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Abstract

Scalable Graph Path Discovery for
Biomedical Linked Data

Jinhyun Ahn

Healthcare Management and Informatics

The Graduate School

Seoul National University

A drug could give rise to an adverse effect when combined with another

particular drug. Addressing the underlying causes of the adverse effects is

crucial for researchers to develop new drugs and for clinicians to prescribe

medicine. Most existing approaches attempt to identify a set of target genes

for which drugs are most effective, which provides insufficient information

regarding these causes in terms of biological dynamics. Drugs should in-

stead be considered as participants in activating a sequence of pathways that

lead to some effects. I believe that the causes can better be understood by

such linked pathways. Therefore, the purpose of this thesis is to develop al-

gorithms and tools that can be used to discover a sequence of pathways that

is activated by a particular drug combination. Furthermore, these algorithms

are required to be scalable to manage massive biomedical Linked Data be-

cause up-to-date results of biomedical research are increasingly available in

Linked Data.
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My hypothesis is that for a drug combination, when a drug up-regulates

particular pathways in one direction and another drug down-regulates the

same pathways in an opposite direction, adverse effects may occur by the

drug combination. In this regard, the problem of revealing the causes of ad-

verse effects of drug combinations is cast into the problem of discovering

paths of a sequence of linked pathways that begins and ends at the genes

that the given drugs target. Therefore, the scalable graph path discovery

and matching algorithms are devised such that they work with a distributed

computing environment. A pathway graph model is defined to integrate di-

verse biomedical datasets and a visualization tool is implemented to provide

biomedical researchers and clinicians with intuitive interfaces for revealing

the causes of the adverse effects.

An algorithm for the shortest graph path discovery is proposed. An ex-

isting relational database approach is adapted to address the shortest graph

path discovery in a distributed computing framework, in particular, Spark.

The 2-hop reachability index is exploited to prune non-reachable paths dur-

ing discovery computation. A vertex re-labeling technique is proposed to

reduce the size of the 2-hop reachability index. Experimental results show

that the proposed approach can successfully manage a large graph, which

previous studies have failed to do.

The discovered shortest graph path can be transformed into a graph

path query to find another similar graph path. To achieve this, a MapReduce

algorithm for graph path matching, based on multi-way joins, is proposed.

A signature encoding technique is devised to prune intermediate data that

is not relevant to the given query. Experiments against RDF (Resource De-
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scription Framework) datasets show that SPARQL query processing is faster

than the state-of-the-art approaches.

To adapt these algorithms into the problem of drug combinations caus-

ing adverse effects, a novel pathway graph model is proposed. In particular,

a pathway relationship model is described; directed links between pathways

are established using protein–protein interactions and up/down regulations

between genes. A prototype system based on a visualization framework is

implemented and applied to a pathway graph that is built on the basis of sev-

eral biomedical Linked Data (e.g. Reactome, KEGG, BioGrid, STRING and

etc). A list of candidate drug combinations is obtained using the proposed

system, which is compared with known drug-drug combinations available

in DrugBank.

A scalable graph path discovery solution is proposed in this thesis. Dis-

tributed computing frameworks and several index structures are exploited to

efficiently handle massive graphs. A pathway graph model is defined and

a prototype system for biomedical researchers is implemented to apply the

algorithms to the problem of drug combinations causing adverse effects. In

future works, the solution will be generalized to address the temporal or-

ganization of signaling pathways, thereby enabling the causes of adverse

effects of drug combination to be better understood.

Keywords : Graph, Shortest Path Discovery, RDF, Linked Data, MapRe-

duce, Spark

Student Number : 2014-30699
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Chapter 1

Introduction

1.1 Background and Motivation

Diverse drugs are increasingly available. Combining several drugs in a

pill is common these days to treat disease processes. Accordingly, it follows

the risk caused by adverse drug combinations. We indicate an adverse drug

combination if it does not act on disease processes as desired. For instance, a

drug is effective when combined with a drug, while there could exist another

drug that is not effective as desired when combined with the drug. Conven-

tional approaches are to manually check if two drugs could yield adverse

effects by examining chemical reactions or doing clinical trials. Obviously,

these methods consume huge costs and time, furthermore, it could be in-

volved in severe ethical problems. Therefore, computational approaches are

required to address these issues.

We hypothesis that two drugs may cause adverse effects if one drug up-

regulates a gene while another drug down-regulates the same gene. This way

could make drug’s intended effects canceled out. Relationships between

biological entities need to be examined. Graph is a suitable data structure

to model relationships between biological entities. Graph has successfully

been applied to diverse domains such as social network, traffic modeling,

natural language processing and etc.
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In this thesis, we address adverse drug combination identification prob-

lem in terms of graph path discovery problem. Diverse biomedical datasets,

such as drug, gene, protein and diseases, are integrated to build a graph.

They are mapped via gene. Especially, drug-gene associations acquired from

DrugBank are considered as drug’s effects on genes. These are classified

into positive and negative effects according to targeting types. Directed links

are established between drug and gene based on positive and negative ef-

fects. These genes are linked to some pathways in which these genes partic-

ipate. Links between pathways are established using our pathway mapping

model.

In this way, we can define a path between two drugs linked via path-

ways. Specifically, we are interested in finding paths between drugs as they

meet in a intermediate pathway that would cancel out the intended effects

of two drugs. Furthermore, we assume that closer two pathways are, more

influence they have each other. In the context of graph, this corresponds to

shortest paths, a kind of graph path.

Existing shortest path discovery algorithms are not scalable as they

work on a single machine. Volume of biomedical datasets keeps growing.

To deal with massive graph, it is required to devise an algorithm working on

a distributed environment. In this thesis, we propose Spark based shortest

path discovery algorithm. The algorithm is optimized by exploiting reach-

ability index. Furthermore, we propose a technique to reduce the size of

reachability index.

Discovered shortest path can be viewed as a simple graph path. By sub-

stituting constants in a path with variables, a simple graph path query can

2



be formed. Once we obtain a graph path query, another drug combination

can be identified by matching with the graph. One of basic operations to

process graph path queries is join operation. In terms of building join trees,

there exist various join policies such as sequential, bush tree and multi-way.

These approaches have its pros. and cons. We focus on overcoming the lim-

itations of multi-way join approach. So far, multi-way join can hardly be

applied in a distributed computing environment as it requires to exchange

many redundant data. If we were able to reduce the redundant data, multi-

way join could be one of suitable join strategies to be applied in a distributed

computing environment. In this thesis, the signature encoding technique is

proposed to prune data, thereby, dramatically reducing redundant data.

Existing adverse drug combination identification systems are limited in

that they just report adverse drug combinations in terms of gene sets. Dur-

ing a medical treatment, clinicians might be interested in knowing pathways

(instead of genes) that are relevant to a drug combination they try to pre-

scribe. Moreover, few work is interested in showing drug-drug interactions

in terms of linked pathways to researchers and clinicians.

In this regards, we propose an adverse drug combination identification

system that is based on the algorithms mentioned above. The system is im-

plemented as a plugin on top of Cytoscape, which is a popular visualization

toolkit. The system is designed to interact with a cluster where Hadoop is

installed. Computationally expensive tasks are carried out in a cluster. Re-

sults are shown in network display in Cytoscape. Not only biomedical re-

searchers can identify adverse drug combinations, but also they are allowed

to see clues represented in paths between pathways.

3



1.2 Contributions

1.2.1 Shortest Graph Path Discovery based on Reach-
ability Index

Recently, RDB-based shortest path discovery algorithm has been pro-

posed [3]. A graph data is stored in RDB tables. A shortest path is discovered

by applying SQL queries in an iterative fashion. In this way, graph is not re-

quired to be loaded into memory. It means that the approach is able to deal

with large graphs that cannot be loaded completely into memory. However,

even if large graphs are loaded into tables, the performance of processing

SQL queries could be in-efficient. In this regards, it still remains challenge

to devise an approach that can deal with massive graph efficiently.

We devise a Spark based shortest path discovery algorithm. A graph

data is loaded into RDD (Resilient Distributed Dataset) which is a dis-

tributed data structure. Spark operations are applied to the RDD to obtain

a new RDD that records the shortest path. Experimental results showed that

the proposed approach could successfully deal with large graphs while pre-

vious works failed. In this shortest path discovery framework, we observed

that many intermediate paths are visited, which are not actually needed to

visit. 2-hop reachability index is exploited to prune these intermediate paths.

Experimental results show that using reachability index is efficient against

dense graphs and tasks for searching long paths. To reduce the size of 2-

hop reachability index, a vertex id assignment technique is proposed. Ex-

perimental results showed that the proposed approach can better reduce the

index size compared to random assignment.
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1.2.2 Graph Path Matching based on Signature En-
coding

A chain graph path can be formed from shortest paths by substituting

constants with variables. Recall that the shortest path conveys information

how two drugs are related via proteins. Similar paths may exist in which

some nodes are different with the original one. If drugs different from the

original drugs in the shortest path are found in the new matched paths, we

may expect that these two drugs have an adverse effect like the original

drugs. In this regards, we address graph path matching problem.

We devise an efficient multi-way join algorithm. Join operation is one

of important operations to process graph path matching queries. Existing

join policies such as sequential [4], bush tree [5, 6] and multi-way [7] have

its pros. and cons. Among them, we focus on multi-way join. Advantages

of multi-way join is that it processes complex join in a single task while an-

other join policies requires multiple tasks. Disadvantages of multi-way join

is that it replicates target data to achieve such a single task processing. So

far, multi-way join can hardly be applied in a distributed computing envi-

ronment due to the second issue. If we were able to reduce the redundant

data, multi-way join could be one of suitable join strategies to be applied in

a distributed computing environment. In this thesis, the signature encoding

technique is proposed to prune data, thereby, dramatically reducing redun-

dant data. Experiments against RDF datasets showed that the proposed ap-

proach is faster than state-of-the-arts approach in terms of SPARQL query

processing.
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1.2.3 Application to Biomedical Linked Data

Existing adverse drug combination identification systems are limited

in that they just list adverse drug combinations with confidence scores [8,

9, 10]. The reason why such adverse effects occur is more important than

confidence score. In our framework, the reason can be better captured by

shortest path between two drugs in a our novel pathway graph model.

Biomedical datasets relevant to adverse drug combination discovery

are collected such as Drug-Gene (DrugBank), Protein-Protein Interaction

(BioGrid), Pathway (Reactome, KEGG) and etc. These datasets are mapped

using genes Drugbank contains drug-drug interactions that have been dis-

covered in literatures. In our graph model, directed edges are established

using our pathway relationship model; directed links between pathways are

established using protein–protein interactions and up/down regulations be-

tween genes. A prototype system based on a visualization framework, Cy-

toscape, is implemented and applied to a pathway graph. Cytoscape is a

popular network visualization tool. A list of candidate drug combinations

with shortest paths is obtained using the proposed system, which is com-

pared with known drug-drug combinations available in DrugBank. We hope

that causes of the adverse effects can be better explained by these paths.

1.3 Thesis Organization

This paper is organized as follows. Chapter 2 explains preliminaries

and related work. Chapter 3 describes scalable shortest path discovery algo-

rithm based on reachability index. An optimization technique for reducing
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Figure 1: System architecture

reachability index size is then explained. Discovered shortest path can trans-

formed into a chain graph path query. Chapter 4, in turn, describes graph

path matching algorithm based on multi-way join. Signature encoding tech-

nique is proposed to reduce data redundancy which is one of limitations of

multi-way join. These algorithms are integrated into a visualization toolkit

in order to apply biomedical research, which is demonstrated in Chapter 5.

The thesis is concluded in Chapter 6 with future works.
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Chapter 2

Preliminaries and Related Work

2.1 Graph

Graph is a data structure to model a set of entities and their relation-

ships [11]. Due to its intuitive structure, graph has been applied to diverse

fields such as social network modeling, biological pathways, traffic model-

ing and etc. Formally, a graph G consists of a set V of vertices (or nodes)

and a set E of edges. An edge e = (vi,v j) is a pair with two vertices vi and

v j. We can say vi is linked to v j via e. In a directed graph, edge is an ordered

pair where the first vertex is designated as source and the second vertex as

target. In an undirected graph, edge is a set with no order. See Figure 2,

graphs are depicted where a circle represents a vertex, an arrow represents a

directed edge and a line represents an undirected edge.

In particular, this thesis deals with a directed graph where edges have

label and weight. Formally, edge-labeled weighted directed graph is G(V,E,EL,EW )

consists of a set V of vertices, a set E of ordered pairs of vertices, a map EL

from E to a set L of edge-labels, and a map EW from E to a set ℜ of real

numbers. In this thesis, EL and EW are omitted if the context is clear.
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2.2 Graph Path

Graph path is an alternating sequence of vertices P= v0,v1, ...,vk where

(vi,vi+1) ∈ E for 0≤ i < k. Formally, a graph G is acyclic if G has no graph

path P such that v0 = vk. Shortest (graph) path between two vertices s and

t in a graph G refers to the graph path P = {v0 = s,v1,v2, ...,vk = t} whose

weight sum W =
k−1∑
i=0

w(ei,i+1) is the smallest where w(ei,i+1) is the weight

of an edge ei,i+1 whose starting vertex is vi and ending vertex is vi+1. If the

weight of every edge in G is equal to 1, shortest path is the path with fewest

edges.

Dijkstra’s algorithm is a well-known solution for shortest path discov-

ery. An improved technique is to navigate both directions from source and

target, which is called bi-directional strategy [12]. Recently, RDB (Rela-

tional database) based shortest path discovery algorithms is proposed [3]. It

does not need to load the whole graph into memory. However, the scalability

issues still remains challenges as RDB based algorithms work on a single

10



machine.

2.3 Acyclic Transformation

DAG (Directed Acyclic Graph) is a directed graph with no cycle. Tree

is a undirected graph with no cycle. A graph can be transformed into a DAG

by dealing with cycles [13]. Acyclic transformation from G is to create a

directed acyclic graph DAG(V ′,E ′) by condensing every strongly connected

components SCCi = {vi} into a single vertex v′scci
and maintaining every

original edges; if (v f ,vi) ∈ E then (v f ,v′scci
) ∈ E ′ and if (vi,vt) ∈ E then

(v′scci
,vt) ∈ E ′.

2.4 Reachability

For a directed graph G and two vertices s and t, we may be interested

in knowing if there exists a path starting at s and ending at t. For exam-

ple, suppose a graph where vertex corresponds to cities and edges corre-

sponds to roads between cites. Graph reachability is analogue to the exis-

tence of routes between two cites. Graph reachability can only be defined

over DAGs. Reachability over a cyclic graph is meaningless because every

vertex can be reached by every vertex. Formally, reachability relation R for

a DAG G = (V,E) is a set T of vertex pairs (s, t) where s ∈ V and t ∈ V .

For a pair (s, t), there exists a sequence v0 = s,v1,v2, ...,vk = t such that

(vi,vi+1) ∈ E where 1≤ i < k. For a given two vertices s and t, if (s, t) is in

R, we indicate s t which implies t is reachable from s and s ̸ t otherwise.

11



2.5 Distributed Computing Frameworks

MapReduce, a programming model in a distributed environment, con-

sists of a map operation and a reduce operation [14]. The mapper distributes

data to each machine by using a predefined key; the reducer applies some

operations to the data collected in each machine. Before the map operation,

the input file is split by the InputSplit class object and then allocated to each

mapper. The allocated file is called InputSplit. MapReduce has been applied

to machine learning [15], massive matrix computation [16], gnomic analysis

[17] and etc.

Spark is a distributed computing framework on top of Hadoop eco sys-

tem. RDD (Resilient Distributed Dataset) is designed to support various op-

erations [18]. Spark differs with MapReduce in that Spark does not flush in-

termediate data into HDFS (Hadoop Distributed File System) if not needed

while MapReduce stores intermediate data once a MapReduce job finishes.

In other words, a sequence of operations can be applied to RDD without

accessing disks. To achieve this, RDD is designed to be immutable.

2.6 RDF & SPARQL

Definition 1. (RDF graph) An RDF triple is a 3-tuple

(s, p,o) ∈ (U ∪B)× (U)× (U ∪B∪L)

, where U is a set of URIs, B is a set of blank nodes, and L is a set of literals.

s is called as subject, p as predicate or property, and o as object. A set of

12



RDF triples T is said to be a RDF graph.

An example of an RDF triple from DBPedia1 is:

(<http://dbpedia.org/resource/Alan Turing>,

<http://dbpedia.org/property/birthDate>,

“1912-06-23”)

, which tells us that Alan Turning was born on 1912-06-23. An abbreviated

form is also possible such as (dbpedia:Alan Turing, dbpprop:birthDate,

“1912-06-23”), where http://dbpedia.org/resource is replaced

with dbpedia and http://dbpedia.org/propertywith dbpprop.

The replaced string is called the namespace. SPARQL is a query language

for RDF and its syntax is very similar to SQL in the domain of relational

databases. A query for enumerating people with the same birth place as Tur-

ing can be represented in SPARQL as follows.

SELECT ?person

WHERE {

dbpedia:Alan Turing dbpprop:birthPlace ?birth place .

?person dbpprop:birthPlace ?birth place .

}

In the WHERE clause, there are two triple patterns, which are type of triples

that may contain query variables. A set of triple patterns is called a Basic
1http://dbpedia.org
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Graph Pattern (BGP). Note that ?birth place appears in both triple pat-

terns, which means that ?birth place is a joining variable.

2.7 SPARQL Processing Engines

We review previous research into the area of SPARQL query process-

ing for RDF data. These studies can be classified into two broad approaches,

which are based on a single machine or clusters.

Single machine-based approaches Numerous techniques have been pro-

posed for the storage of RDF data in relational databases using a single ma-

chine. For example, Jena [19] proposed the property table approach, which

reduces the number of joins by allowing multiple triple patterns in a single

property table. However, this method requires the identification of subjects

that have the same set of properties. The vertical partitioning approach [20]

is an alternative solution that partitions the triple table in a vertical manner

according to the predicates of triples. In addition, much previous research

has focused on the area of indexing techniques for RDF data. Hexastore

[21] uses a main memory index that covers all possible patterns, such as

SPO, SOP, PSO, POS, OPS, and OSP, where S stands for subject, P for

predicate, and O for object. RDF-3X [22] uses clustered B+tree indices for

all permutations of S-P-O triples. BitMat [23] is a bit-matrix index for

RDF triples. Similarly, gStore [24] encodes RDF triples into bits strings

and then places them in a tree structure and query processing is performed

by bit-wise operations. However, because single machine-based systems are
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dependent on the main memory, they are not scalable as the volume of RDF

data increases.

Cloud-based approaches Recently, cloud and distributed architectures

have attracted much attention in the areas of SPARQL query processing.

Cluster-based approaches include key-value stores and distributed file sys-

tems [25].

Methods dependent on key-value stores can be categorized into triple-

based and graph-oriented approaches [25]. The first type treats RDF data

as a set of triples and it places each triple permutation (i.e., SPO, POS, and

OSP) in existing key-value stores, e.g., Rya [26] and H2RDF [27] belong

to this type. The second type deals with RDF data from a graph perspec-

tive. Trinity.RDF [28] is a graph-based RDF key-value store that splits RDF

graph data into disjoint parts with several clusters. Other studies have fo-

cused more on ways in which a query is federated over back-end stores, e.g.,

N-hop replication [29], query workload replication [30, 31], and heteroge-

neous storage combinations [32]. However, although previous methods for

distributed environments were designed for large-scale RDF data, these are

limited because they are dependent on existing key-value stores such as data

storage structures and join evaluation.

Several distributed file system based approaches employ the MapRe-

duce framework [33]. SHARD [4] stores triples where the subject is the

same as that in the distributed file. HadoopRDF [5] also stores RDF data in

a vertical partitioning scheme, which partitions RDF data into smaller vol-

umes according to their property values. Entity-based modeling is a differ-
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ent approach used in EAGRE [34], which focuses on the range queries and

order constraints using the MapReduce framework. In particular, because

MapReduce-based approaches focus on decreasing the number of jobs (i.e.,

the MapReduce jobs) that pass data through the disk accesses, join evalu-

ation has become one of the main concerns in SPARQL query processing.

SHARD [4] uses the sequential query plan whereas HadoopRDF [5] exe-

cutes SPARQL queries using the bush query plan, which is suitable for par-

allel processing. However, the bush query plan still requires several Hadoop

jobs with intermediate results exchanged through the disk accesses. We will

discuss their limitations in details in the following section.
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Chapter 3

Shortest Graph Path Discovery based
on Reachability Index

3.1 Introduction

In this Chapter, a shortest path discovery algorithm based on distributed

computing environment is described. Our goal is to overcome limitations of

existing works. First, existing approaches are inefficient to deal with massive

graph because these are designed to work on a single machine. Second,

during computation, existing approaches visit vertices that are not reachable

to destination vertex.

Our solution is to make use of distributed computing environment.

Specifically, Spark is utilized here, which is one of popular distributed com-

puting framework on top of Hadoop eco-system. Spark is more applica-

ble than MapReduce. In MapReduce, disk I/O occurs between tasks which

would slow down the discovery process. In Spark, no disk I/O is required

between tasks, rather it tries to fully use memory. Shortest path discovery

in our context is needed to be solved in real-time. One may argue that the

shortest paths for all pair of drugs can be discovered in off-line in advance.

This is infeasible because there exist too many drug combinations. As of

Jan. 2017, DrugBank contains 8,257 drugs. If we assume that it takes one
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second to discover the shortest path for an ordered pair of drugs, it would

take more than 2 years totally.

Existing approaches are inefficient for the case when some vertex have

many outgoing edges. We cannot avoid expanding most of outgoing edges

from a vertex. If we know that some outgoing edges does not have to be ex-

panded, we can save much time. This can be achieved by utilizing reachabil-

ity index, which conceptually contains a set of 3-tuple consisting of (source

vertex, target vertex, reachable or not reachable). Before expanding an out-

going edge, we may access the reachability index. If it says no, we don’t

have to expand the edge, thereby, reducing the number of expansions.

However, the proposed approach could be inefficient if the size of

reachability index is huge. To resolve the issue, we propose an optimization

technique to reduce reachability index size. Graph statistics is exploited to

assign ids to each vertex, which is then used to label each vertex. Section 3.2

demonstrates an optimization technique to reduce reachability index size.

After then, Section 3.3 demonstrates Spark based shortest path discovery

algorithm that utilizes the reachability index.

3.2 Space Reduction of Reachability Index

3.2.1 Introduction

Graph databases are increasingly used for RDF (Resource Description

Framework) data management. Mining reachability relationships between

resources is one of important building blocks for graph databases. Reacha-

bility relationships in a graph and its corresponding DAG (Directed Acyclic

18



Graph) are equivalent when we focus on reachability alone, which allows to

focus on DAGs in this thesis. Diverse labeling schemes have been proposed

to efficiently determine the reachability of DAGs. We focus on a state-of-

the-art 2-hop labeling scheme that is based on a permutation of vertices to

achieve a linear index size and reduce on-line searches that are required

when the reachability cannot be answered by 2-hop labels only [35]. We ob-

served that the approach can be improved to guarantee the minimized index

size. Therefore, a way of reducing the 2-hop label size is proposed in this

section with experimental results on real-world DAG datasets.

A 2-hop labeling scheme of a DAG is to label each vertex v with a pair

(Lout(v), Lin(v)), where Lout(v) is a set of vertices that v can reach and Lin(v)

is a set of vertices reachable from v [35]. In this thesis, we focus on a state-

of-the-art variation of 2-hop labeling [36], where a permutation of vertices is

used to allow Lout(v) and Lin(v) to keep at most k reachable vertices, which

probabilistically guarantees reduction in on-line Depth-First-Search(DFS),

a condition required when the reachability cannot be answered by these la-

bels only. We briefly review the labeling scheme as follows.

2-hop Labeling based on Independent Permutation (IP) Let G(V,E)

be a DAG with V as a set of vertices and E as a set of edges pairing two

vertices. u v is used to denote that u can reach v, and u ̸ v, otherwise.

A permutation of V is a bijection denoted as σ : V −→ V . Given G and

a positive integer k, IP randomly generates σ and then outputs the 2-hop
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Figure 3: The 2-hop index size of the same graph varies according to σ1
and σ2 when k = 3.

index Ik
σ : V −→ H, where H is a set of pairs (Lout(v),Lin(v)) defined as:

Lout(v) = mink{σ(u)|v u}

Lin(v) = mink{σ(u)|u v}

, where mink{A} is a sub-set of A, such that Ai < A j if i < j and |mink{A}| ≤

k. In other words, mink{A} contains the k smallest integers in A.

In the original version of IP, σ is randomly generated using the Knuth

shuffle algorithm. We argue that the randomized way of generating a per-

mutation is unable to ensure that the minimized size of index is obtained.

Therefore, we define the problem that generates a space-efficient permuta-

tion defined in Definition 2.

Definition 2. 2-Hop Size Minimization Given G(V,E) and a positive inte-
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ger k, output σ such that

argmin
σ

size(Ik
σ(V )) :=

1
|V |

∑
v∈V

space(Lout(v))+ space(Lin(v))

, where space(L) is the space requirements for a set L of integers, which can

be defined according to the application requirements.

An illustrative example that shows the effect of σ on the index size is

depicted in Figure 3. In order to see the index size difference for the very

small DAG, we define space requirements as follows:

space(L) =
∑
w∈L

w (3.1)

We have a research question; Is it possible to deterministically choose

a permutation σ of V that best minimizes the index size? Because the num-

ber of candidate permutations is n!, a brute-force algorithm is not feasi-

ble. One may choose a permutation by sorting V using a topological sort.

Smaller numbers are assigned to vertices having more reachable vertices.

It can be expected that this method allows Lin(v) to have smaller numbers.

However, conversely, Lout(v) would have large numbers, offsetting smaller

size of Lin(v). A more sophisticated technique is required.

3.2.2 Related Work

Reachability relationships in a graph and its corresponding DAG are

equivalent, since a graph can be transformed into a DAG by condensing ev-

ery strongly connected component(SCC) into a single vertex and retaining
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Figure 4: Trade-off in graph reachability processing

edges between vertices in SCC and the other vertices that are connected to

SCC [13]. In terms of reachability relationships, Linked Open Data1 (LOD)

can be viewed as a real-world DAG dataset. A vast amount of knowledge

is available in LOD, including social networks, biological networks, traf-

fic networks, and software version management. Protein-protein interaction

networks, for example, can be represented in DAGs. One may be interested

in mining interactions (i.e., reachability relationships) between two proteins

(i.e., vertices) [37]. Regarding RDF triple stores, reachability relationship

identification helps process SPARQL queries efficiently [38].

There are extensive studies on labeling of DAGs for reachability queries

processing [39]. The straightforward way is to pre-compute the edge transi-

tive closures(TC) [40]. Even if this method provides an answer to a reach-

ability query in O(1) time, the index could be huge for even small dense

graphs. On-line traversal, such as DFS and Bread-First Search(BFS), do not

1http://linkeddata.org
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require any index but lead to slow query processing. See Figure 4, various

approaches have been made to address trade-offs between the index size

and the speed of query processing. Some authors have adapted the prime

number labeling scheme to DAGs [41]. However, prime numbers quickly

grow to large values. Tree Cover [42] labels a vertex v with a compressed

TC of the subtree rooted at v. [43] present GRIPP(GRaph Indexing based

on Pre- and Postorder numbering) that utilizes spanning trees based on an

interval label scheme. GRAIL [44] is based on randomized multiple interval

labeling. FERRARI [45] labels each vertex with a mixture of exact and ap-

proximate reachability intervals, where subsets of intervals are merged into

approximate intervals. 2-hop labeling [35] labels each vertex v with a pair

(Lout(v),Lin(v)).

Recently, a state-of-the-art variation of 2-hop labeling has been pro-

posed in [36] that reports outstanding performance compared to existing

approaches. A permutation of vertices is first generated randomly. Min-

Hash is adapted to construct 2-hop labels; at most k reachable vertices are

only maintained in 2-hop labels. For pairs that cannot be determined by k

reachable vertices only, an on-line search is performed. Some heuristics are

also presented to minimize the case that requires exhaustive on-line DFS

searches.

An space optimization technique for tree labeling is proposed [1, 2].

Figure 5 depicts a label assignment reordering technique for unordered XML

data. The authors observed that Asia node has fewer children than Europe

node does. If Europe node has smaller label than Asia node, we can save the

space requirements overall. For example, 10 is part of Asia node’s label and
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Figure 5: A prefix-based labeling of tree[1, 2]

1 is part of Europe node’s label. According to the prefix-based labeling strat-

egy, 10 is used four times by Asia node’s children and 1 is used six times

by Europe node’s children. If labels are assigned reversely, 10 will be used

six times while 1 four times, which occupies more space than the proposed

one. The approach motivates us to reduce reachability index size of DAGs.

3.2.3 The Proposed Approach

Regarding the research question mentioned in Section 3.2.1, our hy-

pothesis is stated as follows.

• If smaller numbers are assigned to σ(v) because v has more edges,

then the 2-hop index size is reduced.

To prove the hypothesis, we first compute the degree of each of the

vertices in V and then sort V in decreasing order by degree. The order is
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regarded as the desired permutation σ(V ) as follows.

σ(v) = i

, where v is the i-th element in V degree such that V degree is a sorted set of V ,

sorted by decreasing degree of v.

In other words, the more degrees v has, the smaller the number assigned

to σ(v). See Figure 6, for example, vertex 6 is assigned the smallest number

(σ(6) = 0) because its degree is the largest among vertices. This is derived

by an expectation that if v has many edges, v is likely to become a reachable

vertex from another vertex. The overall 2-hop index size could be reduced by

making σ(v) smaller. See Figure 7, examples for each approach are shown;

ids are assigned randomly, ids are not changed, and ids are assigned by the

proposed approach, respectively. Note that the current approach does not

take into account the parameter k. We plan to introduce the parameter k to

guarantee a reduced index size for arbitrary k.
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Figure 7: Diverse vertex permutations and the resultant index size

3.2.4 Theoretical Analysis

In this section, the relationships between degrees and the size of 2-hop

index is theoretically analyzed. First, we propose a model for the size of

2-hop label.

3.2.4.1 2-Hop Index Size

We define the reachability matrix in Definition 3.

Definition 3. Reachability Matrix The reachability matrix R for a DAG

G(V,E) represents reachability relationships between two nodes.

R(i, j) =


1 if vi v j

0 if vi ̸ v j
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, where 1≤ i≤ |V | and 1≤ j ≤ |V |

Definition 4. Permutation Vector For a DAG G(V,E) and a permutation

σ of V , the permutation vector P is defined as follows:

P = (σ(v1),σ(v2), ...,σ(vn)) (3.2)

, where n = |V |.

Definition 5. 2-Hop Label Size Let L(G,P) be the simple label size for a

DAG G and a permutation vector P, which is defined as follows:

L(G,P) = (R×PT )T × I +(RT ×PT )T × I (3.3)

, where R is the reachability matrix and I is a n-dimensional column vector

of 1s.

The first factor of Definition 5 represents the size of Lout and the second

factor represents the size of Lin. Our goal is to minimize L(G,P) with respect

to P stated as follows.

argmin
P

L(G,P) (3.4)

We expand the equation as follows.
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argmin
P


σ(v1)r(1,1)+ ...+σ(vn)r(1,n)

...

σ(v1)r(n,1)+ ...+σ(vn)r(n,n)


T

×


1
...

1



+


σ(v1)r(1,1)+ ...+σ(vn)r(n,1)

...

σ(v1)r(1,n)+ ...+σ(vn)r(n,n)


T

×


1
...

1


The expression is reduced as follows.

argmin
P

σ(v1)(r(∗,1)+ r(1,∗))+ ...+σ(vn)(r(∗,n)+ r(n,∗)) (3.5)

, where r(∗,1) =
∑n

i=1 r(i,1) and r(1,∗) =
∑n

i=1 r(1, i).

Note that r(∗, i) is the number of vertices reachable to vi such as r(∗, i)=

|{vw : vw vi}| and similarly we have r(i,∗) = |{vw : vi vw}|. In this re-

gards, L(G,P) can be reduced by making σ(vi) to be inverse-proportional to

the number of reachable vertices, as stated in Lemma 1.

Lemma 1. The label size is minimized if we determine a permutation vector

P as follows.

σ(vi) ∝
1

r(∗, i)+ r(i,∗)
(3.6)

The expression suggests that smaller labels be assigned to vertices with

large number of reachable vertices (in both directions).
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3.2.4.2 Degrees and The number of reachable vertices

We showed that the minimum label size can be obtained as suggested

by Lemma 1. However, in this Chapter, we have proposed an approach based

on degrees. It is because that calculating the number of reachable vertices

takes some time. Rather, we exploited degrees which can be counted easily.

Now, we will show that degrees are proportional to the number of reachable

vertices, which means that degrees can be used to reduce the label size. We

first define l-length reachability.

Definition 6. l-length reachability The l-length reachability from vi to v j,

denoted as vi l v j, is true if there is a path P from vi to v j such that P is

composed of l +1 vertices. If l is 1, then vi is adjacent to v j.

We generalize the reachability matrix in Definition 3 to l-length reach-

ability matrix as stated in Definition 7.

Definition 7. l-length Reachability Matrix The l-length reachability ma-

trix Rl for a DAG G(V,E) represents reachability relationships between two

nodes as follows.

Rl(i, j) =


1 if vi l v j

0 if vi ̸ l v j

, where 1≤ i, j ≤ |V |.

Corollary 3.2.0.1. For a DAG G(V,E), R1 is the same with the adjacent
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matrix A defined as follows.

A(i, j) =


1 if (vi,v j) ∈ E

0 if (vi,v j) ̸∈ E

Two reachability matrices can be multiplied to obtain another reacha-

bility matrix using the reachability matrix multiplication operator, defined

in Definition 8.

Definition 8. Reachability Matrix Multiplication Let ⊙ be the reachabil-

ity matrix multiplication operator between two reachability matrices Rw and

Rw. Rw+1 is obtained by Rw⊙Rw which is defined as follows.

Rw⊙Rw =


1 if RR(i, j)≥ 1

0 if RR(i, j) = 0

, where 1≤ i, j ≤ |V | and RR = Rw×Rw.

In terms of binary operators,⊙ can be viewed as replacing multiplication(×)

and addition(+) operators with AND(∧) and OR(∨) operators, respectively.

For example, consider R2 = R1⊙R1.

R2 =

R1(1,1)∧R1(1,1)∨ ...∨R1(1,n)∧R1(n,1) ... R1(1,1)∧R1(1,n)∨ ...∨R1(1,n)∧R1(n,n)

.

.

.
. . .

.

.

.

R1(n,1)∧R1(1,1)∨ ...∨R1(n,n)∧R1(n,1) ... R1(n,1)∧R1(1,n)∨ ...∨R1(n,n)∧R1(n,n)

 (3.7)

Now, consider the n-dimensional column vector R2
row by summing up

rows of R2.

30



Mathematical Clues (2/2)
ଵሺ1,1ሻݎ ⋯ ,ଵሺ1ݎ ݊ሻ

⋮ ⋱ ⋮
,ଵሺ݊ݎ 1ሻ ⋯ ,ଵሺ݊ݎ ݊ሻ

⨀
ଵሺ1,1ሻݎ ⋯ ,ଵሺ1ݎ ݊ሻ

⋮ ⋱ ⋮
,ଵሺ݊ݎ 1ሻ ⋯ ,ଵሺ݊ݎ ݊ሻ

ൌ

ଵݎ 1,1 ∧ ଵݎ 1,1 ∨ ⋯∨ ଵݎ 1, ݊ ∧ ଵݎ ݊, 1 ⋯ ଵݎ 1,1 ∧ ଵݎ 1, ݊ ∨ ⋯∨ ଵݎ 1, ݊ ∧ ଵݎ ݊, ݊
⋮ ⋱ ⋮

ଵݎ ݊, 1 ∧ ଵݎ 1,1 ∨ ⋯∨ ଵݎ ݊, ݊ ∧ ଵݎ ݊, 1 ⋯ ଵݎ ݊, 1 ∧ ଵݎ 1, ݊ ∨ ⋯∨ ଵݎ ݊, ݊ ∧ ଵݎ ݊, ݊

ଶݎ 1,1 ൅ ⋯൅ ଶݎ 1, ݊
⋮

ଶݎ ݊, 1 ൅ ⋯൅ ଶݎ ݊, ݊

ሺܴଶሻ݉ݑݏ_ݓ݋ݎ
|ሼݒ௝: ଵݒ → |௝ሽݒ

ܣ ൌ ܴଵ ܣ ൌ ܴଵ

ܴଶ

Therefore, 	outDegreeሺݒ௜ሻ ∝ |ሼݒ௝: ௜ݒ → |௝ሽݒ

ܴଵ ܴଵ ܴ௥௢௪ଶ

⋯⨀

outDegree ௜ݒ
ൌ෍ ,ሺ݅ݎ ݆ሻ

௝

ܴଶ

ൌ
⋯

Adjacent Matrix = 
Reachability Matrix (length 1)

|ሼݒ௝: ௡ݒ → |௝ሽݒ
⋮

0 1 1 0
0 0 1 1
0 0 0 1
0 0 0 0

⨀

0 1 1 0
0 0 1 1
0 0 0 1
0 0 0 0

ൌ

0 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0

1

2 4

3

Example

Label size reduction
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R2
row =


R2(1,1)+ ...+R2(1,n)

...

R2(n,1)+ ...+R2(n,n)

=


|{v j : v1 2 v j}|

...

|{v j : vn 2 v j}|

 (3.8)

See Figure 8 and Expression 3.7 and 3.8. The summation of values in

ith row in R1 corresponds to the out-degree of ith vertex. In order to obtain

ith row in R2
row, ith row in R1 is taken into account j times where R1 has

j columns. The same process can be applied to (R1)T that is related to in-

degrees. The simplified observation leads us to state Corollary 3.2.0.2.

Corollary 3.2.0.2. For a vertex vi, the number of reachable vertices from vi

and the number of vertices that can reach vi can be measured approximately

by out-degree and in-degree, respectively. Specifically, outDegree(vi) ∝ |{v j :

vi v j}| and inDegree(vi) ∝ |{v j : v j vi}|

3.2.5 Experimental Results

We implemented the proposed approach based on the source codes pro-

vided by the authors of IP2. The proposed approach (denoted as IP adv) is

2http://www1.se.cuhk.edu.hk/˜hwei/source/IP.zip
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Table 1: Real-world DAG datasets

Name Vertices Edges Average Degree Median
(max.) Degree

arxiv 6,000 66,707 22.2 (700) 14
go 6,793 13,361 3.9 (71) 3

pubmed 9,000 40,028 8.9 (432) 4
citeseer 340,945 312,282 1.8 (55,758) 1

citpatents 3,774,768 16,518,947 8.8 (793) 6
go-uniprot 6,967,383 34,769,339 10.0 (1,186,280) 4

evaluated compared with the original approach (IP) and baseline (IP fix). IP

generates a random permutation, which means that a different index is con-

structed for each run. IP fix is based on the identity permutation such that

σ(v) = j, where v is the j-th element in V . All the experiments were con-

ducted on a machine with a 2.4 GHz CPU and 40 GB of RAM. We down-

loaded the real-world DAG datasets3. Statistics of the datasets are listed in

Table 1.

The index sizes for each dataset are plotted in Figure 9. The index size

by IP adv and IP fix are compared with the index sizes generated by 10 runs

of IP. For each run, only IP showed the different index size due to its ran-

dom nature. IP adv showed the best performance for all datasets. For small

datasets with large degrees such as arxiv and pubmed, relatively small

improvements are observed. For large datasets, we observed relatively large

improvements, except for citeseer and yago. It can be seen in Table

1 that these datasets have relatively small median degrees. Since IP adv is

based on degrees, too small or too large degrees would not significantly con-

3https://code.google.com/archive/p/ferrari-index/downloads
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tribute to a reduction in the index size. In future works, we plan to utilize

more graph metrics to work better against such datasets.

Labeling time is depicted in Figure 10. In most cases, IP fix is faster

than IP adv. It is a natural result. IP fix does not has the step for vertex

id assignment like IP and IP adv, which save labeling time. We argue that

labeling is an off-line task whose consumed time should not be top priority

to measure overall performance. Rather, we would like to focus on label size

which is more related to query processing time in on-line task.

3.2.6 Conclusion and Future Work

It has remained a challenge to apply graph reachability indexing tech-

niques to very large sets of LOD. In this Chapter, we showed that simple

graph metrics can be exploited to reduce the index size. Specifically, a ver-

tex id assignment technique is introduced, which utilizes vertex degrees.

Experimental results showed that the proposed approach reduces 2-hop la-

bel size on real-world DAG datasets. In order to make 2-hop labeling to

become more applicable to LOD, we suggest future research directions as

follows.

2-Hop Label Update Linked Open Data (LOD) evolves over time [46].

When a DAG Gt changes into Gt+1, the straightforward way is to construct

the 2-hop index against Gt+1 from scratch. As this is not feasible for mas-

sive DAGs in LOD, we define a problem that generates an update-efficient

permutation by which 1) a smaller number of existing labels are modified

and 2) a smaller index size is maintained, as defined in Definition 9.
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Definition 9. Update-efficient Permutation Assume that we already have

Gt(Vt ,Et) and its 2-hop index Ik
σ(Vt). Given Gt+1(Vt+1,Et+1), generate a new

permutation σt+1 such that

argmin
σt+1

α×|{v ∈Vt

⋂
Vt+1|Ik

σt
(v) ̸= Ik

σt+1
(v)}|+β× size(Ik

σt+1
(Vt+1))

, where α≥ 0, β≥ 0.

Since there is a trade-off between these criteria, weights are used ac-

cording to requirements. The first factor of the equation in Definition 9 rep-

resents the number of vertices in the current version Vv+1 whose labels are

not the same as in the previous version in Ik
σ(v). When a new vertex vnew

is added to a DAG Gt(Vt ,Et) that has already been labeled by σt , which

number should be assigned to σt+1(vnew)? The simplest way is to make

σt+1(vnew) = max(σt(Vt))+1. However, with this approach, the minimized

index size is not always ensured. Sophisticated algorithm is required.

As a partial solution to the issue, we have some experience on scalable

RDF change detection [47, 48, 49] that outputs added and removed triples

for two given RDF dataset versions. By utilizing this system, it would be

possible to update only a portion of an existing 2-hop index while avoiding

re-labeling.

Scalable Algorithm To the best of our knowledge, there exists few work

for 2-hop labeling algorithm working on distributed computing environ-

ment. Due to the not enough memory issue in a single machine, it would

not be possible to do 2-hop labeling against massive graph like LOD. How-

34



ever, 2-hop labeling in parallel is not an easy task.

In order to do 2-hop labeling in a cluster, when vertices are distributed,

how can we know reachable vertices from a vertex? Given a set M of ma-

chines, we may distribute a subset Vi of V to a machine Mi and then perform

labeling independently. The challenge is to obtain Lin(v) and Lout(v) for a

vertex v ∈ Vi residing in Mi whereas some o ∈ Lin(v)
⋃

Lout(v) have been

distributed to the other machines M j, such that i ̸= j.

We are motivated by the approach in [50] that proposed cluster based

labeling algorithms for trees. In that work, Mapper performs incomplete la-

beling and then Reducer completes the labels by referring to the offset table

shared by all machine. The offset table is constructed based on information

collected from each Mapper, which contains information needed to com-

plete the labels in Reducers. We plan to adapt the idea in a manner that

effectively deals with large DAGs in a cluster.

Extensive Experiments We plan to collect LOD datasets and then trans-

form them into DAGs by condensing SCC. Synthetic DAG datasets will also

be considered, varying graph metrics such as in/out-degree, diameter, and

vertices with no ancestors or descendants. In particular, several releases of

DBpedia datasets4 will be collected in order to evaluate the performance of

updating the index. To examine the pros and cons of our approach in greater

details, we will compare it to a number of notable existing approaches such

as [45, 44, 51]. Regarding our cluster-based algorithm, as there exist few

works on cluster-based 2-hop labeling, we will modify existing cluster-
4http://wiki.dbpedia.org/services-resources/datasets/

previous-releases

35

http://wiki.dbpedia.org/services-resources/datasets/previous-releases
http://wiki.dbpedia.org/services-resources/datasets/previous-releases


based tree labeling algorithms [50] and consider these as the baseline.
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3.3 Shortest Path Discovery

3.3.1 Introduction

Shortest path discovery is one of fundamental problems in computer

science, which is defined in Definition 10 in our context.

Definition 10. Shortest Path Discovery Given a DAG G(V,E,EW ) and

two distinct vertices s = v0 and t = vk, find a path P = v0,v1, ...,vk such

that
∑k−1

i=0 EW (vi,vi+1) is the smallest, where EW is a map from edges to

weights.

The meaning of shortest is defined according to requirements. Short-

est path discovery has been applied to diverse domains. For example, cites

and roads connecting two cites can be modeled in graphs. Shortest path is

the route that visits smallest number of intermediate cites or whose sum of

distance is the smallest.

A well-known solution for shortest path discovery is Dijkstra’s al-

gorithm. Bi-directional strategy is proposed to navigate both from source

and target to reduce search space [12]. Recently, RDB based shortest path

discovery algorithm is proposed, which is called FEM (Frontier-Expand-

Merge) framework [3]. Although FEM framework utilizes RDB, it still re-

mains a challenge to utilize distributed computing environment to solve

shortest path discovery problem. In this chapter, a solution that utilizes dis-

tributed computing environment is proposed. By doing so, massive graph

can be dealt with efficiently, where existing approaches work inefficiently.

The remainder of this Chapter is organized as follows. In Section 3.3.2,
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the state-of-the-art approach is briefly described. In Section ??, the proposed

approach called FEM-SR is demonstrated with two optimization techniques.

Experimental results on real-world DAGs is shown in Section 3.3.5. Section

3.3.6 discusses the federated shortest path discovery which is a novel def-

inition that is closely related to reachability. The Chapter is concluded in

Section 3.4 with future directions.

3.3.2 FEM

FEM framework consists of three steps such as Frontier, Expansion and

Merge. Figure 12 depicts the data-flow that finds shortest path from s to t in

the top-left side graph. Edges of the graph are stored in T E table consisting

of pairs (src = source vertex, dst = target vertex). For the simplicity, weight

of edges is omitted here, which implies that every weight is set to 1. Visited

vertex table Ai contains four items. nid represents vertex id, d2s for distance

to source vertex, p2s for vertex id that has been visited before visiting nid

and f for indicating whether nid has been expanded or not.

In initialization step, T E table is created from the input graph. When

the user selects a source and target vertex, an iterative task begins. In round

1, the source vertex s is inserted into A1, where d2s is set to default value

which is 0 and p2s is set to itself. F operator selects the frontier node which

has the smallest d2s value and f is false. In this case s is selected. E opera-

tor in turn selects outgoing edges of the frontier node. Specifically, it selects

dst from T E table such that src is s. In this case, a and b are selected. Ac-

cordingly, d2s is set to 1 which is the sum of s’s d2s and a and b’s weight.

M operator merges A1 and E1 to obtain A2 which is will be used for the
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Figure 12: The data-flow diagram of RDB based shortest path discovery
algorithm called FEM framework. Some part of the figure is borrowed from
[3].

next round. This process continues until vising t. Shortest path is recov-

ered by backtracking the last visited table. Two optimization techniques are

proposed. Firstly, the process is carried out bi-directional way, that is, the

similar process is performed from t. Whenever it meets an intermediate ver-

tex, the process terminates. Secondly, in performing E operator, expanding

to some outgoing edges is delayed if these edges have large weight.

3.3.3 FEM-SR

FEM-SR is a shortest path discovery system working on Spark. The

name came from existing FEM framework because FEM-SR is also based

on three stages such as Frontier, Expand and Mersge. Instead of using SQL

queries, FEM-SR uses Spark operations, which means that intermediate

data is maintained in Spark RDD. It should be noted that RDB tables are

updatable while Spark RDD is immutable. This makes us to specify new
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Figure 13: The data-flow diagram of the proposed approach called FEM-
SR. The second round is depicted.

operations that works similar with SQL queries used in FEM.

The data-flow diagram of FEM-SR is depicted in Figure 13. For the

simplicity, RDD is represented in table like RDB tables in Figure 12. In im-

plementation level, RDD used here is a set of key-value pairs. nid becomes

key and (d2s, p2s, f ) is value. This allows to distribute data by nid using a

hash partitioner. Circles represents Spark operations. .

Only the second round is depicted in Figure 13, where shortest path

from s to t is considerted. The vertex s in A2 is marked as true since s has

already been visited in the first round which is not presented here. The other

vertices to be visited later are in false.

First step is to apply Filter operation in order to obtain an RDD A2
F with
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vertices whose f is false. The other already visited vertices are selected to

create A2
T . Then, Min operation is applied to A2

F in order to select vertices

that has the minimum d2s. F2 is created from the frontier vertex and f is set

to true to indicate that it has been visited.

Subtract operation is applied to A2
F and F2 to create N2. It contains

candidate vertices whose distance could be updated by detours. F2 and T E

are then joined on nid = src to create D2 that contains neighborhoods of the

frontier node a. N2 and D2 are joined to create J2 which consists of new

vertices I2 and existing vertices U2. N2 is replaced by U2 if d2s value in U2

is smaller than the value in N2. In other words, the distance of the new path

s,a,b which is 5 is smaller than the distance of the old path s,b which is 8.

Since shorter path is discovered, the visited table has to be updated.

The last step is to apply Union operation to A2
F , F2, U2 and I2 to create

A3 which is processed in the next round.

This process corresponds to forward navigation. We do the similar pro-

cessing from t which is called backward navigation as proposed by the bi-

directional strategy.

3.3.3.1 Exploiting Reachability Index

During Expand stage in FEM, every neighborhoods are considered,

which often slow down the discovery process if too many neighborhoods

exist. In the context of FEM-SR, this corresponds to D2 in Figure 13. To

overcome the limitation, we make use of reachability index to prune ver-

tices that are not reachable to target vertex. Specifically, these not reachable

vertices are not inserted into D2.
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The right-bottom side of Figure 13 depicts reachability index. The fron-

tier node here is a and its neighborhood vertices are b,g, i according to edge

RDD T E. Reachability queries are constructed having a neighborhood ver-

tex as the source and t as the target, like reach(b, t),reach(g, t),reach(i, t).

Reachability index would say false for reach(g, t) as can be seen in the graph

where there is no path from g to t. In this way, we can prune g, which reduce

the size of D2.

3.3.3.2 Exploiting External Store

Edge list is maintained in T E, which means that T E is huge for huge

graphs. In our scheme, T E is joined with F i in ith round. Note that F i con-

tains one tuple. Join operation is not adequate operation in this skewed data.

Rather, lookup operation would be efficient. Unfortunately, lookup opera-

tion is not efficient in Spark framework as it requires to collect data across

worker machines. We decided to utilize external database such as key-value

stores. RDB is not necessary in this case since no complex queries are

needed but a simple lookup query is sufficient. In this thesis, MongoDB

is used because there exist a MongoDB connector for Spark. Thus, the orig-

inal Join operation is replaced by a MongoDB query. Specifically, edges

are also stored in a MongoDB collection having the same column with T E.

For a given frontier vertex, we issue a MongoDB query that ask to fetch

documents where src is equal to the frontier vertex.

Utilizing MongoDB for all case is not a good choice. For the frontier

vertex with many neighborhoods, utilizing MongoDB could be inefficient.

MongoDB runs on a different process with Spark processes. Data fetched
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from MongoDB is fed into Spark processes through network communica-

tion. Moreover, the fetched data is only fed into Spark’s driver process. This

process does not take any benefits of distributed computing environment. In

this regards, we use a heuristic that if the frontier vertex’s number of neigh-

borhoods is more than some threshold, T E is used and MongoDB is used

otherwise.

Table 2: Real-world DAG datasets

Name Vertices Edges Average Degree Median
(max.) Degree

arxiv 6,000 66,707 22.2 (700) 14
citeseer 340,945 312,282 1.8 (55,758) 1
citeseerx 3,774,768 16,518,947 8.8 (793) 6
go-uniprot 6,967,383 34,769,339 10.0 (1,186,280) 4

3.3.4 Theoretical Analysis

In this section, the correctness of FEM-SR is described. Then, we dis-

cuss the cost model of FEM-SR.

3.3.4.1 Correctness

In this section, we will show that the pruning technique based on the

reachability index discovers the shortest path correctly.

Definition 11. k-Level Structure Given an edge-weighted DAG G=(V,E,EW )

and a root vertex s, Lk(s) is k-level structure rooted at s that is a set of ver-
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Correctness of FEM-SR (김형주, 이상구 Ch. 3.1)

⋯
⋯

min

ttarget

17/21

Definition (Level Structure)
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Theorem FEM-SR discovers shortest path correctly
Proof
By mathematical induction. Base case ܮ଴ ݏ ≔ ݏ
Assuming that it holds when ݅ ൌ ݇, we need show it also holds when ݅ ൌ ݇ ൅ 1

s

a b ଵܮ ݏ ൌ ሼݏ, ܽ, ܾሽ
ଶܮ ݏ ൌ ሼݏ, ܽ, ܾ, ܿ, ݀ሽ

c d

Case 1 Case 2

௞ܮ ݏ s

v
௞ାଵܮ ݏ

⋯
⋯

min

ttarget

௞ܮ ݏ s

v
௞ାଵܮ ݏ

Without reachability index
With reachability index

Díaz, Josep; Petit, Jordi; Serna, Maria (2002), "A survey of graph layout problems", ACM Computing Surveys

Figure 14: An example of level structures rooted at s.

tices as follows:

Lk(s) = {v : dist(s,v) = k}∪Lk−1(s)

, where i≥ 1, L0(s) = {s} and dist(s,v) is the maximum number of vertices

in paths from s to v.

See Figure 14. For a given root vertex s. L1(s) is composed of s,a,b

since a and b have one edge way from s.

We consider the correctness of FEM-SR based on level structures.

L0(s) contains the source vertex s. L1(s) is composed of L0(s) and out-going

vertices of L0(s). We may continue the process until all vertices are covered.

It is trivial that the target vertex t is included in Lk(s) at some k.

Theorem 3.3.1. Correctness of FEM-SR Given an edge-weighted DAG

G=(V,E,EW ) and a shortest path (smallest weight sum) query (s, t) , FEM-

SR (with pruning) discovers the shortest path correctly, in an assumption

that the reachability index does not answer false positive such that it never
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yield Reach(vi,v j) = FALSE for the case when vi v j.

Proof . We prove by mathematical induction. We have the base case L0(s)=

{s}, which is trivially the shortest path. We assume that FEM-SR discover

shortest paths from s to every vertices in Lk(s) correctly. We need to show

that it also holds for the case k+1.

Let O(v) be a set of out-going vertices for a vertex v. We may define

O(v) with respect to a target vertex t, such that O(v) := Or(v, t)∪On(v, t)

where Or(v, t) is a set of vertices that can reach t and On(v, t) is a set of ver-

tices that are not-reachable to t. See Figure 15, there two cases when we ex-

pand from a vertex v in Lk(s) to an out-going vertex with the minimum edge-

weight. The out-going vertex omin with the minimum edge-weight could be

either in Or(v, t) or in On(v, t). Case 1 is when omin is in Or(v, t) and Case

2 is when omin is in On(v, t). For Case 1, FEM-SR acts the same with FEM

because omin cannot be pruned. For Case 2, FEM-SR would choose a ver-

tex os in Or(v, t) such that EW (v,os) is the smallest among EW (v,or) where

or ∈ Or(v, t) because omin ∈ On(v, t) would be pruned. However, FEM will

eventually backtrack to os because no paths exist toward t from any vertices
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in On(v, t). This proves that FEM-SR and FEM find the same shortest path

at k+1.

3.3.4.2 Cost Model

FEM-SR exploits the reachability index while the baseline approach

(i.e., FEM) does not utilize the index. In order to compare the cost of FEM-

SR with the one of the baseline approach, the cost model of FEM-SR needs

to incorporate two additional factors; the space requirements of the reacha-

bility index and the access cost of the index during computation.

Definition 12. Cost Model of FEM-SR Given a shortest path query (s, t),

we have four types of vertices which are defined as follows: W is a set of

relevant vertices, I is a set of not-relevant vertices, RT is a set of head of

vertices that cannot reach t, and RN is a set of vertices that don’t have to be

visited because of being pruned. Let costvisit be the cost to visit a vertex and

costreach be the cost to access the reachability index for a vertex. 2HopSize

denotes the space requirements defined in Definition 5. The cost models of

FEM and FEM-SR are as follows:

costFEM = costvisit(|W |+ |RT |+ |RN|) (3.9)

costFEM-SR = costvisit(|W |+ |RT |)+ costreach(|RT |)+2HopSize (3.10)

See Figure 16, an example of W , RT , RN, and I is depicted for a short-

est path query (s, t). c and d are included in I because we don’t have to visit
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Definition (Cost Model of FEM-SR) 
Given a query ሺݏ, ܸ ሻ, we haveݐ ൌ ܫ⋃ܴܰ⋃ܴܶ⋃ܹ
ܹ : relevant vertices
ܫ : not-relevant vertices
ܴܶ : head of not-reachable vertices
ܴܰ : not-reachable vertices (to be pruned)

ிாெݐݏ݋ܥ ≔ ሺ	௩௜௦௜௧ݐݏ݋ܿ ܹ ൅ ܴܶ ൅ ܴܰ ሻ
ிாெିௌோݐݏ݋ܥ ≔ ௩௜௦௜௧ݐݏ݋ܿ ܹ ൅ ܴܶ ൅ |ܴܶ|௥௘௔௖௛ݐݏ݋ܿ ൅ ݁ݖ݅ܵ݌݋ܪ2
,where ܵ is the space requirements, 
௩௜௦௜௧ݐݏ݋ܿ is the cost to visit a vertex, and ܿݐݏ݋௥௘௔௖௛is the cost to access the reachability index

Lemma (Efficiency of FEM-SR) 
ிாெିௌோݐݏ݋ܥ ൏ ிாெݐݏ݋ܥ
௩௜௦௜௧ݐݏ݋ܿ ܹ ൅ ܴܶ ൅ ௥௘௔௖௛ݐݏ݋ܿ ܴܶ ൅ ݁ݖ݅ܵ݌݋ܪ2 െ 	௩௜௦௜௧ݐݏ݋ܿ ܹ ൅ ܴܶ ൅ ܴܰ ൏ 0

݁ݖ݅ܵ݌݋ܪ2 ൏ ௩௜௦௜௧ݐݏ݋ܿ ܴܰ െ |ܴܶ|௥௘௔௖௛ݐݏ݋ܿ

We may have  ܴܰ ൎ |ܴܶ| · ܲ · ሺܴ݃ݒܽ ௖ܶ௛௜௟ௗሻ, where ܲ is the probability of pruning and ݀ is the 
average children of vertices in ܴܶ.

FEM-SR is efficient than FEM if
݁ݖ݅ܵ݌݋ܪ2 ൏ |ܴܶ|ሺܿݐݏ݋௩௜௦௜௧ · ܲ · ሺܴ݃ݒܽ ௖ܶ௛௜௟ௗሻ െ ௥௘௔௖௛ሻݐݏ݋ܿ

s

a

c

g

b

i
e

d

h t

source

target

ܹ

ܴܰ

ܴܶ

ܫ

Figure 16: Vertices are classified into four types with respect to a shortest
path query

these vertices when we start from s. We never visit h if g is pruned, which

therefore belongs to RN. e is included in RT because even if e cannot reach

t we have to check for the reachability of e.

Based on Definition 12, we derive an expression that represents the

constraints where FEM-SR is more efficient than FEM in terms of query

processing time and space requirements. The cost of FEM-SR should be

smaller than the cost of FEM, costFEM-SR < costFEM, as re-expressed in

Expression 3.11.

costvisit(|W |+|RT |)+costreach(|RT |)+2HopSize−costvisit(|W |+|RT |+|RN|)< 0

(3.11)

By placing the space requirements in the left-hand side, we get the

following Expression 3.12.

2HopSize < costvisit |RN|− costreach|RT | (3.12)

|RN| can be measured based on the pruning power, such as |RN| ≈
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P ·avg(RTchild) · |RT | where P is the probability to prune vertices in RT and

avg(RTchild) is the average number of children of vertices in RT .

By substituting |RN|, we get the final expression which is demonstrated

in Lemma 2.

Lemma 2. Efficiency of FEM-SR FEM-SR is efficient than FEM if the

following expression satisfies:

2HopSize < |RT |(costvisit ·P ·avg(RTchild)− costreach) (3.13)

Lemma 2 tells us that FEM-SR works better than FEM if i) there ex-

ist sufficient out-going vertices |RT | that are used to prune vertices, ii) the

pruning probability P is somehow big, iii) the cost to access to the reacha-

bility index is not high. There is a trade-off between the space requirements

(2HopSize) and the number of visited vertices (right-hand side). 2HopSize,

costvisit , and costreach need to be estimated carefully according to application

requirements to correctly compare the left-hand and right-hand side of Ex-

pression 2. We can see that for the small graph, which don’t have sufficient

vertices to be visited and pruned, FEM-SR could work worser than FEM.

3.3.5 Experimental Results

We performed experiments to measure effectiveness the proposed ap-

proach. Our system is divided into two systems FEM-S and FEM-SR.

FEM-SR is the proposed approach and FEM-S is the same with FEM-SR
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except for that reachability index is not used. These systems are compared

with the state-of-the-art shortest path discovery approach FEM [3].

Five machines equipped with 3.1 GHz CPU and 24 GB RAM were

used. Ubuntu 14.04.4 is installed with Hadoop 2.7.1 and Spark 2.0.1. FEM-

SR and FEM-S run in Yarn-Cluster mode. FEM is executed based on MySQL

5.5.49. All systems were implemented in Java.

Real-world DAG datasets5 used in these experiments are listed in Table

2.

3.3.5.1 Computation Time

Figure 17 and 18 show the time required to compute shortest path vary-

ing path lengths from 0 to 6. Computation time varies according to sys-

tems and datasets. Overall, FEM-SR is faster for large and dense graph

such as gouniprot and citeseerx. The other approaches are faster for

small and sparse graph such as arxiv and citeseer. For large and dense

graph, only FEM failed due to not enough memory problem. It is because

that all expanded vertices has to be loaded into a table.

Shortest path query whose length is zero can be answered in constant

time by using reachability index. This explains why FEM-SR takes very

short time. In the case of query #1 of path length is zero in arxiv, FEM-

SR is slower than FEM. This is because that reachability index cannot deter-

mine 100 % queries. For those query that cannot be answered by reachability

index only, FEM-SR expands to all neighborhood vertices.

citeseer shows an interesting tendency in that FEM-SR is the worst

5https://code.google.com/archive/p/ferrari-index/downloads
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and FEM is the best. The reason is that citeseer has almost same number

of vertices and edges, which means that most vertices has one neighborhood

vertex. In one iteration, only one new vertex is inserted. FEM must be the

fastest since no network communication is required. However, FEM-SR

and FEM-S requires to exchange data between machines even for the small

data, which slow down the overall computation time. This is a natural con-

sequence when using distributed computing environment. Processing small

data is often inefficient in distributed computing environment than doing in

a single machine.

For the case of citeseerx, FEM failed due to memory problem.

Some vertices of citeseerx have more than 20 million neighborhood

vertices. FEM failed because it cannot maintain a temporary table with such

a huge number of rows. On the other hand, FEM-SR can successfully han-

dle because of data distribution across machines.

For the case of gouniprot, FEM-SR is the best overall. Now, we

can see the effectiveness of reachability index. For the small graph, FEM-S

is faster than FEM-SR for some queries. For the large graph, FEM-SR is

faster than FEM-S. Even if accessing reachability index takes some time, it

would be more efficient, a condition required to expand to large number of

neighborhood vertices.

3.3.6 Federated Shortest Path Discovery

In this section, we discuss our novel definition called federated short-

est path discovery, in order to show applications of the proposed approach.

To the best of our knowledge, there exist few literature that uses the term
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federated in the context of shortest path discovery.

Conventional shortest path discovery deals with a single target graph.

Reachability index can be exploited to prune intermediate paths during com-

putation. Unlike conventional counterpart, federated shortest path discovery

is to find shortest path on multiple graphs, for instance, target and support

graph. Even if a path exists in the target graph, it would be pruned if the path

does not exist in the support graph, and vice versa. We give the definition of

federated shortest path in Definition 13.

Definition 13. Federated Shortest Path Given a graph Gi, suppose that

there exist no path from s to t, but there exists an edge (si, ti) such that

s si and ti t. In other word, for all i, we have si ̸ ti. If we have si ti

in another graph Go, federated shortest path between s and t on Gi with Go

is s si ti t.

Figure 19 shows the conceptual view of conventional shortest path

and federated shortest path. Conventional shortest path is based on a sin-

gle graph. In other words, reachability index is built from the same graph.

Thus, main purpose of the reachability index is to speed up the discovery

process as propose in this thesis.

On the other hand, federated shortest path is based on two or more

graphs. Shortest path discovery is basically performed against the target

graph Gi. Reachability index is built from another graph G j which is called

here support graph. During the discovery process, reachability index for G j

is referenced to check paths exist or not. If there is no path in Gi but exist in

G j, then navigation keeps going. It can be viewed as a dynamic integration
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of two graphs.

Federated shortest path can be applied to biomedical domain, as de-

picted in the bottom part of Figure 19. Here, we assume that main target

graph is constructed from Biogrid. We also have similar datasets called

STRING. In the context of conventional shortest path discovery, Biogrid

and STRING should be integrated to construct a single big graph. On the

other hand, federated shortest path discovery does not require to have one

graph. These datasets can exist separately. The usability of federated short-

est path discovery can be understood by the fact that datasets evolve over

time.

3.4 Conclusion

In this Chapter, we proposed a shortest path discovery algorithm. The

purpose of the work is to make it possible to apply shortest path discovery to

massive graph. Particularly, Spark, which is one of popular distributed com-

puting frameworks, is utilized to carry out in distributed fashion. Reacha-

bility index is exploited to speed up the discovery by pruning not reachable

paths. Furthermore, we proposed a approach that reduce reachability index

size using vertices’ degrees.

Future work is to consider k-shortest path discovery [52, 53, 54], which

is generalized version of shortest path discovery discussed in this thesis. To

the best of our knowledge, there exist few work on utilizing distributed com-

puting environment to solve k-shortest path discovery. We plan to extend

our Spark based approach to solve k-shortest path discovery. In addition,
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our approach is based on FEM framework. Required number of iteration is

proportion to the path length. This slow down the proposed algorithm when

dealing with long distance paths. We plan to devise an approach to reduce

the number of iterations.
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Figure 17: Time consumed to compute shortest path for the case of arxiv
and citeseer. X-axis represents each query varying path lengths (0,2,4,6)
and five queries (0,1,2,3,4). X indicates failure due to memory problem.
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Figure 18: Time consumed to compute shortest path for the case of
citeseerx and gouniprot. X-axis represents each query varying path
lengths (0,2,4,6) and five queries (0,1,2,3,4). X indicates failure due to mem-
ory problem.
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Figure 19: Federated shortest path discovery and its application to biomed-
ical domain.
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Chapter 4

Graph Path Matching based on
Signature Encoding

4.1 Introduction

Large numbers of RDF (Resource Description Framework) triples are

available in Linked Data which can grow exponentially. It makes SPARQL

query processing engines infeasible on a single machine. To address this

scalability issue, MapReduce framework-based SPARQL engines have been

proposed, but we note that these methods are limited in terms of join evalua-

tions. The two-way join based approach evaluates joins via a sequence of bi-

nary multiplications that require multiple MapReduce jobs, which involves

costly disk accesses between MapReduce jobs. The multi-way join based

approach combines multiple two-way join operations, which allows the si-

multaneous evaluation of joins during one MapReduce job. However, the

size of data for the MapReduce job might increase exponentially if a com-

plex query is given. In this study, we propose SigMR, a pruning method for

multi-way join-based SPARQL query processing in MapReduce. In the pro-

posed approach, a SPARQL query can be evaluated in a single MapReduce

job, where the size of data is reduced dramatically by pruning based on our

signature encoding technique, thereby overcoming the weaknesses of the
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previous approaches. In experiments, we showed that the query processing

time required was lower with our approach than existing MapReduce-based

methods.

Large amounts of information are available on the Web. RDF (Re-

source Description Framework)1 is a popular way of representing informa-

tion on the Web, where a specific information fragment can be represented

by an RDF triple, which comprises a subject, predicate, and object. The

information demand against an RDF triple dataset mights be expressed in

1http://www.w3.org/RDF
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SPARQL2, which is a query language for RDF. Its nature of graph-based

data model allows the user to navigate information in a more structured

manner than is possible using traditional document search engines [55, 56].

Applications that make use of RDF datasets include DBpedia mobile [57], a

cultural heritage guide [58], RDF browser [59], and a movie recommender

[60]. These applications might be implemented upon an RDF triple man-

agement system (also known as a triples store or SPARQL engine) that sup-

ports the maintenance of RDF triples and the answering of SPARQL queries.

SPARQL query processing can be viewed as graph path matching defined

in Definition 14, since RDF data is a graph.

Definition 14. Graph Path Matching Given a DAG G(V,E) and a graph

path query Q = v0, ...,vi−1,ai,vi+1, ...,vk with a set {aw} of variables and

a set {vw} ⊂ V of vertices, find a path P = v0, ...,vi−1,vi,vi+1, ...,vk where

ai is replaced with vi such that (vi−1,vi) ∈ E and (vi,vi+1 ∈ E) for all w.

In terms of RDF, Q can be viewed as a set of triple patterns T Pi such that

T Pi := (s = ai, p,o = vi+1) where p is the predicate associating the subject

vk and the object ak+1. At least one of s, p, and o is a variable.

In connection with Chapter 3, a discovered graph path

P = c0, ...,ci, ...,c j, ...,ck

can be transformed into a graph path query

Q = c0, ...,ai, ...,a j, ...,ck

2http://www.w3.org/TR/rdf-sparql-query
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Scalable Graph Path Matcher
• Reduction of intermediate data for multi-way join
signatures encoding for pruning unnecessary triples

1 0111 … … … A name Park
2 1001 … … … C name Lee
3 0000 … … … F name Kim
4 0001 … … … E name Ryu
5 … … … … Park teachOf DB
6 … … … … Ryu teachOf Math
7 … … … … Lee teachOf Physics
… … … … … … … …
20 … … … … Park teachOf Network

SS SO OO OSID S P O

String 
Encoder

Membership 
check

pruned

0101

<DB>

pruned
pruned

Reducers

Graph Path Query

0111 = {DB,Network}
1001 = {Physics}
0001  = {Math}

Matched Graph Paths

?w ?m
name

DB
teachOf

A Park
name

DB
teachOf

Discovered Shortest Path

Z Kim
name

DB
teachOf

5/21

Figure 21: Graph path can be transformed into a graph path query.

such that at least one of constant cw is replaced with a variable aw. Depend-

ing on the choice of constants in P to be replaced with variables, different

graph path queries can be obtained. Figure 21 depicts the relationship be-

tween graph path and graph path query. Z and Kim in the graph path is re-

placed with ?w and ?m, respectively, thereby, obtaining a graph path query.

The goal of graph path matching is to find another constants that are matched

to each variable, such as A and Park, respectively.

Notable RDF triple management systems include Sesame [61], Jena

TDB [19], Virtuoso [62], and RDF-3X [22]. More triples are increasingly

available on the Web, such as Linked Data3, but these approaches have en-

countered a scalability problem. This issue has encouraged researchers to re-

alize the full potential of distributed computing environments for SPARQL

engines [63].

Distributed approaches for SPARQL engines can be categorized ac-

cording to the systems upon which they are based, such as MapReduce

[5, 34, 4], key-value stores [32, 26, 27, 28], and federation [30, 31]. It is dif-

ficult to state that a certain design is the best for a SPARQL engine [64], and

thus we only consider MapReduce-based approaches in the present study.

The MapReduce framework was proposed to facilitate the implementation

of distributed algorithms that work on a cluster. Several SPARQL engines

3http://linkeddata.org
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have been proposed based on the MapReduce framework [7, 6, 5], but these

methods are limited in terms of the join evaluation strategy (see Figure 20).

Left-deep tree planning (B in Figure 20) is a straightforward method for

implementing a two-way join, but it is not feasible when the height of join

evaluation tree is large. Bushy tree query planning, which is also a two-way

join (C in Figure 20) and was described by [5, 6], decomposes a SPARQL

query into several nonconflicting parts based on joining variables in order

to simultaneously execute multiple MapReduce jobs for each nonconflicting

part. This approach allows the parallel processing of SPARQL queries, but it

requires multiple MapReduce jobs, which involve costly disk accesses. The

multi-way join approach (D in Figure 20) was proposed by [7] for process-

ing a query in a single MapReduce job, where the triples bounded by joining

variables in a given SPARQL query are sent to multiple reduce jobs in a re-

dundant manner. Unfortunately, this approach can also be inefficient when

the data volume is huge because the number of triples required for MapRe-

duce jobs can increase exponentially. Both of these issues are addressed in

the present study, where the main contributions are summarized as follows.

• A multi-way join strategy was implemented in the MapReduce frame-

work for SPARQL query processing. It allows to answer a SPARQL

query using a single MapReduce job. This addresses the problem

of costly disk accesses introduced by a family of two-way join ap-

proaches where an execution of multiple MapReduce jobs is required.

• To further improve the multi-way join strategy, we devised a novel in-
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dex scheme based on signature encoding that helps reduce the size of

data that are required originally by the join strategy. According to our

index scheme, a triple is stored with bits strings that encode triples

that are joined with the triple. It is especially utilized during a query

processing in order to prune triples that are not joined according to a

given SPARQL query (E in Figure 20).

• We also devised a MapReduce based procedure for constructing our

index from input RDF datesets, which enables to deal with a large

number of triples in a distributed fashion.

• We performed experiments that demonstrated the effectiveness of the

proposed approach compared with state-of-the-art systems. We also

examined the performance of our approach after varying some pa-

rameters.

The remainder of this Chapter is organized as follows. Section 4.2

briefly reviews related work. The motivation of our research is discussed

in Section 4.3, as well as some of the disadvantages of state-of-the-art ap-

proaches. Next, we explain the index structure in Section 4.5 and index

building in Section 4.6. Query processing is described in Section 4.7. The

experimental results are presented in Section 4.9. We give our conclusions

and suggestions for future research in Section 4.10.
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4.2 Related Work

MapReduce is a method for implementing a distributed algorithm on

a cluster [33]. Apache Hadoop is one of the most popular MapReduce im-

plementations [65]. Many other programming models exist for distributed

algorithms, but MapReduce has attracted researchers due to its simplicity. A

MapReduce program comprises Map and Reduce phases. In the Map phase,

the input data are split by the Map key and then sent to worker nodes. In

the Reduce phase, operations are applied to the received datasets to obtain

the desired output. MapReduce framework has been utilized by researchers

doing work in machine learning [15], massive matrix computation [16], ge-

nomic analysis [17], and etc. In particular, we focus on MapReduce-based

SPARQL engines such as HadoopRDF [5]. Other approaches that are de-

pendent on a distributed key-value store (HBase), such as H2RDF [27], are

beyond the scope of the present study. Figure 22 depicts a general method

for processing a SPARQL query in the MapReduce framework. In the Map

phase, each triple is loaded onto several Mappers, depending on the number

of worker machines and triples. When they match with a given SPARQL

query, the triples are sent to Reducers using a Map key. In this case, the

string value in subject position is the Map key because the joining variable

?X is in the subject position. In the Reduce phase, the remainder of the query

is considered to find joined triples and emit the matched results.
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SELECT ?X WHERE{
?X  Type    Student
?X  Country    CH  }

Figure 22: General method for processing a SPARQL query in the MapRe-
duce framework. Triples are sent to Reducers, which match joined triples in
a given SPARQL query.

4.3 Limitations of MapReduce-based SPARQL
engines

The limitations of previous MapReduce-based SPARQL engines can

be considered in terms of the join evaluation strategies employed, i.e., two-

way join (sequential plans and bushy tree plans) and multi-way join (refer

to Figure 20). The sequential plan builds a query evaluation tree by placing

each triple pattern on the left-hand side [4]. A drawback of this approach is

that the query evaluation time depends on the height of the tree, which is

proportional to the number of triple patterns in given SPARQL query. The

bushy tree plan, which is employed by HadoopRDF [5, 6], tries to min-

imize the height of the tree by placing conflicting triple patterns into the
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same sub-tree whereas nonconflicting patterns are placed in different sub-

trees. Nonconflicting join evaluations can be processed in a parallel manner

but they still require several Hadoop jobs to complete the overall join evalu-

ation. The multi-way join approach was proposed by [7, 66] in order to pro-

cess a query using a single MapReduce job by sending the triples bounded

by variables joined in a given SPARQL query to Reduce jobs in a redundant

manner. Unfortunately, this redundancy cannot be handled easily if large

volumes of triples are processed and the given SPARQL query has many

joining variables.

Given all of these limitations, we suggest a more efficient join method,

SigMR, which can improve the multi-way join strategy by our signature

encoding technique that allows the pruning of triples during a query pro-

cessing. It helps reduce the size of data required originally by the multi-way

join strategy

4.4 SigMR

SigMR is a SPARQL engine based on the MapReduce framework. Fig-

ure 23 shows the input and output of SigMR, and its components. In the

preprocessing step, which is shown in the upper section, N-Triple files are

loaded to execute three MapReduce jobs, which generate the index cata-

log and the index stored in HDFS (Hadoop Distributed File System). In the

query processing step, which is shown in the bottom section, a SPARQL

query submitted by user is analyzed to load the created index and a multi-

way join is then performed to find the matched results. To make this process
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Figure 23: Architecture of SigMR based on the MapReduce framework.
The bold rectangle represents a MapReduce job. Note that the query op-
timizer (depicted in a rounded rectangle) is not a MapReduce job, which
means that query evaluation only requires a single MapReduce job.

easier to understand, our index structure is explained in the next section

where we show how to store triples with encoded signatures. Each step is

then demonstrated in the following sections.

4.5 Index Structure

The vertical partitioning scheme [20] is adapted for our index structure,

where triples are partitioned by its predicates and stored in each different

file. The scheme allows to reduce the query execution time by selectively

scanning some index files that are associated with BGPs in a given query.

In order to further reduce the query execution time, we add a novel index,

called joined triples, which can be used for pruning triples during a multi-

way join evaluation. In this paper, four kinds of joins are considered.

Definition 15. (SS Joined Triples) Given a RDF graph T , a set of triples

SSt is called as SS (Subject-Subject) joined triples for a triple t if they share
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the same subject, which is formally defined as:

SSt = {(s, p′,o′)|t = (s, p,o) and (s, p′,o′) ∈ T for all p′ and o′}

Definition 16. (SO Joined Triples) Given a RDF graph T , a set of triples

SOt is called as SO (Subject-Object) joined triples for a triple t if objects

are the same with the subject in t, which is formally defined as:

SOt = {(s′, p′,s)|t = (s, p,o) and (s′, p′,s) ∈ T for all s′ and p′}

Definition 17. (OO Joined Triples) Given a RDF graph T , a set of triples

OOt is called as OO (Object-Object) joined triples for a triple t if objects

are the same with the object in t, which is formally defined as:

OOt = {(s′, p′,o)|t = (s, p,o) and (s′, p′,o) ∈ T for all s′ and p′}

Definition 18. (OS Joined Triples) Given a RDF graph T , a set of triples

OSt is called as OS (Object-Subject) joined triples for a triple t if subjects

are the same with the object in t, which is formally defined as:

OSt = {(o, p′,o′)|t = (s, p,o) and (o, p′,o′) ∈ T for all p′ and o′}

One index file consists of lines of six items, i.e., four signatures, sub-

ject, and object, each of which is concatenated by a delimiter. Since each line

corresponds to a triple, subject and object are from the triple. The signatures

are generated from four joined triples of the triple. A formal definition of
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the signatures is as follows.

Definition 19. (Signatures) Given a triple t, its four signatures are defined

as

Sigb(SSt)|Sigb(SOt)|Sigb(OOt)|Sigb(OSt)

where | is a delimiter and Sigb(SSt) is a signature that encodes SS joined

triples of t, Sigb(SOt) for SO joined triples and so on, which is defined in

Definition 21.

The signature in our context refers to a bits string, which is a sequence

of “0” or “1”. A b-bits string is a bits string whose length is b. Details of en-

coding joined triples into bits strings are explained in the following section.

4.5.1 Encoding Joined Triples

We first explain the string encoder that converts URI strings or literals

or blank nodes into a bits string.

Definition 20. (String Encoder) Given a string representation u of URI or

literals or blank nodes, a b-bits base string encoder Bitb is a map from u

into b bits. A hash function is used to convert a string into a number which

is then represented in bits.

To exploit the nature of a URI string, we split a URI string with a

comma character. For example,

http://www.Department0.University0.edu/GraduateCourse2
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Signature Encoding
T#1
T#2
T#3
T#4
T#5
T#6
T#7

student1           memberOf department0
student3     memberOf department8
department0    subOrganizationOf    university0
department8 subOrganizationOf    university0
department0    subOrganizationOf    university10
student9 memberOf department0
department0    subOrganizationOf    university3

String 
encoder

0000 0000  0001 0110 student1          department0
0000  0000 0000  1000   student3          department8
0000  0000 0001  0110   student9 department0

university0
university10

0100
0010

OS bits string of T#1

OR 0110

OS joined triples = { T#3 , T#5 , T#7 }
Objects in the OS joined triples = { university0 , university10, university3 }

String 
encoderstudent9 0001

OO bits string of T#1

OR 0001

OO joined triples = { T#6 }
Subjects in the OO joined triples = { student9 }

university3 0110

SS     SO    OO     OS

1111  1000  0000  0000   department0     university0
0000  0100  0000  0000   department8 university0
1111 1000  0000  0000   department0     university10
1111 1000  0000  0000   department0     university3

T#1
T#2
T#6

T#3
T#4
T#5
T#7

memberOf

subOrganizationOf

30/44

Figure 24: Example showing the data flow when appending bits strings
to each triple. The triples are actually stored in separate files according to
predicate, as explained in section 4.5. In the cases of T#1, T#2, and T#6,
no triple is joined with subject. As a result, we have “0” bits strings. In the
cases of T#3, T#4, T#5, and T#7, there are no OO and OS joined triples.

is split into four strings such as

http://www,

Department0,

University0,

edu/GraduateCourse2

A hash function is applied to each string to compute an integer value, where

16-bit characters can be used to represent the integer value. By concatenat-

ing four of the 16-bit bits strings, we obtain a bits string with 64 bits. For
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example, a bits string that is twice as large is obtained by splitting each sub-

string into two further substrings. For literals and blank nodes, we don’t care

about comma characters.

Using the string encoder, joined triples, which is a set of triples, are

also encoded into a bits string by using OR operators.

Definition 21. (Joined Triples Encoder) Given a joined triples W, a b-bits

base joined triples encoder Sigb is a map from W into a b-bits string.

Sigb(W ) =



Bitb(sub(w0))�Bitb(sub(w1))� . . .�Bitb(sub(wn))

if W is a OO or SO joined triples

Bitb(ob j(w0))�Bitb(ob(w1))� . . .�Bitb(ob j(wn))

if W is a SS or OS joined triples

where wi ∈W, � stands for OR operator for two sequences of bits, sub(wi)

is the subject of wi, and ob j(wi) is the object of wi.

The method used to obtain OO and OS join bits strings is depicted in

Figure 24. We assume that there are seven triples, as shown on the left-

hand side. Our goal here is to obtain OO and OS bits strings for each triple,

as shown on the right-hand side. In the case of the OS bits string for T#1,

we have three OS joined triples: T#3, T#5, and T#7, which are all joined

by object of T#1, i.e., department0. Only the URI strings in object po-

sition in these OS joined triples are passed to the URI encoder. To obtain

a bits string, an OR operator is applied to the set of resultant integers,

which are assumed to be binary numbers. The final bits string generated
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is 0110, which carries information about these three URI strings, such as

university0, university10, and university3. This type of pro-

cedure is motivated by the Bloom filter [67]. Note that given a URI string

such as university3, which is assumed to be converted into a bits string

0010, it is easy to check whether university3 is in the bits string 0110

using a bit-wise operation. During query processing, a triple with a negative

membership check would be pruned, which will be explained in Section 4.7.

According to this schema, for a given URI string, a membership check re-

turns that it exists “possibly” or “definitely not” in the set of URI strings

represented actually in a bits string. The latter case would occur if a bits

string of university80 is also 0010 and a membership check returns

true, which is not actually correct. Even if it is not possible to filter out 100

% like these cases, it is useful to benefit from the space-efficient structure of

this method that does not require to store URI strings explicitly.

In the case of the OO bits string for T#1, we have one OO joined triple

T#6. The OO bits string can be obtained from student9 in subject posi-

tion. Therefore, we are able to obtain OO and OS bits strings for T#1. The

same procedure is applied to each triple. Note that the OO and OS bits strings

of T#6 are the same as those of T#1. This is naturally given that T#6 and T#1

have the same object. This observation allows us to design a MapReduce-

based approach for obtaining the bits strings in a parallel manner, which will

be explained in Section 4.6. The SS and SO join bits strings are obtained in

a similar manner. For example, in the case of the SS join, triples with the

same subject as a given triple are considered. The SS bits string is obtained

from a set of URI strings in object position of the SS joined triples.
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We have shown how to obtain bits strings, but it should be noted that

we only require subject or object to generate a bits string. For example, in

the case of the OS bits string of T#1 in Figure 24, we ignore predicates

such as subOrganizationOf. This is because it is meaningless to place

predicates in bits strings given that predicate can be determined by a do-

main or range in a joined triple. Let us consider triples joined with T#1 by

object. It would follow automatically from T#1’s predicate memberOf that

triples having predicate memberOf have certain predicates whose domain

is Department, which is actually equal to the range of memberOf. In

this case, we can automatically know that there must exist a triple having

subOrganizationOf in predicate position. However, this is not always

the case because these triples could be missing in a dataset for a depart-

ment that does not yet belong to any university. In the present study, we do

not address this issue because predicates must also be considered in order

to generate bits strings which is a time consuming task. However, our ap-

proach can easily be generalized to consider joined triples on predicates. A

straightforward way is to extend Definition 21 to also take predicates when

generating a bits string for a triple.

4.6 Index Building

Index building is the process used to create the index (Definition 19).

The MapReduce framework is utilized to benefit from a distributed envi-

ronment in order to handle a large number of triples in an efficient manner.

Building the index based on the MapReduce framework can be achieved in
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three MapReduce jobs. In the first job, the domains and ranges of predicates

used in the input triples are identified. In the second job, the triples are split

according to the ranges identified for predicates, and OS and OO bits strings

are also computed. In the third job, the split triples are split again according

to their domain, and SS and SO bits strings are also computed. After per-

forming these three jobs, we obtain a set of index files that are partitioned

vertically in the context of the domains and ranges of the predicates. We

explain each job in a greater detail in the following sections.

4.6.0.1 Index Catalog Acquisition

Index catalog acquisition is a MapReduce process that takes triples as

inputs and it outputs a catalog for the index. The index catalog includes

the domains and ranges of the predicates and namespace strings. Figure 25

shows an example of the data flow in this process. In the following, we

describe the process in an informal manner, but the interested reader is re-

ferred to Algorithm 1 and Algorithm 2 in Appendix for fuller details of the

algorithms employed by the Map and Reduce functions.

In the Map phase, each triple is sent twice to two different Reduce

jobs. The Map Keys are subject and object. The value for a Reduce job

corresponds to the triple. For example, the first triple (s1, type, Student)

goes to both of the Reduce jobs, i.e., s1 and Student.

In the Reducer phase, a list of URIs and the domains and ranges of the

predicates are identified. We denote subject-key triple as a triple

with an subject that is equal to the Reduce Key. Similarly, object-key

triple is denoted as a triple with an object that is equal to the Reduce
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Figure 25: Example showing the data flow during an index catalog acquisi-
tion job. A triple is sent two times to Reducers based on subject and object.
Each Reducer outputs a URI list and the predicates that are then aggregated
on a single machine.

Key. See the Reduce job for c1 shown in Figure 25. Here, we have one

subject-key triple, i.e., (c1, type, Course), and two object-key

triples, i.e., (s1, take, c1), (t1, teach, c1).

In the first Reduce job called s1 in Figure 25, we have a subject-key

triple, i.e., (s1, take, c1). If another subject-key triple ex-

ists where predicate is type, we know that the resource (s1) in subject

belongs to the class with the name in object (Student). Based on this

fact, the domains of the predicates of the other triples in subject-key

triples can be identified automatically. In this case, we identified the do-

main of take as Student. The ranges of the predicates of the triples in

object-key triples can be identified in a similar manner.

During this procedure, we also maintain distinct URI strings and their

frequencies. For a URI string with a frequency that is above some threshold,
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we take its prefix string and this will be used for a namespace later. The final

step is to aggregate these files into a single file.

Figure 26: Example showing the data flow in an object join partitioning job.

The aggregation step can be performed using a single machine because

the number of predicates is generally not high, and thus they can be accom-

modated in the memory. However, this is not the case when we consider

a list of URI strings. Counting the frequency of URI string during the Re-

duce phase requires the maintenance of URI strings in the memory and the

frequency must be updated whenever a URI string is encountered. In most

cases, the memory is not sufficient with large datasets. Fortunately, we do

not have to acquire an exact index catalog without missing any data. The ab-

sence of some predicates does not necessarily mean that triples with pred-

icates are omitted in the index because it would be sufficient to store the

triples in an index file such as “unknown predicate.” In addition, some fre-

quent URI strings could be missing. Thus, in that case, triples with a URI
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string need to be stored in a fully qualified form rather than an abbreviated

form with a namespace prefix. This observation allows us to design a faster

version of the index catalog acquisition process. We need to allow some

triples to be skipped randomly when reading input triples during the Map

phase. In the MapReduce framework, some lines can be skipped by investi-

gating the line numbers in the given files. In terms of the input for the Map

phase, the input key is the line number and the input value is a triple in the

line (refer to Algorithm 1 for details).

4.6.0.2 Object Join Partitioning

Object join partitioning is a MapReduce process that takes triples as

its inputs and it then creates index files. By referring to the index catalog

collected from the first job, we can store triples in a vertically partitioned

manner. The input for this job is the same as that with the first job, i.e.,

triples in N-Triple formats. Figure 26 shows an example of the data flow in

this process. During the Map phase, each triple is sent twice to two differ-

ent Reduce jobs where subject and object are taken as the Map Key. In the

Reduce phase, whenever subject-key triples are encountered, the

URI strings in object are taken into the signature encoder. For example, we

have three subject-key triples in the Reduce job called s1. The

URI strings in object position of these triples are Studnet, c1 and c10.

By taking these URI strings as inputs, the signature encoder generates an OS

bits string (0101). The bits string is then only appended to object-key

triples. This allows each object-key triple to contain informa-

tion about the OS joined triples. The bits strings and triples are stored in a
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corresponding file, which is determined by its predicate. To determine the

index file where the triple (u1,member,s1) should be stored, the index cat-

alog is scanned to find the match where predicate is member and the range

is Student. Thus, the file ID 1 is found. Note that the domain of member

cannot be determined in this step. Therefore, we must store the triples in

index files with an empty domain, which indicates any domain. In the next

job explained in Section 4.6.0.3, this will be split further by its domain.

It should be noted that in a Reduce job, the OO and OS bits strings that

are the same as each other are appended to each object-key triple.

This is based on the fact that each object in object-key triples is

the same as that of the others, which is the Reduce key. Automatically,

this means that OS joined triples are the same. It should also be noted

that in this job, subject-key triples are not emitted to certain index

files whereas object-key triples with bits strings were emitted and

stored in their corresponding index files. However, this does not mean that

some triples are not stored in any index files. For example, the triple (s1,

take, c1) is ignored in the s1 Reduce job but it is emitted from the c1

Reduce job. For further details, please refer to Algorithm 1 and Algorithm

3 in the Appendix.

4.6.0.3 Subject Join Partitioning

Subject join partitioning is a MapReduce process that takes the entire

index file created from the previous job (object join partitioning) as its input

and it creates another index file. Figure 27 shows the input and output of

this job. In the input index files, the triples have been stored based on the
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Figure 27: Example showing the data flow in a subject join partitioning job.
Only the input and output are depicted. The detailed procedure is similar to
the object join partitioning so we omit the details.

range of predicate with the OO and OS bits strings. For example, the index

file ID 1 contains triples where predicate is member and the type of object

is Student. Subject join partitioning is intended to split the triples based

on the domain of predicate and it also computes the bits string on the SS and

SO join. In this case, it will create two index files (File ID 3 and 7 in Figure

27) where the domains correspond to University and Department,

respectively. The SS and SO bits strings computed during this job are also

appended to each triple. We will not explain how to compute the SS and SO

bits strings in detail because this procedure is similar to that employed in

the object join partitioning.

Let us give a brief description of subject join partitioning. The object-key

triples are considered instead of the subject-key triples to ob-

tain the SS and SO bits strings. The bits string is then appended to the

subject-key triples instead of the object-key triples. Note

that the subject-key triples already have the OO and OS bits strings
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Figure 28: Example showing the data flow during query analysis, which can
be performed on a single machine without MapReduce jobs.

appended from the previous job, which allows this job to obtain four bits

strings for each triple. For further details, please refer to Algorithm 5 and

Algorithm 6 in the Appendix.

4.7 Query Processing

Query processing involves two steps such as query analysis and multi-

way join. During the query analysis step, which is performed on a single

machine, the domains and ranges of predicates appearing in triple patterns

in input SPARQL query are identified in order to load the index files selec-

tively. During the multi-way join step, the triples read from the index files

are sent to Reduce jobs, which emits the matched results.
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Query Analysis The aim of this step is to select index files that are rele-

vant to the input SPARQL query. Figure 28 depicts an example of the data

flow during query analysis. There are five triple patterns, which comprise

two triple patterns with type predicate. The object in the type triple pat-

terns is bound to a variable in another triple pattern, which corresponds to

the subject position. For example, from the first triple pattern, we know that

the type of the variable ?X in the 3rd and 5th triple patterns is UndergraduateStudent.

Thus, we have three typed triple patterns, as shown in the second box in

Figure 28. The next step is to find the corresponding index files for each

typed triple pattern by accessing the index catalog. In the case of the sec-

ond triple pattern, the type of object is unknown which is actually a constant

URI string. The file IDs of 50 and 51 match the triple pattern because, in

order to find triples that match with the triple pattern, we have to scan each

index file where predicate is subOrganizationOf regardless of its do-

main and range.

Multi-way Join The selected index files are taken as inputs to perform a

MapReduce job for query processing. Figure 29 shows the overall MapRe-

duce job process for query processing based on a multi-way join. To make

this easier to understand, we first introduce the working principle of query

processing based on a multi-way join [7]. We then explain our pruning

schema in the next subsection.

Suppose that we have 12 triples and the input SPARQL query has

three triple patterns with two joining variables, i.e., ?m and ?course.

A two-dimensional join matrix helps us to understand how a multi-
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ID S P O Reduce Keys

1 A name Park R : (0, 0), (0, 1), (0, 2)

2 C name Lee R : (1, 0), (1, 1), (1, 2)

3 F name Kim R : (2, 0), (2, 1), (2, 2)

4 E name Ryu R : (0, 0), (0, 1), (0, 2)

5 A teachOf DB W : (0, 1)

6 E teachOf Math W : (0, 2)

7 C teachOf Physics W : (1, 0)

8 DB courseOf CS T : (0, 1), (1, 1), (2, 1)

9 Network courseOf CS T : (0, 2), (1, 2), (2, 2)

10 Physics courseOf EE T : (0, 0), (1, 0), (2, 0)

11 DB beginAt 1998

12 Math courseOf CS T : (0, 2), (1, 2), (2, 2)

?m       name        ?name
?m       teachOf ?course
?course   courseOf <CS>

T1-{1, 4}
T2-{ }
T3-{10}

T1-{1, 4}
T2-{5}
T3-{8}

T1-{1, 4}
T2-{6}
T3-{9, 12}

T1-{2}
T2-{7}
T3-{10}

T1-{2}
T2-{ }
T3-{8}

T1-{2}
T2-{ }
T3-{9, 12}

T1-{3}
T2-{ }
T3-{10}

T1-{3}
T2-{ }
T3-{8}

T1-{3}
T2-{ }
T3-{9, 12}

H ( A )
= H ( E ) = 0

H ( C ) = 1

int row_size = 3
int col_size = 3

If ( p == “name” )
for c = 0 to col_size‐1
emit ( T1, H ( s ) , c )

if ( p == “teachOf” )
emit ( T2, H ( s ) , H ( o ) )

if ( p == “courseOf” )
for r = 0 to row_size‐1
emit ( T3, r , H ( s ) )H ( DB )

= 1

H ( F ) = 2

H ( Physics )
= 0

H ( Network ) =H ( Math )
= 2

{1, 5, 8}
{4, 6, 12}

A  Park   DB
E  Ryu Math

Query

pseudo code in Mapper function

matched results

T1
T2
T3

Object

Subject

Figure 29: Example showing the data flow in the MapReduce framework
when a multi-way join is performed for a given SPARQL query with two
joining variables. H denotes a hash function that takes a string as input.

way join works within the MapReduce framework, where the dimension

is attributable to the number of joining variables. The size of the join

matrix is predetermined, i.e., a 3×3 join matrix in the example de-

picted in Figure 29. In the experimental section, we demonstrate how the

size parameter affects the performance. The joining variables correspond to

the column and row, i.e., ?course and ?m, respectively. The integer num-

ber in brackets in each cell in the join matrix indicates the ID of the

triple. The existence of three triple patterns means that each cell has three

different tags for triples, which are denoted by R, W, T. Each cell of the join

matrix corresponds to a Reduce job, each of which checks whether the
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triples are joined during Reduce phase.

During the Map phase, according to the MapReduce framework, only

one triple in index files is read each time line by line, but without any in-

formation about the other triples (before or after). For each triple, a set of

Reduce Keys that comprises two integer elements (row, column) is gen-

erated by considering the triple patterns in the input query. For example, #1

triple (A, name, Park) is matched with the first triple pattern by its name

predicate. Because ?m is a joining variable, we can map to a row by apply-

ing a hash function to A. In this case, we have 0, which is mapped to the 0-th

row. Because ?name is not a joining variable, Park should not be mapped

to any specific column. Instead, Park is distributed to every column. Thus,

three Reduce Keys are generated, i.e., (0, 0), (0, 1), (0, 2). Next, we ex-

plain another case of #5 triple (A, teachOf, DB). The second triple pattern

is matched with the triple. Because the triple pattern has two joining vari-

ables, exactly one cell can be assigned, by mapping A to the 0-th row and

DB to the 1-th column. Applying the same procedure to every triple, nine

Reduce jobs will be created.

Let us now demonstrate the work-flow in Reduce jobs that corresponds

to one cell in the join matrix. Because each triple is assigned a tag (R,

W or T in this example), we know that no matched data will be identified in

the case where at least one of the tags is missing. For example, in the first

cell (0, 0), we have two triples tagged with R, one with T, but none with

W. Without any further processing, we can terminate the Reduce job im-

mediately because no triple is available that matches with the second triple

pattern, i.e., (?m teachOf ?course). Next, we consider the cell (0,1),
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?m         name        ?name
?m         teachOf <DB>

1 0111 … … … A name Park

2 1001 … … … C name Lee

3 0000 … … … F name Kim

4 0001 … … … E name Ryu

5 … … … … A teachOf DB

6 … … … … E teachOf Math

7 … … … … C teachOf Physics
… … … … … … … …
20 … … … … A teachOf Network

SS SO OO OS

String 
Encoder

Membership 
check

pruned

0101ID

Query

<DB>

pruned

pruned

Reducers

0111 = {DB,Network}
1001 = {Physics}
0001  = {Math}

S P O

TripleSignature

Figure 30: Part of the data flow from Figure 29 related to the pruning of
triples. Triples are read one by one and their bits strings are compared with
the object in joined triple patterns. The unmatched triples will be pruned (in
this case, the triple of ID 2,3,4).

which is a different case, where every tag is assigned to at least one of the

triples. In this case, we need to check whether the triples are indeed joined.

For example, there are two possibilities: (#1, #5, #8) and (#4, #5, #8), i.e.,

a sequence of triple IDs from R, W, T, respectively. Triples #1 and #5 share

the same subject whereas #4 and #5 do not, thereby allowing us to decide

that (#1, #5, #8) is a valid result. The checking criteria is based on the fact

that the first and second triple pattern in the query are joined in the subject

position (?m).

Pruning During the Map Phase In this section, we provide details of

how to prune triples that have not been addressed by previous related works.
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Figure 30 shows part of the procedure related to pruning, which corresponds

to the scanning of four triples read from an index file containing triples

having name predicate. For the readability, we show predicates in the figure,

which are not actually included in the index files. The first triple pattern, i.e.,

(?m name ?name), is taken into account here. The second triple pattern

is also considered because it is the SS joined with the first triple pattern. A

bits string is obtained from the URI string (DB) in object in the SS joined

triple pattern, which is denoted as a query bits string. Whenever a triple is

read, the SS bits string is taken and compared with the query bits string to

check whether the SS bits string is present in the query bits string. If it is

present, the triple is sent to the Reduce jobs. If it is not present, the triple is

pruned. In this case, the triples #2,#3 and #4 are pruned because the query

bits string (0101) is not included in any of these SS bits strings. On the

other hand, the query bits string is included in the SS bits string of the triple

#1 (0101), which is sent to reducers. This way allows to reduce the number

of triples that are unnecessarily sent to reducers.

4.8 Theoretical Analysis

In this section, the efficiency of the proposed approach is analyzed by

proposing a cost model that is defined in the context of the size of signatures,

join matrix, and the number of pruned triples. Then, we discuss the

correctness of the pruning technique.
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Cost Model of SigMR (김형주, 이상구 Ch.4)

참고: Foto N. Afrati, Jeffrey D. Ullman, "Optimizing Multiway Joins in a Map-Reduce Environment," TKDE 2011

?m    name        ?name
?m    teachOf ?course
?course   courseOf <CS>

ܶ ଴ܲ
ܶ ଵܲ
ܶ ଶܲ

T1-{1, 4}
T2-{ }
T3-{10}

T1-{1, 4}
T2-{5}
T3-{8}

T1-{1, 4}
T2-{6}
T3-{9, 12}

T1-{2}
T2-{7}
T3-{10}

T1-{2}
T2-{ }
T3-{8}

T1-{2}
T2-{ }
T3-{9, 12}

T1-{3}
T2-{ }
T3-{10}

T1-{3}
T2-{ }
T3-{8}

T1-{3}
T2-{ }
T3-{9, 12}

ܽ

ܿ

௣ݐݏ݋ܥ െ ௕ݐݏ݋ܥ ൏ 0

// Map 단계에서 읽어야 할 트리플의 개수

// Reducer 단계에서 읽어야 할 트리플의 개수

join matrix signature + triple

21/21

Definition (Cost Model of SigMR)
Query ܳ ൌ ሼܶ ௜ܲሽ, Matched Triplesܯ ܶ ௜ܲ ,

=:௕ݐݏ݋ܥ Cost of conventional multi‐way join:
ܯ ܶ ଴ܲ ൅ ܯ ܶ ଵܲ ൅ ܯ ܶ ଶܲ ൅
ܯܽ ܶ ଴ܲ ൅ ܯܾ ܶ ଵܲ ൅ ܯܿ ܶ ଶܲ

=:௣ݐݏ݋ܥ Cost of SigMR:
ܯ ܶ ଴ܲ ൅ ܯ ܶ ଵܲ ൅ ܯ ܶ ଶܲ ൅ ݏ ܯ ܶ ଴ܲ ൅ ܯ ܶ ଵܲ ൅ ܯ ܶ ଶܲ ൅
ܯܽ ܶ ଴ܲ ܲ ܶ ଴ܲ ൅ ܯܾ ܶ ଵܲ ܲ ܶ ଵܲ ൅ ܯܿ ܶ ଶܲ ܲሺܶ ଶܲሻ

, where ݏ is the cost for reading signatures per triple and ܲሺܶ ௜ܲሻ is the pruning probability by ܶ ௜ܲ

Lemma (Efficiency of SigMR) 
SigMR is efficient than the conventional one if

݇∏ ሺ1 െ ܲ ܶ ௜ܲ ሻ
|ொ|
௜ୀ଴ ൐ |ொ|ݏ

, where ݇ is the size of the join matrix (e.g. ݎ ൈ ܿ for 2D join matrix), 

Figure 31: Factors that are relevant to the cost of SigMR

4.8.1 Cost Model

The performance is theoretically analyzed in this section based on a

multi-way join analysis proposed in [7]. Consider the example query Q in

Figure 31. Let G be the target RDF data. Let M(T P1) be a set of triples that

are matched to the first triple pattern (?m,name,?name), M(T P2) for the

second triple pattern (?m,teachOf,?course), and M(T P3) for the third

triple pattern (?course,courseOf,<CS>). Let k be the size of the a×

b× c join matrix, which means that abc = k. b will be set to 1 for the

query Q since it has two joining values ?m and ?course. A hash function

is used to map values in subject to one of a rows and values in object to one

of c columns in the join matrix.

In addition, we have the parameters associated with the pruning tech-

nique. Let P(T P1,G) be the proportion of remaining triples to the number of

original triples matched to T P1. If P(T P1,G) = 1, then no triple is pruned.

If it is 0.5, then 50% triples are pruned. To prune triples during map phase,

signatures are read for each triple. Thus, we need to take into account the

cost for reading signatures, denoted as s.

We define the cost of multi-way join as the summation of the number

of triples that are read during map phases and the number of triples that are
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sent to reducers, which is defined in Definition 4.1.

costbase = (M(T P1)+M(T P2)+M(T P3))

+aM(T P1)+bM(T P2)+ cM(T P3) (4.1)

The cost of SigMR includes additional factors as defined in Definition

4.2.

costSigMR =(M(T P1)+M(T P2)+M(T P3))+s(M(T P1)+M(T P2)+M(T P3))

+aM(T P1)P(T P1,G)+bM(T P2)P(T P2,G)+ cM(T P3)P(T P3,G) (4.2)

SigMR is efficient than the conventional one if the following Expres-

sion holds.

costSigMR < costbase (4.3)

Expression 4.3 is re-written as follows.

(M(T P1)+M(T P2)+M(T P3))+ s(M(T P1)+M(T P2)+M(T P3))

+aM(T P1)P(T P1,G)+bM(T P2)P(T P2,G)+ cM(T P3)P(T P3,G)

−(M(T P1)+M(T P2)+M(T P3))−(aM(T P1)+bM(T P2)+cM(T P3))< 0

(4.4)
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If we reduce the formula, we get the following expression.

(s+a(P(T P1,G)−1))M(T P1)

+(s+b(P(T P2,G)−1))M(T P2)

+(s+ c(P(T P3,G)−1))M(T P3)< 0 (4.5)

If we prefer to strict constraints, the following conditions are derived.

s < a(1−P(T P1,G))

s < b(1−P(T P2,G))

s < c(1−P(T P3,G))

(4.6)

The expression suggests that if we increase the size of signatures, which

corresponds to s, we also need to increase the size of join matrix in or-

der to obtain smaller cost than the baseline cost. On the other hand, we

cannot increase k much due to the restricted number of worker machines.

Therefore, if we want to keep k smaller, then we have to increase the prun-

ing power P(Ti,G) to satisfy the expression for a given s.

The expression is generalized to arbitrary query as stated in Lemma 3.

Lemma 3. SigMR is efficient than the conventional one if

s < di(1−P(T P1,G)) for all i

, where i is the number of joining values in query and di is the number of
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slots in ith dimension of join matrix.

4.8.2 Correctness

In the repetitive multi-way join strategy employed in the proposed ap-

proach, mappers send replicated triples to reducers. Equi-join operations are

then performed by reducers to obtain resultant tuples matched to the query.

Signatures are considered by mappers to prune triples. We first need to prove

that signatures does not yield a false positive answer. For the readability, we

only prove that the bit string for a set of strings does not answer a false

positive for a membership check of a string.

Theorem 4.8.1. Suppose we obtain a bit string Bit(S) from a set S of strings

as follows:

Bit(S) = h(s0)�h(s1)� ...�h(sn−1)

, where si ∈ S, h(s) is a hash function that maps a string s to a bit sequence,

and � is a bit-wise OR operator for two bit sequences.

We can define a membership check function isMember as follows:

isMember(Bit(S),w) =


TRUE if Bit(S)�w = Bit(S)

FALSE if Bit(S)�w ̸= Bit(S)

isMember basically answers TRUE for w ∈ S and FALSE for w ̸∈ S.

It sometimes answers TRUE for w ̸∈ S, but will never answer FALSE for

w ∈ S.

Proof . We prove by contradiction. We assume isMember(Bit(S), t)=FALSE
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for a string t ∈ S. By definition, we know that Bit(S) = h(s0)� ...�h(t)� ...�

h(sn−1). It is trivial that Bit(S) �w = Bit(S). This prove that it will never

answer FALSE for w ∈ S.

Now we prove that our pruning technique produce the correct resultant

tuples as Theorem 4.8.2.

Theorem 4.8.2. Suppose a query Q is given, which consists of n triple pat-

terns {T1, ...,Tn}. Let M(Ti) be a set of triples matched to Ti. Let MP(Ti) be a

set of triples matched to Ti subtracted by a set of triples pruned by a pruning

technique P. We showed that the pruning technique P is correct in Theo-

rem 4.8.1. In addition, we assume that the equi-join operator on is sound and

complete, then we have

M(T1)on M(T2)on ...on M(Tn)⇔MP(T1)on MP(T2)on ...on MP(Tn)

Proof . Let A be M(T1) on ... on M(Tn) and B be MP(T1) on ... on MP(Tn).

Suppose we have two triples t0(x,y,z) ∈M(T1) and t1(x,s, t) ∈M(T2). Sup-

pose that T1 is joined with T2 in subject. The other joining cases can be

proved similar ways.

The left to right direction (⇒): We assume a resultant tuple u0(x,y,z,s, t, ...)

obtained by joining these two triples exist in A. By contradiction, we assume

that u0 ̸∈B. Since on is correct, there are two cases, where t0(x,y,z) ̸∈MP(T1)

and t1(x,s, t) ̸∈MP(T2). Both cases is impossible since P is sound and com-
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plete.

The right to left direction (⇐): We assume a resultant tuple u0(x,y,z,s, t, ...)

obtained by joining these two triples exist in B. By contradiction, we assume

that u0 ̸∈ A. Since on is correct, there are two cases, where t0(x,y,z) ̸∈M(T1)

and t1(x,s, t) ̸∈M(T2). Both cases is impossible since M(T1) and M(T2) must

contain all triples associated with resultant tuples.

4.9 Experiments

We performed experiments to demonstrate that our approach reduces

the query execution time compared with existing approaches. In addition,

we examined the effectiveness of some of the parameters used in our ap-

proach.

Systems Compared We selected systems that could be compared with

our approach, which is based on MapReduce without any other capabilities.

We wanted to isolate the impact of our techniques as much as possible, i.e.,

signature encoding-based multi-way join. Thus, we selected HadoopRDF,

which is a state-of-the-art SPARQL query processing system based on MapRe-

duce. We also compared our system with MultiMR, which is a variant of our

approach but without signature encoding. These systems are all based on

the MapReduce framework. Because any implementation of the MapRe-

duce framework is possible, we used Apache Hadoop, which is one of the

most popular MapReduce implementations. In particular, we used Hadoop
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version 2.4.0. Unfortunately, HadoopRDF was implemented using a pre-

vious version of Apache Hadoop. Thus, to ensure a fair comparison, we

modified some of the Hadoop version-dependent codes in HadoopRDF to

allow it to work with Hadoop 2.4.0.

Hardware Settings We used five machines running the 64-bit version of

CentOS 6.5 with a Quad-Core 2.80 GHz CPU, 10 GB RAM, and 2 TB disk.

We assigned 8 GB RAM to each slave for Apache Hadoop. We used the

64-bit version of Java Virtual Machine 1.8 to build and run the systems.

Datasets Used LUBM (Lehigh University Benchmark) datasets4 were used

in the experiments. To perform the experiments with different volumes of

data, the LUBM dataset generator was used to obtain LUBM datasets where

the number of universities varied, i.e., LUBM10, LUBM100, and LUBM1000

contains approximately 1 million, 13 million, and 130 million triples, re-

spectively.

4.9.1 Index Building Time and Space Requirements

The space requirements and index building time are shown in Table 3.

HadoopRDF required the least space whereas SigMR required the most

space. This is because the index structure of SigMR has additional bits

strings that are not required by HadoopRDF. MultiMR also required more

space than HadoopRDF, although MultiMR does not maintain bits strings.

This is because vertical partitioning methodologies are managed slightly

4http://swat.cse.lehigh.edu/projects/lubm
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Table 3: Index building time and space requirements. Bits indicates the size
of signature.

LUBM10 LUBM100 LUBM1000

Bits
Time Space Time Space Time Space
(sec) (GB) (sec) (GB) (sec) (GB)

SigMR
64 239 0.2 618 3.2 5,171 33.0

128 241 0.4 724 5.1 6,645 51.9
256 251 0.7 709 8.8 6,196 89.3

MultiMR - 284 0.1 553 1.4 4,007 14.0
HadoopRDF - 150 0.1 296 1.3 2,424 12.9

differently, i.e., MultiMR splits triples by range and then again by domain

whereas HadoopRDF splits only by range. Thus, MultiMR stores more

triples because some URI resources have multiple types. For example, in the

LUBM datasets, a resource called GS0 could have two types: GraduateStudent

and TeachingAssistant. In MultiMR, a triple (GS0, teachingAssistantOf,

Course11) is stored in two files with distinct domains, i.e., GraduateStudent

and TeachingAssistant. By contrast, in HadoopRDF, a triple is stored

in a file only once because it does not distinguish the domain of subject.

Although SigMR and MultiMR were not more efficient than HadoopRDF

in terms of their index building time and space requirements, their faster

query execution time, as shown in the next section, compensated for these

disadvantages. After the index is built during a preprocessing stage, we are

no longer concerned with the index building time. In addition, the price of

disks is becoming cheaper with time, thereby making the query execution

time more crucial for real-world applications.
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Figure 32: Query execution times averaged over three experiments against
LUBM10, LUBM100, and LUBM1000 datasets. Two figures are provided
to improve the readability. The parameter settings used were as follows:
number of bits = 64, the size of join matrix = 3.
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4.9.2 Query Execution Time

The query execution time is defined as the time from when a system

receives a query until it finishes saving results in a local file. The SPARQL

queries used in the present study were LUBM queries. Of the 14 LUBM

queries, we only included queries having joins. In addition, in order to ex-

clude the inference performance, which is outside the scope of the present

study, the URI resources in the queries were replaced with the most spe-

cific ones. For example, if Person was present in a query such as (?s

rdf:type Person) and Person is not the most specific class, it was

replaced with GraduateStudent, which is the most specific class and a

subclass of the Person class. The queries used are listed in Appendix 6.

Figure 32 shows the query execution times. For all of the queries,

SigMR performed better than HadoopRDF. The effect of our pruning schema

can be seen for Q#4, Q#7 and Q#8 which are rather of complex queries. For

Q#3, Q#5 and Q#10, MultiMR performed better than SigMR. The existence

of only one or two triple patterns in these queries accounts for these results.

In other words, the pruning didn’t help for these simple queries. Rather, it in-

creased the running time because of that SigMR needs to check bits strings

that is not the case in MultiMR. Note that there are no query execution time

for Q#2 on LUBM10 and LUBM100. It can be understood by their index

structure: HadoopRDF has to scan some index files, whereas SigMR and

MultiMR do not have to scan any index files. Splitting the triples further by

domain in the index files allowed SigMR and MultiMR to determine that

there was no result by looking only at the index catalog.
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Figure 33: Query execution time of SigMR against LUBM10, LUBM100,
and LUBM1000 datasets. The query execution time is averaged over three
experiments. The results are shown for variable numbers of bits in the bits
strings. The parameter settings used were as follows: the size of join
matrix = 3.
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4.9.3 Effect of Signature Encoding

The query execution times with SigMR when using different numbers

of bits in the bits strings are shown in Figure 33. We used three different

number of bits, i.e., 64, 128, and 256. In most cases, 64 bits obtained the

best performance, except for Q#4, which had the worst performance with 64

bits. Figure 34 helps us to understand why this was the case, i.e., in the case

of Q#4, fewer triples were pruned with 64 bits than those with 128 and 256

bits. The lower number of triples pruned meant that the Reduce jobs received

more triples, thereby increasing the query execution time. Thus, when fewer

bits were used, the number of pruned triples was lower. However, this was

not the case for Q#8 and Q#12. For Q#8, the URI string in the query, i.e.,

<http://www.University10.edu>, was too general and simple in

terms of the degree of variations in generated bits string. The URI string was

also simple in Q#4 but it had four triple patterns, excluding type predicate,

whereas Q#8 had three triple patterns. For Q#7, there was a specific URI

string, which allowed many triples to be pruned for 64 bits was used.

4.9.4 Effect of the Size of Join Matrix

The query execution time for SigMR also depends on the number of

Reduce jobs and the number of triples sent to one Reduce job. The join

matrix shown in Figure 29 is used to help us understand these issues. Each

cell of the join matrix corresponds to a Reduce job. A larger join

matrix leads to more Reduce jobs but with a smaller number of triples

for each Reduce job. We define the size of join matrix as the number
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Figure 34: The proportion of pruned triples in the total triples that are origi-
nally considered in a multi-way join against LUBM1000 dataset. The results
are shown for three different bits string sizes. For example, 44% of triples
were pruned out of the total triples (which is always 100% in this figure)
when 64 bits were used and 47% of the triples were pruned when 128 bits
were used.

of its rows and columns. A square matrix is used for join matrix in the

present study. We set the size parameter as 3, 5, 7, and 10, as shown in Figure

35. In most cases, the 3 by 3 join matrix were sufficient to achieve the

best performance. Significant differences were obtained for Q#2, Q#4, Q#8,

and Q#9, which were relatively complex queries with many triple patterns.

Note that the dimension of the join matrix is equal to the number of

triple patterns. Thus, the size of the join matrix increases for complex

queries, thereby creating many Reduce jobs. We found that many Reduce

jobs with small number of triples did not help to reduce the execution time

for complex queries. However, a larger join matrix could help to re-

duce the query execution time for simple queries. The best choice for the

size of join matrix depends on the characteristics of the datasets and

queries.
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Figure 35: Query execution time with SigMR averaged over three runs
against each LUBM10, LUBM100, and LUBM1000 datasets. The results are
shown for variable size of join matrix. The parameter settings used
were as follows: number of bits = 64.

4.10 Conclusion

In this study, we proposed a SPARQL query processing engine based

on the MapReduce framework, where a signature encoding technique is em-

ployed to prune triples when performing a multi-way join. The aim of the

proposed method is to overcome the limitations of the join evaluation strate-

gies employed in previous approaches, i.e., the two-way join approach in-
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volves costly disk accesses and the multi-way join approach is not scalable.

We performed experiments to demonstrate that our proposed approach re-

duces the query execution time. We also showed that our signature encoding

method helps to reduce the query execution time. We examined different pa-

rameter settings using our approach in order to show effects of parameters

with respect to queries and datasets. Our interesting future research may in-

clude compressing the bits strings to minimize the space requirements and

supporting the full-text search expressed in filter clauses. In addition, real-

time processing frameworks such as storm [68] can be integrated in order to

improve query processing performance [69, 70].
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Chapter 5

Application to Biomedical Linked
Data

5.1 Introduction

This chapter discusses an way of applying the proposed algorithms to

biomedical Linked Data.

Firstly, we propose a way of integrating biomedical Linked Data, es-

pecially, for adverse drug combination discovery. Our model is designed to

discover pathways associated with a given drug combination. The approach

is different from previous works in that existing works focus on finding

relevant genes whereas our work focus on finding a path linked through

pathways. Our approach not only shows more complex information but also

helps clinicians understand how a drug combination yield some adverse ef-

fects.

Secondly, we describe CyHadoop, a Cytopscape plugin that works with

Hadoop cluster running on multiple machines. The input data given by user

through Cytoscape is automatically fed into Hadoop cluster and its result

is in turn shown in the Cytoscape visualizer. It also provides graphical user

interfaces that allows users to check the status of Hadoop cluster’s. We argue

that availability of both visualization and bigdata processing in a software,
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provides convenience to biologist.

5.2 Related Work

To the best of our knowledge, few Cytoscape plugin exists that can

handle large volume of data. Most the plugins run on a single machine which

is hard to be scalable due to the memory and CPU limitation. Big data in

biology domain includes UniProtKB/Swiss-Prot (2.6 GB), GeneOntology

(4.7 GB) and etc. Capabilities of processing such a bigdata are becoming an

increasingly important role in biology [71].

Apache Hadoop, a bigdata processing framework, is a distributed com-

puting framework that implements MapReduce [14], which parallelizes data

processing tasks on a cluster with multiple machines. Pre-configured Hadoop

clusters are provided by Amazon Web Services (AWS) that gives an op-

portunity for biologits to make use of distributed computing environment

without detailed knowledge.

Researchers have tried to use Hadoop to address heavy computation

problem in biology. For example, SeqPig [72] extends Apache Pig, a script

for executing Hadoop tasks, to make it an easy task to run a sequence align-

ment task in Hadoop. MR-Tandem ([73]) is a peptide search engine written

in a Python script that works with Hadoop cluster. BlueSNP [74] is a R

package performing a statistical test of genome-wide association study on

Hadoop cluster.

Even though Hadoop has already been used in biology domain in vari-

ous ways, few researcher has attempted to enable visualization tools to work
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with Hadoop. We could get the benefit both of faster processing of bio big-

data by using Hadoop and easy checking of the processing result by using

Cytoscape.

Diverse Cytoscape plugins are available in Cytoscape App Store1. We

review Cytoscape plugins that are related to deal with biological network in

terms of graph processing, which is listed in Table 4.

Table 4: Cytoscape plugins related to biological network and graph pro-
cessing

Name Main Features Cluster Sup-
port

Update

ShortestPath Visualize shortest path
between two nodes

NO 2007

PathExplorer Highlight paths NO 2012
StrongestPath Find confident paths in

PPI network
NO 2015

KeyPathwayMiner Extract all maximal con-
nected sub-network

NO 2016

Vital AI Graph Vi-
sualization

Full-text search for nodes
by its name using Word-
Net

YES (cluster
provided
by the
company)

2016

CyHadoop Find shortest paths that
are associated with ad-
verse drug combinations

YES
(Hadoop
Cluster)

2016

Most plugins does not support cluster. In other words, internal algo-

rithms run on a single machine in an in-memory fashion. If memory is not

enough, large graph cannot be handled. Vital AI Graph Visualization

should not be considered to fully support clusters because the users have to

connect to the company’s cluster. In addition, it does not provide function-

1http://apps.cytoscape.org
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Figure 36: Conceptual diagram of integrating biomedical datasets related
to adverse drug combination. The tick lines indicates links established by
the proposed approach. The plain lines indicates existing links. The red line
represents the inhibition (or down-regulation).

alities of graph processing, rather, it focus on full-text support based on

WordNet.

5.3 Data Model

This section discusses how to integrate biomedical datasets to address

the adverse drug combination problem. Figure 36 depicts our model.

In the left and right hand sides, we have two drugs, respectively. Each

drug is linked to target genes. In the middle, we have pathways linked

through genes. Within this model. a directed path can be discovered from

a drug to another drug. Several pathways would be on the path, which re-

flects how two drugs interact each other. Note that a drug has target genes,

which is modeled in directed edges from a drug to each gene. However, we

also have edges from genes to a drug in the right-hand side if genes from

a pathway down-regulates these genes. Using such a trick, we are able to

define directed path from a drug to another drug. When a discovered path is

shown to users, the direction of these edges can be reversed to give a correct

information.

Biomedical data pertaining to adverse drug combination discovery is
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modeled in an edge-labeled directed graph as follows:

BG(D,G,PW,DG,GPW,PWPW,PWG,GD) (5.1)

Notations are defined in Table 5.

Table 5: Notations

Notation Meaning
D a set of drugs
G a set of genes
P a set of proteins
PP a set of relationships between proteins such that (pi,up, p j)

or (pi,down, p j) where pi, p j ∈ P
PW a set of pathways
DG a set of relationships from drugs to theirs’ target genes such

that (di, target,g j) where di ∈ D and g j ∈ G
GD a set of relationships from gene to drugs such that

(g j, inverse target,di) where g j ∈ G and di ∈ D
GPW a set of relationships from gene to pathways such that

(g j, in, pwi) where g j ∈ G and pwi ∈ PW
PWG a set of relationships from pathways to genes such that

(pw j,out,gi) where pw j ∈ PW and gi ∈ G
PWPW a set of relationships between pathways such that

(pwi,up, pw j) or (pwi,down, pw j) where pwi, pw j ∈ PW

Basic building blocks of the graph BG are drugs, genes and pathways.

We firstly define the pathway as stated in Definition 22.

Definition 22. Pathway (PW ) A pathway pw is a nested directed hyper-

graph that consists of a set P of proteins and a set PCPC of hyperedges

(PCs,PCt) with a set PCs of source proteins and a set PCt of target pro-

teins. Specifically, PCs indicates to the protein complex consisting of a set

of proteins that participate together in an interaction. The term nested is
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Figure 37: An illustrative example of input and output of a pathway.

used because a pathway as the whole becomes a node of BG. To simplify

the model of BG, relationships between two protein complexes are grouped

into two relationships, up and down. PCPC can be obtained from a pathway

database.

To establish relationships between pathways, we need to define the in-

put and output of pathways. We assume that signals are sent from a pathway

to another pathway via interactions between proteins. Specifically, signals

from a pathway pws is sent to another pathway pwt if the output of pws is

mapped into the input of pwt . The formal definition of the input and output

of a pathway is stated in Definition 23.

Definition 23. Pathway Input & Output The input I(pw) of a pathway

pw is a set of proteins in the source of hyperedges defined as

I(pw) = {p : p ∈ PCs such that (PCs,PCt)} (5.2)
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, where pw = (P,PCPC) and PCPC = {(PCs,PCt)} Similarly, the output

O(pw) is defined as

O(pw) = {p : p ∈ PCt such that (PCs,PCt)} (5.3)

Figure 37 is a screenshot of part of a pathway taken from Reactome2.

For the simplicity, we assume that the figure depict the whole of a pathway,

consisting of two reactions. In the left-side, we have a reaction whose input

is Fru 1-P and ALDOB tetramer, and whose output is DHAP and GA.

In the right-side, we have another reaction whose input is GA, H2O, NAD+

and ALDH1A1 tetramer, and whose output is DGA and H+ and NADH.

From these reactions, we identified input and output of the pathway. In-

put is Fru 1-P, ALDOB tetramer, ALDH1A1 tetramer, GA,

H2O, NAD+ and output is DHAP, GA, DGA,H+,NADH. Note that GA

participates in both input and output of two reactions.

Edges between two pathways are established based on the degree to

which how many protein-protein relationships are there. The protein-protein

relationship is formally defined in Definition 24.

Definition 24. n-Hop Protein-Protein Relationship A protein ps in a path-

way pwi has a 0-hop mapping with a protein pt in a pathway pw j, denoted as

ps
0−→ pt , if ps and pt are the same protein and ps ∈O(pwi) and pt ∈ I(pw j).

For a positive integer n > 0, ps has a n-hop mapping with pt , denoted as

ps
n−→ pt , if ps and pt are not the same one and ps ∈O(pwi) and pt ∈ I(pw j),

2http://www.reactome.org/
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Figure 38: An illustrative example of n-hop protein-protein relationship
between two imaginary pathways.

but it satisfies one of two condition; 1⃝ (direct) there exists a n-length path

from ps to pt in pwi or pw j. 2⃝ (indirect) there exists a set PI of proteins

{pk, ..., pk+n} where interactions (ps, pk), (pk, pk+1),..., (pk+n−1, pk+n), and

(pk+n, pt) in an external protein-protein interaction database and |PI| =

n−1.

See Figure 38, where the input and output of two imaginary pathways

are shown. G is in both O(pws) and I(pwt), which means that we have G 0−→

G. We have F 1−→ G because there exists a path from F to G in pws and the

length is 1. An indirect relationship is found from H to A through external

PPIs consisting of H, W, and A, shown in the bottom part of the figure.

The types of protein-protein relationships are distinguished by the way

in which the source protein affects the target protein. Although there exist

various ways of interaction between proteins, we classify into two interac-

tion types such as up and down, as defined in Definition 25.
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Figure 39: An illustrative example of n-hop protein-protein relationship
classification, extended from Figure 38

Definition 25. n-Hop Protein-Protein Relationship Classification (PP)

Given a n-hop protein relationship ps
n−→ pt , we classify it into two rela-

tionships ps
n−→
up

pt and ps
n−−−→

down
pt . ps

n−→ pt is classified into ps
n−−−→

down
pt if

there exists at least one (pk, pk+1) in the path from ps to pt , where pk down-

regulates pk+1 according to a protein-protein interaction database. ps
n−→ pt

is classified into ps
n−→
up

pt , otherwise. If n is 0, we assume ps
n−→ pt is always

classified into ps
n−→
up

pt .

See Figure 39, where types of protein-protein relationships are shown.

The relationship F 1−→ G is classified into down because F inhibit G in pws.

Likewise, H 2−→ G is classified into down because one of PPIs in the path is

down (i.e., H inhibit W).

We can calculate the proportion of the number of up and down protein-

protein relationships to the total number of pairs between proteins in two

pathways, as defined in Definition 26.
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Figure 40: An illustrative example of establishing links between two real-
world pathways from Reactome.

Definition 26. Pathway-Pathway Relationship (PWPW ) We have two

pathways pwi and pw j with ps ∈ O(pwi) and pt ∈ I(pw j). The weight of

each n-hop protein-protein relationship is defined as wn =
1

n+1 . We compute

the following scores.

U p(pwi, pw j) =

∑
wn×|ps

n−→
up

pt |

|O(pwi)|× |I(pw j)|
(5.4)

Down(pwi, pw j) =

∑
wn×|ps

n−−−→
down

pt |

|O(pwi)|× |I(pw j)|
(5.5)

Link(pwi, pw j) =U p(pwi, pw j)+Down(pwi, pw j) (5.6)

We establish an edge from pwi to pw j if Link(pwi, pw j)> t, where t is

the threshold. The label of the edge between two pathways is assigned up if

U p(pwi, pw j)> Down(pwi, pw j) and down, otherwise.

See Figure 40, where protein-protein relationships are shown between
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two pathways. Because the proportion of down protein-protein relationships

is greater than the proportion of up ones, we will assign down to the edge

between two pathways.

So far, we have described the way to model relationships between path-

ways. We will discuss the way to model relationships between genes and

pathways. Genes can be connected to pathways via proteins. The relation-

ship between genes and pathways is formally defined in Definition 27.

Definition 27. Gene-Pathway and Pathway-Gene Relationship (GPW

and PWG) For a pathway pw and a gene g, an edge is created from g to

pw if g is involved in producing p ∈ I(pw). Similarly, an edge is created

from pw to g if g is involved in producing p ∈ O(pw).

A relationship from a gene to a pathway is established through proteins

in the input of the pathway. Inversely, a relationship from a pathway to a

gene is established through proteins in the output of the pathway.

We assume that information about drugs and target genes is available.

Drugs can now be linked to genes to build a graph BG. Relationships be-

tween gene and drug in two directions are defined in Definition 28.

Definition 28. Drug-Gene and Gene-Drug Relationships (DG and GD)

For a drug di ∈ D, we have a set T GT (di) of target genes. Automatically,

we create edges from a drug di ∈ D to a target gene g j ∈ T GT (di), which

is in turn linked to a pathway pwk by creating an edge (g j, pwk) according

to Definition 27. Opposite edges from genes to drugs are created using the

same data.

Based on Definition 27 and 28, we can establish edges from pathways
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Figure 41: An illustrative example of establishing a link from a drug to a
pathway.

to drugs and vice versa. Note that the types of relationships between drugs

and pathways is classified in the same way in which the types of relation-

ships between pathways is classified. See Figure 41, an edge from a drug

DB01254 to a pathway called PECAM1 INTERACTIONS is established.

Since most of genes in the drug side inhibit genes in the pathway side, the

edge is classified into down.

5.4 CyHadoop

Visualizing biological data plays an important role in biology research.

Many data visualization tools are available to help users capture significant

features in biological data. Cytoscape ([75]) is one of popular data visual-

ization tools in biology domain. It allows biologists to interactively navigate

biological network through network displays. The functionalities of the tool
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Figure 42: CyHadoop Architecture

can be extended by installing third-party plugins. A number of plugins for

Cytoscape has being developed to equip it with data processing functional-

ities. However, most the plugins are designed to run on a single computer

that is not capable of efficiently handling large volume of data.

CyHadoop runs inside Cytoscape user-interface and to work with Hadoop

cluster through network communication. Figure 42 depicts CyHadoop’s ar-

chitecture consisting of an user machine and several worker machines. In the

user machine, CyHadoop is installed as a plugin into Cytoscape. Hadoop is

configured in the worker machines on which an Linux operation system

has been installed. All login information for work machines is specified in

CyHadoop in order for the user machine to freely communicate with work

machines (See Figure 43). To do so, some prerequisites are expect, sshd

and etc. These are required to enable the user machine to interact with the
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Table 6: Biomedical dataset

Contents Sources Entities Size

Pathway Reactome3, KEGG4
Pathways 860

Genes per pathway (avg/max/min) 58.7 / 933 / 9
Unique genes in pathways 24,017

Drug DrugBank5 Drugs 179,380
Genes per drug (avg/max/min) 58.7 / 933 / 9

PPI
BIND, BioGrid

Gene-Gene Pairs 651,113DIP, HPRD, IntAct
MINT, STRING

worker machines through SSH communications.

CyHadoop deals with a graph in the edge list format, which consists

of a set of 4-tuples (source, label, target, weight). The format represents a

directed weighted labeled graph. We have an edge (source, target) and its

label label with the weight weight.

Shortest Path Discovery between Two Drugs The system allows to users

to input two drugs in either id or name (See Figure 44). If the user clicks the

discovery button, it will show shortest path between two drugs (See Figure

46). The user can adjust the diameter that determines how far additional

vertices from the discovered path is shown. If the diameter is set to 1, one

additional vertices adjacent to vertices in the discovered path are shown. In

this way, the user is able to see some contextual information relevant to the

discovered shortest path.

3http://www.reactome.org/
4http://www.genome.jp/kegg/
5http://www.reactome.org/
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5.5 Scenario

In this section, we will show an imaginary scenario that describes the

work-flow of the system. Suppose that an user wants to know if two drugs of

interests have adverse effects or not. If it has, the user then wants to further

examine its causes.

See Figure 43, when Cyhadoop is launched, the hadoop configuration

panel appears. The user has to configure the hadoop cluster by specifying

ip address, login id, password and etc. The user then check if the cluster is

working by clicking the status button. Then, the user moves to the query

panel (See Figure 44). In that panel, the user inputs names of two drugs in

this case, DB02716 and DB02546. In addition, the system allows the user

to specify the diameter value that determine k hop expansions. Suppose that

the user select 1. By clicking the Discover button, a shortest path discov-

ery task is executed in the hadoop cluster. Logs are displayed in the textbox

together with progress. After a while, the task is finished. The user clicks the

View button. See Figure 46, in the right hand side, a graph is visualized that

depicts 1 hop expanded shortest path from DB02716 to DB02546. There

exist five vertices between source and target vertices. Several vertices are

attached to the path which is shown because the user specify diameter as 1.

The users are able to see a nested graph (See Figure 47) that contains cycles.

In addition, the system allows to see a list of drugs interacted with a given

drug available in DrugBank (See Figure 45). The feature helps compare dis-

covered interactions with existing interactions.
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Table 7: Drug-Drug interactions in Drugbank

Total Drugs 8,226
Drugs that have at least one interaction 2,214

Interactions 489,405
Drugs per drug (avg/max/min) 242.6 / 1208 / 1

Adverse drugs per drug (avg/max/min) 90.8 / 455 / 1

5.6 Preliminary Results

In this section, we present some preliminary results that we can get

from integrated biomedical datasets. Our goal is to discover drug-drug in-

teractions that might occur adverse effects. Discovered interactions need to

be compared with existing drug-drug interaction database such as Drugbank

listed in Table 7.

See Figure 48 for example, a drug “Pirfenidone” has some drug inter-

action with interaction description. Unfortunately, that information is all we

can obtain from Drugbank, which means that there is no explicit way to clas-

sify positive effect and negative effect by a drug combination. We do very

simple classification based on interaction description. When an interaction

description contains the phrase “adverse effect”, we classify it as an adverse

drug combination. We classify as a positive drug combination, otherwise.

See Figure 49, a list of drug-gene interaction types is shown. In order

to identify left and right side drugs, we classify each drug-gene interaction

types into UP and DOWN by taking into account the label of types. The

red one are classified into DOWN and the other ones are into UP. Using the

simple heuristic, we obtain statistics as shown in Table 8.

See Figure 50, gene-gene interactions in Reactome are shown. We clas-
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Table 8: Drug-Gene interactions in Drugbank

Total Drugs 8,226
Drugs with target genes 6,763

Genes per drug(avg/max) 2.5 / 57
Up-Gene per drug(avg/max) 0.6 / 56

Down-Gene per drug(avg/max) 1.9 / 31
Unique Genes 1,627

sify gene-gene interactions based on Annotation. See Figure 51, annotations

are listed. We classify each gene-gene interaction type into UP and DOWN

by taking into account the annotation of types. The red one are classified

into DOWN and the other ones are into UP.

Drug-Drug interactions discovered by the proposed approach is listed

in Table 9. Note that some interactions has already been reported in Drug-

bank and some are new by our approach. For those that has already been

reported in Drugbank, we need to compare the discovered path with liter-

atures mentioning the interaction. For those that has not been reported in

Drugbank, clinical experiments are required to verify the correctness.

5.7 Future Directions

We discuss limitations of the prototype system and some ways to im-

prove the issues, in order to be used in real-world problems.

Input Data Collection and Conversion The prototype system assumes

that input graph data has already been prepared in the edge list format. No

converting modules are available in the plugin. Automatically integrating
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biomedical datasets is beyond the scope of the thesis. Integration strategies

for biomedical datasets vary according to requirements. It is not easy task to

develop a general purpose integration tool. Moreover, biomedical datasets

changes frequently over time. Once a graph data is created, it cannot reflect

up-to-date datasets available.

In addition, even if such a graph data has been prepared, the user must

upload it into HDFS manually. No GUI interface is included in the current

system that allows users to select a file in local machine and to upload it into

HDFS.

Graph to DAG The prototype system only deals with DAGs. In the sce-

nario presented in the thesis, we integrated several biomedical datasets and

created a graph data. We implemented a simple in-memory program that

converts a graph into corresponding DAG by substituting each SCC into a

single vertex. However, in this way, massive graph data cannot be converted

into DAG. We plan to implement a distributed algorithm that supports the

functionalities.

Visualization One of most important features of the plugin is to visual-

ize large graph in the screen in a way that human is able to easily capture

the intended meaning. In the prototype version, different colors are used to

distinguish source and target vertices. Genes and drugs are distinguished by

shapes. Another important aspect is to place shapes in appropriate positions,

which are completely omitted in the current version. We plan to cooperate

with human-computer interaction researchers to address the issue.
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Table 9: A portion of drug-dug interactions discovered by the proposed ap-
proach. Drugbank indicates whether the drug combination has aleady been
reported by Drugbank or not. Path shows the discovered path from Drug#1
to Drug#2.

Drug#1 Drug#2 Drugbank Path

Carvedilol Pentoxifylline T
GENESET#NPPB GJA1 VCAM1 ADRB1,
KEGG MAPK SIGNALING PATHWAY,

GENESET#NT5E PDE4B

Carvedilol Ibudilast F
GENESET#NPPB GJA1 VCAM1 ADRB1,
KEGG MAPK SIGNALING PATHWAY,

GENESET#PDE4A

Carvedilol Gallium nitrate F
GENESET#NPPB GJA1 VCAM1 ADRB1,
KEGG MAPK SIGNALING PATHWAY,

GENESET#RRM2

Buspirone Indapamide F
GENESET#HTR1A,

REACTOME SEROTONIN RECEPTORS,
REACTOME POTASSIUM CHANNELS,

GENESET#KCNQ1

Methylphenobarbital Dutasteride F
GENESET#GABRA2 GABRA4 GABRA3,

REACTOME GAP JUNCTION DEGRADATION,
REACTOME ENDOGENOUS STEROLS,

GENESET#SRD5A2 SRD5A1
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Figure 43: Cluster setup

Figure 44: The user inputs two drugs of interests (DB02716 and
DB02546)
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Figure 45: Known durg-drug interaction from DrugBank

Figure 46: Discovered shortest path between two drugs.
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Figure 47: Nested graph that is contained in a cycle node in Figure 46

Drug-Drug Interaction (DrugBank)

24/52

Total Drugs 8,226

Drugs that have at least one interaction 2,214

Interactions 489,405

Drugs per drug (avg/max/min) 242.6 / 1208 / 1

Adverse drugs per drug (avg/max/min) 90.8 / 455 / 1

Figure 48: A portion of interactions for a drug in Drugbank.

126



25/52

action count(*)
9847

inhibitor 1875
antagonist 1395
agonist 848

potentiator 413
binder 237
cofactor 106

other/unknow 101
inducer 67
activator 64
other 57

positive all 36
partial agon 34
antibody 33
ligand 33

negative mod 29
product of 26
unknown 25
intercalatio 23
allosteric m 22
adduct 21

cross‐linkin 20
chelator 17
modulator 17
incorporatio 14

action count(*)

multitarget 9
cleavage 8
stimulator 8

inverse agon 7
inhibitor, c 5

binding 4
blocker 4

chaperone 4
metabolizer 4
suppressor 4
neutralizer 3
partial anta 2

Ryanodine re 2
substrate 2

acetylation 1
component of 1
desensitize 1

Nonstructura 1
positive mod 1
Progesterone 1

reducer 1
Voltage gate 1

Drugs 8,226

Drugs with target genes 6,763

Genes per drug(avg/max) 2.5 / 57

Up-Gene per drug(avg/max) 0.6 / 56

Down-Gene per drug(avg/max) 1.9 / 31

Unique Genes 1627

Figure 49: Drug-gene interaction types in Drugbank
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Gene-Gene Interaction (Reactome)

26/52

score > 0.5
Left‐Right    ‐>    ‐|
Right‐Left    <‐ |‐

Classify into UP/DOWN

Functional interactions (FIs) derived from Reactome, and 
other pathway and interaction databases:

Figure 50: Gene-gene interaction in Reactome

annotation count annotation count annotati
on count annotati

on count annotation count annotation count annot
ation count

catalyzed 15016 comp 1576 cataly 219 predic 83 react 28 repressed 11 ex 2

catalyze 14969 comple 1142 activa 208 phospho 76 ubiquitinati
on 23 com 9 catal 1

activated 13824 indire 970 compoun
d 203 expres 72 expressed 23 glycos 8 e 1

complex 12539 inhibit 863 dephos 201 indirect e
ffect 69 rea 20 repression 8 reactio 1

activation 8177 deph 846 acti 187 inhi 64 act 20 inp 6 predict
e 1

activate 6723 PPre 765 phosphor
ylation 157 activati 53 i 19 inhibiti 5 inhib 1

expression regulated 5875 indirec 655 cata 145 ubiqui 51 dissociatio
n 18 state change 5 predict 1

expression regulates 5251 bindin 556 expressio
n regul 140 PPr 47 P 17 methyla 5 inh 1

inhibited 4401 inhibite 509 compl 118 pr 45 GEr 16 inhibited glyc
osyl 4 p 1

input 3897 reaction 461 exp 104 int 42 ubiquitinate
d 15 ca 4

in 2946 catalyzed b 320 inhibi 104 ubiquit 41 reac 15 dephosphoryl
ation 4

inhibition 2428 activated bin
ding/ 263 a 96 inpu 37 pre 14 expr 4

phos 2337 phosphorylat
ed 248 c 96 inte 31 ac 13 binding/ass 2

expression 2166 binding/asso
ciatio 232 reacti 93 pred 29 predi 13 express 2

phosph 2142 predicted 230 intera 86 re 29 expression 
regu 12 dephosphoryl

ated 2

Figure 51: Annotations of gene-gene interactions in Reactome
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Chapter 6

Conclusion

In this thesis, we proposed graph path discovery algorithms, and a pro-

totype tool was implemented to address biomedical problems using the de-

veloped algorithms. The tool can be used by biomedical researchers and

clinicians to identify adverse drug combination and its causes in terms of

graph made of drug, gene, and pathways. Firstly, shortest path discovery

algorithm was proposed to find linked pathways involved in a drug combi-

nation. The algorithm was implemented on top of Spark, which guarantees

scalability. Reachability index was exploited to speed up the discovery pro-

cess. Federated shortest path discovery was discussed in terms of dynamic

integration of biomedical datasets. We discussed that discovered shortest

path can be transformed into a simple graph path query by substituting

constants into variables. Secondly, efficient multi-way join processing al-

gorithm was proposed to find another drug combinations that are associated

with the matched graph path. Signature encoding technique was developed

to prune redundant data required by conventional multi-way join process-

ing approaches. Thirdly, a Cytoscape plugin was implemented in order for

biomedical researchers to use the proposed graph path discovery algorithms

against biomedical graphs. The novelty can be found in allowing Cytoscape

to interact with clusters. In addition, it helps biomedical researchers and

clinicians to discover interacted pathways that are involved in drug combi-
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nations.

The future directions are as follows.

1) Reachability index building should also be carried out in a cluster. To

the best of our knowledge, there exists few work that support massive graph

reachability index building using a cluster. In addition, more complex graph

statics should be taken into account to further reduce the size of reachability

index.

2) Federated shortest path discovery was defined in an abstract level

in this thesis. We will give a concrete definition with real-world examples.

Moreover, applicability to biomedical research should also be addressed.

3) Applications of shortest path discovery is limited as it gives us only

one path. However, one mights want to know second-best, third-best, and

k-best path that would give us another interpretation for some biological

phenomena. We plan to devise a scalable algorithm for k shortest path dis-

covery. It is expected that the proposed shortest path discovery algorithm

can be extended to deal with k shortest path discovery. By doing so, our

framework is able to cover diverse biomedical research.

4) The main drawback of signature encoding technique is that signa-

tures occupy huge space. We plan to adopt compressing techniques to reduce

space requirements of signatures.

5) In this thesis, we assume that biomedical datasets has already been

converted into graphs. We plan to devise an automatic way to integrate ex-

isting biomedical datasets into graphs. Then, our tool can be used when

underling datasets change.
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Appendix

Algorithms

Algorithm 1 Map function for both of Index Catalog Acquisition and Object
Join Partitioning

1: procedure MAP(key,value) ◃ key is the line number of input RDF file.
2: ◃ value is the triple in current line read.
3: skip← key mod k ◃ k depens on the number of triples in the file.
4: if skip ̸= 0 then
5: return
6: end if
7: EMIT(value.sub ject, value)
8: if value.ob ject is an URI string then ◃ URI string begins with

“http://”
9: EMIT(value.ob ject, value)

10: end if
11: end procedure
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Algorithm 2 Reduce function of Index Catalog Acquisition

1: procedure REDUCE(key,values) ◃ key is an URI string which is
subject or object.

2: ◃ values is a list of triples.
3: uri type← a map (key=uri, value=type) ◃ type of subject or object

URI
4: uri f req← a map (key=uri, value=frequence) ◃ frequence of URI.
5: list← a list of triples
6: for each triple t in values do
7: if t.predicate == rdf:type then
8: put (t.sub ject, t.ob ject) into uri type
9: else

10: add t to list
11: end if
12: uri f req(t.sub ject)← uri f req(t.sub ject) + 1
13: if the number of keys in uri f req(t.sub ject) > some threshold

then
14: for each triple t in uri f req do
15: EMIT(uri freq, uri f req)
16: end for
17: clear uri f req from the main memory ◃ since memory is

limited.
18: end if
19: end for
20: for each triple t in list do
21: if t.sub ject == key then
22: EMIT(predicate domain, t.predicate|uri type(t.sub ject)) ◃
| delimeter

23: else
24: EMIT(predicate range, t.predicate|uri type(t.ob ject))
25: end if
26: end for
27: EMIT(uri freq, uri f req)
28: end procedure
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Algorithm 3 Reduce function of Object Join Partitioning

1: procedure REDUCE(key,values) ◃ key is an URI string which is
subject or object.

2: ◃ value is a list of triples.
3: ot← an empty list of object-key triples.
4: os bits← an empty bitstring for OS join.
5: oo bits← an empty bitstring for OO join.
6: uri type← a map (key=uri, value=type) ◃ type of subject or object

URI
7: for each triple string t in values do
8: if t.predicate == rdf:type then
9: put (t.sub ject, t.ob ject) into uri type

10: end if
11: if t.sub ject == k then
12: o← generate a bitstring from t.ob ject
13: add o to os bits
14: else if t.ob ject == key then
15: s← generate a bitstring from t.sub ject
16: add s to oo bits
17: add t to ot ◃ for the iteration below
18: end if
19: end for
20: for each triple string t in ot do ◃ iterate over object-key triples
21: o types← get type list from uri type(t.ob ject)
22: f ilenames ← GETINDEXFILE-

NAMES(empty list,t.predicate,o types) ◃ refer to Algorithm
4

23: for each f ilename in f ilenames do
24: EMIT( f ilename, oo bits|os bits|t) ◃ | delimiter ◃ triples are

emited to files determined by its predicate and types of object.
25: end for
26: end for
27: end procedure
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Algorithm 4 Generate index file names for a triple

1: procedure GETINDEXFILENAMES(sub ject types, predicate,ob ject types)
2: ◃ sub ject types is a list of URI strings which are types of a certain

subject.
3: ◃ ob ject types is a list of URI strings which are types of a certain

object.
4: f ilenames← an empty list
5: if sub ject types is empty and ob ject types is empty then
6: add “∗|predicate|∗” to f ilenames ◃ *: indicate to any type
7: else if sub ject types is not empty and ob ject types is not empty

then
8: for each URI string s in sub ject types do
9: for each URI string o in ob ject types do

10: add “s|predicate|o” to f ilenames
11: end for
12: end for
13: else if sub ject types is not empty and ob ject types is empty then
14: for each URI string s in sub ject types do
15: add “s|predicate|∗” to f ilenames
16: end for
17: else if sub ject types is empty and ob ject types is not empty then
18: for each URI string o in ob ject types do
19: add “∗|predicate|o” to f ilenames
20: end for
21: end if
22: return f ilenames
23: end procedure
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Algorithm 5 Map function of Subject Join Partitioning. This takes as input
the index files emitted from the Object Join Partitioning job (Algorithm 3).

1: procedure MAP(key,value, f ilename) ◃ key is the line number
2: ◃ value consists of OO/OS bitstring, subject and object
3: ◃ f ilename is the name of input index file that it is reading.
4: itmes← a string array made by splitting f ilename by the delimiter
| ◃ refer to Algorithm 4

5: ob ject type← itmes[2] ◃ the type of object of this triple
6: predicate← itmes[1] ◃ the predicate of this triple
7: value f or reduce← “predicate|ob ject type|value” ◃ | delimiter
8: EMIT(value.sub ject, value f or reduce)
9: if value.ob ject is an URI string then

10: EMIT(value.ob ject, value f or reduce)
11: end if
12: end procedure
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Algorithm 6 Reduce function of Subject Join Partitioning

1: procedure REDUCE(key,values) ◃ key is an URI string which is
subject or object.

2: ◃ value is a list of value f or reduce from Algorithm 5.
3: st← an empty list of subject-key triples.
4: ss bits← an empty bitstring for SS join.
5: so bits← an empty bitstring for SO join.
6: uri type← a map (key=uri, value=type) ◃ type of subject or object

URI
7: for each triple string t in values do
8: if t.predicate == rdf:type then
9: put (t.sub ject, t.ob ject) into uri type

10: end if
11: if t.sub ject == k then
12: o← generate a bitstring from t.ob ject
13: add o to ss bits
14: add t to st ◃ for the iteration below
15: else if t.ob ject == key then
16: s← generate a bitstring from t.sub ject
17: add s to so bits
18: end if
19: end for
20: for each triple string t in st do ◃ iterate over subject-key triples
21: o type← get object type from t
22: predicate← get the predicate from t
23: s types← get type list from uri type(t.sub ject)
24: f ilenames ← GETINDEXFILE-

NAMES(s types,predicate,o type)
25: for each filename f ilename in f ilenames do
26: EMIT( f ilename, ss bits|so bits|t) ◃ | delimiter ◃ triples are

emited to index files
27: end for
28: end for
29: end procedure
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LUBM Queries

Prefixes

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>

Query #1

SELECT ?X

WHERE {

?X rdf:type ub:GraduateStudent .

?X ub:takesCourse <http://www.Department0.University10.edu/GraduateCourse1>

}

Query #2

SELECT ?X ?Y ?Z

WHERE {

?X rdf:type ub:GraduateStudent .

?Y rdf:type ub:University .

?Z rdf:type ub:Department .

?X ub:memberOf ?Z .
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?X ub:undergraduateDegreeFrom ?Y

}

Query #3

SELECT ?X

WHERE {

?X rdf:type ub:Publication .

?X ub:publicationAuthor <http://www.Department0.University10.edu/FullProfessor0>

}

Query #4

SELECT ?X ?Y1 ?Y2 ?Y3

WHERE {

?X rdf:type ub:FullProfessor .

?X ub:worksFor <http://www.Department0.University10.edu> .

?X ub:name ?Y1 .

?X ub:emailAddress ?Y2 .

?X ub:telephone ?Y3

}
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Query #5

SELECT ?X

WHERE {

?X rdf:type ub:UndergraduateStudent .

?X ub:memberOf <http://www.Department0.University10.edu>

}

Query #7

SELECT ?X ?Y

WHERE {

?X rdf:type ub:UndergraduateStudent .

?Y rdf:type ub:Course .

?X ub:takesCourse ?Y .

<http://www.Department0.University10.edu/AssociateProfessor0> ub:teacherOf ?Y

}

Query #8

SELECT ?X ?Y ?Z

WHERE {
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?X rdf:type ub:UndergraduateStudent .

?Y rdf:type ub:Department .

?X ub:memberOf ?Y .

?Y ub:subOrganizationOf <http://www.University10.edu> .

?X ub:emailAddress ?Z

}

Query #9

SELECT ?X ?Y ?Z

WHERE {

?X rdf:type ub:GraduateStudent .

?Y rdf:type ub:FullProfessor .

?Z rdf:type ub:GraduateCourse .

?X ub:advisor ?Y .

?Y ub:teacherOf ?Z .

?X ub:takesCourse ?Z

}
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Query #10

SELECT ?X

WHERE {

?X rdf:type ub:GraduateStudent .

?X ub:takesCourse <http://www.Department0.University10.edu/GraduateCourse10>

}

Query #11

SELECT ?X

WHERE {

?X rdf:type ub:ResearchGroup .

?X ub:subOrganizationOf <http://www.Department0.University10.edu>

}

Query #12

SELECT ?X ?Y

WHERE {

?X rdf:type ub:FullProfessor .
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?Y rdf:type ub:Department .

?X ub:worksFor ?Y .

?Y ub:subOrganizationOf <http://www.Department0.University10.edu>

}
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초록

의약품의종류가많아지면서부작용이발생할수있는의약품조합을

예측하고그원인을규명하려는연구의중요성이커지고있다.이는신약

을개발하는연구원이나의약품을처방하는임상의에게중요한연구이다.

기존대부분의연구는의약품에가장많은영향을받는유전자목록을식

별하는데에그치고있다.이러한방법론은의약품조합에따른부작용의

원인을생물체내의요소간화학반응체계(대사경로)의관점에서규명하

는데에한계가있다.부작용의원인은대사경로들의연결관계에의해더

직관적으로 이해될 수 있으므로 의약품은 대사경로의 구성원으로서 다

뤄져야 한다. 따라서, 본 학위논문의 목적은 주어진 의약품 조합에 의해

활성화되는대사경로들의연결관계를탐색하는도구를개발하는데에있

다.특히,최신의의생물학연구결과는링크드데이터로공개되고있고그

양이 폭발적으로 증가하고 있으므로 대용량 의생물학 링크드 데이터를

효율적으로다룰수있도록알고리즘들이개발돼야한다.

본 논문의 가정은 다음과 같다; 주어진 의약품 조합의 한 의약품이

특정 대사경로들에 대해 상승-조절효과를 일으키고 다른 의약품이 같은

대사경로들에 대해 반대로 하강-조절효과를 일으킨다면, 의약품 조합이

당초의도한효과가상쇄되거나이상한효과가발생할수있다.이와같은

관점에서의부작용의원인을밝히는문제는의약품이조절하는유전자들

을시작과끝으로삼는대사경로들의연결관계(경로)를찾는문제로정의

될수있다.따라서,본논문에서는분산환경에서작동하는최단거리경로

탐색과 그래프 경로 매칭 알고리즘을 고안한다. 또한, 다양한 의생물학

데이터를 통합한 대사경로 그래프 모델을 제안하고 의생물학 연구자나
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임상의들이사용할수있도록시각화기반도구를개발한다.

대용량그래프에대한최단거리경로를탐색하는알고리즘을제안했

다. 기존 관계형 데이터베이스 기반 알고리즘을 확장하여 분산컴퓨팅 프

레임워크의일종인 Spark에서작동하도록구현했다.기존그래프도달가

능성인덱스를활용하여경로탐색도중불필요한경로를제외시킴으로서

탐색시간을줄이는기법을고안했다.또한,그래프도달가능성인덱스의

크기를줄이기위한노드아이디재부여기법을고안했다.실험결과기존

방법에서다루지못했던대용량그래프도효율적으로다룰수있었다.

최단거리경로는 그래프 경로 질의로 변환될 수 있고 이는 최단거리

경로의패턴과유사한또다른그래프경로를찾는데에활용할수있다.이

를위해,멀티-웨이조인기법을활용한맵리듀스기반의그래프경로매칭

알고리즘을제안했다.경로매칭도중그래프경로질의와관계없는데이

터를제외시키기위한시그니쳐인코딩기법을고안했다. RDF (Resource

Description Framework) 데이터에 대한 SPARQL 질의 처리 속도에 대한

실험결과기존방법보다제안한방법이빨랐다.

의약품조합에관련된다양한의생물학데이터(e.g. Reactome, KEGG,

BioGrid, STRING등)를대사경로관점에서통합하기위한대사경로그래

프모델을제안했다.단백질-단백질상호작용및유전자조절관계에기반

하여 대상경로간의 직접/간접 유방향 연결관계를 도출했다. 의약품 조합

부작용 관련 연구자들이 이러한 대사경로 그래프에 대해 상기 알고리즘

들을 쉽게 적용할 수 있도록, 시각화 도구인 Cytoscape의 플러그인을 개

발했다.본도구를이용해식별된의약품조합목록을 DrugBank의의약품

조합목록과비교하였다.

본 학위논문에서는 대용량 그래프 경로 탐색을 지원하는 도구가 제

안됐다.분산컴퓨팅프레임워크와인덱스구조를활용하여대용량그래프
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를효율적으로다룰수있게하였다.의약품조합에따른부작용의원인을

밝히는데에적용하기위해,대사경로그래프모델을제안했고시각화기

반도구를개발했다.향후연구에서는,시간에따라변화하는대사경로의

특성을반영하기위해대사경로그래프모델및그래프경로탐색알고리

즘에시간요소를추가할예정이다.

주요어 : 그래프,최단거리경로탐색,그래프패턴매칭

학번 : 2014-30699
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