerning

all of the multiple combinations of the attributes, most of computational learning

algorithms might fail to efficiently control the large-scale datasets. We introduce

a concept of evolutionary learning to identify higher-order combinatorial features

which are relevant to the class discrimination, from the combinatorial search space.

Generally, evolutionary learning well-approximates solution to complex problems
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which are difficult to optimize mathematically. For the genetic association studies,

several research has been accomplished by the evolutionary learning, and showed

that it could be applied successfully (Namkung et al., 2007; Moore and White, 2007;

Nunkesser et al., 2007; Clark et al., 2008; Yang et al., 2010).

We propose a method to find association of multiple SNPs and a disease, and to

predict a disease by the variant information. Firstly, we applied the approach to a

simulation data and verified the approach could be useful to find the SNP interac-

tions. After that, we identified the combinatorial effects of multiple SNPs on T2D in

Korean population. In our evolutionary algorithm, a single individual is encoded by

the form of explicit rules which are formulated for certain values of the attributes,

and the whole population evolves to the final rule-set with a good fitness. In the

learning process, the evolutionary computation can solve the problem efficiently by

avoiding exploring the whole search space and leading to identify higher-order SNPs

with strong association to a phenotype. The resulting rule set is able to correctly

recognize instances and discriminate them to target concepts well. As a result, the

model can classify the instances by combination of the survived rules after evo-

lutionary learning, and the rules can be considered as informative multiple factor

interactions associated to a disease.

5.2 Materials and methods

5.2.1 Identifying higher-order interaction of SNPs

The evolutionary computation approach, particularly learning classifier system (LCS)

has successfully applied to induce a set of classification rules in a given environment

(Bernado-Mansilla and Garrell, 2003; Sigaud and Wilson, 2007; Fernandez et al.,

2010). The LCS searches the space of possible rules, guiding the search for better
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rules by evolutionary computing techniques. Our main goal is similar to the tech-

nique. We construct an evolutionary learning method guided by a gradient descen-

dent algorithm, to induce a set of classification rules from SNP data with complex

traits. The detail explanation follows.

Structure of the individuals

Suppose that X = {X1, X2, ..., Xn} is a dataset of n samples, and each sample Xi is

composed by k features, that is, SNP loci, and class value yi ∈ {normal, disease}.

The input value of each feature in the SNP data can take one of the following

three states: (1) homozygous major form, (2) heterozygous, and (3) homozygous

minor form. The structure of the individuals are expressed as a combination of SNP

information. For example, an individual is represented from the conjunctive form of

the multiple SNP association as follows:

(SNP1 = 3)
∧

(SNP2 = 2)
∧

(SNP3 = 2)

It means that the SNP1 is hetero, SNP2 is homo minor form and SNP3 is also

homo minor form.

5.2.2 Algorithm Description

The algorithms steps are summarized in Table 5.1 and Figure 5.1. More detail is

given on individual steps in following subsections.

Initialization

In the evolutionary learning, population is defined by a set representing higher-order

interaction among SNPs. The initial population is consisted by individuals randomly

generated with chromosome length l. The population size s is decided empirically

and the initial weight wj of the individual j (0 < j < s) is randomly assigned with
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Table 5.1: Overall learning procedure

Main Learning Procedure:

1. Randomly generate a population and initialize s individuals with

weights ws. The length of chromosome l is user-specified. The

weight (fitness) w is randomly initialized with a small value.

2. Train the weight value of each individual iteratively using in-

stances. The weight values are updated and assigned by a gradient-

descent algorithm. The learning procedure in step 2 is terminated

when the weights are converged after repetition of a number of

epoch.

3. The evolutionary process begins. Remove individuals with worst

fitness from population. The individual is worse as its fitness is

closer to zero. Theses are replaced by newly generated individuals.

The offsprings are reproduced by one of four ways in user-specified

proportion.

(a) Inherit r individuals whose ej is -1. (elitism)

(b) α individuals should be generated by the crossover operator.

By selection strategy (ranking selection), select two individ-

uals and crossover them.

(c) Mutate β individuals in the parents.

(d) Randomly generate s− r − α− β individuals

4. Go to Step 2 until convergence after the number of generation.

r is a parameter for the number of removing individuals
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Figure 5.1: Flow chart for our evolutionary learning method. The most fitable indi-

vidual is searched by the iterative learning.

a small value (-1 < wj < 1).
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Weight Update and Evaluation

Each individual has a weight value which means how informative the chromosome

is to classify the samples. That is, the weights for individuals are considered as their

fitness and the bigger weight on an individual mean mores informative to classify

the instances. To determine and update the fitness for each individual, we introduce

a gradient descendant rule as follows:

wj = wj + η(ti − f(xi))mij , (5.1)

where wj is a weight value for j-th individual and ti is a target class in the i-th

training instance. mij is a variable whether the all values of attributes within the

j-the individual is matched to those in the i-th instance.

mij =


1, if all values are identical

0, otherwise

(5.2)

f(xi) is a predicted output value of the i-th training instance by our model and

determined as follows:

f(xi) =


1, if

∑s
j=0wj ·mij > 0

−1, else

(5.3)

The difference between the predictions and the target values specified in the

training sequence is used to represent the error of the current weight vector. The

target function is optimized to minimize the classification error. The weight values

are evaluated against a sequence of training samples and are updated to improve

the classification accuracy. The weight update processes are repeated until it would

be converged after the number of epoch.

Using the learning scheme, we find most informative individuals for classification,

that is, the absolute value of their weights is large.
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Removing and Reproduction

During each successive generation, a proportion of the existing population is selected

to be survived in the next generation. We adopted individual replacement strategy

in each generation during the evolution processes. Basically, the highly weighted

individuals should be selected and the others dismissed. It is a similar concept with

elitism in a conventional genetic algorithm. We measure the fitness of each individual

and preferentially select r best solutions. The r, the number of individuals to be

survived, is determined by a threshold θ.

ej = e(wj) =


−1, if |wj | < θ

1, otherwise

(5.4)

, where | · | means a absolute value. Then, individuals whose ejs are 1, is survived

and the s - r individuals are removed. After that we generate new individuals as

much as removed in the step.

s - r individuals are reproduced by three ways in the next generation. The first is

random generation. As similar to the the process for making initial population, we

can construct new individuals randomly. Another ways are bring from conventional

genetic operators, crossover and mutation. We select two individuals by ranking

selection and can recombinate them in a random position. α and β, the number of

individuals to be generated by crossover and mutation, respectively, are determined

as follows:

α = λ(s− r) (5.5)

β = s− r − λ(s− r) (5.6)
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, where λ is a crossover rate. For the mutation operator, there exists two kind of

alteration. We choose κ individuals and substitute a gene to another gene. There is

the other base mutation rate ρ. It change a value of a variable in a selected individual

for mutation to other one, so it help to be exploited in the search space by giving a

variation in the combinatorial factors of the individual.

β = µ+ κ = ρβ + (1− ρ)β (5.7)

, where ρ is the base mutation rate, and µ, the number of individuals to be occurred

base mutation, is determined by the ρ value.

Iterative Learning Procedure

To select interesting rules from population, that is, the sets of the possible rules, we

iteratively reproduce the individuals in progress on generation. The individuals are

required to satisfy the specified fitness function and are survived only if they are

adapted in the environments, that means they are how much informative to classify

the training dataset.

By repeating the procedures until convergence (Table 5.1), the model can classify

the normal and disease samples well, and identify higher-order interactions of SNPs.

5.2.3 Dataset

Genotyping and clinical information of Korean individuals was produced as a part

of Korean Association Resource (KARE) project by Korean Centers for Disease

Control and Prevention (Cho et al., 2009; Hong et al., 2012). The cohort study

was examined for 8842 individuals at Ansan and Ansung area, aged 39 to 70. The

genotyping was conducted using Affymetrix Genome-Wide Human SNP array 5.0.

In the clinical information, we investigated the concentration of glucose, diagnosis,
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and drug treatments. If a person have been an experience to take a diagnosis for the

diabetes, we decided the person have a diabetes. Also if plasma glucose is same to or

over 126 (mg/dl) in no caloric intake or two-hour plasma glucose is same to or over

200 (mg/dl), then we considered the person a diabetes case. Conversely, the criterion

for the normal controls are the plasma glucose with no calory intake is under 100,

two-hour is under 140, and no experience for diabetes diagnosis or insulin intakes.

Odds ratio

The odds ratio is used to measure a relative risk in a specific genotype comparing

to another one. It was calculated as follows:

oddsratio =
p1(1− p1)
p2(1− p2)

(5.8)

, where p1 and p2 are probabilities that an individual having the selected SNP rules

exists in the disease group and normal group, respectively. If an odds ratio is greater

than 1, the events is more likely to occur disease. That is, the odds ratio which is

significantly higher than 1, means the higher-order SNPs are associated with disease.

The p-value is measured by random combination of SNPs. We generated 100,000

SNP rules randomly, and calculated odds ratio in each rule. Then we checked the

probability that the odds ratio for the selected rules occurs by chance.

5.3 Results

5.3.1 Identifying interaction between features in simulation data

To verify our approach can find the interaction of features, we tested the method us-

ing simulation data. Suppose that the simulation dataXi = (x1, x2, ..., x10, class)(1 ≤

i ≤ 1, 000) is composed of 10 attributes, xj ∈ 0, 1(1 ≤ j ≤ 10). By gibbs sampling,
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we generated the data with following conditions:

P (x1 = 0) = 0.6

P (x2 = 0) = 0.6

P (class = 1|x1 = 1 ∧ x2 = 1) = 0.8

P (class = 1|x1 = 1 ∧ x2 = 0) = 0.3

P (class = 1|x1 = 0 ∧ x2 = 1) = 0.3

P (class = 1|x1 = 0 ∧ x2 = 0) = 0.2

(5.9)

x3 and x4 have same probabilities with x1 and x2, respectively and the others are

randomly generated (uniformly distributed). Table 5.2 shows the finally selected

interactions by our approach using the simulated data. As we expected, our method

can find the informative interactions of features for the classification with around

0.70 classification performance by 10-fold cross validation. The set of x1 and x2 were

selected as the most highly ranked interaction. Also, the pairs of x3 and x4 similarly

had big weight values after the learning by our approach. Although a state of the art

classifier, SVM, has a little higher accuracy (0.734), the algorithm does not provide

which features are important for the classification. Moreover, it is impossible to

detect the combinatorial effects among the genetic variants, but our method can it.

Table 5.2: Identified interaction in simulated data

Interaction Weight

x1=1, x2=1 0.91

x1=1, x2=0 -0.89

x3=1, x4=1 0.81

x3=0, x4=1 -0.79

x3=1, x6=1 -0.79
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5.3.2 Identifying higher-order SNP interactions in Korean popula-

tion

Korean population might be specific associative characteristics to a disease. Since

we confirmed that our proposed method would be adequate to be find combinatorial

effects of SNPs in genome-wide association study, at last we searched the multiple

SNP interaction in Korean population using our method.

For the preprocessing, we firstly carried out hardy-weinberg test (HWE), then

filtered out uninformative SNPs (p value < 0.000001). Then we removed SNP at-

tributes where minor allele frequency (MAF) is less than 0.01. Then for each SNP,

the p-value was calculated based on a chi-square test. We also filtered out signifi-

cant SNPs (p value < 0.05). After the preprocessing, the number of attributes was

decreased to 6459.

The main purpose of our approach is to identify higher-order interaction of mul-

tiple SNPs, but it can be run as a classifier. Also, it is required to check the classi-

fication performance for selecting highly discriminative combination of SNPs. Table

5.3 shows classification accuracy in our method. Using 10-fold cross-validation, the

classification accuracy was around 90% when we evaluated the performance along

the chromosome length. We also carried out other classification algorithms using the

same datasets and compared the accuracy (Table 5.3). Even though it had a little

difference with the interaction length to be examined, we obtained better or com-

petitive performance to the results of other general classifiers. Usually, tree-based

classifiers can be used to know which factors affects to the classification. However,

in the dataset, the tree-based methods were shown much lower classification ac-

curacy, 61.11% with decision tree (ID3) and 70.66% with random forest, which is

considered as a combination of decision rules in classification tree forms. The classifi-

cation accuracies of other approaches were also about 73.59% with an instance based
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classifier (k-nearest neighbor, kNN) and 71.38% with logistic regression. Only RBF

network and SVM achieved the similar accuracy to our method. However, these two

algorithms do not provide which factors significantly affect to the classification. The

results mean that, our approach can find higher-order interactions of SNPs by choos-

ing the highly-weighted individuals from the learned models, along the chromosome

lengths.

Table 5.3: Classification performance in KARE dataset

Order (l) Accuracy

l=2 91.20

l=3 91.40

l=4 89.16

Decision Tree (ID3) 61.11

Decision Tree (C4.5) 60.22

Random Forest 70.66

kNN (k=10) 73.59

SVM 94.81

RBF Network 92.83

Simple Perceptron 67.11

Logistic Regression 71.38

In each experiment, we selected top SNP combinations from the ranking of their

weights, and subsequently, we evaluated significance of the interactions through the

odds ratio and the chi-square test. Table 5.4 shows top 10 interactions as an exper-

imental result with order 3, and Figure 5.2 show the interaction map. The highly

positive value of the weight implies the interaction can be a big effect to T2D,
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and negative means it is affectable to be classified to the normal sample. The table

presents that the positively weighted interactions all have the high (>1) odds ra-

tio. Conversely, the interactions with negative weight values low (<1) odds ratios.

That is, the results suggest that the positively-weighted interaction is able to be a

candidate for the T2D risk factors. In addition, the interactions were significantly

distinguishable between case and control data by a chi-square test. the p-values by

a chi-square test were significantly low in the whole selected interactions.
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Figure 5.2: SNP interaction map order 3. The thickness of the lines means weights

of the interactions. Blue and red colors mean negative and positive weights, respec-

tively.
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Interestingly, our results showed that the sequence variation could have much

clear association with the higher-order interaction, even although it did not show

the strong evidence in single-SNP analysis. Figure 5.3 shows the results for the

top 5 ranked interactions. The p-values of the identified interactions were clearly

lower than those in single variants within the interaction by our experiments. For

an instance, the firstly ranked interaction, SNP A-4196226, SNP A-2038226 and

SNP A-1861290 did not show clear association with diabetes as a single variant.

The p-values for the single SNP were 0.06, 0.04, 0.02, respectively. However the

combination of these was definitely stronger effects to a disease with 3.09e-04 p-

value.

For further validation, we randomly generated 1,000 interactions which consist of

3 SNPs and choose the interactions whose number of the matched to instances are

more than 10. Then we measured their p-values by the chi-square test. Figure 5.4

shows the p-value comparison between top 100 interactions in our results and the

randomly generated set. It shows that the interactions in our results are much more

significant. When we carried out a t-test to clarify how these two sets are different,

the p-value by the t-test was 9.79e-133.

5.4 Discussion

We presented a method to identify higher-order interaction of multiple variables.

The study to identifying the higher-order interaction of genetic variants is neces-

sary to find the multiple causal factors, contribute to complex diseases. Although

the analysis of multiple factor interaction should be important in understanding

complex traits, however, it is computationally infeasible to combinatorially explore

all high-order interactions among the SNPs in a genome-wide association study.

Previously several studies reported on findings of interactions among genes to be
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Rank 5 

Interaction 

Figure 5.3: Dotchart for comparison between single variants and their interaction.

Empty circle is for a single variant and filled is for the interaction.

important contributors to certain phenotypic variation. However, in addition to the

variants of genes which directly changes protein function, the genetic alteration may

be located in genomic or epigenetic regulatory regions. These can also affect to the

gene regulation and abnormality in cellular processes.

We used evolutionary learning to search the combinatorial feature spaces. Gen-

erally evolutionary computation finds a good solution by a guidance from a fitness

and genetic operators. Using the concepts, we could find a solution, coherent group
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Figure 5.4: Comparison between the interaction by our approach and random selec-

tion. Red is a histogram for the identified interaction by our method, and blue is

random selection.

of interrelated variants, associated to a disease effectively. When we examined every

possible case, the search space is too big. For example, If the number of attributes

is 6459 and the combinatorial order is increased from 2 to 5, the number of possible

combinatorial cases are 2.09E07, 4.49E10, 7.25E13, and 9.35E16, respectively. How-

ever, we searched only cases less than 1.00E6 in every experiment and could find

reasonable high order interaction associated to disease. Our genetic association stud-

ies for complex traits can be applied to a systems genetics studies integrated with
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other information, such as environmental factors, copy number variation, clinical

information, and so on. The systems genetics approach helps to yield a detailed map

of genetic and other variants, including environments, associated with phenotypes.

Our proposed methods can easily add these factors in steps to generate individuals,

and find their effects to a disease. Also, the evolutionary learning in our approach

make it possible to control the large datasets with a explorative search space. so a

number of factors can be supplied in the consistent algorithm.

In our experiments, we did not reflect biological knowledge or genetic relation-

ships. Depending on a experimental purpose, these information can be reflected in

the process on generation of individuals or in the fitness function. Or it is also pos-

sible to construct a model with genetic relationships by measuring linkage blocks or

conducting a transmission disequilibrium test from datasets.

In addition, the analysis of the interaction accompanies several issues including

information loss with missing values. But our approach does not require imputation

of the missing values, and it can be run by denoting these missing values as don’t

care symbols or mismatched symbol.

Sometimes, a sampling approach is an efficient method to find an optimal solution

in a large datasets. However the datasets would be too sparse, especially in case of

higher-order combination of variants. So we should randomly generate some of the

individuals, instead of sampling from training datasets. In addition, if we want to

search the interactions between just two variables, it might be not necessary to

use crossover or mutation. It could be possible to find the fittest one, by random

sampling in the reproduction processes. But in the interactions of multiple variables,

it would be efficient to use these operators.

In each experiment, the chromosome length was constant. If the experiments are

carried out to identify interactions with a variety length at one time, the individuals
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with a small length are more likely to be matched to a datasets, so it can be much

bigger weight values. However, our approaches can be easily expanded to a method

for identifying the interactions of variable length. One way is to normalize the fitness

value by the chromosome length. Then we can find the interactions of various orders,

resulted from individuals with diverse lengthes. Another way is to learn from lower to

higher order by turns, and then to re-learn and classify based on the finally survived

individuals in each step.

By the characteristics of evolutionary learning, our results would not be global

optima. But it is definitely valuable. Our purpose is not to find one optimal coherent

variant set associated to a disease. Also it might be impossible to be expressively

provided that the complex traits are caused only by a little number of factors. The

reason of the disease occurrence is not simple. Therefore, we detect interactions

which may be local optima and provide the candidates to help to find sets of the

risk factors.

Recent advances in high-throughput sequencing provide a variety of datasets.

The sequencing datasets may shed light for a new finding in the GWAS, and whole-

genome or whole exome sequencing has been used to search the genetic cause of

diseases. Despite of the considerable progress in the sequencing technologies and

their analysis strategies, the common variations identified by GWAS account for

only a small fraction of disease heritability and are unlikely to explain the majority

of phenotypic variations of common diseases. Our approach can be usefully applica-

ble to the sequencing datasets. The sequencing technologies have detected millions

of novel variants. Although big size of dataset by lots of reads and variants is an-

other challengeable problem, our approach can be a method to solve the problem

by effectively searching the combinatorial feature space based on the evolutionary

learning. It can be a effective method to systematically control exploration of a lot
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of variants provided by next generation sequencing technologies for GWAS. Also,

the sequence datasets have a large proportion of missing data, but our method can

be resistable.

Our approach suggests the analysis of GWAS datasets offers a useful strategy

for identifying causal genes and potential candidates in human diseases. Study for

interaction of the genes or genomic regions would help to elucidate mechanism of

the complex traits and to control and treat disease. Some of our results do not show

clear relationships and some of these may be still biologically questionable, why the

combination is highly weighted and how there play a role in disease. For the much

clear understanding, relevant functional studies should be carried out. Moreover,

by applying phased haplotype information, we will detect much relevant sets for

variants (Tewhey et al., 2011).



Chapter 6

Identifying DNA methylation

modules by probabilistic

evolutionary learning

6.1 Background

Genomics mainly aims to find genetically associated markers with a phenotype.

Based on DNA sequences, the researchers search causal effects to biological processes

including gene regulatory mechanism and disease. Although several risk factors were

identified by the association studies, the genetic variants do not fully explain the

abnormal regulation, since the biological regulatory mechanism can be affected by

many other factors, as well as DNA sequence modification (Jones and Baylin, 2007;

Sadikovic et al., 2008; Handel et al., 2010; Sandoval and Esteller, 2012).

Epigenomics refers to a study for regulation of various genomic functions that

are controlled by another partially stable modification, not DNA sequence variants

(Bonetta, 2008). Among these, DNA methylation, which typically occurs at CpG

85
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dinucleotide by DNA methyltransferase (DNMT) enzyme, is a crucial epigenetic reg-

ulatory mechanism in cellular processes. The DNA methylation of CpG site mostly

cause silence of the downstream gene, so the enrichment of the differentially methy-

lated DNA fractions can contribute to specific abnormalities, including complex

diseases (Robertson, 2005; Portela and Esteller, 2010; Jones, 2012). Especially, with

an advent of microarray and next generation sequencing (NGS) technology, many

researchers have carried out genome-wide DNA methylation profiling studies (Laird,

2010; Hill et al., 2011; Rhee et al., 2013), and the genome-wide studies have reported

that lots of genomic regions are differentially methylated in normal and abnormal

cells (Cheung et al., 2010; Toperoff et al., 2012; Walker et al., 2011).

However, it is well-known that a complex disease is generally caused by combina-

torial dis-regulatory effects of multiple genes (Hirschhorn and Daly, 2005; Janssens

and van Duijn, 2008; Kiezun et al., 2012). That is, the errors of biological processes

is not caused by alteration of an individual methylation level. Recently, Easwaran

et al suggested a concept for DNA hypermethylation modules which preferentially

target important developmental regulators in embryonic stem cells (Easwaran et al.,

2012). They found the set of genes by the DNA methylation would be contribute to

stem-like state of cancer. Horvath et al. studied aging effects of DNA methylation

and showed there exist co-methylated modules related to aging in human brain and

blood tissue (Horvath et al., 2012).

Here, we identity combinatorial modules of DNA methylation sites associated to

human disease by an evolutionary learning approach. The evolutionary algorithms

can approximate solution well in lots of problems (Kumar et al., 2010; Deb and

Datta, 2010; Joung et al., 2012; Wang et al., 2013). It generates new population

through iterative updates and selection by a guided search process in a feature space.

We utilized an estimation of distribution algorithm (EDA)-based learning approach
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for identifying combination of cancer-related DNA methylation sites. In the EDA

algorithm, the population is evolved according by probabilistic distribution in the

selected individuals without conventional genetic operators such as crossover and

mutation. It has been known that EDA efficiently and effectively provide answers

in combinatorial optimization problems (Chen et al., 2009; Zhou et al., 2009; Shim

et al., 2013; Ceberio et al., 2013). The EDA has been previously applied in several

biological research, and it has offered promising results for complex problems, in

where other methods fail to find good solution (Pal et al., 2006; Santana et al.,

2010; Shelke et al., 2013).

In this study, we investigated DNA methylation modules relevant to cancer, using

the DNA methylation profiling datasets produced by microarray- and sequencing-

based approaches. The experimental results show that our method can find the DNA

methylation modules well related to cancer.

6.2 Methods

6.2.1 Evolutionary learning procedure to identify a set of DNA

methylation sites associated to disease

EDAs evolve a population to find optimal solution probabilistically. The initial popu-

lation is composed by constructing individuals at random. The individual represents

higher order interaction of the methylated sites. The population size m is decided

empirically and the initial weight wj of the individual j (0 < j < m) is randomly

assigned with a small value (-1 < wj < 1).

In the evolutionary process, each individual is evaluated how the interaction is

discriminative for the datasets. Then, the better individuals are selected and the

dependency tree fitted to the selected individuals, is build. New individuals of the
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next generation are generated using the probability distribution within the tree

structure, and replace the previous individuals. The overall procedure follows:

1. Set g ← 0

2. Initialize population X(g) by random generation

3. Evaluate individuals in X(g)

4. Select a set of individuals by tournament selection from X(g)

5. Construct a dependency tree G(g) by measuring Kullback-Leibler divergence

between variables

6. Parameter learning using probability distribution of the selected set

7. Generate a new individuals by sampling with joint distribution from the G(g),

and create new population X(g + 1)

8. Set g ← g + 1

9. If the termination criterion is not met, go to 3

More details for steps 3 and 5 are explained in following sections.

6.2.2 Learning dependency graph

The dependency tree is built from the selected individuals by searching conditional

dependencies between random variables. Then the model is optimized by a series of

incremental updates (Pelikan, 2006; Pelikan et al., 2007). More details follow:

Suppose that X is population and X = {X1, X2, ..., Xn} is presented as a vec-

tor of variables with n features, that is, DNA methylation sites. The probability

distribution is represented by a joint probability P (X1, X2, ..., Xn) as to:
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Figure 6.1: Schematic overview for probabilistic evolutionary learning to identify

DNA methylation module, Iterative evolutionary learning.

P (X) = P (X1, X2, ..., Xn)

= P (X1|X2, ..., Xn)P (X2|X3, ..., Xn)....P (Xn−1|Xn)P (Xn).
(6.1)

However, it is hard to measure all the joint probabilities exactly when n, the

number of variables, is large. Thus it needs to approximate the probability distribu-

tion. For the purpose, in this study, we used a dependency tree, and the distribution

is approximated as follows:

P (X1, X2, ..., Xn) = P (Xr)
∏
i 6=r

P (Xi|Xpa(i)), (6.2)

where X1, X2, ..., Xn are random variables, r is an index of root node, and pa(i) de-
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note the index of parent node of Xi.The tree structure is built by searching based on

Kullback-Leibler divergence between two random variables. The dependency graph

is optimally constructed in a direction to maximize total mutual information as

follows:

argmaxr,pa
∏
i 6=r

I((Xi)pa(i)) (6.3)

I((Xi)pa(i)) =∑
x

∑
y

P (Xi = x,Xpa(i) = y)log
P (Xi = x,Xpa(i) = y)

P (Xi = x)P (Xpa(i) = y)

(6.4)

The complete graph G searches the maximum spanning tree, and then the best

dependency tree is constructed.

For parameter learning, the most likely values are calculated from the frequen-

cies in the selected individuals. That is, the model parameters are represented as

a marginal probabilities in a root node and conditional probabilities in the other

nodes. The marginal probabilities in root nodes and the conditional probabilities in

child nodes are calculated as:

P (Xr = x) =
m(Xr = x)

N
, (6.5)

P (Xi|Xpa(i)) =
m(Xr = x)m(Xi = x,Xpa(i) = y)

m(Xpa(i))
. (6.6)

6.2.3 Fitness evaluation in population

Each individual has a fitness value which means how informative the chromosome is

to classify the samples. That is, the fitness for individuals are evaluated by measure

the classification accuracy for interaction of the features. To determine and update
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the fitness for each individual, it is possible to use any classification algorithm. But

we introduce a gradient descendant rule for training data D as follows:

wi = wi + η(tj − f(Dj))mji, (6.7)

where wi is a weight value for i-th feature and tj is a target class in the j-th training

instance Dj . η is a learning rate and mji is a value of the i-th attribute in the j-

th instance. f(Dj) is a predicted output value of the j-th training instance by our

model and determined as follows:

f(Dj) =


1, if

∑n
i=0wi ·mji > 0

−1, else

(6.8)

The difference between the predictions and the target values specified in the training

sequence is used to represent the error of the current weight vector. The target

function is optimized to minimize the classification error. The weight values are

evaluated against a sequence of training samples and are updated to improve the

classification accuracy. The weight update processes are repeated until it would be

converged after the number of epoch.

Using the learning scheme, we find most informative individuals for classification,

that is, their absolute value of their weights is large. In addition, since our purpose is

to identify a DNA methylation module, it might be necessary to find it if the number

of the used feature is small. Finally, the fitness function for the k-th individual Xk,

Fitness(Xk) is defined as follows:

Fitness(Xk) = Acc(Xk)−Order(Xk), (6.9)

where Acc(Xk) is classification accuracy for training datasets and Order(Xk) de-

notes the number of methylation sites which is selected in the individual Xk.
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6.2.4 Dataset

The high-throughput DNA methylation profiling of large genomic regions could be

produced by both microarray and NGS technologies. We applied our approach to

these two types of datasets. The microarray data was generated by Illumina Infinium

27k Human DNAmethylation BeadChip in 1,475 samples, for surveying of genome-

wide DNA methylation profiles in breast cancer and normal samples (Zhuang et al.,

2012). Sequence-based datasets were produced by MethylCap-seq in matched nor-

mal and colon cancer samples and collected at GSE39068 (Simmer et al., 2012).

The normalization and preprocessing was carried out using the same approaches to

Simmer’s works (Simmer et al., 2012).

6.3 Results

6.3.1 DNA methylation modules associated to breast cancer

This analysis has been carried out based on DNA methylation profiling datasets

which experimentally measured the methylation status using DNAMethylation Bead-

Chip (Zhuang et al., 2012). We extracted data for DNA methylation profiles on

chromosome 17 from breast cancer and normal samples, and applied our method to

the dataset. Figure 6.2 shows learning curves in the evolutionary process. The fitness

value is improved when the number of generation is increased. Since we introduced

a term for the number of the methylation sites to find a individual with the shorter

length, the number of orders were decreased at the learning process (Figure 6.2).

After convergence, 6 sites were selected for the discrimination, and these 6 sites

are related to genes, KIAA1267, CD79B, ALOX12, TMEM98, KRT19 and FOXJ1

(Table 6.1).

ALOX12 have a role in growth of breast cancer and its inhibition may be a
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(a) 

(b) 

Figure 6.2: Learning curve using breast cancer datasets. x-axis is the number of

generation and y-axis is (a) fitness values and (b) the number of orders.
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Table 6.1: Finally selected methylation sites

ID Position Gene CGI location

cg02301815 41605268 KIAA1267 41605074-41605445

cg07973967 59363339 CD79B 25467633-25468370

cg08946332 6840612 ALOX12 6839463-6841283

cg11833861 28279748 TMEM98 28278827-28279833

cg16585619 36938776 KRT19 NaN

cg24164563 71647990 FOXJ1 71647419-71649480

strategy for inhibiting tumor growth (kumar Singh et al., 2012), the gene can be

used as a serum marker for breast cancer (Singh et al., 2011). It is not clearly known

how the ALOX12 methylation directly affects to breast cancer. However, it has been

reported that hypermethylation of ALOX12 can be associated to cancer (Tan et al.,

2009; Alvarez et al., 2010; Ammerpohl et al., 2012; Ohgami et al., 2012). Actually,

the ALOX-12 gene is closely related to apoptosis, and the problem of the expression

by the DNA methylation can cause a malfunction of the cell death (Ding et al.,

1999; Pidgeon et al., 2002, 2003). Therefore, it might be reasonable that the change

of methylation in the gene linked to most cancer, including breast tumor. KRT19 is a

well-known marker for breast cancer patients (Ring et al., 2004; Lacroix, 2006), and

KRT19 promoter is abberently methylated in cancer cell lines (Morris et al., 2008).

Also, it has been reported that there exist the relationships between expression

of CD79B and breast cancer (Ellsworth et al., 2008; Prat et al., 2010). FOXJ1, a

member of the forkhead box (FOX) family, may function as a tumor suppressor gene

in breast cancer (Jackson et al., 2010). FOXJ1 is hypermethylated and silenced in

breast cancer cell lines (Demircan et al., 2009). TMEM98 is one of transmembrane
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Table 6.2: Classification performance only using the 6 selected sites

Algorithm Accuracy Sensitivity Specificity

Logistic Regression 0.939 0.987 0.762

SVM 0.929 0.941 0.857

Decision Tree 0.939 0.952 0.867

Naive Bayes 0.919 0.951 0.765

proteins. Recently, Grimm et al. investigated the transmembrane proteins specific

for cancer cells. The transmembrane protein can be a target for antibodies and be

a biomarker for tumor diagnosis, prognosis, and treatment (Grimm et al., 2011).

The function of KIAA1267 is not clearly known yet. But the gene encodes KAT8

regulatory NSL complex subunit 1, and the KAT8 regulates p53, a tumor suppressor

gene (Li et al., 2009; Zhang et al., 2013). It imply the KIAA1267 can has a role in

breast cancer.

Using the 6 sites, we tested classification performance using general machine

learning algorithms (Table 6.2). To verify our method identified informative sites,

we carried out classification only using the selected features. Table 6.2 shows the

classification accuracy, sensitivity and specificity. Regardless the classification algo-

rithms, it could be well-classified. For further verification, we randomly extracted the

sites repeatedly (100 times), then measured the classification performance in each

dataset. Figure 6.3 shows that the results of our method were higher than others,

regardless of the number of the randomly selected sites.
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Figure 6.3: Classification accuracy using randomly selected sites. f is the number of

the randomly selected sites, and white bar, marked as selected, is the results using

only the 6 selected sites by our method. The results for the random datasets show

averages of 100 times repeated experiments. LR: logistic regression, SVM: support

vector machine, DT: decision tree, NB: naive Bayes.

6.3.2 Modules associated to colorectal cancer using high-throughput

sequencing data

Recently, DNA methylation profiles could be measured by high-throughput sequenc-

ing technologies. We applied our method to the sequencing-based methylation pro-

filing datasets produced by Simmer et al. (Simmer et al., 2012).

Figure 6.4 depicts improvement of the fitness in iterative learning procedures

using these datasets. Among 10,393 genomic regions on chromosome 17 for the ex-

periment, 348 regions were selected to discriminate the ovarian cancer and normal
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Figure 6.4: Learning curve using in colon cancer datasets. x-axis is the number of

generation and y-axis is (a) fitness values.

samples after a convergence. Table 6.3 shows performance by classification algo-

rithms using the 348 regions from the sequencing-based colorectal cancer datasets.

We annotated the selected regions using GPAT (Krebs et al., 2008) and inves-

tigated which genes were located closely on the selected regions. We accomplished

gene set enrichment analysis (GSEA) with KEGG pathway using the genes whose
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Table 6.3: Classification performance only using the 348 selected sites in colorectal

cancer data

Algorithm Accuracy Sensitivity Specificity

Logistic Regression 0.900 0.920 0.880

SVM 0.940 0.960 0.920

Decision Tree 0.640 0.680 0.600

Naive Bayes 0.900 0.920 0.880

transcription start sites are located within 5000bp from the selected genomic regions.

The GSEA was carried out using MSigDB (Subramanian et al., 2005; Liberzon et al.,

2011). Table 6.4 summarizes the significantly enriched pathways with low p-values

and shows that most of these are closely associated with cancer-related networks.

Table 6.5 show the genes commonly enriched in the pathways. Note that the en-

riched signalling pathways were related to colorectal cancer. In colon cancer, the

roles of wnt signalling pathway and MAPK signalling pathway have been very well-

known (Jansson et al., 2005; Segditsas and Tomlinson, 2006; Fang and Richardson,

2005; Slattery et al., 2012). The genetic mutation affecting the pathway compo-

nents and the alteration of their expression can enhance tumorigenicity in cancer

cells. Also, neurotrophin signalling pathway could be related to growth of colorectal

cancer cells (Akil et al., 2011) and chemokine signalling pathway suppresses colon

cancer metastasis (Kitamura et al., 2010; Chen et al., 2012). Phosphatidylinositol

signalling pathway plays an important role in the growth, survival and metabolism

of cancer cells, and targeting this pathway has potential to lead to treatments for

the colon cancer (Parsons et al., 2005; Yuan and Cantley, 2008). VEGF and ErbB

can be valid therapeutic targets for patients with colon cancer (Ellis and Hicklin,
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2008; Winder and Lenz, 2010; Roskoski Jr, 2004; Spano et al., 2005).

For further validation, we compared the results with ChIP-seq profiles of H3K4me3

and H3K27me3 at ENCODE project (Dunham et al., 2012). When we examined the

selected sites on promoter regions, many of those were overlapped with the H3K4me3

and H3K27me3 binding sites with p-values of 1.86E-11 and 1.94E-05, respectively.

The p-value for the regions overlapped with both of the two histone marks was

1.08E-05. The binding regions of the histone modification, called bivalent regions,

were associated to cancer formation by abberant DNA methylation which leads to

be silencing of regulators (Young et al., 2011; Chapman-Rothe et al., 2012). Since it

is possible that DNA methylation are associated to bivalent regions in cancer, our

studies would be help to understand the relationship between DNA methylation and

chromatin signatures (McGarvey et al., 2008; Sharma et al., 2010; Balasubramanian

et al., 2012; Reddington et al., 2013). Also it would help to investigate effects on

cancer progression and possibilities for epigenomic treatments in cancer (Rodriguez

et al., 2008; Mayor et al., 2011).

6.4 Discussion

DNA methylation can be also strongly associated with the complex diseases. It has

been known that lots of genes are differentially methylated in various cancers or

diseases. In this study, we presented a method to identify combinatorial effects of

DNA methylation at multiple sites. From a systematic perspective, the relationship

between DNA methylation regions and a specific disease is learned by the presented

probabilistic evolutionary learning. The fitness value of a DNA methylation mod-

ule measure the level of their responses to the disease. In computational view, our

method can solve large scale problems by identifying modules with both compact-

ness and high coverage of disease related genes. If the number of attributes is n,
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the number of possible cases is same to the number of elements in power set, 2n.

Thus, the number of cases is exponentially increased according to the number of

attributes. For example, if n=100, the number of cases is 1.27E30 and if n=1000,

then the number is 1.07E301. However, Our method can find candidates in reason-

able search in the problem space. In our every experiment, we found the candidate

solution by searching less than 1.00E6 cases.

Applying our method to breast cancer and colorectal cancer data produced by

high-throughput technologies, we detected the cancer-related modules confirmed by

literatures and functional enrichment analysis. Interestingly we observed that the

selected regions were located around genes which are enriched in cancer-related

gene set categories significantly, and it provides evidence that the identified module

in our study is biologically meaningful.

The studies on DNA methylation are likely to elucidate on the process of tumori-

genesis as well as identify biomarkers. Our approaches which assist in the identifica-

tion of multiple DNA methylation sites that have the potential to be epigenetically

regulated might provide a useful strategy to detect epigenetic association related

to a disease. The systematic identification of the disease-related genes and modules

can provide insights into mechanisms underlying complex diseases and help efficient

therapies or effective drugs.

By applying our method to microarray- and NGS-based data, we showed that it

is applicable to a variety of data types and various disease contexts. Moreover, recent

studies suggest that there exists a complex relationship between genetic variation,

DNA methylation and so on. Systems genetic/epigenetics approaches are required

for examining relationships among these. Although our framework is based on DNA

methylation profiling datasets, it can be attempted to identify the combinatorial

association for various factors including gene expression levels, microRNAs, copy
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number variation, genetic variations, and environmental factors. The integration

of a variety of data would provide the basis for new hypothesis and experimental

approaches in a model of complex disease.

In summary, we presented a method for searching the higher-order interaction

of DNA methylation sites by a probabilistic evolutionary learning method. Using

the approach, we also examined the potential for combined effects of various sites on

genome. The results suggest that the alteration of DNA methylation at multiple sites

affects on cancer. Similar to genome-wide association studies, our approach provides

an opportunity to capture the complex and multifactorial relationship between the

DNA methylation sites and to find new factors for future study. Therefore, our

approach would be a way to facilitate a comprehensive analysis of genome-wide DNA

methylation datasets and the interpretation for the effects of DNA methylation on

multiple sites.
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Table 6.4: Gene-set enrichment analysis annotated by promoter information using

the 348 selected sites in colorectal cancer data

Gene set p-value FDR q-value

Non-small cell lung cancer 2.61E-05 4.25E-03

Glioma 4.56E-05 4.25E-03

Neurotrophin signaling pathway 3.25E-04 1.85E-02

Pathways in cancer 3.99E-04 1.85E-02

Wnt signaling pathway 5.52E-04 2.05E-02

Aldosterone-regulated sodium reabsorption 9.09E-04 2.22E-02

Endocytosis 9.62E-04 2.22E-02

Vasopressin-regulated water reabsorption 9.97E-04 2.22E-02

Chemokine signaling pathway 1.07E-03 2.22E-02

Focal adhesion 1.26E-03 2.34E-02

Endometrial cancer 1.39E-03 2.35E-02

Basal cell carcinoma 1.55E-03 2.41E-02

Colorectal cancer 1.97E-03 2.73E-02

Pancreatic cancer 2.50E-03 2.73E-02

Melanoma 2.57E-03 2.73E-02

Chronic myeloid leukemia 2.72E-03 2.73E-02

Cytokine-cytokine receptor interaction 2.82E-03 2.73E-02

MAPK signaling pathway 2.82E-03 2.73E-02

Phosphatidylinositol signaling system 2.94E-03 2.73E-02

VEGF signaling pathway 2.94E-03 2.73E-02

Fc epsilon RI signaling pathway 3.17E-03 2.81E-02

Small cell lung cancer 3.58E-03 2.98E-02

ErbB signaling pathway 3.83E-03 2.98E-02

Apoptosis 3.92E-03 2.98E-02

Prostate cancer 4.01E-03 2.98E-02
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Table 6.5: Genes enriched in pathway analysis

Gene Symbol Description

TP53 tumor protein p53

PIK3R5 phosphoinositide-3-kinase, regulatory subunit 5, p101

PRKCA protein kinase C, alpha

ARHGDIA Rho GDP dissociation inhibitor (GDI) alpha

FZD2 frizzled homolog 2 (Drosophila)

RABEP1 rabaptin, RAB GTPase binding effector protein 1

CCL16 chemokine (C-C motif) ligand 16

CXCL16 chemokine (C-X-C motif) ligand 16

CSF3 colony stimulating factor 3 (granulocyte)

DUSP3 dual specificity phosphatase 3

ARSG arylsulfatase G



Chapter 7

Conclusion

Recently, explosive growth in data produced from various areas is continuously in-

creasing. Intuitively the large amount of stored data contains valuable hidden knowl-

edge, such that it could be used to improve the decision making process of an or-

ganization. There exists a clear need for the systematic methods for extracting the

valuable knowledge from real-world datasets. This need has led to the emergence of

a field called data mining and knowledge discovery. In order to extract or mine the

knowledge or pattern of interest from data, intelligent mining tools are applied. The

examples are association rule mining, clustering, classification, and so on.

Data collected from various biological domains is also becoming increasingly high

in recent time. In particular, the large repositories of genome-wide measurement data

pose the research question of how to retrieve valuable knowledge. In this dissertation,

we proposed methods to identify higher-order interaction in genomic/epigenomic

studies. We developed machine learning methods with evolutionary computation for

extracting valuable information from large, high-dimensional data sets.

Statistical learning and evolutionary computation can be an way to mine the

meaningful information from the biological big data. Especially, evolutionary com-

104
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putation has advantages to deal with a huge amount of the heterogeneous biological

data. It appears to be more efficient in finding acceptable solutions than other ran-

dom or semi-random search methods. Moreover, the approaches can be easily run

in parallel, and allow groups of processor to be utilized for a search in the big data.

Furthermore, it might be helpful to exploit additional data sets even if they are

only partially relevant for the data set of interest. For example, to further compre-

hensive understanding complex disease, it needs for integrative studies of various

genomic and epigenomic datasets with environmental factors (Aschard et al., 2012).

One advantage of our evolutionary machine learning approach is that it can eas-

ily extend and generalize the learning paradigms for multiple views of datasets. By

systematically linking the various data sets, we would increases a chance to clarify

biological knowledge and novel possibilities for biological results.
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초 록

생명과학연구의기본적목표중하나는생물학적인자들과표현형의복잡한관계를

이해하고, 표현형에 영향을 미치는 다양한 인자들을 밝히는 것이다. 특히 유전체 서열

은 유전자 발현이나 질병 민감도 등의 표현형을 결정하는 데에 있어서 중요한 역할을

한다. 따라서 유전체 서열 기반 정보에 대한 연구는 생물학적 기작을 이해하기 위해

필수적이다. 기존의 유전체 서열 관련 연구는 주로 생체 내 기작에 중요한 영향을 미치

는 하나의 인자를 찾는 것에 집중되어 있었다. 최근 대용량 생물학 데이터 생산 기술의

발전으로 인해 전역 유전체 수준에서 유전적 변이를 분석하고 질병의 원인을 찾고자

하는 시도가 가능하게 되었지만, 거대한 탐색 공간과 계산 복잡도로 인해 여전히 다중

인자들의 고차 관계를 탐색하여 분석하는 것은 쉬운 일이 아니다.

본 논문에서는 진화 연산과 통계적 학습 방법을 결합하여 다중 인자 상호 작용을

탐색할 수 있는 효과적인 방법들을 제안한다. 본 논문의 방법들은 다양한 전역 유전체

서열 분석 문제에서 상호 연관된 인자 조합과 기능적 모듈의 탐색을 목적으로 한다.

우선 통계적 학습 방법을 이용하여 유전자 발현 조절에 함께 영향을 주는 서열 조각

및 DNA 메틸화 영역을 탐색한다. 이후 인간 유전체와 같이 많은 수의 인자들을 가진

고차원의 서열 데이터 분석을 위해 진화 연산 개념을 도입한다. 본 논문에서 사용된 방

법은 학습 데이터를 이용한 기계 학습 기술을 기반으로 하여 진화 연산 과정에서 문제

공간을 효과적으로 탐색한다.이를 통해 계산학적으로 복잡한 최적화 문제에서 답이 될

수 있는 후보군들을 찾아가는 것이 가능하다. 유전체 및 후성유전체 데이터를 이용한

실험 결과는 본 논문에서 사용된 진화 연산 기반 방법이 질병과 연관된 고차 상호 관

계를 발견할 수 있다는 것을 보인다. 따라서 본 논문의 연구는 유전체 및 후성유전체

연구에서 서열 기반 인자들 간의 복잡한 상호작용을 분석할 수 있는 유용한 방법이 될

수 있을 것이다.
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Abstract

One of the basic research goals in life science is to understand the complex re-

lationships between biological factors and phenotypes, and to identify the various

factors affecting the phenotype. In particular, genomic sequences play a significant

role in determining the phenotype, such as gene expression and a susceptibility to

disease, so the studies for the fundamental information stored in genome is essential

to understanding biological processes. Previous genomic sequence analyses mainly

focused on identification of a single associated factor or pairwise relationships with

significant effects. Recent development of high-throughput technologies has made it

possible to identify the causal factors by carrying out genome-wide analysis. How-

ever, it still remains as a challenge to discover higher-order interactions of multiple

factors because this involves huge search spaces and computational costs.

In this dissertation, we develop effective methods for identifying the higher-order

relationships of sequence elements affecting the phenotype, by combining statisti-

cal learning with evolutionary computation. The methods are applied to finding

the associated combinatorial factors and dysfunctional modules in various genome-

wide sequence analysis problems. Firstly, we show statistical learning-based methods

to detect co-regulatory sequence motifs and to investigate combinatorial effects of

DNA methylation, affecting on downstream gene expression. Next, to examine the

sequence datasets with a huge number of attributes on human genome, we apply evo-

lutionary computation approaches. Our methods search the problem feature space

based on machine learning techniques using training datasets in evolutionary com-

putation processes and are able to find candidate solution well in computationally

expensive optimization problems. The experimental results show that the approaches

are useful to find the higher-order relationships associated to disease using genomic



ii

and epigenomic datasets. In conclusion, our studies would provide practical methods

to analyze complex interactions among sequence elements in genomic/epigenomic

studies.

Keywords: Higher-order interaction, Evolutionary computation,

Genome-wide sequence analysis, Machine learning,

Genomics, Epigenomics

Student Number: 2004-20623
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Chapter 1

Introduction

1.1 Motivation

The post-genomic era is characterized by a tremendous revolutionary expansion in

biological data. Over past few decades, there has been rapid development in biolog-

ical research and technologies, as a result, a huge amount of data have been pro-

duced. In particular, with the advances of sequencing technologies, a large amount

of datasets have been deposited in repositories (Metzker, 2009). Understanding and

exploiting these data is now a key to success of advancing biological research, and the

requirements have stimulated development and expansion of applying computational

approaches in biology.

The large expansion of genome-wide measurement data poses the research ques-

tion of how to retrieve the valuable knowledge from the genomic sequences (Hut-

tenhower and Hofmann, 2010; Chin et al., 2011). Traditionally, genomic studies

mainly focused on central dogma in molecular biology, namely from genome to tran-

scriptome. Experimentally determined catalogues of genes only tell us about a basic

building block of the biological regulatory processes. They do not tell us much about

1
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how the biological processes operate as a system, such as higher order functional be-

haviors (Chuang et al., 2010). Although many computational approaches have dealt

with high-throughput biological datasets generated in multi-dimensional forms, it is

still important to search the large datasets efficiently and effectively (Palsson and

Zengler, 2010; Kouskoumvekaki et al., 2013).

Actually, most biological problems are complex and hard to be understood. One

problem is to investigate the interactions of the various factors, since the biologi-

cal processes are affected by multiple factors. Although genome-wide analysis can be

possible with the development of high-throughput technologies, an exhaustive search

of all potential solutions is still challenging, and most likely impossible. The stan-

dard constructive and approximate approaches are usually impractical in terms of a

huge search space and lots of computational costs. Thus, the genome-wide sequence

analyses mainly focused on identification of a single associated factor or pairwise

relationships with significant main effects (Cordell, 2009; Bush and Moore, 2012).

The genome-wide sequence analyses have contributed to ability to identify ge-

nomic sequence elements that are associated with phenotypes such as gene expres-

sion and disease (Feero et al., 2010; Heap et al., 2009; Kim et al., 2012; Kang et al.,

2011). It has been possible to find a single sequence element that has statistically

significant association with phenotype. To date, many associated genes or sequence

elements were found, but there were not clear explain the complex biological pro-

cesses (McCarthy et al., 2008; Stranger et al., 2011). Thus, there has been increased

interest in discovering combinations of the sequence elements that are strongly asso-

ciated with a phenotype even if each element has little or even no individual effect.

Thus, an alternative research view of post-genomic/epigenomic era would be to go

up eventually to still higher levels, i. e. biological systems.
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Figure 1.1: Schematic concept for higher-order interaction and its effects on pheno-

type

1.2 Approaches

In this dissertation, we present computational approaches to predict higher-order

relationships of disease genes or sequence elements and identify dysfunctional mod-

ules, based on machine learning and evolutionary computation using phenotype and

sequence information. Our goal is to discover and study the combinations of se-

quence elements affecting on phenotype. In particular, we focus on discovering the

interactions, especially high-order ones beyond size 2, that are strongly associated

with a phenotype and yield information on interpretable statistical and functional

interactions (Figure 1.1).

At first, we show a way to search co-regulatory sequence motifs using a sta-

tistical learning method, kernel canonical correlation analysis (kernel CCA) (Rhee
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et al., 2009). One of the major challenges in gene regulation studies is to identify

regulators affecting the expression of their target genes in specific biological pro-

cesses. Despite their importance, regulators involved in diverse biological processes

still remain largely unrevealed. In the study, we propose a kernel-based approach

to efficiently identify core regulatory elements and their combinations involved in

specific biological processes using gene expression profiles. We develop a framework

that can detect correlations between gene expression profiles and the upstream se-

quences on the basis of the kernel canonical correlation analysis (kernel CCA). We

show that upstream sequence patterns are closely related to gene expression profiles

based on the canonical correlation scores obtained by measuring the correlation be-

tween them. The experimental results show that our method is able to successfully

identify regulatory motifs and their co-regulatory pairs involved in specific biological

processes.

Secondly, we investigated the combinatorial effects of DNA methylation on down-

stream gene expression using machine learning approaches (Rhee et al., 2013). Aber-

rant DNA methylation of CpG islands (CGIs), CGI shores, and first exons is known

to play a key role in the altered gene expression patterns in all human cancers.

To date, a systematic study on the effect of DNA methylation on gene expression

using high resolution data has not been reported. In this study, we conducted an

integrated analysis of MethylCap-sequencing data and Affymetrix gene expression

microarray data for 30 breast cancer cell lines representing different breast tumor

phenotypes. We develop methylome data analysis protocols for the integrated analy-

sis of DNA methylation and gene expression data on the genome scale and we present

comprehensive genome-wide methylome analysis results for differentially methylated

regions and their potential effect on gene expression in 30 breast cancer cell lines

representing three molecular phenotypes, luminal, basal A, and basal B. Our inte-
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grated analysis demonstrates that methylation status of different genomic regions

may play a key role in establishing transcriptional patterns in molecular subtypes

of human breast cancer.

These two genome-wide approaches were useful for identification of co-regulatory

interactions or combinatorial effects, associated to downstream gene expression.

However, sometimes, it might need another approach to examine a huge number

of sites on whole genome and to discover higher-order relationships of sequence

elements associated with complex disease. Then, we applied evolutionary computa-

tion approaches to identify higher-order interaction of multiple factors associated to

disease. Evolutionary computation is a general purpose search approach that uses

principles inspired by natural genetic populations to evolve solutions to problems

(Simon, 2013). The basic idea is to maintain a population of individuals which rep-

resent plausible solutions to the problem, which evolves over time through a process

of competition and controlled variations.

In the framework of evolutionary machine learning, the main idea is that the

evolutionary computation method has stored training data to search problem feature

space and population information during the iterative evolutionary process. Then,

the machine learning technique is helpful in analyzing these data for enhancing the

search performance.

We propose an approach to search the higher-order interaction for genome-wide

association studies based on the evolutionary machine learning. Searching for the

relationship between the genetic variant and its phenotypic effects is important to

understand the genetic basis and mechanism of many complex genetic diseases.

There have been a lot of research to analyze the causality and, in many studies,

it have led to succeed to discover the associations of genes with diseases. Although

there exist lots of the genetic variants with major effects and they can be linked to
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complex diseases, however, it is still challenging to find the multiple interactions from

a millions of SNPs and their association with a disease. Here, we present an approach

to analyze higher-order interactions of the genetic variations, which associated with

a disease. The method searches combinatorial feature spaces of the genetic variants

and selects the higher-order variables which are distinctive to classify the disease

and normal samples by evolutionary learning. We test the method and illustrate

the advantages with genetic variant datasets for type 2 diabetes. As a result, our

approach could identify the higher-order interaction of SNPs associated with type 2

diabetes, and especially detect several interactions specific in Korean population.

Finally we introduced probabilistic concepts in the evolutionary computation

for identification of DNA methylation modules. By exploring the problem space by

building and sampling explicit from probabilistic graphical models, the approach

would be proper to find the higher-order relationships or biological modules.

Considerable studies have been made to elucidate effects of genetic variability in

complex disease, but it is still challenging to discover molecular pathogenesis clearly.

The epigenetic factor would be another candidate to make up the complex regula-

tory mechanism. Especially it is well-known that DNA methylation could lead to

inhibition of downstream gene expression. Although many researchers are trying to

clarify the relationships between DNA methylation and gene expression, recently,

more efforts are required to find the multiple interactions from a lot of DNA methy-

lation sites and their association with a disease. To assess DNA methylation modules

potentially relevant to disease, we use an estimation of distribution algorithm (EDA)-

based learning method identifying high-order interaction of DNA methylation sites.

It finds a solution which is a set of discriminative methylation sites by building a

probabilistic dependency model. The algorithm is applied to array- and sequencing-

based high-throughput DNA methylation profiling datasets, and the experimental
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Figure 1.2: Organization of chapters

results show that it has a good search ability to identify the DNA methylation

modules for a specific disease.

Our approaches would provide practical methods to integrate large amount of

datasets and to analyze complex interactions among building blocks and with dy-

namic environments.

1.3 Organization of the dissertation

This dissertation is organized as follows (Figure 1.2):

• In Chapter 2, we briefly introduces informatics and computational approaches

in genomic analysis. We describe background of genome biology, and explain

what the machine learning and evolutionary computation are. Then, the basic

concepts and their several applications in biological domains are described.

• In Chapter 3, we search co-regulatory sequence motifs by a kernel-based cor-

relation analysis. We identify regulatory sequences affecting the expression of

their downstream genes. And we investigate pairwise relationships of the se-
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quence motifs closely related to gene expression profiles in a specific biological

process.

• Chapter 4 discribes analysis protocols to investigate effects of DNA methy-

lation in various sites on downstream gene expression. Using high resolu-

tion sequencing-based methylation profiling datasets, we show comprehensive

genome-wide methylome analysis results for their potential effect on gene ex-

pression. The analysis results present that methylation status of different ge-

nomic regions may play combinatorial effects on transcriptional patterns via a

statistical learning approach.

• In Chapter 5, we propose an evolutionary learning method for identifying

higher-order interaction of multiple SNPs in genome-wide association studies.

We show that the proposed evolutionary learning method searches combina-

torial feature spaces and identifies the higher-order variables which are related

to disease.

• In Chapter 6, we use a probabilistic evolutionary learning to find higher-order

relationships from a lot of DNA methylation sites, which is potentially relevant

to disease. Instead of crossover or mutation operators in traditional evolution-

ary computation, we build a probabilistic distribution model and are sam-

pled from the model in the evolutionary learning processes. The experimen-

tal method and results represent that the approach can be a new systematic

way to identifying high-order interaction of DNA methylation sites and DNA

methylation modules which is associated to disease.

• Finally, we summarize the dissertation and discuss our research in Chapter 7.



Chapter 2

Genome biology and

computational analysis

2.1 Fundamentals of genome biology

2.1.1 DNA, gene, chromosomes and cell biology

DNA (deoxyribonucleic acid) is a biomolecule that includes information for how

organisms are genetically built. DNA is a double strand structure that contains

complementary genetic information encoded by 4 bases, adenine (A), guanine (G),

thymine (T) and cytosine (C). A gene is a segment of DNA that can be inherited

from parents to children and can confer a trait to the offspring. The genes are

organized and packaged in chromosomes. In case of human, there exist 23 pairs of

chromosomes.

One set of chromosomes for each pair comes from a person’s mother, and the

other set is from father. New cells get their chromosomes from old cells through cell

division, mitosis. The chromosome in cell nucleus is divided into two identical sets by

mitosis of cell cycle. The primary result of mitosis is the transferring of the parent

9
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cell’s genome into two daughter cells. Cell cycle is the series of events leading to

its growth, replication (duplication) and division of a eukaryotic cell. The cell cycle

can be divided into several phases: G1, S, G2 and M phases. At G1 and G2 phases,

cells increase in size and DNA replication occurs at S phase. M phase is a periods of

mitosis which is cell division state. The cell growth stops at this stage and the cell

divides itself into two distinct daughter cells.

2.1.2 Gene expression and regulation

Gene expression is a fundamental step at which a genotype gives rise to a phenotype.

The gene expression means a process that the genetic information from a gene is

used in production of a functional gene product (protein or RNA). The process is

generally described by that a gene is transcribed into RNA and this transcript may

then be translated into protein.

Regulation of gene expression includes mechanisms to increase or decrease the

production of specific gene products. The program of gene expression is very so-

phisticate. A complex set of interactions between genes, RNA molecules, proteins

(including transcription factors) and other components of the expression system de-

termine when and where specific genes are activated and the amount of protein or

RNA product produced. Some genes are expressed continuously, as they produce

proteins involved in basic metabolic functions; some genes are expressed as part of

the process of cell differentiation; and some genes are expressed as a result of cell

differentiation.

Specific DNA sequences are accessible for specific proteins to bind. Many of these

proteins are activators, while others are repressors. Such proteins are often called

transcription factors (TFs). Transcription factors are proteins that play a role in

regulating the transcription of genes by binding to specific regulatory nucleotide
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sequences. Each TF has a specific DNA binding domain that recognizes a 6-10 base-

pair motif in the DNA, as well as an effector domain (Matys et al., 2003; Sandelin

et al., 2004).

For an activating TF, the effector domain recruits RNA polymerase II, the eukary-

otic mRNA-producing polymerase, to begin transcription of the corresponding gene.

TFs bind at the promoters just upstream of eukaryotic genes. However, they also

bind at regions called enhancers, which can be oriented forward or backwards and

located upstream or downstream or even in the introns of a gene, and still activate

or repress the gene expression. Studying gene expression across the whole genome

via microarrays or massively parallel sequencing allows investigators to see which

groups of genes are co-regulated during differentiation, cancer, and other states and

processes.

2.1.3 Genomics

Genome is the entirety of all genes and information contained within the noncod-

ing regions from an organism, mainly encoded by DNA. Genomics usually describe

studies to determine the entire DNA sequence of organisms and genomic structures.

The field also includes studies of various genomic phenomena. In contrast to the

classical molecular biology or genetics to investigate the roles and functions of single

gene, genomics aim to elucidate its effects on the entire genomic networks with its

genetic and functional information (Lander, 1996).

A major branch of genomics is concerned with sequencing the genomes of various

organisms. A rough draft of the human genome was completed in 2001 (Venter et al.,

2001; Lander et al., 2001). Since then, there have been much more studies for human

genome. Also, the genomic information of many other species has been successfully

achieved. The knowledge of full genomes has created the possibility for the field
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of functional genomics, mainly concerned with patterns of gene expression during

various conditions. For the purpose, computational approaches would be the most

important tools here.

2.1.4 Epigenomics

The classical biology states that DNA is transcribed to RNA, RNA is translated

to protein, and it regulates various cellular processes and functions. In the tradi-

tional views, phenotypic alteration has been caused by aberrant sequence variants

or an inherited genomic allele. However, in the recent view, cells with identical DNA

sequences can have a variety of distinct functions and phenotypes, by epigenetic

modification including DNA methylation and histone modification (Murrell et al.,

2005; Holliday, 2006). That is, the epigenetic modifications affect gene expression

without altering the DNA sequences and play an important role in numerous cellu-

lar processes such as in differentiation, development and tumorigenesis (Bernstein

et al., 2007; Baylin and Jones, 2011).

One of the most characterized epigenetic modifications is DNA methylation. DNA

methylation is a process by which a methyl group is added to DNA. The methylation

is most commonly found on cytosine residues adjacent to guanine, termed CpG

dinucleotides (Laird, 2010). It is well-known that the DNA methylation can control

gene expression. Usually the DNA methylation represses gene expression by a multi-

step process, although the exact mechanim is unknown.

Epigenomic research tries to identify and characterize epigenetic modifications

on a global level. The study of epigenetics on a global level has been made possible

recently through high-throughput assays. To manage a huge size of datasets and

to clarify the complex mechanism on the fields, as in the other genomics fields,

epigenomics also relies heavily on bioinformatics, which combines the disciplines of
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biology, mathematics and computer science.

2.2 Evolutionary machine learning

2.2.1 Machine learning and evolutionary computation

Machine learning is a study to give computers abilities to learn from existing data.

Usually, it can be used to discover patterns and rules from data, and predict fu-

ture events. Machine learning techniques generally involves statistical methods, in-

terpolation and regression, supervised classification algorithms, clustering analysis,

reinforcement learning, and so on.

The ideas and techniques from machine learning can be hybridized with evolu-

tionary computation. Evolutionary computation with machine learning techniques

would be a promising research direction to search optimal solution from the machine

learning point of view (Zhang et al., 2011). Evolutionary computation is a kind of

optimization methodology inspired by mechanisms of biological evolution. It can be

widely used as an optimization tool in recent years.

The first step of the evolutionary computation is initialization of population.

Next, it enters iterative evolutionary step with fitness evaluation, selection, and

population reproduction. The newly generated population is evaluated again and

the iteration continues until a termination criterion is satisfied.

2.2.2 Evolutionary computation in biology

The genomic revolution is generating a huge amount of data in rapid speed but it

has become made difficult for biologists to decipher. In addition, many problems

in biology are too large to solve with standard methods. Evolutionary computation

can be a solution for the current bioinformatics problems (Fogel and Corne, 2002;
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Pal et al., 2006). Although bioinformatics present a number of difficult optimiza-

tion problems, evolutionary computation can rapidly search very large and complex

spaces and return reasonable solutions.

The evolutionary computation has experienced a large growth in applications

for bioinformatics with several advantages. For example, the errors generated in

biological experiment data might be handled with no significant problem in the

evolutionary computation. The errors can contribute to genetic diversity, a desirable

property in the evolutionary learning processes. Thus, it might be more tolerable

in using evolutionary computation than other deterministic algorithms. Sometimes,

several tasks of bioinformatic studies do not require the exact optimum answer.

Instead, they require robust and close approximate solutions. Also, local optimal

solution can be helpful to understand biological processes. Evolutionary computation

approaches can be also efficient to provide the solution in this case. In addition, EAs

can process, in parallel, population billions times larger than is usual expectation

is that larger populations can sustain larger range of genetic variation, and thus

can generate high-fitness individuals in fewer generation. Laboratory operations on

DNA inherently involve errors. These are more tolerable in executing evolutionary

algorithms than executing deterministic algorithms.

Evolutionary computation has been profitably used in traditional bioinformatic

problems. Several application areas follow:

• Sequence alignments

Multiple sequence alignment helps to infer evolutionary history or discover

conserved regions among closely related sequences. The problem is known as

NP-hard. Genetic algorithms can be used to find optimal solutions in this

problem (Notredame and Higgins, 1996; Nguyen et al., 2002).

• Motif finding
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An instance of genetic algorithms can be used for motif finding, similar to

Gibbs sampling. The motifs can generated from randomly selected sequences,

and then alignment scores has been computed between the sequence fragments

and the motifs. It increases the chance to find the real sequence motifs (Liu

et al., 2004; Das and Dai, 2007).

• Protein structure prediction

Evolutionary computation methods for protein structure prediction have been

developed in the last decades. These have attempted to optimize the energy

function of the peptide chain and to determine the optimal protein folding

(Unger and Moult, 1993; Cooper et al., 2003).

• Protein-protein interaction and docking

Protein interaction and docking represents fundamental function of biomolecules.

Although it is possible now to determined by experimental methods, it is dif-

ficult to predict the recognition exactly ascertaining the structure of protein

complexes. The evolutionary computation approaches can help to solve the

problem (Morris et al., 1998; Wang et al., 2010).

The applications suggest that a variety of problems in biological domains can be

well-suited for evolutionary computation approaches and be analyzed well by the

methods.



Chapter 3

Identifying co-regulatory

sequence motifs

3.1 Background

One of the major challenges in current biology is to elucidate the mechanism govern-

ing the gene expression. Gene expression programs depend mainly on transcription

factors which bind to upstream sequences by recognizing short DNA motifs called

transcription factor binding sites (TFBSs) to regulate their target gene expression

(Lee et al., 2002). Transcription factors bind to upstream sequences to regulate gene

expression. They recognize short DNA motifs called transcription factor binding

sites (TFBSs). Although many regulatory motifs have been identified, large amount

of functional elements still remain unknown (Xie et al., 2005).

Many genome-wide approaches have been developed in attempt to discover regu-

latory motifs from upstream sequences. The early computational approach for identi-

fying regulatory motifs is based on statistical analyses using only upstream sequences

of genes. Statistical methods such as maximum-likelihood estimation or Gibbs sam-

16
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pling, are effective for searching directly significant sequence motifs from multiple

upstream sequences (Hughes et al., 2000; Bailey and Elkan, 1994). Several computa-

tional approaches based on machine learning methods have also been implemented.

A SOM (self-organizing map)-based clustering method can find regulatory sequence

motifs by grouping relevant sequence patterns (Mahony et al., 2005) and a graph-

theoretic approach has tried to identify regulatory motifs by searching the maximum

density subgraph (Fratkin et al., 2006).

More advanced approaches have been developed that can identify regulatory mo-

tifs by linking gene expression profiles and motif patterns. The main advantage of

these approaches is that they can identify motifs correlated to specific biological

processes. Most early trials used a unidirectional search, such as approaches that

search for shared patterns with upstream sequences in a set of co-expressed genes

that were found by clustering algorithms (Tavazoie et al., 1999; Brāzma et al., 1998)

or those that determine whether genes with common regulatory elements are co-

expressed (Pilpel et al., 2001; Park et al., 2002). In addition, it is also possible to

link motifs to gene expression patterns using linear regression models or regression

trees (Bussemaker et al., 2001; Keles et al., 2002). Recently, several techniques for a

bidirectional search to detect the relationship between the regulatory motifs and the

gene expression profiles have been emerged (Segal et al., 2003; Jeffery et al., 2007).

They search regulatory motifs more efficiently than unidirectional approaches since

they search similar expression patterns and regulatory motifs correlated to them

simultaneously.

In this study, we propose a novel bidirectional approach using a kernel-based

method, kernel CCA (kernel canonical correlation analysis), to analyze the rela-

tionship between regulatory sequences and gene expression profiles (Hardoon et al.,

2004; Akaho, 2006; Bach and Jordan, 2003). The expression and sequence features
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are mapped from the original input space to a higher dimension space using a ker-

nel trick, and the relationship between the two projected objects is interpreted to

identify highly correlated motifs (Figure 3.1). Our method has advantages that it

can detect core motifs relevant to a specific cellular process without the additional

efforts of clustering and intensive motif sampling process in upstream sequences.

We applied the kernel CCA to a paired set of upstream sequence motifs of

genes and their expression profiles in yeast Saccharomyces cerevisiae cell cycle,

and explored significant relationships between motifs and expression profiles. We

also searched for regulatory motifs correlated with specific expression patterns. We

also searched for regulatory motifs correlated with specific expression patterns. Our

method retrieved regulatory motifs that play an important role in cell cycle reg-

ulation including several well-known cell cycle regulatory motifs: MCB, SCB and

SFF’. Furthermore, we identified motif pairs associated with the gene expression to

construct a map of combinatorial regulation of regulators.

3.2 Methods

3.2.1 Investigation of the relationship between regulatory sequence

motifs and expression profiles

Kernel CCA (Canonical correlation analysis) is a version of the nonlinear CCA,

where the kernel trick is utilized to find nonlinearly correlated features from two

datasets (Hardoon et al., 2004; Akaho, 2006; Bach and Jordan, 2003). Canonical

correlation analysis (CCA) CCA is a classical multivariate statistical method for

finding linearly correlated features from a pair of datasets (Hotelling, 1936). Suppose

there is a pair of multivariates x and y, CCA finds a pair of linear transformations

such that the correlation coefficient between extracted features is maximized. How-
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Figure 3.1: The basic scheme of the kernel CCA. The sequence and expression data

are transformed to Hilbert space by φ function. By taking inner products, uexp and

useq were derived, which maximize the correlation between the upstream sequences

and the expression profiles.

ever, if there is a nonlinear relationship between the variates, CCA does not always

extract useful features.

Kernel CCA offers a solution for overcoming the linearity by first projecting

the data into a higher dimensional feature space. While CCA is limited to linear

features, kernel CCA can capture nonlinear relationships. Kernel CCA has been

used for several applications including text retrieval and biological data analysis

(Hardoon et al., 2004; Yamanishi et al., 2003).
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Figure 3.1 illustrates the basic scheme of the kernel CCA for our integrated

analysis of DNA sequence motif and gene expression data. Using kernel CCA, we

tried to find maximally correlated features between the gene expression and the

sequence motifs. Here, a gene set X is represented by two separate profiles in terms

of its transcriptional behavior and upstream sequences, xexp and xseq. These are

composed of the expression profile, xexp = (e1, e2, ..., eN ) and the sequence profile,

xseq = (m1,m2, ...,mM ) of each gene. Here ei (1 ≤ i ≤ N) is the expression value

of the gene in the i-th sample or experimental condition from microarray data, and

mj (1 ≤ j ≤M) denotes the occurrence frequency of the j-th sequence motif in the

upstream region of the gene. For the detection of the correlated features between

the two datasets, xexp and xseq are first mapped to Hilbert space, H, by function

φ. That is, each x is projected into two directions, fexp and fseq, in Hilbert space

according to its representation:

uexp =
〈
fexp, φexp(xexp)

〉
(3.1)

useq =
〈
fseq, φseq(xseq)

〉
, (3.2)

where
〈
·, ·

〉
denotes the dot product. Kernel CCA looks for maximally correlated

features between xexp and xseq:

γ(fexp, fseq) =

max
cov(uexp,useq)

(var(uexp)+λexp‖fexp‖2)
1
2 (var(useq)+λseq‖fseq‖2)

1
2
, (3.3)

where λexp and λseq are regularization parameters. The kernel CCA can be given by

solving a generalized eigenvalue problem:
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 0 KexpKseq

KseqKexp 0

 αexp

αseq

 =

ρ

 (Kexp +
nλexp

2 I)2 0

0 (Kseq +
nλseq

2 I)2

 αexp

αseq

 , (3.4)

where I denotes the identity matrix, Kexp is the kernel matrix for expression profile

data, and Kseq is the kernel matrix for sequence motif data. When given αexp and

αseq as the solution of the above generalized eigenvalue problem with the largest

eigenvalue, canonical correlation scores (CC scores) for xseq and xseq are estimated

by useq = Kseqαseq and uexp = Kexpαexp. The CC scores are the low dimensional

mapping of genes in terms of two separate representations and can be used to show

the salient correlation between the two. Once we have obtained the α vector, the

weights of the motif and expression profile, Wseq and Wexp, are obtained as follows:

Wexp = xTexpαexp (3.5)

Wseq = xTseqαseq. (3.6)

A high weight value of the specific sequence motif means that the motif is strongly

correlated with the expression patterns of genes whose upstream region includes the

motif and whose CC scores are high. If a weight of a specific motif has a high absolute

value, the motif is more likely to be investigated further.

3.2.2 Preparation of the gene expression datasets

Expression profiles of all ORFs (open reading frames) during the yeast cell cycle that

consists of 18 time points in the alpha factor synchronization case [18] were used

as the expression dataset. To map from the expression profiles to high dimensional
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Table 3.1: Known regulatory motifs in yeast Saccharomyces cerevisiae.

Motif Name

RAP1 RPN4 GCN4 MCB

HAP234 MIG1 AFT1 STRE’

CCA CSRE PHO4 STE12

HSE ABF1 ATRepeat GAL

Leu3 LYS14 MET31-32 OAF1

PAC PDR PHO REB1

STRE ECB ndt80(MSE) Yap1

SCB Gcr1 zap1 MCM1’

MCM1 SFF SFF’ BAS1

Ume6(URS1) SWI5 ALPHA1’ ALPHA1

ALPHA2’ ALPHA2

space, we converted them to the kernel matrix. We applied a gaussian RBF kernel

to the expression profile matrix by: k(xexp,x
′
exp) = exp[−d(xexp,x′

exp)
2σ2 ], where σ is a

parameter and function d(·, ·) is a Euclidean distance.

3.2.3 Preparation of the gene sequence datasets

The sequence data was used in two ways. In the first case, we used the sequences

of a total of 42 known motifs (Table 3.1) extracted by Pilpel (Pilpel et al., 2001).

It was composed of 42 motifs (Table 1). We then scanned the upstream regions of

ORFs for the presence of these motifs using the AlignACE program (Hughes et al.,

2000). The sequence profile was represented by the occurrence of these motifs in the

promoters of each gene in the genome.
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In the second case, we analyzed the relationship between the expression profiles

and the raw upstream sequences. We extracted gene upstream sequences ∼ 1kb from

each gene. From these sequences, we calculated the frequency of all possible l-mers

in each gene. For l = 5, each gene had 1024 (= 45) base combinations. The sequence

profile was encoded in the frequency of l-mers.

We applied the kernel as k(xseq,x
′
seq) = (xTseqx

′
seq)

d to the sequence data. When

d = 1, it is the linear kernel, and when d > 1, it is the polynomial kernel.

3.2.4 Measurement of the effect of motif combinations

To measure the effect of the motif pairs, we defined the ECRScore (Expression

Coherence coRrelation Score) calculated by a Pearson correlation coefficient of ex-

pression profiles for all possible pairs of genes whose upstream regions had the two

motifs, mi and mj :

ECRScore(mi,mj) =
Nτ (mi

⋂
mj)

N(mi
⋂
mj)

, (3.7)

where N(mi
⋂
mj) is the number of all pairs of genes whose upstream regions have

the two motifs, and Nτ (mi
⋂
mj) is the number of gene pairs whose correlation

coefficient is larger than the threshold τ . The threshold was chosen based on the

fifth percentile of the distribution for correlation coefficients of randomly sampled

gene pairs.

3.3 Results

We applied a computational method, kernel CCA, to the identification of novel

transcriptional regulatory elements. The main purpose of our experiments was to

find regulatory motifs that were associated with gene regulation in specific biological

processes. Using the kernel CCA, we first found highly correlated features between
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expression profiles and the sequence motifs. The key motifs in gene regulation were

then identified from the weight scheme by the kernel CCA (see Methods section).

Furthermore we demonstrate that it is possible for our method to be applied for

identification of motif pairs using raw upstream sequences.

3.3.1 Identification of the relationship between gene expression and

known motifs

We first explored the relationship between gene expression profiles and known motifs

using a yeast gene expression dataset related to the cell cycle (Spellman et al., 1998)

and a set of known motifs (see Table 3.1) extracted by AlignACE (Pilpel et al., 2001).

A total of 551 ORFs (open reading frames) in the expression dataset contained at

least one known motif. In the parameter setting, the degree of polynomial kernel was

set to 3, the parameter σ in Gaussian RBF kernel was 0.5, and the regularization

parameter was 0.1. These parameters were chosen based on the parameter setting

that produced a high correlation from multiple runs.

The results from the kernel CCA were visualized using the CC1 (first canonical

correlation) score (Figure 3.2). In Figure 3.2, each point corresponds to a gene, and

a cloud of the diagonal points illustrated the correlation between the expression and

the motifs. The shape of diagonal points and the high correlation coefficient (0.996)

indicated that the kernel CCA was able to find the close relationship between the

expression profiles and the sequence motifs. We then performed the linear canoni-

cal correlation analysis using the same datasets. The correlation coefficient (0.612)

obtained from the linear CCA was much lower. As shown in Figure 3.3, the linear

CCA could not identify the significant correlation between expression profiles and

motifs. This further supports that kernel CCA improve significantly in finding the

correlation between the two datasets.
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Figure 3.2: Relationship between gene expression profiles and regulatory sequence

motifs. (a) The plot shows the correlation between gene expression profiles and the

regulatory sequence motifs. Each dot represents one gene in the dataset, and x-axis

means the value of uexp, y-axis is useq. (b) The plot is a close-up view of the boxed

area in (a).

The motifs were searched by the weight function of Equation 3.6 (see Methods

section) with the model obtained by the kernel CCA and the top ranked motifs are

shown in 3.2. SWI5 motif, a binding site of SWI5 protein, has the highest weight

value. SWI5 has been known to act in G1 phase and in the M/G1 boundary in

the cell cycle (Dohrmann et al., 1992, 1996). SFF’ motif is a binding site of FKH1
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Table 3.2: The list of top ranked motifs based on the weight scheme by the kernel

CCA.

Motif Weight Function

SWI5 0.89026 Transcription Activation in G1 phase

SFF’ 0.45399 FKH1 binding site that regulate the cell cycle

MCB 0.29633 MBF binding site that activates in late G1 phase

LYS14 0.21796 Lysine biosysthesis pathway

ALPHA2 0.16532 Encoding a homeobox-domain

Figure 3.3: Relationship between gene expression profiles and regulatory motifs from

the linear CCA

transcription factor that affects the expression of genes controlling the cell cycle

during the G2-S phase change (Morillon et al., 2003). The MCB motif is one of
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the well-known motifs in the yeast cell cycle as a binding site in the MBF protein

complex. MBF protein is composed of MBP1 and SWI6, and MBP1 is a DNA

binding component while SWI6 has regulatory roles. It is well known that the MBF

protein complex regulates the transcription of many genes in the late G1 phase

(Dohrmann et al., 1992; Simon et al., 2001). ALPHA2 protein also plays a role in the

cell cycle. It operates synergistically with MCM1 protein to repress the expression

of its target genes (Vershon and Johnson, 1993; Zhong et al., 1999). MCM1 protein

is a key regulator involved in the transcription of several M/G1 genes during the

cell cycle (Simon et al., 2001; Lydall et al., 1991). A high weight value of ALPHA2

is supported by the evidence that ALPHA2 protein binds to the MCM1 protein and

influences the regulation of other cell cycle-related genes (Keleher et al., 1989; Mead

et al., 1996). Using the set of known motifs, our results are consistent with previous

reports, validating the analysis method employed.

To further validate the result of top-ranked motifs extracted by kernel CCA, we

compared the weights obtained from cell cycle-related ORF set with those obtained

from randomly selected set. We performed the same procedure using random ORFs

that are not known to be related to the cell cycle. Figure 3.4 shows the highly

weighted motifs obtained from our method in cell cycle-related gene set and non cell

cycle set, and the relative positions of those motifs are presented in the weight distri-

bution of all motifs. The weight values obtained from random set were significantly

lower than those obtained from cell cycle-related ORF set. We could infer that the

significantly correlated motifs were not extracted from these random datasets. In

summary, our method could identify the regulatory motifs that have high weights

indicating high correlation between the upstream sequences and the gene expression

profiles.
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Figure 3.4: Weight distributions for MCB, SFF’ and SWI5 motifs derived from cell

cycle and non cell cycle-related datasets The dotted line indicates the weight distri-

bution from the non-cell cycle datasets and the solid line from cell cycle datasets.

3.3.2 Identification of cell cycle-related motifs

We then applied the linear kernel to the motif sequence data containing a total of

1,024 features (window size l = 5) extracted from the raw upstream sequences of

genes and Gaussian RBF kernels with parameter σ values of 0.3 to the expression

data. The regularization parameter was set to 0.1. These parameters are also em-

pirically chosen based on the fact that they produced a high correlation. Figure

3.5 shows the CC1 score which represents the correlation between the expression

profiles and the sequence patterns. When the linear kernel was applied to the se-

quence dataset, the expression data is closely related to the motif data using the
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Figure 3.5: Correlation between expression profiles and motifs derived by using the

raw upstream sequence data. The plot on (b) is an enlargement of the boxed area

in (a).

raw sequences of 5-mers.

The 5-mer motif patterns with high weights are listed in Table 3.3. The 5-mer

with the highest weight is 5’-GCGTG-3’, which is similar to the MCB motif (5’-

ACGCGT-3’). As described previously, MCB is an important motif involved in the

cell cycle. The second-ranked sequence (5’-CGTGT-3’) matched to the first five

bases of the ALPHA2 motif sequence. From the second component, we also found

several significant sequences, including a consensus sequence (5’-CGCGT-3’) that
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Table 3.3: High-scored motifs in the first and the second components using 5-mer

raw upstream sequences.

Sequence Motif Description Weight Component Rank

GCGTG MCB (ACGCGT) 0.079567 1 1

CGTGT MATalpha2 (CRTGTWWWW) 0.075340 1 2

CATGT MATalpha2 (CRTGTWWWW) 0.046299 1 12

CCGGA MCM1 (CCNNNWWRGG) 0.044133 1 13

TAAGG MCM1 (CCNNNWWRGG) 0.042387 1 15

CCACG SCB (CACGAAA) 0.018992 2 4

CGCGT MCB (ACGCGT) 0.017870 2 5

GTGTT MATalpha2 (CRTGTWWWW) 0.016595 2 9

is identical to the MCB motif (5’-ACGCGT-3’). This further confirmed that the

MCB motif affects gene expression in the cell cycle. Another interesting motif is 5’-

CCACG-3’, which is a sequence block with one base shift from the known SCB motif

(5’-CACGAAA-3’). The SCB motif is a binding site of the SBF protein, which is a

complex of SWI4 (a DNA-binding component) and SWI6 (a regulatory component)

(Simon et al., 2001), and SBF is a major regulator in the G1/S transition.

3.3.3 Combinational effects of regulatory motifs

We searched the motif pairs that have synergistic or co-regulatory combination ef-

fects in the yeast cell cycle. The regulatory mechanisms of eukaryotes are highly

complex since most genes are normally synergistically regulated by different tran-

scription factors. Therefore, identifying the synergistic motif combinations can con-

tribute to systematically understanding the regulatory circuit.
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In the present study, using the kernel CCA we calculated the weight value for

each motif pair of 42 known motifs. The heat map of weight values of all motif

pairs is provided in Figure 3.6. Table 3.4 presents the top ten motif pairs with the

highest weight values and with occurrence of more than ten in all the investigated

upstream sequences. It also shows ECRScores which represent gene expression co-

herence. All these scores are relatively high compared to the previously identified

synergistic motif pairs (ECRScores > 0.075). As shown in Table 3.4, the pair with

the highest weight value is MCB-MCM1. According to a previous study, MCB and

MCM1 were characterized as a significantly cooperative motif pair in the regulation

of the cell cycle (Das et al., 2004). Other highly ranked pairs, such as ECB-ALPHA2

and MCM1-ALPHA2, are already known that they are required for transcriptional

regulation of early cell cycle genes. MCM1 activates transcription of ECB (early

cell cycle box)-dependent genes during M/G1 phase (MacKay et al., 2001), and the

MCM1 protein can interact with the ALPHA2 factor regulating the expression of

mating-type-specific genes (Keleher et al., 1989; Mead et al., 1996). These evidences

support that two ALPHA2-related motif pairs act synergistically in the expressional

regulation of the yeast cell cycle process. The REB1 motif, a binding site of REB1

protein, is frequently found among the pairs of motifs with the highest weights. The

REB1 protein is an RNA polymerase I enhancer-binding protein and binds to genes

transcribed by both RNA polymerase I and RNA polymerase II (Morrow et al.,

1989). It is a general regulator rather than a condition specific one. Therefore, it

is reasonable that this protein shows a high frequency in our results. REB1-SWI5,

REB1-MCM1’ and REB1-ALPHA1 motif pairs are already identified as acting syn-

ergistically in the yeast cell cycle regulation (Banerjee and Zhang, 2003; Tsai et al.,

2005; Hvidsten et al., 2005). Most of our results are consistent with the previous

reports. In addition, it’s worth noting that several previously uncharacterized motif



CHAPTER 3. CO-REGULATORY SEQUENCE MOTIFS 32

Figure 3.6: Heat map of weight values of motif pairs related to cell cycle regulation.

Dark colors represent motif combinations of high weight values.

pairs were identified by our kernel CCA methods.
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Table 3.4: The top 10 ranked motif pairs were extracted from the analysis of motif

combination.

Weight Motif Pair ECRScore Num. of ORFs

2.5368 MCB MCM1 0.390 15

2.5018 MCB ECB 0.439 12

2.0177 PHO MCM1’ 0.088 17

1.848 ECB ALPHA2 0.088 14

1.7535 MCM1 ALPHA2 0.074 17

1.7263 ATRepeat MCM1 0.076 12

1.6995 PHO ECB 0.127 11

1.6823 REB1 SWI5 0.099 14

1.6476 REB1 MCM1’ 0.115 13

1.4256 REB1 ALPHA1 0.067 15

3.4 Discussion

We presented a novel method that can identify the candidate conditional specific

regulatory motifs by employing kernel-based methods. The application of the kernel

CCA enables us to detect correlations between heterogeneous datasets, consisting

of upstream sequences and expression profiles. From a data-mining perspective, our

work is regarded as a new approach for detecting important features from regulatory

sequences and gene expression profiles. We demonstrated that major motifs in a

specific biological process can be extracted by a CC score via modelling a close

relationship between two datasets related to gene regulation.

As genome-wide datasets of various types become available, it’s important to
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analyze these datasets in an integrated manner (Kasturi and Acharya, 2005). It is

possible to come up with novel biological hypotheses by integrating diverse biolog-

ical resources generated for specific research purposes. In these aspects, the kernel

CCA is regarded as a useful method that can extract the biological factors with

significant roles by integrating different types of biological data. Many studies for

identifying motifs have been based on sequence conservation or sequence character-

istics, regardless of the biological processes. Therefore our method can be regarded

as complementary approach in the analysis of gene regulation.

Our method found important motifs related to the cell cycle by using raw up-

stream sequences as well as known motif sets. In the present study we used the raw

sequences of window size, l=5. If we enlarged the window size, the dimension for se-

quence features increased exponentially, whereas the frequency of motifs decreased.

Although the window size used in our experiments was shorter than the length of

several known transcription factor binding sequences, it was long enough to obtain

worthwhile results.

In the future research, we will apply the proposed method to diverse gene ex-

pression datasets, especially cancer-related datasets. The cancer-related regulatory

program can be elucidated by analyzing regulatory motifs from a set of enriched

genes in the cancer transcriptome (Rhodes et al., 2005). Using the kernel CCA, a

correlation analysis between regulatory sequences and the cancer transcriptome may

directly catch regulatory motifs related to the abnormal gene regulatory program.



Chapter 4

Investigation of combinatorial

effects of DNA methylation

4.1 Background

The addition of a methyl group to cytosine residues in the context of CpG dinu-

cleotides (i.e., 5-methylcytosine) by the DNA methyltransferease (DNMT) enzymes

is the most well studied epigenetic event. DNA methylation is known to play sig-

nificant roles in many cellular processes, including embryonic development, genomic

imprinting, X-chromosome inactivation, and preservation of chromosome stability.

In addition, aberrant DNA methylation has been shown to disrupt many cellular pro-

cesses and is frequently observed in most human diseases, including cancer (Suzuki

and Bird, 2008; Robertson, 2005; Esteller, 2008; Keshet et al., 2006).

Methylation in CpG islands (CGIs), particularly in the promoter and first exon

regions, is known to block genomic binding sites of activating transcription factors

or other proteins and it is strongly associated with gene repression (Suzuki and

Bird, 2008; Jones and Takai, 2001). In particular, the effect of DNA methylation

35
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on tumor suppressor genes (TSGs) has been extensively studied (Ueki et al., 2002).

Transcriptional silencing of this key class of genes could contribute to defective reg-

ulatory processes in cancer, and the promoter CGI hypermethylation of TSG has

been observed in a various types of cancers (Sakai et al., 1991; Merlo et al., 1995).

However, few studies have examined the complex relationship between DNA methy-

lation and gene expression on a genome-wide scale using accurate, high-resolution

DNA methylation data.

Profiling of methylated CpG sequences is now possible by using next generation

sequencing technologies and a number of recent studies have used high-throughput

approaches to study DNA methylation (Chavez et al., 2010; Kim et al., 2011). Al-

though generating enormous amounts (terabytes) of data is possible, single-base

pair resolution of bisulfite-converted DNA is still costly and highly labor intensive.

Recently, cost effective, genome-wide methylation approaches that do not rely on

bisulfite-treated DNA have been developed, including methylation-sensitive restric-

tion enzymes approaches (Zuo et al., 2009). One approach, the methylated-CpG

island recovery assay (MIRA) (Rauch and Pfeifer, 2010) followed by sequencing

(mCpG-seq), utilizes methylated-CpG-binding protein complexes with high affin-

ity to methylated CpG dinucleotides in genomic DNA. Now a technique known as

MBDCap-seq (Brinkman et al., 2010) is able to utilize double-stranded DNA, does

not depend on the application of methylation-sensitive restriction enzymes, and gen-

erates DNA sequence variation data (Robinson et al., 2010).

The availability of high resolution DNA methylation and gene expression data

on a genome scale now allows scientists to investigate the functional consequence

of DNA methylation in various genomic regions, including CGIs which have been

extensively investigated in the literature (Esteller, 2007; Bell et al., 2011; Pai et al.,

2011). CGIs are often found near the promoter regions of genes and the CGI hy-
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permethylation is known to have significant inhibitory effect on gene expression. In

normal cells, CGIs are protected from methylation. However, hypermethylation of

promoter CGIs of important genes, i.e. TSGs, is frequently observed in cancer cells

(Sproul et al., 2011). In addition to CGIs, recent studies have reported that DNA

methylation of other genomic regions can alter downstream gene expression. It was

recently reported that methylation of CGIs near transcription start sites (TSSs) of

genes (Sproul et al., 2011) or in CGI shores (Irizarry et al., 2009), regions about

2kb outside of CGIs, were both strongly associated with gene expression. In addi-

tion, a strong correlation between methylation in the first exon and expression of

the corresponding genes was demonstrated (Brenet et al., 2011). Although these

recent studies have clearly shown an association between DNA methylation at vari-

ous genomic regions and gene expression, several questions remain to be answered.

Specifically, in our study on the breast cancer cells, research questions are: How does

DNA methylation in the different genomic regions contribute to gene expression? Are

there subtype specific DNA methylation-gene expression patterns in breast cancer?

Does the methylation of transcription factor binding sites impact transcription factor

binding and subsequent gene expression?

To answer these questions, we used genome-wide profiling data from 30 breast

cancer cell lines from the Integrated Cancer Biology Program (ICBP, http://icbp.nci.nih.gov/).

We integrated MBDCap-seq methylation data and Affymetrix microarray gene ex-

pression data (Neve et al., 2006). The important goals of our study were:

1. Genomic studies have established major breast cancer intrinsic subtypes that

show significant differences in incidence, survival and response to therapy

(Koboldt et al., 2012). Basal-like breast tumors display aggressive clinical

behavior and belong to the high-risk breast cancers that typically carry the

poorest prognoses (Fadare and Tavassoli, 2008; Toft and Cryns, 2011). To
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investigate whether phenotype specific methylation and expression patterns

exist in the basal A, basal B, and luminal breast cancer molecular subtypes,

we used an information-theoretic approach to identify genes with differentially

methylated DNA regions and differential expression levels.

2. To perform an integrated analysis of DNA methylation and gene expression

data on a genome-wide scale and to detect subtype-specific effects of DNA

methylation in breast cancer cells. We examined relationships between DNA

methylation and gene expression using step-wise analysis starting from genes

whose expression was significantly altered in a particular subtype.

3. We used Pearson’s correlation analysis and decision tree learning to investigate

the effect of DNA methylation in various regions (CGIs, CGI shores, promoter

regions, 1st exons, 1st introns, and 2nd exons) on the breast cancer subtype

differential gene expression.

4. To investigate relationship between transcription factors and DNA methylation

in promoter regions, we examined the relationship between DNA methylation

specifically at transcription factor binding sites (TFBSs) and gene expression

in the breast cancer molecular subtypes.

4.2 Materials and methods

4.2.1 Data

We prepared methylation and gene expression data from 30 breast cancer cell lines

representing three tumor phenotypes found in patients (Neve et al., 2006): basal A,

basal B, and luminal subtypes. Among 30 cell lines, 17 were basal-like and 13 were

luminal-like subtypes (Table 4.1). The basal-like 17 cell lines were further subdivided
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into 7 basal A and 10 basal B subtypes.

Gene expression data from Affymetrix microarray experiments (Neve et al., 2006)

was downloaded. Genome-wide methylation profiles were measured using the MBDcap-

seq technique. The double stranded methylated fragments were sequenced and reads

were mapped to the human reference genome. Methylation levels were calculated by

measuring the density of the read coverage (Rao et al., 2013), as we have described

previously.

The microarray gene expression data were processed and analyzed using R and

Bioconductor. The expression values were centered by mean-adjusting each log abun-

dance value (subtracting each value from the mean expression value in the cell line).

4.2.2 Profiling of DNA methylation patterns

To investigate DNA methylation characteristics across the 30 breast cancer cell

genomes, methylation profiles were measured on ± 10 kb genomic regions around

the TSS of each gene. We divided the genomic regions into bins with a size of 100

bases. DNA methylation levels were then measured as the number of mapped reads

within each bin.

4.2.3 Identifying differentially methylated/expressed genes by in-

formation theoretic analysis

We identified differentially methylated and expressed genes in the three breast cancer

subtypes using normalized entropy. Entropy is a measure of uncertainty, defined as

follows:

H = −
n∑
i=1

pi log pi
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Table 4.1: 30 Breast cancer cell lines and molecular subtypes

Cell line Subtype Cell line Subtype

BT549 BaB HCC1569 BaA

HCC1937 BaA HCC1143 BaA

HCC1428 Lu HCC202 Lu

MDAMB436 BaB SUM185PE Lu

600MPE Lu HCC1500 BaB

MDAMB231 BaB SUM225CWN BaA

SKBR3 Lu MDAMB453 Lu

SUM1315MO2 BaB SUM52PE Lu

HSS78T BaB MCF12A BaB

MDAMB157VII Lu HCC70 BaA

HCC1954 BaA SUM149PT BaB

GCC2185 Lu LY2 Lu

MCF7 Lu BT20 BaA

MCF10A BaB BT474 Lu

SUM159PT BaB AU565 Lu

Lu: luminal; BaA: basal A; BaB: basal B

where pi denotes the probability of the state i, and n is the total number of the

states. In this study, the state i is a cancer phenotype, i.e. i = (basalA, basalB, Lu).

For methylation profiles, the probability pi is measured by tji/cj , where cj is sum of

read counts for cell lines in a genomic region j and tji is sum of reads for a phenotype

i in the region j. For gene expression, cj is sum of expression values for cell lines in

a gene j and tji is sum of expression for a phenotype i in the gene j. The entropy H
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achieves its maximum value when all states are equally probable, that is, it exhibits

the lowest degree of uncertainty. If there is only one state, then the entropy H is

zero.

Normalized entropy is the ratio of entropy to maximum entropy as follows:

H0 (x) = H (x) /Hmax

where Hmax is maximum entropy value where the probabilities are all equal.

We measured the normalized entropy and identified differentially methylated re-

gions and differentially expressed genes. To avoid errors on the probability calcula-

tion, we introduced pseudo-probability to every zero-valued position.

4.2.4 Identifying downregulated genes in each subtype for integra-

tive analysis

Genes differentially expressed in each different molecular subtype were further iden-

tified as follows. Suppose that egl is an expression level of a gene g in a cell line

l. Since the cell line l is clustered into a specific subtype i, we calculate the me-

dian values Median(eg, i) for the expression levels in each subtype i per gene g. In

this study, we measured three median value Median(eg, Lu), Median(eg, BasalA),

Median(eg, BasalB) for each gene g.

If the median value Median(eg, i) of a gene g in a type i was significantly lower

than those of other two types, we defined the gene g as down-regulated in a specific

type. In our study, log-ratio 1.5 was the criterion for significance.

4.2.5 Correlation between DNA methylation and gene expression

To investigate the relationship between methylation in various regions and gene

expression in the 30 breast cancer cells, we examined methylation levels in gene
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Figure 4.1: Genomic regions for studying DNA methylation profiles. A gene body is

composed of promoter and coding regions including exons and introns. CGIs as well

as these regions were studied for the effect of DNA methylation on gene regulation.

promoter regions (2kb upstream regions from TSSs), CGIs, CGI shores, the first

and second exon and the first intron (Figure 4.1). The association between gene

expression and methylation values of these datasets was measured by a Pearson’s

correlation coefficient. It was calculated on the paired data of a gene expression level

and the methylation level in the genomic region.

4.2.6 Combinatorial effects of DNA methylation in various genomic

regions

To identify which regions have dominant effects on downstream gene expression and

also to investigate on the combinatorial roles of DNA methylation of the various

genomic regions in each subtype, a decision tree was constructed using the methyla-

tion profiles in each region. For the learning purpose, a gene was an instance of data

and gene expression was considered as a class variable, i. e., up or down regulated

genes. The methylation value in each genomic region was an attribute. For binary
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classification, in training dataset of each subtype, the class values were discretized

to high and low, i. e., upregulated or downregulated genes. If a gene was significantly

downregulated in a subtype but the gene was upregulated in the other subtypes, the

class values of the genes in the cell lines within the subtype were designated as low.

For example, assume that the expression of a gene is significantly downregulated in

Lu subtype. Then among 30 cell lines, 13 instances with Lu subtype are marked as

low and 17 with the other types are high. The trees were built using REPTree in

WEKA software (Hall et al., 2009).

4.2.7 Analysis of transcription factor binding regions possibly blocked

by DNA methylation

For the integrative analysis of TFs, DNA methylation and gene expression, we used

four datasets: gene expression, methylation profiles, cell specific DNA sequences

and information for TF binding sites (TFBSs; TRANSFAC database (Matys et al.,

2006)). We considered only downregulated genes in each subtype, as we were most

interested in DNA methylation of TFBSs, possible interference on TF binding, and

subsequent negative effect on gene expression. We referred to these downregulated

as target genes. Differentially methylated genomic regions of the target genes were

identified by statistical testing (t-test) of methylation levels at each 100bp-bin for the

promotor regions. Cell-specific consensus sequences were computed by assembling

short reads in the promotor regions of these genes. TFBSs were searched on the

cell-specific consensus sequences corresponding to the hypermethylated bins, using

′minimize false positive′ option of the match tool in the TRANSFAC package (Kel

et al., 2003).

Among the collected TFs that could be potentially blocked by TFBS methylation

in the promotor region, we selected TFs whose expression levels were not significantly



CHAPTER 4. COMBINATORIAL EFFECTS OF DNA METHYLATION 44

different in each phenotype (by t-test), as to exclude cases where the down-regulation

of the target genes is as a result by difference in the expression levels of TF, an

activator gene. In this way, we compiled cases where down-regulation of the target

genes was due only to the hypermethylation in the promotor region, not other factors,

such as the genomic sequences on the TFBSs and the expression levels of the TF.

4.3 Results

4.3.1 DNA methylation in 30 ICBP cell lines

We measured and compared the methylation density of 2kb promoter regions for all

genes in 30 breast cancer cell lines. Figure 4.2 shows subtype-specific density plots of

promoter regions, excluding unmethylated genes. Overall, the methylation density

was similar in each subtype. We observe that the number of highly methylated (>

50) promoter regions tended to be lower in BaB. The density of the regions whose

methylation levels were over 50 was around 10% in Lu and BaA, but 4% in BaB.

Next, we investigated CGI methylation around each gene. CGIs are defined as

regions of DNA of greater than 500 bp with a G+C equal to or greater than 55% and

observed CpG/expected CpG of 0.65 (Takai and Jones, 2002). Using the position

information of the CGIs from UCSC genome browser, we checked the methylation

profile in the CGI near each gene. In the 30 breast cancer cell lines, approximately

47% of CGIs were methylated; however, distinct methylation density for each sub-

type was not apparent (Figure 4.3).
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Figure 4.2: Methylation density of promoter regions in 30 breast cancer cell lines.

Density was measured for each subtype. The methylation levels are on the x-axis

and the y-axis is probabilistic density. Unusual bulbs around 100 on the x-axis were

because methylation levels over 100 were truncated to 100. Lu, luminal; BaA, basal

A; BaB, basal B.

4.3.2 Information theoretic analysis of phenotype-differentially methy-

lated and expressed genes

To identify differentially methylated and expressed genes across the breast cancer

genome, we measured normalized entropy. Lower entropy corresponded to genes
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Figure 4.3: Average number of methylated and unmethylated CGIs in each cell. The

unmethylated means that the mapped read count is zero in the CGI. BaA: basal A,

BaB: basal B, Lu: luminal.

more differentially methylated or expressed in each subtype. First, we determined

which genes were differentially methylated. Considering only genes with >3 mapped

reads, there were 241 differentially methylated genes with the entropy threshold

0.2 and 564 differentially expressed genes with entropy threshold 0.5. Among these,

only three genes were common to both the differentially methylated and expressed

gene sets (Table 4.2) Thus, we concluded that separate analysis of differentially

methylated and expressed gene sets based on information theory is not effective for

the integrated analysis of methylation and gene expression, although these methods

were effective to highlight genes and genomic regions that were different according

to phenotypes.



CHAPTER 4. COMBINATORIAL EFFECTS OF DNA METHYLATION 47

Table 4.2: Genes that were both differentially methylated and expressed

Gene Name Description

PLA2G12A phospholipase A2, group XIIA

FAT1 FAT tumor suppressor homolog 1

PARP8 poly (ADP-ribose) polymerase family, member 8

4.3.3 Integrated analysis of DNA methylation and gene expression

To perform the integrated analysis of DNA methylation and gene expression, we

used a two-step analysis process: (1) identify differentially expressed genes in each

subtype, and (2) for each genomic region, test if there is a strong negative correlation

between methylation level at the genomic region and the expression level of the gene.

To select differentially expressed genes in each subtype, we measured median

values of expression levels for each of the three breast cancer phenotypes. If the

median value of a gene in one subtype was significantly higher or lower than the

median value in the other two subtypes, the gene was considered to be differentially

expressed in a specific type. For such differentially expressed genes, variations of

methylation levels were then investigated.

As DNA methylation is known to inhibit gene expression and an inverse correla-

tion between the DNA methylation and gene expression has been shown to exist, we

were most interested in a negative correlation between DNA methylation and gene

expression for the integrated analysis. As an example, Caveolin 1, CAV1, represents

a negative relationship between DNA methylation and gene expression (Figure 4.4).

The CAV1 gene has been shown by us and others to regulate breast tumor growth

and metastasis and is overexpressed in basal-like subtypes (Sloan et al., 2004; Savage

et al., 2007; Rao et al., 2013). CAV1 expression levels were clearly different in each
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Figure 4.4: CGI methylation and gene expression of the CAV1 gene. Methylation

and gene expression values from the 30 cell lines are grouped into luminal (Lu), basal

A (BaA) and basal B (BaB) subtypes. (a) A plot showing the density of methylation

in the CGI and shore regions located near the TSS of the CAV1 gene. The black

bar shows the location of the CGI and the small orange triangle is the TSS. (b) A

boxplot showing the expression of the CAV1 gene.

breast cancer subtype, higher in BaB subtypes and lower in Lu subtypes. However,

when the DNA methylation profiles of the CAV1 TSS and CGI were examined,

methylation levels were significantly higher in the Lu compared to BaA and BaB.

Furthermore, differential methylation of CGI shores, but not CGIs, significantly reg-

ulated CAV1 expression, and breast cancer aggressiveness was associated with CAV1
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(a) (b) 

Figure 4.5: An example of the paired input data used to measure the Pearson corre-

lation between gene expression and methylation. This paired data is for CAV1 gene.

(a) Gene expression and CGI methylation across 30 cell lines. (b) Plot of gene ex-

pression profiles (y-axis) v.s. methylation levels (x-axis). Each pair in the cells is

represented as a cross sign (Lu), a diamond (BaA) and a circle (BaB). A regression

line is shown.

CGI shore methylation levels (Rao et al., 2013). The above negative correlation was

measured by computing Pearson correlation coefficients. The Pearson correlation

is measured by paired input data between DNA methylation profiles and gene ex-

pression levels across the 30 breast cancer cell lines. As an example, a correlation

coefficient from CGI methylation and gene expression levels was calculated across



CHAPTER 4. COMBINATORIAL EFFECTS OF DNA METHYLATION 50

30 cell lines (Figure 4.5). The scatter plot for CAV1 gene shows that gene expression

and CGI methylation levels were negatively correlated.

We measured the methylation correlation for various genomic regions of downreg-

ulated genes in Lu and BaB subtype (Figures 4.6 - 4.7). Since only two genes were

detected as downregulated in BaA subtype, the correlation results for BaA subtype

were not included. Interestingly, when methylation in promoter regions was consid-

ered, several genes showed a clear negative correlation at the proximal regions of

TSSs. Figure 4.6 is heatmaps that visualize promoter region methylation and down-

stream gene expression (light red colors mean that two vectors (methylation profiles

and expression levels) were highly negatively correlated and bright green were posi-

tively correlated). In both Lu and BaB subtypes, strong negative correlations were

observed in promotor regions, and methylation in the promotor regions near TSS

showed strongest negative correlations. However, there were significant differences

in promotor methylation patterns in Lu and BaB subtypes. In Lu subtypes, weaker

negative correlations were observed at genomic regions further away from TSS. On

the contrary, in BaB subtypes, consistently strong negative correlations were ob-

served in entire promotor regions. This result implies that the DNA methylation on

the promoter region has stronger epigenetic inactivation in Basal-like subtypes and

the methylation of this regions may contribute to breast cancer progression.

Moreover, in most genes, first exon and CGI methylation levels were negatively

correlated with expression levels (Figure 4.7). From the multi-exon genes, we mea-

sured correlation coefficients between the DNA methylation profiles for each exon

and intron, and the expression level of the corresponding gene. A clear negative cor-

relation was observed in the first exon, but this was not the case for second exons

and first introns, a result consistent with a previous study showing that first exon

methylation was closely associated with low gene expression (Brenet et al., 2011).
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Figure 4.6: Correlation between promoter region methylation profiles and expression

levels of genes downregulated in (a) Lu and (b) BaB subtypes. Unmethylated genes

in the whole promoter region of 30 cell lines were excluded. Light red color was used

for negative correlation and light green for positive correlation. Columns from right

to left denote positions getting away from TSS. Each row is a downregulated gene

in the subtype.

When we examined CGIs and CGI shore regions, negative patterns were also ap-

parent. CGI and CGI shore DNA methylation levels were negatively correlated with

gene expression levels in most genes, but in CGIs, much stronger relationships were

shown in our datasets.
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Figure 4.7: Correlation between methylation profiles on CGI, CGI shore, intron, and

exon regions and expression levels of genes down-regulated in (a) Lu subtypes and

(b) BaB subtypes.

4.3.4 Investigation of the combinatorial effects of DNA methylation

in various regions on downstream gene expression levels

As DNA methylation occurs in many genomic regions, it was of interest to examine

the effect of the various regions on downstream gene expression, particularly which

regions may have a dominant effects on gene expression and whether the effects

of the regions were similar in each subtype. Towards this goal, we performed a

comprehensive study using six distinct genomic regions: promoter regions, CGIs,

CGI shores, first and second exons, and first introns. Using the DNA methylation
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profiles in these regions, we performed a machine learning analysis.

The decision tree is a classification method that uses conjunctions of features for

predicting target values in a tree-like hierarchical decision process. As decision tree

learning identifies the most informative attributes for classification, this approach

was used to discover regions with dominant and combinatorial effects on expression

levels. We normalized the methylation levels of each region in a gene by adjusting

the scale, then carried out the decision tree analysis.

The decision tree was constructed with a constraint of a maximum tree depth

of three excluding leaf nodes, and in this case, the classification accuracy for genes,

downregulated in Lu subtype, was 0.649 in a 10-fold cross validation (Figure 4.8

(a)). In the decision tree, the right-most branch means that the nodes in this branch

were hypermethylated, and the left-most that the regions were hypomethylated.

Consistent with the correlation analysis, CGIs were the most informative feature.

In the BaB subtype whose classification accuracy was 0.746 with the same max-

imum depth, the promoter regions and the first exons had combinatorial effects

on gene expression (Figure 4.8 (b)). In the left branch of the decision tree where

TSS1001-2000 were hypomethylated, it is intuitive that genes were unregulated.

However, in the left branch, when TSS1-1000 was hypermethylated and also the

first exons were hypermethylated, genes were down regulated. Note that TSS1001-

2000 region had the dominant effect on the gene expression in the BaB subtype.

This was consistent with our previous correlation analysis showing a clear negative

correlation in much broader regions (Figure 4.6). Since CGI overlaps the first exon

or promoter regions, we carried out the analysis again by separating into two cases:

(1) CGI overlaps with the regions and (2) CGI does not overlap with the regions.

Even when we separated CGI overlapping cases, the dominant factors (CGI for the

Lu subtype and TSS1001-2000 for the BaB subtype) remained the same as when
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Figure 4.8: Decision tree analysis with downregulated genes in (a) Lu subtypes and

(b) in BaB. The attributes are represented by circles, in where Exon1 is the first

exon and CGIShore means 2kb outside region from CGI. TSS1-1000 means 1 to 1000

bp upstream region from TSS and TSS1001-2000 means 1001 to 2000 bp upstream.

The Down in leaf nodes (rectangular boxes) means the gene is downregulated and

Up means upregulated.
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Figure 4.9: In case of down-regulation in Lu subtype, decision tree analysis separated

by genomic regions of CGI. (a) Overlap with the first exon (The classification accu-

racy, Acc. is 0.737), (b) Nonoverlap with the first exon (Acc. is 0.590),(c) Overlap

with TSS1-1000 (Acc. is 0.687), (d) Nonoverlap with TSS1-1000 (Acc. is 0.644), (e)

Overlap with TSS1001-2000 (Acc. is 0.644) and (f) Nonoverlap with TSS1001-2000

(Acc. is 0.644).

we did not separate CGI overlapping cases. The decision trees when we did not sep-

arate CGI overlapping cases were presented in the main text (Figure 4.8) and the

decision trees when we separated CGI overlapping cases were presented in Figures

4.9 and 4.10. The decision tree results suggest that altered gene expression in the

two subtypes is associated with not only different promoter methylation profiles but

also different combinatorial effects in various genomic regions.
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Figure 4.10: In case of down-regulation in BaB subtype, decision tree analysis sepa-

rated by genomic regions of CGI. (a) Overlap with the first exon (Acc. is 0.773), (b)

Nonoverlap with the first exon (Acc. is 0.760),(c) Overlap with TSS1-1000 (Acc. is

0.810), (d) Nonoverlap with TSS1-1000 (Acc. is 0.708), (e) Overlap with TSS1001-

2000 (Acc. is 0.824) and (f) Nonoverlap with TSS1001-2000 (Acc. is 0.741).

4.3.5 Integrative analysis of transcription factors, DNA methyla-

tion and gene expression

We next sought to investigate the effect of DNA methylation on the interaction

between TF and DNA, i.e. binding of a TF to the promotor region of a gene. To

investigate this important concept, we developed a rigorous data mining protocol to

compile a list of TF that are potentially blocked by DNA methylation. The schematic
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Figure 4.11: Schematic overview of the phenotype-comparative analysis for interfer-

ence of TF binding by DNA methylation resulting in the suppression of downstream

gene expression

overview of the protocol is illustrated in Figure 4.11.

We first identified differentially methylated genes among the downregulated genes,

60 genes in BaB subtype and 52 genes in Lu subtype. Based on the results of the

one side standard t-test with a criterion for being significant as p-value<0.005, we

observed eight genes with significant hypermethylation in at least one 100bp-bin as

follow: CDH1, CLDN4, ESRP1, GRHL2, KRT19, PRR15L, AKR1B1, and PLOD2.

Figure 4.12 shows the promotor regions of the eight genes that are differentially

methylated according to the p-values.

Next, for the hypermethylated regions of the eight genes, we generated cell line-

specific consensus sequences by assembling short reads mapped to the regions and
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Figure 4.12: Differentially methylated promoter regions of down-regulated genes.

Each rectangle in the upstream region means a 100bp-bin.

searched candidate TFs which can be bound to these consensus sequences by match

tool (Kel et al., 2003) on the consensus sequences. To exclude the possibility that

higher expression of an activator gene might result in upregulation of target genes,

we discarded TFs whose expression levels were significantly different across cell lines

of different phenotypes.

Table 4.3 summarizes the final selection of TFs and their target genes. TFs ap-

peared in at least 50% of cell lines of the same phenotype (TFBS Support Rate in

the table is percentage of the number of TF-containing cell lines). Interestingly the
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genes CDH1, ESRP1 and GRHL2 have been shown to play critical roles in epithelial-

mesenchymal transition (EMT), a process associated with metastatic events in can-

cer and also highly relevant to tumor progression (Thiery, 2002; Thiery et al., 2009).

Lombaerts et. al. (Lombaerts et al., 2006) reported that CDH1 is downregulated by

promoter methylation and related to EMT in breast cancer cell lines. A study by

Dumont et. al. (Dumont et al., 2008) showed that the induction of EMT was accom-

panied by repression of CDH1 expression and subsequent DNA hypermethylation

at its promoter in basal-like breast cancer. Additionally, recent studies showed that

GRHL2 and CDH1 in human breast cancer cells were highly correlated and sup-

pressed EMT by repressing expression of the ZEB1 gene (Xiang et al., 2012; Cieply

et al., 2012). ESRP1 was shown to regulate a switch in CD44 alternative splic-

ing, an event required for EMT and breast cancer progression (Brown et al., 2011).

Moreover, there might be potential interplay between target genes. Over-expression

of GRHL2 up-regulated ESRP1 expression (Xiang et al., 2012), and GRHL2 was

shown to be essential for adequate expression of the CDH1 and CLDN4 (Werth

et al., 2010). Thus, our approach may be useful to elucidate cell-specific regulatory

mechanism using the genome-wide methylation data from the MBDCap-seq.

4.4 Discussion

Recent developments in sequencing technologies have made it possible to analyze

genome-wide DNA methylation profiles at high resolution. Although altered DNA

methylation patterns are a hallmark of cancer, and promoter CGI hypermethyla-

tion is known to repress gene expression, only a few studies have examined DNA

methylation-gene expression relationships using genome-wide integrated analyses

(Ruike et al., 2010; Fang et al., 2011; Sun et al., 2011). Several researchers have

attempted to investigate the association of the DNA methylation with the molec-
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Table 4.3: Downregulated target gene with transcription factor binding sites on

hypermethylated region

Target Gene Binding TF TFBS Support Rate

CDH1 SMAD1 100.0

CDH1 FOXO1 100.0

CLDN4 CEBPA 62.5

CLDN4 CEBPB 62.5

CLDN4 CEBPD 62.5

CLDN4 CEBPE 62.5

CLDN4 CEBPG 62.5

ESRP1 CUX1 90.0

GRHL2 PDX1 100.0

KRT19 PAX6 60.0

PRR15L IKZF1 50.0

AKR1B1 E2F1 91.7

PLOD2 PAX3 100.0

ular subtypes in breast cancer cells (Bloushtain-Qimron et al., 2008; Holm et al.,

2010). However high resolution sequencing data were not used in those studies. To

better understand the relationship between DNA methylation and gene expression

in breast cancer molecular subtypes, we used next generation DNA methylation

sequencing data and gene expression profiles for 30 ICBP cell lines representing

molecular subtypes of the disease to perform a systematic analysis.

We first compared genome-wide methylation profiles of breast cancer phenotypes.

Although overall DNA methylation profiles were similar in Lu, BaA and BaB, spe-
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cific genomic regions were differentially methylated among the three subtypes. We

then explored computational methods for integrating DNA methylation and gene

expression data and started with differentially expressed genes for discovering genes

whose expressions were influenced by DNA methylation.

DNA methylation of different genomic regions has recently been associated with

altered expression of downstream genes. To better understand possible transcrip-

tional regulatory roles of DNA methylation, we performed a comprehensive study

considering distinct genomic regions: CGIs, CGI shores, promoter regions, 1st exons,

1st introns, and 2nd exons. Based on Pearson’s correlation coefficients, we verified

that the DNA methylation of several genomic regions including CGI and CGI shores

were negatively correlated with downstream gene expression.

To investigate combinational effects of DNA methylation in these regions and

to identify subtype-specific events, we applied a decision tree algorithm using genes

downregulated in each subtype. Interestingly, we found potential combinatorial ef-

fects of the first exon methylation and promoter region methylation on the down-

stream gene expression (BaB subtype) and potential combinatorial effects of CGI

methylation and CGI shore methylation (Lu subtype). As gene expression is reg-

ulated by many factors, it is difficult to predict gene expression levels using only

the DNA methylation profiles. However, the classification accuracy was significantly

high enough to elucidate the contribution of each genomic region and combinatorial

effects of the regions. We showed that DNA methylation had combinatorial roles on

gene expression and the effects of DNA methylation in each genomic region differed

among the subtypes. Moreover, our studies further imply that the aberrant DNA

methylation state of the TF-associated regions could be another contributing factor

to gene repression, a subject of future experimental validation.

It is now well established that different gene expression patterns contribute to
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breast cancer heterogeneity (Koboldt et al., 2012). In the current study, our inte-

grated analysis further demonstrates that methylation status of different genomic

regions may play a key role in establishing transcriptional patterns in three molecular

subtypes of human breast cancer. Understanding the functional impact of distinct

regions of DNA methylation on gene expression patterns may provide additional

insight into breast cancer progression and response to therapy, both critical for im-

proving management of the disease.



Chapter 5

Detecting multiple SNP

interaction via evolutionary

learning

5.1 Background

Genome-wide association study (GWAS) examines genetic variations on the whole

genome of individuals and investigates how the variants frequently occur in popula-

tion with a particular phenotype such as disease. The main purpose of the GWAS

is to identify the genetic variations which influence to phenotypic changes or are

susceptible to diseases. One of the most popular variants to use in the GWAS is

single-nucleotide polymorphism (SNP). SNPs were relatively easy to be identified,

and many people believed that the cause of disease would be discovered by the vari-

ants. In reality, there have been a lot of research to capture the genetic variants

which are statistically associated disease or traits, and as a result of GWASs, it has

been reported that hundreds of loci are associated for more than 70 common diseases

63
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and traits (Donnelly, 2008).

However, comprehensive understanding for the relationship of genotypes to phe-

notypes, is still challenging. The complex traits including cancers and diabetes are

believed to be affected by the interactions of multiple genetic factors (Cordell, 2009).

In many cases, the single genetic variants did not fully explain a cause of the complex

disease.

To understand the complexity of mapping from genotype to phenotype, many

researchers have focused on genetic interaction and relationships of more amount of

variants, instead of a single genetic marker (Heidema et al., 2007; Cordell, 2009).

Especially, machine learning approaches could be a useful solution of the problem

(Szymczak et al., 2009; Moore et al., 2010). For example, logic regression and decision

trees could be applied for the analysis of the interaction of variants (Ruczinski et al.,

2004; Fiaschi et al., 2010). Another widely used technique is MDR (multifactor

dimensionality reduction) approach (Ritchie et al., 2001) which has been developed

with the idea of CPM (combinatorial partitioning method). However, these have

limitations in efficiently handling higher order interactions from a large number of

SNPs.

Here, we address the multiple SNP associations to disease, by the construction of

a classifier based on evolutionary learning. One of the important steps to improve the

performance of a classifier is to identify the informative feature sets. Especially, in the

association study, the number of features is very high, and in the case of concerning

all of the multiple combinations of the attributes, most of computational learning

algorithms might fail to efficiently control the large-scale datasets. We introduce

a concept of evolutionary learning to identify higher-order combinatorial features

which are relevant to the class discrimination, from the combinatorial search space.

Generally, evolutionary learning well-approximates solution to complex problems
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which are difficult to optimize mathematically. For the genetic association studies,

several research has been accomplished by the evolutionary learning, and showed

that it could be applied successfully (Namkung et al., 2007; Moore and White, 2007;

Nunkesser et al., 2007; Clark et al., 2008; Yang et al., 2010).

We propose a method to find association of multiple SNPs and a disease, and to

predict a disease by the variant information. Firstly, we applied the approach to a

simulation data and verified the approach could be useful to find the SNP interac-

tions. After that, we identified the combinatorial effects of multiple SNPs on T2D in

Korean population. In our evolutionary algorithm, a single individual is encoded by

the form of explicit rules which are formulated for certain values of the attributes,

and the whole population evolves to the final rule-set with a good fitness. In the

learning process, the evolutionary computation can solve the problem efficiently by

avoiding exploring the whole search space and leading to identify higher-order SNPs

with strong association to a phenotype. The resulting rule set is able to correctly

recognize instances and discriminate them to target concepts well. As a result, the

model can classify the instances by combination of the survived rules after evo-

lutionary learning, and the rules can be considered as informative multiple factor

interactions associated to a disease.

5.2 Materials and methods

5.2.1 Identifying higher-order interaction of SNPs

The evolutionary computation approach, particularly learning classifier system (LCS)

has successfully applied to induce a set of classification rules in a given environment

(Bernado-Mansilla and Garrell, 2003; Sigaud and Wilson, 2007; Fernandez et al.,

2010). The LCS searches the space of possible rules, guiding the search for better
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rules by evolutionary computing techniques. Our main goal is similar to the tech-

nique. We construct an evolutionary learning method guided by a gradient descen-

dent algorithm, to induce a set of classification rules from SNP data with complex

traits. The detail explanation follows.

Structure of the individuals

Suppose that X = {X1, X2, ..., Xn} is a dataset of n samples, and each sample Xi is

composed by k features, that is, SNP loci, and class value yi ∈ {normal, disease}.

The input value of each feature in the SNP data can take one of the following

three states: (1) homozygous major form, (2) heterozygous, and (3) homozygous

minor form. The structure of the individuals are expressed as a combination of SNP

information. For example, an individual is represented from the conjunctive form of

the multiple SNP association as follows:

(SNP1 = 3)
∧

(SNP2 = 2)
∧

(SNP3 = 2)

It means that the SNP1 is hetero, SNP2 is homo minor form and SNP3 is also

homo minor form.

5.2.2 Algorithm Description

The algorithms steps are summarized in Table 5.1 and Figure 5.1. More detail is

given on individual steps in following subsections.

Initialization

In the evolutionary learning, population is defined by a set representing higher-order

interaction among SNPs. The initial population is consisted by individuals randomly

generated with chromosome length l. The population size s is decided empirically

and the initial weight wj of the individual j (0 < j < s) is randomly assigned with
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Table 5.1: Overall learning procedure

Main Learning Procedure:

1. Randomly generate a population and initialize s individuals with

weights ws. The length of chromosome l is user-specified. The

weight (fitness) w is randomly initialized with a small value.

2. Train the weight value of each individual iteratively using in-

stances. The weight values are updated and assigned by a gradient-

descent algorithm. The learning procedure in step 2 is terminated

when the weights are converged after repetition of a number of

epoch.

3. The evolutionary process begins. Remove individuals with worst

fitness from population. The individual is worse as its fitness is

closer to zero. Theses are replaced by newly generated individuals.

The offsprings are reproduced by one of four ways in user-specified

proportion.

(a) Inherit r individuals whose ej is -1. (elitism)

(b) α individuals should be generated by the crossover operator.

By selection strategy (ranking selection), select two individ-

uals and crossover them.

(c) Mutate β individuals in the parents.

(d) Randomly generate s− r − α− β individuals

4. Go to Step 2 until convergence after the number of generation.

r is a parameter for the number of removing individuals
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Data preprocessing

Initialize weights w
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weights of individuals
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Reproduce next generation

End for learning epoch

Figure 5.1: Flow chart for our evolutionary learning method. The most fitable indi-

vidual is searched by the iterative learning.

a small value (-1 < wj < 1).
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Weight Update and Evaluation

Each individual has a weight value which means how informative the chromosome

is to classify the samples. That is, the weights for individuals are considered as their

fitness and the bigger weight on an individual mean mores informative to classify

the instances. To determine and update the fitness for each individual, we introduce

a gradient descendant rule as follows:

wj = wj + η(ti − f(xi))mij , (5.1)

where wj is a weight value for j-th individual and ti is a target class in the i-th

training instance. mij is a variable whether the all values of attributes within the

j-the individual is matched to those in the i-th instance.

mij =


1, if all values are identical

0, otherwise

(5.2)

f(xi) is a predicted output value of the i-th training instance by our model and

determined as follows:

f(xi) =


1, if

∑s
j=0wj ·mij > 0

−1, else

(5.3)

The difference between the predictions and the target values specified in the

training sequence is used to represent the error of the current weight vector. The

target function is optimized to minimize the classification error. The weight values

are evaluated against a sequence of training samples and are updated to improve

the classification accuracy. The weight update processes are repeated until it would

be converged after the number of epoch.

Using the learning scheme, we find most informative individuals for classification,

that is, the absolute value of their weights is large.
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Removing and Reproduction

During each successive generation, a proportion of the existing population is selected

to be survived in the next generation. We adopted individual replacement strategy

in each generation during the evolution processes. Basically, the highly weighted

individuals should be selected and the others dismissed. It is a similar concept with

elitism in a conventional genetic algorithm. We measure the fitness of each individual

and preferentially select r best solutions. The r, the number of individuals to be

survived, is determined by a threshold θ.

ej = e(wj) =


−1, if |wj | < θ

1, otherwise

(5.4)

, where | · | means a absolute value. Then, individuals whose ejs are 1, is survived

and the s - r individuals are removed. After that we generate new individuals as

much as removed in the step.

s - r individuals are reproduced by three ways in the next generation. The first is

random generation. As similar to the the process for making initial population, we

can construct new individuals randomly. Another ways are bring from conventional

genetic operators, crossover and mutation. We select two individuals by ranking

selection and can recombinate them in a random position. α and β, the number of

individuals to be generated by crossover and mutation, respectively, are determined

as follows:

α = λ(s− r) (5.5)

β = s− r − λ(s− r) (5.6)
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, where λ is a crossover rate. For the mutation operator, there exists two kind of

alteration. We choose κ individuals and substitute a gene to another gene. There is

the other base mutation rate ρ. It change a value of a variable in a selected individual

for mutation to other one, so it help to be exploited in the search space by giving a

variation in the combinatorial factors of the individual.

β = µ+ κ = ρβ + (1− ρ)β (5.7)

, where ρ is the base mutation rate, and µ, the number of individuals to be occurred

base mutation, is determined by the ρ value.

Iterative Learning Procedure

To select interesting rules from population, that is, the sets of the possible rules, we

iteratively reproduce the individuals in progress on generation. The individuals are

required to satisfy the specified fitness function and are survived only if they are

adapted in the environments, that means they are how much informative to classify

the training dataset.

By repeating the procedures until convergence (Table 5.1), the model can classify

the normal and disease samples well, and identify higher-order interactions of SNPs.

5.2.3 Dataset

Genotyping and clinical information of Korean individuals was produced as a part

of Korean Association Resource (KARE) project by Korean Centers for Disease

Control and Prevention (Cho et al., 2009; Hong et al., 2012). The cohort study

was examined for 8842 individuals at Ansan and Ansung area, aged 39 to 70. The

genotyping was conducted using Affymetrix Genome-Wide Human SNP array 5.0.

In the clinical information, we investigated the concentration of glucose, diagnosis,
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and drug treatments. If a person have been an experience to take a diagnosis for the

diabetes, we decided the person have a diabetes. Also if plasma glucose is same to or

over 126 (mg/dl) in no caloric intake or two-hour plasma glucose is same to or over

200 (mg/dl), then we considered the person a diabetes case. Conversely, the criterion

for the normal controls are the plasma glucose with no calory intake is under 100,

two-hour is under 140, and no experience for diabetes diagnosis or insulin intakes.

Odds ratio

The odds ratio is used to measure a relative risk in a specific genotype comparing

to another one. It was calculated as follows:

oddsratio =
p1(1− p1)
p2(1− p2)

(5.8)

, where p1 and p2 are probabilities that an individual having the selected SNP rules

exists in the disease group and normal group, respectively. If an odds ratio is greater

than 1, the events is more likely to occur disease. That is, the odds ratio which is

significantly higher than 1, means the higher-order SNPs are associated with disease.

The p-value is measured by random combination of SNPs. We generated 100,000

SNP rules randomly, and calculated odds ratio in each rule. Then we checked the

probability that the odds ratio for the selected rules occurs by chance.

5.3 Results

5.3.1 Identifying interaction between features in simulation data

To verify our approach can find the interaction of features, we tested the method us-

ing simulation data. Suppose that the simulation dataXi = (x1, x2, ..., x10, class)(1 ≤

i ≤ 1, 000) is composed of 10 attributes, xj ∈ 0, 1(1 ≤ j ≤ 10). By gibbs sampling,



CHAPTER 5. MULTIPLE SNP INTERACTION 73

we generated the data with following conditions:

P (x1 = 0) = 0.6

P (x2 = 0) = 0.6

P (class = 1|x1 = 1 ∧ x2 = 1) = 0.8

P (class = 1|x1 = 1 ∧ x2 = 0) = 0.3

P (class = 1|x1 = 0 ∧ x2 = 1) = 0.3

P (class = 1|x1 = 0 ∧ x2 = 0) = 0.2

(5.9)

x3 and x4 have same probabilities with x1 and x2, respectively and the others are

randomly generated (uniformly distributed). Table 5.2 shows the finally selected

interactions by our approach using the simulated data. As we expected, our method

can find the informative interactions of features for the classification with around

0.70 classification performance by 10-fold cross validation. The set of x1 and x2 were

selected as the most highly ranked interaction. Also, the pairs of x3 and x4 similarly

had big weight values after the learning by our approach. Although a state of the art

classifier, SVM, has a little higher accuracy (0.734), the algorithm does not provide

which features are important for the classification. Moreover, it is impossible to

detect the combinatorial effects among the genetic variants, but our method can it.

Table 5.2: Identified interaction in simulated data

Interaction Weight

x1=1, x2=1 0.91

x1=1, x2=0 -0.89

x3=1, x4=1 0.81

x3=0, x4=1 -0.79

x3=1, x6=1 -0.79
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5.3.2 Identifying higher-order SNP interactions in Korean popula-

tion

Korean population might be specific associative characteristics to a disease. Since

we confirmed that our proposed method would be adequate to be find combinatorial

effects of SNPs in genome-wide association study, at last we searched the multiple

SNP interaction in Korean population using our method.

For the preprocessing, we firstly carried out hardy-weinberg test (HWE), then

filtered out uninformative SNPs (p value < 0.000001). Then we removed SNP at-

tributes where minor allele frequency (MAF) is less than 0.01. Then for each SNP,

the p-value was calculated based on a chi-square test. We also filtered out signifi-

cant SNPs (p value < 0.05). After the preprocessing, the number of attributes was

decreased to 6459.

The main purpose of our approach is to identify higher-order interaction of mul-

tiple SNPs, but it can be run as a classifier. Also, it is required to check the classi-

fication performance for selecting highly discriminative combination of SNPs. Table

5.3 shows classification accuracy in our method. Using 10-fold cross-validation, the

classification accuracy was around 90% when we evaluated the performance along

the chromosome length. We also carried out other classification algorithms using the

same datasets and compared the accuracy (Table 5.3). Even though it had a little

difference with the interaction length to be examined, we obtained better or com-

petitive performance to the results of other general classifiers. Usually, tree-based

classifiers can be used to know which factors affects to the classification. However,

in the dataset, the tree-based methods were shown much lower classification ac-

curacy, 61.11% with decision tree (ID3) and 70.66% with random forest, which is

considered as a combination of decision rules in classification tree forms. The classifi-

cation accuracies of other approaches were also about 73.59% with an instance based
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classifier (k-nearest neighbor, kNN) and 71.38% with logistic regression. Only RBF

network and SVM achieved the similar accuracy to our method. However, these two

algorithms do not provide which factors significantly affect to the classification. The

results mean that, our approach can find higher-order interactions of SNPs by choos-

ing the highly-weighted individuals from the learned models, along the chromosome

lengths.

Table 5.3: Classification performance in KARE dataset

Order (l) Accuracy

l=2 91.20

l=3 91.40

l=4 89.16

Decision Tree (ID3) 61.11

Decision Tree (C4.5) 60.22

Random Forest 70.66

kNN (k=10) 73.59

SVM 94.81

RBF Network 92.83

Simple Perceptron 67.11

Logistic Regression 71.38

In each experiment, we selected top SNP combinations from the ranking of their

weights, and subsequently, we evaluated significance of the interactions through the

odds ratio and the chi-square test. Table 5.4 shows top 10 interactions as an exper-

imental result with order 3, and Figure 5.2 show the interaction map. The highly

positive value of the weight implies the interaction can be a big effect to T2D,
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and negative means it is affectable to be classified to the normal sample. The table

presents that the positively weighted interactions all have the high (>1) odds ra-

tio. Conversely, the interactions with negative weight values low (<1) odds ratios.

That is, the results suggest that the positively-weighted interaction is able to be a

candidate for the T2D risk factors. In addition, the interactions were significantly

distinguishable between case and control data by a chi-square test. the p-values by

a chi-square test were significantly low in the whole selected interactions.
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Figure 5.2: SNP interaction map order 3. The thickness of the lines means weights

of the interactions. Blue and red colors mean negative and positive weights, respec-

tively.
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Interestingly, our results showed that the sequence variation could have much

clear association with the higher-order interaction, even although it did not show

the strong evidence in single-SNP analysis. Figure 5.3 shows the results for the

top 5 ranked interactions. The p-values of the identified interactions were clearly

lower than those in single variants within the interaction by our experiments. For

an instance, the firstly ranked interaction, SNP A-4196226, SNP A-2038226 and

SNP A-1861290 did not show clear association with diabetes as a single variant.

The p-values for the single SNP were 0.06, 0.04, 0.02, respectively. However the

combination of these was definitely stronger effects to a disease with 3.09e-04 p-

value.

For further validation, we randomly generated 1,000 interactions which consist of

3 SNPs and choose the interactions whose number of the matched to instances are

more than 10. Then we measured their p-values by the chi-square test. Figure 5.4

shows the p-value comparison between top 100 interactions in our results and the

randomly generated set. It shows that the interactions in our results are much more

significant. When we carried out a t-test to clarify how these two sets are different,

the p-value by the t-test was 9.79e-133.

5.4 Discussion

We presented a method to identify higher-order interaction of multiple variables.

The study to identifying the higher-order interaction of genetic variants is neces-

sary to find the multiple causal factors, contribute to complex diseases. Although

the analysis of multiple factor interaction should be important in understanding

complex traits, however, it is computationally infeasible to combinatorially explore

all high-order interactions among the SNPs in a genome-wide association study.

Previously several studies reported on findings of interactions among genes to be
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Figure 5.3: Dotchart for comparison between single variants and their interaction.

Empty circle is for a single variant and filled is for the interaction.

important contributors to certain phenotypic variation. However, in addition to the

variants of genes which directly changes protein function, the genetic alteration may

be located in genomic or epigenetic regulatory regions. These can also affect to the

gene regulation and abnormality in cellular processes.

We used evolutionary learning to search the combinatorial feature spaces. Gen-

erally evolutionary computation finds a good solution by a guidance from a fitness

and genetic operators. Using the concepts, we could find a solution, coherent group
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Figure 5.4: Comparison between the interaction by our approach and random selec-

tion. Red is a histogram for the identified interaction by our method, and blue is

random selection.

of interrelated variants, associated to a disease effectively. When we examined every

possible case, the search space is too big. For example, If the number of attributes

is 6459 and the combinatorial order is increased from 2 to 5, the number of possible

combinatorial cases are 2.09E07, 4.49E10, 7.25E13, and 9.35E16, respectively. How-

ever, we searched only cases less than 1.00E6 in every experiment and could find

reasonable high order interaction associated to disease. Our genetic association stud-

ies for complex traits can be applied to a systems genetics studies integrated with
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other information, such as environmental factors, copy number variation, clinical

information, and so on. The systems genetics approach helps to yield a detailed map

of genetic and other variants, including environments, associated with phenotypes.

Our proposed methods can easily add these factors in steps to generate individuals,

and find their effects to a disease. Also, the evolutionary learning in our approach

make it possible to control the large datasets with a explorative search space. so a

number of factors can be supplied in the consistent algorithm.

In our experiments, we did not reflect biological knowledge or genetic relation-

ships. Depending on a experimental purpose, these information can be reflected in

the process on generation of individuals or in the fitness function. Or it is also pos-

sible to construct a model with genetic relationships by measuring linkage blocks or

conducting a transmission disequilibrium test from datasets.

In addition, the analysis of the interaction accompanies several issues including

information loss with missing values. But our approach does not require imputation

of the missing values, and it can be run by denoting these missing values as don’t

care symbols or mismatched symbol.

Sometimes, a sampling approach is an efficient method to find an optimal solution

in a large datasets. However the datasets would be too sparse, especially in case of

higher-order combination of variants. So we should randomly generate some of the

individuals, instead of sampling from training datasets. In addition, if we want to

search the interactions between just two variables, it might be not necessary to

use crossover or mutation. It could be possible to find the fittest one, by random

sampling in the reproduction processes. But in the interactions of multiple variables,

it would be efficient to use these operators.

In each experiment, the chromosome length was constant. If the experiments are

carried out to identify interactions with a variety length at one time, the individuals
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with a small length are more likely to be matched to a datasets, so it can be much

bigger weight values. However, our approaches can be easily expanded to a method

for identifying the interactions of variable length. One way is to normalize the fitness

value by the chromosome length. Then we can find the interactions of various orders,

resulted from individuals with diverse lengthes. Another way is to learn from lower to

higher order by turns, and then to re-learn and classify based on the finally survived

individuals in each step.

By the characteristics of evolutionary learning, our results would not be global

optima. But it is definitely valuable. Our purpose is not to find one optimal coherent

variant set associated to a disease. Also it might be impossible to be expressively

provided that the complex traits are caused only by a little number of factors. The

reason of the disease occurrence is not simple. Therefore, we detect interactions

which may be local optima and provide the candidates to help to find sets of the

risk factors.

Recent advances in high-throughput sequencing provide a variety of datasets.

The sequencing datasets may shed light for a new finding in the GWAS, and whole-

genome or whole exome sequencing has been used to search the genetic cause of

diseases. Despite of the considerable progress in the sequencing technologies and

their analysis strategies, the common variations identified by GWAS account for

only a small fraction of disease heritability and are unlikely to explain the majority

of phenotypic variations of common diseases. Our approach can be usefully applica-

ble to the sequencing datasets. The sequencing technologies have detected millions

of novel variants. Although big size of dataset by lots of reads and variants is an-

other challengeable problem, our approach can be a method to solve the problem

by effectively searching the combinatorial feature space based on the evolutionary

learning. It can be a effective method to systematically control exploration of a lot
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of variants provided by next generation sequencing technologies for GWAS. Also,

the sequence datasets have a large proportion of missing data, but our method can

be resistable.

Our approach suggests the analysis of GWAS datasets offers a useful strategy

for identifying causal genes and potential candidates in human diseases. Study for

interaction of the genes or genomic regions would help to elucidate mechanism of

the complex traits and to control and treat disease. Some of our results do not show

clear relationships and some of these may be still biologically questionable, why the

combination is highly weighted and how there play a role in disease. For the much

clear understanding, relevant functional studies should be carried out. Moreover,

by applying phased haplotype information, we will detect much relevant sets for

variants (Tewhey et al., 2011).



Chapter 6

Identifying DNA methylation

modules by probabilistic

evolutionary learning

6.1 Background

Genomics mainly aims to find genetically associated markers with a phenotype.

Based on DNA sequences, the researchers search causal effects to biological processes

including gene regulatory mechanism and disease. Although several risk factors were

identified by the association studies, the genetic variants do not fully explain the

abnormal regulation, since the biological regulatory mechanism can be affected by

many other factors, as well as DNA sequence modification (Jones and Baylin, 2007;

Sadikovic et al., 2008; Handel et al., 2010; Sandoval and Esteller, 2012).

Epigenomics refers to a study for regulation of various genomic functions that

are controlled by another partially stable modification, not DNA sequence variants

(Bonetta, 2008). Among these, DNA methylation, which typically occurs at CpG

85
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dinucleotide by DNA methyltransferase (DNMT) enzyme, is a crucial epigenetic reg-

ulatory mechanism in cellular processes. The DNA methylation of CpG site mostly

cause silence of the downstream gene, so the enrichment of the differentially methy-

lated DNA fractions can contribute to specific abnormalities, including complex

diseases (Robertson, 2005; Portela and Esteller, 2010; Jones, 2012). Especially, with

an advent of microarray and next generation sequencing (NGS) technology, many

researchers have carried out genome-wide DNA methylation profiling studies (Laird,

2010; Hill et al., 2011; Rhee et al., 2013), and the genome-wide studies have reported

that lots of genomic regions are differentially methylated in normal and abnormal

cells (Cheung et al., 2010; Toperoff et al., 2012; Walker et al., 2011).

However, it is well-known that a complex disease is generally caused by combina-

torial dis-regulatory effects of multiple genes (Hirschhorn and Daly, 2005; Janssens

and van Duijn, 2008; Kiezun et al., 2012). That is, the errors of biological processes

is not caused by alteration of an individual methylation level. Recently, Easwaran

et al suggested a concept for DNA hypermethylation modules which preferentially

target important developmental regulators in embryonic stem cells (Easwaran et al.,

2012). They found the set of genes by the DNA methylation would be contribute to

stem-like state of cancer. Horvath et al. studied aging effects of DNA methylation

and showed there exist co-methylated modules related to aging in human brain and

blood tissue (Horvath et al., 2012).

Here, we identity combinatorial modules of DNA methylation sites associated to

human disease by an evolutionary learning approach. The evolutionary algorithms

can approximate solution well in lots of problems (Kumar et al., 2010; Deb and

Datta, 2010; Joung et al., 2012; Wang et al., 2013). It generates new population

through iterative updates and selection by a guided search process in a feature space.

We utilized an estimation of distribution algorithm (EDA)-based learning approach
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for identifying combination of cancer-related DNA methylation sites. In the EDA

algorithm, the population is evolved according by probabilistic distribution in the

selected individuals without conventional genetic operators such as crossover and

mutation. It has been known that EDA efficiently and effectively provide answers

in combinatorial optimization problems (Chen et al., 2009; Zhou et al., 2009; Shim

et al., 2013; Ceberio et al., 2013). The EDA has been previously applied in several

biological research, and it has offered promising results for complex problems, in

where other methods fail to find good solution (Pal et al., 2006; Santana et al.,

2010; Shelke et al., 2013).

In this study, we investigated DNA methylation modules relevant to cancer, using

the DNA methylation profiling datasets produced by microarray- and sequencing-

based approaches. The experimental results show that our method can find the DNA

methylation modules well related to cancer.

6.2 Methods

6.2.1 Evolutionary learning procedure to identify a set of DNA

methylation sites associated to disease

EDAs evolve a population to find optimal solution probabilistically. The initial popu-

lation is composed by constructing individuals at random. The individual represents

higher order interaction of the methylated sites. The population size m is decided

empirically and the initial weight wj of the individual j (0 < j < m) is randomly

assigned with a small value (-1 < wj < 1).

In the evolutionary process, each individual is evaluated how the interaction is

discriminative for the datasets. Then, the better individuals are selected and the

dependency tree fitted to the selected individuals, is build. New individuals of the
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next generation are generated using the probability distribution within the tree

structure, and replace the previous individuals. The overall procedure follows:

1. Set g ← 0

2. Initialize population X(g) by random generation

3. Evaluate individuals in X(g)

4. Select a set of individuals by tournament selection from X(g)

5. Construct a dependency tree G(g) by measuring Kullback-Leibler divergence

between variables

6. Parameter learning using probability distribution of the selected set

7. Generate a new individuals by sampling with joint distribution from the G(g),

and create new population X(g + 1)

8. Set g ← g + 1

9. If the termination criterion is not met, go to 3

More details for steps 3 and 5 are explained in following sections.

6.2.2 Learning dependency graph

The dependency tree is built from the selected individuals by searching conditional

dependencies between random variables. Then the model is optimized by a series of

incremental updates (Pelikan, 2006; Pelikan et al., 2007). More details follow:

Suppose that X is population and X = {X1, X2, ..., Xn} is presented as a vec-

tor of variables with n features, that is, DNA methylation sites. The probability

distribution is represented by a joint probability P (X1, X2, ..., Xn) as to:
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Figure 6.1: Schematic overview for probabilistic evolutionary learning to identify

DNA methylation module, Iterative evolutionary learning.

P (X) = P (X1, X2, ..., Xn)

= P (X1|X2, ..., Xn)P (X2|X3, ..., Xn)....P (Xn−1|Xn)P (Xn).
(6.1)

However, it is hard to measure all the joint probabilities exactly when n, the

number of variables, is large. Thus it needs to approximate the probability distribu-

tion. For the purpose, in this study, we used a dependency tree, and the distribution

is approximated as follows:

P (X1, X2, ..., Xn) = P (Xr)
∏
i 6=r

P (Xi|Xpa(i)), (6.2)

where X1, X2, ..., Xn are random variables, r is an index of root node, and pa(i) de-
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note the index of parent node of Xi.The tree structure is built by searching based on

Kullback-Leibler divergence between two random variables. The dependency graph

is optimally constructed in a direction to maximize total mutual information as

follows:

argmaxr,pa
∏
i 6=r

I((Xi)pa(i)) (6.3)

I((Xi)pa(i)) =∑
x

∑
y

P (Xi = x,Xpa(i) = y)log
P (Xi = x,Xpa(i) = y)

P (Xi = x)P (Xpa(i) = y)

(6.4)

The complete graph G searches the maximum spanning tree, and then the best

dependency tree is constructed.

For parameter learning, the most likely values are calculated from the frequen-

cies in the selected individuals. That is, the model parameters are represented as

a marginal probabilities in a root node and conditional probabilities in the other

nodes. The marginal probabilities in root nodes and the conditional probabilities in

child nodes are calculated as:

P (Xr = x) =
m(Xr = x)

N
, (6.5)

P (Xi|Xpa(i)) =
m(Xr = x)m(Xi = x,Xpa(i) = y)

m(Xpa(i))
. (6.6)

6.2.3 Fitness evaluation in population

Each individual has a fitness value which means how informative the chromosome is

to classify the samples. That is, the fitness for individuals are evaluated by measure

the classification accuracy for interaction of the features. To determine and update
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the fitness for each individual, it is possible to use any classification algorithm. But

we introduce a gradient descendant rule for training data D as follows:

wi = wi + η(tj − f(Dj))mji, (6.7)

where wi is a weight value for i-th feature and tj is a target class in the j-th training

instance Dj . η is a learning rate and mji is a value of the i-th attribute in the j-

th instance. f(Dj) is a predicted output value of the j-th training instance by our

model and determined as follows:

f(Dj) =


1, if

∑n
i=0wi ·mji > 0

−1, else

(6.8)

The difference between the predictions and the target values specified in the training

sequence is used to represent the error of the current weight vector. The target

function is optimized to minimize the classification error. The weight values are

evaluated against a sequence of training samples and are updated to improve the

classification accuracy. The weight update processes are repeated until it would be

converged after the number of epoch.

Using the learning scheme, we find most informative individuals for classification,

that is, their absolute value of their weights is large. In addition, since our purpose is

to identify a DNA methylation module, it might be necessary to find it if the number

of the used feature is small. Finally, the fitness function for the k-th individual Xk,

Fitness(Xk) is defined as follows:

Fitness(Xk) = Acc(Xk)−Order(Xk), (6.9)

where Acc(Xk) is classification accuracy for training datasets and Order(Xk) de-

notes the number of methylation sites which is selected in the individual Xk.
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6.2.4 Dataset

The high-throughput DNA methylation profiling of large genomic regions could be

produced by both microarray and NGS technologies. We applied our approach to

these two types of datasets. The microarray data was generated by Illumina Infinium

27k Human DNAmethylation BeadChip in 1,475 samples, for surveying of genome-

wide DNA methylation profiles in breast cancer and normal samples (Zhuang et al.,

2012). Sequence-based datasets were produced by MethylCap-seq in matched nor-

mal and colon cancer samples and collected at GSE39068 (Simmer et al., 2012).

The normalization and preprocessing was carried out using the same approaches to

Simmer’s works (Simmer et al., 2012).

6.3 Results

6.3.1 DNA methylation modules associated to breast cancer

This analysis has been carried out based on DNA methylation profiling datasets

which experimentally measured the methylation status using DNAMethylation Bead-

Chip (Zhuang et al., 2012). We extracted data for DNA methylation profiles on

chromosome 17 from breast cancer and normal samples, and applied our method to

the dataset. Figure 6.2 shows learning curves in the evolutionary process. The fitness

value is improved when the number of generation is increased. Since we introduced

a term for the number of the methylation sites to find a individual with the shorter

length, the number of orders were decreased at the learning process (Figure 6.2).

After convergence, 6 sites were selected for the discrimination, and these 6 sites

are related to genes, KIAA1267, CD79B, ALOX12, TMEM98, KRT19 and FOXJ1

(Table 6.1).

ALOX12 have a role in growth of breast cancer and its inhibition may be a
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(a) 

(b) 

Figure 6.2: Learning curve using breast cancer datasets. x-axis is the number of

generation and y-axis is (a) fitness values and (b) the number of orders.
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Table 6.1: Finally selected methylation sites

ID Position Gene CGI location

cg02301815 41605268 KIAA1267 41605074-41605445

cg07973967 59363339 CD79B 25467633-25468370

cg08946332 6840612 ALOX12 6839463-6841283

cg11833861 28279748 TMEM98 28278827-28279833

cg16585619 36938776 KRT19 NaN

cg24164563 71647990 FOXJ1 71647419-71649480

strategy for inhibiting tumor growth (kumar Singh et al., 2012), the gene can be

used as a serum marker for breast cancer (Singh et al., 2011). It is not clearly known

how the ALOX12 methylation directly affects to breast cancer. However, it has been

reported that hypermethylation of ALOX12 can be associated to cancer (Tan et al.,

2009; Alvarez et al., 2010; Ammerpohl et al., 2012; Ohgami et al., 2012). Actually,

the ALOX-12 gene is closely related to apoptosis, and the problem of the expression

by the DNA methylation can cause a malfunction of the cell death (Ding et al.,

1999; Pidgeon et al., 2002, 2003). Therefore, it might be reasonable that the change

of methylation in the gene linked to most cancer, including breast tumor. KRT19 is a

well-known marker for breast cancer patients (Ring et al., 2004; Lacroix, 2006), and

KRT19 promoter is abberently methylated in cancer cell lines (Morris et al., 2008).

Also, it has been reported that there exist the relationships between expression

of CD79B and breast cancer (Ellsworth et al., 2008; Prat et al., 2010). FOXJ1, a

member of the forkhead box (FOX) family, may function as a tumor suppressor gene

in breast cancer (Jackson et al., 2010). FOXJ1 is hypermethylated and silenced in

breast cancer cell lines (Demircan et al., 2009). TMEM98 is one of transmembrane
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Table 6.2: Classification performance only using the 6 selected sites

Algorithm Accuracy Sensitivity Specificity

Logistic Regression 0.939 0.987 0.762

SVM 0.929 0.941 0.857

Decision Tree 0.939 0.952 0.867

Naive Bayes 0.919 0.951 0.765

proteins. Recently, Grimm et al. investigated the transmembrane proteins specific

for cancer cells. The transmembrane protein can be a target for antibodies and be

a biomarker for tumor diagnosis, prognosis, and treatment (Grimm et al., 2011).

The function of KIAA1267 is not clearly known yet. But the gene encodes KAT8

regulatory NSL complex subunit 1, and the KAT8 regulates p53, a tumor suppressor

gene (Li et al., 2009; Zhang et al., 2013). It imply the KIAA1267 can has a role in

breast cancer.

Using the 6 sites, we tested classification performance using general machine

learning algorithms (Table 6.2). To verify our method identified informative sites,

we carried out classification only using the selected features. Table 6.2 shows the

classification accuracy, sensitivity and specificity. Regardless the classification algo-

rithms, it could be well-classified. For further verification, we randomly extracted the

sites repeatedly (100 times), then measured the classification performance in each

dataset. Figure 6.3 shows that the results of our method were higher than others,

regardless of the number of the randomly selected sites.
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Figure 6.3: Classification accuracy using randomly selected sites. f is the number of

the randomly selected sites, and white bar, marked as selected, is the results using

only the 6 selected sites by our method. The results for the random datasets show

averages of 100 times repeated experiments. LR: logistic regression, SVM: support

vector machine, DT: decision tree, NB: naive Bayes.

6.3.2 Modules associated to colorectal cancer using high-throughput

sequencing data

Recently, DNA methylation profiles could be measured by high-throughput sequenc-

ing technologies. We applied our method to the sequencing-based methylation pro-

filing datasets produced by Simmer et al. (Simmer et al., 2012).

Figure 6.4 depicts improvement of the fitness in iterative learning procedures

using these datasets. Among 10,393 genomic regions on chromosome 17 for the ex-

periment, 348 regions were selected to discriminate the ovarian cancer and normal
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Figure 6.4: Learning curve using in colon cancer datasets. x-axis is the number of

generation and y-axis is (a) fitness values.

samples after a convergence. Table 6.3 shows performance by classification algo-

rithms using the 348 regions from the sequencing-based colorectal cancer datasets.

We annotated the selected regions using GPAT (Krebs et al., 2008) and inves-

tigated which genes were located closely on the selected regions. We accomplished

gene set enrichment analysis (GSEA) with KEGG pathway using the genes whose
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Table 6.3: Classification performance only using the 348 selected sites in colorectal

cancer data

Algorithm Accuracy Sensitivity Specificity

Logistic Regression 0.900 0.920 0.880

SVM 0.940 0.960 0.920

Decision Tree 0.640 0.680 0.600

Naive Bayes 0.900 0.920 0.880

transcription start sites are located within 5000bp from the selected genomic regions.

The GSEA was carried out using MSigDB (Subramanian et al., 2005; Liberzon et al.,

2011). Table 6.4 summarizes the significantly enriched pathways with low p-values

and shows that most of these are closely associated with cancer-related networks.

Table 6.5 show the genes commonly enriched in the pathways. Note that the en-

riched signalling pathways were related to colorectal cancer. In colon cancer, the

roles of wnt signalling pathway and MAPK signalling pathway have been very well-

known (Jansson et al., 2005; Segditsas and Tomlinson, 2006; Fang and Richardson,

2005; Slattery et al., 2012). The genetic mutation affecting the pathway compo-

nents and the alteration of their expression can enhance tumorigenicity in cancer

cells. Also, neurotrophin signalling pathway could be related to growth of colorectal

cancer cells (Akil et al., 2011) and chemokine signalling pathway suppresses colon

cancer metastasis (Kitamura et al., 2010; Chen et al., 2012). Phosphatidylinositol

signalling pathway plays an important role in the growth, survival and metabolism

of cancer cells, and targeting this pathway has potential to lead to treatments for

the colon cancer (Parsons et al., 2005; Yuan and Cantley, 2008). VEGF and ErbB

can be valid therapeutic targets for patients with colon cancer (Ellis and Hicklin,
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2008; Winder and Lenz, 2010; Roskoski Jr, 2004; Spano et al., 2005).

For further validation, we compared the results with ChIP-seq profiles of H3K4me3

and H3K27me3 at ENCODE project (Dunham et al., 2012). When we examined the

selected sites on promoter regions, many of those were overlapped with the H3K4me3

and H3K27me3 binding sites with p-values of 1.86E-11 and 1.94E-05, respectively.

The p-value for the regions overlapped with both of the two histone marks was

1.08E-05. The binding regions of the histone modification, called bivalent regions,

were associated to cancer formation by abberant DNA methylation which leads to

be silencing of regulators (Young et al., 2011; Chapman-Rothe et al., 2012). Since it

is possible that DNA methylation are associated to bivalent regions in cancer, our

studies would be help to understand the relationship between DNA methylation and

chromatin signatures (McGarvey et al., 2008; Sharma et al., 2010; Balasubramanian

et al., 2012; Reddington et al., 2013). Also it would help to investigate effects on

cancer progression and possibilities for epigenomic treatments in cancer (Rodriguez

et al., 2008; Mayor et al., 2011).

6.4 Discussion

DNA methylation can be also strongly associated with the complex diseases. It has

been known that lots of genes are differentially methylated in various cancers or

diseases. In this study, we presented a method to identify combinatorial effects of

DNA methylation at multiple sites. From a systematic perspective, the relationship

between DNA methylation regions and a specific disease is learned by the presented

probabilistic evolutionary learning. The fitness value of a DNA methylation mod-

ule measure the level of their responses to the disease. In computational view, our

method can solve large scale problems by identifying modules with both compact-

ness and high coverage of disease related genes. If the number of attributes is n,
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the number of possible cases is same to the number of elements in power set, 2n.

Thus, the number of cases is exponentially increased according to the number of

attributes. For example, if n=100, the number of cases is 1.27E30 and if n=1000,

then the number is 1.07E301. However, Our method can find candidates in reason-

able search in the problem space. In our every experiment, we found the candidate

solution by searching less than 1.00E6 cases.

Applying our method to breast cancer and colorectal cancer data produced by

high-throughput technologies, we detected the cancer-related modules confirmed by

literatures and functional enrichment analysis. Interestingly we observed that the

selected regions were located around genes which are enriched in cancer-related

gene set categories significantly, and it provides evidence that the identified module

in our study is biologically meaningful.

The studies on DNA methylation are likely to elucidate on the process of tumori-

genesis as well as identify biomarkers. Our approaches which assist in the identifica-

tion of multiple DNA methylation sites that have the potential to be epigenetically

regulated might provide a useful strategy to detect epigenetic association related

to a disease. The systematic identification of the disease-related genes and modules

can provide insights into mechanisms underlying complex diseases and help efficient

therapies or effective drugs.

By applying our method to microarray- and NGS-based data, we showed that it

is applicable to a variety of data types and various disease contexts. Moreover, recent

studies suggest that there exists a complex relationship between genetic variation,

DNA methylation and so on. Systems genetic/epigenetics approaches are required

for examining relationships among these. Although our framework is based on DNA

methylation profiling datasets, it can be attempted to identify the combinatorial

association for various factors including gene expression levels, microRNAs, copy
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number variation, genetic variations, and environmental factors. The integration

of a variety of data would provide the basis for new hypothesis and experimental

approaches in a model of complex disease.

In summary, we presented a method for searching the higher-order interaction

of DNA methylation sites by a probabilistic evolutionary learning method. Using

the approach, we also examined the potential for combined effects of various sites on

genome. The results suggest that the alteration of DNA methylation at multiple sites

affects on cancer. Similar to genome-wide association studies, our approach provides

an opportunity to capture the complex and multifactorial relationship between the

DNA methylation sites and to find new factors for future study. Therefore, our

approach would be a way to facilitate a comprehensive analysis of genome-wide DNA

methylation datasets and the interpretation for the effects of DNA methylation on

multiple sites.
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Table 6.4: Gene-set enrichment analysis annotated by promoter information using

the 348 selected sites in colorectal cancer data

Gene set p-value FDR q-value

Non-small cell lung cancer 2.61E-05 4.25E-03

Glioma 4.56E-05 4.25E-03

Neurotrophin signaling pathway 3.25E-04 1.85E-02

Pathways in cancer 3.99E-04 1.85E-02

Wnt signaling pathway 5.52E-04 2.05E-02

Aldosterone-regulated sodium reabsorption 9.09E-04 2.22E-02

Endocytosis 9.62E-04 2.22E-02

Vasopressin-regulated water reabsorption 9.97E-04 2.22E-02

Chemokine signaling pathway 1.07E-03 2.22E-02

Focal adhesion 1.26E-03 2.34E-02

Endometrial cancer 1.39E-03 2.35E-02

Basal cell carcinoma 1.55E-03 2.41E-02

Colorectal cancer 1.97E-03 2.73E-02

Pancreatic cancer 2.50E-03 2.73E-02

Melanoma 2.57E-03 2.73E-02

Chronic myeloid leukemia 2.72E-03 2.73E-02

Cytokine-cytokine receptor interaction 2.82E-03 2.73E-02

MAPK signaling pathway 2.82E-03 2.73E-02

Phosphatidylinositol signaling system 2.94E-03 2.73E-02

VEGF signaling pathway 2.94E-03 2.73E-02

Fc epsilon RI signaling pathway 3.17E-03 2.81E-02

Small cell lung cancer 3.58E-03 2.98E-02

ErbB signaling pathway 3.83E-03 2.98E-02

Apoptosis 3.92E-03 2.98E-02

Prostate cancer 4.01E-03 2.98E-02
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Table 6.5: Genes enriched in pathway analysis

Gene Symbol Description

TP53 tumor protein p53

PIK3R5 phosphoinositide-3-kinase, regulatory subunit 5, p101

PRKCA protein kinase C, alpha

ARHGDIA Rho GDP dissociation inhibitor (GDI) alpha

FZD2 frizzled homolog 2 (Drosophila)

RABEP1 rabaptin, RAB GTPase binding effector protein 1

CCL16 chemokine (C-C motif) ligand 16

CXCL16 chemokine (C-X-C motif) ligand 16

CSF3 colony stimulating factor 3 (granulocyte)

DUSP3 dual specificity phosphatase 3

ARSG arylsulfatase G



Chapter 7

Conclusion

Recently, explosive growth in data produced from various areas is continuously in-

creasing. Intuitively the large amount of stored data contains valuable hidden knowl-

edge, such that it could be used to improve the decision making process of an or-

ganization. There exists a clear need for the systematic methods for extracting the

valuable knowledge from real-world datasets. This need has led to the emergence of

a field called data mining and knowledge discovery. In order to extract or mine the

knowledge or pattern of interest from data, intelligent mining tools are applied. The

examples are association rule mining, clustering, classification, and so on.

Data collected from various biological domains is also becoming increasingly high

in recent time. In particular, the large repositories of genome-wide measurement data

pose the research question of how to retrieve valuable knowledge. In this dissertation,

we proposed methods to identify higher-order interaction in genomic/epigenomic

studies. We developed machine learning methods with evolutionary computation for

extracting valuable information from large, high-dimensional data sets.

Statistical learning and evolutionary computation can be an way to mine the

meaningful information from the biological big data. Especially, evolutionary com-

104
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putation has advantages to deal with a huge amount of the heterogeneous biological

data. It appears to be more efficient in finding acceptable solutions than other ran-

dom or semi-random search methods. Moreover, the approaches can be easily run

in parallel, and allow groups of processor to be utilized for a search in the big data.

Furthermore, it might be helpful to exploit additional data sets even if they are

only partially relevant for the data set of interest. For example, to further compre-

hensive understanding complex disease, it needs for integrative studies of various

genomic and epigenomic datasets with environmental factors (Aschard et al., 2012).

One advantage of our evolutionary machine learning approach is that it can eas-

ily extend and generalize the learning paradigms for multiple views of datasets. By

systematically linking the various data sets, we would increases a chance to clarify

biological knowledge and novel possibilities for biological results.
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초 록

생명과학연구의기본적목표중하나는생물학적인자들과표현형의복잡한관계를

이해하고, 표현형에 영향을 미치는 다양한 인자들을 밝히는 것이다. 특히 유전체 서열

은 유전자 발현이나 질병 민감도 등의 표현형을 결정하는 데에 있어서 중요한 역할을

한다. 따라서 유전체 서열 기반 정보에 대한 연구는 생물학적 기작을 이해하기 위해

필수적이다. 기존의 유전체 서열 관련 연구는 주로 생체 내 기작에 중요한 영향을 미치

는 하나의 인자를 찾는 것에 집중되어 있었다. 최근 대용량 생물학 데이터 생산 기술의

발전으로 인해 전역 유전체 수준에서 유전적 변이를 분석하고 질병의 원인을 찾고자

하는 시도가 가능하게 되었지만, 거대한 탐색 공간과 계산 복잡도로 인해 여전히 다중

인자들의 고차 관계를 탐색하여 분석하는 것은 쉬운 일이 아니다.

본 논문에서는 진화 연산과 통계적 학습 방법을 결합하여 다중 인자 상호 작용을

탐색할 수 있는 효과적인 방법들을 제안한다. 본 논문의 방법들은 다양한 전역 유전체

서열 분석 문제에서 상호 연관된 인자 조합과 기능적 모듈의 탐색을 목적으로 한다.

우선 통계적 학습 방법을 이용하여 유전자 발현 조절에 함께 영향을 주는 서열 조각

및 DNA 메틸화 영역을 탐색한다. 이후 인간 유전체와 같이 많은 수의 인자들을 가진

고차원의 서열 데이터 분석을 위해 진화 연산 개념을 도입한다. 본 논문에서 사용된 방

법은 학습 데이터를 이용한 기계 학습 기술을 기반으로 하여 진화 연산 과정에서 문제

공간을 효과적으로 탐색한다.이를 통해 계산학적으로 복잡한 최적화 문제에서 답이 될

수 있는 후보군들을 찾아가는 것이 가능하다. 유전체 및 후성유전체 데이터를 이용한

실험 결과는 본 논문에서 사용된 진화 연산 기반 방법이 질병과 연관된 고차 상호 관

계를 발견할 수 있다는 것을 보인다. 따라서 본 논문의 연구는 유전체 및 후성유전체

연구에서 서열 기반 인자들 간의 복잡한 상호작용을 분석할 수 있는 유용한 방법이 될

수 있을 것이다.
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