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Abstract 
 

Force identification is an inverse procedure that estimates the 

applied forces based on the measured dynamic responses. This 

paper introduces a novel force identification method for nonlinear 

finite element models via sensitivity of dynamic response with 

respect to the load parameters in the time domain. Unlike 

conventional state space method, the formulation introduced in this 

study is based on the implicit Newmark method and Newton-

Raphson algorithm to solve nonlinear flexible dynamic problems. 

Since the sensitivities at respective discretized time step are 

evaluated in geometrically nonlinear framework, robust and 

accurate prediction of the exciting force in nonlinear problems can 

be made. In order to demonstrate the effectiveness and validity of 

the presented method, nonlinear floating beam and 3D shell 

problems with various loading conditions are provided in this paper. 

The results show that the proposed method can accurately 

determine the magnitude of the input forces even with the presence 

of the noise effect. 
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Chapter 1. Introduction 
 

 
Determination of the excitation input based on the measured 

dynamic responses becomes significantly important in the study of 

finite element analysis especially when the external force cannot be 

directly measured. There are mainly two categories for the force 

identification methods; the frequency domain approach and the time 

domain approach. The frequency domain method uses the frequency 

response functions and identifies the forces in the frequency 

domain. If the force needs to be determined in time domain, then 

inverse Fourier transform must be used [1]. In contrast, the time 

domain method uses the dynamic responses and directly identifies 

the force history in time domain. The time domain approach can 

avoid any transform error and be suitable for any types of forces 

[2].  

There are three major types of the force identification methods 

in time domain; the state-space method, the sensitivity method and 

the genetics algorithm. The state-space method converts the finite 

element into the state space model. Ma and Chang [3] used state-

space based method with Kalman filter and a recursive least-

squares algorithm. The sensitivity method directly uses the finite 

element model to obtain the dynamic responses and their sensitivity 

with respect to the force parameters. Lu and Law [4] used the 

response sensitivity and the penalty functions for linear problems. 

The genetics algorithm is widely used as a global optimization 

technique [5]. Yan and Zhou [6] introduced the genetic algorithm-

based method to adaptively identify the location and the history of 

the external force with its global search capability.  

This paper introduces a novel method to reconstruct the history 

of the unknown force using the dynamic responses and their 

sensitivity. The sensitivity-based force identification method 

proposed by Lu and Law [7] is applied only in linear truss problems. 

This study further develops the sensitivity model constructed based 

on the nonlinear governing equations of motion using direct 
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derivative method (DDM). The force identification technique 

proposed in this study can be applied to any structural analysis, 

such as static and dynamic conditions, linear and nonlinear problems, 

and single- and multi-degrees of freedoms. It is also possible to 

accurately predict the total force when the structure is pre-

stressed. 

 

. 
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Chapter 2. Method 
 

 

A flow chart is sketched in Fig.1 to show the overview of the 

force identification process that approximates the magnitude of the 

input force using the dynamic response and their sensitivities with 

respect to the force parameters. The procedure of the force 

identification consists of two main steps: 1) the governing equation 

of motion and 2) the recursive estimation. The governing equations 

of motion solve for the dynamic responses of the displacement, 

velocity and acceleration and their sensitivities with respect to the 

given input force parameters. The recursive estimation iteratively 

updates the force parameters until the error between the actual 

dynamic responses and the identified dynamic response comes 

within the tolerance range.  

 

 
Figure 1. Flow chart of force identification via the dynamic 
response sensitivity with respect to the force parameters 
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2.1. The governing equation of motion 
 

The first step of force identification is obtaining the dynamic 

responses of the structure by performing finite element analysis. 

For nonlinear dynamic problems, the governing equation can be 

written as 

 

 (p) (t, p) (p) (t, p) ( (t, p), p) (t, p)M u + C u + r u = f    (1) 

  

where t  is the time and p is the load parameter. M  and C denote 

the mass matrix and the damping matrix. r  is the internal force 

vector and f  is the external force vector. , ,u u u   are the vectors of 

displacement, velocity, acceleration , respectively. All the terms in 

the nonlinear equation of motion are dependent on the external load 

parameter. 

The jth input force can be formulated with a parameter set of a 

constant, sine series and cosine series as follows 

 

 ( )
n

j j j j j j
0 s,i s,i c,i c,i

i 1
(t, p) P P sin( t) P cos( t)ω ω

=

= + +∑f   (2) 

 

Here, jf  is the jth component of the external force vector. j
0P  is 

the constant parameter. j
s,iP  is the amplitude parameter and j

s,iω is 

the frequency parameter of the ith sine term in the jth force 

component. Similarly, j
c,iP  and j

c,iω  are amplitude and frequency 

parameters of the ith cosine series in the jth force component. By 

formulating the excitation force using a combination of multiple sine 

and cosine series, it is possible to express any force history curve 

in the time domain. 

The nonlinear governing equation can be solved by using an 

incremental iterative algorithm, such as Newton-Raphson method 

and can be integrated numerically by using the constant-average 

acceleration method of Newmark-β method with 1 / 4α =  and 

 ４ 



 

1 / 2β = . Here, α  and β  are the parameters that controls the 

accuracy and stability of the direct integration method.  

 

 

2.2. The sensitivity model 
 

The sensitivity of dynamic response can be obtained by directly 

differentiating the nonlinear governing equation in Eq. (1) with 

respect to the external load parameter P  as follows 

 

 j j j j j j j
n n n n n n nP P P P P P P

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = − − −

∂ ∂ ∂ ∂ ∂ ∂ ∂T
u u u f M C rM C K u u

u

 

    (3) 

 

where 
j j j

n n n

, ,
P P P
∂ ∂ ∂
∂ ∂ ∂

u u u   represent the sensitivities of acceleration, 

velocity, and displacement, respectively, with respect to the nth 

parameter nP of the jth force component. j
nP

∂
∂

f
 is the sensitivity of 

the external load. The derivative of internal force vector can be 

expressed as j j j
n n nP P P

∂ ∂ ∂
= +

∂ ∂ ∂T
u

r u rK where TK  is the tangent 

stiffness matrix and j
nP

∂
∂ u

r
 is the sensitivity of internal force with 

respect to parameter with fixed u (Conte at el 2003 ). To gather all 

the dynamic response sensitivity terms on one side, the j
nP

∂
∂T

uK  

term is placed on the left side and j
nP

∂
∂ u

r
is moved on the right side 

of Eq. (3). The analytical process for the mass gradient j
nP

∂
∂
M

 and 

the damping gradient j
nP

∂
∂

C
 has been derived by Haukass and 
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Kiureghian (2005). However, since only the geometric nonlinear 

effect is considered in this study, the assumption that only the 

stiffness matrix is dependent on the parameters and the gradient 

can be applied to the sensitivity equation and eq. (3) can redefined 

as  

 

 t t t
j j j j

n n n nP P P P
∂ ∂ ∂ ∂

+ + =
∂ ∂ ∂ ∂T T T

u u u fM C K
 

  (4) 

 

,T TM C  and TK are the tangent matrices of the mass, damping 

and the stiffness, which can be computed at each time step using 
Newton-Raphson iterations. The dynamic response sensitivities 

j
nP

∂
∂

u
, j

nP
∂
∂

u
, and j

nP
∂
∂

u
can be obtained by using Newmark-β method 

( 1 / 4α =  and 1 / 2β = ).  
 
 

2.3. The recursive estimation 
 

The second step for force identification is to approximate the 

unknown input force by iteratively updating the parameters. The 

dynamic response and their sensitivities are now computed at every 

time step, the error between the calculated acceleration and the 

actual acceleration can be found using the following equation. 

 

 m iu = u - u  ∂   (5) 

 

mu  is the vector of acceleration data extracted from the 

reference simulator and iu is the vector of the identified 

acceleration computed by using Eq.(1). u∂  is the difference of 

measured and identified outputs.  

After obtaining the dynamic responses, their sensitivity with 

respect to the force parameter and the error compared to the 

reference response, the input force parameters can now be updated 

by using the damped least-squares method, also known as the 
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Levenberg-Marquardt method. 

 

 ( )1k 1 k T Tλ
−+  = + + ∂ P P S S I S u   (6) 

 

Here, S  is the two-dimensional acceleration sensitivity matrix 

with respect to the force parameter in the time domain. For instance, 

if a structure is subjected to an input force consisting of N numbers 

of parameters during T time steps and the reference acceleration is 

available in M numbers of degree of freedom, then the sensitivity 

matrix S has M×T number of rows and N number of columns. kP  

denotes the force parameter at kth iteration and λ  represents the 

damping coefficient. This damping coefficient is initialized by using 

the following equation 

 

 0 max(diag( ))λ τ= × TS S   (7) 

 

τ  is a user-specified value between 10-3 and 1.  The damping 

coefficient is updated at each iteration based on the gain ratio 

G whose equation is as    

 

 
k k 1

T T
G

1 d ( d )
2

λ

+∂ − ∂
=

− ∂

u u

P P S u

 



  
(8) 

 

 ( )1T Td λ
−

 = + ∂ P S S I S u  

 

(9) 

  

Here, dP  is the difference between k 1+P  and kP . It can be 

computed using Eq.(9).  When the gain ratio is greater than zero, it 

means that the iteration made a worse approximation and λ is 

increased. If the gain ratio is negative, λ  becomes smaller.  
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2.4. Time discretization for extreme conditions 
 

While the modified sensitivity formula can successfully determine 

the exciting force without going through a heavy computation in 

most nonlinear problems, it may result in a wrong approximation in 

some extreme cases. The modified nonlinear sensitivity formula 

assumes that the mass, damping and the internal force does not 

highly depend on the parameter and treats their derivatives 

negligible. However, in case when a highly flexible structure 

experiencing a large rotation or deflection, neglecting those terms 

accumulate errors in the dynamic sensitivity and cause the solution 

to fall into a wrong local minimum or disconverge. To improve the 

results by avoiding the error accumulation, the time discretization 

method needs to be applied. The basic concept of the time 

discretization is to divide the entire simulation time into several 

divisions and make parameter estimations for each division through 

iterations.  

The force identification process for each time discretization is as 

follows 

 

1. Collect the acceleration data from the reference simulation 

model for the nth discretization. 

2. Set the initial force parameter Pk  and obtain the dynamic 

response of the displacement u , velocity u  and acceleration 

uand the tangent matrices of the mass TM , the damping TC  

and the stiffness TK at each time step from Eq. (1). 

3. Apply TM , TC  and TK  into Eq. (4) to obtain the sensitivity of 

displacement, velocity and acceleration with respect to the 

input force parameter; 
P
∂
∂
u

,
P
∂
∂
u

 and 
P
∂
∂
u

 from Eq. (4). 

4. Compute the acceleration difference vector u∂  between the 

reference simulator and the force identification numerical 

model by using Eq. (5) 
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5. Update the force parameter vector 1P +k  using Eq. (6)-(9). 

6. Repeat step 2-6 until at least one of the following three 

conditions is satisfied.  

1) The acceleration difference between the reference model 

and the force identification model is smaller than the user 

specified tolerance. 

2) The change of the force parameter from the previous 

iteration to the current iteration is smaller than the 

tolerance. 

3) The number of iteration has reached the maximum 

number.  

7. After the iteration has been completed in the nth discretization 

and the solution has converged, repeat step 1-6 until the final 

discretization. 

8. Combine the force data of each discretization to get one 

complete force history.   

 

 Discretizing the dynamic motion in the time domain saves 

the total computational time because for each iteration, the dynamic 

response calculation needs to be performed only within a short time 

period. Once the satisfactory parameter estimation is made in the 

previous division, then only a few iteration need to be run 

afterwards. 

 

 

 ９ 



 

Chapter 3. Numerical examples 
 

 

The reliability of the force identification proposed in this study is 

examined with a simple beam, a multi-body system and a 3D shell 

finite element model under different force conditions in each case. 

Comparator simulators are also constructed using the same finite 

element models as the identification models for all cases.  Dynamic 

responses of the comparator simulator subjected to the user 

specified input force are used as reference to compute the error of 

the identification model at each iteration to update the load 

parameters. The comparator is also used as reference to verify the 

accuracy of the results determined from the identification simulator. 

In this study, the comparator and the identified simulator used the 

finite element and numerical algorithm, which is based on Newton-

Raphson iterations and Newmark-β method with 1 / 4α =  and 

1 / 2β = . To demonstrate geometric nonlinear dynamic simulations, 

co-rotational beams with 6 degrees-of-freedom (DOF) for each 

node are used. In 3D shell analysis, MITC4 shell consisting of 5DOF 

for each node is used.  

 

3.1. A nonlinear beam 
 

A flexible nonlinear beam consisting of ten elements is subjected 

to a concentrated force in the direction of 𝑦𝑦-axis at the second 

node from the left. The beam dimension is 0.1Χ0.05Χ10 as shown in 

Fig. 2. The length of the beam is relatively very long to this cross 

sectional area to emphasize the flexible motion of the structure. 

The elastic modulus is E=1/2Χ1011Pa and the density is 

ρ=7860kg/m3. The effect of damping of the beam is assumed to be 

negligible for this example.   
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Figure 2. A simple co-rotational beam consisting of ten elements 
with 6 DOF for each node. 

 

With time step size of 0.01 seconds, a random force of 

F 50 100sin(0.5 t) 150cos(2 t)π π= + +  is applied to the reference simulator 

for 10 seconds. Fig. 3 is the dynamic responses of displacement, 

velocity and acceleration of the comparator. The acceleration from 

the reference simulator is needed for two purposes. First, the 

reference acceleration data in the time domain can be used as the 

initial force frequency parameters after converting into the 

frequency domain by using Fast Fourier Transform(FFT). FFT 

converts the acceleration history in the time domain into the 

frequency domain and finds its natural frequencies, which can be 

set as the initial frequency parameters of the sine and cosine series 

of the input force in Eq. (2). Second, it can be used as reference to 

find the difference in dynamic responses between the identified 

system and the comparator. In this study, the error in acceleration 

between two simulators is used when updating the load parameters 

in Eq. (6). The natural frequencies extracted from FFT algorithm is 

illustrated in Fig. 4. 
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Figure 3. The dynamic responses of displacement, velocity and 
acceleration of the reference simulator of simple nonlinear beam  

 

 

The major six natural frequencies extracted from FFT are 0.58π, 
1.95π, 4.88π, 6.83π, 9.17π and 11.7π, and they are set as the initial 

frequency parameters of the input force The initial force parameter 

set becomes a 25Χ1 vector, which includes one constant parameter, 

six amplitudes of sine, six amplitudes of cosine, six frequencies of 

sine and six frequencies of cosine series. The constant parameter is 

initially set 60 and all amplitudes are set 110 for sine and cosines. 
T

0 s,1 s,6 c,1 c,6 s,1 s,6 c,1 c,6[p , p p ,p p , , , , ] [60,  110 110,  110 110,  0.58 ,  ω ω ω ω p= … … =p    

T1.95 ,  4.88 ,  6.83 ,  9.17 ,  11.7 ,  0.58 ,  1.95 ,  4.88 ,  6.83 ,  9.17 ,  11.7 ]π π π π π π π π π π π is 

the parameter vector used.  
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Figure 4. Six major natural frequencies found from Fast Fourier 
Transform 

 

Fig. 5 shows the comparison of the identified force to the actual 

input force to the reference simulator. The dotted line is the actual 

force and the bold line is the force determined using the 

identification method. The solution converges after 11 iterations 

and the root mean square error is 8Χ10-3. 
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Figure 5. The force result comparison between the identification 
system and the comparator 

 

 

 

 

3.2. Multi-body system 
 

To illustrate a multi-body system that translates and rotates freely 

in all 𝑥𝑥, 𝑦𝑦 and z direction, a plane shaped model is constructed with 

rigid and flexible beams as in Fig. 6. Each of two wings includes 10 

elements with 6DOF for each node. The wing beam of 10m length is 

tapered with the largest cross section of 1.4Χ0.2m at the wing root 

and the smallest cross section of 0.1Χ0.05m. The wing has elastic 

modulus of E=2Χ1011Pa, the density of ρ=7860kg/m3 and poison 

ration of 0.3. The plane body and two tail wings are designed as 

rigid beams. The body has a dimension of 1.2Χ1.5Χ12 m (widthΧ 
heightΧlength), the elastic modulus of E=2Χ1014Pa, the density of 

ρ=7860kg/m3 and poison ration of 0.3. Two tails each has a 

dimension of 0.8Χ0.12Χ3.6m. Other material properties of the tails 

are the same as the body part. 
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Figure 6. A plane shaped multi-body system with a rigid body, rigid 
tails and flexible wings 

 

 

3.2.1. Pre-stressed 
 

The plane shaped model that is moving forward at a constant 

velocity of 100m/s is pre-stressed with a known load of 

F 2E3 3E3sin(4 t)π= − − . After 1 second, it experiences a ‘1-cosine’ 

discrete gust with magnitude of F 5E3(1 cos( t))π= − . The wind load is 

proportionally distributed to the element width over the entire 

bottom surface of the plane model. Only the reference acceleration 

data at the root and the tip of one wing of the comparator is used to 

inversely approximate the input load as shown in Fig. 7.  

To run the force identification simulator, the initial force 

parameters are set 0 s c s c[p , p , p , , ] [7E3,  1E3, 7E3,  1.2 ,  1.2 ]ω ω pp = =p . The 

force results comparison between the comparator and the force 

identification simulator is shown in Fig. 8. Because the wing is 

designed with highly flexible material property, the magnitude of 

acceleration is much higher at the tip, experiencing large fluctuation.  
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Figure 7. The acceleration history of the reference simulator at the 
wing root(top) and the wing tip(bottom) 
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Force identification is usually needed when the direct 

measurement of the input force applied to an experimental structure 

is unavailable in the lab and the measured data from gauges usually 

contains measurement error or noise. To demonstrate this noise in 

the dynamic response measurement, Gaussian white noise is added 

to the reference data of the comparator. Fig. 8 shows the result 

comparison between the actual force applied to the reference model 

and the identified force from the load identification system when 

there is 0%, 10% or 20% random noise mixed in the measured data. 

When there is no noise, the solution converges after 12 iterations 

and the resulting curve is very close to the actual force curve. In 

this case, the root mean square error is 1Χ10-2. When 10% or 20% 

noise is added, the identified force still correctly follows the trend 

of the reference data with the error of 2.6Χ10-1 or 2.5Χ10-1. 
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Figure 8. The identified force compared to the reference simulator 
when 10%(top) and 20%(bottom) noise is added to the measured 
acceleration data 
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3.2.2  Large rotation 
 

The same plane shaped model used in the previous case is now 

subjected to a point force of F 2E5(1 cos(1 t))π= −  in z-direction at the 

tip node of one wing. This force causes the plane to rotate more 

than 90 degrees for 2 seconds while it is moving forward at the 

velocity of 50m/s. The time step △t is 0.02 seconds. No pre-load 

is applied in this case and the initial force parameters are 

[2.1E5,  1E2, -2.1E5,  1.1 ,  1.1 ]π π=π .  

The first graph of Fig. 9 is the comparison of the identified force 

to the actual input force. The identified force does not correctly 

reconstruct the actual force history. When the structure is 

experiencing a large rotation and deflection, the stiffness gradient 

with respect to the force parameter becomes non-negligible, 

resulting in an error in the dynamic response sensitivity.  

To improve the accuracy of the results, the time discretization 

technique is applied to the same model. The total simulation time of 

2 seconds is equally discretized into four sections, 0.5 seconds in 

each time division. In the first time section from 0 to 0.5 seconds, 

the initial force parameters set by the user are updated at each 

iteration. After the solution is converged, the force parameters 

found in this section is now used as the initial parameter input for 

the next time period from 0.5 to 1 second. The second graph of 

Fig.9 is the force results of the time discretized force identification. 

The force determined when the simulation time is discretized into 

multiple sections is significantly more accurate than when the 

identification analysis is performed without the time discretization 

technique. When the highly flexible structure is experiencing a large 

rotation, application of time discretization is required to obtain valid 

force results.   
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Figure 9. Force results of the identification model when the 
simulation time is not discretized (top) or discretized into four 
sections(bottom) 
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3.3. 3D shell 
 

The proposed force identification method is further verified with 

a 3D MIT4 shell model. The elastic modulus is E=2x109Pa and the 

density is ρ=9800kg/m3. The total dimension of this finite element 

model is 0.2Χ0.1Χ1 (widthΧheightΧlength). It is discretized into 20 

elements with 5DOF at each node. A distribute force of 

F 200 200cos(5 t)π= −  is applied at one end for 2 seconds. The initial 

parameters are T[250,  10 , -250,  5.5 ,  5.5 ]π π=π and the motion is 

discretized into 4 divisions, making 0.5 seconds per each time 

division. 

 

 

 
Figure 10. Force identified using the 3D shell model 

 

The results comparison between the identified force and the 

actual input to the reference simulator is in Fig.10. It is proved that 

the very accurate approximation can be made for 3D shell finite 

element model using the force identification proposed in this study.  
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Chapter 4. Conclusion 
 

 

This study introduces a novel force identification technique for 

nonlinear dynamic problems by using the dynamic response 

sensitivity. In this study, a reference simulator is used as a 

comparator to find the error in the dynamic responses and the force 

results. The identical finite element models are used for reference 

simulator and the force identification model. Also, they both use the 

identical nonlinear dynamic algorithms like Newmark-β method 

and Newton-Raphson iteration. To prove the validity of this force 

identification method, several numerical examples are tested with 

various nonlinear finite element models, from a simple beam to a 

complex multi-body system consisting of both rigid and flexible 

bodies. Here, co-rotational beam is used to demonstrate nonlinear 

beam model and 3D MIT4 is used to construct 3D nonlinear shell 

models. 

As it is shown in the examples, the dynamic response history 

computed from a reference simulation model can be transferred into 

the frequency domain via FFT to obtain major natural frequencies. 

These frequencies are needed to predict the force frequency and 

used as initial force frequency parameters. The proposed force 

identification method is valid even when an additional unknown 

force is applied to a structure that is already pre-stressed with 

known force. It is proved that the unknown force history can be 

reconstructed regardless of the presence of any known forces. 

Further validation test is performed with Gaussian white noise 

mixed in the measured dynamic responses. The results show that 

the proposed identification method is not very sensitive to the white 

noised and therefore reasonable results can be expected from this 

identification method. 

In some extreme cases, such as a motion with a large rotation or 

a large deflection, the modified sensitivity can be used with time 

discretization technique to improve the accuracy of the results. 
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Applying the time discretization method actually saves the 

computation time because for each iteration, the dynamic response 

calculation needs to be performed only within a short time period. 

Once the solution has been converged in the previous division, only 

a few iteration need to be run afterwards. The advantage of 

applying the time discretization may become more significant 

especially when handling heavy finite elements model with a large 

number of degrees-of-freedoms. Further verification test can be 

performed in the future study with more extreme motions or with 

more complex finite element models.  
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Abstract 
  

하중 역추적이란 구조물의 변위 또는 가속도와 같은 동적 응답 데이터를 

이용하여 구조물에 작용한 미지의 외부 하중을 역으로 추적하는 역해석 

기법이다. 본 논문에서는 하중 파라미터에 대한 가속도 민감도를 이용하

여 동적 운동을 하는 비선형 유연 다중보에 가해진 하중을 역으로 추적

할 수 있는 민감도 하중 역해석 기법을 소개한다. 시간영역에서 측정된 

가속도 데이터를 고속 푸리에 변환(Fast Fourier Transform, FFT)기법

을 통해 주파수영역에서 주요 고유진동수를 추정하고, 추정된 주요 파라

미터를 토대로 역해석 수치 모델에서 추출된 가속도 값과 측정 가속도 

값 사이의 오차가 최소화되도록 미지의 하중 파라미터를 찾아가는 최적

화 기법을 사용하였다. 여기서 역해석 수치 모델은 비선형 뉴마크 시간 

적분법(Newmark time integration)과 뉴턴-랩슨 알고리즘(Newton-

Raphson algorithm)을 응용한 유한요소 모델을 사용하며, 최적화 기법

으로는 감쇠최소자승법(Damped least-squares method)를 사용한다. 

본 연구에서는 민감도 하중 역추적 기법을 이용하여 다양한 종류의 연속

하중 또는 급작하중을 받는 유연한 비선형 단순보 및 다중보에 대한 하

중 역해석을 수행하고, 동적 응답 데이터에 백색잡음이 섞여있는 경우에 

대해서도 본 기법의 신뢰성을 검증하였다.  
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