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Abstract

Path Tracking for a Skid-steer Vehicle using Learning-based

Model Predictive Control

Taewan, Kim

Department of Mechanical & Aerospace Engineering

The Graduate School

Seoul National University

Skid-steer vehicle can generate a large traction force, which is especially good for navigation on

a rough terrain. However, the turning motion is so sensitive to slippage effect that designing a

controller is still a challenging problem. Also, the motion of the vehicle is affected not only by

wheel motion, but also by the road properties and the characteristics of wheel control. With this in

mind, we employ a model predictive control (MPC) with an on-line model learning. The velocity

model, which represents the relationship between true vehicle velocity and input command, is

learned with an on-line sparse Gaussian process (GP). The on-line sparse GP can reduce the

computational complexity of GP and also consistently update the model from the driving data.

Finally, combining with MPC makes it possible to generate an optimal policy based on the learned

model. Experiments are conducted to test the tracking performance of a skid-steer robot at the

indoor and the outdoor environment. The results show the more reliable performance than the

method based on a conventional model with parameter adaptation.

Keyword : Path tracking, skid-steer vehicle, model predictive control, sparse Gaussian process.

Student Number : 2015-20766
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1
Introduction

Skid-steer vehicle has no steering devices, so it turns by the difference of tire force between left

and right wheels. This characteristic gives many advantages such as high traction force and simple

mechanical structure. Thanks to these, skid-steer vehicles are especially good for navigation and

exploration on a rough terrain. Although many of research have studied autonomous navigation of

skid-steer vehicles, it is still a challenging problem to design a controller for the skid-steer vehicle,

because they are highly prone to slippage when generating turning motion.

1.1 Literature review

One way of controlling the skid steer vehicle is to control the tire force based on the the vehicle

dynamics [1], [2], [3]. After calculating the desired longitudinal force at each wheel through the

tire force distribution, this method focuses on the control of tire force by torque control or slip

control. Torque control, however, is not proper for mobile robots whose wheels usually do not

contain the torque sensor. When it comes to slip control, generating the desired tire force depends

on the tire force sensor or the specific tire model such as pacejka tire model [4]. Obtaining various

parameters for such models requires complex experiments, so it is not suitable for small mobile

robots.

Alternatively, instantaneous center of rotation (ICR) has been widely used to control the skid-
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Figure 1.1: Examples of skid-steer mobile robot platform: Clearpath Robotics Husky A200 and Dr. Robot

Jaguar.

steer vehicle and the tracked vehicle [5], [6], [7]. After estimating the position of ICR for left, right

treads and vehicle body with respect to the body fixed coordinate, this method makes it possible

to predict the kinematic motion of the vehicle. Although it gives reasonable performance during

the low-speed driving, it can become unsatisfactory at relatively high-speed because the position

of ICR changes dramatically when the speed of vehicle is relatively fast.

Recently some research focused on the velocity model which represents the relationship be-

tween true velocity of the vehicle and the input command for velocity [8], [9], [10]. They utilized

the general slip model which is composed of deterministic model and several undetermined param-

eters. After fitting the parameters based on the driving data, they used the model-based controller

for navigation.

The aforementioned methods constructed a explicit model by utilizing prior knowledge of the

vehicle to increase the accuracy of the model. The motion of skid-steer vehicle, however, cannot

be easily represented by the explicit model because the model is affected by various elements

such as the vehicle body dynamics, tire-road property and the characteristic of wheel angular

velocity control. Even if additional undetermined parameters are employed, the structure of the

model equation is still required. In stead of using a parametric model, we tackle this problem

with the learning-based approach. In detail, we use the Gaussian process (GP) to represent the

velocity model of the skid-steer vehicle. GP is a Bayesian non-parametric model so that it can

2



represent the nonlinear characteristic and uncertainty of the model. In addition, GP is often not

so sensitive to the initial setting of hyper-parameters. For these reasons, the GP-based approach

has been widely used for various applications.

[11] and [12] applied a learning-based approach to a path-repeating problem for the wheel

mobile robots. They constructed the model error of discrete kinematics, i.e the difference between

the true model and an initial estimated model, by using GP. After driving on a given trajectory,

they used GP to represent the model error along the path and the input. Even though this

method can deal with the model uncertainty, there are some drawbacks. One of them is that this

GP error model can be only used for the same trajectory where training data was obtained. This

is because the discrete kinematics contains the position and the input of vehicle as input features.

In addition, standard GP suffers from computational complexity especially when predicting the

future evolution in the model-based controller. On the other hand, we focus on the velocity model

which does not contain the position as an input. Our approach, therefore, can deal with diverse

trajectories on which the vehicle has not driven. In addition, we employ the sparse GP to overcome

the computational complexity of GP, and update the sparse GP on-line to deal with the model

uncertainty.

In order to track the path, we combine the learned-model with model predictive control (MPC),

which is one of the most widely investigated controllers for autonomous vehicle. The sparse GP

allows to address sensitivity of MPC performance to the model error. We solve the optimization

problem using iterative linear quadratic regulator (ILQR). ILQR, which is a type of differential

dynamic programming, is fast enough for real-time control.

1.2 Thesis contribution

Our main contributions can be summarized as follows:

1. We try to represent the motion of the skid-steer vehicle not by a explicit model but by a

learning-based approach. Since the vehicle kinematics is affected by various elements such

as terrain parameters or motor control, the learning-based model with driving data can be

more accurate than the explicit model.

2. We reduce the computational complexity of GP by using the sparse GP and employ the on-

3



line learning framework to cope with model error. By reducing computational complexity,

we can efficiently satisfy the control frequency requirement of MPC, and execute real-time

experiments. Plus, we can consistently update the model error based on the on-line learning

in order to reduce the model error.

3. Combining model learning with MPC framework is validated through experiments. Through

experiments, we show that our approach shows the better performance conventional meth-

ods.

1.3 Thesis outline

The rest of this paper is organized as follows: the kinematics of the skid-steer vehicle and the

on-line sparse GP are provided in section 2. In section 3, the details of MPC are presented.

Experimental results of MPC with the on-line learning are shown in Section 4. Conclusion follows

in Section 5.
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2
On-line sparse Gaussian process for velocity model

In this section, we first provide the kinematic model for the skid-steer vehicle and the structure

of the velocity model which is our target function for GP regression. Then, the overview of the

sparse GP will follow in the next two sections. Among several types of the sparse GP which were

well summarized in [13], here we employ the on-line sparse GP utilized in [14] and [15].

2.1 Kinematic model

The kinematic model of the vehicle shown in Fig. 2.1 can be written as


ẋ

ẏ

θ̇

 =

R(θ)︷ ︸︸ ︷
cos θ − sin θ 0

sin θ cos θ 0

0 0 1

v(vxcom, vθcom)

where x, y, θ represent the position and yaw angle, and vxcom, vθcom mean the input command

for forward and turning. R represents the rotation matrix between inertial frame and body-fixed

frame.

Here, v(·) is the velocity model. We can see that the velocity model describes the relationship

of true velocity and the input command. As an example, the velocity model for an ideal differential
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Figure 2.1: Kinematics of a skid-steer vehicle and mobile robot platform used in experiments. We want

to approximate the dynamic relationship of input command vxcom, vθcom and true velocity vx, vy, vθ using

GP.
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drive (IDD) model, which assumes that the slip does not occur, is written as follows

vidd(vxcom, vθcom) =


vxcom

0

vθcom

 .
The general kinematic slip (GKS) model is dealt in [16]. This model considers that the slip

effect may lead to velocity changes. The equation of the GKS model is written as

vgks(vxcom, vθcom) =


vxcom

0

vθcom

+ C(vxcom, vθcom) · α

C(vxcom, vθcom) =


cx

cy

cθ


cx =

[
vxcom |vθcom| vxcom|vθcom|

]
cy =

[
vxcom vθcom vxcomvθcom

]
cθ =

[
vxcom vθcom vxcomvθcom

]
,

where the vector α is composed of nine parameters.

Meanwhile, we try to approximate the velocity model by using GP. Through the following

experiments, we show that GP model has better performance than IDD and GKS model when

combined with MPC.

2.2 Sparse Gaussian process

GP regression tries to learn the unknown velocity model v(·) with input command u = (vxcom, vθcom).

The main downside of GP is computational complexity. To overcome this drawback, the sparse

GP was developed. The sparse GP makes it possible to reduce the runtime by making assumptions

about a prior distribution. In this section, we briefly summarize GP and the sparse GP.

To predict the test point, we first acquire the driving data (u1, z1) · · · (un, zn), where zi, the

measurement output of the velocity corresponding to the input ui. We assume that the measure-

ment output zi is corrupted by white noise with variance σ2n from the true velocity of the vehicle

7



v. For shorthand notation, we denote the set of the input command data as U . Then, we assume

that the prior distribution, V = v(U) and V∗ = v(U∗) have a joint Gaussian distribution with

zero-mean written as V

V∗

 ∼ N

0

0

 ,
 k(U,U) k(U,U∗)

k(U∗, U) k(U∗, U∗)


= N

0

0

 ,
Kvv Kv∗

K∗v K∗∗

 ,

where u∗ and U∗ mean the trial input command and the set of them. In this paper, the squared-

exponential kernel function k is used, which is explained in [17]. The posteriori distribution of V∗

is derived as follows:

p (V∗|V) = N (µ∗,Σ∗)

µ∗ = K∗v
(
Kvv + σ2nI

)−1
z

Σ∗ = K∗∗ −K∗v
(
Kvv + σ2nI

)−1
Kv∗,

where z is the vector of measurement output data.

The sparse GP starts with the assumption that V and V∗ are conditionally independent when

the inducing input points Uc and corresponding function Vc are given. This assumption can be

written as,

p (V,V∗,Vc) = p (V|Vc) p (V∗|Vc) p (Vc) .

Then, using the product of Gaussian exponential, the priori distribution of training points, test

points and inducing points become

p (V,V∗,Vc) = N




0

0

0

 ,

Kvv Mv∗ Kvc

M∗v K∗∗ K∗c

Kcv Mc∗ Kcc




Mab = KacK
−1
cc Kcb.

Furthermore, with the fully independent training conditional algorithm (FITC), we also as-

sume that all values of the function V are pairwise independent given Vc, which can be written

as,

8



p (vi,vj |Vc) = p (vi|Vc) p (vj , |Vc) .

Based on the both assumptions, the prior distribution p(V,V∗,Vc) can be calculated as follows:

p (V,V∗,Vc) = p (v1|Vc) · · · p (vn|Vc) p (V∗, |Vc) p (Vc)

= N





0
...

0

0

0


,



Kv1v1 . . . Mv1vn Mv1∗ Kv1c

...
. . .

...
...

...

Mvnv1 . . . Kvnvn Mvn∗ Kvnc

M∗v1 . . . M∗vn K∗∗ K∗c

Kcv1 . . . Kcvn Kc∗ Kcc




The remaining step is to predict the test input command u∗ and the posterior distribution of

V∗. We first find the posterior distribution of Vc using a new prior p(V,V∗,Vc). The result is

p (Vc|V) = N (µc,Σc)

µc = Kcc∆
−1Kcv

(
Λvv + σ−2

n I
)−1

z

Σc = Kcc∆
−1Kcc

∆ = Kcc +Kcv

(
Λvv + σ−2

n I
)−1

Kvc

Λvv = diag
(
Kvv −KvcK

−1
cc Kcv

)
.

where z is the set of measurement output, (z1, · · · , zn). Then, the posterior distribution of V∗

can be derived through marginalization as

p (V∗|V) =

∫
p (V∗|Vc) p (Vc|V)dVc

µ∗ = K∗cK
−1
cc µc

Σ∗ = K∗∗ −K∗cK
−1
cc (Kcc − Σc)K

−1
cc Kc∗.

Here the size of the matrix K−1
cc is m×m, and m refers to the number of inducing input points.

The computational cost at a prediction of spare GP is O(m3). On the other hand, the cost of

nominal GP is O(n3). Since the number of inducing input points is fewer than that of input of

training data, the computational complexity of the sparse GP is much reduced compared with

that of nominal GP model.

9



2.3 On-line updating

This section describes how to update the posterior distribution of the Vc with a new measurement

(un+1, zn+1). We first predict the posterior distribution of v+ = v (un+1) as follows,

µ+ = K+cK
−1
cc µc

Σ+ = K++ −K+cK
−1
cc (Kcc − Σc)K

−1
cc Kc+. (2.1)

With the proper arrangement, the updated posteriori distribution Vn+1
c can be derived with

respect to the old one Vc as follows

µn+1
c = µc +

(
K+cK

−1
cc Σc

)T (
Σ+ + σ2n

)−1
(zn+1 − µ+)

Σn+1
c = Σc −

(
K+cK

−1
cc Σc

)T (
Σ+ + σ2n

)−1
K+cK

−1
cc Σc. (2.2)

The hyperparameters in the kernel function are learned by maximizing the log-likelihood of

the training outputs [17]. We simply fix the hyperparameters during on-line updating because of

computational time.

10



3
Model predictive control

We apply MPC to generate the optimal policy making vehicle to track the path. At every step,

MPC calculates the optimal input sequence u0:N−1 which minimizes the given cost function. Then,

the action is set to the first input among this input sequence. After applying the first action to

the vehicle, the entire process is repeated until the end. This repeating process enables the vehicle

to maintain the low path error, even when the vehicle slightly diverges to the given trajectory. In

this section, we provide the overview of ILQR and the cost formulation. The details of ILQR can

be found in [18].

3.1 Iterative linear quadratic regulator

To find a local optimal solution given the cost formulation, we use the ILQR, which is a variant

of classic differential dynamic programming. ILQR, which is one of the indirect optimal control

method, is enough fast to be implemented in experiments. The rest of this section is a summary

of the algorithm. Algorithm 1 shows the summary of the method.

After the discretization, vehicle kinematics can be represented as follows

11



xk+1 = xk + TsR(xk)v(uk)

= f(xk,uk)

x =
[
x y θ

]T
,u =

[
vxcom, vθcom

]T
,

where Ts means the time step, and xk, uk are state and input at time k. Here, the velocity model

v (·) is used with the mean function of sparse GP learned-model, which is explained in section 2.

Typical cost function can be derived as follows

J(x,u) =
N∑
k=0

l(xk,uk),

where N is the finite horizon length and l(xk,uk) is the running cost. Then the optimal input

sequence can be written as

u0:N−1 ≡ arg minJ(x,u)

subject to xk+1 = f(xk,uk).

To solve above optimal control problem, backward and forward process in time are repeated in

the ILQR framework. First, in the backward process, the value function is defined as cost-to-go,

written as

Vt(xt) = min
ut:N−1

N∑
k=t

l(xk,uk).

The dynamic programming principle reduces the entire optimization problem into the sub-

problem that computes the control input which minimizes the cost-to-go V :

Vt(xt) = min
ut:N−1

l(xt,ut) + Vt+1(x).

To solve the subproblem, Q function is defined as the perturbation function of right hand side

in above equation around the nominal trajectory (x̄, ū) written as

Qt(δxt, δut) = l(x̄t + δxt, ūt + δut)− l(x̄t, ūt)

V (f(x̄t + δxt, ūt + δut))− V (f(x̄t, ūt)) .

12



To minimize the Q function, we first approximate Q function by using the Taylor’s second-

order expansion. The result is

Qt(δxt, δut) ≈
1

2

δxt
δut

T lxu,xu,t
δxt
δut

+

δxt
δut

 lxu,t +

1

2

δxt
δut

T fTxu,tVx,x,t+1fxu,t

δxt
δut

+

δxt
δut

T fTxu,tVx,t+1,

where subscripts mean the differentiation. For instance, lxu,xu,t is the second derivative of l func-

tion with respect to (xt,ut). The details of expansion coefficients are

Qx,t = lx,t + fTx,tVx,t+1

Qu,t = lu,t + fTu,tVx,t+1

Qxx,t = lxx,t + fTx,tVx,x,t+1fx,t

Quu,t = luu,t + fTu,tVx,x,t+1fu,t

Qux,t = lux,t + fTu,tVu,x,t+1fx,t.

Then, the optimal δu∗
t , which minimizes approximated Q function, is calculated proceeding

backwards in time. This policy is written as

δu∗
t = −Q−1

u,u,t(Qu,t +Qu,x,tδxt) = kt + Ktδxt.

Here kt is the feed-forward gain and Kt means the feedback gain along time.

Since the minimum of the Q function is the value function, we can get the value function by

inserting optimal policy into the Q function. The result is

Vt(δxt) ≈ −1

2
QTu,tQ

−1
u,u,tQu,t +

1

2
δxTt

[
Qx,x,t −QTx,u,tQ−1

u,u,tQu,x,t

]
δxt +

δxTt
[
Qx,t −QTu,x,tQ−1

u,u,tQu,t

]
.

The corresponding gradient and Hessians function of the value function are

Vx,t = Qx,t −QTu,x,tQ−1
u,u,tQu,t

Vx,x,t = Qx,x,t −QTx,u,tQ−1
u,u,tQu,x,t.

13



Therefore, proceeding backward in time, we can get optimal policy.

After calculating the optimal perturbation of input δu∗
t the update of the trajectory (x̂, û) is

proceeded through the forward pass,

x̂ (0) = x (0)

ût+1 = ūt + δu∗
t

x̂t+1 = f (x̂t, ût) .

The nominal trajectory (x̄, ū) is replaced with the updated trajectory (x̂, û). Then, the entire

process including backward pass and forward pass is repeated until the convergence of the nominal

input and state.

To prohibit the divergence of control input, we apply the regularization for backward process

and line-search for forward proceeding. During the backward process, we add a diagonal matrix

µI to the local control hessian Qu,u for numerical stability. Since Qu,u often becomes a singular

matrix, adding a diagonal term would make the non singular.

Q̃u,u = Qu,u + µI.

Line-search is applied not to allow the divergence of trajectory. As we deal with nonlinear

system based on a linearization, the new trajectory from forward pass becomes quiet different

with the linearized system. As s result, the total cost of new trajectory easily increases, and even

diverges. Therefore, we use line-search, which is written as,

ût+1 = ūt + βkt + Ktδxt.

Here parameter β, which is 0 < β 5 1, starts initially with 1. Whenever the result cost of updated

trajectory increases than that of the trajectory at the previous iteration, we reduce parameter β

properly.
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Algorithm 1 Iterative linear quadratic regulator

1: pre-calculate the nominal state x̄ using ū and discrete model

2: for t = 0,1,· · · ,N do

3: calculate derivative of model, fx,t, fu,t

4: calculate gradients and Hessians of the cost, lx,t, lu,t, lxx,t, lxu,t, luu,t

5: for t = N,N-1,· · · ,0 do

6: obtain expansion coefficients of Q function, Qx,t, Qu,t, Qxx,t, Quu,t, Qux,t

7: get the optimal policy δu∗
t

8: update the gradients and Hessian of value functionVx,t, Vx,x,t

9: for t = 0,1,· · · ,N do

10: update nominal ūt

11: update nominal x̄t using forward dynamics

3.2 Cost formulation

The cost function is designed to make the vehicle stay on the track. To satisfy this purpose, we

set the similar types of cost function similar to the one used for the aggressive driving in [19]. The

running cost is wrtten as,

l(xk,uk) = kv(vdes − vxcom)2 + khh(xk, yk)
2 + kwv

2
θcom,

where kv, kh and kw are weight factors for each cost. The running cost consists of three parts. The

first part is to maintain the velocity of the vehicle to stay near the desired velocity. The second

term is to make the robot stay on the track. The function h returns 0 if the vehicle is on the white

line in the Fig. 3.1, -1 if off the track inside, 1 if off the track outside, and a value from -1 to 1

when the vehicle is within track. The last one is the cost term for turning command.

The benefit of this cost function is that it does not need to design the extra velocity scheduler.

Usually, minimizing the lateral path error and regulating the speed are dealt as the separate

tasks, for example in [12]. Particularly, when it comes to the skid-steer vehicle, it has no steering

devices so that decoupling the speed control from the path tracking is difficult. Through our cost

function, the vehicle can regulate its speed along the curvature of path by itself.
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Figure 3.1: The track for path tracking experiments. The red-line means the inside and outside boundary.

The white-line refers to the middle of the track.

3.3 Summary of the algorithm

The flow of the proposed method is shown in Algorithm 2. Given a initial driving data, the inducing

input points are evenly picked over the input space of data. Using the inducing points, we find

the posterior distribution of Vc using equation 2.1 based on the priori distribution p(V,V∗,Vc).

Also, we can pre-calculate the inverse of the kernel matrix K−1
cc because this matrix is consistent

during driving once the inducing input points are fixed. After completing this step, it is ready for

MPC to use the sparse GP model as the prediction model. After the vehicle starts to follow the

path, the optimal policy is generated from MPC and applied to the real skid-steer mobile robot at

each time step. The current velocity is simultaneously calculated to update the sparse GP model.

The velocity is estimated as follows:

v̂t = R−1(xt)(xt+1 − xt+1)/Ts.

Given the new data (ut, v̂k), the posteriori distribution of the inducing points is updated through

equation 2.1. Then entire process is repeated until the episode is finished. The 3.2 depicts the
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Figure 3.2: The block diagram of the control framework.

overall scheme of the proposed method.

Algorithm 2 Model predictive control with sparse GP

1: pick inducing input points Uc evenly from the initial data

2: find the posterior distribution of Vc and calculate K−1
cc

3: get the current position x0

4: for t = 0,1,· · · ,T do

5: calculate the optimal input ut from ILQR

6: apply ut to the skid-steer robot

7: obtain the next state xt+1 from sensors

8: estimate the current velocity vt

9: update the posteriori distribution Vc using the current velocity vt and ut

17



4
Experiments

The proposed methods are validated with the skid-steer vehicle through experiments. We present

the experimental setup and results of indoor experiments and outdoor experiments. Then, the

discussion of results follows.

4.1 Experimental setup

The skid-steer vehicle used in experiments is a Dr. Robot Jaguar 4x4 mobile robot platform in

Fig. 1.1. The weight of the vehicle is 20.5kg, and the width and length are 573mm and 615mm.

The main PC, which is MacBook Pro 2015 with 2.9GHz Intel Core i5, calculates the control input

and transmits the command to the on-board ARM cortex through WiFi. A motion capture system

(VICON) measures the position of the vehicle for the indoor experiment. To measure the position

of the vehicle in outdoor environment, pixhawk module is used. This module has its own algorithm

that conduct GPS and IMU sensor fusion in order to increase accuracy of position estimation.

We utilize this value from VICON and pixhawk module as an position data, and estimate the

current velocity by equation 3.1. The control system architecture is implemented in ROS (Robot

Operating System) with C++.

To validate the performance of this research, the experiments are conducted on three kinds

of different path in the indoor environment: circular, triangular and rectangular paths. In each

18



path, the results of the proposed methods are compared with the results of the cases which use

IDD model and GKS model as the prediction model in MPC. The parameters in GKS model are

selected on-line by minimizing the below objective function through a linear least-squares method,

w(α) =
1

2

T∑
k=0

‖ vmeas,k − vgks,k(α) ‖2,

where vmeas is the set of the measured velocity up to the current time T .

When it comes to the outdoor experiments, we execute an experiment with circular path. We

also compare the result of the developed method with that of IDD model with MPC. In this case,

we analyze the cost result for every lap in each model and lap time.

The driving data during 40 seconds is used as the initial data for a circular path and 60

seconds for the triangular and rectangular paths in indoor environment. Note that the initial

driving data used in GKS model and the sparse GP model is same in each experiment. On the

other hand, the 120 seconds driving data is used for the circular path in outdoor environment.

In the sparse GP model, we evenly select 225 inducing input points over the input of initial data

in indoor experiment and 400 points in outdoor experiment. In MPC, the finite-horizon is set to

50 steps. The control frequency is approximately 10Hz, and the frequency of the on-line updating

for learning velocity model is also 10Hz. The time for each experiment is equally 60 seconds. The

target forward command of the cost function in experiments is described in each result of input

command and velocity.
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Figure 4.1: Experiment setting for indoor and outdoor environment.
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Figure 4.2: The terrain environment of experiments: indoor (up) and outdoor (bottom)
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4.2 Indoor experimental results

Table 4.1: Comparison of the cost results for three paths.

Circular Triangular Rectangular

SparseGP 653.41 1014.02 1011.58

General slip 699.65 1016.54 1379.10

IDD 941.83 1588.11 1525.37

Fig. 4.3, Fig. 4.4 and Fig. 4.5 show the results along the three paths. For the purpose of

numerical comparison, we denote the cost results in Table 4.1. The written cost is calculated by

the cost function used in MPC with the entire state and input results. The sparse GP model

records the lowest cost results for three path. In the circular path figure, the path results of GKS

model is more slightly off the course initially than the sparse GP model. After the first lap, both

the GKS model and the sparse GP model converge to the similar path results. Three models show

the different results in the triangular paths. Although the path of the sparse GP initially deviates

from the desired path in the upper portion of the figure, it is gradually close to the given path,

which is closer the desired path than those of the GKS and IDD in the upper part of the path. In

the rectangular path, the sparse GP model shows the better result than other methods. First, the

path error of the sparse GP model becomes lower than those of GKS and IDD models especially at

the beginning. Plus, MPC in the sparse GP model generates the larger average forward command,

0.6021 m/s than that of the GKS model, 0.5061 m/s, which is described in Fig. 4.8. We can also

check that the total distance the vehicle moved using the sparse GP model is much longer than the

distance in other models by comparing the final positions in Fig. 4.5. As a result, the cost results

for the sparse GP model in Table 4.1 are much lower than the cases which use other models.
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Figure 4.3: Experiment results for indoor environment along the circular paths.
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Figure 4.4: Experiment results for indoor environment along the triangular paths.
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Figure 4.5: Experiment results for indoor environment along the rectangular paths.
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Figure 4.6: Input command and estimated velocity results of circular path for indoor environment. The

desired forward command is set to 1.0 m/s
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Figure 4.7: Input command and estimated velocity results of triangular path for indoor environment. The

desired forward command is set to 1.0 m/s
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Figure 4.8: Input command and estimated velocity results of rectangular path for indoor environment. The

desired forward command is set to 0.8 m/s which is lower than other paths because this path is much

complex than others.
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4.3 Outdoor experimental results

Fig. 4.9 shows the result along the circular paths in outdoor environments. For the purpose of

numerical comparison, we also denote the cost results in Table 4.2. The cost results are written

for each lap and the model used in each experiment, along with the lap time. This lap time is

measured as the time until vehicle returns to its initial position after driving. The path result of

IDD model is more slightly off the course initially at the upper-right region. After driving the

upper area of the circuit, the path result of IDD model still deviates to the given path at the

bottom area. The path result of GP model in first lap is more far to the given path than that

of IDD model. After driving upper region of the path, however, the vehicle starts to converge

to the desired path. Then, the path result of second lap maintains lower error than before. As a

result, the cost result and lap time of GP case are lower than those of IDD case in the first lap.

Furthermore, the vehicle has better performance in the second lap than the first lap in GP case

by comparing cost result and lap time.

Table 4.2: The cost and lap time results for outdoor experiment at each lap.

Cost Time (s)

IDD SparseGP IDD SparseGP

lap no. 1 1936.10 1816.53 36.7 34.5

lap no. 2 - 1764.63 - 33.3
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Figure 4.9: Experiment results for outdoor environment along the circular paths: laps no. 2 for sparse GP

case and lap no. 1 for IDD case.
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Figure 4.10: Input command and estimated velocity results of circular path for outdoor environment. The

desired forward command is set to 2.0 m/s which is higher than that of indoor experiements.
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5
Conclusion

In this paper, the on-line sparse GP with MPC was applied to the path tracking control of a

skid-steer vehicle. First, we discussed the kinematics of skid-steer vehicle in the Chapter 2.1. The

target function of GP was set to the velocity model in the kinematics. Then, the on-line sparse GP

was used for learning the velocity model without explicit knowledge of the vehicle in Chapters 2.2

and 2.3. In order to apply MPC, the optimal control policy was generated by ILQR based on

the learned model in Chapter 3.1. For the improved driving performance, the cost function was

formulated to combine the speed regulation and the path following in Chapter 3.2. Experiments

with skid-steer mobile robot platform were conducted in indoor and outdoor environments. The

results in Chapters 4.2 and 4.3 showed that this approach can attain better performance than the

methods based on the conventional models.

In the rest of this chapter, we will discuss the future directions and applications of this method.

5.1 Challenges and future works

One possible future work is to utilize the covariance function of the learned model in order to

improve the exploration during the model learning. Although we obtained the learned model from

data, we still did not make use of the covariance function of the learned model. Drawbacks of

this approach are that the trajectories resulted from optimal controller remain within the region
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of state space represented by training data, and that ILQR often fails to generate policy when

the vehicle enters the state space not sufficiently depicted by training data. This is because ILQR

assumes that the current prediction model is perfectly accurate. One way to solve this problem is

to augment the prediction variance in the cost function. By augmenting the variance function in

the cost function, the policy which makes robot search the high-variance region will be generated.

As a result, it is expected that the efficiency of model learning will improve.

Another future work is to apply on-line hyperparameter optimization. We currently fixed

the hyperparameters for computational efficiency. The drawback of this approach is that the

hyperparameters can deviate from their optimal values as the on-line model update progresses.

In this case, the controller tends to lose its performance. To maintain the performance, it seems

that the on-line hyperparameter adaptation is needed.

As an application, the autonomous navigation on a rough terrain is well suited with this

method, such as off-road vehicles or rovers on a lunar-like terrain which involve several challenges

because of unevenness, slipping, subsidence and so on. Since the developed method can cope

with the unknown terrain, this method would become a proper controller for those challenges of

outdoor navigation or planetary exploration.
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국 문 초 록

본논문은스키드조향로봇의경로제어에관해다룬다.스키드조향이란별도의조향장치없이양측

바퀴의 속도 차이로 주행하는 메커니즘을 말한다. 이러한 조향 기법은 일반적으로 지면으로부터 큰

종력을얻을수있어거친지면에서의주행에유리하다.하지만양측바퀴제어만을통한선회운동의

경우에는 지면으로 부터 받는 영향이 조향이 있는 경우보다 크게 작용하여 로봇 경로 제어를 어렵게

만든다. 또한 로봇의 주된 동력원인 휠의 경우 바퀴 자체의 특성뿐만 아니라 주행하고 있는 지면의

성질, 바퀴 제어 성능에 영향을 받아 제어 설계를 어렵게 만든다. 이러한 특징을 고려하기 위해, 본

연구에서는 온라인 모델 학습에 기반한 모델 예측 제어 기법을 스키드 조향 차량의 경로 제어에 적

용하였다. 로봇의 입력과 실제 속도와의 관계를 나타내는 속도 모델을 실시간으로 학습하고, 학습된

모델을기반으로하는예측제어기법을구현하였다.모델학습은온라인 sparse가우시안프로세스를

이용하여 기존의 가우시안 프로세스의 단점 중 하나인 계산 복잡성을 낮추고자 하였다. 이후 로봇의

주행을 위해 학습된 모델을 최적 제어 기법의 일종인 모델 예측 제어 기법과 결합하였다. 개발한

기법을 실내외 실험을 통해 검증하였고, 기존 연구 기법의 일종인 파라미터 적응에 기반한 모델을

이용한 경우와의 비교를 통해 우수한 주행 성능을 확인하였다.

주요어 : 경로 제어, 스키드 조향, 모델 예측 제어, 가우시안 프로세스.

학번 : 2015-20766
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