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Abstract

Adaptive and Robust Passivity-Based Stabilization of
a Class of Nonholonomic Mechanical Systems

Kent Yee Lui
Mechanical & Aerospace Engineering
The Graduate School

Seoul National University

We present novel passivity-based stabilization control frameworks for a class
of nonholonomic mechanical systems with uncertain inertial parameters. Pas-
sive configuration decomposition is first applied to configuration-level decompose
the system’s Lagrange-D’Alembert dynamics into two separate systems. Each
of these decomposed systems evolves on its respective configuration space and
individually inherits Lagrangian structure and passivity from the original dy-
namics. Utilizing the nonlinearity and passivity of the decomposed dynamics, we
then derive adaptive passivity-based time-varying control (APBVC) and robust
passivity-based switching control (RPBSC) schemes, which adopt the concepts
of adaptive control and sliding-mode control respectively to achieve stabilization
for this certain class of nonholonomic mechanical systems. Both simulation and

experimental results are provided to verify our proposed control frameworks.

Keywords: Nonholonomic constraints, uncertain inertial parameters, adaptive
control, robust control
Student Number: 2014-2219/
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Chapter 1

Introduction

1.1 Motivation and Objectives

Robots have been developed to help human achieve various tasks, including but
not limited to surveillance, assembly, military application etc. One of the common
applications, i.e. logistic and material handling, has been benefited greatly from
the capability of robots to carry payloads [1]. Notable examples for this would be
the recent mobile robots by Amazon Robotics and Fetch Robotics. These systems
utilize nonholonomic mobile robots to handle warehouse payloads, which are
often unknown a priori and could be heavy and large. These would then introduce
uncertainty to the inertial parameters of the robots, since there is no guarantee

that the payloads will always be similar in masses and shapes. There could be
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a considerably large additional mass to, or shift of the center of mass of the
unloaded systems. A similar situation is applicable to healthcare applications as
well. Human on average weigh as light as 30[kg] for an elementary school student,
and as heavy as 70[kg] for a fully-grown adult. Such wide weight range naturally
introduces large uncertainty to the electrical wheelchairs which are supposed to

carry human with different weights.

To deal with inertial uncertainty under such situations, we propose adaptive and
robust passivity-based controls in this thesis. Passivity-based control exploits
the nonlinear dynamics of robotic systems, instead of attempting to completely
cancel out and replace it by linear dynamics. This would then improve the robust-
ness of controllers. Moreover, the storage function and skew-symmetry property
of M(q) —2C(q,q), where M € R C € R"*", q € R" are respectively the
inertia matrix, Coriolis matrix, and the configuration with n being the degrees-
of-freedom (DOFSs), also substantially simplify the adaptive and robust control

analysis for systems with uncertainties [2].

Passivity-based control framework has been extensively applied to many topics
in robotics, such as under-actuated robots [3, 4], flexible manipulators [5, 6],
manipulator motion control [7, 8], interaction control [9, 10], biped walking [11],
teleoperation [12, 13|, and so on. However, passivity-based control has yet to
be rigorously attempted on the feedback control of nonholonomic mechanical
systems, let alone the cases with the presence of uncertainties which necessitate

adaptive and robust control frameworks. Moreover, most works regarding the
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feedback control of nonholonomic mechanical systems involve only kinematic
analysis. For more practically useful applications, dynamics control would be

necessary due to its capability to achieve fast and smooth motion.

In this thesis, we propose novel passivity-based stabilization control frameworks
for a class of nonholonomic mechanical systems with uncertain inertial parame-
ters. We first exploit the symmetry structure of this class of nonholonomic me-
chanical systems and use passive configuration decomposition to configuration-
level decompose the system’s Lagrange-D’Alembert dynamics into two separate
systems. Utilizing the nonlinearity and passivity of these decomposed dynamics,
we then develop adaptive passivity-based time-varying control (APBVC) and ro-
bust passivity-based switching control (RPBSC) schemes for the dynamic feed-
back control of nonholonomic mechanical systems. To the best of our knowledge,
our result is one of the first results on adaptive and robust passivity-based feed-
back control of the dynamics of nonholonomic mechanical systems with inertial

uncertainty.

1.2 State of the Art

The majority of feedback control of nonholonomic mechanical systems are based
on specific control forms (e.g., normal form, power form, chained form, etc.), that
can be typically attained only by feedback linearization and state transformation

(e.g., [14-22]). Some rare exceptions are [23-25]. Nonlinear dynamics is utilized
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in some works [26-30], but only for open-loop control or controllability analy-
sis of the nonholonomic mechanical systems. Adaptive and robust controls have
also been applied to nonholonomic mechanical systems. However, these works
are mostly kinematic instead of dynamics [14, 31], and/or utilize specific con-
trol forms [32-35]. Moreover, none of these are verified with real experiments.
Sliding-mode control framework for nonholonomic wheeled mobile robots is ex-
perimentally verified in [36], where instead of passivity-based control, feedback
linearization is utilized. This work also focuses on external noises instead of pa-

rameter uncertainties.

1.3 Contribution of this Work

In this thesis, we propose adaptive and robust stabilization control frameworks
for a class of nonholonomic mechanical systems with uncertain inertial parame-
ters. More specifically, we utilize passivity-based control to design feedback con-
trol for the dynamics of nonholonomic mechanical systems with symmetry struc-
ture. To the best of our knowledge, this work is one of the first results on the
adaptive and robust passivity-based controls for the dynamics of nonholonomic

mechanical systems.

To be more specific, we present adaptive passivity-based time-varying control
(APBVC) and robust passivity-based switching control (RPBSC) schemes to

achieve stabilization for a class of nonholonomic mechanical systems containing
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inertial uncertainty, while exploiting the Lagrangian dynamics structure and pas-
sivity of the systems. This work is, in fact, an extension of [37], where the nom-
inal counterparts of our control schemes: passivity-based time-varying control
(PBVC) and passivity-based switching control (PBSC) schemes are proposed. In
this extension work, we show that our proposed frameworks are robust against
inertial uncertainty (e.g. parameters are hard to be estimated, payloads with un-
known masses etc), even that of very high one. The adaptive and sliding-mode
actions of our frameworks compensate for the uncertainty and allow us to achieve
the desired stabilization effectively. We could then possibly utilize these control
frameworks of nonholonomic mechanical systems on various practical applica-

tions such as logistics and transportation as mentioned in Sec. 1.1.

The rest of this thesis is organized as follows. The class of nonholonomic mechan-
ical systems analyzed in this thesis is introduced in Ch. 2, along with passive
configuration decomposition [37], which is utilized to decompose the dynam-
ics of the aforementioned class of nonholonomic mechanical systems. Adaptive
passivity-based time-varying control and robust passivity-based switching con-
trol are derived in Ch. 3 and Ch. 4 respectively. The simulation and experimental

results are shown in Ch. 5. Finally, this thesis is concluded in Ch. 6.



Chapter 2

System Description

2.1 Nonholonomic Mechanical Systems with Symme-

try Structure

The dynamics of nonholonomic mechanical systems is widely known to be con-

sisting of 1) nonholonomic Pfaffian constraint:

Alg)qg=0 (2.1)

and 2) Lagrange-D’Alembert equation of motion:

M(q)i+C(q, )i+ AT (@A =T+ f (2.2)
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where ¢, ¢, 7, f € R" are the configuration, velocity, control, and external force,
M,C € R™ " are the inertia and Coriolis matrices with M — 2C being skew-
symmetric, A(q) € RP*™ (p < n) defines the nonholonomic constraint, and
AT (q)\ is the constraint force, which magnitude is represented by the Lagrange
multiplier A € RP. We (locally) identify the system’s configuration space M by
g € R" (ie., M = R"). We also assume that the nonholonomic constraint (2.1)
is smooth, regular (i.e. rankA(q) = p for all ¢), and does not contain inertial

uncertainty.

In this work, we consider a class of nonholonomic mechanical systems with the
following properties for (2.1)-(2.2): 1) the configuration space M can be endowed

with the product structure s.t.
M=SxR

with ¢ := [s;7], s € R*"™™ and r € R™; 2) the inertia matrix is a function of
only r € R, that is, M(q) = M(r) and C(q,q) = C(r,q) for (2.2); and 3) the
nonholonomic Pfaffian constraint (2.1) is a function of only » € R and applies

constraint only on &, that is,
AW@i= | Aur) Opem | 0= As(r)s =0 (2:3)

with Ag(r) € RP*(»=) being full row-rank. This class of systems, though seem-
ingly restricted, actually contains many practically important systems (e.g. mo-

bile manipulator [38], beanie [39], vertical coin [40], differential-drive wheeled
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mobile robot [41], etc).

These properties allow us to write the unconstrained distribution for (2.1)-(2.2)

as:

D(r) := span (2.4)

where Dy(r) € RP=X(n=m=D) defines the unconstrained distribution on S s.t.
As(r)Ds(r) = 0. Since we assume A(q) to be regular and smooth, so are D and

D; with rank[D(r)] = n — p and rank[Ds(r)] =n —m — p Vr € R respectively.

2.2 Passive Configuration Decomposition

Following nonholonomic passive decomposition [23], we can decompose the dy-
namics (2.2) while also considering the nonholonomic constraint (2.1) and pre-

serving the Lagrangian structure and passivity of (2.2) as follow.

Similar to the base variable [15, 42], we define h(q) := r to represent the
unconstrained 7-dynamics on R. We also define the null-space of dh/0q by
AT C T, M, and its orthogonal complement w.r.t. the M-metric by At C oM,
where Ty,M =~ R" is the tangent space of M at g. The structure of h(q) = r
signifies that AT = sPAN[L (1,1 x (n—m); Omxc (n—m)]> 1-€- AT = T,S ~ R,

Since the nonholonomic constraint (2.3) only acts on S, we can then find that
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DN AT = span[Dy(r); 0% (n—m)]- The description above is better illustrated in
Fig. 2.1.

Now, we can then write ¢ s.t.,

(A [P s0) ] [ .
r 0 Lsom T
=:S(r)eRnx(n—p)
where
B(r) := =Ds(r)[Dy (r)Mi(r)Ds(r)] ' Dy (r) Ma(r) (2.6)

enforces the M-orthogonality between span[Ds(r); 0] = DNAT and span[B(r); Lnxm] =
D\ [PNAT]. In other words,

DI M Dy 0
0 BTMB + BT My + M B + Ms

STMS =

with the inertia matrix M (r) in (2.2) written as

My(r) Ms(r
M(r) = 1r) - Ma(r) (2.7)
M3 (r) Ms(r)
where M; € Rr=—m)x(n—m) pp, e Rn—m)xm and Vs € RM*™_ The inverse term

in f(r) always exists since M;(r) is invertible and Ds(r) has a full column rank.



Chapter 2. System Description 10

The full column rank of D4(r) also allows us to always assume that DI D, = I.

Following [23], we can decompose the unconstrained distribution D of nonholo-

nomic mechanical systems as below:
D=(DnNAN @ (DNnAY) @ D°

where D¢ is the quotient distribution, which is M-orthogonal with D N AT and
DNA™L. This quotient distribution is contained in D but neither exclusively in AT
nor A~ since it contains components in both AT and AL. A system is strongly
decomposable if D¢ = (), and weakly decomposable otherwise [23]. Generally,

most nonholonomic mechanical systems are only weakly decomposable.
We can then decompose the Lagrange-D’Alembert dynamics (2.2) using (2.5) s.t.

HS(T’)I)S—FQS(T‘, Q)V5+er(ra Q)T :us+5s (28)

Hy(r)it + Qr(r, @)1 + Qrs(r, )vs = up + 0y (2.9)

where (2.8) and (2.9) are the projected dynamics on DN AT and D\ [DNAT]

respectively, with their projected inertia given by diag[Hs, H,] := STMS,

QS QST

= s7 [MS + cs} (2.10)
Qrs Qr
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D\[DN AT TR

FIGURE 2.1: Mllustration of 7,8 ~ AT, T, R, Dy(r) ~ DNAT and D\ [DNAT].
Note that AT is Euclidean orthogonal w.r.t. 7R, and M-orthogonal w.r.t.

D\[DNAT].
and
Us T Ts DIz,
=5 (r) = (2.11)
Uy Tr /BT(r)Ts + 7

are the projected controls with 7, € R"™™ and 7. € R™. The similar hold for
[« and d, as well. The proposition below (also Prop. 1 in [37]) shows that the
Lagrangian structure and passivity of the original system (2.1)-(2.2) are preserved

in the decomposition (2.8)-(2.9), with the original kinetic energy and power also

B
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decomposed into those of vs and 7 dynamics.

Proposition 1. Consider the nonholonomic mechanical system (2.1)-(2.2) with
the properties as stated in Sec. 2.1. Then, we can decompose its dynamics (2.1)-
(2.2) into (2.8)-(2.9), where

1. Hs; and H, are symmetric and positive-definite.

2. Hy — 2Q, and H, — 2Q, are skew-symmetric.

3. er = - 77:5

4. Kinetic energy and power are decomposed s.t.

1 1
K‘(t) = 5 gHsVs + §7ATH7«7.“, TTq = UZUS + UZT

(similar also hold for f and §), where & := ¢* M/2.

Proof: See [23]. ]

From (2.5), we can express § as
$ = Dy(r)vs + B(r)r (2.12)

where Dg(r)vs is the dynamic phase and S(r)r is the geometric phase [42]. In
general, D\ [D N AT] is not “aligned with” or “parallel to” T,R. Therefore,
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motion along D\ [D N AT] will generate some artifact motion on S as given by

B(r)r.

However, as can be seen from Fig. 2.1, if 8(r) = 0, we have D\ [DNAT] =
span (0, —pm) xm; Imxn) = T,R. This means that D\ [D N AT] is now aligned
with 7, R and the geometric phase motion 3(r)r on S disappears. We can then
decompose the motion ¢ € M of the original nonholonomic mechanical system
(2.1)-(2.2) into motion on S, which evolves following the vs-dynamics (2.8) with

$ = Ds(r)vs and motion on R respecting the r-dynamics (2.9).

The decomposition (2.8)-(2.9) with 8(r) = 0 is defined as passive configura-
tion decomposition into S and R [37]. This condition of 5(r) = 0 is fulfilled
if the Euclidean orthogonality and the M-metric orthogonality of D\ [D N AT]
w.r.t. AT become the same, i.e. iff MJ (r)D4(r) = 0 for all r (see Lem. 1 of [37]).

2.3 Control Objective

In this thesis, we consider a stabilization control problem, which control objective
is ¢ = (s;7) = (sq;7q4) =: qq, where sg and r4 are desired constant set-points
on § and R respectively. We assume that (us,u,) in (2.11) can be arbitrary,
i.e., the nonholonomic mechanical system (2.1)-(2.2) is fully-actuated in D. In
general, this is a necessary assumption to obtain control forms or kinematic
representations similar to the majority of literature on the feedback control of

nonholonomic mechanical systems [14-22].
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Since both vrs-dynamics and 7-dynamics individually evolve on configuration
spaces S and R respectively, we may use standard configuration-based control
techniques (e.g., trajectory tracking, potential field, etc), including passivity-
based control on § and R independently. This is possible since both vs-dynamics
and 7-dynamics retain the Lagrangian structure and passivity from (2.2) as men-

tioned above.

Unlike s — s4, we can easily achieve r — rg since the 7-dynamics (2.9) on
R is not constrained by the nonholonomic Pfaffian constraint (2.3). However,
although the motion in S is restricted by the nonholonomic constraint (2.3),
we can still achieve s — s4 by utilizing the Lagrangian structure and passivity
of the vg-dynamics (2.8), i.e. by applying the potential function technique and
Lyapunov-like analysis based on passivity. For this, let us define a non-negative

smooth navigation potential on S:

ps:S— R

s.t. 1) ps(s) > 0 where ps(s) = 0iff s = s4; 2) Ops/0s(s) 1= [0ps/0S1, ...y OPs ] OSpn—m)]

=0 iff s = s4; and 3) for any [ > 0, the level set

Lr:={seS|ps(s) <} (2.13)

is a compact set containing s = sq and £;;, C £;, if 0 < l; < ls. Note that ¢, is

designed as if the configuration space S is unconstrained by the nonholonomic



Chapter 2. System Description 15

constraint. This allows us to adopt potential functions designed for unconstrained

robots [43].

In the next Ch. 3 and 4, we design and analyze novel adaptive and robust
passivity-based stabilization control frameworks for nonholonomic mechanical
systems with inertial uncertainty. In fact, the stabilization control frameworks

proposed are the robustified versions of the control frameworks proposed in [37].



Chapter 3

Passivity-Based Time-Varying

Control

3.1 Nominal Passivity-Based Time-Varying Control

With the navigation potential ¢, in Sec. 2.3, the nominal control us in (2.8) is

designed in [37] to be

T
us = Qs (1, §)7 — bsvs — Dg(r) [8%;58)] — 0 (3.1)

where by € R—m—P)X(n=m=p) i3 5 positive-definite symmetric damping gain,

Qs 7 is the decoupling control, and dps/ds € R*(*=™=P) is the one-form of

16 7]
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©s(s). This results in the closed-loop vs-dynamics (2.8) s.t.

T
H(r)0s + Qs(r, §)vs + bsvs + DI (r) [89058(8)] —0. (3.2)

Utilizing Prop. 1 and Lyapunov analysis, we obtain the following energetics, with

B(r) =0:
T
V) = Vi0) = = [ Rt T 20 (3.3)
0

where Vi(t) := ks(t) + @s(t) is the chosen Lyapunov function, ks := v! Hyvg/2
the kinetic energy of vs-dynamics (2.8), and HVSHi := v1bsvs the bs-dissipation.
Note that the closed-loop vs-dynamics (3.2) and the energetics (3.3) are the same
as those of usual robot systems. This observation then leads to the following
proposition (also Prop. 2 in [37]).

Proposition 2. Consider the vs-dynamics (2.8) with ug in (3.1) and S(r) = 0.
Suppose further that: 1) partial derivatives of M (r) w.r.t. r of any order are
bounded; 2) partial derivatives of ¢s(s) w.r.t. s of any order are bounded if ¢s(s)

is bounded; and 3) 7,7 € L. Then, v; — 0 and

DS (r) [a%s)r 0. (3.4)

Proof: See [37]. ]
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Note that the unconstrained 7-dynamics can be controlled to track any desired

trajectory r,(t) € R™ by using
Uy = QrsVs + HypT'o + Qpio — kq(T — 7o) — kp(r — o) — 6y (3.5)

where Qv is the decoupling control, and kg, k, € ™™ are the control gains.
Since Prop. 2 holds despite 7(t) keeps varying, we can drive r so that the null
space of DT (r) keeps “rotating”. Then, (3.4) will necessarily enforce dyp(s)/0s —
0 similar to the persistency of excitation for parameter convergence of adaptive
control [44]. This also means that we enforce s — s4 due to the properties of ;.
Such strategy leads to the nominal passivity-based time-varying control proposed

in [37], which is restated in Th. 1 below (also Th. 2 in [37]).

Theorem 1. Consider the vg-dynamics (2.8) with us (3.1) and S(r) = 0. Assume
the same as in Prop. 2. Suppose further that, controlling (2.9), we drive r(¢) in
such a way that the following persistency of excitation condition holds: V¢’ > 0,

3 a bounded At > 0 s.t.,

DT (r (1)) {awa;f)rz 0 Vtelt t' +At) iff 8@553) = 0. (3.6)

Then, vy — 0 and s — s4.
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3.2 Adaptive Passivity-Based Time-Varying Control

We now extend the results in Sec. 3.1 by including adaptive action to deal with
inertial uncertainties, i.e. mass, moment of inertia etc, which are often difficult to
be estimated. On the other hand, kinematic uncertainties are in general relatively
easy to be estimated and assumed to be known. Therefore, here, we assume H and
@ to be uncertain, and terms such as v, 1, dg, d, are certain, since the reduction

matrix (2.5) is free from inertial parameters and purely kinematic.

Similar to (3.1), we design the control us in (2.8) s.t
S (r T [22:2)]"
us = Qur(r,4)1 — bsvs — D5 (1) [T} — 0, (3.7)

where the terms are defined the same as in (3.1). In this thesis, we denote the
estimated term of by *. In this case, only Qs (r,q) contains inertial parameters.

From (2.10), we now linear parameterize this uncertain term Qsr (r,q) as follows

[2]:
Qsr(r,4)7 = DL (r)Ca(r, ¢)i = DI (r)Yer(r, 4)O (3.8)

where Y, € R("=P=m)xl i5 the linear parameterization matrix of C’g(r, q)r with

OecR! being the vector of uncertain inertial parameters.
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With (3.8) incorporated into (3.7), the closed-loop vg-dynamics (2.8) on S then

becomes

T
H,yirg + Qsvs + DY 0 + byvy + DT [8%;(8)] =0 (3.9)
S

where © := © — O. Let us now define a Lyapunov function V(t) := r4(t) +
ws(t) + %éTé, where v > 0, and again, s, := v! Hyvs/2 the kinetic energy of
vs-dynamics (2.8). We also define

O = =YX (r,4)Dy(r)vs (3.10)

to be our adaptation law for the estimated parameter vector o.

Furthermore, from Prop. 1 with (2.12) and (3.9), we can derive

d/'is &ps ~
dt = _HVSHES - E’Dsys - VZDE}GT@
d‘PS(S) 8903(5) . ~
= —lwslly, — T B - vIDTY,, 6

where dypg/dt = [0ps/0s]s. Utilizing the fact that S(r) = 0, we can then find
dV/dt to be:

dV. dks  dps(s) 17z
it dt T dt +7@@

~ 1 ~m2x
= —||vsllf, —vI DY, 0 - 5@T@

= —HVsHis
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with the adaptation law © defined in (3.10).

Integrating this, we further have:
T
V(T) - V(0) = —/ |lvslf.dt, VT >0 (3.11)
0

Hence, similar to Sec. 3.1, the energetics (3.11) again become the same as those of
common robotic systems. Note that this is possible due to the energy conservation
properties of passivity-based control. Based on this observation, we can then

formulate the following proposition.

Proposition 3. Consider the vs-dynamics (2.8) with us (3.7) and 5(r) = 0. Sup-
pose that: 1) partial derivatives of M (r) w.r.t. r of any order are bounded; 2)
partial derivatives of ps(s) w.r.t. s of any order are bounded if ¢4(s) is bounded;

and 3) 7,7 € L. Then, vy — 0 and

DI (r) [Ysr(r, Q)0 + [Wa—()ﬂ 0. (3.12)

Proof: Given (r) =0, we have vs € Lo N Ly from (3.11). This means ¢ € L
with 7 € L assumed. We also know that ¢4(¢t) < V(t) < V(0) Vt > 0. Therefore,
0ps/0s € L. Also, note that Q(r,q) (hence, Yy.(r,¢)) is linear w.r.t. 9M;;/0qy
and ¢, with D(r) being smooth. Following (3.11), we can also see that © € Lo
since V (t) := ks(t) + @s(t) + %(:)T(:) Then, from (3.9), we have vs; € L. Also,
G € Loo With 7 € L. Then, from Barbalat’s lemma [44], vs — 0. We can also ver-

ify that s € L, by differentiating (3.9). Again, from Barbalat’s lemma, s — 0.
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We then complete the proof by applying (vs,7s) — 0 to (3.9). n

Since Prop. 3 also holds despite r(t) keeps varying, we can again drive r so that
the null space of DI (r) keeps “rotating” similar to the persistency of excitation
for parameter convergence [44]. Then, (3.12) will necessarily enforce Vs, (7, ¢)© +
[B¢s(s)/0s]T — 0. In general, Yy, (r,)® and [0ps(s)/ds]” will not be in the
same direction. Furthermore, since 7(t) keeps varying, even if Yi.(r,¢)© and
[Bps(s)/0s]" are in the same direction for a moment, they generally will not
be so all the time. Hence, if we excite r richly enough, we may achieve both
Yor(r,4)© — 0 and [0gs(s)/ds]T — 0 (see Ch. 5). This is possible since the r-
dynamics (2.9) is fully-actuated. We may choose any decent r,(t) to achieve this
persistency of excitation condition, with the only restriction being the structure
of Dy(r). Note that [dgs(s)/ds]” — 0 means s — sg from the structure of
©s(s). We may even further achieve © — 0 with sufficiently rich 7. The strategy
above leads to the adaptive passivity-based time-varying control, which is

formalized in the following Th. 2.

Theorem 2. Consider the vg-dynamics (2.8) with us (3.7) and S(r) = 0. Assume
the same as in Prop. 3. Suppose further that, controlling (2.9), we drive r(¢) in

such a way that the following persistency of excitation condition holds: V¢’ > 0,
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3 a bounded At > 0 s.t.,

DI (r(t)) |:}/sr(’/“, )0 + [85"55(3)}1: 0 Vte[t t+At)

- T
iff Yip(r,)© = 0 and [W()—()} = 0. (3.13)
Then, vs — 0 and s — s4.

In order to drive r(t) s.t. 7(t) — ro(t), we can design the control u, in (2.9)

similar to (3.5) s.t.
Upr = QTSVS + E[riga + QAH;O - kd<r - 7‘40) - kp(r - ro) - 57’

where the terms are defined as in (3.5). However, since the role of w, in the time-
varying control framework is technically to drive r richly enough to achieve the
persistent excitation (3.13) of Th. 2, we can instead adopt a simpler PD-control

as below
Up = —kq(7 —70) — kp(r — 1) — 0r (3.14)

with high-enough gains and no uncertain terms, because of the Lagrangian struc-
ture and passivity of the r-dynamics (2.9). Therefore, the inertial uncertainty
only affects the vs-dynamics (2.8) in S due to Q.7 for our adaptive passivity-
based time-varying control framework with us (3.7) and PD-control u, (3.14)

above.
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Now, let us denote the set of r(t) constituting the persistency of excitation con-
dition (3.13) by R, C R . If there exists ¢t >t for any t > 0 s.t. r4(t') € R,, we
can achieve our control objective of ¢ = (s,7) = qq = (84, 74). Otherwise, we can
instead replace 7,(t) in (3.14) with the desired constant set-point r4 when v and
©s(s) are small enough, thereby achieving r — r4 while keeping ||s— s4|| arbitrar-
ily small, where ||%||? := %7 %. This strategy can be applied as a practical stopping
threshold, i.e., once V = ks + @5+ %C:)T(:) decreases until a pre-defined threshold
(user-defined performance specification), we can then replace r, in (3.14) by ry

despite some error in s, similar to the practical stabilization [22].

To be more precise, let us assume that k(") < €1, ps(t') < €3 and %é(t’)Té(t’) <
€3 at time ¢’ > 0 with small €, e2,e3 > 0. Since ks > 0, from (3.11), we have
ws(t) < €1+ ea+e3 for all ¢ > ¢/, regardless of the motion of r. Hence, switching
ro(t) in (3.14) to rq when r4(t) < €1, ps(t) < €2 and %(:)(t)TC:)(t) < e3 enforces
exact stabilization of r — 74, and also ensures ||s — s4|| being small as given by
ps < €1 + €2 + €3, with €1, €2,e3 > 0 being small. Note that since vs(t) — 0 is
always guaranteed from Prop. 3, we may simply wait long enough for v,(t) to

converge to zero, i.e. €1 ~ 0 for smaller ||s — s4]|.

.-';r-\,,ﬂ-! _CI.‘.I_ -l_ll B

e



Chapter 4

Passivity-Based Switching

Control

4.1 Nominal Passivity-Based Switching Control

Let us now stabilize r to a constant r, € R, where o is to embed a switching
sequence, using the proportional-derivative control to the r-dynamics (2.9) on R

as below:

Uy = QrsVs — kgt — kp(r —14) — 6 (4.1)

25 7]
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where ky,, kg € R™*™ are the control gains. From Prop. 2, s will then converge

to the switching manifold G, C S defined as

T
G, :={s €S| DI(r,) [aﬁf)] =0} (4.2)

We then further trigger the switching s.t. o < 2 with G; # Gy once s stabilizes
on the switching manifold G; with ¢ = 1 and small vs. We denote the instance
when this 0 switching occurs as t; > 0, and the time when s stabilizes to G
with small v, as t;11 > t;. We may again trigger another switching at ¢;;; with

o< 1.

Then, from (3.3), the energetics during the interval I; := [t;,t;41) will be:

tit1
wmmwww»=um—%mm—/ 5], dt
t;

tit1
yam—[ s] 2. d (4.3)

with ks(ti+1) > 0. We can therefore guarantee the strict decrease of ¢ if the
last line of (4.3) is strictly negative. The navigation potential ¢4(t) will then
eventually approach 0, i.e. s — sg4, if we switch between manifolds repetitively.
In order for the last line of (4.3) to be strictly negative, the bs-dissipation in
(4.3) will need to absorb r(t;) totally. The following lemma (also Lem. 2 in [37])
shows that this is possible if: 1) we trigger switching at ¢; when r4(¢;) is small
enough, i.e. v4(t;) < €,(D) since ks := vl Hyvs/2; and 2) the system traverses a

far enough distance D on § between t; and ¢;41.
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Lemma 1. Suppose ||s(t;+1) —s(t;)|| > D > 0. Then, there always exists €,(D) >
0 5.t i [Joa(ti)]| < eo(D),

ti+1 9
/ |[vs|[p, dt > ks(ti).
t;

T

where || % [|? := «Tx.

Proof: See [37]. ]

Lem. 1 leads to the nominal passivity-based switching control proposed in [37],
which is restated in Th. 3 below (also Th. 3 in [37]). Note that instead of only
two switching manifolds, we may use ps switching manifolds G, ;) with o(i) €
{1,2,...,ps}, where o(i) defines the switching index for I,y = [t;—1,t;) (i =
1,2,...). This switching index is constant during I;_;. We also define the “strip”
Gy(iy with the thickness of 8, > 0 s.t. G, = {s € S| dist(s, Gy(i)) < Om} as
shown in Fig. 4.1, where dist(z, y) is the minimum Euclidean distance between

x and y.

Theorem 3. Consider (2.8)-(2.9) with us (3.1) and u, (4.1). Assume the same
as Prop. 2. Suppose that, given d, > 0, we can find ¢s(s), 6, > 0 and D > 0
s.t., for any o € {1,2,..,ps} and s € S, if s € G, yet, s ¢ Ls, (see (2.13)),

3 a non-empty set W(s,o) C {1,2,...ps} s.t., the following switching manifold
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separation condition is granted:
dist(s,Go/) > D, Vo' € W(s,j) (4.4)
where G, is the strip of G, with §,,-thickness. Trigger the switching at ¢t =: ; >

ti—1 with o(i +1) € W(s(t),0(i)), if 1) s(t) & Ls,; 2) dist(s(t),Gy()) < dm; and
3) |lvs(t)]| < ey(D), where €,(D) is defined in Lem. 1. Then, lim;_,~ s(t) € Ls, .

Proof: See [37]. ]

M+

FIGURE 4.1: Illustration of passivity-based switching on R?, with two switching
manifolds Gy, Ga; strips Gi1, Go with 6, thickness; and the level set L;, .

&) et
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4.2 Robust Passivity-Based Switching Control

We now extend the results in Sec. 4.1 by including sliding-mode action as below
to deal with inertial uncertainties, i.e. mass, moment of inertia etc, which are
often difficult to be estimated. Similar to Sec. 3.2, we assume that only inertial
uncertainty exists, which again means that H and ) are uncertain, while the

kinematic terms such as vy, 7, d5, 0, have no uncertainty.

We shall note that the decoupling term Q4,7 in ug of our passivity-based switch-
ing and time-varying control frameworks is needed to prevent the energy jump-
ing in the spring £, due to switching of r, for switching control, and the energy
pumping from driving r,(t) for time-varying control. Without Qs,r, the energy
may flow back to the vs-dynamics and invalidate the energetics (4.15) below (for
switching control) and (3.11) (for time-varying control) on S. Then, the strict

decrease of ¢, will not be always guaranteed.

With the existence of uncertainties, Q, 7, i.e. imperfect decoupling due to the
error of parameter estimation is typically unavoidable. However, since the v,-
dynamics inherits passivity property with the uncertainty satisfying the matching
condition [2], we can reject “energy leak” from Q.7 back into the ve-dynamics

with the following control:

A T
s = Qur(r, Q)7 = bovs = DI (r) |25 — 5, —nll#llsgn(vs)  (4.5)
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where the last term is a sliding-mode like term with sufficiently large n > 0
and sgn(*) is a signum function. Note that since Qg = —QZ,, we only need to
estimate one uncertain term in our control framework, e.g. estimate Q, in (4.5)

to also obtain Qs in (4.9).

With (4.5), the closed-loop vs-dynamics (2.8) on S then becomes

N T
Hog + Qsvs + Qupt + byvg + DT {85";} +n||7||sgn(vs) =0 (4.6)

Let us now define a Lyapunov function V' (¢) := ks(t) + ¢s(t). From Prop. 1 with
(2.12) and (4.6), we can derive

dks s ~ . .
" = Al — S Doy — o Qe — Tl senvs)
dps(s)  Ops(s) .
_ 2
= sl - 2t 4 2 g

- V?erf‘ - VsTan,HSgn(VS)

where ks = vl Hovs/2, ||usllf, := vl bsvs, and de,/dt = [0p,/ds]s. Utilizing the
fact that 5(r) = 0, we can then find dV/dt to be:
AV drs | dps(s)
. dt dt
= —[wslls, — va Qur — v nllF|[sgn(vs)

sl (4.7)

IN

2] @
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Here, the last line is granted if n > 6[Q., (7, ¢)], that is, the last term of u, (4.5) is
able to absorb all energy leak to the vs,-dynamics from the imperfect decoupling
Q.. Note the second line of (4.7). We can see that the term v n||7||sgn(vs) is
linear w.r.t. both v5 and 7 since 7 is purely a constant, while the term VSTQSW
is quadratic w.r.t. at least one of vs; and 7 due to er(r, ¢) being a function of g.
Hence, we can always find 7 s.t. 7 > G[Qs(r, ¢)] to ensure the last line of (4.7),

especially since Q(r, ¢) is assumed to be bounded.

Integrating (4.7), we further have:

T
V(T)-V(0) < _/ |vs|f.dt, VT >0 (4.8)
0

Hence, if B(r) = 0, the energetics (4.8) again become the same as those of
common robotic systems. Similar to the case of adaptive passivity-based time-
varying control, this is possible due to the energy conservation properties of

passivity-based control.

Now, similar to Sec. 4.1, we stabilize r to a constant r, € R, where o is to
embed a switching sequence. Due to the existence of uncertain terms, this shall
be achieved by using the standard sliding-mode control [2] to the 7-dynamics

(2.9) as follows:

Uy = Qrsvs — kgt — kp(r —rg) — oy

=Y,5(0 + 6uy) — kgt — kp(r — r4) — 0r (4.9)

SR
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where ky,, kg € """ are the control gains, Y,+© is the linear parameterization
of mes with © being the nominal parameter vector, and du, is the additional
control term to compensate for the uncertainty. Following the typical approach

of sliding-mode control, we can design du, to be

YLy . T
—prer i [V #0
Su, = sl " (4.10)
0 if [|[YI7|| =0

where p is the nonnegative constant upper bound of the uncertainty ||© — 6],
i.e. ||© — ©]| < p. This additional control du, is however discontinuous on the
subspace defined by ||Y,L#|| = 0, and may cause chattering where the control
switches rapidly between the values in (4.10). Therefore, in practice, we may
implement a continuous approximation to this discontinuous control to reduce
such chattering as below:

YIr . T.
—PIVE if |7 > €

ouy, = (4.11)

o iyl <

€

where € is chosen to be only as large as necessary to eliminate chattering. Let
us denote Ss as the smallest level set of Lyapunov function V' containing B(J),
which is the ball of radius ¢ where ¢ is proportional to e [2]. We also denote B, as
the smallest ball containing Ss. Hence, in practice, the convergence of r is only
ultimately bounded w.r.t. B, due to the uncertainty. With e chosen to be only

as large as necessary, we can still sufficiently guarantee r — 7, (see Ch. 5). In
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fact, even without uncertainty, » — r, could take infinitely long time.

In contrast to Sec. 4.1, since the closed-loop vs-dynamics (4.6) is not smooth due
to the signum function in (4.5), we cannot ensure the convergence of s to the

switching manifold G, C S defined by

T dps(s) g
Go i ={s€S|D;(rs) s =0}. (4.12)
However, note that the term Q7 can produce energy leak only if 7 # 0. Hence,
we may first control r(t) — r, in finite-time with (4.9). Once 7 ~ 0, we then

replace the discontinuous sgn(v;) in (4.5) with smooth sat(vs) as follows:
— 0 AV _pT dos)] " _ s i
us = Qur(r,4)7 — bsvs — Dy (r) | =55 ds — nl|7|[sat(vs) (4.13)

With the closed-loop vs-dynamics now being smooth, we can ensure the conver-
gence of s to G, (4.12). Note that if » = 0, the closed-loop vs-dynamics (4.6)
would naturally be smooth. This control strategy is formalized in the following
proposition.

Proposition 4. Consider the vs-dynamics (2.8) with us in (4.5) (or (4.13) if 7 = 0
after r(t) — r,) and B(r) = 0. Suppose further that: 1) partial derivatives of
M(r) w.r.t. v of any order are bounded; 2) partial derivatives of ps(s) w.r.t. s

of any order are bounded if ¢;(s) is bounded; 3) 7,7 € L; 4) M (r) is smooth;
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and 5) ¢(0) is bounded with (4.8). Then, vs — 0 and

D (ry) [aﬁis)r 0. (4.14)

Proof: First, with 5(r) = 0, from (4.8), we have vs € Lo N Ly. This also means
G € Loo With 7 € L. Also, ps(t) < V(t) < V(0) Vt > 0, thus, dps/Ids € Loo.
Then, from (4.6) with the assumptions made above and the fact that Q(r,q) is
linear w.r.t. dM;;/Oq, and ¢ (with D(r) being also smooth), we have ¥y € L
(and also ¢ € Lo with 7 € L). Then, from Barbalat’s lemma [44], vs — 0. How-
ever, since the closed-loop vs-dynamics (4.6) is not smooth due to the signum
function in (4.5), we cannot apply Barbalat’s lemma as in Prop. 2 to show the
convergence of (4.14). In order for us to apply Barbalat’s lemma, we replace the
discontinuous sgn(vs) in (4.5) with smooth sat(vs) as in (4.13) once 7 ~ 0 after
r(t) — ro in finite-time with the control strategy as mentioned above. Now, dif-
ferentiating (4.6) with smooth sat(vs) and the above assumptions, we can show
that 5 € L. So, from Barbalat’s lemma, s — 0. Applying (vs,7s) — 0 and
(r,7) = (rs,0) to (4.6) shows the convergence of (4.14) and completes the proof.

From Prop. 4, s will then converge to the switching manifold (4.12). Let us
suppose that once s stabilizes on the switching manifold G; with ¢ = 1 and
small vg, we then further trigger the switching s.t. o < 2 with G; # Go. We

denote the instance when this i switching occurs as ¢; > 0, and the time when
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s stabilizes to Go with small v, as t;11 > t;. We may again trigger another
switching at t;41 with o <= 1. Note that for each switching, we control R with
(4.9) and S with (4.5); and once 7 ~ 0, we use (4.13) instead of (4.5) to ensure

the convergence to the switching manifold.

Then, from (4.8), the energetics during the interval I; := [t;, t;11) will be:

tit1
paltinn) — palts) < malti) — raltiss) — / sl 2. dt
t;

tit1 5
< hyt) — / vsll2. de (4.15)
t

i

with ks(ti+1) > 0. We can therefore guarantee the strict decrease of ¢, if the
last line of (4.15) is strictly negative. The navigation potential ¢g(t) will then
eventually approach 0, i.e. s — s4, if we switch between manifolds repetitively.
Similar to Sec. 4.1, in order for the last line of (4.15) to be strictly negative,
the bs-dissipation in (4.15) will need to absorb xs(t;) totally, which is possible
if: 1) we trigger switching at t; when k4(t;) is small enough, i.e. v4(t;) < €,(D)
since ks := vl Hsvs/2; and 2) the system traverses a far enough distance D on S
between t; and t; 1. In other words, even with uncertainty, our control framework
here still behaves similarly to Lem. 1 and Th. 3 of the nominal passivity-based
switching control. This is because we preserve the energetics (4.8) despite the
uncertainty by exploiting the passivity of the systems. The strategy above leads
to the robust passivity-based switching control, which is formalized in Th.

4 below. Again, we may use more than two switching manifolds, i.e. ps; switching
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manifolds G, ;) with o(i) € {1,2,...,ps}, where o(i) defines the switching index
for I_1 = [ti—1,t;) (1 =1,2,...).

Theorem 4. Consider (2.8)-(2.9) with us (4.5) (or (4.13)) and u, (4.9). Assume
the same as Prop. 4. Suppose that, given §, > 0, we can find ps(s), d,, > 0 and
D > 0s.t., forany o € {1,2,..,ps} and s € S, if s € G, yet, s & Ls, (see (2.13)),
3 a non-empty set W(s,o) C {1,2,...ps} s.t., the following switching manifold

separation condition is granted:

dist(s,Gor) > D, Vo' € W(s,j) (4.16)

where G, is the strip of G, with 6,,-thickness. Trigger the switching at t =: ¢; >
ti—1 with o(i +1) € W(s(t),0(i)), if 1) s(t) & Ls,; 2) dist(s(t),Gy()) < dm; and
3) |lvs(t)|| < ey(D), where €,(D) is defined in Lem. 1. Then, lim;_,~ s(t) € Ls, .

Proof: Recall that the closed-loop vs-dynamics (4.6) is not smooth due to the
signum function in (4.5). With the control strategy mentioned above, i.e. replac-
ing the discontinuous sgn(vs) in (4.5) with smooth sat(vs) as in (4.13) once 7 ~ 0
after r(t) — r, in finite-time, we ensure the convergence of s to G, (4.12). Hence,

we can now then follow the similar approach in [37] for the proof of Th. 4. m

Similar to Sec. 3.2, if there exists rq € {r1,72,...,7p,}, we can enforce the sep-
aration condition (4.16) with d, = 0, i.e., L5, = sq € S, to achieve our control
objective of ¢ = (s,7) — qq = (S4,7q). Otherwise, if r4 ¢ {r1,72,...,7p, }, we can

simply trigger another switching with 7, < r4 in (4.9) once s stabilizes to L,
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with small enough ||vs||. This allows us to achieve r — ry4 while keeping ||s — s4]|
small, instead of the asymptotic stabilization ¢ — ¢4, which is more of a theo-
retical interest. Instead of ¢ = ¢4, a small enough ||g — ¢4|| would be sufficient in

practice, since to achieve ¢ = g4 typically takes infinitely-long time.

To be more precise, denoting the last switching time by ¢, we can find from (4.15)

that

@s(t) < ps(t) + ws(t)

for all ¢ > t. Therefore, despite the last switching 7, < rg4, ¢s(t), hence ||s — s4]|
will remain small if ||v(f)|| is small, e.g., ks = v Hsvs/2 < €1. In other words,
s(t) < dp+e1, Vit > t, i.e. practical stabilization [22]. From Prop. 4, the switching
conditions 2) and 3) in Th. 4 can be achieved by waiting long enough between
switchings. Hence, we can reduce €; to be very small by waiting long enough for

each switching, thereby reducing ||s — s4|| during the final switching.
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Chapter 5

Simulation and Experiment

5.1 Simulation

Using our control frameworks, we stabilize the formation of multiple wheeled
mobile robots (WMRs) as below. Specifically, we stabilize N differential-drive
WMRs’ relative Cartesian positions to desired values without specifying the lo-
cation of each of them, i.e., position consensus [45]. Note that our control frame-
works are applicable to not only WMRs, but also every nonholonomic mechanical

system with the properties mentioned in Sec. 2.1.

The configuration of the it WMR, as shown in Fig. 5.1, is given by ¢; = [;; vi; 04],
where (z;,y;) is the Cartesian position of the geometric center and 6; is the yaw

angle relative to the inertial z-axis. These N WMRs may each have non-uniform

38 21 ©_ 11
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@) X

FIcurRE 5.1: Differential-drive wheeled mobile robot (WMR) with inertial

frame.

mass m; > 0, moment of inertia I; > 0 about the geometric center (z;,y;), and

distance d; > 0 between (x;,y;) and (Z¢i, Yei), where (x¢;, yei) is the center of

mass. The Lagrangian of each WMR, can then be written as

m; 0 —m;d; s 0;
L; = %QZT 0 m; mid;cO; | di
—my;d;s6; m;d;cb; I;
=:M;(0;)eR3%3

and its no-slip nonholonomic constraint as

Ai(0:)gi =] s0; —cO;, 0|di=0

(5.1)
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with the unconstrained distribution D;(6;) given by

CQi 0
D;(0;) =span | s6; 0 (5.2)
0 1

where c6; = cosf; and s#; = sin ;. Also, the Coriolis matrix is given by

0 0 —TrdezeZ C 92
C; (017 01) = 0 0 —mldﬂz s0;
0 0 0

with M; — 2C; being skew-symmetric.

The product configuration of the N WMRs will then be ¢ := [s;7] € R3V with
s i= 1391522, 92; - wn;yn] € K2V and r = [f1;09;...0n] € RY. The prod-
uct Lagrangian can then be written as L := £¢7 M(r)¢, with M(r) € R3V*3N

partitioned as in (2.7) with
Mio(r) = diag[My*(01), My*(02), ..., My? (Ow)] € RN

where Miu(@i) = [—myd; s 0;;m;d; c6;] € R2. We can also find the product un-
constrained distribution Ds(r) (2.5) from (5.2) s.t.

Dy(r) = diag[D15(61), Das(6), ..., Dns(On)] € RZVN



Chapter 5. Simulation and Experiment 41

where D;s(0;) := [c0;;50;] € R?. Note the fact that
T _
Miy(r)Ds(r) = 0,

which means that the N WMRs are passive configuration decomposable with

B(r) = 0. Note also that the product M — 2C' is skew-symmetric.

We can also find MZSZ + C;S; to be

—mlﬁl S 01 —mldlel C 91
MzSz + CiS; = mﬂz cb; —mzdﬂz s0;

In order to linear parameterize as in (3.8), we would need Cy;, which is the top

right block of M;S; + C;S; with the same size of Dis(6:), i.e.

Cop i _midie:i ct;
—mldzez S (92
Now, we can compute the linear parameterization of C’gim for the " WMR  as
in (3.8):
R . . 2
—mldzﬁlcel . —91' Cei ~

Coity = , T = 9 mid; = Y, ©;
—’ﬁlidigis@i —91‘ S@i
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where Yy, = [—9?0@; —égsﬁi] and ©; = m;d;. Following this, we can further

compute the product linear parameterization of Co (r, g7 s.t.
Yy = diag[Yar,, Yary, oy Yary] € RN
0 =[61;0,;..05] e RV
Similarly, we can also compute Y, for (4.9), with product @,s given as:
Qrs = diag[midi01, madaby, ..., mydyOy] € RN
Linear parameterizing ),svs, we obtain Y, s.t.

Yy = diag[Vysy, Yoy, oo Yosy] € RN

where Y, = vs;0;.

We are now ready to define our navigation potential ¢,(s) on S ~ R*V to be:
1 T
ws(s) :== §k5(3 —04)" [L ® Iaxa](s — 0g) (5.3)

where ks > 0 is the gain and ® is the Kronecker product. L € RV*V is the
Laplacian matrix [45] of graph G(V, E), which is assumed to be undirected and
connected. The node set V symbolizes N WMRs and the edge set E contains the

ps-potential links among the N nodes. We also define o4 := [0}; 0%; ...0)'] € R*N
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with o}, — oé specifying the desired Cartesian position offset between the i*" and
the 7 WMRs. With the definitions above, [L ® Izx2](s — 04) — 0 means that
s —0q — 1n ® c for an arbitrary ¢ € R2. Hence, instead of stabilizing to fixed
desired positions, the WMRs achieve the desired formation shape with an offset

vector ¢ € N2, i.e., E(2) symmetry.

We also define the control w, (3.14) with r, = 6,(¢) - 1y and u, (4.9) with
re = 0y - 1y, where 1y = [1;1;...1] € RN, The term [9ps(s)/ds]” of condition
(3.12) in Prop. 3 and condition (4.14) in Prop. 4 can then be written as

[co0 s 0 0 -~ 0 0
0 0 cO s . 0 O
ksl [Lehaells=o) 20
| 0 0 0 0 - c0 s0 |
where 0 := 01 = 6 = ...0y with 0(t) = 6,(t) for the time-varying control or

0 := 0, for the switching control. Due to Isxs, the term L ® Io4o is diagonal,

hence allowing us to define the relation above in a simpler expression s.t.,
L(z — 04z) 0 4 L(y — 0ay)s60 — 0 (5.4)

where 04, = [0},;05,;...0})] € RY and ogy := [oéy;oiy; ...oé\;} € RN with of, ==
[oilx;oily] € R2. Therefore, the relation (5.4) will enforce L(z — 0g,) — 0 and

L(y — 04y) — 0, hence achieving [L® I2x2](s —o04) — 0, i.e. the desired formation.



Chapter 5. Simulation and Experiment 44

We perform simulations for four WMRs with the parameters (mq,[;,d;) =
(6.7,0.1,0.1) for WMR 1, (mag, I2,d2) = (3.4,0.4,0.25) for WMR 2, (mg, I3,d3) =
(3.4,0.075,0.12) for WMR 3, and (my, I4,d4) = (4.2,0.2,0.075) for WMR, 4. We
also choose ks = 500 for time-varying control and ks = 200 for switching control,
with the stopping criteria chosen to be ¢, <1 x 107 and ¢, < 2 x 107> respec-
tively. Here, we investigate two cases: 1) low inertial uncertainty, i.e. 15-30%;
and 2) high inertial uncertainty, i.e. 70-85%. The simulation results are shown in
Fig. 5.2 to 5.5 for passivity-based time-varying control (PBVC), Fig. 5.6 to 5.9
for adaptive passivity-based time-varying control (APBVC), Fig. 5.10 to 5.13 for
passivity-based switching control (PBSC), and lastly Fig. 5.14 to 5.17 for robust

passivity-based switching control (RPBSC).

For the cases of PBVC/APBVC (or PBSC/RPBSC respectively), we control r
s.t. it increases linearly with time (or switches between two constant values) until
the formation error is less than the stopping criteria chosen. From Fig. 5.2 and
5.10, we can see that with low inertial uncertainty, PBVC and PBSC are still able
to stabilize the formation to a certain extent, despite the fact that the formation
is not a perfect square as desired. In fact, the formation error does not decrease
below a certain steady-state error due to the uncertainty, which could not be
compensated without adaptive or sliding-mode actions. This steady-state error
is larger if the inertial uncertainty is higher, i.e. the estimated parameter values
deviate more from the true parameter values. This can be observed from Fig. 5.4
and 5.12 that the formation distorts much more for the cases with high inertial

uncertainty. Nevertheless, we can still claim that the nominal counterparts of our
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passivity-based control frameworks are robust particularly against low inertial
uncertainty. Similar phenomenon can also be seen by comparing Fig. 5.3, 5.11
(low inertial uncertainty) with Fig. 5.5, 5.13 (high inertial uncertainty). We can
see that the WMRs’ z-positions oscillate w.r.t. the desired set-points, but not
being able to converge to them. This oscillating behavior is even stronger for the
cases with high inertial uncertainty. Note also that since the formation error does
not decrease below our desired stopping criteria, r continues to increase linearly

with time (or to switch between two constant values).

On the other hand, from Fig. 5.6 to 5.9 for APBVC and Fig. 5.14 to 5.17 for
RPBSC, we can see that the formation stabilizes to a perfect square for both low
and high inertial uncertainties. Instead of oscillating w.r.t. the desired set-points,
the WMRs’ z-positions converge shortly after about 17[sec|] for APBVC and
15[sec| for RPBSC even with high inertial uncertainty. Also, since the formation
error is less than our desired stopping criteria, r also stabilizes to the desired
value instead of continuing to increase linearly with time (or to switch between
two constant values). Therefore, we can safely claim that our adaptive and robust
passivity-based control frameworks are robust against inertial uncertainty, even

that of very high one.
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5. (x,y)-Trajectories of WMRs - PBVC
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y-position[m]
=
O

N
o

-1 0 1
x-position[m]

FI1GURE 5.2: Simulation of nominal passivity-based time-varying formation sta-
bilization with low inertial uncertainty: Trajectories.
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x-Positions of WMRs - PBVC

x-position [m]
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time[sec]
FI1GURE 5.3: Simulation of nominal passivity-based time-varying formation sta-

bilization with low inertial uncertainty: Configurations and navigation poten-
tial.
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(x,y)-Trajectories of WMRs - PBVC
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FI1GURE 5.4: Simulation of nominal passivity-based time-varying formation sta-
bilization with high inertial uncertainty: Trajectories.
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x-Positions of WMRs - PBVC
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FIGURE 5.5: Simulation of nominal passivity-based time-varying formation sta-

bilization with high inertial uncertainty: Configurations and navigation poten-
tial.
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(x,y)-Trajectories of WMRs - APBVC
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FIGURE 5.6: Simulation of adaptive passivity-based time-varying formation
stabilization with low inertial uncertainty: Trajectories.
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x-Positions of WMRs - APBVC
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FIGURE 5.7: Simulation of adaptive passivity-based time-varying formation
stabilization with low inertial uncertainty: Configurations and navigation po-
tential.

X&) 8

—

TU



Chapter 5. Simulation and Experiment 52

(x,y)-Trajectories of WMRs - APBVC
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F1GURE 5.8: Simulation of adaptive passivity-based time-varying formation
stabilization with high inertial uncertainty: Trajectories.
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x-position [m]

x-Positions of WMRs - APBVC
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FIGURE 5.9: Simulation of adaptive passivity-based time-varying formation
stabilization with high inertial uncertainty: Configurations and navigation po-

tential.
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(x,y)-Trajectories of WMRs - PBSC
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F1GURE 5.10: Simulation of nominal passivity-based switching formation sta-

bilization with low inertial uncertainty: Trajectories.
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x-Positions of WMRs - PBSC
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FIGURE 5.11: Simulation of nominal passivity-based switching formation stabi-
lization with low inertial uncertainty: Configurations and navigation potential.
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(x,y)-Trajectories of WMRs - PBSC
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FI1GURE 5.12: Simulation of nominal passivity-based switching formation sta-
bilization with high inertial uncertainty: Trajectories.
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F1GURE 5.13: Simulation of nominal passivity-based switching formation stabi-
lization with high inertial uncertainty: Configurations and navigation potential.
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(x,y)-Trajectories of WMRs - RPBSC
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FI1GURE 5.14: Simulation of robust passivity-based switching formation stabi-
lization with low inertial uncertainty: Trajectories.
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x-Positions of WMRs - RPBSC
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FIGURE 5.15: Simulation of robust passivity-based switching formation stabi-
lization with low inertial uncertainty: Configurations and navigation potential.
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(x,y)-Trajectories of WMRs - RPBSC
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F1GURE 5.16: Simulation of robust passivity-based switching formation stabi-
lization with high inertial uncertainty: Trajectories.
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x-Positions of WMRs - RPBSC
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FIGURE 5.17: Simulation of robust passivity-based switching formation stabi-
lization with high inertial uncertainty: Configurations and navigation potential.
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5.2 Experiment

FIGURE 5.18: Small and large WMRs with VICON® motion capture system
markers used in the experiments.

In addition to simulations, we conduct experiments of multiple WMRs’ formation
stabilization from Sec. 5.1 to verify our proposed control frameworks for practi-
cal applicability. The WMRs used in the experiments are shown in Fig. 5.18. In
particular, we use one large WMR as WMR 1 and two small WMRs as WMR 2
and 3 with the measured parameters given as follow: (m;, ms) = (4.74, 3.48)[kg],
(I, Is) = (11.4 x 1072,3.32 x 1072)[kgm?], (¢, cs) = (13.5,10.0)[cm], r; = rs =
3.25[cm], and (d;,ds) = (10.0,5.5)[cm], where x; and %5 denote the parameters
defined in Fig. 5.1 for the large and small WMRs respectively. The WMRs are
differential driven by two BLDC motors each. The gearbox reduction ratios are
respectively 51:1 and 18:1 for the large and small WMRs. The commands are
sent from a ground PC to the WMRs via XBee RF modules. The WMRs’ posi-
tions and orientations are obtained through VICON® motion capture system at

240[Hz| with their velocities computed from numerical differentiation.
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A ring graph G similar to Sec. 5.1 is adopted with the desired formation shape
being an isosceles triangle. The stopping criterion is chosen to be ¢ < 0.01, with
ks = 65 for the nominal and adaptive passivity-based time-varying control and
ks = 75 for the nominal and robust passivity-based switching control. The ex-
perimental results are shown in Fig. 5.19 to 5.22 for passivity-based time-varying
control (PBVC), Fig. 5.23 to 5.26 for adaptive passivity-based time-varying con-
trol (APBVC), Fig. 5.27 to 5.30 for passivity-based switching control (PBSC),
and Fig. 5.31 to 5.34 for robust passivity-based switching control (RPBSC).

In general, we can see that the experimental results show similar trend as the
simulation results in Sec. 5.1. From Fig. 5.20, 5.28 (low inertial uncertainty) and
Fig. 5.22, 5.30 (high inertial uncertainty), we can see that the WMRs’ z-positions
oscillate w.r.t. the desired set-points, but not being able to converge to them.
Similar to Sec. 5.1, since the formation error does not decrease below our desired
stopping criterion, r continues to increase linearly with time for PBVC and to

switch between two constant values for PBSC.

On the other hand, from Fig. 5.23 to 5.26 for APBVC and Fig. 5.31 to 5.34 for
RPBSC, we can see that, instead of oscillating w.r.t. the desired set-points, the
WMRs’ z-positions converge shortly after about 8[sec] for APBVC and 17][sec]
for RPBSC even with high inertial uncertainty. Since the formation error is less
than our desired stopping criterion, r also stabilizes instead of continuing to
increase linearly with time (or to switch between two constant values). Note that

the RPBSC exhibits slower convergence due to the WMRSs’ stopping at each
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switching. This convergence time can be shorten by optimizing the switching
action and control gains, e.g. allowing the WMRs to transverse a larger distance
D on S during each switching so that the last line of (4.15) is highly negative,
hence reducing the navigation potential p4(¢) more at each switching. Note also
that the control gains here are by no means optimal. Optimizing the switching
(or time-varying) actions and control gains for better performance will be a topic

for future research.

From Fig. 5.19, 5.21 for PBVC, and Fig. 5.27, 5.29 for PBSC, we can see that
the WMRs “float” around and cannot converge, yet still maintain the desired
isosceles triangle formation to a certain extent. Again, the formation error does
not decrease below a certain steady-state error due to the inertial uncertainty,
which needs to be compensated by adaptive or sliding-mode actions. With low
inertial uncertainty, the Fuclidean norms of the oscillating formation error on
average are about 3.58[cm] and 3.44[cm] for PBVC and PBSC respectively. These
average Euclidean norms are about 4.60[cm] and 4.75[cm] for PBVC and PBSC
respectively with high inertial uncertainty. Here, we use the average Euclidean
norm of the oscillating formation error instead of the terminal Euclidean norm
of the formation error since the WMRs do not stabilize to a final formation.
We can then see that these nominal counterparts of our passivity-based control
frameworks are relatively robust against low inertial uncertainty, and would likely

be sufficient for applications which do not require highly precise control.

On contrary, from Fig. 5.23, 5.25 for APBVC, and Fig. 5.31, 5.33 for RPBSC, the
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WDMRs converge to the desired formation with its centroid symmetric in SE(2).
The formation error’s terminal Euclidean norms are 0.96[cm] and 0.89[cm]| for
APBVC and RPBSC respectively with low inertial uncertainty; and 0.84[cm)]
and 0.90[cm] respectively with high inertial uncertainty. These values do not
vary significantly even when the inertial uncertainty is high. Therefore, we can
then claim that our adaptive and robust passivity-based control frameworks are
robust against inertial uncertainty, even that of very high one, in addition to

other disturbances such as sensor noises, sampling effect, etc.
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15 (x,y)-Trajectories of WMRs - PBVC
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FIGURE 5.19: Experiment of nominal passivity-based time-varying formation
stabilization with low inertial uncertainty: Trajectories.
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x-Positions of WMRs - PBVC
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FI1GURE 5.20: Experiment of nominal passivity-based time-varying formation

stabilization with low inertial uncertainty: Configurations and navigation po-
tential.
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e (x,y)-Trajectories of WMRs - PBVC
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F1GURE 5.21: Experiment of nominal passivity-based time-varying formation
stabilization with high inertial uncertainty: Trajectories.
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x-Positions of WMRs - PBVC
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FIGURE 5.22: Experiment of nominal passivity-based time-varying formation

stabilization with high inertial uncertainty: Configurations and navigation po-
tential.
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e (x,y)-Trajectories of WMRs - APBVC
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FI1GURE 5.23: Experiment of adaptive passivity-based time-varying formation
stabilization with low inertial uncertainty: Trajectories.
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FIGURE 5.24: Experiment of adaptive passivity-based time-varying formation
stabilization with low inertial uncertainty: Configurations and navigation po-

tential.
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e (x,y)-Trajectories of WMRs - APBVC
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FI1GURE 5.25: Experiment of adaptive passivity-based time-varying formation
stabilization with high inertial uncertainty: Trajectories.
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x-Positions of WMRs - APBVC

2r \

x-position [m]
- o

‘—x - =X, —X

1 2 3
2L 1 L L L .
0 10 20 30 40 50
Angles of WMRs & Navigation Potential (ps(s) - APBVC
5r : 1
99 25/
g N
Z 0 .
=
= 25 a
@ —6,/(4n) - -8,/(4n) — 6,/(4n) ---log @,
_5 L 1 1
0 10 20 30 40 50
time[sec]

FIGURE 5.26: Experiment of adaptive passivity-based time-varying formation
stabilization with high inertial uncertainty: Configurations and navigation po-
tential.
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(x,y)-Trajectories of WMRs - PBSC
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FIGURE 5.27: Experiment of nominal passivity-based switching formation sta-
bilization with low inertial uncertainty: Trajectories.
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FI1GURE 5.28: Experiment of nominal passivity-based switching formation sta-
bilization with low inertial uncertainty: Configurations and navigation poten-

tial.
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e (x,y)-Trajectories of WMRs - PBSC
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FIGURE 5.29: Experiment of nominal passivity-based switching formation sta-
bilization with high inertial uncertainty: Trajectories.
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F1GURE 5.30: Experiment of nominal passivity-based switching formation sta-

bilization with high inertial uncertainty: Configurations and navigation poten-
tial.
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. (x,y)-Trajectories of WMRs - RPBSC
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F1GURE 5.31: Experiment of robust passivity-based switching formation sta-
bilization with low inertial uncertainty: Trajectories.
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x-Positions of WMRs - RPBSC
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FIGURE 5.32: Experiment of robust passivity-based switching formation stabi-
lization with low inertial uncertainty: Configurations and navigation potential.
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(x,y)-Trajectories of WMRs - RPBSC
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F1GURE 5.33: Experiment of robust passivity-based switching formation sta-
bilization with high inertial uncertainty: Trajectories.
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FIGURE 5.34: Experiment of robust passivity-based switching formation stabi-
lization with high inertial uncertainty: Configurations and navigation potential.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we propose novel passivity-based stabilization control frameworks
for a class of nonholonomic mechanical systems with uncertain inertial param-
eters. Passive configuration decomposition is first applied to configuration-level
decompose the system’s Lagrange-D’Alembert dynamics into two systems, each
inheriting Lagrangian structure and passivity from the original dynamics. Utiliz-
ing the nonlinearity and passivity of the decomposed dynamics, we propose adap-
tive passivity-based time-varying control (APBVC) and robust passivity-based

switching control (RPBSC) schemes to achieve stabilization for this certain class
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of nonholonomic mechanical systems. These control frameworks adopt the con-
cepts of adaptive control and sliding-mode control respectively to compensate for
the inertial uncertainty. Both simulation and experimental results are provided
to verify our proposed control frameworks, from which we find that the control
frameworks are robust against inertial uncertainty, even that of very high one.
We also find that the nominal counterparts of our control frameworks are fairly

robust for the cases with low inertial uncertainty.

6.2 Future Work

One of the future research topics would be the optimization of time-varying
and switching control actions. More specifically, we could optimize such actions
based on electrical power consumption, which results can be applied to the non-
holonomic robots for logistic applications such as Fetch Robotics and Amazon
Robotics. These robots usually run 24 hours per day, hence electrical power con-
sumption would be a critical factor to be considered. We could also optimize the

control actions w.r.t. convergence time for faster convergence.

Besides that, other possible future research topics include: 1) extension of our
control frameworks to various control objectives, e.g. trajectory tracking, obstacle
avoidance; 2) derivation of the conditions for parameter convergence for adaptive

passivity-based time-varying control; 3) incorporation of underactuation in D;
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and 4) extensive experimental comparisons of our control frameworks against

other control approaches.
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