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Abstract

Force identification is an inverse procedure that estimates the
applied forces based on the measured dynamic responses. This
paper introduces a novel force identification method for nonlinear
finite element models via sensitivity of dynamic response with
respect to the load parameters in the time domain. Unlike
conventional state space method, the formulation introduced in this
study 1s based on the implicit Newmark method and Newton—
Raphson algorithm to solve nonlinear flexible dynamic problems.
Since the sensitivities at respective discretized time step are
evaluated 1in geometrically nonlinear framework, robust and
accurate prediction of the exciting force in nonlinear problems can
be made. In order to demonstrate the effectiveness and validity of
the presented method, nonlinear floating beam and 3D shell
problems with various loading conditions are provided in this paper.
The results show that the proposed method can accurately
determine the magnitude of the input forces even with the presence

of the noise effect.

Keyword : Force identification, Sensitivity analysis, Nonlinear,
Finite element analysis, Newmark method
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Chapter 1. Introduction

Determination of the excitation input based on the measured
dynamic responses becomes significantly important in the study of
finite element analysis especially when the external force cannot be
directly measured. There are mainly two categories for the force
identification methods; the frequency domain approach and the time
domain approach. The frequency domain method uses the frequency
response functions and identifies the forces in the frequency
domain. If the force needs to be determined in time domain, then
inverse Fourier transform must be used [1]. In contrast, the time
domain method uses the dynamic responses and directly identifies
the force history in time domain. The time domain approach can
avold any transform error and be suitable for any types of forces
[2].

There are three major types of the force identification methods
in time domain; the state—space method, the sensitivity method and
the genetics algorithm. The state—space method converts the finite
element into the state space model. Ma and Chang [3] used state—
space based method with Kalman filter and a recursive least—
squares algorithm. The sensitivity method directly uses the finite
element model to obtain the dynamic responses and their sensitivity
with respect to the force parameters. Lu and Law [4] used the
response sensitivity and the penalty functions for linear problems.
The genetics algorithm is widely used as a global optimization
technique [5]. Yan and Zhou [6] introduced the genetic algorithm—
based method to adaptively identify the location and the history of
the external force with its global search capability.

This paper introduces a novel method to reconstruct the history
of the unknown force using the dynamic responses and their

sensitivity. The sensitivity—based force identification method

proposed by Lu and Law [7] is applied only in linear truss problems.

This study further develops the sensitivity model constructed based

on the nonlinear governing equations of motion using direct
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derivative method (DDM). The force identification technique
proposed in this study can be applied to any structural analysis,
such as static and dynamic conditions, linear and nonlinear problems,
and single— and multi—degrees of freedoms. It is also possible to
accurately predict the total force when the structure is pre—

stressed.



Chapter 2. Method

A flow chart is sketched in Fig.1 to show the overview of the
force identification process that approximates the magnitude of the
input force using the dynamic response and their sensitivities with
respect to the force parameters. The procedure of the force
identification consists of two main steps: 1) the governing equation
of motion and 2) the recursive estimation. The governing equations
of motion solve for the dynamic responses of the displacement,
velocity and acceleration and their sensitivities with respect to the
given input force parameters. The recursive estimation iteratively
updates the force parameters until the error between the actual
dynamic responses and the identified dynamic response comes

within the tolerance range.

Force parameter

The governing equations of Motion

-

The errorin The sensitivity of
dynamic responses dynamic responses

. _

The recursive estimation

Force parameter update

ll'olerance met

Force identified

Tolerance not satisfied

Figure 1. Flow chart of force identification via the dynamic
response sensitivity with respect to the force parameters
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2.1. The governing equation of motion

The first step of force identification is obtaining the dynamic
responses of the structure by performing finite element analysis.
For nonlinear dynamic problems, the governing equation can be

written as

M(p)u(t, p) + C(p)u(t, p) + r(u(t,p),p) = f(t,p) (1)

where t is the time and pis the load parameter. M and Cdenote

the mass matrix and the damping matrix. r is the internal force

vector and f is the external force vector. u,U,U are the vectors of

displacement, velocity, acceleration , respectively. All the terms in
the nonlinear equation of motion are dependent on the external load
parameter.

The j™ input force can be formulated with a parameter set of a

constant, sine series and cosine series as follows
fi(t,p) = Py + X" (P/; sin(@/;t}+ PJ; cos(a);t)) (2)
i=1

Here, f' is the j™ component of the external force vector. Poj 1s

the constant parameter. st]i 1s the amplitude parameter and a)s‘I 1S

the frequency parameter of the i" sine term in the j™ force

component. Similarly, ch'i and a)c‘, are amplitude and frequency

parameters of the i™ cosine series in the j™ force component. By
formulating the excitation force using a combination of multiple sine
and cosine series, it is possible to express any force history curve
in the time domain.

The nonlinear governing equation can be solved by using an
incremental iterative algorithm, such as Newton—Raphson method
and can be integrated numerically by using the constant—average

acceleration method of Newmark—p method with a=1/4 and

3 ey
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p=1/2. Here, @« and f are the parameters that controls the

accuracy and stability of the direct integration method.

2.2. The sensitivity model

The sensitivity of dynamic response can be obtained by directly
differentiating the nonlinear governing equation in Eq. (1) with

respect to the external load parameter P as follows

Ll ou _of oM. aC - or|

—+C—+K == == -U - -u ; (3)
oP)  TePl T ToPl oPl oPl T oPl oPl|

where QU0 a0 du represent the sensitivities of acceleration,

oP!" op) P

velocity, and displacement, respectively, with respect to the n'

. of . .
parameter P, of the i™ force component. ﬁ 1s the sensitivity of
n

the external load. The derivative of internal force vector can be

or ou or
expressed as =

—_— +—+— where K, 1is the tangent
oP! oP!  oP!

u

) . or| . e ) )
stiffness matrix and —7 1S the sensitivity of internal force with

n

respect to parameter with fixed u (Conte at el 2003 ). To gather all

) . . ou
the dynamic response sensitivity terms on one side, the K;—

0P}

1s moved on the right side

. . r
term is placed on the left side and %

N lu

of Eq. (3). The analytical process for the mass gradient ﬂ and

n

. ) C .
the damping gradient a—J has been derived by Haukass and

n



Kiureghian (2005). However, since only the geometric nonlinear
effect 1s considered in this study, the assumption that only the
stiffness matrix i1s dependent on the parameters and the gradient
can be applied to the sensitivity equation and eq. (3) can redefined

as

M, g U u o
oP) oP) 0PI oP)

(4)
M;,C; and K;are the tangent matrices of the mass, damping
and the stiffness, which can be computed at each time step using

Newton—Raphson iterations. The dynamic response sensitivities

a—u_, 8_u and a—u.can be obtained by using Newmark—f method
oP! oP) )
(a=1/4 and B=1/2).

2.3. The recursive estimation

The second step for force identification is to approximate the
unknown input force by iteratively updating the parameters. The
dynamic response and their sensitivities are now computed at every
time step, the error between the calculated acceleration and the

actual acceleration can be found using the following equation.

ou=1u,-u, (5)

m I

U, 1is the vector of acceleration data extracted from the

reference simulator and U; is the vector of the identified

acceleration computed by using Eq.(1). 0U is the difference of
measured and identified outputs.

After obtaining the dynamic responses, their sensitivity with
respect to the force parameter and the error compared to the
reference response, the input force parameters can now be updated
by using the damped least—squares method, also known as the
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Levenberg—Marquardt method.
K+l k T LT (A
P! =P*+[STS+ 1] S (au) (6)

Here, S is the two—dimensional acceleration sensitivity matrix
with respect to the force parameter in the time domain. For instance,
if a structure is subjected to an input force consisting of N numbers
of parameters during T time steps and the reference acceleration is
available in M numbers of degree of freedom, then the sensitivity

matrix Shas MXT number of rows and N number of columns. P*

denotes the force parameter at k™ iteration and A represents the
damping coefficient. This damping coefficient is initialized by using

the following equation
A, = xmax(diag(S'S)) (7)

r is a user—specified value between 1072 and 1. The damping
coefficient is updated at each iteration based on the gain ratio

G whose equation is as

ou* —ou“"
©=1 (8)
o 0P (2P —STa)
dP=[S"S+1]" S (ou) (9)

Here, dP is the difference between P*' and P*. It can be

computed using Eq.(9). When the gain ratio is greater than zero, it
means that the iteration made a worse approximation and A is

increased. If the gain ratio is negative, A becomes smaller.



2.4. Time discretization for extreme conditions

While the modified sensitivity formula can successfully determine
the exciting force without going through a heavy computation in
most nonlinear problems, it may result in a wrong approximation in
some extreme cases. The modified nonlinear sensitivity formula
assumes that the mass, damping and the internal force does not
highly depend on the parameter and treats their derivatives
negligible. However, in case when a highly flexible structure
experiencing a large rotation or deflection, neglecting those terms
accumulate errors in the dynamic sensitivity and cause the solution
to fall into a wrong local minimum or disconverge. To improve the
results by avoiding the error accumulation, the time discretization
method needs to be applied. The basic concept of the time
discretization is to divide the entire simulation time into several
divisions and make parameter estimations for each division through
iterations.

The force identification process for each time discretization is as

follows

1. Collect the acceleration data from the reference simulation

model for the n' discretization.
2. Set the initial force parameter P* and obtain the dynamic
response of the displacementu, velocity U and acceleration

Uand the tangent matrices of the mass My, the damping C;
and the stiffness K, at each time step from Eq. (1).
3. Apply M;,C; and K, into Eq. (4) to obtain the sensitivity of

displacement, velocity and acceleration with respect to the
) ol ou ou
input force parameter; —,— and — from Eq. (4).
oP oP oP
4. Compute the acceleration difference vector 0l between the
reference simulator and the force identification numerical

model by using Eq. (5)



5. Update the force parameter vector P**' using Eq. (6)—(9).

6. Repeat step 2—6 until at least one of the following three
conditions is satisfied.

1) The acceleration difference between the reference model
and the force identification model is smaller than the user
specified tolerance.

2) The change of the force parameter from the previous
iteration to the current iteration is smaller than the
tolerance.

3) The number of iteration has reached the maximum
number.

7. After the iteration has been completed in the n™ discretization
and the solution has converged, repeat step 1—6 until the final
discretization.

8. Combine the force data of each discretization to get one

complete force history.

Discretizing the dynamic motion in the time domain saves
the total computational time because for each iteration, the dynamic
response calculation needs to be performed only within a short time
period. Once the satisfactory parameter estimation is made in the
previous division, then only a few iteration need to be run

afterwards.
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Chapter 3. Numerical examples

The reliability of the force identification proposed in this study is
examined with a simple beam, a multi—body system and a 3D shell
finite element model under different force conditions in each case.
Comparator simulators are also constructed using the same finite
element models as the identification models for all cases. Dynamic
responses of the comparator simulator subjected to the user
specified input force are used as reference to compute the error of
the identification model at each iteration to update the load
parameters. The comparator is also used as reference to verify the
accuracy of the results determined from the identification simulator.
In this study, the comparator and the identified simulator used the
finite element and numerical algorithm, which is based on Newton—
Raphson iterations and Newmark—B method with a=1/4 and
B =1/2. To demonstrate geometric nonlinear dynamic simulations,
co—rotational beams with 6 degrees—of—freedom (DOF) for each
node are used. In 3D shell analysis, MITC4 shell consisting of 5DOF

for each node is used.

3.1. A nonlinear beam

A flexible nonlinear beam consisting of ten elements is subjected
to a concentrated force in the direction of y—axis at the second
node from the left. The beam dimension is 0.1X0.05X10 as shown in
Fig. 2. The length of the beam is relatively very long to this cross
sectional area to emphasize the flexible motion of the structure.
The elastic modulus is E=1/2X10"'Pa and the density is
p=7860kg/m3. The effect of damping of the beam is assumed to be

negligible for this example.
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e ) ] oosm

10m 0.1m

Figure 2. A simple co—rotational beam consisting of ten elements
with 6 DOF for each node.

With time step size of 0.01 seconds, a random force of
F =50+100sin(0.5zt) +150cos(2~t) is applied to the reference simulator
for 10 seconds. Fig. 3 is the dynamic responses of displacement,
velocity and acceleration of the comparator. The acceleration from
the reference simulator is needed for two purposes. First, the
reference acceleration data in the time domain can be used as the
initial force frequency parameters after converting into the
frequency domain by using Fast Fourier Transform(FFT). FFT
converts the acceleration history in the time domain into the
frequency domain and finds its natural frequencies, which can be
set as the initial frequency parameters of the sine and cosine series
of the input force in Eq. (2). Second, it can be used as reference to
find the difference in dynamic responses between the identified
system and the comparator. In this study, the error in acceleration
between two simulators is used when updating the load parameters
in Eq. (6). The natural frequencies extracted from FFT algorithm is

illustrated in Fig. 4.
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Figure 3. The dynamic responses of displacement, velocity and

acceleration of the reference simulator of simple nonlinear beam

The major six natural frequencies extracted from FFT are 0.58m,
1.95w, 4.88n, 6.83%, 9.17%n and 11.7xn, and they are set as the initial
frequency parameters of the input force The initial force parameter
set becomes a 25X1 vector, which includes one constant parameter,
six amplitudes of sine, six amplitudes of cosine, six frequencies of
sine and six frequencies of cosine series. The constant parameter is
initially set 60 and all amplitudes are set 110 for sine and cosines.
P =[Py Pe1---Psg:Pes--Pegs @1t Dyg, @y, @] =[60, 110---110, 110---110, 0.587,
1957, 4.887, 6.837, 9.17x, 11.7x, 0.587, 1957, 4.887, 6.837, 9.177, 11.7x]" is

the parameter vector used.
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Figure 4. Six major natural frequencies found from Fast Fourier
Transform

Fig. 5 shows the comparison of the identified force to the actual
input force to the reference simulator. The dotted line is the actual
force and the bold line is the force determined using the
identification method. The solution converges after 11 iterations

and the root mean square error is 8X107°.
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Figure 5. The force result comparison between the identification
system and the comparator

Force(M)
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3.2. Multi—body system

To illustrate a multi—body system that translates and rotates freely
in all x, y and z direction, a plane shaped model is constructed with
rigid and flexible beams as in Fig. 6. Each of two wings includes 10
elements with 6DOF for each node. The wing beam of 10m length is
tapered with the largest cross section of 1.4X0.2m at the wing root
and the smallest cross section of 0.1X0.05m. The wing has elastic
modulus of E=2X10"'Pa, the density of p=7860kg/m® and poison
ration of 0.3. The plane body and two tail wings are designed as
rigid beams. The body has a dimension of 1.2X1.5X12 m (widthX
heightXlength), the elastic modulus of E=2X10"Pa, the density of
o =7860kg/m® and poison ration of 0.3. Two tails each has a
dimension of 0.8X0.12X3.6m. Other material properties of the tails
are the same as the body part.
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<Flexible wing>

’ tapered

0.2m ~f---emmemeege e T—— = =] F—= T—— =1 Tt T SR Cerrrors — —0.05m

1.4m

Figure 6. A plane shaped multi—body system with a rigid body, rigid
tails and flexible wings

3.2.1. Pre—stressed

The plane shaped model that is moving forward at a constant
velocity of 100m/s is pre—stressed with a known load of
F=-2E3-3E3sin(4xt) . After 1 second, it experiences a ‘l—cosine’
discrete gust with magnitude of F=5E3(1-cos(rt)). The wind load is

proportionally distributed to the element width over the entire
bottom surface of the plane model. Only the reference acceleration
data at the root and the tip of one wing of the comparator is used to
inversely approximate the input load as shown in Fig. 7.

To run the force identification simulator, the initial force
parameters are set p=[p,,p,,p,, @ o, ]=[7E3, 1E3, 7E3, 1.2z, 1.2z] . The
force results comparison between the comparator and the force
identification simulator is shown in Fig. 8. Because the wing is

designed with highly flexible material property, the magnitude of

acceleration is much higher at the tip, experiencing large fluctuation.
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Figure 7. The acceleration history of the reference simulator at the
wing root(top) and the wing tip (bottom)
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Force identification is usually needed when the direct
measurement of the input force applied to an experimental structure
1s unavailable in the lab and the measured data from gauges usually
contains measurement error or noise. To demonstrate this noise in
the dynamic response measurement, Gaussian white noise 1s added
to the reference data of the comparator. Fig. 8 shows the result
comparison between the actual force applied to the reference model
and the identified force from the load identification system when
there is 0%, 10% or 20% random noise mixed in the measured data.
When there is no noise, the solution converges after 12 iterations
and the resulting curve is very close to the actual force curve. In
this case, the root mean square error is 1X1072 When 10% or 20%
noise is added, the identified force still correctly follows the trend
of the reference data with the error of 2.6X107! or 2.5X107".

15000
Identified force with no noise
— — — Reference force
10000 Il'l
IIII
— Ill IIII
= | | |
= 5000 l". I'|
E \
= 1
or 1 /\n III III|'
I|I I|| ll II|
\ \ \ \
'. \ \
-5000 \ \
0 0.5 1 15 2 25 3

Time(sec)
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15000
10% noise
— — — Reference force
10000
= I
% 5000
2
o
L
Or .
i
1
\
| |
-5000 H\ \
1] 0.5 15 2 25
Time(sec)
15000
20% noise
— — — Reference force
10000
= I
% 5000
2
o
L
Or .
i
1
\
| |
-5000 H\ \
1] 0.5 1 15 2 25 3

Time(sec)
Figure 8. The identified force compared to the reference simulator

when 10% (top) and 20% (bottom) noise is added to the measured
acceleration data
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3.2.2 Large rotation

The same plane shaped model used in the previous case is now
subjected to a point force of F=2E5(1-cos(lzt)) in z—direction at the
tip node of one wing. This force causes the plane to rotate more
than 90 degrees for 2 seconds while it is moving forward at the
velocity of 50m/s. The time step At is 0.02 seconds. No pre—load
is applied in this case and the initial force parameters are
p =[2.1E5, 1E2, -2.1E5, 1.17, 1.17].

The first graph of Fig. 9 is the comparison of the identified force
to the actual input force. The identified force does not correctly
reconstruct the actual force history. When the structure is
experiencing a large rotation and deflection, the stiffness gradient
with respect to the force parameter becomes non—negligible,
resulting in an error in the dynamic response sensitivity.

To improve the accuracy of the results, the time discretization
technique is applied to the same model. The total simulation time of
2 seconds is equally discretized into four sections, 0.5 seconds in
each time division. In the first time section from O to 0.5 seconds,
the initial force parameters set by the user are updated at each
iteration. After the solution is converged, the force parameters
found in this section is now used as the initial parameter input for
the next time period from 0.5 to 1 second. The second graph of
Fig.9 is the force results of the time discretized force identification.
The force determined when the simulation time is discretized into
multiple sections is significantly more accurate than when the
identification analysis is performed without the time discretization
technique. When the highly flexible structure is experiencing a large
rotation, application of time discretization is required to obtain valid

force results.
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Figure 9. Force results of the identification model when the

simulation time is not discretized (top) or discretized into four
sections (bottom)
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3.3. 3D shell

The proposed force identification method is further verified with
a 3D MIT4 shell model. The elastic modulus is E=2x10Pa and the
density 1s p=9800kg/m3. The total dimension of this finite element

model is 0.2X0.1X1 (widthXheightXlength). It is discretized into 20
elements with 5DOF at each node. A distribute force of
F =200-200cos(5xt) is applied at one end for 2 seconds. The initial
parameters are

p =[250, 10, -250, 5.5z, 5.57]" and the motion 1s

discretized into 4 divisions, making 0.5 seconds per each time
division.

250
Identified Force
200 | — _~.|_ Actual Force |
\ /\5 #/ 1
| | |
150 | I'. " [ 1
z n \ [ \
S 100 | \ 'I '| ]
& | { |I f |I f
- || f ll \
50 r / |II |I||| I|| I\ 4
| | '|, {
N/ / _
-50 ;
0 0.5 1

1.5 2
Time(sec)

Figure 10. Force identified using the 3D shell model

The results comparison between the identified force and the
actual input to the reference simulator is in Fig.10. It is proved that
the very accurate approximation can be made for 3D shell finite

element model using the force identification proposed in this study.
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Chapter 4. Conclusion

This study introduces a novel force identification technique for
nonlinear dynamic problems by using the dynamic response
sensitivity. In this study, a reference simulator is used as a
comparator to find the error in the dynamic responses and the force
results. The identical finite element models are used for reference
simulator and the force identification model. Also, they both use the
identical nonlinear dynamic algorithms like Newmark— 8 method
and Newton—Raphson iteration. To prove the validity of this force
identification method, several numerical examples are tested with
various nonlinear finite element models, from a simple beam to a
complex multi—body system consisting of both rigid and flexible
bodies. Here, co—rotational beam is used to demonstrate nonlinear
beam model and 3D MIT4 is used to construct 3D nonlinear shell
models.

As it is shown in the examples, the dynamic response history
computed from a reference simulation model can be transferred into
the frequency domain via FFT to obtain major natural frequencies.
These frequencies are needed to predict the force frequency and
used as initial force frequency parameters. The proposed force
identification method is valid even when an additional unknown
force is applied to a structure that is already pre—stressed with
known force. It is proved that the unknown force history can be
reconstructed regardless of the presence of any known forces.
Further wvalidation test is performed with Gaussian white noise
mixed in the measured dynamic responses. The results show that
the proposed identification method is not very sensitive to the white
noised and therefore reasonable results can be expected from this
identification method.

In some extreme cases, such as a motion with a large rotation or
a large deflection, the modified sensitivity can be used with time

discretization technique to improve the accuracy of the results.
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Applying the time discretization method actually saves the
computation time because for each iteration, the dynamic response
calculation needs to be performed only within a short time period.
Once the solution has been converged in the previous division, only
a few iteration need to be run afterwards. The advantage of
applying the time discretization may become more significant
especially when handling heavy finite elements model with a large
number of degrees—of—freedoms. Further verification test can be
performed in the future study with more extreme motions or with

more complex finite element models.
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