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Abstract 

 

Time-Domain Reflectometry based Multiple Leak Detection 

System using Bayesian S-parameters Model for Pipelines 

 
 

Woo Sihyeong 

Department of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

Leaks in water distribution systems cause economic, environmental, and social 

problems. In order to detect leaks in pipelines, techniques have been developed based 

on time-domain reflectometry (TDR) combined with Bayesian inference. However, 

these techniques are not practical for applications involving long-distance pipelines due 

to the large size and significant time required to build the training sample data set 

required for Bayesian inference in these settings. To solve these challenges, this study 

proposes two approaches: (a) an S-parameter based forward model to reduce the size 

of sample data, and (b) an algorithm to estimate the time required to build an training 

sample data set. Unlike existing methods that model the voltage from both the TDR 

instrument and the sensing cable, the proposed S-parameter based model has only to 

estimate the voltage measured at only the input port of TDR instrument without 

considering the sensing cable. Thus, the voltage of the sensing cable is not required for 

modeling the TDR signal in this proposed detection system. In terms of the amount of 

training data required by each method, therefore, the S-parameter based model is much 
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more efficient than existing models from a computational point of view. In addition, 

the algorithm proposed here to predict the time required to build the sample data allows 

the user to determine the feasibility of the TDR-based leak detection technique for a 

particular setting. To validate the proposed method, lab experiments were conducted 

using a pipeline, leak detectors, sensing cable, and TDR instrument. Through the 

experiments, the applicability of the suggested S-parameter based model in a long-

distance pipeline was validated.  

 

Keywords:   Leak Detection System 

 Water Distribution System 

 S-parameters   

 Long Distance Pipeline  

 Time-Domain Reflectometry 

 Bayesian Inference 

 Forward Model 

 Inverse Model 
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Chapter 1.  Introduction 
 

 

1.1 Motivation 

In the water distribution system, water is supplied from its source to users through 

a pipeline. During water transfer, often a large amount of water is not supplied to the 

end user but instead leaks from the pipeline along the pipeline route. According to 

the International Water Supply Association (IWSA), 20-30 percent of total produced 

water is not supplied to users [1-4] as a result of several causes including leaks. For 

example, 250 billion liters of water annually leak from pipelines in the Great Lakes 

states; this quantity of water could serve the needs of 1.9 million Americans for a 

year [5]. Unaddressed leaks not only waste resources and money but also cause 

environmental and social problems, such as sinkholes. Thus, it is very important to 

quickly and accurately detect leaks to avoid these problems. However, this is not an 

easy task because most pipelines are buried underground or – in the case of long-

distance pipelines – installed in remote regions. 

Many methods have been proposed for accurately detecting pipeline leaks. For 

example, methods include acoustic emission, leak noise correlators (LNC) [6], 

ground penetrating radar (GPR) [7-9] and pig-mounted acoustic (PMA) sensing [10]. 

These methods are not suitable for detection of leaks over a wide area or in long-

distance pipelines; rather, they are only suitable for inspecting a specific area where 

leaks are suspected based on prior information, such as a civil complaint. In addition, 

in cases of these prior methods, surveyors must also be dispatched to the suspected 

leak area, resulting in significant personnel costs and inspection time. 
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(a) 

 

(b) 

Fig. 1 Existing leak detection system for local area: (a) acoustic emission 

method, (b) ground penetrating radar method 

 

Other researchers have proposed techniques for monitoring leaks in pipelines 

over wider areas. Some researchers suggest that analyzing the pressure change of a 

transient wave can detect the location of a leak [11-14]. However, this method 
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contains uncertainties that are caused by disparities of pipe connectors, foreign 

substances like rust in the pipe, bending of the pipeline, etc. These uncertainties 

reduce detection accuracy. To increase the accuracy, detailed information can be 

added to the numerical algorithm used in the method; however, these additions cause 

other problems, including increasing the computational load in the numerical model. 

The added information must also be continually updated as the uncertainties change 

over time. To overcome these limitations, the time-domain reflectometry (TDR) 

based leak detection method has been researched. 

 

1.2 Overview of existed TDR Leak Detection System 

The suggested methods in this research use time-domain reflectometry (TDR) 

[15-17], which has fewer uncertainties caused by the configuration conditions of a 

pipeline than are found in the former method. The TDR technique can inform 

observers about the state of a transmission line or its periphery through the 

measurement of a reflected signal on the line. Thus, researchers utilize this method 

in various situations, such as for monitoring the health state of electronic devices [18, 

19], monitoring bridge scour [20, 21], measuring moisture of soil [22, 23] and 

estimating the amount of fluid in a tank [24]. However, when the TDR technique is 

applied as a leak detection system, it is challenging to interpret the signal through 

visual checking or through use of a constant threshold-based criterion. Although 

TDR-based methods can easily interpret the measured signal when only one leak is 

present, it is difficult to interpret the inexplicit signal that results from a condition 

with multiple leaks and periphery noise. 

To address these challenges, researchers applied the RLCG-based forward model 

to this detection system and used Bayesian inference-based inverse model to enhance 
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signal analysis [25]. In RLCG, R is resistance, L is inductance, C is capacitance, and 

G is conductance. The RLCG-based forward model estimates the TDR signal using 

lossy transmission line (LTL) theory based on finite-difference time-domain (FDTD). 

Applying Bayesian inference improves detecting ability in light of the uncertainties 

of the model and errors of measurement [26, 27]. While these findings have 

improved the ability to interpret TDR signals, the RLCG forward model has other 

shortcomings, specifically that it takes long time to generate the trained sample 

signal. In the Bayesian inference, this drawback causes an increase in the time 

required to build the sample data set that is used for maximum likelihood. The 

lengthy time required to build trained sample data set results in limitations of this 

method’s usefulness in long-distance pipelines. This is because as the pipeline length 

increases, the amount of sample data required to measure likelihood in the Bayesian 

inference increases as well. These restrictions limit or prevent applying this method 

in the field, where the length of pipelines can reach tens to hundreds of km, such as 

in the Los Angeles Aqueduct. In particular, a robust leak detection system is most 

needed in the most challenging circumstances – long-distance pipelines – because 

pipelines in these settings pass through remote places where it is difficult to detect 

leaks by human inspection. 

 

1.3 Thesis Outline 

In this research, computational efficiency of the forward model is improved by 

lessening the time required to build the sample data set. This achievement makes it 

possible to apply the TDR technique for leak detection in long-distance pipelines. 

This work also proposes a newly developed algorithm to estimate the time required 

to build the sample data. The detection system proposed in this study is focused only 
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on detecting leaks in the pipe connections, or flanges; it does not attempt to detect 

leaks in the main “body” of pipes. Leaks in the pipe body are typically easily 

recognizable, as they usually occur from artificial impacts such as by workers or 

heavy equipment. Because we can make this assumption based on real-world 

experience, we can propose a more focused model that benefits from an ability to 

decrease both the number of leak detectors and the size of the sample data set. 

The rest of the paper is organized as follows. First, the background theory is 

explained in section 2. Next, the proposed multiple-leak inference method using S-

parameters is described in section 3. Section 4 outlines an estimation algorithm to 

calculate the time required to build the sample data. In section 5, the accuracy and 

efficiency of the suggested model are validated through case studies. Finally, section 

6 gives conclusions.  
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Chapter 2.  Background & Literature Review 
 

 

In this chapter, the theoretical background and literature review is briefly 

described to enable better understanding of this research. First, the principle of the 

TDR, which is used to detect leaks, is explained. Second, S-parameters, which are 

applied to make a forward model, are defined. Finally, the Bayesian inference 

utilized for locating the leaks in the proposed method is presented. 

 

2.1 Principles of TDR 
The TDR was originally proposed as a method to find the location of transmission 

line faults, such as electrical open, short, or chafe. TDR is, in principle, similar to 

RADAR, which measures a reflected radio wave to find the locations of objects. 

Likewise, in TDR, an incident pulse is propagated along the transmission line by 

TDR instrument and reflected when it meets a fault on the line. This reflected pulse 

is measured at the TDR instrument. The ultimate cause of the reflection is a disparity 

of impedance in the transmission line. According to Eq. (1) and Fig. 2, it is clear that 

a mismatch of impedances between Z0 and ZL determines the reflection coefficient 

between minus one and one, not zero:  

 

 

Fig. 2 Impedance disparity and reflected coefficient 
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 Γ =
𝑍𝐿 − 𝑍0

𝑍𝐿 + 𝑍0
= [

𝑉1
−

𝑉1
+]

𝑉 2
+=0

 (1) 

where, Z is the characteristic impedance and Г is the reflection coefficient. If a Г is a 

negative value, the shape of the reflected pulse is upside down for the incident pulse, 

which indicates an electric short. If the value of Г is one, the shape of the reflected 

pulse is the same as that of the incident pulse, which indicates electric open, as shown 

in Fig. 3. 
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(a) 

 

(b) 

 

(c) 

Fig. 3 TDR signal for electrical: (a) normal, (b) open, and (c) short 
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 The TDR technique can also locate faults, Lf, on the transmission line by calculating 

the velocity of propagation and pulse traveling time, as in Eq. (2): 

 𝐿𝑓 = 𝑣𝑝

𝑡2 − 𝑡1

2
 (2) 

where, t1 is the incident time when the pulse starts to transmit into the line and t2 is 

the arrival time when the reflected pulse is measured at the TDR instrument. vp is the 

velocity of propagation of the traveling pulse on the transmission line. 

These features of TDR are also useful for a leak detection system. The key here 

is the similarity between water leakage and an electrical short. An electrical short 

occurs by abnormal connection of two nodes having different voltages in an electric 

circuit. Likewise, if the water leakage contacts an electric circuit, it can also cause an 

electrical short because the leaking water is a good conductor. Fig. 4 shows the 

proposed operational concept. First, a sensing cable with leak detectors is attached to 

the pipe. The sensing cable plays the role of the transmission line in traditional TDR 

technique. Then, the location of leaks can be found by measuring the signal that is 

reflected from any electrical short that occurs in the leak detection system. This 

method is described in more detail in sections 3 and 4. 

 

 

 

Fig. 4 Concept of leak detection using TDR 



10 

 

2.2 S-parameters 

The S-parameters, so called scattering parameters, represent the voltage ratio 

between the input and output power of an electrical system in the frequency domain. 

The subscripts of S-parameters signify the port that the electric pulse passes through. 

The first subscript is an output port where the pulse exits via the port and the second 

is an input port where the pulse enters the port. S-parameters of two-port units are 

depicted in Fig. 5 and Eq. (3). Because S-parameters are measured in the frequency 

domain, the voltage ratio in the time-domain can be acquired by conducting inverse 

fast Fourier transform (IFFT). In this respect, if the TDR signal is acquired at a 

specific location on the transmission line in the frequency domain, a time-domain 

signal at that location can be easily obtained by IFFT. These features of S-parameters 

are used here to convert the reflected TDR signal that arrives at the TDR instrument 

into the time domain. 

 

 [
𝑉1

−

𝑉2
−] = [

𝑆11 𝑆12

𝑆21 𝑆22
] [

𝑉1
+

𝑉2
+] (3) 

 

 

Fig. 5 Concept of S-parameters 
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2.3 Bayesian Inference 

Bayesian Inference is a statistical method that infers posterior distributions of 

parameters by using prior distributions of those when a new event is given. The basic 

formula of the Bayesian inference is defined in Eq. (4): 

 Pr(𝜃|𝑦) =
Pr(𝑦|𝜃) Pr (𝜃) 

∫ Pr(𝑦|𝜃) Pr(𝜃) 𝑑𝜃
 (4) 

where θ are random variable, y is a new event, and Pr(θ |y) is a posterior 

distribution, which means the updated distribution of θ according to the new event y. 

Pr(θ) are prior distributions, specifically the distributions of each θ before 

considering the new event y. Pr(y|θ) is a likelihood function that stochastically finds 

the θ that is the most proper to represent y. Because of these features, it is appropriate 

to stochastically identify an optimal value of each parameter in the numerical models. 

In addition, it should be noted that this does not have the risk of finding only a locally 

optimal value of θ because the inference evaluates the likelihood for all samples. A 

sample means a case determined by θ and the case is compared with y. Generally, a 

greater sample size has the benefit of more precision in the inference of statistical 

method. It may have, however, a significant drawback; specifically a significant 

computational load if generating one sample is time consuming. Thus, to efficiently 

apply the Bayesian inference in any algorithm, it is important to consider the sample 

size and the time required to generate each sample. In this research, the sample size 

of the TDR-based leak detection system is affected by the length of the pipeline. The 

generating time is also related to the forward model. Therefore, to apply TDR based 

leak detection system to a long-distance pipeline, the computational efficiency of the 

forward model is a very important factor in this system. 
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Chapter 3. Forward Model using S-parameters for 

Generating a TDR Signal Corresponding 

to Leakage 
 

 

This section describes the forward model and an inverse model for detecting 

pipeline leaks. The purpose of the forward model is to estimate a TDR signal by 

using information about leaks, such as the number of leaks and their locations. Here, 

it is important that the modeled signal must well represent the measured signal in real 

situations. The inverse model then infers the information about leaks using the 

measured TDR signal. In this research, S-parameters are employed as the method of 

inducing the forward model to improve computational efficiency. The Bayesian 

inference is used for the inverse model. This section is comprised of four parts. First, 

the benefits of the proposed S-parameter based forward model are explained. Second, 

the operating principle of the forward model is exposited. Third, the method of 

inducing the forward model is described. Finally, we outline the principle of Bayesian 

inference based the inverse model. For demonstrating the forward model, the 

equations established by Stefan Schuet et al [28] are quoted. These equations were 

originally applied to describe the health state of coaxial cables. 

 

3.1 Advantages of a Forward Model utilizing S-parameters 

The TDR signal is a vector of sequent voltages that are measured at the TDR 

instrument. As shown in Fig. 6, the TDR signal is a white line that is composed of 

white stars (✰). The white star means a voltage that is measured at the TDR input 

port per time unit. 
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Fig. 6 Voltage distribution on the transmission line in the time domain 

(white line: TDR signal; white dotted line: modeled signal based on RLCG) 

 

 Thus, the forward model must estimate the white stars. The previous RLCG 

forward model, based on FDTD, requires calculating the all voltages (- - -, white 

dotted line) on the attached transmission line to obtain the one voltage (✰, white 

star) per time unit. However, the S-parameter based forward model does not need to 

calculate the all voltages. The S-parameter based model obtains the reflected signal 

in the frequency domain at the distance of zero meter, or the TDR input port. Then, 

by performing IFFT, the modeled frequency domain signal can be transformed to a 

reflected signal in the time domain which is same as the white solid line. In other 

words, the S-parameter based model does not need to consider the white dotted lines. 
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Thus, the S-parameter based forward model method offers the advantage of reflecting 

the physical character of the TDR signal. The model also needs also a smaller number 

of voltage data points to estimate the TDR signal than does the RLCG-based model. 

For example, if the RLCG forward model has a circuit model comprised of segments 

of the total transmission line equal to one thousandth of the line, one thousand voltage 

values are needed to gain one white star per time unit. In this sense, the S-parameter 

model is a more computationally economical method than the RLCG model. 

 

3.2 Concept of the Forward Model using S-parameters 

In As defined in section 3.1, the forward model estimates the TDR signal. The 

TDR signal is a vector that is composed of sequentially measured voltages. In the 

Eqs. (5) and (6), vM (t) is the TDR signal which is a reflected signal in the time domain 

and VM is the reflected signal in the frequency domain. The source signal, vS, is a 

vector that consists of values of the voltage sequentially generated by TDR 

instrument in the time domain. VS is the source signal in the frequency domain. The 

transfer function, H, generally means a ratio of output values to input values. In this 

paper, the output values are VS, the input values are VM, and H is defined as VM /VS. 

Thus, in the time domain, the forward model, which estimates the TDR signal, vM, is 

the right hand side of Eq. (5):  

 

𝑣𝑀(𝑡) = 𝐼𝐹𝐹𝑇(𝐻(𝜔, 𝜃) ⊙ 𝐹𝐹𝑇(𝑣𝑆(𝑡))) (5) 

where ⊙ is the element-by-element vector multiplication operation. vS(t) can be 

determined by the specifications of the equipment. As in Eq. (6), H is represented in 

the reflection coefficients, ГS and Г0, of the connection area between the TDR 

equipment and the transmission line [28]:  
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 𝐻(𝜔) =
𝑉𝑀

𝑉𝑆
=

𝐺

2
(1 +

Γ𝑆 + Γ0

1 + Γ𝑆Γ0
𝑒−𝑗2𝜔𝑡𝑀) (6) 

where G is the gain factor and tM is the internal time delay in the TDR instrument. ω 

is the continuous frequency that corresponds to the sampling period of the TDR. ГS 

is the reflection coefficient between the impedance of the TDR instrument, ZS, and 

the characteristic impedance of the transmission line, Z0, as shown in Fig. 7 and Eq. 

(7). 

 

Γ𝑆 =
𝑍0 − 𝑍𝑆

𝑍0 + 𝑍𝑆 
 (7) 

   Г0 is the reflection coefficient at the starting point of the transmission line (just 

to the right side of ГS). Г0 is not constant, but changeable, because it is affected by 

the health state of the transmission line. Г0 and the method of inducing the forward 

model are explained in the next section.  

 

 

 

 

Fig. 7 Operating concept of TDR 
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3.3 Modeling the Sensing Cable 

In this research, the transmission line of the leak detection system is referred to 

as the sensing cable. The cable can be divided into two types of segments, namely 

normal segments, Ni, and leakage segments, Li, as shown in Fig. 8. A disparity of 

impedance occurs at the boundary between each differing segment due to the electric 

short caused by the leak. As a result, the reflection of the transmitted pulse occurs at 

the boundary between segments. As shown in Eq. (6), Г0 must be obtained to model 

the TDR signal. Because the left side reflection coefficient of each segment can be 

induced from the right side reflection coefficient of it [28], Г0 can be inferred from 

ГL. To model the sensing cable, first, a model that can obtain the reflection coefficient 

of each segment should be made. Next, a totally synthesized model of the sensing 

cable is completed by connecting the reflection coefficient of each segment. The 

method of modeling the segments is as follows. 

 

 

 

Fig. 8 Model synthesis 
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(a) 

 

(b) 

Fig. 9 Modeling the segments of the transmission line: (a) normal segment,   

(b) leakage segment 

 

Normal segment - As shown in Fig. 9 (a), the area of a normal segment is defined 

inside the domain, excluding both side boundaries. Thus, ГFW is just to the right of 

the front boundary and ГBW is just to the left of the rear boundary. In addition, the 

segment can be regarded as a two-port device that has S-parameters. Generally, in a 

two-port device, ГFW is defined by S-parameters and ГBW can be found using Eq. (8) 

[29]:  
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ΓFW = 𝑆11 +
𝑆12𝑆21ΓBW

1 − 𝑆22ΓBW
 (8) 

where ГBW is the same as ГFW of its backward segment. S11 and S22 are zero because 

there is no change of impedance in the normal segment. S12 and S21 are not zero, but 

rather represent transmission loss during the travel of the pulse along the segment, as 

in Eq. (9) [28]: 

 S12 = 𝑆21 = 𝑒−𝛾𝑙𝑘 (9) 

where 𝛾 is propagation constant and 𝑙𝑘 is the length of the segment. Thus, ГFW is 

defined as 𝑒−2𝛾𝑙𝑘 ∙ ГBW where 𝛾 is defined as Eq. (10): 

 𝛾 = √[𝑅 + 𝑗𝜔𝐿][𝐺 + 𝑗𝜔𝐶] (10) 

where RLCG is a property of the sensing cable. The RLCG of two parallel cables is 

defined in Table 1. 

 

Table 1 R, L, G, and C of two parallel cables 

μ: permeability of dielectric; σc: conductivity of conductor; σd: conductivity of dielectric; 

ε: permittivity of dielectric; a: radius of conductor; d: distance between conductors; δ: 

1/√𝜋𝑓𝜇𝑐𝜎𝑐 (μc: permeability of conductor; f: input bandwidth) 

 

R[𝜴/𝒎] L[H/m] G[S/m] C[F/m] 

1

𝜋𝑎𝜎𝑐𝛿
 

μ

π
acosh (

d

2a
) 

πσd

acosh (
d

2a)
 

πε

acosh (
d

2a)
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Leak segment - As shown in Fig. 8(b), the area of a leak segment is a defined 

domain that includes both side boundaries. Thus, ГFW is the left side of the front 

boundary and ГBW is the right side of the rear boundary. This segment can be also 

analyzed as a two-port device. Unlike a normal segment, here S11 and S22 are not zero 

because there are disparities of impedance in the segment. As shown in Eq. (11) and 

(12), the S-parameters are calculated similarly to S-parameters of a faulty segment 

in a coaxial cable, as established by Stefan Schuet et al [28].  

 S11 = S22 =
Γ2(𝑒−𝑗𝜔2𝑡𝑑 − 1)

1 − Γ2
2𝑒−𝑗𝜔2𝑡𝑑

,      (𝑡𝑑 = 𝑙𝐿/𝑣𝑝) (11) 

  S12 = S21 =
(1 − Γ2

2)𝑒−𝑗𝜔2𝑡𝑑

1 − Γ2
2𝑒−𝑗𝜔2𝑡𝑑

 (12) 

where td is travel time, which is taken while the pulse passes the leak segment, 𝑙𝐿 is 

the length of the segment, and 𝑣𝑝 is the propagation velocity of the pulse. The ГFW 

of this segment can be also calculated using Eq. (8). ГBW of this segment can also be 

acquired from ГFW of its backward segment. 

 

Model Synthesis - The entire sensing cable can be thus modeled by combining 

these two types of segments. Fig. 8 shows an example of a pipeline with three leaks. 

The pipeline has four normal segments, Ni, and three leakage segments, Li. ГBW of 

each segment overlaps with ГFW of its backward segment. The value of ГL, as is 

already known, is one as it is the reflection coefficient of the open circuit at the end 

point of the sensing cable. Г0 can then be induced from ГL by acquiring ГFW for each 

segment. Using the obtained Г0, H(ω) can be found using Eq. (6). When H(ω) is 

substituted into Eq. (5), the S-parameter based forward model is completed.
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Chapter 4. Estimation Algorithm to Determine the 

Time required to Build the Trained 

Sample Data Set 
 

 

This section explains the algorithm used to estimate the time required to build the 

trained sample data set. The training data set includes modeled TDR signals of all 

cases covering all possible leak situations. The training data can then be compared to 

the measured TDR signal to determine the likelihood of leak locations. To detect 

leaks in real time, the comparison must be performed rapidly. To that end, the whole 

data set must be built in advance before completion of construction of the water 

distribution system because building the training data set is a surprisingly time-

consuming process. Once built, the training data set can be used repeatedly, because 

the data set doesn’t change as long as the configuration of pipeline doesn’t change. 

However, the time required to build the data set is significant. Thus, the training data 

set may not be built during the construction period of the pipeline due to the design 

conditions of the system, such as the total length of the pipeline, the length of each 

pipe unit, the number of maximum detectable leaks, K, and the computational 

efficiency of the forward model. With this in mind, an estimate of the time required 

to build the data set is useful before construction starts. 

The total time required to build the trained sample data set, Ttot, is defined by 

multiplying the total number of training data, Ntraining data, by the time required to 

generate one instance of trained sample data, tsample. 

 𝑇𝑡𝑜𝑡 = 𝑁𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 ∙ 𝑡𝑠𝑎𝑚𝑝𝑙𝑒 (13) 
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Ntraining data is determined by the number of leak detectors needed in the system, 

Ndetector, and the number of maximum detectable leaks, K. In this system, Ndetector is 

the same as the number of flanges in the pipeline except for the beginning and end 

flanges. This number is obtained by dividing the length of the total pipeline by the 

length of each pipe unit and subtracting one, because a detector is installed on each 

connecting flange. The formula of Ntraining data then follows, as shown in Eq. (14): 

 
 𝑁𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 = (∑ 𝐶(𝑁𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 , 𝑖)

𝐾

𝑖=1

) + 1 (14) 

where C is the combination operator. C(Ndetector, k) refers to the number of cases when 

the number of leaks is k. The last term ( + 1) adds to the formula to account for the 

case of a normal situation without any leaks. Thus, the formula of Ntraining data accounts 

for the total number of all possible leakage situations, from no leakage to the 

maximum number of leaks. Thus, tsample can be obtained by averaging the consumed 

time for various case studies, as described in the next section. 
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Chapter 5.  Case Study 
 

 

In this section, the accuracy and efficiency of the suggested leak detection system 

are validated through case studies. First, the experimental test bed is briefly described. 

The test bed is then validated by applying a real leak situation to the test bed. Next, 

parameters of the forward model are calibrated by using experimental data acquired 

from the experimental results of both the normal and single-leak situations. Next, the 

accuracy of the forward model is validated by comparing the modeled signal with 

the measured signal under a two-leak situation. Further, the accuracy of the Bayesian 

inference is demonstrated by comparing the training data set and the measured TDR 

signal under a three-leak situation. The three-leak situation generates an inexplicit 

TDR signal that is hard to interpret through visual inspection due to the overlapped 

reflection. Finally, the time required to build trained sample data set is estimated 

according to various lengths of pipeline by using tsample, which is obtained through 

the case studies.  

 

5.1 Description of the Experimental Test Bed 

A custom test bed was designed at the lab scale, as shown in Fig. 10. This system 

is comprised of three parts, including the pipeline, the leak detectors, and a data 

acquisition system. The pipeline is made up of four 3 meter-long pipes with 12 

centimeter radius and additional components to enable the TDR technique to be 

applied, including a sensing cable and an outer housing case at the joints. These 

components are not found in a regular pipeline. A twin parallel cable that is made 
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from copper wire with 0.4 millimeter radius is used as the sensing cable in the test 

bed. 

 

Fig. 10 Experimental test bed for validating the forward model 

 

The outer housing case is installed around joints where leakage is likely to occur. 

The housing plays the role of a reservoir for the leaking water, ensuring the leak 

detector gets wet. This wetness in turn causes an electrical short at the detector and 

the reflection of the pulse at the location of the short. The leak detector consists of 

two copper plates and a plastic case with holes, as shown in Fig. 11. The detector is 

isolated from external moisture by the outer housing, and is thus only affected by 

leaking water at the joint. The copper plate is also exposed to contact with the leaking 

water; the water then plays the role of a conductor between the two plates. The data 

acquisition part is composed of the TDR instrument and a laptop. The model of TDR 

instrument in the test setup is an mTDR-070 from Nanotrinics Corp. with an input 
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bandwidth of 300 MHz, output pulse of two volts, rising time of 1ns, maximum 

effective distance of 20 kilometers, and a characteristic impedance of 75 Ω. The 

laptop specifications include an Intel core i5 3.1 GHz processor with eight GRAM. 

The TDR instrument is connected to the start of the sensing cable to transmit the 

pulse and receive the reflected pulse. The TDR instrument is connected also to the 

laptop for analyzing the acquired data. 

 

 

(a) 

 

(b) 
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Fig. 11 Leak detection system: (a) system components, (b) leak detector 

 

 

 

Normal operation of this system was demonstrated through a simple experiment 

that was conducted using a 10 meter cable with one leak detector installed 8 meters 

along the cable. Then, the leak detector was attached to the flange and a leakage 

situation was applied to the system. The reflected pulse signal from the leakage was 

observed as shown in Fig. 12. To test a situation with multiple leakage signals under 

various situations with several detectors, tests were manually performed to 

intentionally change the gap between the leaks. 
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     (a) 

 

     (b) 

Fig. 12 Operation check of the leak detector: (a) no leak, (b) single leak at 8m 

 

5.2 Validation of Accuracy of the Forward Model and the 

Bayesian Inference 

Before the developed forward model is used, the constant parameters in the 

forward model need to be calibrated. Although these parameters were determined 
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based on a review of the literature, known properties of the material, and 

specifications of the chosen equipment, some parameters inevitably have 

uncertainties.  

 

   (a) 

 

    (b) 

Fig. 13 Comparison between measured signal and modeled signal: (a) no leak, 

(b) single leak at 8m 
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In order to decrease the effect of the uncertainties, calibration of the parameters 

was conducted using the least square method (LSM) between the measured and the 

modeled signal under situations with no leaks and with a single leak, as shown Fig. 

13. After calibration, the accuracy of the forward model was validated by comparing 

the measured signal to the modeled signal under the multiple-leak situation. The pipe 

in the experimental setup is 10m long with two leaks at 6m and 8m. As shown in Fig. 

14, the forward model accurately represents the TDR signal. It is also converted to 

the distance domain to arrive at more practical information, specifically, the 

predicted leak locations. Table 2 examines the accuracy of the forward model by 

comparing the TDR signal estimated by the model and the signal measured by the 

TDR instrument. The stochastic measures used are Correlation Coefficient, Weighted 

Integrated Factor (WIFac) and standard deviation of noise (σM). The Correlation 

Coefficient and WIFac represent the accuracy of the model in the aspect of shape and 

σM represents the error of the model. The Correlation Coefficient has a value between 

minus one and one. Here, minus one is total negative correlation, zero is no 

correlation, and one is total positive correlation. The WIFac has a value between zero 

and one. In case of the WIFac, the value means a degree of match between the two 

signals and one means perfect match. As shown Table 2, the WIFac value falls a little 

short of one because of difference of magnitude of the signals caused by periphery 

noise and physical uncertainties included in this system. The Correlation Coefficient 

related to tendency of peaks of the signals is close to one. The peak locations of the 

signals is important factor for inferring the leak locations in this detection system. 

Thus, the suggested forward model is appropriate to use the proposed leak detection 

system. 
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  (a) 

           

  (b) 

Fig. 14 Validation of the forward model with two leaks (6m and 8m) on 

the 10 m cable: (a) time domain, (b) distance domain 
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Table 2 Comparison of similarity between real measured TDR signal and 

virtually generated TDR signal 

Measure 
Correlation 

coefficient 
WIFac σM  

value 0.9869 0.8621 0.06 

  

The Bayesian inference was then validated using the training data set, which was 

made using the forward model, as described in the section 4. The given condition is 

a multiple-leak situation that has three leaks in a 10 meter pipe. The locations of the 

leaks are at 5.5 meters, six meters, and eight meters. As shown in Fig. 15 (a), the 

signal is not explicit and thus cannot be interpreted by visual inspection. However, 

the location of the leaks can be stochastically found through Bayesian inference, as 

shown in Fig. 15 (b), which shows the marginal PDFs of each parameter around the 

location of the leaks. 
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(a) 

 

 

(b) 

Fig. 15 Bayesian inference for finding the location of 

leaks: (a) measured TDR signal, (b) location of leaks 
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5.3 Estimating the Time required to Build Sample Data Set 

for a Long-Distance Pipeline 

As described in section 4, to estimate Ttot, tsample must be obtained. The tsample is 

calculated using the results of case studies that are performed for various lengths of 

pipelines. However, a lab setting limits the opportunity to extend a sample pipeline. 

Thus, to examine various situations, we assumed that the length of each pipe unit 

ranged from one meter to 0.1 meter under the given length of our sample pipeline, 

10m. This enabled us to examine different numbers of flanges and allowed Ndetector to 

increase, achieving the same effect as extending the length of the pipeline. As shown 

in Table 3, Ndetector, Ntraining data, Ttot and Tsample were acquired according to the length 

of each unit pipeline with three maximum detectable leaks, K. The average of tsample 

was approximately 0.00263 second. This result was also calculated using the laptop 

with an Intel core i5 3.1GHz processor and eight GRAM and MATLAB. Thus, the 

tsample can be a changeable value depending on computer performance. If this system 

were to be used with a high-performance computer such as a supercomputer, tsample 

can also be reduced. This also means that the system suggested in this research can 

be effectively applied to actual field situations that use higher-performance 

computers than the laptop used in this research. 
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Table 3 The Ttot and tsample with three maximum detectable leaks, as predicted by each 

forward model 

Length of unit pipe 1 m 0.5 m 0.2 m 0.1 m 

Ndetector 9 19 49 99 

Ntraining data 130 1,160 19,650 161,800 

Ttot [s] 0.34 3.03 51.42 433.15 

tsample [s] 0.002615 0.002612 0.002617 0.002677 

 

Table 4 The Ttot in the field with three maximum detectable leaks 

Length of 

pipeline 
tsample 1 km 5 km 10 km 20 km 30 km 

Ndetector - 99 499 999 1,999 2,999 

Ntraining data 1 161,800 20,709,000 166,168,000 1,331,336,00 4,495,504,000 

Ttot   

(tsample × 

Ntraining data) 

0.00263s 0.12h 15.22h 
122.15h 

(5.09 days) 

978.63h 

(40.78 days) 

3,304.53h 

(137.69 days) 

 

Table 4 shows the total estimated Ttot of all training data for various lengths of 

pipeline, using Eqs. (15) and (16), with a 10m pipe and 3 maximum detectable leaks. 
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Ttot is obtained by multiplying Ntraining data by tsample. If the length of the pipeline is same, 

the Ttot depends on the K which affect the Ntraining data. When the K increases, the Ttot 

also increases. On the other hand, when the K decreases, the Ttot must also decrease. 

The K and Ttot relationship reflects the trade-off between multi-detection capabilities 

and the cost of the time required to generate the sample data set. This process can be 

applied in practice to various lengths of pipelines and different numbers of maximum 

detectable leaks. 



35 

 

Chapter 6.  Conclusion 
 

 

A novel TDR-based leak detection system using an S-parameter forward model 

has been presented in this paper. The application of S-parameters improves the 

computational efficiency of the forward model and shortens the Tsample of the trained 

sample data needed for Bayesian inference. The Bayesian inference based inverse 

model can stochastically detect the location of leaks from an inexplicit TDR signal 

that includes noise and overlapped reflection. Moreover, the time estimation 

algorithm developed here predicts the Ttot, using the configuration information for 

the particular pipeline of interest. To demonstrate the performance of the suggested 

leak detection system, laboratory experiments were conducted using a sample 

pipeline, leak detectors, a sensing cable, and TDR instrument. To simulate a long-

distance pipeline, the length of each pipe unit was intentionally controlled at various 

lengths from one meter to 0.1 meter. Through the case study, the accuracy of the 

proposed S-parameter based forward model was validated by various measures and 

tsample was also obtained by averaging the results of different case studies. Using the 

tsample, the Ttot for various conditions, including different lengths of pipeline and a 

varying number of maximum detectable leaks can be estimated. 

As a result of this research, it is significantly meaningful that a multiple-leak 

detecting technique can be applied to a water distribution system. Some people may 

think that a conventional TDR-based leak detection method is sufficient to detect 

pipeline leaks because the possibility of multiple leaks occurring simultaneously in 

any given pipeline is low. In addition, if it is easy to access the location of a particular 

leak, maintenance can be quickly performed as soon as a leak is detected and before 
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another leak occurs. However, in actual pipeline applications if other leaks occur 

before an existing leak is repaired the usefulness of the conventional TDR-based 

method is limited. In addition, it can be difficult to perform quick maintenance on 

pipelines due to difficult accessibility (e.g., pipelines installed underwater or in desert 

or alpine regions). Moreover, the crustal movement of an area with installed 

pipelines, such as an earthquake, uplift of strata, ground sinking, or various external 

shocks, can force a change in the geometry of a long-distance pipeline. These 

phenomena may cause misalignment of a pipeline and generate multiple leaks at the 

flanges. Even though the non-trivial procedure of building a training data set is 

required for use of our proposed system, the suggested multiple-leak detection 

system offers significant long-term advantages, particularly in situations involving 

long-distance pipelines. 

In terms of return on investment (ROI), the economic feasibility of the proposed 

detection system is superior to any existing method, including LNC, GPR, and PMA 

methods. While the TDR installation of this leak detection system, in terms of 

investment, could be regarded as an additional cost, the TDR installation, in terms of 

return, should not be regarded as an additional cost, but rather as an investment that 

will pay back in economic profits. In this regard, the installation of TDR system 

should be analyzed from the perspective of its long-term cost savings. First, in terms 

of operational cost reduction, the suggested method doesn’t require surveyors and 

equipment to be dispatched for detecting leaks, unlike existing detection methods, 

because the proposed system can remotely monitor a wide area in real time. This 

advantage could derive benefits such as substantial labor cost savings. Second, in 

terms of cost avoidance, the price of the TDR instrument installed in the leak 

detection system is cheaper than it would be for electronic monitoring because the 
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latter requires the TDR instrument with high resolution. In contrast, our suggested 

detection system requires only the TDR with moderate-resolution, which is able to 

accurately identify the distance between the detectors. In addition, our more robust 

system can also prevent the occurrence of costs related to economic, social, or 

environmental issues caused by being continuously unaware of leaks. Third, in terms 

of revenue growth, the net profit of the water industry is expected to gradually 

increase because of the reduction of non-revenue water (NRW) losses through more 

rapid maintenance to fix leaks.  

If the economic efficiency of installation of the system is demonstrated in the long 

term, this leak detection system is also expected to be useful for sewer lines and 

wastewater pipelines. Generally, a leak of a sewer line or wastewater pipeline system 

is not related to an economic cost in the short term, so the effort put toward preventing 

leaks in these systems is relatively less than that observed for water distribution 

systems. However, leakage of sewage and wastewater may cause various 

environmental, economic, and social problems. First, the leakage causes soil and 

underground water contamination. It negatively impacts human health through 

agricultural products and can contaminate drinking water. Second, the contamination 

of soil and underground water leads to considerable remediation costs in the long 

term. Finally, the continuous leakage of wastewater pipelines can cause disasters 

such as sinkholes, in which a hole is made by the collapse of the ground surface as a 

result of a leaking pipeline below ground [30]. This situation may result in great a 

catastrophe causing many casualties. Thus, applying the proposed TDR system to 

sewer lines and wastewater pipelines could prevent these problems in the long term. 

Future work related to this research will be expanded to examine the network 

structure of pipelines because this research is only applicable to a single pipeline. As 
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a result, this method would need multiple TDR instrument stations to cover a 

networked pipeline structure. In the case of coaxial cable, Xiaolong Zhang has 

examined the failure diagnosis technique of a cable network using a TDR-based 

system using a modeling splitter and tap [31]. However, to be robust to noise and 

improve interpretability of the TDR signal for multiple leaks, a Bayesian inference 

based network detection technique must be developed. Thus, to reduce the amount 

of required equipment and cost, the authors will seek to develop a method that 

efficiently detects leaks in a networked water distribution system. 
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국문 초록 

 

상수도 파이프라인에서 발생하는 누수들은 경제적, 환경적, 사회적 

문제들을 발생시킨다. 이러한 누수를 감지하기 위해서 베이지안 추론을 

활용한 시간영역반사계(time domain reflectometry: TDR) 기반의 

누수탐지 기술이 연구되고 있다. 그러나 이 기술은 베이지안 추론 시 

필요한 샘플데이터를 구축하는데 걸리는 소요시간과 샘플데이터의 

방대한 크기로 인해서 장거리 파이프를 포함하여 실제 적용하는데 

실용적이지 못하다. 

이러한 문제점을 해결하기 위해서 본 연구에서는 두 가지 새로운 

방법을 제안한다. 첫 번째는 샘플데이터의 크기를 감소하기 위해 S-

파라미터 기반의 전진모델 개발이며, 두 번째는 전체 샘플데이터를 

구축하는데 걸리는 소요시간 예측 알고리즘 개발이다. 기존 전진모델의 

경우, TDR 장비와 탐지 케이블의 모든 전압에 대한 모델링이 

필요하였지만, 제안한 S-파라미터 기반의 전지모델은 탐지 케이블은 

제외한 TDR 장비의 입력 전압에 대해서만 모델링이 필요하다. 따라서 

제안한 누수탐지 방법에서는 탐지선의 전압은 TDR 신호를 모델링은 

필요하지 않다. 그러므로 각 전진모델에서 필요로 하는 샘플데이터의 

크기를 고려하였을 때 S-파라미터 기반의 전진모델이 기존의 

전진모델보다 계산비용 관점에서 훨씬 효율적인 모델이라고 할 수 있다. 

게다가, 샘플데이터 구축시간을 예측하기 위해 제안된 알고리즘은 

시스템 사용자에게 TDR 기반 누수탐지 시스템이 특정 조건에서 파이프 

라인의 공사기간과 구축소요시간을 비교하여 실용적인지를 판단할 수 

있게 해준다. 
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이 제안된 방법은 실험실 규모에서 파이프, 누수탐지기, 탐지선, TDR 

장비를 사용하여 검증을 하였다. 실험을 통해서 장거리 파이프라인에서 

제안된 S-파라미터 기반 전진 모델의 실용성 또한 검증하였다.  
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Abstract 

 

Time-Domain Reflectometry based Multiple Leak Detection 

System using Bayesian S-parameters Model for Pipelines 

 
 

Woo Sihyeong 

Department of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

Leaks in water distribution systems cause economic, environmental, and social 

problems. In order to detect leaks in pipelines, techniques have been developed based 

on time-domain reflectometry (TDR) combined with Bayesian inference. However, 

these techniques are not practical for applications involving long-distance pipelines due 

to the large size and significant time required to build the training sample data set 

required for Bayesian inference in these settings. To solve these challenges, this study 

proposes two approaches: (a) an S-parameter based forward model to reduce the size 

of sample data, and (b) an algorithm to estimate the time required to build an training 

sample data set. Unlike existing methods that model the voltage from both the TDR 

instrument and the sensing cable, the proposed S-parameter based model has only to 

estimate the voltage measured at only the input port of TDR instrument without 

considering the sensing cable. Thus, the voltage of the sensing cable is not required for 

modeling the TDR signal in this proposed detection system. In terms of the amount of 

training data required by each method, therefore, the S-parameter based model is much 
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more efficient than existing models from a computational point of view. In addition, 

the algorithm proposed here to predict the time required to build the sample data allows 

the user to determine the feasibility of the TDR-based leak detection technique for a 

particular setting. To validate the proposed method, lab experiments were conducted 

using a pipeline, leak detectors, sensing cable, and TDR instrument. Through the 

experiments, the applicability of the suggested S-parameter based model in a long-

distance pipeline was validated.  

 

Keywords:   Leak Detection System 

 Water Distribution System 

 S-parameters   

 Long Distance Pipeline  

 Time-Domain Reflectometry 

 Bayesian Inference 

 Forward Model 

 Inverse Model 
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Chapter 1.  Introduction 
 

 

1.1 Motivation 

In the water distribution system, water is supplied from its source to users through 

a pipeline. During water transfer, often a large amount of water is not supplied to the 

end user but instead leaks from the pipeline along the pipeline route. According to 

the International Water Supply Association (IWSA), 20-30 percent of total produced 

water is not supplied to users [1-4] as a result of several causes including leaks. For 

example, 250 billion liters of water annually leak from pipelines in the Great Lakes 

states; this quantity of water could serve the needs of 1.9 million Americans for a 

year [5]. Unaddressed leaks not only waste resources and money but also cause 

environmental and social problems, such as sinkholes. Thus, it is very important to 

quickly and accurately detect leaks to avoid these problems. However, this is not an 

easy task because most pipelines are buried underground or – in the case of long-

distance pipelines – installed in remote regions. 

Many methods have been proposed for accurately detecting pipeline leaks. For 

example, methods include acoustic emission, leak noise correlators (LNC) [6], 

ground penetrating radar (GPR) [7-9] and pig-mounted acoustic (PMA) sensing [10]. 

These methods are not suitable for detection of leaks over a wide area or in long-

distance pipelines; rather, they are only suitable for inspecting a specific area where 

leaks are suspected based on prior information, such as a civil complaint. In addition, 

in cases of these prior methods, surveyors must also be dispatched to the suspected 

leak area, resulting in significant personnel costs and inspection time. 
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(a) 

 

(b) 

Fig. 1 Existing leak detection system for local area: (a) acoustic emission 

method, (b) ground penetrating radar method 

 

Other researchers have proposed techniques for monitoring leaks in pipelines 

over wider areas. Some researchers suggest that analyzing the pressure change of a 

transient wave can detect the location of a leak [11-14]. However, this method 
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contains uncertainties that are caused by disparities of pipe connectors, foreign 

substances like rust in the pipe, bending of the pipeline, etc. These uncertainties 

reduce detection accuracy. To increase the accuracy, detailed information can be 

added to the numerical algorithm used in the method; however, these additions cause 

other problems, including increasing the computational load in the numerical model. 

The added information must also be continually updated as the uncertainties change 

over time. To overcome these limitations, the time-domain reflectometry (TDR) 

based leak detection method has been researched. 

 

1.2 Overview of existed TDR Leak Detection System 

The suggested methods in this research use time-domain reflectometry (TDR) 

[15-17], which has fewer uncertainties caused by the configuration conditions of a 

pipeline than are found in the former method. The TDR technique can inform 

observers about the state of a transmission line or its periphery through the 

measurement of a reflected signal on the line. Thus, researchers utilize this method 

in various situations, such as for monitoring the health state of electronic devices [18, 

19], monitoring bridge scour [20, 21], measuring moisture of soil [22, 23] and 

estimating the amount of fluid in a tank [24]. However, when the TDR technique is 

applied as a leak detection system, it is challenging to interpret the signal through 

visual checking or through use of a constant threshold-based criterion. Although 

TDR-based methods can easily interpret the measured signal when only one leak is 

present, it is difficult to interpret the inexplicit signal that results from a condition 

with multiple leaks and periphery noise. 

To address these challenges, researchers applied the RLCG-based forward model 

to this detection system and used Bayesian inference-based inverse model to enhance 
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signal analysis [25]. In RLCG, R is resistance, L is inductance, C is capacitance, and 

G is conductance. The RLCG-based forward model estimates the TDR signal using 

lossy transmission line (LTL) theory based on finite-difference time-domain (FDTD). 

Applying Bayesian inference improves detecting ability in light of the uncertainties 

of the model and errors of measurement [26, 27]. While these findings have 

improved the ability to interpret TDR signals, the RLCG forward model has other 

shortcomings, specifically that it takes long time to generate the trained sample 

signal. In the Bayesian inference, this drawback causes an increase in the time 

required to build the sample data set that is used for maximum likelihood. The 

lengthy time required to build trained sample data set results in limitations of this 

method’s usefulness in long-distance pipelines. This is because as the pipeline length 

increases, the amount of sample data required to measure likelihood in the Bayesian 

inference increases as well. These restrictions limit or prevent applying this method 

in the field, where the length of pipelines can reach tens to hundreds of km, such as 

in the Los Angeles Aqueduct. In particular, a robust leak detection system is most 

needed in the most challenging circumstances – long-distance pipelines – because 

pipelines in these settings pass through remote places where it is difficult to detect 

leaks by human inspection. 

 

1.3 Thesis Outline 

In this research, computational efficiency of the forward model is improved by 

lessening the time required to build the sample data set. This achievement makes it 

possible to apply the TDR technique for leak detection in long-distance pipelines. 

This work also proposes a newly developed algorithm to estimate the time required 

to build the sample data. The detection system proposed in this study is focused only 
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on detecting leaks in the pipe connections, or flanges; it does not attempt to detect 

leaks in the main “body” of pipes. Leaks in the pipe body are typically easily 

recognizable, as they usually occur from artificial impacts such as by workers or 

heavy equipment. Because we can make this assumption based on real-world 

experience, we can propose a more focused model that benefits from an ability to 

decrease both the number of leak detectors and the size of the sample data set. 

The rest of the paper is organized as follows. First, the background theory is 

explained in section 2. Next, the proposed multiple-leak inference method using S-

parameters is described in section 3. Section 4 outlines an estimation algorithm to 

calculate the time required to build the sample data. In section 5, the accuracy and 

efficiency of the suggested model are validated through case studies. Finally, section 

6 gives conclusions.  
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Chapter 2.  Background & Literature Review 
 

 

In this chapter, the theoretical background and literature review is briefly 

described to enable better understanding of this research. First, the principle of the 

TDR, which is used to detect leaks, is explained. Second, S-parameters, which are 

applied to make a forward model, are defined. Finally, the Bayesian inference 

utilized for locating the leaks in the proposed method is presented. 

 

2.1 Principles of TDR 
The TDR was originally proposed as a method to find the location of transmission 

line faults, such as electrical open, short, or chafe. TDR is, in principle, similar to 

RADAR, which measures a reflected radio wave to find the locations of objects. 

Likewise, in TDR, an incident pulse is propagated along the transmission line by 

TDR instrument and reflected when it meets a fault on the line. This reflected pulse 

is measured at the TDR instrument. The ultimate cause of the reflection is a disparity 

of impedance in the transmission line. According to Eq. (1) and Fig. 2, it is clear that 

a mismatch of impedances between Z0 and ZL determines the reflection coefficient 

between minus one and one, not zero:  

 

 

Fig. 2 Impedance disparity and reflected coefficient 
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 Γ =
𝑍𝐿 − 𝑍0

𝑍𝐿 + 𝑍0
= [

𝑉1
−

𝑉1
+]

𝑉 2
+=0

 (1) 

where, Z is the characteristic impedance and Г is the reflection coefficient. If a Г is a 

negative value, the shape of the reflected pulse is upside down for the incident pulse, 

which indicates an electric short. If the value of Г is one, the shape of the reflected 

pulse is the same as that of the incident pulse, which indicates electric open, as shown 

in Fig. 3. 
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(a) 

 

(b) 

 

(c) 

Fig. 3 TDR signal for electrical: (a) normal, (b) open, and (c) short 
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 The TDR technique can also locate faults, Lf, on the transmission line by calculating 

the velocity of propagation and pulse traveling time, as in Eq. (2): 

 𝐿𝑓 = 𝑣𝑝

𝑡2 − 𝑡1

2
 (2) 

where, t1 is the incident time when the pulse starts to transmit into the line and t2 is 

the arrival time when the reflected pulse is measured at the TDR instrument. vp is the 

velocity of propagation of the traveling pulse on the transmission line. 

These features of TDR are also useful for a leak detection system. The key here 

is the similarity between water leakage and an electrical short. An electrical short 

occurs by abnormal connection of two nodes having different voltages in an electric 

circuit. Likewise, if the water leakage contacts an electric circuit, it can also cause an 

electrical short because the leaking water is a good conductor. Fig. 4 shows the 

proposed operational concept. First, a sensing cable with leak detectors is attached to 

the pipe. The sensing cable plays the role of the transmission line in traditional TDR 

technique. Then, the location of leaks can be found by measuring the signal that is 

reflected from any electrical short that occurs in the leak detection system. This 

method is described in more detail in sections 3 and 4. 

 

 

 

Fig. 4 Concept of leak detection using TDR 
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2.2 S-parameters 

The S-parameters, so called scattering parameters, represent the voltage ratio 

between the input and output power of an electrical system in the frequency domain. 

The subscripts of S-parameters signify the port that the electric pulse passes through. 

The first subscript is an output port where the pulse exits via the port and the second 

is an input port where the pulse enters the port. S-parameters of two-port units are 

depicted in Fig. 5 and Eq. (3). Because S-parameters are measured in the frequency 

domain, the voltage ratio in the time-domain can be acquired by conducting inverse 

fast Fourier transform (IFFT). In this respect, if the TDR signal is acquired at a 

specific location on the transmission line in the frequency domain, a time-domain 

signal at that location can be easily obtained by IFFT. These features of S-parameters 

are used here to convert the reflected TDR signal that arrives at the TDR instrument 

into the time domain. 

 

 [
𝑉1

−

𝑉2
−] = [

𝑆11 𝑆12

𝑆21 𝑆22
] [

𝑉1
+

𝑉2
+] (3) 

 

 

Fig. 5 Concept of S-parameters 
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2.3 Bayesian Inference 

Bayesian Inference is a statistical method that infers posterior distributions of 

parameters by using prior distributions of those when a new event is given. The basic 

formula of the Bayesian inference is defined in Eq. (4): 

 Pr(𝜃|𝑦) =
Pr(𝑦|𝜃) Pr (𝜃) 

∫ Pr(𝑦|𝜃) Pr(𝜃) 𝑑𝜃
 (4) 

where θ are random variable, y is a new event, and Pr(θ |y) is a posterior 

distribution, which means the updated distribution of θ according to the new event y. 

Pr(θ) are prior distributions, specifically the distributions of each θ before 

considering the new event y. Pr(y|θ) is a likelihood function that stochastically finds 

the θ that is the most proper to represent y. Because of these features, it is appropriate 

to stochastically identify an optimal value of each parameter in the numerical models. 

In addition, it should be noted that this does not have the risk of finding only a locally 

optimal value of θ because the inference evaluates the likelihood for all samples. A 

sample means a case determined by θ and the case is compared with y. Generally, a 

greater sample size has the benefit of more precision in the inference of statistical 

method. It may have, however, a significant drawback; specifically a significant 

computational load if generating one sample is time consuming. Thus, to efficiently 

apply the Bayesian inference in any algorithm, it is important to consider the sample 

size and the time required to generate each sample. In this research, the sample size 

of the TDR-based leak detection system is affected by the length of the pipeline. The 

generating time is also related to the forward model. Therefore, to apply TDR based 

leak detection system to a long-distance pipeline, the computational efficiency of the 

forward model is a very important factor in this system. 
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Chapter 3. Forward Model using S-parameters for 

Generating a TDR Signal Corresponding 

to Leakage 
 

 

This section describes the forward model and an inverse model for detecting 

pipeline leaks. The purpose of the forward model is to estimate a TDR signal by 

using information about leaks, such as the number of leaks and their locations. Here, 

it is important that the modeled signal must well represent the measured signal in real 

situations. The inverse model then infers the information about leaks using the 

measured TDR signal. In this research, S-parameters are employed as the method of 

inducing the forward model to improve computational efficiency. The Bayesian 

inference is used for the inverse model. This section is comprised of four parts. First, 

the benefits of the proposed S-parameter based forward model are explained. Second, 

the operating principle of the forward model is exposited. Third, the method of 

inducing the forward model is described. Finally, we outline the principle of Bayesian 

inference based the inverse model. For demonstrating the forward model, the 

equations established by Stefan Schuet et al [28] are quoted. These equations were 

originally applied to describe the health state of coaxial cables. 

 

3.1 Advantages of a Forward Model utilizing S-parameters 

The TDR signal is a vector of sequent voltages that are measured at the TDR 

instrument. As shown in Fig. 6, the TDR signal is a white line that is composed of 

white stars (✰). The white star means a voltage that is measured at the TDR input 

port per time unit. 
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Fig. 6 Voltage distribution on the transmission line in the time domain 

(white line: TDR signal; white dotted line: modeled signal based on RLCG) 

 

 Thus, the forward model must estimate the white stars. The previous RLCG 

forward model, based on FDTD, requires calculating the all voltages (- - -, white 

dotted line) on the attached transmission line to obtain the one voltage (✰, white 

star) per time unit. However, the S-parameter based forward model does not need to 

calculate the all voltages. The S-parameter based model obtains the reflected signal 

in the frequency domain at the distance of zero meter, or the TDR input port. Then, 

by performing IFFT, the modeled frequency domain signal can be transformed to a 

reflected signal in the time domain which is same as the white solid line. In other 

words, the S-parameter based model does not need to consider the white dotted lines. 
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Thus, the S-parameter based forward model method offers the advantage of reflecting 

the physical character of the TDR signal. The model also needs also a smaller number 

of voltage data points to estimate the TDR signal than does the RLCG-based model. 

For example, if the RLCG forward model has a circuit model comprised of segments 

of the total transmission line equal to one thousandth of the line, one thousand voltage 

values are needed to gain one white star per time unit. In this sense, the S-parameter 

model is a more computationally economical method than the RLCG model. 

 

3.2 Concept of the Forward Model using S-parameters 

In As defined in section 3.1, the forward model estimates the TDR signal. The 

TDR signal is a vector that is composed of sequentially measured voltages. In the 

Eqs. (5) and (6), vM (t) is the TDR signal which is a reflected signal in the time domain 

and VM is the reflected signal in the frequency domain. The source signal, vS, is a 

vector that consists of values of the voltage sequentially generated by TDR 

instrument in the time domain. VS is the source signal in the frequency domain. The 

transfer function, H, generally means a ratio of output values to input values. In this 

paper, the output values are VS, the input values are VM, and H is defined as VM /VS. 

Thus, in the time domain, the forward model, which estimates the TDR signal, vM, is 

the right hand side of Eq. (5):  

 

𝑣𝑀(𝑡) = 𝐼𝐹𝐹𝑇(𝐻(𝜔, 𝜃) ⊙ 𝐹𝐹𝑇(𝑣𝑆(𝑡))) (5) 

where ⊙ is the element-by-element vector multiplication operation. vS(t) can be 

determined by the specifications of the equipment. As in Eq. (6), H is represented in 

the reflection coefficients, ГS and Г0, of the connection area between the TDR 

equipment and the transmission line [28]:  
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 𝐻(𝜔) =
𝑉𝑀

𝑉𝑆
=

𝐺

2
(1 +

Γ𝑆 + Γ0

1 + Γ𝑆Γ0
𝑒−𝑗2𝜔𝑡𝑀) (6) 

where G is the gain factor and tM is the internal time delay in the TDR instrument. ω 

is the continuous frequency that corresponds to the sampling period of the TDR. ГS 

is the reflection coefficient between the impedance of the TDR instrument, ZS, and 

the characteristic impedance of the transmission line, Z0, as shown in Fig. 7 and Eq. 

(7). 

 

Γ𝑆 =
𝑍0 − 𝑍𝑆

𝑍0 + 𝑍𝑆 
 (7) 

   Г0 is the reflection coefficient at the starting point of the transmission line (just 

to the right side of ГS). Г0 is not constant, but changeable, because it is affected by 

the health state of the transmission line. Г0 and the method of inducing the forward 

model are explained in the next section.  

 

 

 

 

Fig. 7 Operating concept of TDR 
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3.3 Modeling the Sensing Cable 

In this research, the transmission line of the leak detection system is referred to 

as the sensing cable. The cable can be divided into two types of segments, namely 

normal segments, Ni, and leakage segments, Li, as shown in Fig. 8. A disparity of 

impedance occurs at the boundary between each differing segment due to the electric 

short caused by the leak. As a result, the reflection of the transmitted pulse occurs at 

the boundary between segments. As shown in Eq. (6), Г0 must be obtained to model 

the TDR signal. Because the left side reflection coefficient of each segment can be 

induced from the right side reflection coefficient of it [28], Г0 can be inferred from 

ГL. To model the sensing cable, first, a model that can obtain the reflection coefficient 

of each segment should be made. Next, a totally synthesized model of the sensing 

cable is completed by connecting the reflection coefficient of each segment. The 

method of modeling the segments is as follows. 

 

 

 

Fig. 8 Model synthesis 
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(a) 

 

(b) 

Fig. 9 Modeling the segments of the transmission line: (a) normal segment,   

(b) leakage segment 

 

Normal segment - As shown in Fig. 9 (a), the area of a normal segment is defined 

inside the domain, excluding both side boundaries. Thus, ГFW is just to the right of 

the front boundary and ГBW is just to the left of the rear boundary. In addition, the 

segment can be regarded as a two-port device that has S-parameters. Generally, in a 

two-port device, ГFW is defined by S-parameters and ГBW can be found using Eq. (8) 

[29]:  
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ΓFW = 𝑆11 +
𝑆12𝑆21ΓBW

1 − 𝑆22ΓBW
 (8) 

where ГBW is the same as ГFW of its backward segment. S11 and S22 are zero because 

there is no change of impedance in the normal segment. S12 and S21 are not zero, but 

rather represent transmission loss during the travel of the pulse along the segment, as 

in Eq. (9) [28]: 

 S12 = 𝑆21 = 𝑒−𝛾𝑙𝑘 (9) 

where 𝛾 is propagation constant and 𝑙𝑘 is the length of the segment. Thus, ГFW is 

defined as 𝑒−2𝛾𝑙𝑘 ∙ ГBW where 𝛾 is defined as Eq. (10): 

 𝛾 = √[𝑅 + 𝑗𝜔𝐿][𝐺 + 𝑗𝜔𝐶] (10) 

where RLCG is a property of the sensing cable. The RLCG of two parallel cables is 

defined in Table 1. 

 

Table 1 R, L, G, and C of two parallel cables 

μ: permeability of dielectric; σc: conductivity of conductor; σd: conductivity of dielectric; 

ε: permittivity of dielectric; a: radius of conductor; d: distance between conductors; δ: 

1/√𝜋𝑓𝜇𝑐𝜎𝑐 (μc: permeability of conductor; f: input bandwidth) 

 

R[𝜴/𝒎] L[H/m] G[S/m] C[F/m] 

1

𝜋𝑎𝜎𝑐𝛿
 

μ

π
acosh (

d

2a
) 

πσd

acosh (
d

2a)
 

πε

acosh (
d

2a)
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Leak segment - As shown in Fig. 8(b), the area of a leak segment is a defined 

domain that includes both side boundaries. Thus, ГFW is the left side of the front 

boundary and ГBW is the right side of the rear boundary. This segment can be also 

analyzed as a two-port device. Unlike a normal segment, here S11 and S22 are not zero 

because there are disparities of impedance in the segment. As shown in Eq. (11) and 

(12), the S-parameters are calculated similarly to S-parameters of a faulty segment 

in a coaxial cable, as established by Stefan Schuet et al [28].  

 S11 = S22 =
Γ2(𝑒−𝑗𝜔2𝑡𝑑 − 1)

1 − Γ2
2𝑒−𝑗𝜔2𝑡𝑑

,      (𝑡𝑑 = 𝑙𝐿/𝑣𝑝) (11) 

  S12 = S21 =
(1 − Γ2

2)𝑒−𝑗𝜔2𝑡𝑑

1 − Γ2
2𝑒−𝑗𝜔2𝑡𝑑

 (12) 

where td is travel time, which is taken while the pulse passes the leak segment, 𝑙𝐿 is 

the length of the segment, and 𝑣𝑝 is the propagation velocity of the pulse. The ГFW 

of this segment can be also calculated using Eq. (8). ГBW of this segment can also be 

acquired from ГFW of its backward segment. 

 

Model Synthesis - The entire sensing cable can be thus modeled by combining 

these two types of segments. Fig. 8 shows an example of a pipeline with three leaks. 

The pipeline has four normal segments, Ni, and three leakage segments, Li. ГBW of 

each segment overlaps with ГFW of its backward segment. The value of ГL, as is 

already known, is one as it is the reflection coefficient of the open circuit at the end 

point of the sensing cable. Г0 can then be induced from ГL by acquiring ГFW for each 

segment. Using the obtained Г0, H(ω) can be found using Eq. (6). When H(ω) is 

substituted into Eq. (5), the S-parameter based forward model is completed.
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Chapter 4. Estimation Algorithm to Determine the 

Time required to Build the Trained 

Sample Data Set 
 

 

This section explains the algorithm used to estimate the time required to build the 

trained sample data set. The training data set includes modeled TDR signals of all 

cases covering all possible leak situations. The training data can then be compared to 

the measured TDR signal to determine the likelihood of leak locations. To detect 

leaks in real time, the comparison must be performed rapidly. To that end, the whole 

data set must be built in advance before completion of construction of the water 

distribution system because building the training data set is a surprisingly time-

consuming process. Once built, the training data set can be used repeatedly, because 

the data set doesn’t change as long as the configuration of pipeline doesn’t change. 

However, the time required to build the data set is significant. Thus, the training data 

set may not be built during the construction period of the pipeline due to the design 

conditions of the system, such as the total length of the pipeline, the length of each 

pipe unit, the number of maximum detectable leaks, K, and the computational 

efficiency of the forward model. With this in mind, an estimate of the time required 

to build the data set is useful before construction starts. 

The total time required to build the trained sample data set, Ttot, is defined by 

multiplying the total number of training data, Ntraining data, by the time required to 

generate one instance of trained sample data, tsample. 

 𝑇𝑡𝑜𝑡 = 𝑁𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 ∙ 𝑡𝑠𝑎𝑚𝑝𝑙𝑒 (13) 
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Ntraining data is determined by the number of leak detectors needed in the system, 

Ndetector, and the number of maximum detectable leaks, K. In this system, Ndetector is 

the same as the number of flanges in the pipeline except for the beginning and end 

flanges. This number is obtained by dividing the length of the total pipeline by the 

length of each pipe unit and subtracting one, because a detector is installed on each 

connecting flange. The formula of Ntraining data then follows, as shown in Eq. (14): 

 
 𝑁𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 = (∑ 𝐶(𝑁𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 , 𝑖)

𝐾

𝑖=1

) + 1 (14) 

where C is the combination operator. C(Ndetector, k) refers to the number of cases when 

the number of leaks is k. The last term ( + 1) adds to the formula to account for the 

case of a normal situation without any leaks. Thus, the formula of Ntraining data accounts 

for the total number of all possible leakage situations, from no leakage to the 

maximum number of leaks. Thus, tsample can be obtained by averaging the consumed 

time for various case studies, as described in the next section. 
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Chapter 5.  Case Study 
 

 

In this section, the accuracy and efficiency of the suggested leak detection system 

are validated through case studies. First, the experimental test bed is briefly described. 

The test bed is then validated by applying a real leak situation to the test bed. Next, 

parameters of the forward model are calibrated by using experimental data acquired 

from the experimental results of both the normal and single-leak situations. Next, the 

accuracy of the forward model is validated by comparing the modeled signal with 

the measured signal under a two-leak situation. Further, the accuracy of the Bayesian 

inference is demonstrated by comparing the training data set and the measured TDR 

signal under a three-leak situation. The three-leak situation generates an inexplicit 

TDR signal that is hard to interpret through visual inspection due to the overlapped 

reflection. Finally, the time required to build trained sample data set is estimated 

according to various lengths of pipeline by using tsample, which is obtained through 

the case studies.  

 

5.1 Description of the Experimental Test Bed 

A custom test bed was designed at the lab scale, as shown in Fig. 10. This system 

is comprised of three parts, including the pipeline, the leak detectors, and a data 

acquisition system. The pipeline is made up of four 3 meter-long pipes with 12 

centimeter radius and additional components to enable the TDR technique to be 

applied, including a sensing cable and an outer housing case at the joints. These 

components are not found in a regular pipeline. A twin parallel cable that is made 
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from copper wire with 0.4 millimeter radius is used as the sensing cable in the test 

bed. 

 

Fig. 10 Experimental test bed for validating the forward model 

 

The outer housing case is installed around joints where leakage is likely to occur. 

The housing plays the role of a reservoir for the leaking water, ensuring the leak 

detector gets wet. This wetness in turn causes an electrical short at the detector and 

the reflection of the pulse at the location of the short. The leak detector consists of 

two copper plates and a plastic case with holes, as shown in Fig. 11. The detector is 

isolated from external moisture by the outer housing, and is thus only affected by 

leaking water at the joint. The copper plate is also exposed to contact with the leaking 

water; the water then plays the role of a conductor between the two plates. The data 

acquisition part is composed of the TDR instrument and a laptop. The model of TDR 

instrument in the test setup is an mTDR-070 from Nanotrinics Corp. with an input 
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bandwidth of 300 MHz, output pulse of two volts, rising time of 1ns, maximum 

effective distance of 20 kilometers, and a characteristic impedance of 75 Ω. The 

laptop specifications include an Intel core i5 3.1 GHz processor with eight GRAM. 

The TDR instrument is connected to the start of the sensing cable to transmit the 

pulse and receive the reflected pulse. The TDR instrument is connected also to the 

laptop for analyzing the acquired data. 

 

 

(a) 

 

(b) 
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Fig. 11 Leak detection system: (a) system components, (b) leak detector 

 

 

 

Normal operation of this system was demonstrated through a simple experiment 

that was conducted using a 10 meter cable with one leak detector installed 8 meters 

along the cable. Then, the leak detector was attached to the flange and a leakage 

situation was applied to the system. The reflected pulse signal from the leakage was 

observed as shown in Fig. 12. To test a situation with multiple leakage signals under 

various situations with several detectors, tests were manually performed to 

intentionally change the gap between the leaks. 

  



26 

 

 

     (a) 

 

     (b) 

Fig. 12 Operation check of the leak detector: (a) no leak, (b) single leak at 8m 

 

5.2 Validation of Accuracy of the Forward Model and the 

Bayesian Inference 

Before the developed forward model is used, the constant parameters in the 

forward model need to be calibrated. Although these parameters were determined 
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based on a review of the literature, known properties of the material, and 

specifications of the chosen equipment, some parameters inevitably have 

uncertainties.  

 

   (a) 

 

    (b) 

Fig. 13 Comparison between measured signal and modeled signal: (a) no leak, 

(b) single leak at 8m 
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In order to decrease the effect of the uncertainties, calibration of the parameters 

was conducted using the least square method (LSM) between the measured and the 

modeled signal under situations with no leaks and with a single leak, as shown Fig. 

13. After calibration, the accuracy of the forward model was validated by comparing 

the measured signal to the modeled signal under the multiple-leak situation. The pipe 

in the experimental setup is 10m long with two leaks at 6m and 8m. As shown in Fig. 

14, the forward model accurately represents the TDR signal. It is also converted to 

the distance domain to arrive at more practical information, specifically, the 

predicted leak locations. Table 2 examines the accuracy of the forward model by 

comparing the TDR signal estimated by the model and the signal measured by the 

TDR instrument. The stochastic measures used are Correlation Coefficient, Weighted 

Integrated Factor (WIFac) and standard deviation of noise (σM). The Correlation 

Coefficient and WIFac represent the accuracy of the model in the aspect of shape and 

σM represents the error of the model. The Correlation Coefficient has a value between 

minus one and one. Here, minus one is total negative correlation, zero is no 

correlation, and one is total positive correlation. The WIFac has a value between zero 

and one. In case of the WIFac, the value means a degree of match between the two 

signals and one means perfect match. As shown Table 2, the WIFac value falls a little 

short of one because of difference of magnitude of the signals caused by periphery 

noise and physical uncertainties included in this system. The Correlation Coefficient 

related to tendency of peaks of the signals is close to one. The peak locations of the 

signals is important factor for inferring the leak locations in this detection system. 

Thus, the suggested forward model is appropriate to use the proposed leak detection 

system. 
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  (a) 

           

  (b) 

Fig. 14 Validation of the forward model with two leaks (6m and 8m) on 

the 10 m cable: (a) time domain, (b) distance domain 
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Table 2 Comparison of similarity between real measured TDR signal and 

virtually generated TDR signal 

Measure 
Correlation 

coefficient 
WIFac σM  

value 0.9869 0.8621 0.06 

  

The Bayesian inference was then validated using the training data set, which was 

made using the forward model, as described in the section 4. The given condition is 

a multiple-leak situation that has three leaks in a 10 meter pipe. The locations of the 

leaks are at 5.5 meters, six meters, and eight meters. As shown in Fig. 15 (a), the 

signal is not explicit and thus cannot be interpreted by visual inspection. However, 

the location of the leaks can be stochastically found through Bayesian inference, as 

shown in Fig. 15 (b), which shows the marginal PDFs of each parameter around the 

location of the leaks. 
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(a) 

 

 

(b) 

Fig. 15 Bayesian inference for finding the location of 

leaks: (a) measured TDR signal, (b) location of leaks 
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5.3 Estimating the Time required to Build Sample Data Set 

for a Long-Distance Pipeline 

As described in section 4, to estimate Ttot, tsample must be obtained. The tsample is 

calculated using the results of case studies that are performed for various lengths of 

pipelines. However, a lab setting limits the opportunity to extend a sample pipeline. 

Thus, to examine various situations, we assumed that the length of each pipe unit 

ranged from one meter to 0.1 meter under the given length of our sample pipeline, 

10m. This enabled us to examine different numbers of flanges and allowed Ndetector to 

increase, achieving the same effect as extending the length of the pipeline. As shown 

in Table 3, Ndetector, Ntraining data, Ttot and Tsample were acquired according to the length 

of each unit pipeline with three maximum detectable leaks, K. The average of tsample 

was approximately 0.00263 second. This result was also calculated using the laptop 

with an Intel core i5 3.1GHz processor and eight GRAM and MATLAB. Thus, the 

tsample can be a changeable value depending on computer performance. If this system 

were to be used with a high-performance computer such as a supercomputer, tsample 

can also be reduced. This also means that the system suggested in this research can 

be effectively applied to actual field situations that use higher-performance 

computers than the laptop used in this research. 
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Table 3 The Ttot and tsample with three maximum detectable leaks, as predicted by each 

forward model 

Length of unit pipe 1 m 0.5 m 0.2 m 0.1 m 

Ndetector 9 19 49 99 

Ntraining data 130 1,160 19,650 161,800 

Ttot [s] 0.34 3.03 51.42 433.15 

tsample [s] 0.002615 0.002612 0.002617 0.002677 

 

Table 4 The Ttot in the field with three maximum detectable leaks 

Length of 

pipeline 
tsample 1 km 5 km 10 km 20 km 30 km 

Ndetector - 99 499 999 1,999 2,999 

Ntraining data 1 161,800 20,709,000 166,168,000 1,331,336,00 4,495,504,000 

Ttot   

(tsample × 

Ntraining data) 

0.00263s 0.12h 15.22h 
122.15h 

(5.09 days) 

978.63h 

(40.78 days) 

3,304.53h 

(137.69 days) 

 

Table 4 shows the total estimated Ttot of all training data for various lengths of 

pipeline, using Eqs. (15) and (16), with a 10m pipe and 3 maximum detectable leaks. 
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Ttot is obtained by multiplying Ntraining data by tsample. If the length of the pipeline is same, 

the Ttot depends on the K which affect the Ntraining data. When the K increases, the Ttot 

also increases. On the other hand, when the K decreases, the Ttot must also decrease. 

The K and Ttot relationship reflects the trade-off between multi-detection capabilities 

and the cost of the time required to generate the sample data set. This process can be 

applied in practice to various lengths of pipelines and different numbers of maximum 

detectable leaks. 



35 

 

Chapter 6.  Conclusion 
 

 

A novel TDR-based leak detection system using an S-parameter forward model 

has been presented in this paper. The application of S-parameters improves the 

computational efficiency of the forward model and shortens the Tsample of the trained 

sample data needed for Bayesian inference. The Bayesian inference based inverse 

model can stochastically detect the location of leaks from an inexplicit TDR signal 

that includes noise and overlapped reflection. Moreover, the time estimation 

algorithm developed here predicts the Ttot, using the configuration information for 

the particular pipeline of interest. To demonstrate the performance of the suggested 

leak detection system, laboratory experiments were conducted using a sample 

pipeline, leak detectors, a sensing cable, and TDR instrument. To simulate a long-

distance pipeline, the length of each pipe unit was intentionally controlled at various 

lengths from one meter to 0.1 meter. Through the case study, the accuracy of the 

proposed S-parameter based forward model was validated by various measures and 

tsample was also obtained by averaging the results of different case studies. Using the 

tsample, the Ttot for various conditions, including different lengths of pipeline and a 

varying number of maximum detectable leaks can be estimated. 

As a result of this research, it is significantly meaningful that a multiple-leak 

detecting technique can be applied to a water distribution system. Some people may 

think that a conventional TDR-based leak detection method is sufficient to detect 

pipeline leaks because the possibility of multiple leaks occurring simultaneously in 

any given pipeline is low. In addition, if it is easy to access the location of a particular 

leak, maintenance can be quickly performed as soon as a leak is detected and before 
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another leak occurs. However, in actual pipeline applications if other leaks occur 

before an existing leak is repaired the usefulness of the conventional TDR-based 

method is limited. In addition, it can be difficult to perform quick maintenance on 

pipelines due to difficult accessibility (e.g., pipelines installed underwater or in desert 

or alpine regions). Moreover, the crustal movement of an area with installed 

pipelines, such as an earthquake, uplift of strata, ground sinking, or various external 

shocks, can force a change in the geometry of a long-distance pipeline. These 

phenomena may cause misalignment of a pipeline and generate multiple leaks at the 

flanges. Even though the non-trivial procedure of building a training data set is 

required for use of our proposed system, the suggested multiple-leak detection 

system offers significant long-term advantages, particularly in situations involving 

long-distance pipelines. 

In terms of return on investment (ROI), the economic feasibility of the proposed 

detection system is superior to any existing method, including LNC, GPR, and PMA 

methods. While the TDR installation of this leak detection system, in terms of 

investment, could be regarded as an additional cost, the TDR installation, in terms of 

return, should not be regarded as an additional cost, but rather as an investment that 

will pay back in economic profits. In this regard, the installation of TDR system 

should be analyzed from the perspective of its long-term cost savings. First, in terms 

of operational cost reduction, the suggested method doesn’t require surveyors and 

equipment to be dispatched for detecting leaks, unlike existing detection methods, 

because the proposed system can remotely monitor a wide area in real time. This 

advantage could derive benefits such as substantial labor cost savings. Second, in 

terms of cost avoidance, the price of the TDR instrument installed in the leak 

detection system is cheaper than it would be for electronic monitoring because the 



37 

 

latter requires the TDR instrument with high resolution. In contrast, our suggested 

detection system requires only the TDR with moderate-resolution, which is able to 

accurately identify the distance between the detectors. In addition, our more robust 

system can also prevent the occurrence of costs related to economic, social, or 

environmental issues caused by being continuously unaware of leaks. Third, in terms 

of revenue growth, the net profit of the water industry is expected to gradually 

increase because of the reduction of non-revenue water (NRW) losses through more 

rapid maintenance to fix leaks.  

If the economic efficiency of installation of the system is demonstrated in the long 

term, this leak detection system is also expected to be useful for sewer lines and 

wastewater pipelines. Generally, a leak of a sewer line or wastewater pipeline system 

is not related to an economic cost in the short term, so the effort put toward preventing 

leaks in these systems is relatively less than that observed for water distribution 

systems. However, leakage of sewage and wastewater may cause various 

environmental, economic, and social problems. First, the leakage causes soil and 

underground water contamination. It negatively impacts human health through 

agricultural products and can contaminate drinking water. Second, the contamination 

of soil and underground water leads to considerable remediation costs in the long 

term. Finally, the continuous leakage of wastewater pipelines can cause disasters 

such as sinkholes, in which a hole is made by the collapse of the ground surface as a 

result of a leaking pipeline below ground [30]. This situation may result in great a 

catastrophe causing many casualties. Thus, applying the proposed TDR system to 

sewer lines and wastewater pipelines could prevent these problems in the long term. 

Future work related to this research will be expanded to examine the network 

structure of pipelines because this research is only applicable to a single pipeline. As 
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a result, this method would need multiple TDR instrument stations to cover a 

networked pipeline structure. In the case of coaxial cable, Xiaolong Zhang has 

examined the failure diagnosis technique of a cable network using a TDR-based 

system using a modeling splitter and tap [31]. However, to be robust to noise and 

improve interpretability of the TDR signal for multiple leaks, a Bayesian inference 

based network detection technique must be developed. Thus, to reduce the amount 

of required equipment and cost, the authors will seek to develop a method that 

efficiently detects leaks in a networked water distribution system. 
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국문 초록 

 

상수도 파이프라인에서 발생하는 누수들은 경제적, 환경적, 사회적 

문제들을 발생시킨다. 이러한 누수를 감지하기 위해서 베이지안 추론을 

활용한 시간영역반사계(time domain reflectometry: TDR) 기반의 

누수탐지 기술이 연구되고 있다. 그러나 이 기술은 베이지안 추론 시 

필요한 샘플데이터를 구축하는데 걸리는 소요시간과 샘플데이터의 

방대한 크기로 인해서 장거리 파이프를 포함하여 실제 적용하는데 

실용적이지 못하다. 

이러한 문제점을 해결하기 위해서 본 연구에서는 두 가지 새로운 

방법을 제안한다. 첫 번째는 샘플데이터의 크기를 감소하기 위해 S-

파라미터 기반의 전진모델 개발이며, 두 번째는 전체 샘플데이터를 

구축하는데 걸리는 소요시간 예측 알고리즘 개발이다. 기존 전진모델의 

경우, TDR 장비와 탐지 케이블의 모든 전압에 대한 모델링이 

필요하였지만, 제안한 S-파라미터 기반의 전지모델은 탐지 케이블은 

제외한 TDR 장비의 입력 전압에 대해서만 모델링이 필요하다. 따라서 

제안한 누수탐지 방법에서는 탐지선의 전압은 TDR 신호를 모델링은 

필요하지 않다. 그러므로 각 전진모델에서 필요로 하는 샘플데이터의 

크기를 고려하였을 때 S-파라미터 기반의 전진모델이 기존의 

전진모델보다 계산비용 관점에서 훨씬 효율적인 모델이라고 할 수 있다. 

게다가, 샘플데이터 구축시간을 예측하기 위해 제안된 알고리즘은 

시스템 사용자에게 TDR 기반 누수탐지 시스템이 특정 조건에서 파이프 

라인의 공사기간과 구축소요시간을 비교하여 실용적인지를 판단할 수 

있게 해준다. 
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이 제안된 방법은 실험실 규모에서 파이프, 누수탐지기, 탐지선, TDR 

장비를 사용하여 검증을 하였다. 실험을 통해서 장거리 파이프라인에서 

제안된 S-파라미터 기반 전진 모델의 실용성 또한 검증하였다.  
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