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This thesis suggests optimal configurations for redundant inertial sensors with 

analysis of geometric parameters with respect to Fault Detection and Identification 

(FDI). To define FDI performance of each configuration, a performance index for FDI 

method based on Parity Space Approach (PSA) is applied. Even though this index is 

dependent on the geometry of sensor configurations, however, it is hard to analyze the 
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performance index directly since it is expressed in the null space of Direction Cosine 

Matrix (DCM) for the configurations. To solve this limitation, a modified form of the 

FDI performance index is presented as a function of geometric parameter of the 

configurations. It makes the FDI performance analysis and optimization of the 

configurations much easier. Additionally, the optimizations of configurations such as 

platonic solids, single cones and dual cones are conducted by the modified 

performance index. Finally, the FDI performance of each configuration is compared 

with others by the FDI performance index. The comparison result shows that the 

optimized dual conic configurations achieve FDI performance superior to the one of 

other configurations. The same results are also confirmed by simulations and 

experiments on each configuration. 
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Chapter 1 

 

Introduction 

 

1.1 Motivation and Background 

Inertial sensors are fundamental components of Inertial Navigation System (INS) 

utilizes acceleration and angular rate measurements to calculate position and attitude of 

a body without external aids. For past decades, performance of the inertial sensor has 

been improved while its price has been decreased dramatically as MEMS technology 

has been developed. Now the inertial sensor is an essential component for modern 

navigation system from military, space applications [1,2] to even personal devices such 

as smartphone and amateur drones [3,4,5]. If unexpected faults occur on the sensors, 

however, it results in serious problems of navigation solutions since the solutions are 

achieved by integrating the measurements of inertial sensors. As the error of fault is 

integrated, the navigation solution may diverge [6]. Because of this reason, the inertial 

sensor requires high reliability and there are some Fault Detection and Identification 

(FDI) algorithms for the inertial sensors to mitigate the fault on the sensor 

measurements [7,8,9]. In general, the FDI algorithms for the systems require 

redundancies which mean surplus, duplicative function of another components of the 

systems. The redundancy of the system can be additional sensors or system 
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information from the mathematical models. Hwang et al. [7] defined the concept of the 

redundancy as illustrated in figure 1.1. In the concept of hardware redundancy, 

duplicative signals from various sensors are compared each other and the algorithms 

such as wavelet transformation and residual generation using Parity Space Approach 

(PSA) can be applied. On the other hand, states or values estimated by the algorithms 

such as Kalman filter using mathematical information are utilized for the residual 

generation in the concept of analytical redundancy. Though the analytical redundancy 

is more effective with respect to the system costs, hardware redundancy is more 

intuitive and easy to apply since it does not need to ensure the system robustness under 

the disturbances, uncertainties and noises [7]. Moreover, the redundant sets of 

hardware can be utilized to recover the system from the fault. In this reason, many 

systems considering high reliability basically adapt the hardware redundancy even they 

also applies analytical redundancies.  

 

 

Figure 1.1 Concept of redundancy for FDI algorithm [7] 
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Meanwhile, Inertial Measurement Unit (IMU) in INS consists of at least three 

inertial sensors to estimate its states in three dimensional space. By using same types of 

sensors more than that, the IMU has hardware redundancy and is called Redundant 

IMU (RIMU) [6]. After Weiss and Nathan [10] firstly suggested the concept of RIMU, 

many researchers have been conducted studies on this topic. As practical examples of 

RIMU, Sukkarieh et al.[4] and Yoon et al.[5] applied RIMU to their drones. Moreover, 

a redundant gyro module is applied to the BILSAT-1, an earth observation satellite 

developed by cooperative research team of Surrey Satellite Technology (SSTL) and 

TÜBİTAK Space Technologies Research Institute [11]. Recently, Bittner et al. [12] 

introduced a cluster of IMU and Nilsson et al. [3] presented their open-source Multi 

IMU (MIMU) platform for pedestrian dead reckoning. 

 

 

(a) Tetrahedron configuration [13] (b) RIMU on integrated circuit boards [14] 

Figure 1.2 Examples of practical RIMU system 
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As theoretical approaches for RIMU, Wilcox [15] confirmed that PSA is appropriate 

for FDI of RIMU more than other methods. However, this result is acquired by 

numerical simulations and it is hard to compare various configurations with this 

method. To simplify this comparison process, Harrison and Gai [16] defined a 

performance index, also called Figure Of Merit (FOM), for PSA-based FDI. Since this 

index is dependent on the RIMU configuration, there exists optimal solution of sensor 

arrangement for FDI performance of RIMU. Therefore, various RIMU configurations 

are compared with each other in previous research [2,6,17,18,19,20] to find the optimal 

solution for FDI performance. However, there are few mathematical approaches to 

optimize the configurations with respect to the FDI of RIMU since it is hard to analyze 

the FDI performance index expressed in the null space of Direction Cosine Matrix 

(DCM) for RIMU configuration [16]. 

 

1.2 Objectives and Contributions 

In the previous research with respect to the optimal configurations of RIMU, a lot of 

case studies and comparisons based on the performance index defined by Harrison [16] 

are conducted. However, Guidance, Navigation and Control (GNC) performance of 

RIMU has not been considered in the FDI performance comparisons and there has 

been no analytic approaches to find the optimal solutions in the previous research. The 

main objective of this thesis is to provide a base of the analytic approach for the 
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optimization of FDI performance index to overcome the limitations in previous 

research. In order that, a modified form of FDI performance index with respect to the 

angles between the inertial sensors is proposed to express the FDI performance of 

RIMU as a function of configuration geometry under the constraint for the optimal 

GNC performance. This modified index provides the base for the analysis of the FDI 

performance and make the optimization much easier and more reasonable. Another 

goal of this thesis is to validate the optimization using the proposed index. For this, the 

analytic optimization results are compared with numerical ones. Also, Monte Carlo 

simulations and experiments using 3D-printed frame are conducted to verify the 

comparison results of the index with the real FDI performance of RIMU. 

 

1.3 Organization 

This thesis is organized as follows. In chapter 2, sensor model and the performance 

index of RIMU defined in previous research are reviewed. Chapter 3 presents a 

modification of established FDI performance index. Using this modified FDI 

performance index, optimizations of the RIMU configurations are conducted and 

comparison results of the FDI performance index for each configurations are shown in 

chapter 4. To certify the result of the performance index optimization, simulations and 

experiments for real RIMU system are conducted in chapter 5. Finally, conclusions 

follow in section 6.  
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Chapter 2  

 

Problem Formulation 

 

2.1  Sensor Measurement Model 

To define proper performance index for RIMU, mathematical model of inertial 

sensor measurements is required. The measurements of multiple inertial sensors on the 

RIMU are acquired as illustrated on figure 2.1 and they can be expressed in simple 

linear model as follows [16]: 

 

2

3

1 1 1

n n

,  ,  ,   

x

x

x





     
              
     
     

h

m Hx ε H x ε

h

      (2.1) 

 

 

Figure 2.1 Measurement model of RIMU 
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where n  is the number of sensors and nm   is a column vector of sensor 

measurements. DCM H  consists of unit row vectors ih  aligned to the direction of 

ith sensor. A column vector 3x   represents states such as acceleration or angular 

rate of the body and nε   is a column vector of Gaussian white noise whose 

property is as follows [16]: 

 

2
nE( ) , E( )  Tε 0 εε I       (2.2) 

 

where nI  is n th identity matrix. It is assumed that all sensors have noise with the 

same standard deviation  . 

 

2.2  GNC Performance Index 

Since the measurements of inertial sensors include stochastic noise, it is 

impossible to calculate exact value of state vector x  with them. Therefore, 

proper estimation techniques such as least squares method are required. From 

the system model of (2.1), an estimated state vector x̂  is given as (2.3) by the 

least squares method [16]. 

 

T -1 Tˆ x (H H) H m       (2.3) 
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Because x̂  is not the exact solution, an estimation error e  and its covariance 

C  exist as follows [16]: 

 

ˆ e x x        (2.4) 

  TT 2 T -1ˆ ˆE( ) E       C ee x x x x (H H)    (2.5) 

 

The smaller the estimation error is, the better navigation solution can be 

acquired. Therefore, the GNC performance of RIMU is related to the error 

covariance and the index for the GNC performance can be defined as (2.6) by 

normalizing the standard deviation  [16]. 

 

T -1
GNCFOM trace( ) trace     C (H H)     (2.6) 

 

From the definition of (2.6), GNCFOM  has to be minimized to optimize the 

navigation performance of RIMU since it is proportional to the estimation 

errors. Meanwhile, GNCFOM  can be rewritten with the eigenvalues 1 , 2  

and 3  of TH H  and following Cauchy-Shwarz inequality is established [2] : 

 

1 1 1 3
1 3N 3 2G 2C 1FOM trace( 3)           C    (2.7) 
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Therefore, the optimal solution of GNCFOM  is achieved when GNCFOM  is 

minimized as the equality holds on. The constraint to hold on the equality in 

(2.7) is (2.8) and it results in (2.9) [2]. 

 

1 2 3    , T
1 2 3trace n        (H H)    (2.8) 

T
3

n

3
H H I        (2.9)  

 

Since the most important property of RIMU is a measurement accuracy, the 

condition for optimal GNC performance satisfying equation (2.9) is considered 

as a basic constraint in this thesis. 

 

2.3  FDI Performance Index 

Even though there are many methods for FDI of inertial sensors, PSA algorithm is 

one of the most famous methods to define the index for FDI performance. This method 

uses a parity vector p  defined as follows [16]: 

 

1 1 11 1n

n n n1 nn

,   , =

p v v

p v v

     
            
     
     

v

p Vm p V

v



    



        (2.10) 
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where T
iv  is the null space of TH  so that TT

i =H v 0 . It makes ip  independent to 

the state vector x  which means that motion of the RIMU is excluded from FDI 

process. Additionally, ip  is a parity value to detect a fault on ith sensor. Therefore, it 

has to be insensitive to the fault on the sensors except ith one. It is satisfied when square 

sum of iv ’s components except ii 1v   is minimized as follows [16]: 

 

n
2
ik ii

k=1,k i

is minimized to 1v v


           (2.11) 

 

To find the solution of iv  satisfying the condition (2.11), (i)
iv  and (i)H  are defined 

as iv  and H  except their ith component iiv  and row vector ih  as follows: 

 

 i1 i(i-1) i(i+1)
(i)
i inv v v vv            (2.12) 

 i 1

T(i) T T
i

T
1 1

T
n H h h h h           (2.13) 

 

Then, i 3=v H 0  can be rewritten as (i) (i)
i i+ v H h 0  and (i)

iv  is a solution of Lagrange 

equation following in (2.14) and (2.15) [6, 16]. 

 

 

(i)
(i)
i

T(i)

(n-1)

i

2

-η

              

I H 0v

hH 0
          (2.14) 
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   
1T T(i) (i) (i) (i)

i i= -


 
  

v h H H H           (2.15) 

 

where η  is Lagrange multiplier. Meanwhile, the stochastic properties of ip  for each 

case of normal condition and fixed-bias fault on kth sensor are as follows [6, 16]: 

 

i

2 T 2
i iiNormal condition: E( ) 0, pp    v v          (2.16) 

i

2 T 2
ij j ii iFault on j-th sensor: E( ) , pp v f    v v         (2.17) 

 

where   is a standard deviation of sensor noise and jf  is a size of additive fault on 

jth sensor. Since sensitivity of ip  to the fault on jth sensor is related to ratio of 

ij jiE( )p v f  and 
i

2 T 2
i ip  v v , fault distance related to the sensitivity of ip  is 

defined as follows [6, 16]: 

 

2
ij

ij T
i i

J
v


v v

            (2.18) 

 

It means the sensitivity of ip  to the fault on jth sensor. Also, it is hard to identify 

which sensor is in fault if iiJ  is similar with ijJ . From this idea, the index for FDI 

performance of ip  is defined as follows [6, 16]: 
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i

j

ii

ij

J
FOM =

max J (j i)p 
           (2.19) 

 

If 
i

FOM 1p   , it means that the parity ip  for ith sensor cannot tell the fault on ith 

sensor and jth sensor since the fault distances for both cases are same. Additionally, 

FDIFOM  for whole sensors on RIMU is defined as (2.20) since RIMU including n-

sensors has to consider the worst case of 
i

FOM p [6, 16]. 

 

ii
2i

FDI
ij

i
ij

j j

J 1
FOM = min min

max J (j i) max (j i)v

   
   
    
   

        (2.20) 

 

2.4  Limitations of Previous Research 

The aforementioned index for the GNC and FDI performance of RIMU is 

determined by the configurations of RIMU and it is remarkably helpful to compare the 

performance of each system without simulations or experiments for practical systems. 

However, the current form of the FDI performance index is not appropriate to express 

the FDI performance of RIMU as a function of geometric parameter directly related to 

the RIMU configuration since it is a function of null space components for the DCM of 

RIMU configuration. Therefore, it is hard to find the optimal configuration analytically 
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and that’s why there have been only comparison results of case studies for some 

configurations in previous research. Moreover, the current form of the FDI 

performance index does not consider the constraint for the optimal solution of the GNC 

performance index. Therefore, a new form of FDI performance index considering 

geometric parameters of RIMU configuration and constraint for optimal GNC 

performance is required. 
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Chapter 3  

 

Performance Index Modification 

 

3.1 Geometric Parameter of Sensor Configuration 

Limitations of the FDI performance index in previous research make hard to 

optimize the FDI performance of RIMU by configuration analysis. To solve this 

problem, a new vector ik  is defined as follows: 

 

 T T

i i1i incos cos  k Hh       (3.1) 

 

where ij  is an included angle between the direction of ih  and jh  whose range is 

ij0    in three-dimensional space. Then, (i) (i)
i i+ v H h 0  can be rewritten as (3.2) 

by multiplying ik  to the right side of its each term: 

 

 

Figure 3.1 Illustration of direction cosine vectors and included angles 
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(i) (i)
i i 1 0 v k        (3.2) 

 

where (i)
ik  is ik  except its ith components iicos 1  . From the same logical flow of 

the FDI performance index definition in chapter 2 [16], iv ’s components can be 

rewritten as follows: 

 

   
1T T(i) (i) (i) (i)

i i i i


     

v k k k      (3.3) 

ii ij n

k=1,k

i

i

j

ik

cos
1, ( j i)

cos
v v







  


     (3.4) 

 

It is only possible when there exists at least one sensor whose direction vector 

j ( j i)h  is not orthogonal to ih  so that (i)
i k 0 . If this condition is not satisfied, the 

output of ith sensor is independent to all other sensors. Then, 
i

FOM p  in (2.19) is not 

defined since (i)
iv  is singular as (i) H 0  and there’s no physical meaning for FDI of 

the RIMU. Therefore, it is assumed that this condition to derivate equation (3.3) from 

(3.2) is satisfied. 

 

3.2 Modified Performance Index 

By using the new parameter ij  in ik , the current FDI performance index can be 

expressed in a modified form considering the constraint for optimal GNC performance. 
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First, the optimal navigation constraint (2.9) can be rewritten as follows: 

 

   T T T
i i

T

i
T
i i i

n n

3 3
  k k Hh Hh h h      (3.5) 

 
n T(i) (i) T

i i i i
k=1,k

i
i

k

n
cos 1 1

3




     k k k k     (3.6) 

 

It means that the denominator of ijv  in (3.4) is a constant for the number of sensors if 

the constraint for optimal GNC performance is satisfied. From this result, the modified 

FDI performance index proportional to the current one can be defined as follows: 

 

   FDI FDImodifie 2id
ij ijj  i

1 1
FOM min FOM

max cos   


 
   
 
 

  (3.7) 

 

where  
i, j

ij ijmax cos (j i)    . Therefore, it is possible to optimize the FDI 

performance index by minimizing  ij   since it is inversely proportional to the FDI 

performance index. In other words, the optimal solution for FDI performance of the 

RIMU can be determined by ij  of the RIMU configuration. Additionally, this result 

is based on the constraint of optimal GNC performance in (2.9). If this condition is not 

satisfied, the newly suggested form of the FDI performance index cannot be utilized 

and  ij   is not acceptable for the optimization. 
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Chapter 4  

 

Performance Index Optimization 

 

4.1  Platonic Solid Configuration 

A platonic solid is a geometric solid whose faces are all identical, regular polygons 

meeting at the same three-dimensional angles and there are only five solids as shown in 

figure 4.1 which meet this criteria. All of them satisfy the constraint for optimal GNC 

performance index if each sensor is placed along to the normal direction of each 

surface of the solids [2]. As one of the examples that meet the constraint for optimal 

GNC performance, sensor directions on the tetrahedron is shown in figure 4.2. 

 

 

Figure 4.1 Platonic solids 
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Figure 4.2 Optimal configuration for GNC performance : tetrahedron 

In the same approach, DCM H of each platonic solid that satisfies the constraint for 

optimal GNC performance is shown in table 4.1. 

 

Table 4.1 DCM H  of platonic solids satisfying T
3

n

3
H H I  

Configuration n  DCM H  

Tetrahedron 

(type 1) 
4 TET

2 2 0 1

1 2 6 1

3 2 6 1

0 0 3

 
 
 

  
  
  

H  

Cube 

(type 2) 
6 CUBE

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

 
 
 
 

  
 
 
   

H  
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Configuration n  DCM H  

Octahedron 

(type 3) 
8 OCT

2 0 1

2 0 1

0 2 1

0 2 11

3 2 0 1

2 0 1

0 2 1

0 2 1

 
 
 
 
 
     
  
 

 
    

H  

Dodecahedron 

(type 4) 
12 DOD

0 0 5

0 0 5

2 0 1

2cos(0.4 ) 2sin(0.4 ) 1

2cos(0.8 ) 2sin(0.8 ) 1
1 2cos(0.8 ) 2sin(0.8 ) 1

5 2cos(0.4 ) 2sin(0.4 ) 1

2 0 1

2cos(0.4 ) 2sin(0.4 ) 1

2cos(0.8 ) 2sin(0.8 ) 1

2cos(0.8 ) 2sin(0.8 ) 1

2cos(0.4 ) 2sin(0.4 )

 
 
 
 

 
 
 
 






 
  
  
 


H

1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 



Chapter 4. Performance Index Optimization 20

 

 

Configuration n  DCM H  

Icosahedron 

(type 5) 
20 

2 2

2

1 1

1 1 1

1 1 1

1 1 1

1 1 1

IC

2

O

2

sin 0 cos

cos(0.4 )sin sin(0.4 )sin cos

cos(0.8 )sin sin(0.8 )sin cos

cos(0.8 )sin sin(0.8 )sin cos

cos(0.4 )sin sin(0.4 )sin cos

sin 0 cos

cos(0.4 )sin sin(0.4 )sin cos

cos(0.

 
  
  
  
  

 
  

 
 
 
 

 




H

2 2 2

2 2 2

2 2 2

2 2

2 2 2

2 2 2

2

8 )sin sin(0.8 )sin cos

cos(0.8 )sin sin(0.8 )sin cos

cos(0.4 )sin sin(0.4 )sin cos

sin 0 cos

cos(0.4 )sin sin(0.4 )sin cos

cos(0.8 )sin sin(0.8 )sin cos

cos(0.8 )sin sin(0

 
 
 

 
 

  
  
  

 
  
  





 
  
  


1 1

1 1 1

1 1 1

1 1 1

2

2

1

2

2 2

1

.8 )sin cos

cos(0.4 )sin sin(0.4 )sin cos

sin 0 cos

cos(0.4 )sin sin(0.4 )sin cos

cos(0.8 )sin sin(0.4 )sin cos

cos(0.8 )sin sin(0.4 )sin cos

cos(0.4 )sin sin(0.4 )sin

 
  

 
  
  
 


 

 
 
 
 


 


 

 
  
  
 
  1

1

2

cos

1
cos

3 tan
5

1 cos
5cos

3 sin
5












 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 






 



Chapter 4. Performance Index Optimization 21

 

 

For the configurations on table 4.1, only case studies are possible since the 

configurations are fixed by the constraint of optimal GNC performance and there is no 

geometric parameter to adjust. The FDI performance index of platonic solid 

configurations in table 4.1 is shown in table 4.2. 

 

Table 4.2 FDI performance index of platonic solids satisfying T
3

n

3
H H I  

Configurations 
Tetrahedron 

(type 1) 

Cube 

(type 2)

Octahedron

(type 3) 

Dodecahedron

(type 4) 

icosahedron 

(type 5) 

TH H  3

4

3
I  3

6

3
I  3

8

3
I  3

12

3
I  3

20

3
I  

FDIFOM  1.0000 1.0000 2.7778 9.0000 32.1111 

 

On table 4.2, it is confirmed that the RIMU using configuration type 1 and type 2 

cannot identify which sensor is in fault since the FDI performance index is one [2] as 

mentioned in chapter 2. 
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4.2  Single Conic Configuration 

A single conic configuration of RIMU is defined as the configuration that each sensor 

is evenly placed on the inclined plane of the cone and the origin of the direction cosine 

vectors of the sensors meet on the vertex of the cone as shown in figure 4.3. Unlike the 

platonic solid configurations, there are infinite conic configurations and there’s no limit 

for the number of sensors to place.  

 

 

 

Figure 4.3 Single conic configuration 
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Normally, DCM H  for the sensor orientations on single conic configuration is 

defined as follows: 

 

 TT T T
1 2 nH h h h       (4.1)  

 kk kcos sin sin sin cos    h     (4.2)  

 

where   is a center angle between inclined surface and z-axis of the cone while k  

is an included angle between the sensors on the top view of configuration as shown in 

figure 4.3. The number k  is an integer given along the counterclockwise direction in 

order of the nearest to the sensor set to k 1 . In figure 4.3, for example, the number 

k  is given as following orders; k 2  for 12m , k 3  for 13m , and k 6  for 

16m  if k 1  is set to 11m . Then, the included angle k  is as follows: 

 

 k 2 k-1 n     (1 k n)          (4.3)  

 

Therefore, the constraint of the optimal GNC performance in (2.9) is rewritten as 

follows by simple characteristics of the trigonometrical functions 

 

n
T
k k

k

T

=1
3

n

3
 H H h h I       (4.4)  
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2

n
T 2
k k

k=1
2

n
sin 0 0

2
n

0 sin 0
2

0 0 n cos







 
 
 
   
 
  
 

h h     (4.5)  

Therefore, the   is fixed as  1cos 1 3 54.7356    . It means that there is no 

room for FDI performance optimization under the constraint for optimal GNC 

performance as well as the platonic solid configurations. Nevertheless, it is possible to 

assume some special cases which don’t require the optimized GNC performance. Then, 

(i)
iv  for single conic configuration is determined as follows: 

 

     
1T T T(i) (i) (i) (i) 1 (

i
i

i i
)=


     

v h H H H h A H     (4.6)  

 

11 13

2 2

13

1
224

33

0
4

0 0
n n 3 sin cos

0

a a

a

a a
 



 
     
 

A     (4.7)  

  2 2
11

n
n 1 sin cos

2
a          (4.8)  

  2
22

2n n 3
sin cos

2
a  


       (4.9)  

4
33

n n
1 sin

2 2
a    

 
            (4.10)    

3
13

n
sin cos

2
a               (4.11)    
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Since 1 0   from the definition in (4.3), 1jv  is determined as follows: 

 

 1
1j j

T
1 j

1
1 2cos  (j 1)

n 3
v     


h A h           (4.12)    

 

Therefore, the FDI performance index 
1

FOM p for the first sensor axis is independent 

to the center angle  . Also, this result is same for any i=1, 2, , n  since the single 

conic configuration is axial symmetric. Therefore, the FDI performance index of single 

conic configuration is determined as follows: 

 

 
 

1

j
j (j

2

FDI
1) 2

1
FOM max 1 2cos

n 3






  
   
    

          (4.13)    

 

This result of (4.13) means that the FDI performance index of the single conic 

configuration is determined by the number of sensors and independent to the center 

angle  . Therefore, the single conic configuration for RIMU cannot be optimized by 

geometric parameter   with respect to the FDI performance index when the number 

of sensors is fixed. From this reason, the optimal single conic configuration 

considering GNC and FDI performance is determined by the constraint of the optimal 

GNC performance in this thesis. 
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4.3  Dual Conic Configuration 

The aforementioned configurations are very common for traditional RIMU. 

However, there is no room for geometric analysis of the FDI performance index for 

these configurations. Recently, Shim and Yang [2] suggested a concept of dual conic 

configuration as shown in figure 4.4 and compared its FDI performance index with the 

ones for other configurations by case studies. However, there is no analytic approach to 

optimize the FDI performance index of the dual conic configurations. 

 

 

Figure 4.4 Dual conic configuration 
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In this thesis, optimal solutions of the dual conic configurations are suggested in 

point of the FDI performance by an analytic approach with the modified form of the 

FDI performance index in chapter 3. Before the analysis, basic constraint of optimal 

navigation performance for multiple conic configuration is defined by theorem 1. 

 

Theorem 1: Navigation performance index of RIMU with multiple conic configuration 

is optimized when geometry of sensors on RIMU satisfies following constraint: 

 

q

i=1

2
i

q
cos

3
               (4.14) 

 

where q  is the number of overlapped cones and i  is a center angle of ith cone as 

shown in figure 4.4. 

Proof: From equation (4.1) and (4.2), DCM of multiple cone is defined as follows: 

 

 T T T
1 2

T

qH H H H              (4.15)    

 T T T
i i,1 i, i n

T

2 , qH h h h             (4.16)    

 i,k i,k i i,k i icos sin sin sin cos    h             (4.17)    

 

where n is total number of sensors on RIMU and iH  is a DCM for ith single cone 
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following the definition in section 4.2. Since each cone has evenly distributed sensors, 

k 1,2, ,n q   and the included angle i,k  on ith cone as shown in figure 4.4 is 

defined as follows: 

 

 
i,k i

2 k 1

n/q


 


              (4.18)   

 

where i  is a twisted angle between standard and ith cone along the z-axis. Then, the 

constraint in (2.19) for optimal navigation performance can be rewritten as follows: 

 

n qq
T
i,j i,j

i=1 j=

T

1
3

n

3
 H H h h I             (4.18)    

i

i

2

n q
T 2
i,j i,j

j=

2

1

i

n
sin 0 0

2q

n
0 sin 0

2q

n
0 0 cos

q







 
 
 
 

  
 
 
 
 

h h          (4.19)   

 

Therefore, equation (4.18) can be rewritten as follows: 

 

q

i=1

2
i

n n
cos

q 3
               (4.20)    
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Finally, the form of the optimal navigation constraint is given as follows: 

 

q

i=1

2
i

q
cos

3
               (4.21)   

 

This is the end of proof. 

 

For case of q 2 , there are infinite configurations satisfying the constraint for optimal 

GNC performance, 21
2 2cos cos 2 3   . Therefore, it is available to optimize the 

FDI performance index of dual conic configuration with geometric parameter 1 , 2  

and   as the first cone is set to standard one as shown in figure 4.4. Since 2  is 

dependent on 1 , design parameter is reduced to 1  and  . To avoid repetition of 

same configurations, the domain of these variables are limited as follows: 

 

1 1
1 12 2,   cos cos ,   0 23 1 3 n                   (4.22) 

 

and n 6  as Gilmore [20] presented. As shown in chapter 3, it is possible to optimize 

the FDI performance index by minimizing  
i, j

ij ijmax cos (j i)     under the 

constraint for optimal GNC performance. For dual conic configuration,  ij   is 

determined by one of the following three cases: 
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Case 1: ij  is an angle between adjacent two sensors on the first cone. 

Case 2: ij  is an angle between the most widen two sensors on the second cone. 

Case 3: ij  is an angle between adjacent two sensors on different cones. 

 

Therefore, defining k  for case ‘k’,  ij   is given as follows: 

 

  1 2 3
i,j

ij ijmax cos (j i)  max[ , , ]                    (4.23) 

2
1 1

2
cos 1 sin 1

n/2
     

 
               (4.24) 

2
2 1

2 n 4
cos 1 sin 1

n/2 4 3
  

                 
          (4.25) 

2
13 1 1

2
1

4 2
cos sin sin cos cos

3 3
                  (4.26) 

 

where x    is a floor function, returning the largest integer smaller than x . As 

differentiating each k  by 1 , following inequalities can be obtained as follows: 

 

1
1

1
1

2
2 cos 1 sin cos 0

n/2

d

d

  

     

 
          (4.27) 

1
1

2
1

2 n
2 1 cos sin cos 0

n/2 4

d

d

  


           
          (4.28) 

3

1

21 1
1

2 2
1 1

cos cos sin4
2sin 0

34 2
sin 3 sin

3 3

d

d

  


 




       
        (4.29) 
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It means that 1  is the monotone decreasing and 2 , 3  are the monotone increasing 

functions in the domain (4.22). In addition, 21 30,   0,   0      at 1
1 cos 1 3   

and 3 0   at 1
1 cos 2 3  . Therefore, these inequalities are extended to the 

whole domain of 1  and  ij   is redefined as follows: 

 

  2 3ij 1max[ , , ]                  (4.30) 

 

Meanwhile, the FDI performance index is inversely proportional to  ij   and the 

optimal configuration that maximize the FDI performance index is set on the lowest 

point of  ij  . This point is defined as “optimal point” for dual conic configuration 

as shown in figure 4.5. The lower the optimal point is, the higher the FDI performance 

index is from the definition of  ij  .  Additionally, 3  moves to 1 -axis in figure 

4.5 as cos  is minimized. It means that the optimal point lower as cos  is 

minimized since each k  follows the inequalities (4.27) ~ (4.29). Therefore,   has 

to  be 2 n  to  minimize cos .  Also,  1 2 3,     a t  the upper  bound 

1
1 cos 1 3    and 1 2 3,     at the lower bound 1

1 cos 2 3  . Since all k  

is continuous in the domain, there exist intersections   3,s s  where s X  and  
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  (a) The number of sensors : 8          (b) The number of sensors : 14 

Figure 4.5 Optimal point on  ij   and k  

X  is defined as follows: 

 

 1 3 1 1 1 3 1 2 1: ( ) ( ),   ( ) ( )X                     (4.31) 

 

It is obvious that one of the intersections is the optimal point as shown in figure 4.5. 

Then, the optimal solution for the FDI performance index of dual conic configuration 

is determined as follows: 

 

 3
1

31

2
,  ma )  x(

n
( ),= s

                 (4.32) 
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4.4  Performance Index Comparison 

To evaluate the optimization approach based on the modified form of the FDI 

performance index, the analytic solutions of optimal dual conic configurations are 

compared with the numerically calculated values. To find the numerical results, the 

FDI performance index is calculated for all dual conic configuration with 0.01̊ 

resolution. As shown in table 4.3, the analytic solutions are identical to the numerical 

ones. 

 

Table 4.3 Geometry for optimal FDI performance of dual conic configuration 

n 

1 (deg)  (deg) 

Analytic Numerical Analytic Numerical 

6 37.37 37.37 60 60 

8 43.42 43.42 45 45 

10 39.97 39.97 36 36 

12 41.54 41.54 30 30 

14 42.48 42.47 25.71 25.71 

16 43.48 43.48 22.5 22.5 

18 44.36 44.35 20 20 

20 45.1 45.1 18 18 
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The FDI performance indices of the optimized dual conic configurations in table 4.3 

are compared with the ones of the platonic solids and single conic configuration 

introduced in aforementioned section. Since there is no room to optimize the FDI 

performance index of platonic solids and single conic configurations, their optimal 

solutions are set by their constraint of optimal GNC performance. On table 4.4, the 

higher the index is, the better FDI performance is and it is clear that the optimized dual 

conic configurations achieves better FDI performance. 

 

Table 4.4 Comparison result of the FDI performance index 

n 

FDI performance index 

Platonic solids 

(type 1~6) 

Single conic 

configuration 

Optimized dual 

conic configuration 

6 1 2.250 4.999 

8 2.778 4.298 5.331 

10 - 7.149 10.656 

12 9 10.852 14.525 

14 - 15.412 19.595 

16 - 20.839 25.313 

18 - 27.138 31.872 

20 32.105 34.314 39.280 
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4.5  Summary 

In this chapter, the FDI performance of platonic solid, single conic and dual conic 

configurations is optimized under the constraint of the optimal GNC performance 

confirmed in chapter 2. For the optimization, the modified form of the FDI 

performance index newly suggested in chapter 3 is applied. As a result, it is confirmed 

that the analytic solution of the configurations for the optimal FDI performance index 

is identical to that of numerical approach which means that the newly suggested, 

modified form of the FDI performance index is reasonable for the FDI performance 

optimization. Moreover, it is confirmed that FDI performance index of dual conic 

configuration optimized by the analytic approach using the new form of the FDI 

performance index is superior to the ones of the platonic solid and single conic 

configuration. 
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Chapter 5  

 

Simulation and Experiment 

 

5.1  Numerical Simulation 

In chapter 4, it is confirmed that the FDI performance of the optimized dual conic 

configuration is better than that of others such as platonic solids and single conic 

configurations by using the FDI performance index. However, this is an indirect 

approach and it is unknown how the RIMU system would response to the fault in real 

conditions. Therefore, the FDI performance of RIMU needs to be certified by 

simulations under the assumption of the fault on sensors. The FDI performance of 

RIMU can be defined by false alarm, miss detection and correct isolation rate [2]. In 

this chapter, Probability of Correct Isolation (PCI) is applied to confirmed how well the 

PSA-based FDI algorithm can identify the fault position when the bias fault is added to 

one of the sensor measurements on each RIMU configuration. The fault size is 

expressed in a Fault to Noise Ratio (FNR) and PCI values are determined by 1000 

times Monte Carlo simulations. In the simulations, threshold is set to 3 times of the 

standard deviation of sensor noise. Simulation results are shown in figure 4.6 ~ 4.9. 
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Figure 5.1 F/N – PCI graph for n=6  
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Figure 5.2 F/N – PCI graph for n=8  
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Figure 5.3 F/N – PCI graph for n=12  
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Figure 5.4 F/N – PCI graph for n=20  

 



Chapter 5. Simulation and Experiment 39

 

 

In figure 5.1, PCI value of each configuration tends to be identical to the comparison 

results using FDI performance index. Using 6 sensors on RIMU, it is expected that the 

platonic solid configuration, also can be called the cubic configuration for n=6 , 

cannot identify which sensor is on fault since its FDI performance index is one in table 

4.4 and the same result is confirmed by the simulation result in figure 5.1. Also, in 

figure 5.1, it is shown that the PCI of the optimized dual conic configuration is superior 

to the one of the single conic configuration as expected by the FDI performance index 

in table 4.4. When using more than 8 sensors, however, it is confirmed that there is 

little distinction between the PCI of the configurations with different FDI performance 

index as shown in figure 5.2 ~ 5.4. It means that there is no particular difference in the 

FDI performance of platonic solids, single conic and dual conic configurations 

regardless of the FDI performance index of each configuration. The reason of this 

result is expected in the definition of the FDI performance index. From the definition 

in chapter 2.3, the FDI performance index is determined by the parity ratio of the fault 

axis and non-fault axis while the terms related to the sensor noises are canceled out 

each other. Meanwhile, it is confirmed that the FDI performance of each configuration 

becomes similar as the number of the inertial sensors increases. Then, the differences 

of the parity responses for each configuration are expected to be lower than the noise 

level as the number of sensors increases and current index for FDI performance loses 

its meaning. 
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5.2  Experiment on Sensor Frame 

As verified in simulations in chapter 5.1, the FDI performance of each configuration 

has no meaningful difference as the number of sensors increases more than eight even 

though the FDI performance indices are different. If the RIMU uses six sensors, 

however, each configuration has different FDI performance in simulation as expected 

by the comparison of the index. Therefore, FDI experiments using 3D-printed frame 

and analog gyros are conducted to verify the above results for the case of n=6 . The 

fault is assumed as a bias on a randomly selected sensor and the parity responses for 

this fault are measured. For the experiments, ENC03-RC-R analog gyros of Murata 

Manufacturing Co., Ltd. are applied with analog signal amplifier and filter circuits as 

shown in figure 5.5. The design model of the frames are shown in figure 5.6 and 5.7 

while their 3D-printed output with the gyro modules are shown in figure 5.8 and 5.9. 

 

  

Figure 5.5 Schematic of ENC03-RC analog gyro and amplifier/filter circuit 



Chapter 5. Simulation and Experiment 41

 

 

 

Figure 5.6 3D-CAD model of sensor frame for single conic configuration 

 

Figure 5.7 3D-CAD model of sensor frame for dual conic configuration 
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Figure 5.8 Frame for single conic configuration 

 

Figure 5.9 Frame for dual conic configuration 
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Table 5.1 Experiment condition 

Condition value 

The number of sensors 6 

Standard deviation of sensor noise ( ) 0.3938deg/sec 

Sampling rate 100Hz 

System dynamics Random 

Threshold ( T ) 3  

Fault type Bias 

Fault to Noise Ratio (FNR) 0 to 10 

 

Conditions for the experiments are shown in table 5.1. The standard deviation of sensor 

noise is calculated by measurements in steady state since the manufacturer does not 

provide related information. The experiments are conducted as shown in figure 5.10. 

Increasing the FNR of bias fault on a randomly selected sensor, parity responses for 

each sensor input axis are monitored. Figure 5.11 shows the parity responses when the 

bias fault whose size is FNR=4 is occurred on the sensor monitored by faultp  while 

kp  is selected as the parity that responds most similarly to faultp . It is clear that it is 

more easy to distinguish faultp  and kp  on the optimized dual conic configuration as 

predicted by the comparison of FDI performance index and PCI simulations. The same 

results are also shown in table 5.2 as the difference between faultp and kp  is larger on  
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Figure 5.10 Sequence of FDI experiment on sensor frames 

 

Figure 5.11 Experimental result of parity responses (FNR = 4) 
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Table 5.2 Parity response ratio with respect to FNR 

FNR 
Single cone / Dual cone 

 faultE p   kE p     faul ktE Ep p  

1 1.0392 / 1.0923 0.7028 / 0.4654 0.3364 / 0.6269 

2 2.0395 / 2.0617 1.3695 / 0.9128 0.6700 / 1.1489 

3 3.0070 / 3.0581 2.0395 / 1.3602 0.9709 / 1.6979 

4 4.0334 / 4.0205 2.6623 / 1.8076 1.3711 / 2.2129 

5 5.0952 / 5.0837 3.3695 / 2.2550 1.7257 / 2.8287 

6 6.0035 / 6.0729 4.0361 / 2.7024 1.9674 / 3.3705 

7 7.0182 / 7.0141 4.7028 / 3.1498 2.3154 / 3.8643 

8 8.0728 / 8.0643 5.3695 / 3.5972 2.7033 / 4.4671 

9 9.0085 / 9.0816 6.0361 / 4.0446 2.9724 / 5.0370 

10 10.0598/ 10.0422 6.7028 / 4.4844 3.3570 / 5.5578 

 

the optimized dual conic configuration. Therefore, FDI performance of the RIMU 

using 6 sensors can be improved by applying the newly suggested, optimal dual conic 

configurations. 
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Chapter 6  

 

Conclusions 

The RIMU is an effective system to improve the reliability of the inertial navigation 

system and there exists optimal configuration of RIMU since the performance of 

RIMU is dependent on its configuration. In this thesis, the optimal solutions of the 

RIMU configurations with respect to the FDI performance and the GNC performance 

are suggested by geometric analysis approach. For the analysis, the modified FDI 

performance index is newly suggested as a function of geometric parameter of the 

angle between sensors. Since this index consider the constraint for the optimal GNC 

performance of RIMU, it is possible to optimize the FDI performance of the 

configurations while the optimal GNC performance is achieved. By using this new 

index, optimal solutions of platonic solids, single conic and dual conic configurations 

are confirmed. As a result, it is confirmed that the optimized dual conic configuration 

has the FDI performance index superior to that of other configurations. To verify this 

result, Monte Carlo simulations to calculate the PCI of each configuration under the 

sensor bias fault condition are conducted. The same result of the performance index 

comparison is also confirmed by the simulation for the RIMU utilizes six sensors. As 

the number of sensors increases more than 8, however, it is confirmed that there is no 

particular difference in the FDI performance of each configuration regardless of the 

FDI performance index. The reason is expected that the differences of the parity 

responses for each configuration lower than the noise level. Therefore, FDI 
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performance index including sensor noise is required for the future works. Meanwhile, 

the experiments using six sensors on 3D-print frames are conducted. As a result, it is 

confirmed that the FDI performance of the RIMU using six sensors can be improved 

by applying the newly suggested, optimal dual conic configuration. 
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국문초록 
 

 본 논문에서는 기하학적 파라미터의 분석을 통해 고장검출 및 판별 성능 

측면에서 중첩관성센서의 최적의 배치 형상을 제시하였다. 각 배치형상에 

대한 고장검출 및 판별 성능을 정의하기 위하여, 패리티 공간 기법에 

기반한 성능지표를 사용하였다. 하지만 해당 지표는 배치형상의 방향코사인 

행렬에 대한 영공간에 대한 함수이기 때문에, 직접적인 분석이 어렵다는 

단점이 있었다. 또한 최적항법성능을 위한 조건을 고려하지 못한다는 

한계도 있었다. 이를 해결하기 위해, 센서의 배치형상에 대한 기하학적 

파라미터로 표현되는 수정된 형태의 고장검출 및 판별 성능지표를 새롭게 

제안하였으며, 원활한 분석 및 최적화 기반을 확보하였다. 이를 통해 

정다면체, 단일 원추 배치와 같은 기존 형상과 함께 이중 원추 배치 형상에 

대한 고장검출 및 판별 성능지표에 대한 최적화를 수행하여 값을 

비교하였다. 그 결과, 최적화된 이중 원추 배치 형상을 사용하면 다른 배치 

형상을 사용할 때보다 같은 개수의 중첩 센서에 대한 고장검출 성능지표가 

향상되는 것을 확인하였다. 또한 이에 대한 실험 및 시뮬레이션을 통해 

성능지표를 사용한 비교 결과의 타당성에 대해 검증하였다. 

 

주요어: 고장검출 및 판별, 중첩관성센서, 패리티 공간 기법, 성능지표, 

센서배치형상, 최적화 
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