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Along with the development of Web of documents, there is a natural need for sharing, 

exchanging, and merging heterogeneous data to provide more comprehensive 

information and answer users with more complex questions. However, the data 

published on the Web are raw dumps that sacrifice much of the semantics that can 

be used for exchanging and integrating data. Resource Description Framework 

(RDF) and Linked Data are designed to expose the semantics of data by 

interlinking data represented with well-defined relations. With the profusion of 

RDF resources and Linked Data, ontology alignment has gained significance in 

providing highly comprehensive knowledge embedded in disparate sources. 

Ontology alignment, however, in Linking Open Data (LOD) has traditionally 

focused more on the instance-level rather than the schema-level. Linked Data 

supports schema-level matching, provided that instance-level matching is already 

established. Linked Data is a hotbed for instance-based schema matching, which is 



 

 

considered a better solution for matching classes with ambiguous or obscure names. 

In this dissertation, the author focuses on three issues in instance-based schema 

alignment for Linked Data: (1) how to align schemas based on instances, (2) how 

to scale the schema alignment, (3) how to generate a hierarchical schema structure.  

Targeting the first issue, the author has proposed an instance-based schema 

alignment algorithm called IUT. The IUT builds a unified taxonomy for the classes 

from two ontologies based on an instance-class matrix and obtains the relations of 

two classes by the common instances. The author tested the IUT with DBpedia and 

YAGO2, and compared the IUT with two state-of-the-art methods in four alignment 

tasks. The experiments show that the IUT outperforms the methods in terms of 

efficiency and effectiveness (e.g., costs 968 ms to obtain 0.810 F-score on 

intra-subsumption alignment in DBpedia). 

Targeting the second issue, the author has proposed a scaled version of the 

IUT called IUT(M). The IUT(M) decreases the computations of the IUT from two 

aspects based on Locality Sensitive Hashing (LSH): (1) decreasing the similarity 

computations for each pair of classes with MinHash functions, and (2) decreasing 

the number of similarity computations with banding. The author tested the IUT(M) 

with YAGO2-YAGO2 intra-subsumption alignment task to demonstrate that the 

running time of IUT can be reduced by 94% with a 5% loss in F-score. 

Targeting the third issue, the author has proposed a method to generate a 

faceted taxonomy based on object properties on Linked Data. A framework is 

proposed to build a sub-taxonomy in each facet with sub-data, extracted with an 

object property, with an Instance-based Concept Taxonomy generation algorithm 



 

 

called ICT. Two experiments demonstrate: (1) The ICT efficiently and effectively 

generates a sub-taxonomy with “rdf:type” in DBpedia and YAGO2 (e.g., costs 49 

and 11,790 ms to build the concept taxonomies that achieve 0.917 and 0.780 on 

Taxonomic F-score). (2) The faceted taxonomies for Diseasome and DrugBank, 

efficiently generated based on multiple object properties (e.g., costs 2,032 and 

2,525 ms to build the faceted taxonomies based on 6 and 16 properties), can 

effectively reduce the search spaces in faceted searches (e.g., obtains 1.65 and 1.03 

on Maximum Resolution with 2 facets). 
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1 Introduction 

1.1 Background and Motivations 

1.1.1 Data Integration and Schema Alignment 

Information, along with our human civilization development, is the basic human 

need. Data that supplies users with abundant information is stored scattered in 

different repositories. Along with the increasing of data, there is a natural need of 

sharing, exchanging, and merging heterogeneous data to provide more 

comprehensive information and answer users with more complex questions. For 

example, an integration of data on diseases and genes can help users to better 

understand the mechanism of diseases. The data integration minimizes the 

inconsistency of data formats and specifications, and decreases redundant data in 

different sources. 

Integration of heterogeneous data sources have been studied (Batini, 

Lenzerini, & Navathe, 1986; Doan & Halevy, 2005; Lenzerini, 2002). The first 

popular solution is to build a data warehouse on top of existing databases (Gardner, 

1998), which is considered as a tightly coupled solution that reconciles 

heterogeneous data into a single repository on the physical level. The limitations, 

such as the invalidation of the warehouse when sources are updating, make this 

solution be replaced with loosening coupled solutions. A unified view of two 

independent but overlapped databases is used. This approach needs to build an 

integrated schema or sometimes a medicate schema that is recognized as Global 



2 

 

Schema Pattern. The object of this method is to unify data, which heavily relies on 

the stability of data sources. When the structures of some data sources change, the 

whole unified global schema needs to be redefined (L. Xu, Xu, Tjoa, & Chaudhry, 

2007). Another solution is using a transformation pattern (Czarnecki & Helsen, 

2006) to exchanging data instead of unifying data. The two methods both require 

the establishment of correspondences between schemas of different data sources. 

Therefore, schema alignment or schema matching is one of the fundamental tasks 

in realizing data integration. 

 

Figure 1-1: Data integration methods. 
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1.1.2 From RDF to Linked Data 

Along with the development of the Internet, more and more data are published on 

Web that lowers the expense of publishing and accessing information. The data 

published on the Web are raw dumps formatted as CSV, XML, or HTML tables, 

which sacrifices much of the semantics (Bizer, Heath, & Berners-Lee, 2009). The 

semantics behind the data defines the context or meaning of the data, and helps 

exchanging data in business or other areas. In traditional hypertext Web, semantics 

of a document is implicit. For example, “apple” can denote an information 

technology company or a kind of fruit in different documents. Exchanging data 

between documents sometimes require more man-powers to understand the 

semantics behind documents.  

Therefore, expressing information under a description framework is needed. 

Resource Description Framework (RDF) supports data merging and schema 

evolution by explicating the semantics behind data ("Resource Description 

Framework (RDF),"). RDF is designed to expose the semantics of data for 

machines to understand. The concepts used in the schema of one data set are 

defined and connected with other related concepts in the same data under an RDF 

document. For example, the same concept “apple” used in two different data 

sources, can be distinguished by the definitions of the concept “apple” with two 

RDF documents. Even though, the semantics can be exposed with RDF, the data 

interlinking between different sources still not be accomplished. In order to create 

a global information space of both linked document and data, data (i.e., entities 

that are classes or instances) contained in RDF documents starts to link, which is 
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called Linked Data. Linked Data refers to the data set that is published on the Web 

with a machine-readable format (e.g., RDF) and links to external RDF data sets, 

and further can be linked as an external data set for other RDF data. Figure 1-2 

shows the evolution of data format in Semantic Web. 

 

Figure 1-2: Data format evolution of Semantic Web. 
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1.1.3 Schema Alignment in Linked Data 

Linked Data describes a method for publishing structured data and has become 

popular for connecting distributed data sets across the Web. During the past few 

years, the size of Linking Open Data (LOD) ("Linked Data - Connect Distributed 

Data across the Web,") has increased gradually as Figure 1-3 shows, reaching 32 

billion triples in 2011 ("Linked Data on the Web (LDOW2012)," 2012). Different 

universities and institutes published their own linked data sets and ontologies in 

diverse domains, such as DBpedia ("DBpedia,") and YAGO2 ("YAGO2s: A 

High-Quality Knowledge Base,") that are domain independent, and the Gene 

Ontology (GO) ("Gene Ontology Consortium," 1999) that is domain dependent 

(biomedical). Different entities (e.g., instances or classes) can be easily connected 

and searched from the Web by with Linked Data. For example, a connection can 

be easily found by using the link  

“<Diseasome:3166 (Migraine without aura, susceptibility to, 157300)> 

<Diseasome:possibleDrug> <DrugBank:DB01427(Amrinone)>”. The overlaps of 

linked data sets published in different areas bridge the gaps between local 

knowledge and related areas, and provide users with comprehensive knowledge. In 

the same example, connecting Diseasome ("Diseasome,") to DrugBank 

("DrugBank,") helps users to know that the drug “DrugBank:DB01427(Amrinone)” 

can be used for the disease “Diseasome:3166(Migraine without aura, 

susceptibility to, 157300)”, and further get more information of the drug 

“DrugBank:DB01427(Amrinone)” in detail. 
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Figure 1-3: Growth of LOD. (this figure is originated from the paper (Heath & Bizer, 2011).) 
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Driving by the benefits behind the interoperability and information integration, 

ontology alignment has been studied for years (S. Wang, Englebienne, & Schlobach, 

2008), but it still lacks the study in Linked Data. The terms “alignment” and 

“matching” denote a process in which to find correspondences between concepts, 

whereas mapping can be defined as the products of alignment or matching 

(Bellahsene, Bonifati, & Rahm, 2011; Miller, Haas, & Hernández, 2000). 

Conventionally, “alignment” is frequently used for Ontology and “matching” is 

primarily used in Database area (Bellahsene et al., 2011). In order to avoid the 

ambiguities that may affect the understanding of readers, the author uses 

“alignment” primarily to indicate the process of finding correspondences. 

The data in a linked data set normally are constituted of two parts: assertions 

and terminologies. The assertions in a link data set normally contain the 

information about instances. For example, as shown in Figure 1-4, an entity 

“Dbpedia:Gannys” is contained by four triples: (1) has a name “Gannys”, (2) is a 

type of “DBpediaOntology:General”, (3) is same as “FreeBase:m.04n2vn1”, and 

(4) is the commander of the entity “Dbpedia:Battle_of_Antioch(218)”. The 

terminologies contain the information about classes. For example in the same 

figure, “DBpediaOntology:General” is a sub-class of “DBpediaOntology:Person”. 

Therefore, ontology alignment in Linked Data includes the alignment in 

A-Box (Assertion Box) and T-box (Terminology Box). The mappings for A-Box 

known as instance-level mapping (i.e., aligning instances from different ontologies) 

have received most attention in research, whereas T-Box mappings known as 

schema-level mapping are little studied (i.e., aligning schemas from different 
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ontologies) (P. Jain, Hitzler, Sheth, Verma, & Yeh, 2010; Parundekar, Knoblock, & 

Ambite, 2010). For example, in Linked Life Data ("Repository overview - Linked 

Life Data," 2009), only instances are mapped between different data resources but 

schema-level mappings are missing. With the schema-level mapping, a consumer 

can model the local data from other sources in terms of their own knowledge. 

Furthermore, missing ontology annotations and recommendations for possible 

ontology associations can be obtained (Parundekar et al., 2010). This dissertation 

focuses on schema alignment in Linked Data. 

 

Figure 1-4: An example of linked data set. (this is a simplified version of DBpedia.) 
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1.2 Instance-based Schema Alignment 

 

 

Figure 1-5: Classification of schema matching approaches. (this figure is originated from the paper 

(Rahm & Bernstein, 2001).) 

The methods for schema matching (alignment) can be generally classified into two 

kinds: schema-based and instance-based schema alignment (Rahm & Bernstein, 

2001). Please note that the term “instance-based alignment” in this dissertation 

denotes schema alignment using instances, whereas the term “instance alignment” 

signifies aligning instances from different ontologies. The schema-based matchers 

can further be classified into lexical-, structural- and background-based matchers by 

the methods with the similarity calculations (Rahm & Bernstein, 2001). Without 

globally standardized naming schemas, lexical-based matchers are incapable of 

finding mappings when schema elements have ambiguous or obscure names. For 

example, lexical-based matchers may fail to discover the equivalence mapping from 
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“DBpediaOntology:Nerve” to “YAGO:FiberBundle”. The structural-based and 

background-based methods fail to find mappings when two ontologies have 

different granularity in the schema (Kirsten, Thor, & Rahm, 2007). For example, 

BLOOMS (P. Jain et al., 2010), a lexical- and structural-based matcher for Linked 

Data, fails to find the subsumption relations between DBpedia ontology and 

YAGO2 used in Section 3.4. Even though BLOOMS outperformed traditional 

schema alignment methods, it is still not sufficient enough in terms of running time 

(efficiency) and F-score (effectiveness). 

A class (concept) represents a whole group of individuals sharing common 

attributes. In ontology, a class is defined by intension or extension ("Class 

(philosophy),"). The intension of a class is a set of properties (attributes) shared by 

instances to which they apply, whereas the extension is a collection of instances 

(individuals) to which they apply. 

The problem of identity is a long-standing debate in philosophy, and in linked 

data, it is no exception. In Leibnitz’s Law ("The Identity of Indiscernibles," 2010), 

two objects are identical, if they have the same description on the intension, which is 

adapted to define class equality as well in OWL 2 (Carroll, Herman, & 

Patel-Schneider, 2012). Therefore, the alignment of two classes based on the 

intensional description (properties) is frequently used for the upper ontologies 

where the classes are mostly defined intensionally, such as ontologies in OBO 

Foundry. For those ontologies constructed by the software developers and engineers 

without training in ontology modeling in Linked Data, the extensional description 
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can stand to match classes, as the identifying characteristics for the identity 

conditions (Guarino & Welty, 2002). 

It is difficult to keep the consistency of using identity with its logical definition 

in the wild, since there are diverse varieties of perceived identity, such as “identical 

but referential Opaque”, “identical as claims”, “matching”, and “similar” (Halpin, 

Hayes, McCusker, McGuinness, & Thompson, 2010). Without considering the first 

two issues (i.e., “identical but referential Opaque” and “identical as claims”) in the 

ideal knowledge representation, the “matching” and “similar” are mostly 

considered to model identity. In OWL 2, two classes are defined as 

“Owl:equivalentClass” if they have the same extensional definition (i.e., 

“matching”) (Carroll et al., 2012). For example, in Figure 1-6 (a), “class 1” and 

“class 1’” are considered same when the two classes have the same four instances. 

More practical in SKOS, the classes are defined as “Skos:exactMatch” if they have a 

high degree of confidence (e.g., similarity) to support themselves to be used 

interchangeably, or as “Skos:closeMatch” if they reach a certain level of similarity 

("SKOS Simple Knowledge Organization System Reference," 2009).  

Similar with the definition used in SKOS for identity in non-ideal knowledge 

representation, the author considers that two concepts are equivalent if they reach a 

certain level of similarity (i.e., 𝜒𝑒 used in the proposed method) in this dissertation. 

Similarly, instead of adapting the strict definition of the subsumption in ideal 

knowledge representation, the author considers two concepts have a subsumption 

relation if they reach a certain level of containment (i.e., χs used in the proposed 

method). 
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A more broadly applicable case of instance-based schema alignment is how to 

determine a correspondence of two classes from different ontologies (Bellahsene 

et al., 2011). In Linked Data, instances are linked with “Owl:sameAs”. Therefore, 

two classes are equal if two extensions of the classes are fully one-to-one 

interlinked with “Owl:sameAs”. For example, in Figure 1-6 (b), “class 1” have four 

instances that are same with the instances belonging to “class 1’”, and we consider 

“class 1” are same with “class 1’”. The classes comparison based on the 

extensional definition requires that the instances from different ontologies are 

inter-linked. Therefore, Linked Data satisfies the requirement of instance-based 

schema alignment. 

 

(a) When two classes sharing common instances. 

 

(b) When two classes sharing aligned instances. 

Figure 1-6: Equivalent concept alignment based on instances. 
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1.3 Contributions of this Dissertation 

With abundant instantiation on schema in Linked Data, the extensions of a concept 

can provide better interpretation for a concept, where it has ambiguous or obscure 

name. Therefore, the object of this thesis is to align of schema in Linked Data with 

the help of instances. In this desertion, the author discusses three issues in 

instance-based schema alignment for Linked Data, which are (1) how to 

effectively design an algorithm to align schemas, (2) how to scale the schema 

alignment with an efficient algorithm, (3) how to generate a concept hierarchy for 

an ontology without hierarchical schema structure. Please note that in this 

dissertation, the author uses hierarchy to denote a Directed Acyclic Graph (DAG) 

graph that only contains subsumption relations between concepts, and uses 

taxonomy to denote a graph that contains multiple relations (e.g., subsumption and 

equivalence). The author lists the contributions as follows: 

(a) The author proposes a new Instance-based Unified Taxonomy generation 

algorithm called IUT for aligning ontology in Linked Data. The IUT adapts the EXT 

(Heymann & Garcia-Molina, 2006) to build a unified graph to restrict the alignment 

search space, which is proved to be more efficient and effective than two 

state-of-the-art schema alignment methods (the Heuristic Mapper (HM) 

(Parundekar et al., 2010) and BLOOMS (P. Jain et al., 2010)) with four alignment 

tasks based on two well-known Linked Data sets, DBpedia and YAGO2 (e.g., 

costs 968 ms to obtain 0.810 F-score on intra-subsumption alignment in DBpedia). 

(b) The author adapts a scaling method, Locality Sensitive Hashing (LSH) 

(Rajaraman & Ullman, 2011), to reduce the pair-wise computations in schema 
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alignment and call this method IUT(M). The author tests the IUT(M) with YAGO2 

(YAGO2-YAGO2) in intra-subsumption task, and demonstrates that the IUT(M) 

can effectively reduce the 94% of the original running time with a loss of 5% 

F-score. 

(c) The author proposes a robust method for generating a faceted taxonomy 

based on object properties of instances in Linked Data. The author has developed a 

framework that dynamically extracts data with a single object property and 

generates a sub-taxonomy in each facet based on an Instance-based Concept 

Taxonomy generation algorithm called ICT. Two experiments demonstrate: (1) 

The ICT efficiently and effectively generates a sub-taxonomy with “rdf:type” in 

DBpedia and YAGO2 (e.g., costs 49 and 11,790 ms to build the concept 

taxonomies that achieve 0.917 and 0.780 on Taxonomic F-score). (2) The faceted 

taxonomies with Diseasome ("Diseasome,") and DrugBank ("DrugBank,"), 

efficiently generated based on multiple object properties (e.g., costs 2,032 and 

2,525 ms to build the faceted taxonomies based on 6 and 16 properties), can 

effectively reduce the search spaces in faceted searches (e.g., obtains 1.65 and 1.03 

on Maximum Resolution with 2 facets). 
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1.4 Organization of this Dissertation 

 

Figure 1-7: Structure of the dissertation. 

The author shows the organization of this dissertation in Figure 1-7. The focus of 

this dissertation is to align schemas based on instances. The author introduces the 

background of this dissertation in Chapter 1. In order to help readers better 

understand this dissertation, the author describes the preliminaries of the 

researches related to the dissertation in Chapter 2. Two concepts, (1) RDF and 

Linked Data, (2) schema alignment are introduced in detail. The author also 

introduces the related works in this chapter. 

The precondition of this research is that schemas have a hierarchical structure. 

Therefore, this schema alignment problem can be separated for two scenarios: (1) 

when schemas satisfy the precondition (i.e., the schemas have hierarchical 
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structures) in Chapters 3 and 4, and (2) schemas do not satisfy the precondition in 

Chapter 5. 

For the schemas having a hierarchical structure, the author details the 

methodology of instance-based schema alignment in Chapter 3. And in Chapter 4, 

the author presents the scaling algorithm based on the LSH. 

For those do not have a hierarchical structure, the author proposes a method 

of generating a faceted taxonomy automatically in Chapter 5. 

Finally, the author concludes the works of this dissertation, and lists several 

future works as the research extensions for this dissertation.  
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2 Preliminaries and Related Works 

2.1 Preliminaries 

2.1.1 RDF and Linked Data 

The RDF is a metadata data model for conceptual description or information 

expression, which is proposed and promoted by World Wide Web Consortium 

(W3C) ("Resource Description Framework (RDF) Model and Syntax 

Specification," 1999). Similar with the classic modeling approaches, such as 

Entity-Relation (ER) diagrams, the RDF data models resources with statements. A 

resource in the RDF denotes a thing that is identified with a de-referencable URL. 

A resource can be anything on the Web. For example, a person named “Michael 

Jackson” identified with “http://dbpedia.org/page/Michael_Jackson 

(Dbpedia:Michael_Jackson)” is a resource. Sometimes, we also call a resource as 

an entity. A statement that consists of subject-predicate-object is called triple in 

the RDF. A subject in a triple is a resource (entity). An object can be an entity or a 

literal text. A predicate, also be called as attribute or property, demonstrates a 

relation between a subject and an object. The property can be two types: 

object-type and data-type. In a triple, if the object is an entity, the property is the 

object-type property. For example, the triple 

“<Dbpedia:Michael_Jackson><Rdfs:label> ’Michael Jackson’ ” contains the 

data-type property “Rdfs:label”. The triple 

“<Dbpedia:Michael_Jackson><foaf:homepage><http://www.michaeljackson.co

m>” contains an object-type property “foaf:homepage”. Since all resources are 
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described with properties, the vocabularies are defined and can be reused by other 

RDF documents. For example, the “rdfs:Class”, denoting that a subject is a class, 

is defined in “http://www.w3.org/2000/01/rdf-schema#”. The vocabularies defined 

by the RDF specification can be found in ("Resource Description Framework 

(RDF) Model and Syntax Specification," 1999).  

 

Figure 2-1: An example of RDF/XML and N-Triples formatted RDF documents. 

A RDF document can be presented with different formats, such as RDF/XML 

and N-Triples. RDF/XML is the first W3C serialization format historically, and it 

is gradually replaced with other formats that are more human-readable and less 

restrictions on the syntax of XML names ("Resource Description Framework 

DbpediaOntology: 

Person

DbpediaOntology: 

General

Dbpedia:Gannys
Dbpedia:Battle_of_

Antioch_(218)

Is_A

Rdf:type
Dbpeida-owl:commander of

Rdfs:label

“Gannys”

<?xml version="1.0"?>

<rdf:RDF xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"     

xmlns:owl="http://www.w3.org/2002/07/owl#"     

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"     

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<owl:Class rdf:about="General">        

<rdfs:subClassOf rdf:resource="Person"/>   

</owl:Class>

<owl:ObjectProperty rdf:about="commander_of"/>

<owl:NamedIndividual rdf:about="Battle_of_Antioch_(218)"/>

<owl:NamedIndividual rdf:about="Gannys">     

<rdf:type rdf:resource="General"/> 

<commander_of rdf:resource="Battle_of_Antioch_(218)"/> 

<rdf:label rdf:about=“Gannys”>  

</owl:NamedIndividual>

</rdf:RDF>

<Person><rdf:type><owl:Class>

<General><rdf:type><owl:Class>

<General><subClassOf><Person>

<Gannys><rdf:type><owl:NamedIndividual>

<Gannys><rdf:type><General>

<Battle_of_Antioch_(218)><rdf:type><owl:NamedIndividual> 

<commander_of><rdf:type><owl:ObjectProperty>

<Gannys><commander_of><Battle_of_Antioch_(218)>

<Gannys><rdf:label >"Gannys"

Statement 1

Statement 2

Statement 3

Statement 4

RDF/XML N-Triples
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Statement 4
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Statement 2
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(Wiki),"). The author shows an example of RDF/XML and N-Triples formatted 

RDF documents of an RDF graph in Figure 2-1. 

Linked Data uses RDF links to connect a subject with a de-reference URL in 

a local set to an object with a URL reference in an external data set. When an 

object is de-referenced over the HTTP protocol, a server of this URL will return an 

RDF document about the object to a client, which helps users to get more related 

information, object in this case, about a subject. The author shows the process of 

de-reference in Figure 2-2. 

 

(a) De-reference a vocabulary URL 

 

(b) De-reference a class or property URL 

Figure 2-2: De-reference a Web resource. (this figure is originated from ("Best Practice Recipes for 

Publishing RDF Vocabularies,").) 
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2.1.2 Ontology and Schema Alignment in Linked Data 

As the author mentioned in Section 1.2, Ontology in computer science and 

information science is a way of presenting knowledge. Components, such as 

classes, instances (i.e., individuals), properties (i.e., attributes or predicates) are 

used to present the semantics in an ontology. Please note that, the author only 

introduces the components of an ontology that are most frequently used for 

schema alignment, other components, such as restrictions and axioms, are not 

covered by this section.  

Classes in ontology are hierarchical organized, which means that if a class 

“general” is a sub concept of a class “people”, the two classes are connected with 

an is_A relation. Sub-classes inherit properties from the super class. For example, 

if the class “people” has a property “nationality”, the class “general” also has the 

property “nationality”. Some ontologies allow multiple inheritance, which means a 

class can have multiple super classes. For example, the class “general” can be 

sub-class of both the class “people” and a class “job”. 

Instances (individual) are used to detail a class. For example, “Gannys” is an 

instance of “general”. Instantiation, populating a class with instances, is supported 

by inheritance, which means that instances belonging to a sub-class also belong to 

its super class. For example, “Gannys” is an instance of the class the class 

“general” and its super class “people”. 

Properties are used to describe a class, and an instance has specific values of a 

property. For example, for the property “nationality” of a class “people”, the 

instance of this class “Gannys” can has a value “Rome” for “nationality”. A 
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property can be a data-type or object-type. The property “nationality” is a 

data-type property, because the value of this property is literal. However, if we 

have an instance for “Rome” with a de-referencable URL, then the property 

“nationality” becomes an object-type property. 

With the vocabularies in a RDF, an ontology can be defined with its syntax 

and vocabularies. For example, in Figure 2-1, the Is_A relations can be defined 

with the triple: “<subect><rdf:type><owl:Class>”. Other definitions, such as 

instances, data- and object-type properties can be also defined similarly with 

abundant vocabularies provided by RDF schema ("RDF Schema,"), OWL 

("OWL,"), and et cetera. 

Schema alignment is to find correspondences between concepts. In Linked 

Data, concepts are represented within ontologies. Therefore, schema alignment is 

to find correspondences between classes. 

The fundamental computation for schema alignment is the similarity 

computation between two classes. Therefore, all resources in an ontology can be 

used for computing similarities. For example, the information of a class can be 

used (Please note that this method is called as schema-based schema alignment, 

which uses the information, such as names, about a class). Instances of classes 

(called instance-based) or partial structures (called structure-based) of ontologies 

that contain the classes also can be used to measure the similarity.  

There are different types of alignment, such as subsumption and equivalence. 

Subsumption alignments establish is_A relations between classes in different 

ontologies. The subsumption relations are directly found rather than found by 



22 

 

reasoning based on equivalence and intra-subsumption relations (Spiliopoulos, 

Vouros, & Karkaletsis, 2010). Equivalence alignments establish 

“Owl:equivalentClass”, “Skos:exactMatch”, or “Skos:closeMatch” relations. 

Normally, for a class in a source ontology, the alignment is an one-to-one 

mapping. However, thanks to multiple inheritance on classes, the alignments for 

some source classes are one-to-n mappings. Other types of alignments, such as 

disjointness, part-of, can also be required by users for different purposes (Shvaiko 

& Euzenat, 2005). In this dissertation, the author only considers the subsumption 

and equivalence alignment. 
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2.2 Related Works 

2.2.1 Instance-based Schema Alignment 

Along with the increasing number of ontologies, ontology integration becomes a 

natural need for providing more generic and comprehensive knowledge, and 

ontology alignment is considered as the fundamental to realize the ontology 

integration (Sowa, 2000). Ontology alignment is studied to provide the 

correspondences, such as subsumption and equivalence, between concepts from 

different ontologies. The subsumption relations are considered as important as 

equivalence and need to be separately discovered from the subsumptions deduced 

by a reasoning mechanism (Spiliopoulos et al., 2010). The results of ontology 

alignment are systematically evaluated by gold standards from diversity of 

workshops, such as Ontology Alignment Evaluation Initiative workshops 

("Ontology Alignment Evaluation Initiative," 2004). The methods for schema 

alignment in ontologies can be classified into four categories, which are lexical-, 

structural-, background-, and instance-based (Euzenat & Shvaiko, 2007; Jean-Mary, 

Shironoshita, & Kabuka, 2009; Jiménez-Ruiz, Grau, Horrocks, & Berlanga, 2009; 

Udrea, Getoor, & Miller, 2007). However, the instinctively schema naming and 

diversity of granularity weaken the performance of the first three methods. 

Furthermore, the unique data structure of Linked Data where thousands of instances 

belonging to a class are linked to instances from another ontology, makes the rise of 

the instance-based schema mapping method attract the attention of academia 

(Kirsten et al., 2007). 



24 

 

The idea behind the instance-based schema mapping, which is inherited from 

the schema alignment (matching) using duplicates in Database area (Bilke & 

Naumann, 2005; J. Wang, Wen, Lochovsky, & Ma, 2004), is to use the statistical 

information of two instance sets, held separately by two classes, in discovering the 

relation between the classes. The overlapped instances of two classes indicate the 

subsumption or equivalence relation of the two classes, which is called common 

extension comparison (Isaac, Meij, Schlobach, & Wang, 2007; Kirsten et al., 2007). 

(Isaac et al., 2007) aligns concepts in two thesauri, GTT and Brinkman thesaurus, 

used to describe books in National Library of Netherlands. Common instances 

(books) are used to compute the similarity between two concepts in different 

thesauri with diverse measures, including various Jaccard similarity measures and 

standard information-theory measures. Different instance extension strategies, 

such as with and without inheritance based on hierarchy, are also tested with the 

real data set. The experiments show that the instance-based schema alignment is 

promising on alignment for large size ontologies (Isaac et al., 2007). Biomedical 

ontologies also have large-size on concepts and instances. (Kirsten et al., 2007) 

adapts instance-based methods on mapping Gene Ontology (GO). More similarity 

computing metrics, including dice similarity, minimum similarity, and kappa 

similarity, are used in (Kirsten et al., 2007). The experiments with large life 

ontologies also show satisfactory results. The data used in the above-mentioned 

studies have a limitation that without a consideration the scalability of these 

methods. The method developed in this dissertation in Chapter 4 scales pairwise 
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similarity computations by decreasing unnecessary computing pairs, which 

previous studies ignored. 

Recall that there are two cases of instance-based alignment in Figure 1-6. The 

instance-based mapping needs the instances shared or annotated by two ontologies 

(common instances shared in Figure 1-6 (a)). However, some schema alignment 

tasks may require methods for similar but different instances when there are not 

existing common instances (Bellahsene et al., 2011). One solution is to use the 

information of the instances to compute the similarity between two classes. 

COMA++ uses constraints and contents to compute the similarity of two instances 

sets belonging to two classes (Engmann & Massmann, 2007). The names and 

descriptions of the instances are also tokened and put into a name set and a 

description set. The similarity of two classes is computed by the four similarity 

measures based on the TF/IDF values of tokens in the name set and description set 

(Massmann & Rahm, 2008). Similar with COMA++, tokens of content in 

instances used to form a vector space for each class in RiMOM (Li, Tang, Li, & 

Luo, 2009). The similarity is computed with cosine similarity based on the vector 

spaces of two classes. The internal structures of instances are also considered to 

determine the similarity of two instances for refining the schema alignment in 

ASMOV (Jean-Mary et al., 2009). The AgreementMaker (Cruz, Antonelli, & Stroe, 

2009) also computes similarity for two classes based on the Vector Space Model 

that uses TF/IDF values of extract strings from instances. The machine learning 

approaches, such as classification, are also adapted to align the schemas. (S. Wang 

et al., 2008) adapts Markov Random Field, a classification algorithm, to train the 
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instances based on the similarity of the feature vectors for heterogeneous data sets 

without sharing common instances. GLUE (Doan, Madhavan, Domingos, & Halevy, 

2004) uses joint probability distributions as a framework for multiple similarity 

measures for the classes, such as Jaccard coefficient. The joint probability 

distributions are estimated by the classifiers using terms learned from the names or 

descriptions of the instances. General schema alignment frameworks, such as 

SAMBO (Lambrix & Tan, 2006), merge different instance-based methods to 

provide comprehensive ontology alignment service. 

Schema alignment for Linked Data has been studied in recent years. With the 

help of a third party thesauri (WordNet and Wikipedia), a lexical- and 

structured-based alignment method is introduced in BLOOMS (P. Jain et al., 2010). 

BLOOMS shows that the existing schema alignment algorithms, such as S-Match 

(Giunchiglia, Shvaiko, & Yatskevich, 2004), AROMA (David, Guillet, & Briand, 

2006), and RiMOM (Li et al., 2009) in OAEI 2009 ("2009 Campaign - Ontology 

Alignment Evaluation Initiative," 2009), are not suitable for schema alignment in 

LOD. Linked Data has a natural advantage for instance-based alignment, which 

most well-known data sets are interlinked at the instance level. For instance, 

DBpedia has 18 million and Linked Life Data has 8 million inter-links at the 

instance level. Similar with BLOOMS, the HCM (Gruetze, Böhm, & Naumann, 

2012) also uses Wikipedia category forest to compute the similarity between 

classes and without using instances. Different with BLOOMS and the HCM, the 

proposed method uses instance to align schemas in Linked Data. The HM 

(Parundekar et al., 2010) attempts to adapt instance-based schema alignment for 
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linked data. It uses heuristic rules to generate subsumption and equivalence 

relations based on a probability model. Similar with HM, (Suchanek, Abiteboul, & 

Senellart, 2011) also uses conditional probability to decide the relation between 

two classes based on instances that are aligned two probabilistic models. With 

instances, the proposed method proposes more comprehensive functions to decide 

equivalence and subsumption relations for two classes, and outperforms the HM 

and BLOOMS.  

The author summarizes instance-based schema alignment methods in Table 

2-1. Please note that, BLOOMS and the HCM are not instance-based methods. 

The author lists them in Table 2-1 because they are designed for Linked Data, and 

the author compared BLOOMS with the proposed method in Chapter 3. 

Table 2-1: Comparison of schema alignment methods. (Attri.1: “year”, Attri.2: “input data”, Attri.3: 

“similarity metrics with instances”, Attri.4: “scaling search space”, Attri.5: “require common 

instances or aligned instances”, Attri.6: “GUI”, Attri.7: “data sets for testing”) 

Name Attri. 1 Attri. 2 Attri. 3 Attri. 4 Attri. 5 Attri. 6 Attri. 7 

GLUE 2004 Ontology 

Joint probability 

distribution based 

similarities  

NO NO NO 

Course 

catalogs of 

universities  

COMA++ 2005 Ontology 

Base-k similarity, 

Dice similarity, 

Minimal 

similarity, 

Maximal 

YES NO YES OAEI 



28 

 

similarity 

RiMOM 2006 Ontology Cosine similarity NO NO NO OAEI 

ASMOV 2007 Ontology Set similarity NO NO NO OAEI 

(Isaac et al., 

2007) 

2007 Thesauri 

Jaccard similarity 

measures, 

Standard 

information-theor

y measures 

NO YES NO 

Books of 

National 

Library of 

Netherland 

annotated 

with two 

thesauri 

(Kirsten et 

al., 2007) 

2007 Ontology 

Dice similarity, 

Minimum 

similarity, 

kappa similarity 

NO YES NO 

GO 

ontologies 

Agreement 

Maker 

2009 Ontology Cosine similarity NO NO YES 

Real-world 

ontologies 

HM 2010 

Linked 

Data 

Conditional 

probability based 

similarity  

YES YES NO 

DBpedia, 

Geonames, 

… 

BLOOMS 2010 

Linked 

Data 

- - - NO 

OAEI, 

DBpedia, 

Geonames, 

… 
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(Suchanek et 

al., 2011) 

2011 

Linked 

Data 

Conditional 

probability based 

similarity 

NO NO NO 

DBpedia, 

YAGO 

HCM 2012 

Linked 

Data 

- - - NO 

OAEI 

Billion 

Triple 

Challenge 

 

2.2.2 Scaling Pairwise Similarity Computations  

The instance-based schema alignments compute the similarities of all class pairs 

based on instances, which addresses a scalability issue of alignment methods. 

Generally, there are two ways to scale the computations as shown in Figure 2-3: (1) 

parallel computation, (2) reduction computations of each matcher. 

Parallel computations are used to reduce the computation time. There are two 

kinds of parallel alignment: inter- and intra-matcher parallelization (Gross, 

Hartung, Kirsten, & Rahm, 2010). The inter-matcher realizes parallel alignment 

based on independent matchers with multiple processors, whereas intra-matcher 

enables parallel alignment based on internal decomposition of individual matchers. 

Each intra-matcher processes alignment based on a partial data and assembles the 

final results with other matchers, which makes intra-alignment parallelization 

require fewer memories than inter-alignment parallelization and more scalable 

than inter-alignment parallelization. The parallel computation frameworks, such as 
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MapReduce (Dean & Ghemawat, 2008), are used to find duplicates over massive 

datasets (C. Wang et al., 2010), which can be used to decrease pair-wise similarity 

computations in schema alignment. (Lin, 2009) and (Y. Wang, Metwally, & 

Parthasarathy, 2013) use MapReduce to scale the similarity computations on 

documents and entities that resemble instance-based schema alignment. (Tenschert 

et al., 2009) introduces a workflow of ontology alignment based on MapReduce. 

The V-Doc+ (Zhang, Hu, & Qu, 2012), PIDGIN (Wijaya, Talukdar, & Mitchell, 

2013), and Parallel Ontology Bridge (Freckleton, 2013) scale the computations of 

ontology alignment based on MapReduce. 

 

 Figure 2-3: Two strategies for scaling pairwise computations. 

The second way is to reduce pairwise similarity computations of each 

matcher, which is recognized as the problem of duplicate detection. This problem 

is addressed by (Broder, Glassman, Manasse, & Zweig, 1997) to find duplicate 
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Web pages. A Sketch that is a compressed Web document vector based on 

min-wise independent permutations is used to represent a Web Document for 

similarity computations. Similarly, the dimension of document vector can be 

reduced by hashing functions reflecting to similarity computation functions in 

Locality Sensitive Hashing (LSH) (Rajaraman & Ullman, 2011). These methods 

are approximate duplicate detection. The LSH is adapted in (Duan et al., 2012) on 

scaling instance-based schema alignment. The difference between the (Duan et al., 

2012) and the proposed method is that the IUT also considers the sequence for 

pair-wise computations and limits the candidate pairs into the buckets created by 

banding when using MinHash functions. The exact duplicate detection problem is 

known as similarity join problem in the database community. Signatures 

represented the original documents with a filtering phase to eliminate false 

positives are used to match exact sets based on Hamming and Jaccard similarities 

in PARTENUM and WTENUM (Arasu, Ganti, & Kaushik, 2006). The q-grams 

are used to represented original text document, and the candidate pairs are 

extracted based on prefix-filtering (Chaudhuri, Ganti, & Kaushik, 2006). For fast 

navigate compared document, inverted index is also used in a prefix-filtering 

based model in All-Pairs (Bayardo, Ma, & Srikant, 2007). For achieving better 

performance, the PPjoin and PPjoin+ (Xiao, Wang, Lin, & Yu, 2008) use 

positional and suffix filtering to eliminate candidate pairs. The PPjoin is adapted 

into ontology alignment for scaling pairwise computations in HCM (Gruetze et al., 

2012). 
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2.2.3 Automatic Taxonomy Generation  

With the rapid growth of large data sets in commercial, industrial, administrative 

and other applications, the concept hierarchy generation has been studied from 

1990s (Han, Cai, & Cercone, 1992; Piateski & Frawley, 1991). In an automatic 

generated taxonomy, the data are organized with the concepts extracted from three 

types of source data: (1) unstructured, (2) semi-structured, and (3) structured 

(Hazman, El-Beltagy, & Rafea, 2011; Santoso, Haw, & Abdul-Mehdi, 2011). In 

unstructured data, the terms are extracted based on Nature Language Processing 

(NLP) methods, such as POS tagging (Drymonas, Zervanou, & Petrakis, 2010; 

Knijff, Frasincar, & Hogenboom, 2013; Kummamuru, Lotlikar, Roy, Singal, & 

Krishnapuram, 2004) or syntactic dependency (Cimiano, Hotho, & Staab, 2005). 

The important ones are considered as the concepts with different metrics, such as 

C/NC-value in (Drymonas et al., 2010), conditional probability, Pointwise Mutual 

Information (PMI) and Resnik in (Cimiano et al., 2005), TF/IDF in (Brewster & 

Wilks, 2004), domain pertinence and lexical cohesion in (Knijff et al., 2013). 

Rather than a term, a concept can also be defined as a set of terms (Fung, Wang, & 

Ester, 2003; Paukkeri, García-Plaza, Fresno, Unanue, & Honkela, 2012). 

In semi-structured data and structured data, concepts are extracted from 

schema with different transforming patterns. For example in XML, concepts can 

be mapped from complexType (Bedini, Matheus, Patel-Schneider, Boran, & 

Nguyen, 2011; Ferdinand, Zirpins, & Trastour, 2004; Ghawi & Cullot, 2009; J. Xu 

& Li, 2007). Similar with XML, for databases, concepts can be mapped from 

relations (Astrova, 2004; Cerbah, 2008; Lammari, Comyn-Wattiau, & Akoka, 
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2007). In contrast with these methods above, the proposed method in Chapter 5 

does not use any complex machine learning algorithms or heuristic rules targeting 

specific data to get concepts, but only extracts objects to form concepts, which is 

lightweight and robust to be applied to any Linked Data set. 

With the concepts established, taxonomies can be generated either with 

heuristic rules based on features of data, such as extension and restriction in XML 

(Bedini et al., 2011; Ghawi & Cullot, 2009) or different relationships in databases 

(Cerbah, 2008; Lammari et al., 2007). Reference ontologies, such as WordNet 

(Lee, Huh, & McNiel, 2008; Zheng, Borchert, & Kim, 2008), are also used to 

build taxonomies. Nevertheless, the most popular methods are based on 

probabilistic models and can be classified into two kinds: 

(a) Fill the taxonomy with the established concepts and new discovered concepts.  

The most traditional methods of this kind use the established concepts as leaf 

nodes and create stem nodes with them. The hierarchical clustering algorithms 

known as agglomerative UPGMA and bisecting k-means (A. K. Jain & Dubes, 

1988) are frequently used. And the bisecting k-means is considered a better 

solution than UPGMA (Steinbach, Karypis, & Kumar, 2000). However, it is 

inflexible to use these methods that need to set parameters, such as the number of 

clusters for k-means. The established concepts are not only used as leafs but also 

used as stems. The Formal Concept Analysis (FCA) uses a set of terms as 

intensions of a concept, and builds a taxonomy with these concepts (Cimiano et al., 

2005; Drymonas et al., 2010). The Self-Organizing Map (SOM) is also used to 

reduce the dimensions of data (instances) features into SOM neurons for clustering 
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data at each level of a taxonomy (Paukkeri et al., 2012). Different with the 

proposed method in Chapter 5, these methods focus on building a hierarchical 

structure for organizing instances, but with little consideration of the concept 

interpretation or labeling. For example, in the experiment in Section 5.6, FCA 

obtains low precision for generating meaningless concepts that have common 

instances. 

(b) Fill the taxonomy only with the established concepts. 

The methods of this kind build a taxonomy only with already established concepts. 

The relation between two concepts is mostly defined with a similarity measure. 

The Subsumption (Sanderson & Croft, 1999) is used to determine a subsumption 

relation between two concepts, and is considered as one of the most classical 

methods for concept hierarchy generation. Studies, such as (Schmitz, 2006) and 

(Knijff et al., 2013), improve the subsumption-based approaches for different 

usages. Other studies are inspired to boost the precision of the subsumption-based 

method by using probability models. Some of them try to improve the precision by 

developing more advanced metrics to compute the importance of a concept, such 

as topicality and predictiveness in DSP (Lawrie & Croft, 2003), hierarchy 

coverage and concept distinctiveness in DisCover (Kummamuru et al., 2004). To 

build a taxonomy for social tags, the EXT (Heymann & Garcia-Molina, 2006) is 

introduced as a high efficient and effective extensible greedy algorithm that places 

concepts ordered with importance of a similarity graph into a hierarchy based on a 

similarity measure. Furthermore, the EXT is improved by modifying the greedy 

algorithm into a Directed Acyclic Graph (DAG) allocation algorithm (Eda, 
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Yoshikawa, Uchiyama, & Uchiyama, 2009) or by changing the sorting algorithm 

and similarity measure in the IUT (Zong et al., 2015). 

The proposed method in Chapter 5 combines the IUT and Subsumption to 

generate a taxonomy based on the concept defined. In an addition, the proposed 

method further decreases the computations by removing the redundant instances 

and objects, and refines a generated taxonomy with these removed instances and 

objects. These mechanism guarantees both the efficiency and effectiveness on 

taxonomy construction. In contrast with the existing methods, with the multiple 

features of Linked Data, the proposed method adapts automatic taxonomy 

generation methods to build diverse taxonomies in different facets. To the best of 

the author’s knowledge, this is the first study that realizes generation of faceted 

taxonomy automatically in Linked Data. 
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3 Aligning Schemas with Subsumption and 

Equivalence Relations 

3.1 Introduction 

In this chapter, the author proposes a new Instance-based Unified Taxonomy 

generation algorithm called IUT for aligning ontology in Linked Data. The 

taxonomy used in this chapter is defined in general, which contains two relations, 

subsumption and equivalence, and supports multiple inheritance. The content of 

this chapter is based on the author’s previous work published (Zong et al., 2015). 

The IUT adapts the EXT (Heymann & Garcia-Molina, 2006), an algorithm that 

builds a taxonomy for social tags originally and can be used for generating ontology 

for RDF resources in the work (Nansu, Sungin, & Hong-Gee, 2013). The IUT uses a 

unified graph to restrict the alignment search space, which is proved to be capable 

of finding more suitable pairs to be compared instead of using all the combinations 

of instances. The author tests the IUT with two data sets, DBpedia and YAGO2 in 

LOD, and evaluates the results with gold standards. Four tasks, intra-subsumption 

in DBpedia (DBpedia-DBpedia), and YAGO2 (YAGO2-YAGO2), 

inter-subsumption and equivalence between DBpedia and YAGO2 

(YAGO2-DBpedia), are designed to discover two kinds of relations, subsumption 

and equivalence. The author compares the IUT with two other state-of-the-art 

methods (the Heuristic Mapper (HM) (Parundekar et al., 2010) and BLOOMS (P. 

Jain et al., 2010)), and the experiments show that the IUT outperforms the existing 

ontology alignment algorithms. Three main reasons for failures of instance-based 
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ontology alignment in LOD, which are (1) insufficient taxonomic description on the 

instance level, (2) multi-instantiation, and (3) different taxonomic structure of 

ontologies, are also discussed. 

The rest of this chapter is organized as follows: Section 3.2 gives a formal 

problem definition; Section 3.3 details on the methodology of the proposed method; 

in Section 3.4 and 3.5, the author demonstrates the results of the proposed method; 

Section 3.6 discusses limitations of this study, and the conclusions are presented in 

Section 3.7. 
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3.2 Problem Definition 

 

Figure 3-1: A data example for ontology alignment. 

In order to help readers understand this paper, the author uses an ongoing example 

in Figure 3-1 to explain the problem of schema alignment and the process of the 

proposed method. The author uses two ontologies as input data. That is the one 

shaped in solid line from DBpedia Ontology containing five classes 

(“ 𝑐1: 𝐿𝑒𝑔𝑎𝑙𝐴𝑐𝑡𝑜𝑟 ”, “ 𝑐2: 𝑃𝑒𝑟𝑠𝑜𝑛 ”, “ 𝑐3: 𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ”, “ 𝑐4: 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 ”, and 

“ 𝑐5: 𝐴𝑟𝑡𝑖𝑠𝑡 ”) and four instances (“ 𝑖1_1: 𝐺𝑎𝑛𝑛𝑦𝑠 ”, “ 𝑖2_1: 𝐵𝑎𝑠ℎ𝑦 ”, 

“𝑖3_1: 𝐷𝑜𝑢𝑏𝑙𝑒_𝑂(𝑐ℎ𝑎𝑟𝑖𝑡𝑦)”, and “𝑖4_1: 𝑃𝑎𝑡𝑟𝑖𝑐𝑘_𝐻𝑢𝑠𝑒”). And the other one shaped 

in dotted line from YAGO2 contains three classes (“𝑐6: 𝐴𝑔𝑒𝑛𝑡”, “𝑐7: 𝑃𝑒𝑜𝑝𝑙𝑒”, and 

“ 𝑐8: 𝐺𝑟𝑜𝑢𝑝 ”) and three instances (“ 𝑖1_2: 𝐺𝑎𝑛𝑛𝑦𝑠 ”, “ 𝑖2_2: 𝐵𝑎𝑠ℎ𝑦 ”, and 

“ 𝑖3_2: 𝐷𝑜𝑢𝑏𝑙𝑒_𝑂(𝑐ℎ𝑎𝑟𝑖𝑡𝑦) ”) (the author changed the original ontologies to 

simplify the example used). The classes belonging to the same ontology are 

connected with the intra-subsumption relations. For example, “𝑐2: 𝑃𝑒𝑟𝑠𝑜𝑛” is a 

sub-class of “𝑐1: 𝐿𝑒𝑔𝑎𝑙𝐴𝑐𝑡𝑜𝑟” in the first ontology. Schema alignment is the 

process of discovering correspondences that include subsumption and equivalence 

relations between classes from multiple ontologies. The author adapts the 
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conditions for an instance-based schema alignment that instances are aligned with 

“Owl:sameAS” to other instances from different ontologies. The author defines the 

problem in more detail as follows: 

Input: Given two ontologies, a source ontology 𝑂1(𝐶1, 𝐼1) and a target ontology 

𝑂2(𝐶2, 𝐼2) , where 𝑂1(𝐶1, 𝐼1)  contains a class set 𝐶1 = {𝑐1, 𝑐2, … , 𝑐𝑘}  and an 

instance set 𝐼1 = {𝑖1, 𝑖2, … , 𝑖𝑙} , and 𝑂2(𝐶2, 𝐼2)  contains a class set 𝐶2 =

{𝑐𝑘+1, 𝑐𝑘+2, … , 𝑐𝑚} and an instance set 𝐼2 = {𝑖𝑙+1, 𝑖𝑙+2, … , 𝑖𝑛′}. The two instance 

sets are mapped by “Owl:sameAs”. For example, instance “𝑖1_1: 𝐺𝑎𝑛𝑛𝑦𝑠” from 𝐶1 

is same with “𝑖1_2: 𝐺𝑎𝑛𝑛𝑦𝑠” from 𝐶2 . Each class 𝑐𝑖  in 𝐶1  or 𝐶2  contains an 

instance set 𝐼𝑐𝑖, where each element is corresponding to the element in the instance 

set 𝐼1 or 𝐼2. The instance set 𝐼𝑐𝑖 for class 𝑐𝑖 follows the common extension (Isaac 

et al., 2007) to describe the taxonomic information of 𝑐𝑖 in 𝐶1 or 𝐶2, which is that 

𝑐𝑖 contains all the instances of 𝑐𝑗 if 𝑐𝑖 is the super class of 𝑐𝑗. For example in 

Figure 3-1, 𝐼𝑐2:𝑃𝑒𝑟𝑠𝑜𝑛 = {“𝑖2_1: 𝐵𝑎𝑠ℎ𝑦”, “𝑖1_1: 𝐺𝑎𝑛𝑛𝑦𝑠”, “𝑖4_1: 𝑃𝑎𝑡𝑟𝑖𝑐_𝐻𝑢𝑠𝑒”} 

contains the instance “𝑖2_1: 𝐵𝑎𝑠ℎ𝑦” because “𝑐2: 𝑃𝑒𝑟𝑠𝑜𝑛” is the super class of 

“𝑐5: 𝐴𝑟𝑡𝑖𝑠𝑡” that has the instance set 𝐼𝑐5:𝐴𝑟𝑡𝑖𝑠𝑡 = {“𝑖2_1: 𝐵𝑎𝑠ℎ𝑦”}. 

Output: A set of mappings 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑘} is the output of the alignment 

processing. Each mapping 𝑎𝑖 = (𝑐𝑒 , 𝑐𝑓 , 𝑟𝑖) contains three elements, where 𝑐𝑒 ∈ 𝐶1, 

𝑐𝑓 ∈ 𝐶2, and 𝑟𝑖 can be a subsumption or equivalence relation. 

The subsumption relations are directly determined instead of being deduced by a 

reasoning mechanism based on equivalence relations and existing 

intra-subsumptions, otherwise the generated subsumption relations are not 

independent and can be affected by the equivalence relations (Spiliopoulos et al., 
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2010). For example, the class “𝑐1: 𝐿𝑒𝑔𝑎𝑙𝐴𝑐𝑡𝑜𝑟” from 𝐶1 should not be considered 

equivalent as the class “𝑐6: 𝐴𝑔𝑒𝑛𝑡” from 𝐶2 if the relation is deduced by the facts 

that (1) “𝑐1: 𝐿𝑒𝑔𝑎𝑙𝐴𝑐𝑡𝑜𝑟” is the super class of “𝑐2: 𝑃𝑒𝑟𝑠𝑜𝑛” and (2) “𝑐6: 𝐴𝑔𝑒𝑛𝑡” is 

the super class of “𝑐7: 𝑃𝑒𝑜𝑝𝑙𝑒”, and (3) a new established relation that “𝑐2: 𝑃𝑒𝑟𝑠𝑜𝑛” 

is equivalent to “𝑐7: 𝑃𝑒𝑜𝑝𝑙𝑒”. 
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3.3 Methods 

3.3.1 Workflow of Instance-based Schema Alignment 

 

Figure 3-2: Workflow of instance-based schema alignment with the IUT. 

The IUT is a unified taxonomy generation algorithm that generates alignments for a 

source ontology and a target ontology based on a virtual graph generated by using 

the common instances shared in two classes from the two ontologies. Figure 3-2 

shows the workflow of the IUT. The procedure of aligning is separated into two 

parts: instance-class matrix generation, and subsumption and equivalence relations 

generation. In first part, the input data will be converted into an instance-class 

matrix, and the matrix will be used to build a virtual graph based on the aligned 

instances in the second part. The subsumption and equivalence relations are 

extracted from the virtual graph after the virtual graph is established.  
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3.3.2 Instance-class Matrix Generation 

Before discovering the relations between classes from multiple ontologies, the 

author performs a pre-processing step on unifying the common instances from 

different ontologies by three steps. First, all the instances are filtered to remove the 

instances only used in one ontology. Second, two instances aligned with 

“Owl:sameAs” are merged into one common instance. Finally, an instance-class 

matrix will be generated based on the step 2. 

 

 

Figure 3-3: An example of instance-class matrix generation. 

(1) Common instances scoping 

In Linked Data, some instances can be excluded by one ontology while included by 

another one because of the Open-World Assumption (OWA). In practice, the 
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reasons could be: (1) different data resources for ontology construction, (2) different 

purposes of ontology design, and (3) different frequencies of ontology updating. 

The instances only used in one ontology cannot contribute to instance-based 

alignment approaches. Therefore, in order to mitigate the negative effects of the 

asymmetric ontology update and OWA (the author will discuss it in Section 3.6), 

the author limits the instances used for alignment into the instances only shared in 

the multiple resources. For example, “ 𝑖4_1: 𝑃𝑎𝑡𝑟𝑖𝑐𝑘_𝐻𝑢𝑠𝑒 ” in Figure 3-3 is 

removed during the pre-processing stage since it is only used in DBpedia ontology 

(shaped in solid line) and will not contribute to the alignment. 

(2) Creating common instances for aligned instances 

If two instances from two different data sources, such as “𝑖1_1: 𝐺𝑎𝑛𝑛𝑦𝑠” from the 

first ontology (shaped in solid line) and “𝑖1_2: 𝐺𝑎𝑛𝑛𝑦𝑠” from the second ontology 

(shaped in dotted line), are aligned by “Owl:sameAs”, the two instances are 

considered to be the same and can be replaced with a common instance 

“ 𝑖1: 𝐺𝑎𝑛𝑛𝑦𝑠”. In the ongoing example, six instances from two resources are 

replaced with three common instances on the right top of Figure 3-3. 

(3) Generating instance-class matrix 

The two steps decrease 𝑛′  instances into 𝑛  common instances. The author 

transforms the classes and common instances into an instance-class binary matrix 

𝑀𝑛×𝑚 , where the columns of the matrix correspond to the class set 𝐶 =

{𝑐1, 𝑐2, … , 𝑐𝑚} , and the rows correspond to the common instance set 𝐼 =

{𝑖1, 𝑖2, … , 𝑖𝑛}. The value of an entry 𝑒𝑖,𝑗 is one if the class 𝑐𝑗 contains the common 

instance 𝑖𝑖, otherwise it is zero. For example, the 𝑐1 = [1,1,1]𝑇 is corresponding to 
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the fact that the class “𝑐1: 𝐿𝑒𝑔𝑎𝑙𝐴𝑐𝑡𝑜𝑟” contains three instances “𝑖1: 𝐺𝑎𝑛𝑛𝑦𝑠”, 

“𝑖2: 𝐵𝑎𝑠ℎ𝑦”, and “𝑖3: 𝐷𝑜𝑢𝑏𝑙𝑒_𝑂(𝑐ℎ𝑎𝑟𝑖𝑡𝑦)” in Figure 3-3. 

3.3.3 Subsumption and Equivalence Relations Discovering 

The alignment is processed by the following steps based on the instance-class 

matrix generated: first, the classes in the matrix are sorted in descending order by 

the degrees in a class-relation multi-graph 𝐺(𝐸, 𝑉); second, the sorted classes are 

put onto the right position in a virtual graph. The subsumption and equivalence 

relations are used to form the virtual graph. 

(1) Class-relation multi-graph generation 

For a class-relation multi-graph 𝐺(𝐸, 𝑉), all the classes 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑚} are put 

into the 𝐺(𝐸, 𝑉), and each class 𝑐𝑖 is a vertex 𝑣𝑖. For each pair of vertices 𝑐𝑖 and 

𝑐𝑗 , |𝑐𝑜𝑚𝑚𝑜𝑛𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝑐𝑖 , 𝑐𝑗)|  number of links between 𝑐𝑖  and 𝑐𝑗  are built, 

where |𝑐𝑜𝑚𝑚𝑜𝑛𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝑐𝑖 , 𝑐𝑗)| is the cardinality of the common instances set 

of 𝑐𝑖 and 𝑐𝑗.  

For example, |𝑐𝑜𝑚𝑚𝑜𝑛𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠(“𝑐1: 𝐿𝑒𝑔𝑎𝑙𝐴𝑐𝑡𝑜𝑟”, “𝑐𝑗: 𝐴𝑔𝑒𝑛𝑡”)| = 3  in 

the ongoing example. 

(2) Virtual graph generation 

The vertices (classes) are sorted in descending order by the degrees and are put into 

a queue 𝑄. In each iteration, a class is de-queued and put onto the right position by 

computing the relation with existing classes in the virtual graph using the following 

definitions: 
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Definition 3-1. Subsumption: For a pair of vertices 𝑐𝑖 and 𝑐𝑗, where 𝑐𝑖 originates 

from either one of the two ontologies (source and target) and 𝑐𝑗 from the other 

ontology, if 𝑠𝑢𝑏(𝑐𝑖, 𝑐𝑗) ≥ 𝜒𝑠 , then 𝑐𝑖  is considered as the subclass of 𝑐𝑗 . The 

𝑠𝑢𝑏(𝑐𝑖 , 𝑐𝑗) is computed by: 

𝑠𝑢𝑏(𝑐𝑖, 𝑐𝑗) =
|𝑐𝑜𝑚𝑚𝑜𝑛𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑖,𝑐𝑗)|

|𝑐𝑖|
 (3.1) 

Definition 3-2. Equivalence: For a pair of vertices 𝑐𝑖 and 𝑐𝑗, where 𝑐𝑖 originates 

from either one of the two ontologies (source and target) and 𝑐𝑗 from the other 

ontology, if 𝑠𝑢𝑏(𝑐𝑖, 𝑐𝑗) ≥ 𝜒𝑠  and 𝑠𝑢𝑏(𝑐𝑗, 𝑐𝑖) ≥ 𝜒𝑠 , then 𝑐𝑖  is considered 

equivalent to 𝑐𝑗. 

In practice, if the above mentioned two definitions are not satisfied, the author will 

further compute a supplementary definition for equivalence by Jaccard similarity. 

Definition 3-3. Equivalence (supplementary): For a pair of vertices 𝑐𝑖 and 𝑐𝑗, 

where 𝑐𝑖 originates from either one of the two ontologies (source and target) and 𝑐𝑗 

from the other ontology, if 𝑠𝑖𝑚(𝑐𝑖, 𝑐𝑗) ≥ 𝜒𝑒, then 𝑐𝑖 is considered equivalent to 𝑐𝑗. 

The 𝑠𝑖𝑚(𝑐𝑖, 𝑐𝑗) is computed by Jaccard similarity shown as follows: 

𝑠𝑖𝑚(𝑐𝑖, 𝑐𝑗) =
|𝑐𝑜𝑚𝑚𝑜𝑛𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑖,𝑐𝑗)|

|𝑐𝑖|+|𝑐𝑗|−|𝑐𝑜𝑚𝑚𝑜𝑛𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑖,𝑐𝑗)|
 (3.2) 

For a new added vertex, if the relation with an existing vertex is equivalence, an 

inbound edge and outbound edge of the vertex will be added to the existing vertex. 

If a new added vertex has multiple subsumption relations with the existing vertices 

(ancestors), the outbound edges of the vertex will be added to the super-vertices 

that is an ancestor without a path from any other ancestor. The relations between 

classes in the unified graph contain the new discovered relations and the original 
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existing relations. We return the new discovered relations as the alignments. The 

details of the process of the IUT are shown in Algorithm 3-1. 
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Algorithm 3-1: The IUT for schema alignment. 

Input: a source ontology 𝑂1(𝐶1, 𝐼1), a target ontology 𝑂2(𝐶2, 𝐼2), 𝜒𝑠, 𝜒𝑒 

Output: subsumption and equivalence alignments 𝐴 

1: Instance-class matrix 𝑀 := generate from 𝑂1 and 𝑂2 

2: Put all classes into a class relation graph 𝐺 and initiate an empty virtual graph 𝐻 

3: For each class 𝑐𝑖 in 𝑀 do 

4:   For each class 𝑐𝑗 in 𝑀 do 

5:     Let #𝑙𝑖𝑛𝑘𝑠(𝑐𝑖 , 𝑐𝑗) ≔ |𝑐𝑜𝑚𝑚𝑜𝑛𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑖 , 𝑐𝑗)|  

6: Queue 𝑄 := all the classes sorted by the descending order of degree in 𝐺 

7: While 𝑠𝑖𝑧𝑒(𝑄) > 0  do 

8:   𝑐𝑖 ∶= 𝑑𝑒𝑞𝑢𝑒𝑢𝑒(𝑄) 

9:   Add 𝑐𝑖 into 𝐻 

10:   Initiate an ancestor list 𝑆 and an equivalence list 𝐸 

11:   For 𝑐𝑗 in 𝐻 do 

12:     If 𝑐𝑖 originates from either one of the two ontologies (source and target) and 

    𝑐𝑗 from the other ontology then 

13:       If (𝑠𝑢𝑏(𝑐𝑖 , 𝑐𝑗) ≥ 𝜒𝑠 and  𝑠𝑢𝑏(𝑐𝑗 , 𝑐𝑖) ≥ 𝜒𝑠) put 𝑐𝑗 into 𝐸 

14:       Else if (𝑠𝑢𝑏(𝑐𝑖 , 𝑐𝑗) ≥ 𝜒𝑠) put 𝑐𝑗 into 𝑆 

15:       Else if (𝑠𝑖𝑚(𝑐𝑖 , 𝑐𝑗) ≥ 𝜒𝑒) put 𝑐𝑗 into 𝐸 

16:     Else put 𝑐𝑗 into 𝐸 or 𝑆 based on the original existing relation of 𝑐𝑖 and 𝑐𝑗 

17:   Add inbound and outbound edges from 𝑐𝑖 to the vertices in 𝐸 

18:   Add outbound edges from 𝑐𝑖 to the sup-vertices in 𝑆 

19: Return new discovered relations as the alignments 𝐴 in 𝐻 
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3.4 Experiments 

The author implemented the proposed method based on JDK 1.6 using an Intel 

I7-2600 CPU with 16 GB RAM on Windows 8 64 bit version. 

3.4.1 Schema Alignment Algorithms in Comparison 

The author compared the IUT with two state-of-the-art methods: the HM 

(Parundekar et al., 2010) that is an instance-based alignment method and BLOOMS 

(P. Jain et al., 2010) that is a lexical- and structure-based method. 

For the HM, the author used the threshold (min=0.01 max=0.90) as mentioned 

in (Parundekar et al., 2010). For BLOOMS, the author downloaded the source code 

from the website ("BLOOMS,") and used the WordNet 2.1 ("WordNet,") as the 

thesauri. (The reason why the author did not use Wikipedia is that too much time is 

spent to send the request to the server, which makes the computation not feasible). 

3.4.2 Data and Experiment Design 

In ontology alignment, comparison of alignment methods should be based on an 

identical evaluation scenario, a standardized set of tests serving as a basis for 

comparison (Bellahsene et al., 2011). However, as far as we know, there lacks 

benchmarks for measuring the efficiency and effectiveness of the LOD schema 

alignment methods. The author decided to build the test data sets based on the most 

famous ontology in LOD that supplies both taxonomic structure and rich instances. 

Furthermore, the author chose the gold standards either used in the existing 

schema-matching projects or created manually as the expected mappings for the 

tests. The author gained the study population, with instance size ranged from 0 to 
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10,000, which contains 368,870 classes from YAGO2 ("Downloads - YAGO2,") 

and 299 classes from DBpedia ("Downloads - Dbpedia,"). In order to detect the 

effects of number of instances, the author divided the classes into three groups by 

the number of instance contained (0-100), [100-500), [500-10,000) in DBpedia and 

YAGO2. The statistics of the data the author used are shown in Table 3-1. 

Table 3-1: Statistic information of the data sets. 

 YAGO2 

 #instances 

(0-100) 

#instances 

[100-500) 

#instances 

[500-10,000) 

Overall 

(0-10,000) 

#classes 352,452 13,705 2,713 368,870 

#avg. ins. 11 198 1553 30 

 DBpedia 

 #instances 

(0-100) 

#instances 

[100-500) 

#instances 

[500-10,000) 

Overall 

(0-10,000) 

#classes 50 61 188 299 

#avg. ins. 28 300 2,874 1,873 

 

The author performed intra- and inter-alignment missions as the schema 

alignment tests performed in (Kirsten et al., 2007; Parundekar et al., 2010). The 

experiment is separated into four parts: discovering intra-subsumption relations for 

YAGO2-YAGO2, intra-subsumption relations for DBpedia-DBpedia, 

inter-subsumption and inter-equivalence relations for YAGO2-DBpedia. Each 
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alignment method is measured for each task in terms of its running time (efficiency) 

and F-measure (effectiveness) (Bellahsene et al., 2011). 

(1) For YAGO2-YAGO2, the classes with the cardinality of the instances set 

ranging from 0 to 10,000 in the YAGO2 are used to generate intra-subsumption 

relations between classes, and the relations are evaluated by the YAGO Taxonomy 

("Downloads - YAGO2,").  

(2) Similar to YAGO2-YAGO2, intra-subsumption relations in DBpedia-DBpedia 

are generated based on the DBpedia classes with the same cardinality range 

(0-10,000) and are evaluated by DBpedia Ontology ("Downloads - Dbpedia,").  

(3) For YAGO2-DBpedia, the same DBpedia and YAGO2 classes used in the 

previous two experiments are adopted. In order to create common instances shared 

by the classes from DBpedia and YAGO2, the YAGO2-DBpedia 

instances-mapping file downloaded from DBpedia 3.9 was used. For example, 

through the “Owl:sameAs” mapping for the instance 

“YAGO:ESF_Men's_Championship” contained by a YAGO2 class 

“YAGO:SoftballChampionships” and the instance 

“DBpedia:ESF_Men's_Championship” contained by a DBpedia class 

“DBPedia:SoftballLeague”, can consider that “YAGO:SoftballChampionships” and 

“DBPedia:SoftballLeague” contain a same instance “ESF_Men's_Championship” 

that represents “YAGO:ESF_Men's_Championship” and 

“DBpedia:ESF_Men's_Championship”. The subsumption relations are evaluated 

by the gold standard used in the PARIS ("Subsumption alignment of YAGO2 and 

Dbpedia,"). The equivalence relations are evaluated by the gold standard that is 
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manually created in NetEstate ("Ontology matching for classes in YAGO and 

DBpedia ontologies," 2014). In order to compute the recall, the classes needed to be 

aligned are limited into the classes existing in the gold standard instead of using all 

the classes in two data sets. 
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3.5 Results 

 

(a) F-score 

 

(b) Running time 

Figure 3-4: F-score and running time of the methods. The IUT uses the parameter setting χs = 1 and 

χe = 0.6. The HM uses the parameter setting min = 0.01 and max = 0.9. BLOOMS uses the 

WordNet as the thesauri and the parameter setting confidence = 0.95. All the experiments in Section 

3.5 use the same settings. 
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Figure 3-4 shows the overall (0-10,000) results of the three methods for four 

alignment experiments. The IUT is the fastest algorithm for two intra-alignment 

tasks (968 (ms) for DBpedia-DBpedia intra-subsumption and 3,981,676 (ms) for 

YAGO2-YAGO2 intra-subsumption), since an instance-based approach is more 

efficient for large classes. BLOOMS is the fastest algorithm for the two 

inter-alignment tasks (1,197 (ms) for YAGO2-DBpedia inter-subsumption and 

1,205 (ms) for YAGO2-DBpedia inter-equivalence), since BLOOMS ignores the 

comparison of the instance sets, which is very expensive. However, BLOOMS fails 

inter-subsumption alignment but achieves a good result for inter-equivalence 

alignment (0.599). The IUT achieves the best F-score for all the alignment tasks 

(0.666 for YAGO2-YAGO2 subsumption, 0.810 for DBpedia-DBpedia 

subsumption, 0.388 for YAGO2-DBpedia subsumption, and 0.641 for 

YAGO2-DBpedia equivalence) within a relatively reasonable time. The author 

introduces the experiments results in detail in the next sub-sections. 
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3.5.1 Intra-subsumption Relations for YAGO2-YAGO2 

 

Figure 3-5: Running time of the three methods for YAGO2-YAGO2. 

Figure 3-5 shows the running time for different algorithms for aligning YAGO2 

intra-classes. The IUT is the fastest methods for aligning the classes having small- 

and medium-scale size of instances (0-100) and [100-500), but the second fastest 

method for the large-scale size of instances [500-10,000). BLOOMS aligns classes 

based on labels of classes and WordNet, thus the running time of BLOOMS only 

relates to the number of classes instead of the number of instances. YAGO2 has 

much more classes that have a small-scale size of instances than medium- and 

large-scale size, which makes the running time of BLOOMS decrease along with 

the number of instances. 
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Table 3-2: Results of subsumption alignment in YAGO2-YAGO2. 

 #instances(0-100) 

 Precision Recall F-score 

IUT 0.680 0.677 0.678 

HM 0.741 0.455 0.564 

BLOOMS 0.010 0.003 0.004 

 #instances [100-500) 

 Precision Recall F-score 

IUT 0.813 0.736 0.773 

HM 0.763 0.515 0.615 

BLOOMS 0.039 0.016 0.022 

 #instances [500-10,000) 

 Precision Recall F-score 

IUT 0.905 0.892 0.898 

HM 0.697 0.638 0.666 

BLOOMS 0.053 0.034 0.041 

 Overall (0-10,000) 

 Precision Recall F-score 

IUT 0.606 0.740 0.667 

HM 0.596 0.466 0.524 

BLOOMS 0.016 0.011 0.012 
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Table 3-2 shows that the IUT obtains the most satisfactory F-score compared 

with the other two approaches (0.678, 0.773, and 0.898). The results show the 

lexical- and structure-based approach (BLOOMS) is unsuitable for discovering the 

subsumption relations (0,004, 0.022, and 0.041). The subsumption relations are 

more likely to be found by using instances than using lexical or structure 

information. For example, the “YAGO:Hog110179649” contains eight instances 

(“Russ Grimm”, “Jeff Bostic”, “Joe Jacoby”, “Rick Walker”, “Ken Huff”, “Don 

Warren”, “George Starke”, “The Hogs (American football)”) and 

“YAGO:SelfishPerson110576962” contains nine instances (“Russ Grimm”, “Jeff 

Bostic”, “Joe Jacoby”, “Rick Walker”, “Ken Huff”, “Don Warren”, “George Starke”, 

“The Hogs (American football)”, “Tufillo Triviño Tulio”). The instance-based 

methods successfully discovered the subsumption relation between 

“YAGO:Hog110179649” and “YAGO:SelfishPerson110576962”, but the 

BLOOMS failed to find this relation since a hog can mean a greedy person but can 

also mean a domesticated pig. However, some relations built are wrong by using 

instance-based approaches, which are false positives and false negatives in F-score. 

The author noticed two main reasons caused the false positives and false negatives 

for intra-subsumption discovery: (1) insufficient description of taxonomy on the 

instance level. A super class may have the same instances as its sub-class. For 

example, “YAGO:Saber104121511” contains eight instances (“Swiss saber”, 

“Szabla”, “Sabre de cavalerie légère modèle An IX”, “Sabre (fencing)”, “Sabre de 

cuirassier modèle An IX”, “The French Connection (ice hockey)”, “Shashka”, 

“Curved saber of San Martín”), and “YAGO:FencingSword103327691” contains 
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the exact same eight instances. The instance-based method got a wrong relation 

(equivalence) since the two classes are same at the instance level. (2) multiple 

instantiation. Instances may be assigned to multiple classes that have no relations 

between each other. For example, “YAGO:ItalianBasses” containing one instance 

(“Franco Calabrese”) has no connection with “YAGO:OperaticBasses” containing 

three instances (“Charles Manners (bass)”, “Franco Calabrese”, “Alexandrov 

Ensemble soloists”). However, the instance-based methods may discover a wrong 

subsumption relation that “YAGO:ItalianBasses” is a sub-class of 

“YAGO:OperaticBasses”. The author noticed that the 76.9% false positives and 

false negatives are caused by the first reason. 

Another phenomenon the author observed is that the F-score increases along 

with the cardinality of instances sets of classes. Both the HM and the IUT get the 

best F-score when using “500-10,000” data (0.666, 0.898). The author believes that 

the more instances used for describing a class, the better the instances used can 

represent the hierarchical structure of the class, which decreases the effects of the 

first reason. 
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3.5.2 Intra-subsumption Relations for DBpedia-DBpedia 

 

Figure 3-6: Running time of the three methods of DBpedia-DBpedia. 

The DBpedia ontology has a small size of classes with a big number of instances. As 

Figure 3-6 shows, the IUT works more efficient than the HM. Figure 3-6 also shows 

the small number of classes with large-scale size of instances that underutilizes the 

advantages of BLOOMS. 
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Table 3-3: Results of subsumption alignment in DBpedia-DBpedia. 

 #instances(0-100) 

 Precision Recall F-score 

IUT 1.0 0.80 0.889 

HM 1.0 0.40 0.571 

BLOOMS NaN 0.0 NaN 

 #instances [100-500) 

 Precision Recall F-score 

IUT 1.0 0.60 0.750 

HM 1.0 0.60 0.750 

BLOOMS NaN 0.0 NaN 

 #instances [500-10,000) 

 Precision Recall F-score 

IUT 0.92 0.742 0.821 

HM 1.0 0.645 0.784 

BLOOMS 0.125 0.032 0.051 

 Overall (0-10,000) 

 Precision Recall F-score 

IUT 0.889 0.744 0.810 

HM 1.0 0.605 0.754 

BLOOMS 0.1 0.023 0.037 
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Table 3-3 shows that the IUT obtains the most satisfactory F-score compared 

with the other two approaches (0.889, 0.750, and 0.821). The HM gets fewer 

F-score than the IUT because the HM finds less alignments than the IUT does. The 

author also notices that BLOOMS fails to find the alignments for the classes with 

small- and medium-scale size of instances, which is different with the YAGO2 data 

sets. The author considers the reason is that the WordNet used as the reference 

knowledge base has a different hierarchical structure with DBpedia ontology. 

The author studied that the multi-instantiation does not cause failure of 

subsumption discovery and all the failures are caused by the insufficient description 

of taxonomy on the instance level. For example, “DBpedia:Racecourse” and its 

super class “DBpedia:RaceTrack” both contain the exactly same 300 instances, 

which makes the IUT discover a wrong relation that “DBpedia:Racecourse” is 

equivalent to “DBpedia:RaceTrack”. This mistake further be transited to make 

another wrong judgment that “DBpedia:Racecourse” is the sub-class of 

“DBpedia:SportFacility” rather than the correct assertions that 

“DBpedia:Racecourse” is the sub-class of “DBpedia:RaceTrack” and 

“DBpedia:RaceTrack” is the sub-class of “DBpedia:SportFacility”. 

The author also noticed that the instance-based methods can achieve better 

F-score for classes with a large instance set. 
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3.5.3 Inter-Subsumption and Equivalence Relations for 

YAGO2-DBpedia 

 

Figure 3-7: Running time of the three methods of YAGO2-DBpedia for inter-subsumption alignment. 

The author tries to align 358 classes from YAGO2 knowledge base to 358 classes 

from DBpedia ontology using subsumption relation. Same as the two previous 

experiments, the author separated classes into three instance-range groups. Figure 

3-7 shows that the IUT is the fastest method for aligning the classes in all the 

instance-ranges. 
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Table 3-4: Results of subsumption alignment in YAGO2-DBpedia. 

 #instances(0-100) 

 Precision Recall F-score 

IUT 0.0 0.0 NaN 

HM NaN 0.0 NaN 

BLOOMS NaN 0.0 NaN 

 #instances [100-500) 

 Precision Recall F-score 

IUT 1.0 0.50 0.667 

HM 0.250 0.250 0.250 

BLOOMS NaN 0.0 NaN 

 #instances [500-10,000) 

 Precision Recall F-score 

IUT 0.0 0.0 NaN 

HM 1.0 0.40 0.571 

BLOOMS 0.053 0.034 0.041 

 Overall (0-10,000) 

 Precision Recall F-score 

IUT 0.301 0.546 0.388 

HM 0.189 0.162 0.175 

BLOOMS 0 0 NaN 
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Unlike the performance of the methods for intra-subsumptions in YAGO2 and 

DBpedia, the methods perform variously shown in Table 3-4. The IUT gets the best 

F-score in the overall data set (0.388), in medium-scale (0.667), and the HM gets the 

best F-score in large-scale (0.571). The reasons that cause the failures of the IUT to 

find the inter-subsumption relations are different with the reasons for 

intra-subsumption relations discovery. Different taxonomic systems are designed 

for different purposes, which make the scope of the class definitions different and 

distinctly instantiate the classes. Therefore, the classes having equivalence relation 

may not strictly satisfy the Definition 3-1 on the instance-level. More specifically, 

(1) two classes without subsumption relation from different ontologies share all 

instances from the class with a smaller cardinality, which is known as a false 

positive. For example, “YAGO:Ballplayer109835506” has 20,299 instances that are 

all included by “DBpedia:Person”. However, “YAGO:Ballplayer109835506” and 

“DBpedia:Person” are not connected by subsumption relation. (2) two classes with 

subsumption relation from different ontologies share the common instances that are 

only part of each instance set from the classes, which is known as a false negative. 

For example, “DBpediaOntology:SpaceMission” contains five instances (“Ares 

I-X”, “Ares V-X”, “Apollo–Soyuz Test Project”, “Ares I-Y”, “Hypersonic Flight 

Experiment”) and only the first four instances are contained by 

“YAGO:Mission108403225”, which makes the instance-based methods fail to 

establish a subsumption relation. The taxonomic system in YAGO2 has more 

appropriate classes (“YAGO:Spaceflight100313502”, “YAGO:Travel100295701”, 
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“YAGO:Voyage100312553”) to instantiate the fifth instance “Hypersonic Flight 

Experiment” than “YAGO:Mission108403225” does. 

 

Figure 3-8: Running time of the three methods of YAGO2-DBpedia for equivalence alignment. 

The author separated 326 classes belonging to YAGO2 knowledge base and 

DBpedia ontology into three instance-range groups using equivalence relation. As 

Figure 3-8 shows, the IUT runs faster than the HM but only slower than BLOOMS 

in large-scale instances. 
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Table 3-5: Results of equivalence alignment in YAGO2-DBpedia. 

 #instances(0-100) 

 Precision Recall F-score 

IUT 1.0 0.20 0.333 

HM 1.0 0.267 0.421 

BLOOMS 1.0 0.067 0.125 

 #instances [100-500) 

 Precision Recall F-score 

IUT 1.0 0.417 0.588 

HM 1.0 0.417 0.588 

BLOOMS 0.773 0.708 0.739 

 #instances [500-10,000) 

 Precision Recall F-score 

IUT 0.953 0.621 0.753 

HM 1.0 0.273 0.429 

BLOOMS 0.739 0.773 0.756 

 Overall (0-10,000) 

 Precision Recall F-score 

IUT 0.865 0.509 0.641 

HM 0.935 0.264 0.411 

BLOOMS 0.552 0.656 0.600 
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Table 3-5 shows that the IUT gets the best F-score (0.641) for the equivalence 

alignment. In different data sets, BLOOMS gets the best F-score in the medium- and 

large-scale sized of instances (0.739, 0.756), and the HM gets the best F-score in the 

small-scale size of instances (0.421). Similar with the reasons for failure of 

inter-subsumption discovery, there are also two reasons (false negatives and false 

positives) for failure of equivalence discovery, which can be also considered as the 

cause of different taxonomy purposes. (1) distinct classes described by instances 

that are overlapped in majority, which is known as a false positive. Since the two 

different ontologies are designed to describe the different knowledge system, two 

distinct classes that are likely to share same instances can be considered as an 

equivalent pair by the IUT. For example, “DBpedia:Person” contains 511,484 

instances and “YAGO:LivingThing100004258” contains 574,634 instances. 

“DBpedia:Person” and “YAGO:LivingThing100004258” share 501,311 instances, 

which the Jaccard similarity of “DBpedia:Person” and 

“YAGO:LivingThing100004258” is 0.8724. (2) equivalent classes described by 

distinct instances, which is known as a false negative. For example, 

“DBpedia:Protein” contains 1,620 instances and “YAGO:Protein114728724” 

contains 2,965 instances, and “YAGO:Protein114728724” and 

“YAGO:Protein114728724” only share 690 common instances.  

The author also notices that the F-score of equivalence alignment is better than 

subsumption alignment, which indicates that the equivalent classes are more likely 

to have the same instances in contrast to the classes aligned with subsumption which 

are less likely to have the fully overlapped instances.  
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3.5.4 Effects of 𝝌𝒔 and 𝝌𝒆 for the IUT 

The experiments demonstrate that the instance-based methods are better at 

discovering subsumption and equivalence relations than the state-of-the-art lexical- 

and structure-based method. However, the author also noticed that the 

performances of the instance-based approaches are affected by several reasons the 

author mentioned. In the IUT, there are two parameters (𝜒𝑠  and 𝜒𝑒 , where 

{𝜒𝑠|0 ≤ 𝜒𝑠 ≤ 1.0} and {𝜒𝑒|0 ≤ 𝜒𝑒 ≤ 𝜒𝑠}) to control the confidence whether two 

classes have a subsumption or equivalence relation. Adjusting 𝜒𝑠 and 𝜒𝑒 directly 

changes the numbers of False Negative (FN) and False Positive (FP), which further 

affects the F-score. The author changed 𝜒𝑠 and 𝜒𝑒 to see the effects on the F-score 

as shown in Figure 3-9.  
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(a) 𝜒𝑠 for intra-subsumption (YAGO2-YAGO2) 

 

(b) 𝜒𝑠 for intra-subsumption (DBpedia-DBpedia) 
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(c) 𝜒𝑠 for inter-subsumption (YAGO2-DBpedia) 

 

(d) 𝜒𝑒 for inter-equivalence (YAGO2-DBpedia) 

Figure 3-9: 𝜒𝑠 and 𝜒𝑒 for the IUT. 

As Figure 3-9 (a, b, and c) show, decreasing 𝜒𝑠 hurts the F-score as the 

number of FN and FP increases. The main reason for failures of inter-subsumption 

discovery is FP that increases along with the decrease of 𝜒𝑠. The lower 𝜒𝑠 allows 

more candidate pairs to be considered as positives, which increases the recall but 

decreases the precision. Different with inter-subsumption discovery, FN is the main 
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reason for failures of intra-subsumption discovery in DBpedia-DBpedia, which 

increases along with the decreases of 𝜒𝑠 . The insufficient description of the 

intra-taxonomy on the instance level is the main reason of alignment failures for 

DBpedia ontology, lowering 𝜒𝑠  allows more classes to establish subsumption 

relations, which amplifies the errors caused by the effects of insufficient taxonomic 

description on the instance level. The amplification decreases the recall and further 

decreases the F-score. The intra-subsumption in YAGO2-YAGO2 is affected by 

two reasons (insufficient taxonomic description on the instance level and 

multi-instantiation). Lowering the threshold of subsumption establishing, which is 

caused by decreasing of 𝜒𝑠, amplifies both FN and FP hence decreases the recall 

and the precision. 

Figure 3-9 (d) shows that 𝜒𝑒  gets the best F-score when 𝜒𝑒 = 0.25. The 

author observes that increasing 𝜒𝑒 boosts the F-score before the F-score reaching 

the summit, and hurts the F-score after overpassing the summit. Before 𝜒𝑒 arriving 

0.25, increases of 𝜒𝑒 raises threshold that traps more non-equivalent classes, which 

decrease FN and FP. Along with 𝜒𝑒 increases and overpasses 0.25, fewer candidate 

pairs are considered to be equivalent, which increases FN and FP. 

From the Figure 3-9, the author gets two important hints for setting 𝜒𝑠 and 𝜒𝑒 

where {𝜒𝑠|0 ≤ 𝜒𝑠 ≤ 1.0}  and {𝜒𝑒|0 ≤ 𝜒𝑒 ≤ 𝜒𝑠} , that is, the higher 𝜒𝑠  is the 

better it is for subsumption discovery, and the lower 𝜒𝑒  is the better it is for 

equivalence discovery before 𝜒𝑒 = 0.25. 
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3.6 Discussions 

The IUT is an instance-based schema alignment algorithm, which heavily depends 

on the description of ontology on the instance level. The results of the alignment of 

the IUT can be affected by two reasons as the author discussed in Section 3.5, 

which are insufficient taxonomic description on the instance level and 

multi-instantiation. The motley instantiation strategies for diversity ontologies 

weaken the subsumption and equivalence detections. 

Another problem what instance-based methods should care is the issue caused 

by the asymmetric ontology update. The alignment of two classes from two 

ontologies changes if the updating speeds of two ontologies are different. For 

example, updating DBpedia 3.9 that uses the Wikipedia data in April 2013 from 

DBpedia 3.8 that uses the Wikipedia data in June 2012 costs nine months, but 

updating YAGO2 2.5 that uses the Wikipedia data in December 2012 from YAGO2 

2.4 that uses the Wikipedia data in August 2010 costs more than two years. The 

imbalanced updating speed can change the original alignment results. For instance, 

the “DBpedia: Artery” in DBpedia 3.9 contains all the instances in 

“YAGO:Artery105333777” in YAGO2 2.4, which the IUT considers a subsumption 

relation between the two classes. However, the “DBpedia:Artery” in DBpedia 3.9 

shares part of all instances (303) in “YAGO:Artery105333777” in YAGO2 2.5, 

which increase the Jaccard similarity into 0.75 and defines the relation as 

equivalence. In this study, the author simply removes the instances only used in one 

data resource to reduce the effects of the asymmetric ontology update. However, the 

added or deleted instances in an updated version can more precisely describe a class 
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and correct some errors in the alignments for the previous version that is poorly 

designed. A comprehensive solution is a new research direction for the future work. 

There are two assumptions for instance-based methods: (1) instance-level 

alignment is established. (2) ontology has a hierarchical structure on the 

schema-level. Linked Data creates links to connect data in different sources based 

on the Web (Bizer et al., 2009). Therefore, links are one of the most important 

factors to evaluate the quality of a linked data set. Most famous linked data sets 

already have abundant links. For example, DBpedia has 39,012,034 links connected 

with a variety of databases, including BBC music, DailyMed, New York Times, etc. 

For those are not connected with other linked data sets, one solution is to establish 

instance alignments with existing instance alignment algorithms, which is proposed 

by PARIS (Suchanek et al., 2011), and use existing link discovery frameworks, such 

as Silk (Volz, Bizer, Gaedke, & Kobilarov, 2009). For the second assumption, some 

ontologies in LOD lack the hierarchical structure, which will fail the proposed 

approach. One solution is to build taxonomy automatically with the help of 

probability models, logic rules or thesauri (Bedini & Nguyen, 2007). The author has 

proposed a solution in Chapter 5 that introduces the methods to automatically 

generate hierarchical schema structure for Linked Data in detail. 

In the proposed method, only inter-linked instances are used. There raises a 

discussion on the meaning of using of inter-linked instances in our data 

pre-processing. 

In Semantic Web, an ontology is constructed based on Open-World 

Assumption (OWA), which admits incompleteness of instances at a given time. 
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This incompleteness in describing a concept is due to many reasons, such as 

unintentional omission of instances though they are exposed to the ontology 

developer, and lack of awareness of the existence of instances that deem the status 

of being included in the concept. Therefore, even for the same concept, two 

ontologies may have different instance sets attached to the concept, since the 

different instance spaces are deemed as legitimate within their sphere of known 

explored world.  

In concept comparison, the incompleteness of concept extensions (i.e., 

instances) weakens the usefulness of instances as the description of understanding, 

or definition, of concepts, because the incompleteness itself may be the cause of 

varying instantiations of the concepts. In short, the instances the author gathered are 

just one possible representation of a concept - there may be many more such cases. 

In order to come up with a way that produces a convincing measure for similarity 

between concepts, one has to rely on truth, which in this study is links. Links are 

created externally, and the author has no control over, or rather should not have 

control over. Hence, links are taken as the sole truth statements that prove the 

legitimacy of similarity between two concepts. As for unlinked instances, the author 

takes them as neither untrue nor true, since it is beyond the scope of this study. In 

case a new link is created in the future between two instances which did not have a 

link between them, the author's method will take it as a new truth statement and 

proceeds as it is designed to.  

Therefore, unlinked instances are removed, and the remaining instances are 

conflated into one instance space. For example, to align two different versions of 
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DBpedia Ontology, DBpedia 3.9 and DBpedia 2014, removing the instances only 

existing in DBpedia 2014 can eliminate the mismatched concepts because of the 

new added instances (from April 2013 to May 2014) that are not acknowledged by 

DBpedia 3.9. 
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3.7 Conclusion 

In this chapter, the author proposed the IUT that is an instance-based schema 

alignment algorithm. The IUT builds a unified taxonomy for all the classes from 

two ontologies to obtain the alignments. The position of each class is decided by the 

common instances shared with other classes in the unified taxonomy. The author 

tested the IUT with DBpedia and YAGO2, and compared the IUT with two 

state-of-the-art methods for schema alignments in LOD. The experiments show the 

IUT outperforms the methods in F-score. The experiments also illustrate that 

ontology with a larger number of instances is more likely to have a good F-score of 

the IUT. The author also observed the reasons of aligning failures for the IUT, that 

is, insufficient taxonomic description on the instance level and multi-instantiation in 

the intra-subsumption alignment, and different taxonomic structure of ontologies 

for diversity purposes in the inter-subsumption and equivalence alignment. Two 

parameters for the IUT are tested to control the alignment failures. The author 

discussed limitations of proposed method and gives several solutions to improve the 

works. 
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4 Scaling Pair-wise Computations Using the 

Locality Sensitive Hashing 

4.1 Introduction 

 

Figure 4-1: The search spaces of different algorithms in Section 3.4. 

Comparing large number of classes based on instances will easily bring a scalability 

issue. If we have 𝑘  classes in the source ontology, the schema alignment 

algorithms (the HM and BLOOMS used in Section 3.4) need 𝑘 iterations to find 

the alignments for all the classes in the source ontology, and each iteration needs to 

search 𝑡 classes in the target (the source ontology is the same with the target 

ontology, we consider 𝑘 = 𝑡 = 𝑚). The search space (Korf, Yandell, & Bedell, 

2003) is 𝑘 × 𝑡 as shown on the left of Figure 4-1. For a pair of classes sharing 𝑛 

instances, the time complexity of the similarity computing needs 𝑂(𝑛) operations. 

The computation of the whole pairs of classes needs 𝑂(𝑛 × 𝑘 × 𝑡) operations, 

which makes all the pair-wise computations not efficient if the sizes of ontologies 
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are too large. The IUT decreases the search space with the unified graph (the search 

space at the center of Figure 4-1) but could still meet a scalability issue. 

The Locality Sensitive Hashing (LSH) (Rajaraman & Ullman, 2011) is a 

probabilistic dimension reduction algorithm. The basic idea of LSH is to map sets of 

values into hash values with reduced dimensions, and put similar sets into buckets 

with a high probability. LSH can be used to reduce large pair-wise computations, 

and is further adapted in instance-based schema mapping (Duan et al., 2012). The 

author adapts the basic idea of the LSH that uses MinHash to estimate the 

probability of subsumption (Definition 3-1) and equivalence (Definitions 3-2 and 

3-3) in Section 3.3.3 to decrease the time complexity of a similarity computation, 

and use bandings to reduce the search space (on the right of Figure 4-1) used in 

Algorithm 3-1. The author performs an experiment of scaling the IUT based on LSH 

for YAGO2-YAGO2 intra-subsumption alignment task performed in Section 3.5.1. 

The experiment demonstrates that the running time of the original IUT can be 

reduced by 94% with a 5% loss in F-score using the proposed scaling method.  

The content of this chapter is mainly based on the author’s previous work 

published (Zong et al., 2015). The rest of this chapter is organized as follows: 

Section 4.2 introduces MinHash and banding method of the LSH, and details on the 

IUT(M), an IUT-based schema algorithm with the LSH; Section 4.3 introduces the 

scaling results of the IUT(M) for YAGO2-YAGO2 intra-subsumption alignment 

task. Section 4.4 discusses limitations of this chapter, and Section 4.5 concludes this 

study. 
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4.2 Methods 

 

Figure 4-2: Workflow of scaling the IUT with the LSH. 

For a class that is de-queued from the class-relation multi-graph generated in 

Section 3.3.2, the IUT has to compute the similarities with all the classes that are 

already in the virtual graph. The IUT(M) reduces the computations of the original 

IUT with an LSH-based MinHash index and a set of buckets by two steps as shown 

in Figure 4-2. First, after the instance-class matrix is constructed, a set of MinHash 

functions are used to map the values of each class in the matrix into the values in a 

smaller dimension in a MinHash index. Second, all the similar classes are input into 

a same bucket. With the MinHash index and buckets, the IUT(M) decreases the 

computations of the IUT from two aspects: (1) for a similarity computation on each 

pair of classes, the computation is decreased with the values of a smaller dimension 

mapped with MinHash functions, and (2) for choosing a most similar class out of 
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the classes in the virtual graph, the number of similarity computations is decreased 

by using the buckets. 

In the following sections, the author will introduce the basic idea of using 

MinHash functions and buckets to decrease the pairwise similarity computations, 

and how the author applies these methods to the instance-based schema alignment. 

4.2.1 MinHash and Signatures 

Assuming 𝑠𝑖𝑚(𝑐𝑖 , 𝑐𝑗) measuring the similarity of the class 𝑐𝑖  and 𝑐𝑗 , where 𝑐𝑖 

and 𝑐𝑗 belong to 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑚}, a family 𝐹 of hash functions maps all 𝑐𝑖 to a 

set 𝑍 of integers that makes the probability 𝑃𝑟(𝑓(𝑐𝑖) = 𝑓(𝑐𝑗)) of two hash values 

of 𝑐𝑖 and 𝑐𝑗 equal with 𝑠𝑖𝑚(𝑐𝑖 , 𝑐𝑗), that is, in another word 𝑃𝑟(𝑓(𝑐𝑖) = 𝑓(𝑐𝑗)) =

𝑠𝑖𝑚(𝑐𝑖, 𝑐𝑗), where 𝑓 ∈ 𝐹. The principle of the LSH is to choose adequate hash 

functions belonging to one hash family to map two similar classes into a same value 

as much as possible. The hash functions are said to be (𝑑1, 𝑑2, 𝑝1, 𝑝2) − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 

if for every 𝑓 in 𝐹 satisfies two conditions: 

Condition 1: if 1 − 𝑠𝑖𝑚(𝑐𝑖, 𝑐𝑗) ≤ 𝑑1, then 𝑃𝑟(𝑓(𝑐𝑖) = 𝑓(𝑐𝑗)) ≥ 𝑝1 

Condition 2: if 1 − 𝑠𝑖𝑚(𝑐𝑖, 𝑐𝑗) ≥ 𝑑2, then 𝑃𝑟(𝑓(𝑐𝑖) = 𝑓(𝑐𝑗)) ≤ 𝑝2 

A MinHash (Rajaraman & Ullman, 2011) maps the 𝐶 to the set 𝑍 by computing 

the minimum value of a universal hash function for 𝐶 and follows 𝑃𝑟(𝑓𝑚𝑖𝑛(𝑐𝑖) =

𝑓𝑚𝑖𝑛(𝑐𝑗)) = 𝑗𝑎𝑐𝑐𝑎𝑟𝑑𝑆𝑖𝑚(𝑐𝑖, 𝑐𝑗) . In practice, for two class vectors 𝑐𝑖 =

[𝑖1, 𝑖2, … , 𝑖𝑛]
𝑇  and 𝑐𝑗 = [𝑖1, 𝑖2, … , 𝑖𝑛]

𝑇 , a MinHash function has a probability, 

equaling with the Jaccard similarity of the two classes, to produce the same values 

of two class vectors with a random permutation of instances. 
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Figure 4-3: An example of a matrix based on the instance-class matrix used in Section 3.3.2 with a 

permutated order of instances. 

With a permutation of the rows, the min value of a column for this permutation 

is the number of the first row, in this permuted order, in which the column has a 1. 

For example, with the instance-class matrix used in Section 3.3.2, we have a 

permutation {𝑖1, 𝑖3, 𝑖2}. The matrix with the permutated order of the instances is 

shown in Figure 4-3. Therefore, we get min value 𝑝1(𝑐1) = 𝑖1 because 𝑖1 is the 

first instance that exists in this order. Similarly, we can get 𝑝1(𝑐3) = 𝑖3  and 

𝑝1(𝑐5) = 𝑖2. A permutation of instances can be considered as a result of a hash 

function for the instances. Thus, for the hash function ℎ1, which reflects to the 

permutation {𝑖1, 𝑖3, 𝑖2}, the value of each class for ℎ1 is the same value as we got 

for the permutation. Therefore, we get ℎ1(𝑐1) = 𝑖1, ℎ1(𝑐3) = 𝑖3, and ℎ1(𝑐5) = 𝑖2. 
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With limited number of 𝑣𝑠 permutations, a set of the minimum values in all 

the permutations for a class 𝑐𝑖 , which can be represented as 

𝐹𝑐𝑖 = {𝑓1
𝑚𝑖𝑛, 𝑓2

𝑚𝑖𝑛, … , 𝑓𝑣𝑠
𝑚𝑖𝑛}, is called the signatures for the class 𝑐𝑖. The signatures 

are used to estimate the Jaccard similarity, which decreases the computation of 

𝑠𝑖𝑚(𝑐𝑖, 𝑐𝑗) from 𝑂(𝑁) to 𝑂(𝑣𝑠). With a fast MinHashing algorithm (Rajaraman & 

Ullman, 2011), we can easily get the signatures for classes in the instance-class 

matrix. The fast MinHashing algorithm obtains the minimum value of each function 

in all the rows where the values are 1. 

For example, consider we have two hash functions that are ℎ1 = 𝑚𝑜𝑑(𝑥 +

1, 3) and ℎ2 = 𝑚𝑜𝑑(2𝑥 + 1, 3), where 𝑥 is the row of the instance-class matrix as 

shown in Figure 4-4. Therefore, we get ℎ1 = [1,2,0]  for the permutation of 

{𝑖3, 𝑖1, 𝑖2}  and ℎ2 = [1,0,2]  for the permutation of {𝑖2, 𝑖1, 𝑖3} . The fast 

MinHashing algorithm uses three iterations to get the signatures of all the classes. 

For 𝑐1, since the values of row 0 to 2 are all 1s, the minimum values of the two hash 

functions are [0,0]. 
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Figure 4-4: An example of computing signatures with the fast MinHashing algorithm. 
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4.2.2 Banding Technique 

For 𝑣𝑠  MinHash signatures, each 𝑐𝑖  is represented as 

𝑐𝑖 = {𝑓1
𝑚𝑖𝑛(𝑐𝑖), 𝑓2

𝑚𝑖𝑛(𝑐𝑖),… , 𝑓𝑣𝑠
𝑚𝑖𝑛(𝑐𝑖)} . For two classes 𝑐𝑖  and 𝑐𝑗 , the more 

elements of two vectors 𝑐𝑖 = {𝑓1
𝑚𝑖𝑛(𝑐𝑖), 𝑓2

𝑚𝑖𝑛(𝑐𝑖),… , 𝑓𝑣𝑠
𝑚𝑖𝑛(𝑐𝑖)}  and 𝑐𝑗 =

{𝑓1
𝑚𝑖𝑛(𝑐𝑖), 𝑓2

𝑚𝑖𝑛(𝑐𝑖),… , 𝑓𝑣𝑠
𝑚𝑖𝑛(𝑐𝑖)}  are identical, the more likely that the two 

classes are equal. The banding technique divides each class vector into 𝑣𝑏 number 

of bands with length of 𝑣𝑟 , where 𝑣𝑟 × 𝑣𝑏 = 𝑣𝑠 . For each band 𝑏 , if two 

sub-vectors of 𝑐𝑖 and 𝑐𝑗 are identical, 𝑐𝑖 and 𝑐𝑗 are assigned into a same bucket 

for 𝑏. 

 

Figure 4-5: Signatures and buckets with two hash functions. 

 

C1 C2 C3 C4 C5 C6 C7 C8

S1 0 1 0 1 2 0 1 0

S2 0 0 2 1 0 0 0 2
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In the same ongoing example shown in Figure 4-5, 𝑐1 = [0, 0]𝑇  and 𝑐2 =

[1, 0]𝑇  have identical sub-vector [1]𝑇  in the second band. Therefore, the two 

classes are put into a same bucket. 

 

Figure 4-6: S-curves of 1 − (1 − 𝑠𝑣𝑟)𝑣𝑏 with different combinations of 𝑣𝑟 and 𝑣𝑏 when using 

50 hash functions. 

If the Jaccard similarity of 𝑐𝑖  and 𝑐𝑗  is 𝑠 , the probability, which the 

corresponding elements of the signatures of 𝑐𝑖 and 𝑐𝑗 agree in all indices of at least 

one band and becomes a similar candidate pair, is 1 − (1 − 𝑠𝑣𝑟)𝑣𝑏 (Rajaraman & 

Ullman, 2011). For example, for the pair of classes 𝑐1  and 𝑐2  with Jaccard 

similarity 𝑠𝑖𝑚(𝑐1, 𝑐2) = 0.75 , we have confidence 1 − (1 − 0.751)2 = 0.9375 

that 𝑐1 and 𝑐2 are in a similar candidate pair with 𝑣𝑏 = 2 and 𝑣𝑟 = 1. 1 − (1 −

𝑠𝑣𝑟)𝑣𝑏  follows an S-curve as shown in Figure 4-6. Smaller 𝑣𝑟  and greater 𝑣𝑏 

indicate bigger chance of class pairs with small Jaccard similarities to be considered 

as a similar pair, and greater 𝑣𝑟 and smaller 𝑣𝑏 indicate less chance of class pairs 
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with large Jaccard similarities to be considered as a similar pair. With good tuning 

of the two parameters, the computations of choosing the most similar class in a 

virtual graph for a de-queued class from the class-relation multi-graph can be 

dramatically decreased. 

4.2.3 Scaling the IUT with MinHash and Banding 

The author scales the IUT with MinHash and banding techniques that are used to 

reduce the pair-wise similar computation of Jaccard similarity, and the author calls 

it IUT(M). The IUT(M) builds 𝑣𝑠  MinHash functions and bands the signature 

matrix with 𝑣𝑟 rows and 
𝑣𝑠

𝑣𝑟
 bands (line 2 in Algorithm 4-1). The similar candidate 

pairs are used to restrict the search space for discovering a relation for a class in the 

graph (line 7 in Algorithm 4-1). In practice, the IUT(M) discards the multi-graph 

that is used to sort the important classes and simply sorts classes by the number of 

instances (line 3 in Algorithm 4-1). 

In order to accommodate the subsumption relation discovering using Equation 

3-1, the IUT(M) computes the 𝑠𝑖𝑚′(𝑐𝑖, 𝑐𝑗)  with existing estimated Jaccard 

similarity 𝑗𝑎𝑐𝑐𝑎𝑟𝑑′(𝑐𝑖, 𝑐𝑗) by MinHash as follows: 

 𝑠𝑢𝑏′(𝑐𝑖, 𝑐𝑗) =
𝑗𝑎𝑐𝑐𝑎𝑟𝑑′(𝑐𝑖,𝑐𝑗)

𝑗𝑎𝑐𝑐𝑎𝑟𝑑′(𝑐𝑖,𝑐𝑗)+1
× (1 +

|𝑐𝑗|

|𝑐𝑖|
) (4.1) 

. The processing of the IUT(M) is shown in Algorithm 4-1. 
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Algorithm 4-1: Scaling the IUT with MinHash and Banding (IUT(M)). 

Input: a source ontology 𝑂1(𝐶1, 𝐼1), a target ontology 𝑂2(𝐶2, 𝐼2), 𝜒𝑠, 𝜒𝑒, 𝜈𝑠, 𝜈𝑟 

Output: subsumption and equivalence alignments 𝐴 

1: Instance-class matrix 𝑀 := generate from 𝑂1 and 𝑂2 

2: Similar candidate pairs P = {𝑝1, 𝑝2, … , 𝑝𝑘} := MinHash.banding (𝜈𝑠, 𝜈𝑟, 𝑀) 

3: Queue 𝑄 := all the classes sorted by the descending order of number of instances 

4: Initiate an empty virtual graph 𝐻 

5: While 𝑠𝑖𝑧𝑒(𝑄) > 0 do 

6:   𝑐𝑖 ≔ 𝑑𝑒𝑞𝑢𝑒𝑢𝑒(𝑄) 

7:   Add 𝑐𝑖 into 𝐻 

8:   Initiate an ancestor list 𝑆 and an equivalence list 𝐸 

9:   For 𝑐𝑗 in 𝐻 do 

10:     If 𝑐𝑖 originates from either one of the two ontologies (source and target) and 

    𝑐𝑗 from the other ontology then 

11:       If (𝑝 = {𝑐𝑖 , 𝑐𝑗} ∈ 𝑃) then 

12:         If (𝑠𝑢𝑏′(𝑐𝑖 , 𝑐𝑗) ≥ 𝜒𝑠 and  𝑠𝑢𝑏′(𝑐𝑗 , 𝑐𝑖) ≥ 𝜒𝑠) put 𝑐𝑗 into 𝐸 

13:         Else if (𝑠𝑢𝑏′(𝑐𝑖 , 𝑐𝑗) ≥ 𝜒𝑠) put 𝑐𝑗 into 𝑆 

14:         Else if (𝑠𝑖𝑚′(𝑐𝑖 , 𝑐𝑗) ≥ 𝜒𝑒) put 𝑐𝑗 into 𝐸 

15:     Else put 𝑐𝑗 into 𝐸 or 𝑆 based on the original existing relation of 𝑐𝑖 and 𝑐𝑗 

16:   Add inbound and outbound edges from 𝑐𝑖 to the vertices in 𝐸 

17:   Add outbound edges from 𝑐𝑖 to the sup-vertices in 𝑆 

18: Return new discovered relations as the alignments 𝐴 in 𝐻 
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4.3 Experiment 

As Section 3.5.1 shows, big size data (YAGO2-YAGO2) addresses the scalability 

problem in schema alignment. The author scales the IUT by using the LSH and 

MinHash function. The banding technology makes the possibility of a similar 

candidate pair follow 1 − (1 − 𝑠𝜈𝑟)
𝜈𝑠
𝜈𝑟 . Adjusting 

𝜈𝑠

𝜈𝑟
 can change the number of 

candidate pairs to be compared. For example, if 𝜈𝑠 = 1,000, decreasing 𝜈𝑟 from 

“10” to “5” makes the possibility, which one pair with similarity “0.6” to be 

considered as a candidate pair, increase from 0.455 to 0.999.  

The author tested the scaling algorithm the IUT(M) and compared it with the 

baseline (the IUT) for YAGO2-YAGO2 that needs to be scaled (3,981,676 ms ). 

Table 4-1: Efficiency of scaling the IUT for alignment in YAGO2-YAGO2 (𝜈𝑠 = 1,000). 

𝝂𝒓 Time (ms) 

 𝑇𝐼𝑈𝑇(𝑀) 
𝑇𝐼𝑈𝑇(𝑀)

𝑇𝐵
 

50 245,233 0.06159 

20 231,484 0.058137 

10 228,938 0.057498 

5 226,824 0.056967 

3 228,099 0.057287 

2 232,039 0.058277 

Baseline(B) 3,981,676 
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Table 4-2: Precision of scaling the IUT for alignment in YAGO2-YAGO2 (𝜈𝑠 = 10,00). 

𝝂𝒓 Precision 

 𝑃𝐼𝑈𝑇(𝑀) 𝑃𝐼𝑈𝑇(𝑀) − 𝑃𝐵  

50 0.809322 +0.203712 

20 0.778471 +0.172861 

10 0.752852 +0.147242 

5 0.704648 +0.099038 

3 0.690829 +0.085219 

2 0.681948 +0.076338 

Baseline(B) 0.60561 

 

Table 4-3: Recall of scaling the IUT for alignment in YAGO2-YAGO2 (𝜈𝑠 = 1,000). 

𝝂𝒓 Recall 

 𝑅𝐼𝑈𝑇(𝑀) 𝑅𝐼𝑈𝑇(𝑀) − 𝑅𝐵 

50 0.022538 -0.71756 

20 0.058883 -0.68122 

10 0.116821 -0.62328 

5 0.229866 -0.51024 

3 0.398667 -0.34144 

2 0.563455 -0.17665 

Baseline(B) 0.740103 
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Table 4-4: F-score of scaling the IUT for alignment in YAGO2-YAGO2 (𝜈𝑠 = 1,000). 

𝝂𝒓 F-score 

 𝐹𝐼𝑈𝑇(𝑀) 𝐹𝐼𝑈𝑇(𝑀) − 𝐹𝐵 

20 0.043855 -0.62228 

10 0.109484 -0.55665 

5 0.202258 -0.46388 

3 0.34665 -0.31949 

2 0.505574 -0.16056 

50 0.617065 -0.04907 

Baseline(B) 0.666136 

 

Table 4-1 to Table 4-4 show that the scaling algorithm (the IUT(M)) 

dramatically decreases the running time (𝑀𝑒𝑎𝑛𝑇𝐼𝑈𝑇(𝑀)

𝑇𝐵

= 0.058293) and keeps a 

good F-score (𝐹𝐼𝑈𝑇(𝑀) − 𝐹𝐵 = 0.04907). The precision of the IUT(M) decreases 

along with the decreases of the 𝜈𝑟 in Table 4-2, and the recall and F-score increase 

along with the decrease of the 𝜈𝑟 in Table 4-3 and Table 4-4. In the IUT(M), raising 

value of 𝜈𝑟  keeps the pairs with higher Jaccard similarity, which increases 

precision. However, some pairs, having low Jaccard similarity but connected with 

subsumption relations, are ignored when 𝜈𝑟  is high. For example, 

“YAGO:Pen103906997” has 35 instances and “YAGO:WatermanPens” has 2 

instances that are also included in “YAGO:Pen103906997”. The Jaccard similarity 

of “YAGO:Pen103906997” and “YAGO:WatermanPens” is 0.057. According 

to 1 − (1 − 𝑠𝜈𝑟)
𝜈𝑠
𝜈𝑟 , the possibility of “YAGO:Pen103906997” and 
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“YAGO:WatermanPens” pair to be a candidate pair is 0.0001 when 𝜈𝑟 = 5, but 

increase to 0.8035 when we decease 𝜈𝑟 to 2. The lower 𝜈𝑟 extracts more candidate 

pairs that have subsumption relations but with low Jaccard similarity, which 

increases the recall but decreases the precision. 

The IUT(M) decreases the sizes of the search space for each iteration, hence it 

decreases the running time (Figure 4-7 (b)). As Figure 4-7 (a) shows, the IUT(M) 

only compares a few number of classes (less than 10 classes for most of the 

iterations) as compared with the IUT where the number of classes linearly increases 

along with the number of iterations (notice that the y axis in Figure 4-7 (a) is 

logarithmic scaled). 
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(a) Number of the classes compared in each iteration 

 

(b) Running time of each iteration 

Figure 4-7: Efficiency comparison of the IUT and the IUT(M) that with 𝜈𝑟 = 2 and 𝜈𝑠 = 1,000. 
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4.4 Discussions  

The IUT uses Jaccard similarity to calculate the similarity between two classes. 

Therefore, the IUT(M) scales the computations of IUT based on MinHash functions 

in LSH. However, there are other similarity calculation methods with corresponding 

scaling algorithms in LSH. (Duan et al., 2012) applied MinHash and Random 

Hyperplane to scale the Jaccard and Cosine similarities used in class similarity 

computations. The future work will try to apply Cosine similarity and Random 

Hyperplane to the IUT for similarity computations and scaling. The author also 

noticed that scaling pair-wise similarity computations in other domains can also 

potentially be adapted into schema alignment. These methods, such as parallel 

computing based on MapReduce (Lin, 2009; Y. Wang et al., 2013), and 

index-based method (Bayardo et al., 2007), are capable of being generalized to 

other similarity measures, including Jaccard, Cosine, Overlap, and Dice similarities, 

and can be used to improve the IUT in the future works. 
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4.5 Conclusion  

Scaling pair-wise similarity computations for classes is vital for schema alignment 

in Linked Data that has a large number of instances for classes. In this chapter, the 

author introduced a scaling method for the IUT based on LSH to handle the 

scalability problem in schema alignment. The proposed method called IUT(M), 

which decreases the computations of the IUT when it generates the virtual graph 

from two aspects: (1) the similarity computation for each pair of classes is decreased 

with MinHash functions, and (2) the number of similarity computations that find the 

most similar class for a de-queued class from the class-relation multi-graph are 

decreased by using the banding method in LSH. The author performed the IUT(M) 

with YAGO2-YAGO2 intra-subsumption alignment task. The experiment shows 

that the running time of IUT can be reduced by 94% with a 5% loss in F-score.  
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5 Unsupervised Hierarchical Schema Structure 

Generation in Linked Data 

5.1 Introduction 

The growing needs of RDF resources push organizations to publish their own RDF 

format data by transforming their legacy data, such as relational database or Web 

pages, with transformation programs (Bizer, 2011; Blum & Cohen, 2010; Ding et 

al., 2010; Martín & Gutierrez, 2009). Lacking domain experts to build ontologies, 

these data, containing a limited schema but abundant relationships between 

instances, are incomplete (Zhu et al., 2015). Without expressive T-Box of an 

ontology to describe the relations between concepts, Linked Data suffers in 

knowledge acquisition (Zhu et al., 2015). 

There are two ways to solve the problem: (1) map instances to an existing 

ontology (Bizer et al., 2009; Sahoo et al., 2009); and (2) generate an ontology 

directly from data sources (Alani et al., 2003; Mitchell, Betteridge, Carlson, 

Hruschka, & Wang, 2009; Pivk, 2006; Tho, Hui, Fong, & Cao, 2006; Tijerino, 

Embley, Lonsdale, Ding, & Nagy, 2005). However, it is not desirable to squeeze 

every RDF repository under a single ontology, nor for unwilling data providers to 

make their Linked Data adhere to any published ontology. The T-Box learned 

from the A-box can fully describe the local data set and better represents the 

knowledge induced from the instances (Völker & Niepert, 2011). Therefore, 

learning T-box from A-box for Linked Data has been studied in the past few years, 
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such as the methods in (Lehmann & Voelker, 2014; Tiddi, Mustapha, Vanrompay, 

& Aufaure, 2012; Völker & Niepert, 2011; Zhu et al., 2015). 

These methods generate a single taxonomy for a given linked data set, which 

reflects an implicit perspective of viewing or understanding the data. However, it 

is often difficult for users to agree on a particular manner to categorize compound 

instances with multiple properties. (Brewster & Wilks, 2004; Han & Fu, 1994). 

For example, DBpedia ("DBpedia,") and YAGO2 ("YAGO2s: A High-Quality 

Knowledge Base,") have developed different ontologies for categorizing 

Wikipedia pages ("Wikipedia,"). Taxonomies are generated based on different 

ways of viewing the same data.  

For example, ethic and occupation are both used to classify the concept 

“person” in YAGO2, which causes “YAGO:wordnet_bad_person_109831962” 

and “YAGO:wordnet_dancer_109990415” to be both sub-concepts of 

“YAGO:wordnet_person_100007846”, whereas only occupation is considered in 

the DBpedia Ontology. In Linked Data, instances have values of diverse properties, 

each of which can be viewed as a facet in faceted browsing or navigation (Sacco & 

Tzitzikas, 2009). Therefore, a faceted taxonomy that classifies data from multiple 

angles draws the attention of the Semantic Web community (Oren, Delbru, & 

Decker, 2006). However, though faceted navigation or search based on faceted 

taxonomies has received most attention in research (Erling & Mikhailov, 2009; 

Rodriguez-Castro, Glaser, & Carr, 2010), automatic construction of faceted 

taxonomy is little studied. 
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Consequently, in order to meet different needs arising from various uses of 

taxonomies, the author proposes a robust method for generating faceted 

taxonomies based on object properties of instances in Linked Data. Please note, 

different with the taxonomy defined in Chapter 3 and Chapter 4, the taxonomy 

used in this chapter has hierarchical structure that only contains the subsumption 

relation. There are three benefits of using faceted taxonomy :  

(1). Faceted view of the taxonomy facilitates user experience of taxonomy 

navigation, since it provides guided navigation of the data organized as a 

taxonomy. Other taxonomy generation methods may have such views implicitly 

built into their taxonomies, leaving users with no direct exposure to such guidance. 

(2). Update of taxonomy is modular in that when an object property is added, a new 

sub-taxonomy in a new facet needs to be added into the existing faceted taxonomy 

without disrupting existing sub-taxonomies in other facets. 

(3). Flexibility in facet combination. Facets can be assembled easily, invoking 

rapid filtering of instances. Classifications based on facets can cope with 

high-stress tasks, due to its flexibility, especially so when compared with 

taxonomies built in a single linear hierarchy.  

The author has developed a framework that dynamically extracts data with a single 

object property to generate a sub-taxonomy in each facet. Each sub-taxonomy is 

generated with an Instance-based Concept Taxonomy generation algorithm called 

ICT, adapted from an instance-based ontology alignment algorithm (Zong et al., 

2015). In an addition, the strategies of instantiation and refinement are also 

proposed. The experiment comprises two tasks: (1) the construction performance 
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of a sub-taxonomy is tested by comparing the generated taxonomy based on 

“rdf:type” with two gold standards, DBpedia and YAGO2, and (2) the 

construction performance of a faceted taxonomy with multiple facets is evaluated 

by the running time and search effectiveness of the taxonomies based on two 

biomedical linked data sets, Diseasome ("Diseasome,") and DrugBank 

("DrugBank,"). The two tasks demonstrate the capability of the proposed method 

to generate a faceted taxonomy efficiently and effectively.  

The rest of the chapter is organized as follows: Section 5.2 gives the basic 

principle of the proposed solution; Section 5.3 details on the framework of the 

proposed solution; Section 5.4 presents the method of faceted taxonomy 

generation; in Sections 5.5 and 5.6, the author demonstrates the results of the 

experiments; Section 5.7 discusses limitations of this study and the conclusions are 

presented in Section 5.8. 
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5.2 Faceted Taxonomy for Linked Data 

 
Figure 5-1. A faceted taxonomy for a sample of Linked Data. 

 

The object of this study is to automatically construct a concept taxonomy that fully 

describes instances. Considering that different instances in the same topic may 

have same values of properties, the author is trying to use the property values to 

cluster the instances and formalize a concept hierarchy structure. There are two 

types of properties in Linked Data sets: data-type and object-type. Object-type 

properties link instances with objects, and data-type properties link instance with 

literal values (Bechhofer et al., 2004). Please note, given a subject-property-object 

(SPO) triple in an A-box, the subject is considered as an instance. If the object is a 

literal value, the property is a data-type property. If the object is a de-referenceable 

URL, the property is an object-type property, and the URL is called an object 

entity or object for short. The author uses the object-type instead of using 

data-type property with following reasons. First, instances belonging to the same 

concepts may share the same objects and inherit some objects from the super 

concept, which is hardly observed on the values of data-type properties. Second, 

clustering of instances based on the semantic similarities rather than on lexical 
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similarities is in accordance with the human habit of building a concept taxonomy. 

Therefore, the author only considers using object-type properties to generate a 

concept taxonomy for Linked Data. 

Given a linked data set containing an A-box 𝐴 = {𝐼, 𝑃, 𝑂} that consists of a 

set instances 𝐼, a set of object properties 𝑃 and a set of objects 𝑂, where each 

instance 𝑖𝑢 ∈ 𝐼 is described with a set of property 𝑃𝑢 = {𝑝1, … , 𝑝𝑘}, each of 

which has a set of objects 𝑂𝑖𝑢𝑝𝑣 = {𝑜1, … , 𝑜𝑡} and 𝑡 ≥ 1, The author proposes a 

solution of building a faceted taxonomy as shown in Figure 5-1 based on the object 

properties, where each property can be considered as a facet. Please note that the 

facet differs with the facet used in OWL 2 in the context respective datatypes 

(Carroll et al., 2012). The author adapts the concept of facet in (Sacco & Tzitzikas, 

2009) and defines a facet as: 

Definition 5-1: a facet 𝑓𝑢 for a linked data set is an object property 𝑝𝑢 in the 

data set. 

For example in Figure 5-1, there are two facets called “cause” and “symptom” that 

are the object properties for the linked data set about diseases. 

Definition 5-2: a sub-taxonomy 𝐹𝑢  in a facet 𝑓𝑢  is a hierarchical concept 

taxonomy with the triples extracted with the property 𝑝𝑢. The sub-taxonomy 

𝐹𝑢(𝐶𝑢, 𝑅𝑢)  consists of a set of concepts 𝐶𝑢 = {𝑐1, 𝑐2, … 𝑐𝑡}  and a set of 

subsumption relations 𝑅𝑆𝑢 = {𝑟𝑆𝑢1 , 𝑟𝑆𝑢2 , … 𝑟𝑆𝑢𝑥}. A subsumption relation 𝑟𝑠(𝑐𝑖, 𝑐𝑗) 

is a subsumption relation between two concepts 𝑐𝑖 and 𝑐𝑗, where 𝑐𝑖 and 𝑐𝑗 ∈ 𝐶𝑢. 
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For example in Figure 5-1, a sub-taxonomy about the facet “cause” is constructed 

with the sub-data related to “cause”. There are six concepts and five subsumption 

relations in this sub-taxonomy. 

Definition 5-3: a faceted taxonomy 𝐹  includes a set of sub-taxonomies 

{𝐹1, 𝐹2, …𝐹𝑘}, where each sub-taxonomy 𝐹𝑢 organizes the concepts in a facet 𝑓𝑢.  

For example in Figure 5-1, a faceted taxonomy has two sub-taxonomies about the 

facets “cause” and “symptom”, and each taxonomy uses different concepts that are 

organized with a different hierarchy. 

Definition 5-4: a materialized faceted taxonomy ℱ(𝐹, 𝑅)  includes a set of 

sub-taxonomies 𝐹 = {𝐹1, 𝐹2, …𝐹𝑘}  and a set of “instance of” relations RI =

{rI1 , rI2 , … rIe}. An “instance of” relation 𝑟𝐼(𝑖𝑢, 𝑐𝑣) is a classification of instance 

𝑖𝑢 to a concept 𝑐𝑣, where 𝑖𝑢 ∈ 𝐼 and 𝑐𝑣 ∈ 𝐶𝑢. 

For example in Figure 5-1, the materialized faceted taxonomy has the three 

instances to instantiate the concepts in two sub-taxonomies, such as 

“Translocation Down syndrome” is an instance of “Hereditary” and “Speech 

disturbance”. Please note that the statement, “Translocation Down syndrome” is 

an instance of “Hereditary”, is a classification for “Translocation Down 

syndrome”. The semantical meaning of the statement needs to be interpreted with 

the consideration of the semantic of a facet, and the author will discuss it further in 

Section 5.7. 

The author has developed a framework to generate a faceted taxonomy based 

on multiple object properties, and the author introduces the framework in the 

following section. 
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5.3 Framework 

 

Figure 5-2. The framework of faceted taxonomy construction. 

 

The author separates the procedure of generating a faceted taxonomy into two 

stages as shown in Figure 5-2: pre-processing and taxonomical relationship 

generation. 

The pre-processing is to generate a set of instance-object matrices, each of 

which represents the relations between instances in one facet (object property). 

Four steps, (1) facets extraction, (2) instance restriction and redundancy removal, 

(3) redundant object removal, and (4) instance-object matrix generation, are used 

at this stage in order to remove redundant instances and objects for reducing the 

computations of sub-taxonomy generation. 

The taxonomical relationship generation is to construct sub-taxonomies based 

on instance-object matrices generated from multiple facets. For each matrix, the 

author proposes an algorithm to build a hierarchical taxonomy. An instantiation 

and concept taxonomy refinement strategies are also proposed to get a 

materialized faced taxonomy in Section 5.4. 
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Figure 5-3. An ongoing example of building a sub-taxonomy with an object property 

“Diseasome:possibleDrug” partially extracted from Diseasome. 

5.3.1 Facets Extraction 

In the author’s definition, each object property is considered as a facet, and object 

properties 𝑃 are identified from all the properties. Any triple that contains an 

object property is extracted, and the entire instances (subjects) of the extracted 

triples are used to build a |𝑃|  faceted taxonomy. In order to help readers 

understand this paper, the author uses an ongoing example in Figure 5-3 to explain 

the procedure of generating a sub-taxonomy in one facet. The ongoing data is 

about the disease instances that partially extracted from Diseasome with the facet 

“Diseasome:possibleDrug”. 

5.3.2 Instance Restriction and Redundancy Removal 

First, for each facet, instances are restricted into the domain that contains an object 

property. For example, 1,456 disease instances of Diseasome are extracted for an 
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object property “Diseasome:possibleDrug”. Second, the instances that have the 

same property values (objects) are removed and kept only one instance as a 

representative instance for those removed ones. Therefore, after the first step, the 

unique instances that have different object sets are extracted for the next step in 

each facet. As Figure 5-3 (a) shows, the instances “Disease:2949” and 

“Disease:146” have the same objects “DB00170”, “DB00266”, and “DB02395”. 

Therefore, “Disease:146” is removed and only “Disease:2949” is kept as a 

representative for the two instances. In Figure 5-3 (a), two instances “Disease:146” 

and “Disease:2210” are removed during this step. 

5.3.3 Redundant Object Removal 

After removing the redundant instances that have the same property values 

(objects) in each facet, the author removes the redundant objects that are contained 

by the same instances and keeps only one object as a representative object for 

those removed ones. In another word, only the unique objects are kept for 

generating an instance-object matrix in a facet. For example in Figure 5-3 (b), the 

objects “DB00036” and “DB00682” are contained by the same instance 

“Disease:1175”. Therefore, “DB00682” is removed, and only “DB00036” is kept 

as a representative for the two objects. 

5.3.4 Instance-object Matrix Generation 

Based on above three steps, the instances with objects in a facet will form a binary 

matrix 𝐴𝑚×𝑛 with each instance is saved as row and each object as a column, and 

the matrix will be used to generate a sub-taxonomy for this facet. For each entry of 
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the matrix, 𝑎𝑢𝑣 = 1 if the instance 𝑢  contains the object 𝑣 . There are |𝑃| 

matrices for all object properties 𝑃, and each matrix has different number of 

instances and objects. In the example of Figure 5-3 (c), for the facet 

“Diseasome:possibleDrug”, the instance-object matrix that has a five (instances) 

by eight (objects) matrix is generated. 
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5.4 Generating Faceted Taxonomy 

5.4.1 The Problem of Generating a Sub-taxonomy for a Facet 

The author’s object is to obtain a faceted taxonomy that contains sub-taxonomies 

generated with instance-object matrices. Therefore, for each facet, the author 

defines the basic problem of building a hierarchical taxonomy in one facet as 

follows:  

Input: Given an instance-object matrix 𝐴𝑚×𝑛 that contains the instances with 

multiple values (objects), we obtain an instance set 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚} that have 

𝑚 instances and an object set 𝑂 = {𝑜1, 𝑜2, … , 𝑜𝑛} that have 𝑛 objects. For each 

instance 𝑖𝑘, an instance contains by a set of objects {𝑜1, 𝑜2, … , 𝑜𝑢}. For example 

in Figure 5-3 (c), the instance “Disease:2949” contains the objects “DB00170”, 

“DB00266”, and “DB02395”. 

Output: A hierarchical concept taxonomy 𝐹 (𝐶, 𝑅𝑠), where 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑘} 

is a concept set containing 𝑘  concepts, 𝑅𝑠 = {𝑟𝑠1 , 𝑟𝑠2 , … , 𝑟𝑠𝑖}  a subsumption 

relation set for the concepts. 

5.4.2 Concept Definition and Naming 

Classes (concepts) provide an abstraction mechanism to generalize the 

characteristics of a group of similar instances. The instances in a class are 

extensions that can be used to define the class (Bechhofer et al., 2004). The author 

defines a class with extensions (i.e., a set of instance) as : 
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Definition 5-5: A concept in a facet taxonomy that contains the extensions, a set 

of instance, is a binary vector 𝑐 = [𝑖1, 𝑖2, … , 𝑖𝑚], where 𝑖𝑚 = 1 when the concept 

contains 𝑖𝑚. 

In a taxonomical class-based system, e.g. ontology, concepts comply with the class 

axiom (Bechhofer et al., 2004) on instances, where the extensions of a sub-concept 

is a subset of the extensions of its super concept. Therefore, we can formalize a 

concept with the extensions of sub-concepts, if the sub-concepts have common 

objects as: 

𝑐 = 𝑠𝑢𝑏⃗⃗⃗⃗⃗⃗⃗⃗
1𝑂𝑅 𝑠𝑢𝑏⃗⃗⃗⃗⃗⃗⃗⃗

2 𝑂𝑅 …  𝑂𝑅 𝑠𝑢𝑏⃗⃗⃗⃗⃗⃗⃗⃗
𝑖  (5.1) 

, where 𝑠𝑢𝑏⃗⃗⃗⃗⃗⃗⃗⃗
𝑖 is a sub-concept vector. For example in Figure 5-3 (c), a concept 

𝑐 = [1,1,0,0,0] with the extensions “Disease:2949” and “Disease:4161” can be 

formed with two concept 𝑐1 = [1,0,0,0,0] with the extension “Disease:2949” and 

𝑐2 = [0,1,0,0,0] with the extension “Disease:4161”. 

The intensions of a concept are the features and follows inheritance axiom in 

(Taivalsaari, 1996) and class axiom in (Bechhofer et al., 2004). Therefore, given a 

class, we have Axiom 5-1 for its sub-classes: 

Axiom 5-1: A sub-concept inherits all the intensions from its super concepts and 

has new intensions that are used to differentiate its super concept. 

For each instance in a facet, the objects contained in an instance are overlapped 

with the objects of other instances. The objects that can be used to classify 

instances are considered as the intensions (Sacco & Tzitzikas, 2009) in the facet. 

The author defines the intensions of a concept in a faceted taxonomy as follows: 
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Definition 5-6: Given an instance-object matrix 𝐴𝑚×𝑛 in a facet, the intensions c 

of a concept 𝑐 are the objects in a set 𝑂 = {𝑜1, 𝑜2, … , 𝑜𝑘}. 

With Axiom 5-1 and Definition 5-2, for a concept 𝑐, the author obtains the 

intentions of the concept 𝑐 = {𝑜1, 𝑜2, … , 𝑜𝑚} as the intersection of the intensions 

for each sub-concept: 

𝑐 = 𝑐1 ∩ 𝑐2 ∩ … ∩ 𝑐𝑖 (5.2) 

According to the concept axiom in OWL 2 (Carroll et al., 2012), a concept can be 

considered as its own instances. Therefore, with the instances, a super concept can 

be formed from the concepts in the bottom, i.e., the concepts only contains a 

representative instance as the extension. 

In order to improve the readability of a concept, the author uses the reduced 

labeling strategy in FCA-based method (Cimiano et al., 2005) based on intensions 

to name the concept. The name of a concept is the objects obtained from the 

concept in intension that excludes the intensions of its super concepts. The naming 

function is defined as: 

𝑛𝑎𝑚𝑒(𝑐) = 𝑐 ⊅ (𝑠𝑢𝑝1 ∪ 𝑠𝑢𝑝2 ∪ … ∪ 𝑠𝑢𝑝𝑖) (5.3) 

, where ⊅ is the material nonimplication or abjunction of the intension 𝑐 of the 

concept 𝑐 and all intensions of its super concepts 𝑠𝑢𝑝⃗⃗⃗⃗⃗⃗⃗⃗ 1 to 𝑠𝑢𝑝⃗⃗⃗⃗⃗⃗⃗⃗ 𝑖. The name can 

be determined with the set 𝑛𝑎𝑚𝑒(𝑐). For example, the concept 𝑐 = [1,1,0,0,0], 

with the intensions “DB00170” and “DB00266”, has a super concept 𝑠𝑢𝑝⃗⃗⃗⃗⃗⃗⃗⃗ =

[1,1,1,1,1] with the intension “DB00170”. Therefore, with the reduced labeling 

strategy, we can obtain the name of 𝑐 = [1,1,0,0,0] as “DB00266”. In addition, 

the author validates the name with a following definition: 
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Definition 5-7: A concept 𝑐 is valid only if |𝑛𝑎𝑚𝑒(𝑐)| = 1. 

This definition makes the proposed method differ with other taxonomy generation 

algorithms, such as the FCA. With Definition 5-7, the proposed taxonomy 

generation algorithm is more efficient and more effective than the FCA, which 

will be discussed in Section 5.6.1. 

5.4.3 Taxonomy Generation Algorithm 

With the concept definition and the naming strategy, the author adapts the IUT 

(Zong et al., 2015) that can be used to generate a taxonomy based on 

instance-concept matrix, and call the variation ICT (a.k.a., Instance-based 

hierarchical Concept Taxonomy generation). There are two steps to generate the 

concept taxonomy: first, the objects in the matrix 𝐴𝑚×𝑛 are sorted in descending 

order by the number of instances contained by the object, and are put into a queue 

𝑄 (line 1 in Algorithm 5-1); second, in each iteration, a concept is de-queued and 

put onto the right position in a graph by computing the subsumption relation with 

existing concepts (lines 3-9 in Algorithm 5-1). The author adapts the equation in 

(Sanderson & Croft, 1999) to determine a subsumption relation between two 

concepts 𝑐𝑢 and 𝑐𝑣 (𝑐𝑢 is a sub-concept of 𝑐𝑣) as follows: 

𝑠𝑢𝑏(𝑐𝑢, 𝑐𝑣) =
|𝑐𝑢 ∩ 𝑐𝑣|

|𝑐𝑢|
 ≥  𝜑 , 𝑠𝑢𝑏(𝑐𝑣 , 𝑐𝑢) =

|𝑐𝑣 ∩ 𝑐𝑢|

|𝑐𝑣|
< 1 (5.4) 

, where 𝜑 is used to adjust the effectiveness of subsumption determination for the 

two concepts. 

If a concept 𝑐𝑢 has two super concepts, where exists a path from one concept 

to the other (i.e., one concept is the ancestor of the other), the concept will be 
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assigned to the leaf concept (i.e., descendant). For example, if “DB02395” is found 

to have two super concepts “DB00266” and “DB00170”, where “DB00266” is a 

sub-concept of “DB00170”, “DB02395” is going to be assigned to the sub-concept 

“DB00266”. The details of the process of the ICT are shown in Algorithm 5-1. 

 

 

Algorithm 5-1. Instance-based Concept Taxonomy generation algorithm (ICT). 

Input: an instance-object matrix 𝐴𝑚×𝑛, 𝜑 

Output: A concept taxonomy 𝑇(𝐶, 𝑅𝑐) 

1: Queue 𝑄 = all the objects by descending order of the number of instances contained 

2: Initiate an empty graph 𝐻 with a root concept 𝑟 

3: While 𝑠𝑖𝑧𝑒(𝑄) > 0 do 

4:   𝑐𝑖 ∶= 𝑑𝑒𝑞𝑢𝑒𝑢𝑒(𝑄) 

5:   Initiate a super concepts set sup (𝑐𝑖) 

6:   For 𝑐𝑗 in 𝐻 do 

7:       If (𝑠𝑢𝑏(𝑐𝑖 , 𝑐𝑗) ≥ 𝜑 & 𝑠𝑢𝑏(𝑐𝑗 , 𝑐𝑖) < 1) sup(𝑐𝑖) ←  𝑐𝑗    

8:   If sup (𝑐𝑖) ≠ ∅, put 𝑐𝑖 onto the sub-concept of the leaf concepts of sup (𝑐𝑖) 

9:   Else put 𝑐𝑖 onto the sub-concept of 𝑟 

10: Return 𝐻 
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5.4.4 Instantiation and Taxonomy Refinement 

In this step, the author needs to materialize the faceted taxonomy based on 

multiple sub-taxonomies generated. First, the author instantiates the concepts in 

each sub-taxonomy. The author defines a following instantiation rule based on an 

instance-object matrix. 

Rule 5-1: If an instance belongs to two concepts 𝑐𝑢 and 𝑐𝑣, where 𝑐𝑢 is the 

super concept of 𝑐𝑣, the instance will be used to populate 𝑐𝑣. 

Rule 5-1 makes an instance populate leaf nodes in a sub-taxonomy. For example, 

the instance “Disease:1175” belongs to two concepts “DB00036” and “DB00170” 

in Figure 5-3, and “Disease:1175” will be assigned to the concept “DB00036” 

since “DB00036” is the sub-concept of “DB00170”. Notice that Rule 5-1 supports 

multiple instantiation, because if an instance belongs to two concepts that are not 

connected with a subsumption relation, the instance will be assigned equally to the 

two concepts. 

Second, the removed redundant instances and objects in the pre-processing 

stage are used to refine the taxonomy. The redundant instances are used to 

populate the same concepts instantiated with the representative instances. For 

example, “Disease:146” is assigned to the concept “DB02395” as well since 

“DB02395” is instantiated with “Disease:2949”. The redundant objects are 

considered equivalent with the representative objects in the taxonomy. For 

example, the concept “DB00682” is also considered as a sub-concept of the 

concept “DB00170” since “DB00036” is the sub-concept of “DB00170”. 
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Third, assemble all sub-taxonomies with renamed concepts. Each 

sub-taxonomy should be independent and contains different concepts. However, 

there are cases that objects in the same topic may be used in different object 

properties. For example, the objects typed “DrugBank:references” are used in both 

object properties “DrugBank:drugReference” and “DrugBank:generalReference” 

for the instances typed “DrugBank:targets”. Therefore, in order to disjoint all the 

facet concepts, the author prefixes each concept name with the name of the 

property in a facet (Sacco & Tzitzikas, 2009). Finally, the author puts all the 

sub-taxonomies under the concept “Owl:Thing” to get the faceted taxonomy. 
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5.5 Experiments 

The author has implemented the proposed method based on JDK 1.6 using an 

Intel(R) Xeon CPU E5-2630 with 130 GB RAM on Windows 8 64 bit version. 

Since the object is to construct faceted taxonomies for Linked Data, the tests are 

separated into two parts that target two problems the author mentioned in Sections 

5.4.1 and 5.2.2: (1) the performance of generating a sub-taxonomy in one facet. (2) 

the performance of generating multiple faceted taxonomies with different object 

properties. 

5.5.1 Task 1-Construction of Taxonomy with “rdf:type” 

5.5.1.1 Data Sets and Experiment Design 

In Linked Data, some data sets that contain ontologies with concept taxonomies 

publish the classification of instances with “rdf:type”. Generating taxonomies with 

“rdf:type” can be viewed as the reverse engineering of this RDF publishing. 

Therefore, in order to evaluate the performance of the proposed method to build a 

sub-taxonomy with one object property, the author used the values of “rdf:type” in 

the RDF dumping file to construct a taxonomy. The taxonomy will be evaluated 

by comparing with the taxonomy of the gold standard ontology. The author chose 

two most well-known sets in LOD, DBpedia ("Downloads - Dbpedia,") and 

YAGO2 ("Downloads - YAGO2,") that provide the mature concept taxonomies 

reflecting on the values of “rdf:type”. The concept taxonomies are DBpedia 

ontology and YAGO-WordNet, which are extracted from DBpedia and YAGO2 

respectively. The author gained the study population, with 2,885,951 instance and 
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8,674 concepts from YAGO2 2.5.3, and 3,243,477 instances and 389 concepts 

from DBpedia 3.9. The author removed the redundant instances and objects, and 

only kept the unique instances and objects to construct the instance-object matrix 

during the pre-processing stage as introduced in Section 5.3. The statistics of the 

data originally and after pre-processing are shown in Table 5-1. 

 

Table 5-1. Statistic of the data sets originally and after pre-processed. 

 original data after pre-processing 

 # instances # objects (concepts) # instances # objects(concepts) 

YAGO2 2,885,951 8,674 155,602 7,327 

DBpedia 3,243,477 389 348 375 

 

5.5.1.2 Algorithms in comparison 

The author compared the ICT with two classic concept taxonomy construction 

algorithms based on an instance-object matrix: Subsumption (Sanderson & Croft, 

1999) and FCA (Cimiano et al., 2005; Drymonas et al., 2010). 

For the Subsumption, the author iterated all the concept pairs and established 

a subsumption relation of a pair of two concepts 𝑐1 and 𝑐2 if the two concepts 

satisfy the condition 𝑃(𝑐1|𝑐2) = 1, 𝑃(𝑐2|𝑐1) < 1. For the FCA, the author used 

the Colibri ("Colibri-Java,") that implements the Next-Closure algorithm to 

compute the formal concept lattice (Ganter & Reuter, 1991). A concept in the 

lattice is used to build a taxonomy if the concept contains at least one instance, and 

named by the reduced labeling with the extensional interpretation of the concept 

(Cimiano et al., 2005). 
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5.5.1.3 Evaluation Criteria 

The author tested all the algorithms with two criteria: efficiency and effectiveness. 

For evaluating the effectiveness, the author compared a generated taxonomy with 

the hierarchical schema structure of the ontology already exist in a linked data set. 

The author adopted the Taxonomic Precision (TP), Taxonomic Recall (TR), and 

Taxonomic F-measure (Dellschaft & Staab, 2006; Paukkeri et al., 2012) to 

measure the quality of the generated taxonomy. 

TP and TR are based on the Semantic Cotopy (SC) (Dellschaft & Staab, 2006) 

that considers ancestor and descendant relation to calculate the similarity of two 

concepts. The Semantic Cotopy of a concept 𝑐 in an ontology 𝑂 is defined as: 

𝑆𝐶(𝑐, 𝑂) = {𝑐𝑖|𝑐𝑖 ∈ 𝐶 ∧ (𝑐𝑖 ≤ 𝑐 ⋁ 𝑐 ≥ 𝑐𝑖)} (5.5) 

, where 𝐶  is the concept set of 𝑂 , and 𝑐𝑖 ≤ 𝑐 ⋁ 𝑐 ≥ 𝑐𝑖  is an ancestor and 

descendant of 𝑐. Therefore, the semantic cotopy of two concepts can be used to 

compute the local taxonomic precision of the two concepts as follows: 

𝑡𝑝𝑠𝑐(𝑐1, 𝑐2, 𝑂1, 𝑂2) =
|𝑠𝑐(𝑐1,𝑂1)∩𝑠𝑐(𝑐2,𝑂2)|

|𝑠𝑐(𝑐1,𝑂1)|
 (5.6) 

The 𝑇𝑃𝑆𝐶 and 𝑇𝑅𝑆𝐶 are computed based on the local taxonomic precisions 

and recalls as follows: 

𝑇𝑃𝑆𝐶(𝑂1, 𝑂2) =
1

|𝐶𝑂1|
∑ {

𝑡𝑝𝑠𝑐(𝑐𝑖, 𝑐𝑖 , 𝑂1, 𝑂2) 𝑖𝑓 𝑐𝑖 ∈  𝐶𝑂2
0 𝑖𝑓 𝑐𝑖 ∉  𝐶𝑂2

𝑐𝑖 ∈ 𝐶𝑂1
 (5.7) 

, where 𝑇𝑅𝑆𝐶(𝑂1, 𝑂2) = 𝑇𝑃𝐶𝑆𝐶(𝑂2, 𝑂1). 

The Taxonomic F-measure (TF) calculates the harmonic mean of 𝑇𝑃𝑆𝐶 and 

𝑇𝑅𝑆𝐶 as: 

𝑇𝐹(𝑂1, 𝑂2) =
2×𝑇𝑅𝑆𝐶(𝑂1,𝑂2)×𝑇𝑃𝑆𝐶(𝑂1,𝑂2)

𝑇𝑅𝑆𝐶(𝑂1,𝑂2)+𝑇𝑃𝑆𝐶(𝑂1,𝑂2)
 (5.8) 
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The author uses Semantic Cotopy instead of using Common Semantic Cotopy 

(CSC) because some approaches, such as FCA, will generate new concepts rather 

than the existing concepts (value of object property “rdf:type”) provided in the 

data. The using of the Common Semantic Cotopy ignores the new generated 

concepts of these approaches and over-measures the precision. 

5.5.2 Task 2-Construction of Multiple Faceted Taxonomies 

5.5.2.1 Data Sets and Experiment Design 

The author tested the multiple faceted taxonomies with different facets (i.e., object 

properties) in two biomedical linked data sets, DrugBank ("DrugBank,") and 

Diseasome ("Diseasome,"), which do not have ontologies to organize instances. 

The DrugBank contains 4,772 drug instances, and the Diseasome contains 4,213 

disease instances. The author used 5 and 16 object properties from Diseasome and 

DrugBank to generate faceted taxonomies for the disease and drug instances. 

Please note that not all the instances have a specific object property. For example, 

there are 4,213 disease instances in Diseasome, and only 1,456 of them have 

values of the object property “Diseasome:possibleDrug”. The author lists the 

statistic information of the two data sets in Table 5-2. 

 

Table 5-2. Statistic of the two data sets. 

 Object Properties # instance # object 

Diseasome 

(P1) Diseasome:omim 2,929 1,778 

(P2) Diseasome:associatedGene 4,213 3,919 

(P3) Diseasome:chromosomalLocation 2,929 915 

(P4) Diseasome:possibleDrug 1,456 2,235 

(P5) Diseasome:class 4,213 24 

(P6) Diseasome:diseaseSubtypeOf 2,929 1,284 
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DrugBank 

(P1) Drugbank:keggCompoundId 1,331 1,316 

(P2) Drugbank:pdrhealthLink 280 273 

(P3) Drugbank:brandedDrug 524 1,593 

(P4) Drugbank:drugCategory 1,879 584 

(P5) Drugbank:chebiId 736 721 

(P6) Drugbank:contraindicationInsert 1,112 1,112 

(P7) Drugbank:target 4,408 4,553 

(P8) Drugbank:keggDrugId 913 910 

(P9) Drugbank:interactionInsert 1,036 1,036 

(P10) Drugbank:rxlistLink 998 994 

(P11) Drugbank:dosageForm 1,209 215 

(P12) Drugbank:swissprotPage 74 48 

(P13) Drugbank:drugType 4,772 8 

(P14) Drugbank:patientInformationInsert 762 762 

(P15) Drugbank:possibleDiseaseTarget 1,362 1,456 

(P16) Drugbank:casRegistryNumber 2,240 2,218 

5.5.2.2 Evaluation Criteria 

Since there lacks ontologies as gold standards to evaluate the facet concept 

taxonomies generated with Diseasome and DrugBank, the author adopted 

evaluation criteria used for the scenarios without a gold standard (Dasgupta, 

Dinakarpandian, & Lee, 2007). The author used, (1) Inheritance Richness (IR) 

(Dasgupta et al., 2007) to check the shape of a sub-taxonomy, (2) Maximum 

Resolution (MR) (Sacco & Tzitzikas, 2009) to check the retrieval effectiveness in 

faceted searches based on a faceted taxonomy, and (3) Class Importance (CI) 

(Dasgupta et al., 2007) to obtain the most important concepts in a faceted 

taxonomy. 

(a) Inheritance Richness (IR) 

The Inheritance Richness describes the distribution of concepts that are across 

different levels of a taxonomy. The Inheritance Richness can be used to detect the 
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shape of the concept taxonomy. A low value of Inheritance Richness indicates a 

horizontal hierarchy (flat structure) that has a low degree of inheritance level 

where each concept has a large number of sub-concepts. A high value of 

Inheritance Richness indicates a vertical hierarchy that has a high degree of 

inheritance level where each concept has a small number of sub-concepts. 

The Inheritance Richness is computed as follows: 

𝐼𝑅 =
∑ |𝑑𝑒𝑠𝑐𝑒𝑛𝑑(𝐶𝑖)|𝑐𝑖∈𝐶

|𝐶|
 (5.9) 

, where |𝑆𝑢𝑏(𝐶𝑖)| is the cardinality of the set of the descendants a concept 𝑐𝑖. 

(b) Maximum Resolution (MR) 

Maximum Resolution is used to measure the retrieval effectiveness with a faceted 

taxonomy. A Maximum Resolution measures the average minimum number of 

instances to be manually inspected after a refinement through operations on the 

faceted taxonomy. A small value of Maximum Resolution illustrates a good 

classification of a concept taxonomy for reducing the search space. The Maximum 

Resolution is computed as the average number of instances of k  concept 

intersections in a 𝑘 facets taxonomy: 

𝑀𝑅 =
∑⋂ 𝑐𝑖

𝑘
𝑖=1

| ∑⋂ 𝑐𝑖
𝑘
𝑖=1 |

 (5.10) 

, where | ∑⋂ 𝑐𝑖
𝑘
𝑖=1 | is total intersection numbers of 𝑘 concepts, each of which is 

a leaf concept from a sub-taxonomy.  

(c) Class Importance (CI) 

In order to obtain the important classes, the author adapts Class Importance to 

show the focused concepts with the consideration of instance distribution and help 
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users to identify where to get data if the intentions of users’ are to get consistent 

coverages of all concepts. 

The importance of a concept 𝑐𝑖 is computed as follows: 

𝐶𝐼(𝑐𝑖) =
|𝐼𝑐𝑖|

|𝐼|
 (5.11) 

, where 𝐼𝑐𝑖 is the instance set of 𝑐𝑖. Please note that the instances belonged to 𝑐𝑖 

contain all the instances belonged to each sub-concept of the 𝑐𝑖. 
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5.6 Results 

5.6.1 Results of Task 1 

The author has run three methods over two data sets (YAGO2 and DBpedia) 

respectively, and show the running time of all the methods in Figure 5-4 (b). As 

Figure 5-4 (b) shows, the ICT is the fastest methods (49 ms for DBpedia and 

11,790 ms for YAGO2) comparing with other two methods. The ICT and 

Subsumption reduce the search space into the concepts already existing in the 

concept taxonomy with Definition 5-7, and the ICT does not need to calculate 

Equation 5.4 with all the combinations of the concept pairs that are needed for the 

Subsumption (118 ms for DBpedia and 2,597,424 ms for YAGO2). The FCA (184 

ms for DBpedia and 92,656,444 ms for YAGO2) is the slowest method since it 

calculates all the possible pairs of concepts sharing common instances. The huge 

amount of discovered relations from the FCA makes the extraction of subsumption 

relations very expensive. In the two tests, over than 55% of the running time is 

spent on the extraction of the subsumption relations from all the discovered 

relations (103/184 for DBpedia and 90,942,222/92,656,444 for YAGO2).  
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(a) TF-score 

 

(b) Running time 

Figure 5-4. TF-score and running time of the methods. The ICT uses the parameter setting 𝜑 = 1.0. 

 

The concept taxonomies generated by the three methods are compared with 

the gold standards of the two data sets (DBpedia ontology and YAGO-WordNet), 

and the effectiveness is evaluated with the Taxonomic F-measure shown in Figure 

5-4 (a). As Figure 5-4 (a) shows, the ICT obtains the best f-scores for two data sets 

(0.917 for DBpedia and 0.780 for YAGO2). Equation 5.4 can successfully 
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establish a subsumption relation between two concepts. For example, 

“DBpedia:FloweringPlant” contains two instances “Dinka_(grape)” and 

“Miconia_laxa”, and “DBpedia:Grape” contains one instance “Dinka_(grape)”. 

Therefore, the subsumption relation can be easily built with this equation. (Please 

note that the instances contained by a concept are the representative instances that 

have a unique concept set. In this example, “Dinka_(grape)” is used as the 

representative instance for other 349, and all the 350 instances have a same 

concept set including 6 concepts: “DBpedia:Grape”, “DBpedia:Plant”, 

“DBpedia:Species”, “DBpedia:Eukaryote”, “DBpedia:FloweringPlant”, and 

“Owl:Thing”, and “Dinka_(grape)”). 

However, there are two kinds of failures to affect the precision and recall 

known as false negative and false positive: 

(1) two concepts A and B, having a subsumption relation but containing a same 

instance set, can cause a false negative. For example, 

“YAGO:Wordnet_art_school_102746978” and 

“YAGO:Wordnet_school_104146050” have the same instance set 

“St._Martin's_Lane_Academy”, “Cranbrook_Educational_Community”, 

“Faculty_of_Theatre_(Prague)”. This problem is recognized as insufficient 

taxonomic description on the instance level (Zong et al., 2015), which means the 

ICT is incapable of building a concept taxonomy if there does not exist taxonomic 

relations for concepts at the instance level. In YAGO2 and DBpedia, there are 

1,634 and 16 pairs of concepts that cause false negatives.  
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(2) two concepts A and B, not having a subsumption relation but containing two 

instance sets that one subsumes the another, can cause a false positive. For 

example, the concept “YAGO:Wordnet_Television106277280” has 68 instances 

that includes the only instance “Plats_bruts” contained by concept 

“YAGO:Wordnet_TeachingAid104397261”, where there does not exists a 

subsumption relation between the two concepts. This problem is recognized as 

multi-instantiation whereby one instance can be used to populate multiple 

concepts (Zong et al., 2015). In DBpedia, there exists none false positives, but in 

YAGO2, there are 1,769 pairs of concepts cause false positives. The ICT performs 

same with the Subsumption on DBpedia (0.917) but better on YAGO2 (0.775). 

The 𝜑 controls the level of tolerance for detecting a subsumption relation. The 

precision decreases along with the decrease of 𝜑 if there is multi-instantiation in 

the data set, as the YAGO2 shown in Figure 5-5. In Figure 5-5, DBpedia does not 

have multi-instantiation, so the precision is not affected by 𝜑.  

The FCA achieves good results on DBpedia (0.911) but fails on YAGO2 

(0.00058). The FCA exploits every possible concept (1,397,220 on YAGO2) 

containing common instances, and creates abundant subsumption relations 

(5,825,144 on YAGO2). However, most of the created concepts and subsumption 

relations are not existing in the gold standard ontology (8,674 concepts and 74,897 

subsumption relations on YAGO2), which causes high recall (0.679 on YAGO2) 

but extreme low taxonomic precision (0.00029 on YAGO2). For example, a 

concept that has the intensions {“YAGO:Wordnet_Abstraction100002137”, 

“YAGO:Wordnet_PhysicalEntity100001930”, “Owl#Thing”} (i.e., a sub-concept 
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of both concepts “YAGO:Wordnet_Abstraction100002137” and 

“YAGO:Wordnet_PhysicalEntity100001930”) is created by the FCA. However, 

even this concept contains 3,887 common instances of both super concepts, it does 

not exist in YAGO2. The ICT solves this issue with Definition 5-7, which ignores 

the concepts that cannot obtain meaningful names after reducing labels. 

 

Figure 5-5. TP-scores of ICT for DBpedia and YAGO2 with different 𝜑. 
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5.6.2 Results of Task 2 

 

(a) Diseasome 

 

(b) DrugBank 

Figure 5-6. Running time of building a sub-taxonomy with a single property. 
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spend the longest time on constructing a sub-taxonomy in one facet for the two 

data sets. The author learned that the time spent is related to the number of objects 

contained in an object property, and the more objects contained the longer it costs 

for a property. For example, “Diseasome:class” has 24 objects and spends 16 ms 

on creating a sub-taxonomy comparing with “Diseasome:possibleDrug” that 

spends 206 ms on creating a sub-taxonomy with 2,235 objects. 

The author used Inheritance Richness (IR) to pry into the structure of each 

sub-taxonomy. As Table 5-3 shows, the “Diseasome:possibleDrug” and 

“Drugbank:target” get the highest IR scores on Diseasome (15.22) and DrugBank 

(17.72). The concept taxonomies generated with these two properties have 5 levels 

and 7 levels of inheritance. Therefore, the author can obtain a vertical shaped 

concept taxonomies with “Diseasome:possibleDrug” and “Drugbank:target” 

comparing with the horizontal concept taxonomies generated with 

“Diseasome:omim” and “Drugbank:keggCompoundId” that have only 2 levels of 

inheritance.  

The Maximum Resolution shows the effectiveness of classification of a 

sub-taxonomy. The best scores obtained by “Diseasome:omim” (1.65) with 

Diseasome, and six properties (1.0) with DrugBank. The effectiveness of 

classification is contrary to the ability of generalizing instance properties in a 

taxonomy. A high effective classification may result in a weak ability of 

generalizing instance properties. For example, “Diseasome:class” get the highest 

MR score (175.54) and can best generalize the characteristic of the instances. 

 



126 

 

Table 5-3. Results of conceptualizing disease and drug instances with multiple object properties. The 

highest IR and lowest MR scores are in bold. 

Object Properties Inheritance 

Richness 

Maximum 

Resolution 

(P1) Diseasome:omim 1.00 1.65 

(P2) Diseasome:associatedGene 1.66 2.05 

(P3) Diseasome:chromosomalLocation 1.00 3.20 

(P4) Diseasome:possibleDrug 15.22 3.96 

(P5) Diseasome:class 0.96 175.54 

(P6) Diseasome:diseaseSubtypeOf 1.00 2.28 

Object Properties Inheritance 

Richness 

Maximum 

Resolution 

(P1) Drugbank:keggCompoundId 1.00 1.01 

(P2) Drugbank:pdrhealthLink 1.00 1.03 

(P3) Drugbank:brandedDrug 1.00 1.00 

(P4) Drugbank:drugCategory 1.76 3.53 

(P5) Drugbank:chebiId 1.00 1.02 

(P6) Drugbank:contraindicationInsert 1.00 1.00 

(P7) Drugbank:target 17.72 1.27 

(P8) Drugbank:keggDrugId 1.00 1.00 

(P9) Drugbank:interactionInsert 1.00 1.00 

(P10) Drugbank:rxlistLink 1.00 1.00 

(P11) Drugbank:dosageForm 3.24 1.82 

(P12) Drugbank:swissprotPage 0.98 1.54 

(P13) Drugbank:drugType 1.33 676.33 

(P14) Drugbank:patientInformationInsert 1.00 1.00 

(P15) Drugbank:possibleDiseaseTarget 7.56 2.45 

(P16) Drugbank:casRegistryNumber 1.00 1.01 

 

The author tested the two data sets with different combinations of multiple 

object properties. The author separates all combinations with different numbers of 

properties used. For example, choosing two properties of Diseasome may use 

“Diseasome:omim” and “Diseasome:possibleDrug”, or “Diseasome:possibleDrug” 

and “Diseasome:diseaseSubtypeOf”. The author has measured the average running 
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times of creating a faceted taxonomy with a different number of properties and 

show in Figure 5-7. 

 

 
(a) Diseasome 

 

(b) DrugBank 

Figure 5-7. Average running time of building faceted taxonomies with different facets (properties). 
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338 ms up to 2,032 ms with one property and six properties. In DrugBank, the 

average running time increases from 157 ms up to 2,525 ms with one property and 

sixteen properties. The author learned that, along with increment of the number of 

properties, more sub-taxonomies are constructed, which can cost more time for the 

proposed algorithm to generate a faceted taxonomy. The more facets a taxonomy 

contains, the better classification of the taxonomy has. As Figure 5-8 shows, the 

Maximum Resolution dramatically decreases when two sub-taxonomies are used. 

For example, the Maximum Resolution decreases from 31.45 to 1.65 with 

Diseasome, and decreases from 43.56 to 1.03 with DrugBank. When the number 

of facet used increases up to three, the Maximum Resolution decreases slightly. 

The author learned that for most browsing cases, using two facets is sufficient 

enough to meet users’ needs of narrowing down the search space. 

 

 

(a) Diseasome 

0

5

10

15

20

25

30

35

1 2 3 4 5 6
# property 



129 

 

 

(b) DrugBank 

Figure 5-8. Maximum Resolution scores with different facets (properties). 

The author has counted the top 500 important concepts in the generated 

faceted taxonomies with two data sets, and shows the number of important 

concepts of each property in Figure 5-9. As Figure 5-9 shows, 

“Diseasome:possibleDrug” contains the 380 out of 500 important concepts in 

Diseasome, “Drugbank:possibleDiseaseTarget”, “Drugbank:target”, and 

“Drugbank:drugCategory” contain the important concepts in Drugbank at the most 

(186, 146, and 123 out of 1,000). Figure 5-9 illustrates the most important 

sub-taxonomies that contain important concepts. These sub-taxonomies that cover 

a large number of instances are recommended to the users who are unfamiliar with 

the data sets but want to get the most information. 
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(a) Diseasome 

 

(b) DrugBank 

Figure 5-9. Number of top 500 important concetps in each sub-taxonomy in a faceted taxonomy. 
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5.7 Discussion 

The sub-taxonomies in each facet are constructed based on the concepts defined 

by the author in Section 5.4.2. This definition leaves two issues to be discussed 

when a faceted taxonomy is generated:  

First, the concepts are removed when the concepts are unrecognizable with 

reduced labeling strategy in Definition 5-7. The definition has two benefits: (1) 

reduces unnecessary computations and decreases running time when the proposed 

method constructs a sub-taxonomy, and (2) reduces multiple inheritance when the 

concepts have multiple super concepts, and increases Taxonomic F-measure 

scores. However, the concept reducing strategy used in Definition 5-7 is still 

insufficient enough to prevent multiple inheritance, which the author has observed 

in the first task with YAGO2 in Section 5.6.1. To remove the meaningless 

concepts by judging the concept name is too simple and primitive, and the method 

only considers the semantics of the intension rather than the extension of a concept. 

There can be a more sophisticated method to decide the validity of a concept by 

balancing both the extensions and intensions of a concept, which leaves a potential 

improvement for future.  

Second, the concepts are defined with the extensions (i.e., instances) and 

recognized with intensions (i.e., objects of properties). The concept definition and 

naming strategy the author applied has the advantages of improving efficiency and 

effectiveness, but leaves a difficulty of understanding the concepts. For example in 

the taxonomy in the facet “Diseasome:possibleDrug” for Diseasome in Section 

5.6.2, the author found that the concept labeled as “Drug:DB00898” (Ethanol) is 
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the super concept of the concept labeled as “Drug:DB03929” (D-Serine), and it is 

hard to interpret the two concepts having a “is_A” relation semantically. However, 

the two concepts can be understood as having a subsumption relation in extension, 

since “Drug:DB03929” can treat “Disease:2666” (Hyperekplexia and spastic 

paraparesis), and “Drug:DB00898” can treat “Disease:2666”, 

“Disease:372”(Epilepsy), and “Disease:2312” (Epilepsy, juvenile myoclonic, 

606904). In addition, viewing from the instance level, the ancestors of a concept 

are those contained by its instances in a facet. In the same example, “Disease:2666” 

can be treat by the possible drugs “Drug:DB00898” and “Drug:DB03929”. 

Therefore, the concepts in a sub-taxonomy can be understood easily to classify 

instances and efficiently reduce the browsing space in a navigation (Sacco & 

Tzitzikas, 2009). For example in a faceted search, if a user wants to find the 

diseases that can be cured by “Drug:DB03929”, zooming “Drug:DB00898” (i.e., 

zoom-in point (Sacco & Tzitzikas, 2009)) into “Drug:DB03929” can reduce three 

diseases into only one disease. 
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5.8 Conclusion 

The increasing popularity of publishing Linked Data sets addresses an issue of 

constructing concept taxonomies for those data without ontologies. Instead of 

building a taxonomy to classify instances from one dimension, a faceted taxonomy 

that classifies instances from multiple dimensions brings the attention of academia. 

However, researches focus on utilizing a faceted taxonomy with an assumption 

that those taxonomies already exist. In order to provide faceted taxonomies for 

faceted navigation and search in Linked Data, this study proposed a solution of 

automatic construction of faceted taxonomy based on object properties. The author 

has developed a framework that extracts sub data for each facet and builds a 

sub-taxonomy with an instance-based Concept Taxonomy generation algorithm 

called ICT based on the concept defined by the author. The author also proposed 

the strategies to materialize and refine sub-taxonomies in order to get a faceted 

taxonomy. The author has proven that the proposed method can achieve 

encouraging results in terms of efficiency and effectiveness with two experiments. 

Finally, two issues of this study are discussed to leave further improvements in the 

future work. 
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6 Future Works and Conclusion  

6.1 Future Works 

6.1.1 Similarity Measures for Instance-based Schema Alignment 

There are diverse similarity measures for instance-based schema alignment. A 

concept can be represented with a set of instances. Therefore, similarity measures 

used for sets can be applied, such as Jaccard similarity and standard 

information-theory measures (e.g., Pointwise Mutual Information, Log Likelihood 

ratio, and Information Gain). The performances of these metrics are discussed in 

(Isaac et al., 2007), which shows that the Jaccard similarity outperforms other 

similarity measures. Performance of other measures, such as Dice similarity, 

Minimum similarity, and Kappa similarity, however, varies depending on the link 

data used (Kirsten et al., 2007). So far, there is no direct guideline in selecting a 

measure for instance-based schema alignment. However, we can easily calculate 

that for two concepts c1  and c2 , 𝑠𝑖𝑚𝑑𝑖𝑐𝑒(𝑐1, 𝑐2) ≤ 𝑠𝑖𝑚𝑚𝑖𝑛(𝑐1, 𝑐2)  and 

𝑠𝑖𝑚𝑗𝑎𝑐𝑐𝑎𝑟𝑑(𝑐1, 𝑐2) ≤ 𝑠𝑖𝑚𝑚𝑖𝑛(𝑐1, 𝑐2) . Therefore, with the same threshold for 

determining equivalence, there are more equivalence alignments by using 

Minimum similarity than using Dice similarity and Jaccard similarity, which causes 

high recall but low precision for Minimum similarity-based method, and low recall 

but high precision for Dice similarity- and Jaccard similarity-based methods. A 

more detailed experiment could illustrate the performances of these similarity 

metrics with different data in my future work. 
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With the Vector Space Model, a concept can be represented as a vector with the 

values corresponding to the instance set of the concept. The vector values can be 

weighted by term (instance) frequency measures, such as TF/IDF. Therefore, 

similarity measures for vectors can be applied, such as cosine similarity. An 

interesting attempt is to compare the alignments generated with the same cosine 

similarity measure using the vectors with TF/IDF values and binary values (a.k.a., 

Ochiai coefficient for computing two instance sets). The cosine similarity measure 

can be estimated with Radom Hyperplane in LSH. Therefore, replacing Jaccard 

similarity with Cosine similarity can be a meaningful extension for our proposed 

method in Section 3. 

6.1.2 Ontology Evolution for Instance-based Schema Alignment 

Along with the development of linked data, Ontologies representing knowledge of 

the data also evolve continuously. For example, new classes are added or removed 

from the original ontology along with the adding of new domain data or deleting 

of old domain data. Not only instances belonging to a class could vary (add or 

delete) but also relations between classes can change.  

The ontology evolution affects schema alignment results, especially for 

instance-based methods (Hartung, Kirsten, & Rahm, 2008; Thor, Hartung, Gross, 

Kirsten, & Rahm, 2009). The author has observed the different alignment results 

caused by evolution of DBpedia and YAGO2 in Section 3.6. The evolution of life 

science ontologies has been discussed in (Hartung et al., 2008; Thor et al., 2009), 

However, there still lacks the study of the affections in Linked Data evolution on 
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schema alignment. The future work will focus on answering three questions on 

this issue: (1) how to analyze affections of ontology evolution on schema 

alignment, (2) how to evaluate alignments from the perspective of ontology 

evolution, and (3) how to align schemas with considering ontology evolutions 

(several versions of the same ontology).  

6.1.3 Combining the IUT with Structure- and Lexical-based 

Methods 

The author has proposed the IUT that aligns schemas based on instances. 

Instance-based method is considered as a better solution for aligning schemas with 

ambiguous names. However, lexical- (or linguistic) and structure-based methods 

are frequently used in schema alignment. Lexical-based similarities are used in 

pre-matching to select candidate matched pairs for other sophisticated matchers 

(Bellahsene et al., 2011). The lexical-based methods are more efficient than 

instance-based methods for classes with a huge number of instances. 

Structure-based method is considered to align two classes with a more 

comprehensive view. For example, Similarity Flooding (Melnik, Garcia-Molina, 

& Rahm, 2002) is used to reassign similarities to matched pairs based on the 

schema structure. The IUT can adapt the two kinds of methods to give a hybrid 

solution for schema alignment to: (1) improve the efficiency with lexical-based 

methods, and (2) improve the effectiveness with structure-based methods. 
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6.1.4 Scaling the IUT with Parallel Computations 

There are two ways generally to scale schema alignment as the author introduced 

in Section 2.2.2. In Chapter 4, the author scales the IUT based on decreasing 

similarity computations for classes. However, there is another solution to scale 

matching with parallel computations, such as MapReduce. In parallel computation 

based scaling methods, matchers should be independent. In the IUT, the classes 

de-queued from the class-relation multi-graph should compare all the classes 

already in the virtual graph to find an appropriate position with a matcher. Even 

though, similarity computations in a matcher are independent and can be 

computed in parallel, it is still not sufficient enough. Matchers with the input 

de-queued classes are sequenced and not independent. Therefore, MapReduce 

cannot be directly adapted to the matchers in the IUT. The future work is to 

change the IUT to allow using MapReduce to improve the efficiency. 

6.1.5 Faceted Navigation and Search for Linked Data  

The author has proposed a method to automatically generate a faceted taxonomy 

based on object properties. The taxonomy generated is the foundation of realizing 

faceted navigation and search. However, several issues still remain and are needed 

to be further studied: (1) how to decide the object properties to generate a faceted 

taxonomy that satisfies users search intension; (2) how to efficiently expand 

concepts dynamically in a faceted taxonomy to provide a comprehensive view of 

data sets; (3) how to apply ontology alignment method introduced in Chapter 3 to 

align the faceted taxonomy with existing ontologies to improve the experience of 
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navigation and search for Linked Data consumers. The future work is to develop a 

faceted navigation and search system that answers these questions addressed by 

the author. 
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6.2 Conclusion  

This thesis solves three issues in instance-based schema alignment in Linked Data, 

(1) how to align schemas based on instances, (2) how to scale the schema 

alignment, and (3) how to generate hierarchical schema structure, with three 

proposed methods introduced in Chapters 3, 4, and 5.  

There many types of ontologies in Linked Data, and the alignments of the 

ontologies have been performed diversely in our proposed method demonstrated in 

Section 3. Therefore, in the end of the thesis, the author wants to category the 

features of the ontologies targeted by the proposed methods. The sufficient feature 

of the targeted ontologies for the proposed method is the establishment of 

“Owl:sameAs” alignments between instances. 

(1) Alignment on instances (with “Owl:sameAs”) 

The instance-based alignment methods measure the similarity of two concepts 

with common instances. Therefore, in Linked Data, ontologies have to be aligned 

with “Owl:sameAs” or other links that provide similar functions. 

There are other three features would cause the better alignments for the targeted 

ontologies by the proposed method than other methods, which are (1) ambiguous 

or without naming, (2) rich instantiation, and (3) keen hierarchical taxonomy and 

instantiation. 

(1) Ambiguous naming or even without naming 

The lexical-based matchers are incapable of finding mappings when schema 

elements have ambiguous or obscure names, or even without names (e.g., blank 
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nodes). Therefore, ontologies with ambiguous names or without names are 

suggested to be aligned with instance. 

(2) Rich instances 

As Section 3.5 shows, ontology alignment on the concepts with a large number of 

instances works better than on those with a limited number of instances. Therefore, 

the author recommends to align the ontologies with a large number of instances. 

However, the author still lacks a guideline on determine a threshold for the 

instance number contained by a concept. According to the study in (Isaac et al., 

2007), a threshold improves precision but hurts recall. A practical threshold should 

be decided based on a user’s requirement on alignment in a real application.  

(3) Keen hierarchical taxonomy and instantiation.  

An ontology aligned based on instances should have a hierarchical taxonomy for 

the schema. However, if this condition is not satisfied, a taxonomy can be 

automatically generated with the ICT proposed in Chapter 5. According to the 

experiment results in Section 3.5, three facts can affect the performance of the 

alignment, which are insufficient taxonomy, multiple inheritance, and multiple 

instantiation.  

Sufficient taxonomy means that a concept is sufficiently classified by 

multiple sub-concepts (i.e., one concept has more than one sub-concept). 

Non-multiple inheritance means that a concept cannot have multiple super 

concepts. Non-multiple instantiation means an instance cannot be used to populate 

multiple concepts. Please note that multiple inheritance can cause multiple 

instantiation but not vice versa. 
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The author summarizes these conditions for the proposed methods in this 

thesis in  

Table 6-1 as a closure for this study. 

 

Table 6-1. Summarization of the conditions for the proposed methods. (Attri.1: Purpose, Attri.2: 

Concept taxonomy, Attri.3: Alignment on instances, Attri.4: Ambiguous naming, Attri.5: Rich 

instances, Attri.6: Insufficient taxonomy, Attri.7: Multiple inheritance, Attri.8: Multiple instantiation) 

Methods Attri.1 Attri.2 Attri.3 Attri.4 Attri.5 Attri.6 Attri.7 Attri.8 

IUT Ontology 

Alignment 

Required Required Suggested Suggested 
NOT 

Suggested 

NOT 

Suggested 

NOT 

Suggested 

IUT(M) Ontology 

Alignment 

Required Required Suggested Suggested 
NOT 

Suggested 

NOT 

Suggested 

NOT 

Suggested 

ICT Taxonomy 

Generation 

NOT 

Required 

NOT 

Required 
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초록 

 

링크드 데이터에 대한 인스턴스 

기반 온톨로지 매핑 

 

웹이 발전함에 따라 사용자는 복잡한 질의에 대해서도 웹이 알기 쉽게 

정보를 찾아주길 원하고 있다. 이를 위해서는 다양한 형태의 데이터를 

공유, 교환 그리고 통합하는 수단이 필요하다. 하지만, 웹에 공개된 

데이터들은 관련된 데이터들과 통합하기 위한 의미정보가 결여된 경우가 

많다. RDF 와 링크드 데이터는 잘 정의된 관계를 사용해서 데이터를 

연결함으로써 의미정보를 표현하기 위해 제안됐다. RDF 와 링크드 

데이터가 널리 사용됨에 따라 분절된 데이터들이 가지고 있는 의미정보를 

제공하기 위한 온톨로지 매핑 기술이 주목을 받고 있다. 하지만, 링크드 

데이터에 대한 온톨로지 매핑 기술은 스키마 보다는 인스턴스 레벨에 

초점을 맞춰왔다. 링크드 데이터에 대한 옽톨로지 매핑은 인스턴스 

레벨의 매핑이 존재하는 경우에만 스키마 레벨 매핑이 가능하다. 링크드 

데이터는 인스턴스 기반의 스키마 매핑 기술을 적용하기에 적합한 

데이터이다. 특히 모호한 이름을 가지고 있는 클래스 간의 매핑을 할 때 

유용하다.  
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본 논문에서는 링크드 데이터에 대한 인스턴스 기반 스키마 매핑에 관한 

세 가지 문제를 다뤘다. (1) 인스턴스 기반 스키마 매핑 (2) 대용량 링크드 

데이터에 적용 가능하도록 알고리즘 개선 (3) 계층구조 생성 

(1) 첫 번째 문제에 대해, 본 논문에서는 인스턴스 기반 스키마 매핑 

알고리즘(IUT)을 제안했다. IUT 는 두 개의 대상 온톨로지에 있는 

클래스들을 통합하여 하나의 계층구조를 생성한다. 이를 위해 

인스턴스-클래스 매트릭스를 구축하고 인스턴스를 얼마나 공유하는지에 

따라 두 개의 클래스 간의 관계를 알아낸다. DBpedia 와 YAGO2 에 대해 

IUT 와 2 개의 최근 연구를 총 4 개의 매핑 종류에 대해 비교실험 하였다. 

실험결과, IUT 가 매핑에 걸린 시간과 정확도 측면에서 가장 좋은 결과를 

얻었다. 예를 들어, DBPedia 에 대한 intra-subsumption 매핑의 경우 968 

ms가 소모됐으며 F-score는 0.810이었다. 

(2) 두 번째 문제에 대해, 본 논문에서는 대용량 데이터에도 적용 

가능하도록 IUT 를 개선했다(IUT(M)). IUT(M)은 LSH (Locality-sensitive 

hashing)을 활용하여 다음과 같은 방법에 의해 계산량을 획기적으로 

줄였다. (1) MinHash 함수를 사용해서 두 개의 클래스 간 유사도 계산량을 

줄였고, (2) Banding 기술을 개발하여 유사도 계산의 횟수를 줄였다. 

YAGO-YAGO2 intra subsumption 매핑에 대해 IUT 와 IUT(M)을 비교했다. 

IUT(M)이 매핑에 소모된 시간을 94% 절약했는데 F-score 는 단지 5%만 

나빠졌다. 

(3) 세 번째 문제에 대해, 본 논문에서는 object property 기반으로 Faceted 

계층구조를 생성하는 방법을 제안했다. 인스턴스 기반의 계층구조 생성 

알고리즘(ICT)을 사용하여 object property 를 추출하고 각 object property 에 
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대한 하부 계층구조를 생성한다. 세 번째 문제에 대해서는 2 가지 실험을 

진행했다. (a) ICT 를 사용해 DBpedia 와 YAGO2 에 대해 “rdf:type”에 대한 

하부 계층구조를 생성하는 실험 (소모된 시간은 각각 49 와 11,790ms, 

F-score는 각각 0.917과 0.780) (b) Diseasome과 DrugBank에 대해서 multiple 

object properties 기반 faceted 계층구조를 얼마나 빨리 생성하는지에 대한 

실험 (6 개 property 의 경우 2,032 ms, 16 property 의 경우 2,525 ms) 또한 

얼마나 정확한 매핑을 하는지에 대한 실험 (2 개 facet 기준으로 각각 

1.65와 1.03 Maximum Resolution 수치) 

 

Keywords: 스키마 매핑, 인스턴스 기반 매핑, 링크드 데이터, 대용량 
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