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ABSTRACT

Energy-Optimal Trajectory Generation and Task

Scheduling for Multiple Robot Manipulators

by

Keunjun Choi

School of Mechanical and Aerospace Engineering

Seoul National University

This thesis presents an energy-optimal task scheduling algorithm with a point-

to-point trajectory generation method under kinematic and dynamic con-

straints. Because the energy-optimal trajectory generation is inevitable for

performing task scheduling with respect to energy optimality, the integration

of them is a big issue in this thesis.

We first propose an energy-optimal trajectory generation algorithm. The op-

timization problem is defined for multiple waypoints and various boundary

conditions with free execution times. The trajectories are parameterized by

B-spline curves in the joint space and the objective functions are obtained with

joint torques which are calculated by a recursive inverse dynamics method. To
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make our algorithm computationally efficient, the gradients for the optimiza-

tion are calculated analytically. Gaussian quadrature method which is proper

for several reasons is used for the integration. We generate the optimal tra-

jectories in several situations to evaluate our algorithm.

We also propose an energy-optimal task scheduling algorithm using dynamic

programming method. We first define a problem with four assumptions which

can make our problem more practical. Our algorithm determines which robot

is optimal for performing each task and finds the optimal time when each task

starts and also we optimize the task execution times to minimize the energy

consumption. The energy consumption for each task is calculated by energy-

optimal trajectory generation algorithm proposed in this thesis. To reduce

the computation time of our task scheduling algorithm, we provide an optimal

energy consumption measurement which is approximated as a function of the

execution time by performing energy-optimal trajectory generation algorithm

only four times.

Keywords: Serial open-chain manipulator, energy optimization, point-to-

point trajectory planning, base link optimization, task scheduling, B-

spline

Student Number: 2014-21857
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1
Introduction

The energy efficiency of industrial applications is emerging as an important

issue lately [1]. Although the time optimality is still a major objective for

operating factories, the necessity of the energy efficiency has been received

and it has become an objective of timely importance. There are mainly three

reasons to explain these phenomena.

The first reason is about the environmental changes and increasing the interest

in it. In the last part of the 20th century, through the second industrial rev-

olution, the greenhouse gas emissions from the fossil fuel burning have grown

explosively, which causes the global warming. After realizing the seriousness,

many countries have tried to reduce their greenhouse gas emissions, e.g., in

2012 Europe, the total greenhouse gas emissions were 19.2% below 1990 levels

[2]. As the greenhouse gas emissions are directly or indirectly related to the

energy consumption, they have made regulations about it [3, 4] and conducted

several campaigns for saving the energy, e.g., Eco-point program in Japan [5].

So, in factories which use a lot of energy, they have no choice but to pay at-

tention to reduce the energy consumption.

1



2 1. Introduction

Second, the cost of electricity in many industrial countries have been steady

increasing. It may be related to some social issues or limited natural resources.

The important thing is that the operators of factories want to use their energy

efficiently for making more profit.

The last reason is that the new generation of the industry is arriving. These

days, as the technologies of the Internet and the computer are growing, the

new technologies have been developed such as Internet of things, cloud ser-

vices, and deep learning. They have changed our life styles and customization

have been emerging as an important issue in market. These phenomenons and

technologies lead to the change of the industry, the new revolution of the indus-

try. In the new generation, the production lines in factories are becoming more

complex and the average of the life cycle of the factories is becoming shorter.

In addition, the number of robots used in factories has been increasing, as the

labor costs have been going up. Therefore the robots which are substitutions

for the labors need to be more ’Smart’ for performing complex tasks in the

new factories and the system for the complex production lines is needed. Here,

we can say that, as factories are getting more complex, the energy efficiency

is becoming more important. For example, so far the time optimality is more

important, however when the production lines are complicated, we can think

that the time optimal is not always right. More specifically, when there is a

bottleneck in a line, the robots in the parallel lines do not need to do the task

as fast as they can, which means that the energy optimality is much better

than the time optimality in this example.

When robots are working together for a task, the effect of the energy efficiency

can be maximized, for instance, the robots in a production line or an assembly

line, welding robots and so on. Because of that, a high-level scheduling with

certain purpose, e.g., time optimality or energy optimality, is needed as well as
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Table 1.1: Preceding researches for the energy-optimal point-to-point trajec-

tory generation 1

Algorithm Param.

method1)

Cost

function

Way-

points

Kin.

const.2)

Dyn.

const.3)

Diken[7] Sinusoidal
∫

Σi|τiq̇i|dt x pos∗ x

Paes et al.[8] -
∫
|q̇|2dt x pos/vel o

Martin et al.[9] B-spline effort x pos x

Wang et al.[10] B-spline effort &

payload

x o soft con-

straint

Hansen et al.[1] B-spline energy

loss

x o o

1) Parameterization method

2) Kinematic constraints: Position & velocity & acceleration constraints

3) Dynamic constraint: Torque constraint

∗ Only position constraint for end-effector

an energy-optimal trajectory generation. In addition, considering all together,

integrating the trajectory generation and task scheduling is important [6]. In

this thesis, we propose a versatile trajectory generation and the high-level task

scheduling algorithm for energy optimality and show how we can integrate the

trajectory generation and task scheduling.

To handle those issues, energy-efficiency, the dynamic equations of motion of a

d−dof (degree-of-freedom) robot is needed. One standard formulation is given

as follows:

M(q)q̈ + C(q, q̇) + V (q) = τ,
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Table 1.2: Preceding researches for the energy-optimal point-to-point trajec-

tory generation 2

Algorithm Free bound.

condition4)

Free final

time

Analytic

gradient

Remarks

Diken[7] x x - in task space

Paes et al.[8] x x - identification

& opt.

Martin et al.[9] x x o ∗∗

Wang et al.[10] x o o -

Hansen et al.[1] x x o -

4) Free boundary condition: q̇ and q̈ (or V and V̇ )

∗∗ This algorithm can be used for tracking problem

where q ∈ Rd is d-dimensional generalized coordinates, M(q) ∈ Rd×d is a mass

matrix, C(q, q̇) ∈ Rd is a Coriolis force, V (q) ∈ Rd is a gravity force and

τ ∈ Rd is a joint torque. We calculate the joint torques with recursive algo-

rithm [11]. We use recursive algorithm for inverse dynamics and differential

inverse dynamic for calculating an objective function and torque constraints.

This thesis first addresses a multi-function energy-optimal trajectory gener-

ation algorithm, which means that this algorithm can be used for various

boundary conditions and multiple waypoints (via-points). Many researches

have been dealt with the energy-optimal trajectory generation. Those re-

searches can be sorted into two groups. The first group is for given trajectory

[12, 13], and the other is for given points to be passed through (a point-to-point

trajectory generation) [1, 7, 8, 9, 10]. In this theses, we focus on the point-

to-point trajectory generation. Table 1.1 and Table 1.2 show some preceding
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researches and what they can. In addition to Wang’s algorithm [10], ours can

generate and optimize the trajectory with respect to the energy optimality to

be used when there are multiple waypoints or free boundary conditions.

We then address an energy-optimal task scheduling algorithm. It is not easy to

generalize task scheduling problems, because there are so many different types

of requirements. Almost preceding researches have been considered fixed task

execution times and the time optimality. So, in many cases, they solve the

problems called permutation flowshop problem [14]. However, we cannot use

their problem definition and methods for several reasons. For our case, our

objective is to reduce the energy consumption. Because the energy consump-

tion depends on the execution time, the execution time is a key optimization

parameter for us, which means that performing the energy-optimal trajectory

generation is needed for the energy-optimal task scheduling. There is a few

researches to handle the energy-optimal task scheduling. Wigström [12] and

Vergnano [15] consider the energy-optimal task scheduling with given trajec-

tory. They introduce a scaling factor to stretch or shorten the trajectory and

optimize the task execution times for the task scheduling. Our algorithm gen-

erates not only the optimal velocity, but also the optimal path and optimize

the task execution times with the permutation problem, so it is more chal-

lenging.

We now describe in more detail the contributions of this thesis and show how

this thesis is organized.

1.1 Main Contributions of This Thesis

The primary challenges of the energy-optimal task scheduling are how to de-

fine a problem well for being used in many cases in terms of practical meanings

and how to integrate the task scheduling algorithm with the energy-optimal
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trajectory generation. Because the performance of the energy-optimal task

scheduling is dominated by the performance of the energy-optimal trajectory

generation, we should have to propose and implement a computation-efficient

and versatile trajectory generation algorithm. Using that energy-optimal tra-

jectory generation algorithm and dynamic programming, we solve the task

scheduling problem. This thesis shows the needs and the solution of the in-

tegration of the trajectory generation and task scheduling with respect to the

energy optimality and emphasizes the appearance of the energy efficiency in

complex production lines and factories.

1.2 Organization and Preview

In Chapter 2, we present some notions and algorithms for formulating our

problems. We briefly review Lie group theory used in geometric rigid body

dynamics, followed by a description of the recursive algorithms for calculat-

ing the inverse dynamics and differential inverse dynamics of serial open-chain

systems. In addition, we introduce the closed form for dynamic equations of

serial open-chain systems which is used in the following chapters.

In Chapter 3, we provide a framework for the energy-optimal trajectory gener-

ation which can be used in various cases. We use B-splines for parameterizing

trajectories in the joint space. As we suggest B-splines with a normalized time

domain, we can handle the time as an optimization parameter. In addition,

we use a recursive inverse dynamics algorithm and the Gaussian quadrature

method for calculating joint torques and integrating an objective function, re-

spectively. To make our algorithm faster, we exploit analytic gradients of the

objective function from the recursive differential inverse dynamics. To evalu-

ate our algorithm, we demonstrate the optimal trajectory generation for Efort

robot with several types of the objective functions under position, velocity,
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acceleration and torque constraints in various cases, e.g., multiple waypoints,

free boundary conditions and free execution times.

In Chapter 4, we propose an energy-optimal task scheduling algorithm. First,

we define a problem with several reasonable assumptions which make it more

practical. After that, using dynamic programming method, our algorithm op-

timizes the task execution times and determines which a robot is optimal for

performing individual task. Because we have to calculate optimal energy con-

sumption functions by trajectory generation algorithm which is described in

Chapter 3 every times, it tasks so many times to get the results of task schedul-

ing. Performing it more efficient, we approximate optimal energy consumption

functions using only four optimization results of the trajectory generation al-

gorithm. To evaluate our algorithm, we simulate a pick and place task with

two robots.

In Chapter 5, we conclude this thesis with a summary of our results and discuss

some directions for future works.



2
Preliminaries

This chapter presents some notions for formulating our problem. We first

introduce Lie group theory and then review a recursive inverse dynamics al-

gorithm of serial open chains based on Lie group techniques.

2.1 Lie Group

In this paper, we formulate the equations of motion of a manipulator geomet-

rically with Lie group theory. Before talking about the dynamics of serial open

chains, we begin with a brief review of Lie group. A more detailed introduction

to this subject can be found in [11, 16, 17, 18].

2.1.1 Special Euclidean Group

Special Orthogonal Group

The special orthogonal group, denoted SO(3), describes the rotation of a rigid

body in the three dimensional space and can be defined as the following:

SO(3) =
{
R ∈ R3×3|RRT = RTR = I, det(R) = 1

}
.

8



2.1. Lie Group 9

The corresponding Lie algebra so(3) consists of 3 × 3 real skew-symmetric

matrices:

so(3) =
{
s ∈ R3×3|sT = −s

}
.

The typical elements of so(3) can be represented as a three dimensional vector

ω ∈ R3. Given any three dimensional vector ω, its 3 × 3 skew-symmetric

matrix representation is denoted as

[ω] =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , where ω =


ω1

ω2

ω3

 .

Special Euclidean Group

The special Euclidean group, denoted SE(3), represents both the orientation

and position of a rigid body in the three dimensional space. It consists of 4×4

real matrices of the form  R p

0 1

 ∈ SE(3),

where R ∈ SO(3) and p ∈ R3. The 0 in the last row denotes a three-

dimensional row zero vector. In addition to representing the motion of a rigid

body, SE(3), T ∈ SE(3) : {A} → {B}, is also used to describe the orientation

and position of the coordinate frame {B} with respect to the coordinate frame

{A}. The corresponding Lie algebra se(3) has the form [ω] v

0 0

 ∈ se(3),

where [ω] ∈ so(3) and v ∈ R3. Like Lie algebra so(3), Lie algebra se(3) also

can be represented as a 6-dimensional vector:

S =

 ω

v

 ∈ R6, [S] =

 [ω] v

0 0

 .
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The Lie algebra se(3) is related to the corresponding Lie Group SE(3) through

exponential mapping. If S = [ω, v]T ∈ R6 and ω is a unit vector, its Lie group

T ∈ SE(3) can be expressed as follows:

T = e[S]θ

= I + [S]θ + [S]2
θ2

2!
+ ...

=

 e[ω]θ G(θ)v

0 1

 ,
where θ is scalar, and

e[ω]θ = I + [ω]θ + [ω]2
θ2

2!
+ [ω]3

θ3

3!
+ ...

= I + sin θ[ω] + (1− cos θ)[ω]2,

G(θ) = Iθ + (1− cos θ)[ω] + (θ − sin θ)[ω]2.

Explaining its physical meaning, T is a transformation matrix from a coordi-

nate frame {A} to a coordinate frame {B} with respect to a reference frame

{0} by rotating about a particular axis at θ and translating in the same direc-

tion as the axis with the length (ω · v)θ. The direction of the above axis is ω

and the axis is passing through ω× v. We can express this relation as follows:

T0b = e[S]θT0a,

where T0a and T0b represent the coordinate frame {A} and {B} with respect

to the reference coordinate frame {0}, respectively.

2.1.2 Generalized Velocity and Force

Let’s consider a moving frame whose trajectory with respect to a reference

frame is given by

T (t) =

 R(t) p(t)

0 1

 ∈ SE(3),
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where R(t) ∈ SO(3) and p(t) ∈ R3. Then, generalized velocity can be defined

by

V = T−1Ṫ =

 [ω] v

0 1

 ,
where [ω] = RTṘ and v = RTṗ. The generalized velocity is an element of

se(3), and, of course, can be expressed in a 6-dimensional vector:

V =

 ω

v

 .

The physical meaning of ω ∈ R3 is an angular velocity of the moving frame

and v ∈ R3 is a linear velocity of the origin of the moving frame, which are

expressed in the moving frame. The generalized force acting on the body can

be defined as

F =

 m

v

 ,

where m ∈ R3 and f ∈ R3 represent the moment and force, respectively. The

generalized force is known as an element of dse(3), the dual space of se(3),

because FTV is a physically meaningful scalar value.

2.1.3 Adjoint Mapping

Considering T = (R, p) ∈ SE(3), the adjoint action of T on V ∈ se(3),

Ad : SE(3)× se(3)→ se(3), is defined as

AdTV = TV T−1.

From some calculations, we can find that AdT is regarded as a linear trans-

formation, AdT : se(3)→ se(3), which is defined by a 6× 6 matrix

AdT =

 R 0

[p]R R

 .
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The coadjoint action of T on V ∗ ∈ dse(3) which is the dual of V , Ad∗T :

dse(3)→ dse(3), is defined by a 6× 6 matrix

Ad∗T = AdT
T .

The adjoint mapping can be used in a transformation rule. For explaining

the transformation rule, let {A} and {B} be two coordinate frames attached

to the same body, and Tab ∈ SE(3) : {A} → {B} represents the orientation

and position of the coordinate frame {B} with respect to the coordinate frame

{A}. The generalized velocities of {A} and {B}, Va and Vb, respectively, have

the following relation:

Va = AdTabVb.

And also the generalized forces viewed from the body frames {A} and {B},

Fa and Fb, respectively, have the following relation:

Fb = Ad∗TabFa.

Let’s consider T = e[S]θ, where S = (ω, v) ∈ se(3) is constant and θ = θ(t) is

a function of time. The derivative of AdT with respect to t can be expressed

as follow:
d

dt
AdT = addT

dt
T−1AdT

dθ

dt

= adSAdT
dθ

dt
,

where adS : se(3)→ se(3) defined as

adS =

 [w] 0

[v] [w]

 .
2.2 Kinematics of Serial Open-Chain Manipulators

Finding where the end-effector of a robot is or which joint angles can make

the desired posture of the end-effector are basic issues in the robotics field.
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In this chapter, we briefly represent how to deal with these issues using Lie

group.

2.2.1 Forward Kinematics

The forward kinematics is to find the orientation and position of the end-

effector frame from joint angles. To help our explanation, we use a simple

model as shown in Figure 2.1. Note that, in this paper, we focus on serial

open-chain manipulators and every joint is a revolute joint. Given the serial

x

y

z

q

Link i-1

Link i

Joint i

z

Link n (end-effector)

Ti-1,i

M i,1

M i,2

Ti-1

i

Figure 2.1: A n-link serial open-chain manipulator and some symbols for

explanation

open chain manipulator, the following is a list of symbols used in the forward

kinematics:

• n = the number of links (exclude ground) or joints

• i = the index of the link or joint

• qi ∈ R = the angle of joint i
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• Ti ∈ SE(3) = the orientation and position of the frame attached to the

link i

• Ti−1,i ∈ SE(3) = the orientation and position of the frame attached to

the link i with respect to the frame attached to the link i− 1

• Ai ∈ se(3) = the screw axis of joint i, if the joint is a revolute joint and

the rotation axis is a z-axis of the joint frame, then Ai = (0, 0, 1, 0, 0, 0)T

• Mi,1 ∈ SE(3) = the coordinate transformation from the link i− 1 frame

to the joint i frame

• Mi,2 ∈ SE(3) = the cooridnate transformation from the rotated joint i

frame to the link i frame

The forward kinematic equation for link i can, therefore, be written as

Ti =

i∏
k=1

Tk−1,k

=
i∏

k=1

Mk,1e
[Ak]qkMk,2

So,

Tn = M1,1e
[A1]q1M1,2M2,1e

[A2]q2M2,2...Mn−1,1e
[An−1]qn−1Mn−1,2Mn,1e

[An]qnMn,2

= e[A′1]q1e[A′2]q2 ...e[A′n−1]qn−1e[A′n]qnM,

(2.2.1)

where [
A′i
]

= M1,1M1,2...Mi,1[Ai] (M1,1M1,2...Mi,1)−1

⇒ A′i = AdM1,1M1,2...Mi,1(Ai)

M = M1,1M1,2...Mn,1Mn,2.

The reason why we reformulate the forward kinematic equation using A′i, not

Ai, in (2.2.1) is to reduce the number of the multiplications. Of course, in

doing so, the computation time of the software which includes the forward
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kinematics procedure is reduced. Because A′i and M do not depend on the

joint angles, they can be calculated only once at the start point of the software.

2.2.2 Inverse Kinematics

The inverse kinematics is to find the joint angles which make a desired posture

of the end-effector. There are several ways to solve this problem. We use a

numerical method which is based on Newton-Raphson method. Our problem

is to solve T (q) = T , where T : Rn → SE(3), q ∈ R6 and T ∈ SE(3) is

a desired orientation and position of the end-effector. Considering a body

Jacobian defined as

J(q) =

[
Ad(

e[A
′
2]q2 ...e[A

′
n]qnM

)−1A′1 ... Ad
(e[A′n]qnM)

−1A′n−1 AdM−1A′n

]
,

where Si is defined as in (2.2.1), the algorithm for the inverse kinematics is as

follows:

Algorithm 1 Inverse Kinematics

1: given T ∈ SE(3), q0 ∈ Rn

2: while ‖T − T (q)‖ > ε do

3: [S] = log(T−1T )

4: Solve J(q)∆q = S for ∆q

5: q ← q + ∆q

6: end while

2.3 Dynamics of Serial Open-Chain Manipulators

This part describes the dynamic equations of a single rigid body and a serial

open-chain manipulator. For more detailed information to this subject, one

can refer to [16, 17].
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2.3.1 Generalized Inertia

The kinetic energy can be calculated by the sum of the kinetic energies of all

the mass particles constituting a rigid body:

Ek =

∫
vol

1

2
‖v‖2dm.

By introducing a coordinate frame attach to the body, the kinetic energy can

be reformulated as the following quadratic form by Lie group:

Ek =
1

2
V TJ V,

where V ∈ se(3) is the generalized velocity and J ∈ R6×6 is a generalized

inertia, which represents the mass and the mass distribution with respect to

the frame attached to the body. To obtain an explicit form of the generalized

form of the body, let T = (R, p) ∈ SE(3) be the orientation and position of the

body frame with respect to a fix reference frame and r ∈ R3 be the position

of dm from the origin of the body frame with respect to the body frame as

shown in Figure 2.2. Using ‖v‖2 = ‖ṗ+ Ṙr‖2, we can get

x

y

z

rT
dm

Figure 2.2: A rigid body

V =

 ω

v

 , J =

 ∫vol [r]T [r] dm
∫
vol [r] dm∫

vol [r]
T dm mI3×3

 ,
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where [ω] = RTR, v = RTṗ, and I3×3 is a 3× 3 identity matrix.

Let {A} and {B} be coordinate frames attached to a rigid body, Ja and Jb be

the generalized inertias of the body corresponding to the two frames {A} and

{B}, respectively. Then, the relationship between two generalized inertias is

written as the following:

Jb = Ad∗TabJaAdTab ,

where Tab ∈ SE(3) : {A} → {B}.

2.3.2 Dynamics of a Rigid Body

The generalized momentum of a rigid body is defined as

L = J V,

where J and V are the generalized inertia and velocity of the body viewed

in a coordinate frame attached to the body, respectively. L is well known as

des(3).

The equations of motion of a rigid body can be written as

F =
d

dt
L, (2.3.2)

where F ∈ dse(3) is the sum of the generalized force acting on the rigid

body which expressed in the body frame and L ∈ dse(3) is the generalized

momentum of the body. To derivate the generalized momentum, we use the

following equation:
d

dt
X = Ẋ − ad∗VX,

where X ∈ dse(3) and Ẋ is the component-wise time derivative of X and

ad∗V : dse(3)→ dse(3) is a linear transformation defined as

ad∗V = adT
V =

 [ω] 0

[v] [ω]

T

,
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where V = (ω, v) ∈ se(3) is the generalized velocity of the body. Using the

above result, the equations of motion of the rigid body (2.3.2) can be written

as

F = J V̇ − ad∗V J V, (2.3.3)

where V̇ is the component-wise time derivative of the generalized velocity of

the body, V . Note that the dynamic equation of the rigid body is coordinate

invariant, which means that this equation can be used in any coordinate frame

attached to the body while the generalized force, inertia, velocity, and time

derivative of velocity are expressed in the same frame.

2.3.3 Recursive Inverse Dynamics and Its Derivatives

From (2.3.3), we can derive the equations of motion for the link i in Figure 2.1:

Fi −Ad∗
T−1
i,i+1

Fi+1 = JiV̇i − ad∗ViJiVi,

where Fi ∈ dse(3) is the generalized force transmitted to the link i from link

i− 1 through the joint i expressed in the coordinate frame attach to the link i

and, of course, Vi, V̇i, and Ji are the generalized velocity, the component-wise

time derivative of V , and the generalized inertia of the link i expressed in the

link i frame, respectively. The algorithm for an inverse dynamics can divided

into two parts, forward recursions for the forward kinematics and forward

differential kinematics, and a backward recursion for calculating generalized

forces and torques for all joints. The inverse dynamics can be computed as

written in Algorithm 2 (all symbols are defined in Section 2.2.1).

By applying chain rule, the recursive algorithm for the inverse dynamics can

be differentiated with respect to an arbitrary scalar p ∈ R. Algorithm 3 shows

the derivative of the recursive inverse dynamics, and it can solve ∂τ
∂p with given

∂q
∂p , ∂q̇

∂p , and ∂q̈
∂p .
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Algorithm 2 Recursive Inverse Dynamics

1: initialization V0, V̇0

2: procedure - forward recursion

3: for i = 1 to n do

4: Si = AdM−1
i,2
Ai, Mi = Mi,1Mi,2

5: Ti−1,i = Mie
[Si]qi

6: Vi = AdT−1
i−1,i

Vi−1 + Siq̇i

7: V̇i = AdT−1
i−1,i

V̇i−1 + adViSiq̇i + Ṡiq̇i + Siq̈i

8: end for

9: procedure - backward recursion

10: for i=n to 1 do

11: Fi = JiV̇i − ad∗ViJiVi + Ad∗
T−1
i,i+1

Fi+1

12: τi = ST
i Fi

13: end for

Algorithm 3 Derivative of the Recursive Inverse Dynamics

1: initialization ∂V0
∂p ,

∂V̇0
∂p

2: procedure - forward recursion

3: for i = 1 to n do

4:
∂Vi
∂p = AdT−1

i−1,i

∂Vi−1

∂p + Si
∂q̇i
∂p − adSiVi

∂qi
∂p

5:
∂V̇i
∂p = AdT−1

i−1,i

∂V̇i−1

∂p + Si
∂q̈i
∂p − adSi

{
∂qi
∂p AdT−1

i−1,i
V̇i−1 + ∂Vi

∂p q̇i + Vi
∂q̇i
∂p

}
6: end for

7: procedure - backward recursion

8: for i=n to 1 do

9:
∂Fi
∂p = Ad∗

T−1
i,i+1

(
ad∗−Si+1

Fi+1
∂qi+1

∂p + ∂Fi+1

∂p

)
+ Ji ∂V̇i∂p − ad∗∂Vi

∂p

JiVi −

ad∗ViJi
∂Vi
∂p

10:
∂τi
∂p = ST

i
∂Fi
∂p

11: end for
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2.3.4 Closed Form of Dynamic Equations

The previous section shows the recursive algorithm for the inverse dynamics.

We easily find that those equation can be expressed as follows:

V = ΓV + S q̇ + P0V0

V̇ = S q̈ + ΓV̇ + adVS q̇ + P0V̇0

F = ΓTF + J V̇ − adT
VJV

τ = STF ,

(2.3.4)

where

V =



V1

V2

V3

...

Vn


, V̇ =



V̇1

V̇2

V̇3

...

V̇n


,F =



F1

F2

F3

...

Fn


, q̇ =



q̇1

q̇2

q̇3

...

q̇n


, q̈ =



q̈1

q̈2

q̈3

...

q̈n


,

P0 =



AdT−1
0,1

06×6

06×6

...

06×6


,S = diag



S1

S2

S3

...

Sn


, adV = diag



adV1

adV2

adV3
...

adVn


,

Γ =



06×6 06×6 · · · 06×6 06×6

AdT−1
1,2

06×6 · · · 06×6 06×6

06×6 AdT−1
2,3
· · · 06×6 06×6

...
...

...
...

06×6 06×6 · · · AdT−1
n−1,n

06×6


,J = diag



J1

J2

J3

...

Jn


.
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Because Γ is a nilpotent matrix, we can get the follow equation:

G = (I − Γ)−1 =



I6×6 06×6 06×6 · · · 06×6

AdT−1
1,2

I6×6 06×6 · · · 06×6

AdT−1
1,3

AdT−1
2,3

I6×6 · · · 06×6

...
...

...
...

AdT−1
1,n

AdT−1
2,n

AdT−1
3,n
· · · I6×6


.

Using G = (I − Γ)−1 and GT = (I − ΓT)−1, we can reformulate (2.3.4) as

V = GS q̇ +GP0V0

V̇ = GS q̈ +GadVS q̇ +GP0V̇0

F = GTJ V̇ −GTadT
VJV

τ = STF .

(2.3.5)

In our problem, because the base link of a robot which we are focusing on in

this thesis is fixed,

V0 =



06×1

...

06×1

06×1

06×1


, V̇0 =



06×1

...

06×1

06×1

G


,

where

G ∈ R6 =



0

0

0
...

g


, g = the gravity constant.



3
Energy-Optimal Trajectory

Generation

In this chapter, we present a method how to generate energy-optimal point-to-

point trajectories using several objective functions and the B-spline parame-

terization under kinematics and dynamics constraints. During research, what

we focus on are how many cases our algorithm can deal with and how fast

our algorithm can find the solution. Being useful in terms of practical mean-

ings, the algorithm we suggests should be able to generate the trajectory in

as many cases as possible and also as fast as possible. For being versatile,

we consider multiple waypoints and various boundary conditions. In addition

to that, for the computing efficiency, we calculate gradients of the objective

functions analytically for an optimization routine. To verify the performance

of our trajectory generation algorithm with respect to the computation time,

comparing it to other algorithms is needed. However, unfortunately, the direct

comparison is impossible, because the algorithms are not simple and the com-

putation time depends on so many things, e.g., a optimization tool, a coding

22
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style, a memory-managing ability, a hardware spec. Therefore we just figure

out how much faster our algorithm with than without analytic gradients.

3.1 Problem Definition

Let q ∈ Rd be the joint angles for a serial open-chain manipulator. The

equation of motion for our manipulator can be written as [16]:

M(q)q̈ + C(q, q̇) + V (q) = τ, (3.1.1)

where M(q) ∈ Rd×d is the mass matrix, C(q, q̇) ∈ Rd is the Coriolis term,

and V (q) ∈ Rd includes gravity term and other forces which act at the joints.

Although we can get analytic expressions for M(q), C(q, q̇), and V (q) of a

serial open-chain manipulator [19] and calculate τ using them, we exploit the

recursive inverse dynamics method mentioned in previous section. With this

system, we want to find the joint trajectory which is minimizing the cost

function of the form

J(τ) =

∫ tf

ti

E(τ(t))dt (3.1.2)

subject to (3.1.1)

τ(t) = τ(q(t), q̇(t), q̈(t))

and the joint position, velocity, acceleration, and torque limit are given as

qmin ≤ q(t) ≤ qmax, q̇min ≤ q̇(t) ≤ q̇max,

q̈min ≤ q̈(t) ≤ q̈max, τmin ≤ τ(t) ≤ τmax,

where ti and tf are the start and end time and E(τ(t)) is a function which

represents an instant energy consumption at time t. There are various ways

for representing the energy consumption. For our examples, we use an effort
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d

Waypoint 1

Waypoint 2

Waypoint 3

Waypoint 4

q
1
q

1
q

1
t
1

q
2
q

2
q

2
t
2

q
3
q

3
q

3
t
3

q
4
q

4
q

4
t
4

Figure 3.1: Problem definition in the joint space

and an energy loss which are defined as follows:

Eeffort(τ(t)) = τ(t)Tτ(t)

Eenergyloss(τ(t)) =

d∑
j=1

max (ij(t)vj(t), 0) ,

where ij and vj are the current and the voltage of motor in the joint j, re-

spectively:

ij(t) =
1

km,j

(
τj(t)

Gj
+ Jm,jGj q̈j(t)

)
vj(t) = rjij(t) + `j

dij(t)

dt
+ kg,jGj q̇j(t),

with a stator resistance rj , a stator inductance `j , a motor constant km,j ,

a back EMF constant kg,j (an electromotive force), a gear ratio Gj , and a

motor inertia Jm,j of the motor in joint j [20]. Minimizing the effort function

is to reduce the exerted joint torques during the execution of a trajectory.

Meanwhile, the energy loss function represents an electrical motor power with

resistive and inductive energy losses. We can easily guess that the results

of the optimization using two objective functions are different. Back to our

problem definition, we can include the conditions (q, q̇, q̈, t) at each waypoint

in joint space, see Figure 3.1, which means that the robot motion must pass
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Figure 3.2: Problem definition in the task space

through joint position q at time t with the joint velocity q̇ and the joint

acceleration q̈. Each condition may be either given or free (‘free’ means that

corresponding variables will be optimized). For example, if waypoint passing

time is free, the robot motion pass through the joint position q without any

timing constraint. Of course, the condition which is free will be optimized

to minimize the cost function. As you can see Figure 3.1, the number of

waypoints may be more than two. Moreover, the waypoint conditions may be

given in task space; the orientation and position T ∈ SE(3), spatial velocity

V ∈ se(3), spatial acceleration V̇ ∈ se(3) of the manipulator’s end-effector,

see Figure 3.2. Like conditions in the joint space, each condition may be either

given or free. However, if spatial velocity V is free, T must be given. And if

spatial acceleration V̇ is given, T and V must be given. With such conditions

expressed in task space, we can calculate corresponding conditions in the joint

space using an inverse kinematics and some relations:

J(q)q̇ = V

J̇(q, q̇)q + J(q)q̈ = V̇ .
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If the number of degrees of freedom exceeds the dimension of the task space,

inverse kinematics solutions are not unique. Besides, it is possible that inverse

kinematics solution does not exists. However, in our problem, we assume that

there is at least one solution for inverse kinematics.

A waypoint condition is to represent that an optimal trajectory we find should

be passing through the waypoint. There are several ways to add the waypoint

conditions to the optimal control problem such as equality condition form,

inequality condition form, etc. In this paper, to add the waypoint conditions,

dividing the trajectory by the waypoints into several trajectories called sectors,

we can reformulate (3.1.2) into

J(τ) =

W−1∑
i=1

∫ ti+1

ti

E(τ(q(t), q̇(t), q̈(t)))dt

=

∫ t2

t1

E(τ(q(t), q̇(t), q̈(t)))dt+ ...+

∫ tW

tW−1

E(τ(q(t), q̇(t), q̈(t)))dt

(3.1.3)

where W is the number of waypoints, which makes it for us to easily add the

waypoint conditions to the optimization problem.

3.2 B-Spline Curves

In order to solve the optimal control problem with a direct method, we need

to parameterize a joint trajectory and convert this problem into a parameter

optimization problem. For parameterizing the optimal trajectory of each sec-

tor with a time variable in the configuration space, a B-spline curve is used.

We first introduce about the basic knowledge of B-spline curves. B-spline

curves have been widely used in many researches [1, 9, 10, 21]. More detailed

information can be found in [22].

When using B-spline curve of order p, the joint trajectory, q ∈ Rd is written
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as

q(t) = q(t;u1:n, c1:m) =
m∑
i=1

ciBi,p(t), t ∈ [0, T ] (3.2.4)

u· ∈ R, c· ∈ Rd, p = n−m, (3.2.5)

where u· and c· are respectively knots and control points which characterize

B-spline curve, t is a time variable, and T is a final time (or traveling time,

T = ts+1 − ts for the sector s). The symbols n and m are the number of

knots and control points, respectively, and d is the degrees of freedom of a

manipulator. Bi,p is a B-spline basis function with Cp−2 continuity which can

be derived by means of a recursion formula as follows [10]:

Bi,p(t) =
t− ui

ui+p−1 − ui
Bi,p−1(t) +

ui+p − t
ui+p − ui+1

Bi+1,p−1(t),

Bi,1(t) =


1 if ui ≤ t < ui+1

0 otherwise.

(3.2.6)

Another method to calculate bases of a B-spline curve is De Boor’s Algorithm

[22].

The derivative of q can be obtained by

d

dt
q(t) =

m∑
i=0

c′iBi+1,p−1(t), (3.2.7)

where c′i is defined as follows:

c′i =
p− 1

ui+p − ui+1
(ci+1 − ci), (3.2.8)

where c0 (for i = 0) and cm+1 (for i = m) are defined as zero. Because the

derivatives of a B-spline curve is another B-spline curve of order p− 1 on the

same knots with new m− 1 control points c′·, the higher derivative of q can be

calculated consequently following a similar procedure.
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B-spline has the convex hull property defined by

Bi,p ≥ 0 and
m∑
i=0

Bi,p(t) = 1.

We see that

q(t) =
m∑
i=1

ciBi,p(t) ≤
m∑
i=1

c̄Bi,p(t) = c̄

q(t) =

m∑
i=1

ciBi,p(t) ≥
m∑
i=1

cBi,p(t) = c,

(3.2.9)

where c̄ is the maximum value of ci and c is the minimum value of ci. B-spline

based parameterization has been widely used in [10, 11].

To set the boundary conditions (q(0), q̇(0), q̈(0), q(T ), q̇(T ), q̈(T )) of a B-spline

manually, we make the knots like as follows:

ui =


0 if i = 1, ..., p

T∆(i− p) if i = p+ 1, ..., n− p

T if i = n− p+ 1, ..., n

, where ∆ =
1

n− 2p+ 1
. (3.2.10)

By some calculations, we can easily find that, when we make a B-spline curve

using above knots, the start point q(0) and the end point q(T ) are equal to

c1 and cm, respectively. B-spline which have the same p knot values on the

both sides like above is called clamped B-spline. From (3.2.7), we know that

the derivative of q is also B-spline curve. The knots u′ and the control points

c′ of q̇ can be obtained by

u′i = ui+1, i = 1, ..., n− 2

c′j =
p− 1

uj+p − uj+1
(cj+1 − cj), j = 1, ...,m− 1,
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and we can arrange above equation in matrix form:


c′1
...

c′m−1

 =


− p−1
up+1−u2

p−1
up+1−u2

. . .
. . .

− p−1
up+m−1−um

p−1
up+m−1−um





c1

c2

...

cm−1

cm


(3.2.11)

Therefore the number of knots and control points are n−2 and m−1, respec-

tively, and the order of B-spline q̇ is p−1. Obviously, B-spline q̇ is also clamped

B-spline and we can see that q̇(0) and q̇(T ) are c′1 and c′m−1, respectively:

q̇(0) = c′1 =
p− 1

T∆
(c2 − c1)

q̇(T ) = c′m−1 =
p− 1

T∆
(cm − cm−1).

With a similar procedure, q̈(0) and q̈(T ) can be formulated with ci. Therefore,

from those simultaneous equations, we can find that the control points of B-

spline q(t) which satisfies the boundary conditions (q(0), q̇(0), q̈(0), q(T ), q̇(T ),

q̈(T )) subject to following equations:

c1 = q(0)

c2 = q(0) +
T∆

p− 1
q̇(0)

c3 = q(0) +
3T∆

p− 1
q̇(0) +

2T 2∆2

(p− 1)(p− 2)
q̈(0)

cm−2 = q(T )− 3T∆

p− 1
q̇(T ) +

2T 2∆2

(p− 1)(p− 2)
q̈(T )

cm−1 = q(T )− T∆

p− 1
q̇(T )

cm = q(T ).

(3.2.12)
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By the definition of B-spline, we can split B-spline into two B-splines with

knots sharing.

q(t;u1:n, c1:m) = q1(t;u1:n, c1,1:m) + q2(t;u1:n, c2,1:m)

=

m∑
i=1

c1,iBi,p(t) +

m∑
i=1

c2,iBi,p(t),
(3.2.13)

, where

c1,i =


ci if i = 1, 2, 3,m− 2,m− 1,m

0 otherwise

c2,i =


0 if i = 1, 2, 3,m− 2,m− 1,m

ci otherwise.

Using (3.2.12) and (3.2.13), when boundary conditions and T are given, we

can easily find that q1 just depends on the time variable t.

3.2.1 B-Splines with Final Time Parameter

To use the final time T as an optimization parameter, we need to introduce new

variable and normalize the domain of B-splines into range of [0, 1]. Considering

new normalized time-domain variable t̃, the relation between t̃ and t is

t̃ =
t

T
, t̃ ∈ [0, 1]. (3.2.14)

When q(t) is defined by (3.2.4), we define new B-spline in range of [0, 1] with

new variable t̃:

q̃(t̃; ũ1:n, c1:m) =

m∑
i=1

ciB̃i,p(t̃), (3.2.15)
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where

ũi =
ui
T
, i = 1, ..., n

=


0 if i = 1, ..., p

∆(i− p) if i = p+ 1, ..., n− p

1 if i = n− p+ 1, ..., n

, where ∆ =
1

n− 2p+ 1
.

From (3.2.6),

B̃i,1(t̃(t)) = Bi,1(t),

B̃i,p(t̃(t))) =
t̃(t)− ũi

ũi+p−1 − ũi
B̃i,p−1(t̃(t)) +

ũi+p − t̃(t)
ũi+p − ũi+1

B̃i+1,p−1(t̃(t))

=
t/T − ui/T

ui+p−1/T − ui/T
B̃i,p−1(t̃(t)) +

ui+p/T − t/T
ui+p/T − ui+1/T

B̃i+1,p−1(t̃(t))

=
t− ui

ui+p−1 − ui
B̃i,p−1(t̃(t)) +

ui+p − t
ui+p − ui+1

B̃i+1,p−1(t̃(t))

= Bi,p(t).

Therefore, referring to (3.2.15) it implies that

q(t;u1:n, c1:m) =
m∑
i=1

ciBi,p(t)

=
m∑
i=1

ciB̃i,p(t̃(t))

= q̃(t̃(t); ũ1:n, c1:m).

(3.2.16)

Now, let’s take derivatives of above equation, then we get

q̇(t) =
dq̃

dt̃
(t̃(t))

dt̃

dt

=
1

T

dq̃

dt̃
(t̃(t))

q̈(t) =
1

T 2

d2q̃

dt̃2
(t̃(t)).

(3.2.17)
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Using above equations, we can rearrange our problem (3.1.3) into

Js(τ) =

∫ T

0
E(τ(q(t), q̇(t), q̈(t)))dt

=

∫ T

0
E

(
τ

(
q̃(t̃(t)),

1

T

dq̃

dt̃
(t̃(t))

1

T 2

d2q̃

dt̃2
(t̃(t))

))
dt

=

∫ T

0
Ẽ(t̃(t))dt,

(3.2.18)

where Js is an objective function of sector s. Normalizing the domain of B-

splines make it possible for us to easily take partial derivatives of q(t), q̇(t),

and q̈(t) with respect to final time T using q̃(t̃) and its derivatives.

3.2.2 Partial Differentiation of a B-Spline Curve

To calculate the gradient of the objective function for optimization analyti-

cally, first we need to take partial derivatives of a B-spline curve with respect

to the parameters, e.g. control points c· and final time T . (If some of waypoint

conditions q, q̇, q̈ are free, they should be optimization parameters and we need

to take partial derivatives of a B-spline with respect to them to calculate the

gradient of objective function analytically. We skip these issues because it can

be done by the similar procedure as partial derivatives with respect to control

points.)

From (3.2.13), we split q̃(t̃) into two B-spline curves as follows:

q̃(t̃; ũ1:n, c1:m) = q̃1(t̃; ũ1:n, c1,1:m) + q̃2(t̃; ũ1:n, c2,1:m),

where c1,· are computed by (3.2.12) with boundary conditions and final time T .

(The reason why we split q̃(t̃) into two B-spline curves is to make explanation

easier. With this expression, we can easily find the independence between

optimization parameters and boundary conditions, which helps us implement

the algorithm in terms of practical meaning.) Here, we can see that only



3.2. B-Spline Curves 33

ci (i = 4, ...m − 3) can be optimization parameters. Since we already know

that ũ· are defined by the number of knots and the order of a B-spline, the

bases of the B-spline do not depend on the control points and final time T .

Therefore q̃1 just depend on final time T and q̃2 depend on only control points

ci (i = 4, ...,m− 3). Let’s take partial derivatives with respect to parameters:

∂q̃

∂T
(t̃) = q̃1,T (t̃; ũ1:n,

∂

∂T
c1,1:m) =

m∑
i=1

(
∂

∂T
c1,i

)
B̃i(t̃)

∂q̃

∂cj
(t̃) = q̃2,cj (t̃; ũ1:n,

∂

∂cj
c2,1:m) =

m∑
i=1

(
∂

∂cj
c2,i

)
B̃i(t̃),

(3.2.19)

where

∂

∂T
c1,i =



0 if i = 1

∆
p−1 q̇(0) if i = 2

3∆
p−1 q̇(0) + 4T∆2

(p−1)(p−2) q̈(0) if i = 3

0 if i = 4, ...,m− 3

− 3∆
p−1 q̇(T ) + 4T∆2

(p−1)(p−2) q̈(T ) if i = m− 2

− ∆
p−1 q̇(T ) if i = m− 1

0 if i = m

∂

∂cj
c2,i =


1 if i = j = 4, ...,m− 3

0 otherwise.

Because control points and final time do not depend on normalized time vari-

able t̃, it is possible that
dq̃

dt̃
=
∂q̃

∂t̃
.
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Therefore we can get partial derivatives of ∂q̃/∂t̃ and ∂2q̃/∂t̃2 with respect to

the parameters, T and cj , as follows:

∂

∂T

∂q̃

∂t̃
=

∂

∂t̃

∂q̃

∂T
∂

∂cj

∂q̃

∂t̃
=

∂

∂t̃

∂q̃

∂cj

∂

∂T

∂2q̃

∂t̃2
=

∂2

∂t̃2
∂q̃

∂T

∂

∂cj

∂2q̃

∂t̃2
=

∂2

∂t̃2
∂q̃

∂cj

, j = 4, ...,m− 3. (3.2.20)

Finally, from (3.2.16), (3.2.17) and (3.2.19), (3.2.19), we can easily take partial

derivatives of q(t(t̃)), q̇(t(t̃)), and q̈(t(t̃)) with respect to the parameters.

As you can see above, we do not need to calculate partial derivatives with

respect to control points every optimization steps. Taking partial derivatives

with respect to control points only once before running optimization loop, we

can reduce the repetition calculations.

3.3 Gaussian Quadrature

There are various kinds of numerical integration methods. Obviously, choos-

ing a method is important because the performance of numerical integration

method directly effects that of whole algorithm. Because calculating the func-

tion which we want to integrate takes some time, to reduce the computation

time, integration method has to use the calculating points as few as possible

without accuracy problem. In addition, because the domain of function we

used is scalable, we need to handle it easily with integration method. These

are the reasons why we use Gaussian quadrature for integration.

An n-point Gaussian quadrature states as a weighted sum of function values,
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which is defined over [−1, 1], at specified points:∫ 1

−1
f(x)dx ≈

n∑
i=1

ωif(xi), i = 1, ..., n.

There are several ways to get points xi and weights wi. We use the method

called Gauss-Legendre quadrature which use Legendre polynomials [23]. Be-

fore using the Gaussian quadrature method in our problem (3.2.18), an integral

over [0, T ] must be changed into an integral over [−1, 1]. Changing interval

can be done by following way:∫ T

0
Ẽ(t̃(t))dt = T

∫ 1

0
Ẽ(t̃)dt̃

=
T

2

∫ 1

−1
Ẽ

(
1

2
t̃+

1

2

)
dt̃

Applying the Gaussian quadrature method, we can get the following equation:∫ T

0
Ẽ(t̃(t))dt =

T

2

n∑
i=1

ωiẼ

(
1

2
t̃′i +

1

2

)
,

where (ωi, t̃
′
i) are the weights and the points of an n-point Gaussian quadra-

ture. Selecting n depends on the purpose of the program. For our case, we

want to get the result of optimization in 500ms in our environment. Heuris-

tically we find that 25 ∼ 35 is suitable for n.
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3.4 Algorithm for Generating Energy-Efficient Trajec-

tory

Parameterizing the joint trajectories of each sector and applying the previous

results the optimization problem is transformed in the followings:

Minimize
c4:m−3,q,q̇,q̈,T

J =
W−1∑
i=1

Ti
2

n∑
j=1

ωjẼi

(
1

2
t̃′j +

1

2

)
subject to 0 ≤ Ti

qmin ≤ ci,k ≤ qmax

q̇min ≤
1

T
c′i,k(ci) ≤ q̇max

q̈min ≤
1

T 2
c′′i,k(ci) ≤ q̈max

τmin ≤ τ̃i
(

1

2
t̃′j +

1

2

)
≤ τmax,

(3.4.21)

where

Ti = ti+1 − ti : traveling time of sector i

τ(q, q̇, q̈) = M(q)q̈ + C(q, q̇)q̇ +N(q, q̇)

q̃i(t̃) = q̃i(t̃; ũi, ci) =
m∑
k=1

ci,kB̃k(t̃), t̃ ∈ [0, 1] : B-spline

ci,k, c
′
i,k, c

′′
i,k = kth control point of q̃i,

dq̃i

dt̃
,

d2q̃i

dt̃2
, respectively

τ̃i(t̃) = τ

(
q̃i(t̃),

1

Ti

dq̃i

dt̃
(t̃),

1

T 2
i

d2q̃i

dt̃2
(t̃)

)
Ẽi(t̃) = E(τ̃i(t̃))

(wj , t̃
′
j) = jth weight and point of n-points Gaussian Quadrature.

As we already discussed, some of control points are computed by boundary

conditions (3.2.12). Note that waypoint conditions which are free, ti, qi, q̇i,

and q̈i, are included as optimization parameters. By convex hull property of
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B-spline (3.2.9), joint position, velocity, and acceleration limits can be formed

as linear inequality conditions in parameter space (3.2.8) [10]. In contrast,

because joint torque limits are highly nonlinear, we cannot do optimization

with hard constraints on joint torque at every time. So, we check torque limit

on specific times.

The gradients of the objective function is:

∇J =
[

∂J
∂ci,k

∂J
∂qi

∂J
∂q̇i

∂J
∂q̈i

∂J
∂Ti

]
where can be computed from the analytical results in previous sections. Again,

if some waypoint conditions are given, we do not need to take into account

in optimization parameters. Calculating numerical gradient of the objective

function using first symmetric derivative,

lim
h→0

f(x+ h)− f(x− h)

2h
,

takes about 13 times as much time as calculating its analytical gradient.

During every optimization step, we compute function values and gradients

of the objective function and inequality conditions. In this process, some

calculations are duplicated such as calculating partial derivatives of B-splines

and joint torques with respect to optimization parameters. Reusing them

when it occurs, we find that the computation time decreases dramatically.

3.5 Case Studies

In this section, we demonstrate optimal trajectory generations for an Efort

robot whose dynamic properties are given. The optimal trajectory generations

we performed are roughly divided into three cases. For the first case, we

use the effort function as an energy consuming function E(τ). Using the

effort function, we generate the trajectory from given point to another. We
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measure the computation time and compare the objective function value of our

algorithm to that of Reflexxes which is a S-curve based time-optimal trajectory

generation. Also, we generate the trajectory with waypoints and payloads.

Second, we use the energy loss function. Similarly, we compare our algorithm’s

results to Reflexxes’ and generate the trajectory with waypoints and payload.

In the last case, we generate the energy-optimal trajectory with base link

optimization, which means that we want to find the optimal place to locate

the robot while minimizing the objective function. In the factory, replacing the

industrial robot is uncommon and the task may be fixed. Finding a good place

to locate the robot is important with fixed traveling time. We augment the

optimization parameters with six generalized coordinates for representing the

position and the orientation of the base link. We will explain this case in more

details in the corresponding section. The optimization problem formulated

in Section 3.4 is solved by optimization tool called NLopt [24] which is a

free open source library for nonlinear optimization. All of the optimizations

were performed on Intel(R) Core(TM) i7-6700 CPU processor @ 3.40GHz and

16.0GB RAM with 64bit Windows 10 Education K.

Table 3.1: Kinematics and dynamics constraints for each joint of an Efort

robot

Joint no. i
Pos. qi (rad) Vel. q̇i (rad/s) Acc. q̈i (rad/s2) Torque τi (Nm)

min max min max min max min max

1 -3.054 3.054 -1.745 1.745 -8.726 8.726 -3000 3000

2 -1.745 1.570 -1.396 1.396 -6.981 6.981 -3000 3000

3 -2.530 1.221 -2.443 2.443 -12.21 12.21 -1530 1530

4 -3.141 3.141 -5.061 5.061 -25.30 25.30 -369.3 369.3

5 -2.356 2.356 -5.061 5.061 -25.30 25.30 -384 384

6 -6.283 6.283 -7.679 7.679 -38.39 38.39 -143.2 143.2
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Before we talk about three cases, first we will show you how we select the

hyper-parameters for B-spline such as the order of B-spline and the number of

control points. Because there are joint acceleration boundary conditions, joint

trajectories must be the second order differentiable or more. For that reason,

we use the fourth order of B-spline curve. Now, let’s talk about the number

of control points. To choose proper number of control points, we investigate

objective function value, which is defined as (3.1.2) with the effort function,

and computation time versus the number of control points as in Figure 3.3.

As you can see Figure 3.3, the objective function value tends to decrease as
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Figure 3.3: Objective function values and computation times versus the num-

ber of control points. The optimization is performed without waypoint and

payload.

the number of control points increases. In contrast, the computation time

tends to increase as the number of control points increases. Because selecting

hyper-parameters depend on the purpose of the program, we think three or

four control points for each B-spline is suitable for us. In our simulations, we
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use four control points. In addition, we use a 30-point Gaussian quadrature

and all of the optimizations are performed with the first three joints, not six

joints, because when we use six joints for the optimization, the optimization

takes more time and the result is even worse than when we use first three

joints.

3.5.1 Effort

These simulations are performed with the library we made in C++ language.

The initial, final, and waypoint configurations are given as in Figure 3.4. The

optimization is done with the effort function. Effort case is largely divided

into two small cases.

First, we performed the optimization with only the initial and the final con-

figurations. It means that there is no waypoint and payload. The optimal

trajectories are shown in Figure 3.5. The black lines represent the trajectories

of the end effector of the robot. Figure 3.5(a) shows the optimal trajectory

with given final time and Figure 3.5(b) shows the results of the optimization

with free final time. The numerical results are expressed in Table 3.2. As you

can see, we can get the optimal trajectory within short time. When the final

time is free, it takes more time but the function value is less than when the

final time is fixed. Note that there is no optimization in Reflexxes, so it takes

less time to generate the trajectory. The objective function value from our

optimal trajectory is much less than the objective function value of Reflexxes’

trajectory. Generated position, velocity, acceleration, and torque of each joint

are in Figure 3.6.

Second, we performed the optimization with the waypoints and payloads on

the end effector. At waypoint, the joint velocity and acceleration are free. The

time when the robot is passing through the waypoint is also free. Inertia of
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the payload is defined as follows:

I = 70 ∗ I6×6,

where I6×6 is a 6 by 6 identity matrix. The motions are shown in Figure 3.7

and the numerical results are expressed in Table 3.3. we present generated

position, velocity, acceleration, and torque of each joint in Figure 3.8. The

dash line shows the time when the robot pass through the given waypoint.

3.5.2 Energy Loss

These simulations are performed with the energy loss function. The initial,

final, and waypoint configurations are given as in Figure 3.4. Like effort case,

this case is also divided into two small cases. For the case without waypoint

and payload, the simulation results are expressed in Table 3.9 and Figure 3.4.

Generated position, velocity, acceleration, and torque for each joint are repre-

sented in Figure 3.10. For the case with waypoint and payload, the simulation

results are expressed in Table 3.11 and Figure 3.5. Again, at the waypoint,

the joint velocity, the acceleration and the waypoint time are free. Generated

position, velocity, acceleration, and torque for each joint are represented in

Figure 3.12. In contrast with effort case, potential energy difference between

two configurations, initial and final, is the dominant factor of the objective

function value. This is the reason why the difference between the results of

our algorithm and Reflexxes is small.

3.5.3 Base Link Optimization

In terms of practical meanings, time-optimal trajectory is more important

than energy-optimal trajectory in many cases. Most of users want to reduce

the energy consumption without increasing traveling time. Optimizing the
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location of the base link could be one of the solutions, which means that we

want to find the location of the base link to minimize the energy consumption

of the robot for certain motion without increasing traveling time. The reason

why it is more meaningful and more realizable is that the motion and the

location of the robot are usually fixed for industrial robots. Here, we assume

that the joint velocity and the acceleration at initial and final points are fixed

as zero. (The joint velocity and acceleration at other points are free.) To

solve this problem, we express the position and the orientation of the base

link as six generalized coordinates and then optimize the objective function.

For example, the position and the orientation of the base link can be expressed

as follows:

Tbase(θ) =
6∏
i=1

e[si]θi ,

where θ ∈ R6 is a six-generalized coordinates and Tbase(θ) is SE(3) of the base

link, si is a ith screw and [si] is corresponding se(3). Therefore, we can get

the end effector frame Tee as follows:

Tee(θ, q) = T (θ)Trobot(q),

where Trobot(q) is a function of q (joint values) which represents forward kine-

matics of the robot. Because the position and the orientation at given waypoint

are fixed, we can easily get

J(θ, q)

 dθ

dq

 = 0,

where J is a body Jacobian which can be defined as

J(θ, q) =
[
Jθ | Jq

]
=
[
T−1
ee

∂Tee
∂θ | T−1

ee
∂Tee
∂q

]
.
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We expand the above equation and then we get

0 = Jθdθ + Jqdq

dq

dθ
= −J−1

q Jθ.

Note that, because the joint velocity and the acceleration at initial and final

points are fixed as zero, dq̇/dθ and dq̈/dθ are also equal to zero. In addition,

the orientation of the base link affects the spatial acceleration of base link

which is used in inverse dynamics. Using above results, we can calculate the

partial derivative of the objective function with respect to θ analytically:

∂τ

∂θ
=
∂τ

∂V̇

∂V̇

∂θ
+
∂τ

∂q

∂q

∂θ
+
∂τ

∂q̇

∂q̇

∂θ
+
∂τ

∂q̈

∂q̈

∂θ
.

Simulation results are expressed in Table 3.6 and Figure 3.13. As you can see,

even small displacement of the base link makes about 3%∼10% reduction in

energy consumption in terms of both effort and energy loss.
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(a) Initial configuration (b) Final configuration

(c) Configuration at given waypoint

Figure 3.4: Configurations at start point, end point and waypoint
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(a) Optimal trajectoy with fixed final

time

(b) Optimal trajectoy with free final time

Figure 3.5: Optimal trajectory for the first case (effort function) without way-

point and payload

Table 3.2: Optimal results for the first case (effort function) without waypoint

and payload

waypoint(x) payload(0kg)
Final time

tf (s)

Computation

Time (ms)

Obj. Function

Value

ours
tf given 2.00 66 692777

tf free 1.85 166 689421

Reflexxes’ 1.58 1 1104480
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Figure 3.6: Position, velocity, acceleration, and torque of each joint for the

first case (effort function) with free final time (no waypoint, no payload)
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(a) Optimal trajectoy with fixed final

time

(b) Optimal trajectoy with free final time

Figure 3.7: Optimal trajectory for the first case (effort function) with way-

points and payloads

Table 3.3: Optimal results for the first case (effort function) with waypoints

and payloads

waypoint(o) payload(70kg)
Final time

tf (s)

Computation

Time (ms)

Obj. Function

Value

ours
tf given 5.00 1518 5180882

tf free 3.55 5891 4524667
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Figure 3.8: Position, velocity, acceleration, and torque of each joint for the first

case (effort function) with free final time (include waypoints and payloads)
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(a) Optimal trajectoy with fixed final

time

(b) Optimal trajectoy with free final time

Figure 3.9: Optimal trajectory for the second case (energy loss function) with-

out waypoint and payload

Table 3.4: Optimal results for the second case (energy loss function) without

waypoint and payload

waypoint(x) payload(0kg)
Final time

tf (s)

Computation

Time (ms)

Obj. Function

Value

ours
tf given 2.00 197 1863.17

tf free 4.14 210 1671.86

Reflexxes’ 1.58 1 1947.72
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Figure 3.10: Position, velocity, acceleration, and torque of each joint for the

second case (energy loss function) with free final time (no waypoint, no pay-

load)
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(a) Optimal trajectoy with fixed final

time

(b) Optimal trajectoy with free final time

Figure 3.11: Optimal trajectory for the second case (energy loss function) with

waypoints and payloads

Table 3.5: Optimal results for the second case (energy loss function) with

waypoints and payloads

waypoint(o) payload(70kg)
Final time

tf (s)

Computation

Time (ms)

Obj. Function

Value

ours
tf given 5.00 880 3719.55

tf free 4.77 2170 3615.58
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Figure 3.12: Position, velocity, acceleration, and torque of each joint for the

second case (energy loss function) with free final time (include waypoints and

payloads)
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Table 3.6: Results of base link optimization

Objective Function

Type

Without base

link optimization

With base link

optimization
Remarks

Effort (tf given) 5180882 4639428 10.45% ↓

Energy loss (tf given) 3719.55 3585.98 3.59% ↓

(a) Optimization motion from

top view (the effort function)

(b) Optimization motion from

bottom view (the effort func-

tion)

(c) Optimization motion from

top view (the energy loss func-

tion)

(d) Optimization motion from

bottom view (the energy loss

function)

Figure 3.13: Optimal position and orientation of the base link using two ob-

jective functions



4
Task Scheduling of

Energy-Optimal Trajectories

In this section, a task scheduling algorithm is presented which minimizes the

energy consumption. As we said in Section 1, many operators are interested

in the time optimality, but sometimes the time-optimal operation cannot be

used or it is less important, for example, an assembly line with bottleneck of a

pass-or-fail task such as pick-and-place task. In pick-and-place task, the robot

should have to pick all objects and place them within certain corresponding

time range for each object. In other words, for such like problems, reducing

complete time is not an objective. The robots do not need to move as fast as

they can. Using residual time, we can minimize the energy consumption. The

algorithm which will be described in this section can be the one of solutions

to solve these kinds of problems with some assumptions which are acceptable

in terms of practical meanings. We use the dynamic programming method

with the energy-efficient trajectory generation algorithm which we described

in previous section.

54
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(   )

Robot i

Task j

start finish

ts
i,j tf

i,jtf
i,j min

ts
i,j(   )

min
ts
i,j(   )

max
(   )tf

i,j max

Figure 4.1: Task timeline for explaining some parameters

4.1 Problem Definition

Let’s n and m are the numbers of robots and tasks, respectively. Each pair of

a robot and a task has information Ii,j =
(
Ci,j , (t

s
i,j)min,max, (t

f
i,j)min,max, di,j

)
,

see Figure 4.1: (i is the index of a robot, j is the index of a task)

Ci,j(t
s, tf ) : the cost when the robot i performs the task j from ts to tf

(tsi,j)min, (t
s
i,j)max : the robot i have to start the task j from (tsi,j)min to (tsi,j)max

(tfi,j)min, (t
f
i,j)max : the robot i have to finish the task j from (tfi,j)min to (tfi,j)max

di,j : the minimum execution time of the task j in robot i,

where Ci,j : R × R → R, (tsi,j)min,max, (t
f
i,j)min,max ∈ R. If the robot i cannot

perform the task j, there is no corresponding information Ii,j . As you can infer

from the above information, for our problem there is no precedence relationship

between tasks, which means that all tasks are independent. To define the

problem, we introduce some parameters as follows:

ωj : the index of a robot where the task j is performed (ωj ∈ N, 1 ≤ ωj ≤ n)

Ti : a set of tasks which are performed in robot i (Ti = {j|ωj = i}) .
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The proposed mathematical model for minimizing of the energy consumption

is as follows:

Minimize
ωj ,tsωj,j

,tfωj,j

J =

m∑
j=1

Cωj ,j(t
s
ωj ,j , t

f
ωj ,j

)

subject to (tsωj ,j)min ≤ tsωj ,j ≤ (tsωj ,j)max

(tfωj ,j
)min ≤ tfωj ,j

≤ (tfωj ,j
)max

tfωj ,j
− tsωj ,j ≥ dωj ,j ,

(4.1.1)

where cost function Cωj ,j represents the consumed energy which the robot wj

use when it performs the task j. In addition to above constraints, because it is

impossible that a robot performs multiple tasks in a robot at the same time, we

need to consider the corresponding constraints [12] (mutual exclusion). This

issue can be expressed in the following way. Let’s define σj1,j2 as a Boolean

variable representing task j1 being performed after task j2. If two tasks, j1

and j2, are performed in the same robot (i = ωj1 = ωj2), then only one of

σj1,j2 and σj2,j1 will be one (true) and, of course, the other is zero (false). The

resulting constraints can be expressed as

tsωj1
,j1 ≥ t

f
ωj2

,j2
−M(1− σj1,j2)−M |ωj1 − ωj2 |

tsωj2
,j2 ≥ t

f
ωj1

,j1
−M(1− σj2,j1)−M |ωj1 − ωj2 |

σj1,j2 + σj2,j1 = 1,

(4.1.2)

where M is sufficiently large for negating constraints if they are unnecessary.

As we mentioned above, these constraints are active when the robots for task

j1 and j2 are same. And also if task j1 is performed after task j2, then σj1,j2

is one (true) and the first constraint is valid. Of course, the variable σ will

be optimized. If there are ωj , t
s
ωj ,j

, tfωj ,j
for all j, and σ which satisfy above

constraints (4.1.1), (4.1.2), we can say that the tasks are Schedulable with the

given robots.
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4.2 Assumptions

Now, let’s think about how we can solve this kind of problems. Note that

the optimization variables are the indices of the robot for each task which are

natural numbers ω, the real valued starting and finishing times for each task

ts, tf , and the binary variables representing mutual exclusion σ. All things

considered, we can solve this problem using mixed integer programming. This

problem is, however, too complex to be solved and it takes so many times to

solve it. If it is solved, the result may be local minimum and not really good.

In other words, solving this problem directly is not useful. We think that

the problem definition is too general to get more meaningful result, so several

acceptable assumptions are needed to make the problem more practical. In

this section, we describe four assumptions. It may be hard to apply some

of assumptions directly for some situations or factories. However, we think

that, even if we force these assumptions to be applied in such situations and

factories, the result won’t be changed much in many cases.

The first assumption is about the final time constraints, tfmin, t
f
max. In many

cases, there is no final time limitation. If it exists, final time limitations

may be for co-working with the machines which are not in the system we are

dealing with. For example, there is a press machine which presses a material

frequently. Here, we need to make an optimal schedule and trajectories of

robots to pick the materials and place them into the press machines in time.

In other words, for interaction between the robots and the press machine, we

have to apply the final time limitations for the robots in the optimization. In

contrast, if all robots and machines are under control and optimized together,

final time limitations may not be needed in many cases.
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Assumption 4.2.1. Final time limitations for each task do not exist.

(tfi,j)min → −∞, (tfi,j)max →∞.

In our problem, although there is no explicit final time limitation, the algo-

rithm solves our problem like with final time constraints. We remark that

the purpose of our algorithm is to minimize the energy consumption of robots

while every tasks are performed. Because each task has the available time

range for being started, the robot is forced to finish the previous task to start

the task in time. However, the task which will be executed at the end has

no limitation for finishing. To avoid this, we apply a final complete time,

which means that all tasks are finished in certain time. (This constraint will

be discussed in the next section.)

Assumption 4.2.2. Each robot can execute only one type of task.

Ci(t
s, tf ) = Ci,j(t

s, tf )

∆i = (tsi,j)max − (tsi,j)min, for all i, j such that Ii,j exists,

di = di,j

where Ci : R× R→ R and ∆i, di ∈ R.

Second, we assume that a robot can perform only one type of task. The

tasks in the same type have same properties. Here, the properties are the

cost function, the start time range, and minimum execute time of the task.

Let’s imagine a robot with a conveyor belt. The task is to pick and place the

object moving on the conveyor belt. Because the area of activity of the robot

is limited and the speed of the conveyor belt is constant, the available time

interval for picking the object is fixed. In addition, because the inertia of the

object is similar, we can think the minimum execution time for moving the

object is also similar.
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Assumption 4.2.3. Cost function depends on only the task execution time.

Ci,j(tf − ts) = Ci,j(t
s, tf ), for all i, j such that Ii,j exists,

where Ci,j : R→ R.

Next, we assume that for each pair of a robot and task the cost function

depends on only the task execution time. We can apply this assumption

when the task does not depend on the start time and the final time. For

example, if the task is a point-to-point motion, the start point and the final

point are fixed, so we can say that this situation can be solved with the above

assumption. From Assumption 4.2.2 and Assumption 4.2.3, we can easily find

that Ci : R→ R for i = 1, ...n exist such that

Ci(tf − ts) = Ci,j(t
s, tf ), for all i, j such that Ii,j exists.

Before we talk about the last assumption, let’s see two important propositions

which will be useful properties for our algorithm and can be proven with these

three assumptions.

Proposition 4.1 (Schedulability). If the tasks are Schedulable with some

robots, the tasks can also be Schedulable with the following constraint:

tfi,j1 ≤ t
s
i,j2 , if (tsi,j1)min ≤ (tsi,j2)min (∀j1, j2 ∈ Ti). (4.2.3)

Proof. It can be proven by contradiction. Let the tasks are Schedulable while

they do not satisfy the above constraint. There must be one or more pairs

(j1, j2), (j1, j2 ∈ Ti) such that

tfi,j1 > tsi,j2 , (tsi,j1)min ≤ (tsi,j2)min (4.2.4)

which means that the task j2 is performed before the task j1 is started. From
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Figure 4.2: Original schedule and rescheduling

the constraint (4.1.1), we can get

tfi,j2 ≤ t
s
i,j1

⇒(tsi,j1)min ≤ (tsi,j2)min ≤ tsi,j2 ≤ t
f
i,j2
≤ tsi,j1 ≤ (tsi,j1)max

and, from Assumption 4.2.2, we can easily find

(tsi,j1)max = (tsi,j1)min + ∆i ≤ (tsi,j2)max = (tsi,j2)min + ∆i,

then,

(tsi,j2)min ≤ tsi,j1 ≤ (tsi,j2)max

(tsi,j1)min ≤ tsi,j2 ≤ (tsi,j1)max.

Switching the order of the task j1 and the task j2, we can make another

schedule, see Figure 4.2:

σj1,j2 = 1, σj2,j1 = 0

(tsi,j1)new = tsi,j2 , (tfi,j1)new = tfi,j2

(tsi,j2)new = tsi,j1 , (tfi,j2)new = tfi,j1 .

Using the same procedure, we can sort the tasks such that there is no pair

(j1, j2), (j1, j2 ∈ Ti) which satisfies (4.2.4). Therefore, Proposition 4.1 must be

true.
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and

Proposition 4.2 (Optimality). Let the tasks be Schedulable. If there are

optimal solutions, at least one of them satisfies the constraint (4.2.3).

Proof. Suppose that there is no optimal solution subject to the constraint

(4.2.3). Let’s pick another optimal solution and then using the method we

described at the proof of Proposition 4.1 we can sort the task to satisfy the

constraint (4.2.3). From Assumption 4.2.2 and Assumption 4.2.3, because the

cost functions are same and the execute times are not changed, the value of

the total objective function would not be changed. We can say that it is also

optimal. Therefore, by the property of the contradiction, this proposition is

true.

From above two propositions, we can find that it is possible to schedule the

tasks in ascending order of their (tsi,j)min and the result of the optimization

with the order will be globally optimal.

The last assumption is about the order of tasks. In most of factories, the work

flow is fixed, which means that the tasks or the jobs are flowing in certain

direction. Besides, the locations of the robots and work-cells are fixed. So, in

many cases, we can easily accept the following assumption:

Assumption 4.2.4. If the task j1 is ready to start in the robot i before the

task j2 is ready, the task j1 is also prior to the task j2 in another robots.

If (tsi1,j1)min ≤ (tsi1,j2)min, then (tsi2,j1)min ≤ (tsi2,j2)min,

for all i1, i2, j1, j2 such that Ii1,j1 , Ii1,j2 , Ii2,j1 , Ii2,j2 exist.
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4.3 Algorithm for Task Scheduling

With the assumptions as described in the previous section, we re-formulate

the equation (4.1.1) as follows:

Minimize
ωj ,tsωj,j

,tfωj,j

J =

m∑
j=1

Cωj (t
f
ωj ,j
− tsωj ,j)

subject to max
j

(
tfωj ,j

)
≤ tcomplete

(tsωj ,j)min ≤ tsωj ,j ≤ (tsωj ,j)max = (tsωj ,j)min + ∆ωj

tfωj ,j
− tsωj ,j ≥ dωj ,j ,

(4.3.5)

where tcomplete is the maximum complete time which is given. With the as-

sumptions, we can solve above problem using our algorithm, much faster and

much more practical. Our proposed algorithm is divided into two parts. The

first part makes an order of the tasks for the next part, dynamic programming

part. The second part performs the optimization which includes the dynamic

programming and the trajectory generation.

4.3.1 Task Arranging

Before we perform optimization with trajectory generation algorithm, we need

to make an order of the tasks which will be performed in each robot. This

part is very simple. From Proposition 4.1 and 4.2, we already know that it

is possible to schedule the tasks in ascending order of (tsi,j)min of tasks and

global optimal solution can be found with that order. Therefore, we sort the

tasks with the following constraint:

If k1 < k2, then (tsi,Sk1
)min ≤ (tsi,Sk2

)min for all i such that Ii,Sk1
, Ii,Sk2

exists,

where S is the result sequence of the tasks, e.g., Sk means kth task. From

Assumption 4.2.4, there must be a feasible solution.
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4.3.2 Optimization: Dynamic Programming and Trajectory Gener-

ation

Using the sequence of the tasks from the previous part, we perform the op-

timization with dynamic programming method. Dynamic programming is an

optimization method which can be applied to problems where the state of the

system can be determined by some finite variables and the current decision is

effected by only the current state, not the previous decisions. More detailed

account can be found in [25].

To solve our problem (4.1.1), we first need to define the state variables rep-

resenting the system. In our algorithm, we use n variables t1, ..., tn. The

variable (t1, ..., tn) represents the state when the final time of the last motion

of robot i is ti, i = 1, ...n. Using these state variables, let’s define J∗k (t1, ..., tn)

which is the optimal cost when the task S1, ..., Sk have been performed and the

current state of our system is (t1, ..., tn). The functional equation of dynamic

programming can be written as

J∗k+1(tf1 , ..., t
f
n) = min

i,tsi

[
J∗k (tf1 , ..., t

s
i , ..., t

f
n) + Ci,Sk+1

(tsi , t
f
i )
]
,

= min
i,tsi

[
J∗k (tf1 , ..., t

s
i , ..., t

f
n) + Ci(tfi − t

s
i )
]
,

(4.3.6)

where Ci,Sk+1
is the optimal energy consumption when the robot i performs the

task Sk+1 from tsi to tfi . Above equation is to calculate the optimal cost from

previous optimal cost J∗k by adding task Sk+1. From (4.3.6), we can find that

updating J∗k+1(tf1 , ..., t
f
n) requires calculating Ci,Sk+1

(tsi , t
f
i )
(

= Ci(tfi − tsi )
)

for

all i and feasible tsi . Because the cost function C is also the optimal energy

consumption, to get the optimal function value, the optimization is needed. In

other words, for our problem, a sub-problem is finding optimal point-to-point

trajectory, for example, Ci,j(t
s, tf )

(
= Ci(tfi − tsi )

)
is the energy consumption

of the optimal trajectory of the robot i for performing the task j from ts to
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tf . Initial value of J∗0 is zero at (t1, ..., tn) = (0, ..., 0), otherwise infinite. Of

course, according to problems, additional state variables may be needed and

the functional equation will be changed a little.

To solve the problem, it is necessary to quantize the admissible states into

finite number of points. The number of points for each state variable is Nt

and the total number of grids is (Nt)
n. Each state variable is equally divided

and the interval is

∆ =
tcomplete

Nt − 1
.

If the time complexity for calculating Ci,Sk+1
(tsi , t

f
i )
(

= Ci(tfi − tsi )
)

once is

O(T ), then the total time complexity of the task scheduling isO
(
nm(Nt)

n+1T
)
.

4.3.3 Cost Function Approximation

From the functional equation (4.3.6) and the total time complexity, we can eas-

ily infer that the performance of the task scheduling is dominated by the per-

formance of the trajectory generation in terms of computation time and cost.

We use our optimal trajectory generation algorithm as described in the previ-

ous section. Although our trajectory generation algorithm is computational-

efficient, it takes a lot of time to schedule the tasks because calculating the cost

function C, optimal trajectory generation, is performed about nm(Nt)
(n+1)

times. For that reason, we need to calculate the cost function fast. To do

that, we approximate the optimal cost function with respect to the final time

(task execution time) by calculating the function value and its derivative at

a few points (task execution times) for certain task. Because a robot usually

performs a repetitive task and we have assumed that a robot can perform

similar tasks in the previous section, the approximated optimal cost function

for certain task should be useful.

Let’s back to Section 3. Using the position, velocity, and acceleration with
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normalized time domain which are defined in (3.2.16) and (3.2.17), the torque

can be expressed as follows:

τ = τ

(
q̃(t̃),

1

T

dq̃

dt̃
(t̃),

1

T 2

d2q̃

dt̃2
(t̃)

)
.

Solving inverse dynamics with above equation using the closed form of dynamic

equations (2.3.5), we can get

τ = f1(t̃; θ)
1

T 2
+ f2(t̃; θ), (4.3.7)

where f1, f2 are the nonlinear functions of the normalized time variable t̃ as

given by

f1(t̃) = STGTJ
(
GS d2q̃

dt̃2
+G

[
ad

GS dq̃
dt̃

]
S dq̃

dt̃

)
− STGT

[
ad

GS dq̃
dt̃

]T
JGS dq̃

dt̃

f2(t̃) = STGTJGP0V̇0,

where G = G(t̃) : R→ R6n×6n, n is the degrees of freedom of a robot and some

parameters θ which do not include the final time T . In our problem, θ includes

control points c and some optimization parameters (see Section 4). Note that

the base link of the robot is fixed: V0 ∈ se(3) is zero. There are two important

facts. The first one is that, when all variables and parameters are fixed except

for the final time T , τ is the linear combination of T−2 and T 0. Second, if q̃(t̃),

dq̃/dt̃(t̃), and d2q̃/dt̃2(t̃) are bounded, f1(t̃; θ) and f2(t̃; θ) are also bounded,

because all elements of the matrices in (2.3.5) are bounded. When there

are only two waypoints, substituting above result into the objective function

(3.4.21) with effort function and energy loss function, then we can get

Ceffort(θ, T ) = g1(θ)
1

T 3
+ g2(θ)

1

T
+ g3(θ)T

Cenergyloss(θ, T ) = g′1(θ)
1

T 3
+ g′2(θ)

1

T 2
+ g′3(θ)

1

T
+ g′4(θ) + g′5(θ)T,

(4.3.8)

where g and g′ are the functions of parameter θ which does not include the

final time T . Because g and g′ come from f1 and f2 and the sum of weights
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of Gaussian Quadrature in (3.4.21) is 1, we can easily find that g and g′

are also bounded when q̃(t̃), dq̃/dt̃(t̃), and d2q̃/dt̃2(t̃) are bounded. For our

problem, those are bounded because the control points of B-splines are limited

by the position constraints. So, in this paper, we can think that g and g′ are

always bounded. Note that we are optimizing above objective functions with

some constraints for trajectory generation and optimization parameters are

the parameter θ and final time T which identify the trajectory of the robot.

Now, let’s think what happened to the result of the optimization when the

task execution time T is enough large. First, the constraints for velocities and

accelerations of the joints are inactive. The reason can be easily found from

the fact that the knots of B-spline we used are fixed and the control points

are bounded by the position constraints. Next, if the position constraints are

weak (note that we are focusing on the robot which have only revolute joints,

so the joint values are angles) and an object which the robot picks is not

much heavy, the position constraints and torque constraints are also inactive.

Therefore, when the task execution time T is enough large, all constraints are

inactive. If an objective function is C and T is given, the optimal parameter

θ∗ = θ∗(T ) satisfies the following:

∂C
∂θ

∣∣∣∣
θ∗,T

= 0. (4.3.9)

If C∗(T ) = C(θ∗, T ), then

dC∗

dT

∣∣∣∣
T

=
∂C
∂T

∣∣∣∣
θ∗,T

+
∂C
∂θ

∣∣∣∣
θ∗,T

dθ

dT

=
∂C
∂T

∣∣∣∣
θ∗,T

.

Finally, with above results, we can easily prove the following proposition.

Proposition 4.3. If an optimal parameter is θ∗ = θ∗(T ) when an objective
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function C and constraints are given as (3.4.21) and (4.3.8), the optimal pa-

rameter will converge when the task execution time T approaches infinity.

Proof. Let’s prove this proposition with an effort function. With similar pro-

cedure, it can be proven when the objective function is given by an energy loss

function.

From (4.3.8), the partial derivative of an objective function can be written as

∂C
∂θ

=
∂g1

∂θ

1

T 3
+
∂g2

∂θ

1

T
+
∂g3

∂θ
T.

Then, when θ = θ∗(T ), we can get

∂C
∂θ

=
∂g1

∂θ

1

T 3
+
∂g2

∂θ

1

T
+
∂g3

∂θ
T

= 0

∂g3

∂θ
= − 1

T 4

(
∂g1

∂θ
+
∂g2

∂θ
T 2

)
.

As the control points in the optimization parameter θ are bounded by the

position constraints (see (3.4.21)) and q̃, dq̃/dt̃, and d2q̃/dt̃2 are B-splines

defined by those control points, the partial derivatives of q̃, dq̃/dt̃, and d2q̃/dt̃2

with respect to the control points, θ, are bounded (see (3.2.19)). So, we can

easily find that ∂f1/∂θ and ∂f2/∂θ are bounded, where f1 and f2 can be found

in (4.3.7). As g1, g2, and g3 are functions of f1 and f2, ∂g1/∂θ, ∂g2/∂θ, and

∂g3/∂θ are also bounded. So, the limit of ∂g3/∂θ, as T approaches infinity,

can be written as

lim
T→∞

∂g3

∂θ

∣∣∣∣
θ∗(T )

= 0.

As θ∗ is an optimal parameter which minimizes C when T is given, we can say

that, as T goes infinity, the optimal parameter θ∗ approaches the parameter

which minimizes g3 (note that g1, g2, and g3 are bounded). Let’s θopt be the

optimal parameter that minimizes g3. Because the joint position, velocity, and
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acceleration are limited, θ∗ must exist. So we can write the following equation:

lim
T→∞

θ∗(T ) = θopt.

What we want to do from now on is to determine whether assuming that the

optimal parameter is constant is reasonable or not. From Proposition 4.3, we

know that the optimal parameter will converge, as the task execution time T

goes to infinity. However the problem is that the task execution time we are

interested in is not enough large. So, we need to check how fast the optimal

parameter converges and determine whether this assumption is reasonable in

our problem or not. From (4.3.9), the Talyor series of the partial derivative

of the objective function with respect to the parameter θ at a critical point

(θ∗(T ), T ) for ∆θ∗ and ∆T can be expressed as follows:

∂C
∂θ

∣∣∣∣
θ∗+∆θ∗,T+∆T

= 0 =
∂C
∂θ

∣∣∣∣
θ∗,T

+
∂2C
∂θ2

∣∣∣∣
θ∗,T

∆θ∗ +
∂2C
∂θ∂T

∣∣∣∣
θ∗,T

∆T + high order.

Ignoring the high order term, we can get

∆θ∗

∆T
≈

(
∂2C
∂θ2

∣∣∣∣
θ∗,T

)−1
∂2C
∂θ∂T

∣∣∣∣
θ∗,T

.

Figure 4.3 shows how much the optimal parameter changes as the task execu-

tion time T goes up. We solve the optimization problem which is defined in

Section 3 to get θ∗ for each task execution time (final time) and calculate the

following value: ∥∥∥∥∆θ∗

∆T

∥∥∥∥
2

≈
∥∥∥∥
(
∂2C
∂θ2

∣∣∣∣
θ∗,T

)−1
∂2C
∂θ∂T

∣∣∣∣
θ∗,T

∥∥∥∥
2

,

where ∂2C/∂θ2 and ∂2C/∂θ∂T are calculated numerically. Of course, the re-

sult depends on some internal factors, e.g., constraints and parameters of
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Figure 4.3: The change of the optimal parameter with respect to the change

of the task execution time (the objective function is given by the energy loss

function)

kinematics and dynamics, and some external factors, e.g., a payload and ex-

ternal forces. However we can heuristically find that, in the range we are

interested in, the change of the optimal parameter is enough small and it con-

verges quickly enough to be used as constant for approximating the optimal
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cost function which will be described in the follows.

We show that it is possible to assume that the optimal parameter is constant.

Then we can get the fact that gi(θ
∗) and g′j(θ

∗) (i = 1, 2, 3, j = 1, ..., 5) are

also constant. So, with θ∗(T ), we can rewrite (4.3.8) as

C∗effort(T ) ≈ G1
1

T 3
+G2

1

T
+G3T

C∗energyloss(T ) ≈ G′1
1

T 3
+G′2

1

T 2
+G′3

1

T
+G′4 +G′5T,

(4.3.10)

where Gi ∈ R and G′j ∈ R (i = 1, 2, 3, j = 1, ..., 5) are constant. Using only

three function values and their derivatives, we can easily calculate the coef-

ficients G (= (G1, G2, G3)) and G′ (= (G′1, ..., G
′
5)). Fortunately, we already

have energy-optimal trajectory generation algorithm, so we can get the func-

tion value C∗(T ) and we can also calculate its partial derivative analytically.

We use least square method for minimizing the least square error:

Minimize
G

∑
i

(
ω
∣∣C∗(Ti;G)− C∗traj(Ti)

∣∣2 + (1− ω)

∣∣∣∣dC∗dT
(Ti;G)−

∂C∗traj

∂T
(Ti)

∣∣∣∣2
)
,

where ω is a weight factor and C∗traj is a function of T , e.g., C∗traj(T ) is the

result of our trajectory generation when T is given, and ∂C∗traj/∂T is its partial

derivative with respect to T . To obtain the coefficients, we use function values

and corresponding derivatives at four points:

T1 : minimum final time

(
T1 = argmin

T

∫ T

0
dt

)
T2 : minimum objective function

(
dC∗

dT
(T2) = 0

)
T3 :

T2 + T4

2

T4 : enough long time ≈ tcomplete.

Therefore, for energy loss case, the optimal coefficients are calculated as the

following equation:

G′ =
{
ω(ATA) + (1− ω)(A′TA′)

}+ {
ωATb+ (1− ω)A′Tb′

}
,
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where {·}+ means pseudo inverse, ω = 0.05 ∼ 0.1, G′ = [G′1, ..., G
′
5]T and

A =


1
T 3
1

1
T 2
1

1
T1

1 T1

...
...

...
...

...

1
T 3
4

1
T 2
4

1
T4

1 T4

 ∈ R4×5, b =


J∗traj(T1)

...

J∗traj(T4)

 ∈ R4

A′ =


−3 1

T 4
1
−2 1

T 3
1
− 1
T 2
1

0 1

...
...

...
...

...

−3 1
T 4
4
−2 1

T 3
4
− 1
T 2
4

0 1

 ∈ R4×5, b′ =


∂J∗traj
∂T (T1)

...
∂J∗traj
∂T (T4)

 ∈ R4.

Figure 4.4 represents the result of the approximating method. To verify

our approximating method, we first perform the optimization for each final

time using our trajectory generation algorithm. Blue line is for the result

of ours with given final time (task execute time). It shows that the blue

line is not smooth. The reason may be that there are local minimums (we

optimize the trajectories from same initial guess). Red line represents the

approximated function using the function values at black points and their

derivatives. Dash lines represent T1 and T4. To evaluate the approximating

functions, we also perform the optimization after T4 (see blue lines), and we

draw the approximated functions (see red lines) and then we compare the

tendencies of two graphs. From the result, we can argue that the functions

are well approximated. For the case with a waypoint, total optimal energy

consumption can be formulated as

C∗(T ) = min
T ′

[
C∗section 1(T ′) + C∗section 2(T − T ′)

]
,

where C∗sector 1 and C∗sector 2 are the optimal energy consumption for sector 1 and

2, respectively. Of course, because there are so many options to set waypoints,

it does not make sense to solve above equation for every cases in general. So,

we just assume that the optimal time T ′ only depends on the total time T ,
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Figure 4.4: Approximated function to optimal energy consumption with re-

spect to task execute times

which can express as

T ′ = γT, γ ∈ [0, 1].

Then, we can say that, even if there is a waypoint, approximation (4.3.10)

is valid. Now, for each pair of a task and robot, we can get optimal energy

consumption with respect to any task execution time in O(1) by performing
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optimization only four times. Although the optimized result and approximated

function values are not exactly same, in fact, it does not matter. The more

important things are which time the minimum energy consumption happens

and how much the energy consumption increases as the task execute time

goes up. From that point of view, our models and assumptions we applied are

proper.

4.4 Example: Pick and Place Motion

To evaluate our algorithm, we simulate pick and place motion with two robots

and two conveyor belts as shown in Figure 4.5. Several objects are sitting on

Figure 4.5: Simulation setting for pick and place motion

the moving conveyor belt 1. The task is to pick and place those objects from
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(a) Available picking area for Robot 1 (or-

ange area)

(b) Example of waypoints for pick and

place motion (orange points and line)

Figure 4.6: Waypoint conditions or task constraints for pick and place motion

conveyor belt 1 to conveyor belt 2. As you can see in Figure 4.6(a), each robot

has an available place for picking an object. In other words, an object outside

that area cannot be picked by the corresponding robot. For each robot, the

place where the robot puts the object is defined. The pick and place motion

is defined by not only picking point and placing point but also two waypoints

as shown in Figure 4.6(b). The two waypoints are set near by the picking

and placing points, respectively. In addition, times, velocities, accelerations

of the robot at the waypoints are free. The task is defined as the motion for

picking and placing. The task starts at the time when the robot begins to

move for picking the object and finishes at the time when the object is put on

the conveyor belt 2.

In our example, there are 6 objects. At the beginning, the objects are put on

the conveyor belt 1 in order. We assume that each of objects is 20kg and its

inertia is defined as

20× I6×6,
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where I6×6 is a 6 by 6 identity matrix. As we mentioned before, because

problems are various, corresponding state variables and functional equations

are also varying. For our example, we use additional state variables for dis-

tinguishing zero position and switching position which occurs between two

tasks. To find out effectiveness of our algorithm, we compare the result of

our algorithm to the result from Reflexxes library. To get the trajectories

and calculate the energy consumption, the picking time and the position of

the waypoints are set as the result of our algorithm. The trajectories from

Reflexxes are to pick and place each object as fast as the robot can, which is

a method that is mainly used in current factories. Table 4.1 shows how much

energy is used by the trajectories from our algorithm and Reflexxes. Here,

for the Reflexes’ result, we did not consider the energy consumption which

the robots consume during the idle time. So we denote it as α. Of course, α

must be greater than zero. Note that the objective value in Table 4.1 does not

come from the approximated cost functions. The trajectories from both our

algorithm and Reflexxes can be used for picking and placing all objects under

given constraints. However our algorithm uses much less energy consumption

than Reflexxes for performing all tasks.

Table 4.1: Result of scheduling optimization

Objective

Function Type
Our algorithm Reflexxes

Energy loss(1) 16677.55 19135.82 +α

Energy loss(2) 18758.2 19450.34 +α
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5
Conclusion

This thesis has proposed an energy-optimal task scheduling algorithm with

a point-to-point trajectory generation method under kinematic and dynamic

constraints and various types of boundary conditions. We have considered

all things from a low level, e.g., a hardware specification, to a high level,

e.g., task information and a scheduling problem, and also we have integrated

them. A set of equations and methods about the energy consumption has been

introduced or derived in this thesis. Using that, the joint torques for the ob-

jective functions have been calculated and the trajectory generation and task

scheduling have been performed. Those results let us make our algorithms

computationally efficient.

Focusing on the integration of the task scheduling and the point-to-point tra-

jectory generation with respect to energy optimality, the thesis makes two

contributions:

• Energy-optimal trajectory generation: We have proposed an energy-

optimal point-to-point trajectory generation algorithm for multiple way-

points and various types of boundary conditions with free execution

77
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times using B-spline curves, normalized time domains, and the Gaussian

quadrature method. To make our algorithm computationally efficient,

we have calculated the analytic gradients of the objective functions by a

recursive differential inverse dynamics. From the case studies have been

shown in this thesis, we have found that the algorithm we have proposed

can be used in much more cases compared to preceding algorithms.

• Task scheduling of energy-optimal trajectories: We have also pro-

posed the energy-optimal task scheduling algorithm using the energy-

optimal trajectory generation algorithm as we have described in this

thesis. We have first defined a general problem and applied several

assumptions to make it more practical. We have used a dynamic pro-

gramming method for optimization and we have also used an optimal

energy consumption measurement which is approximated for the compu-

tational efficiency. An example, a pick-and-place motion, has shown that

we have used an idle time which exists when it is performed by a time-

optimal trajectory for reducing the energy consumption. In addition,

the approximation of the optimal energy consumption measurement has

dramatically reduced the computation time of the algorithm.

This thesis can be a cornerstone of the energy-optimal task scheduling in the

industrial field. However, it still has a long way to go before being used in

practice, e.g., a collision-free path and an on-line task scheduling. In fact,

because requirements of factories are varying, it is impossible to consider all

of them and generalize a problem. Therefore, for the energy-optimal task

scheduling, collecting the components which are needed for their problem and

integrating those components are main issues.

Although this thesis has considered a very small part of the energy-optimal

task scheduling, it has shown the possibility of the effect of the energy-optimal
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task scheduling and the necessity of the integration of the energy-optimal

task scheduling and the point-to-point trajectory generation. Through those

results, it is hoped that this thesis can inspire other researchers and help them

to research the energy-optimal task scheduling for being used in practice.
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국문초록

이 논문은 기구학적, 동역학적 조건에서 에너지 효율을 높이는 작업 스케줄

링에 대해 다루고 있다. 작업 스케줄링에서 에너지 최적화를 수행 위해서는

로봇 매니퓰레이터의 최적 경로 생성이 같이 수행 되어져야하기 때문에, 작

업 스케줄링과 최적 경로 생성의 통합 이슈는 이 논문에서 중요하게 다루어

진다. 먼저 우리는 지나가야하는 경로점이 주어졌을 때 최적 에너지 경로 생

성 알고리즘을 제시한다. 최적화 문제는 여러 개의 경로 점이 주어지거나 다

양한 경계 조건들이 있거나 작업 수행 시간을 최적화해야 하는 경우를 다룰

수있도록정의되었다. 모든경로들은 C-공간(조인트공간)에서 B-spline으로

매개화 되었으며 목적함수들은 재귀적인 역 다이나믹스 방법으로 계산된다.

우리는 최적화 알고리즘의 계산 효율을 위해 해석적인 미분을 이용한다. 또

한 적분을 위해 가우시안 구적법을 사용한다. 최적 에너지 경로 생성 알고리

즘의 성능을 평가하기 위해 우리는 몇 가지 상황에서 경로를 생성해보고 그

결과를 분석한다. 또한 우리는 이 논문에서 동적 계획법을 이용한 작업 스케

줄링 알고리즘을 제시한다. 우리는 먼저 몇 가지 가정을 통해 현실적인 문제

정의를 내린다. 알고리즘은 작업마다 최적의 로봇을 결정하고 언제 작업을

시작하면 좋을지 판단하며 최적의 작업 수행 시간을 찾는다. 얼마나 에너지

소비를 했는지는 이 논문에서 제시한 경로 최적화 알고리즘에 의해 계산되며

우리는 계산 량을 줄이기 위해 에너지 소비 함수를 근사하여 사용한다.

주요어: 개연쇄 로봇, 에너지 최적확, 두 지점 경로 계획, 베이스 링크 최적

화, 태스크 스케줄링, B 스플라인

학번: 2014-21857
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