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Abstract

In the past years, cooperative operation of multiple robots has attracted considerable re-

search interest for coverage and search of broad and complex areas. Unlike the complete

coverage problem, in the basic persistent surveillance problem each location in the environ-

ment must be visited repeatedly while minimizing the time-interval between any two visits

to the same location. In this paper, we propose a cooperative path planning algorithm for

an efficient persistent surveillance operation of multiple heterogeneous agents using mixed

integer linear programming. Since we specially consider a grid environment with differ-

ent priories (time interval constraints), agents must visit the region at least once within

the specific time interval constraint. The cost function is the maximum risk minimization.

Also, we consider a protocol for cooperative movement of heterogeneous agents. The ob-

jectives of the proposed algorithm are: persistent surveillance operation with time interval

constraints, obstacle avoidance, and collision avoidance among multiple agents. Simulation

results confirm that a cell is visited at least once within its time interval constraints.
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1
Introduction

1.1 Previous Works

The persistent surveillance and patrolling problem by multiple agents has received consid-

erable attention in robotics and AI literature recently. Chevaleyre et al.[1] use a multiple

Traveling Salesman Problem (TSP) approach to solve the surveillance problem. The authors

of [2] introduced an approximate policy for the persistent surveillance problem using a par-

allel, distributed implementation of approximate dynamic programming. In their problem,

an onboard health monitoring system, communication constraints, and stochastic sensor

failure are considered. Arvelo et al. [3] set as their objectives finding the minimum number

of robots and time-invariant memoryless control policy that guarantees that the largest

number of states. In [4], the authors introduced a reactive policy for persistent surveillance

with equal visiting frequency using multiple UAVs. In [5], they considered the communica-

tion limitations and applied a leader follower interaction protocol(LFIP) based exploration

framework. Pasqualetti et al.[6] applied graph partition approaches to the patrolling prob-

lem. Market-based auction algorithm can be applied to persistent surveillance problem
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[7, 8, 9]. In [7], the paper considered an approach for monitoring robot performance in a

patrolling task and using an auction algorithm to dynamically reassign tasks from those

team members that perform poorly. It divides the graph into subsets of nodes and assigns

the nodes to each robots. In [10], the paper used a multi-agent Markov decision process

(MDP) approach. The authors formulate the planner for each agent as a decentralized MDP

and also consider health management of multiple UAV/UGV agents for long-duration mis-

sions. Communication constraints are frequently considered in the persistent surveillance

or complete coverage problem. Behavior based approaches can also be used [11]. In the

paper, they measured performance as time required to generate a complete map of the

environment and designed behaviors to enhance global performance.

All these papers did not consider time-interval constraints. It means their environments

of the problems have equal priority. However, in [12], in the problem setting, they assumed

different priority of the environment. They solved persistent surveillance for tasks with

three different priorities. using a vehicle routing problem with time windows.

As for cooperation of heterogeneous teams, the paper of [13] presented decentralized

methods for allocating heterogeneous tasks to agents with different capabilities. They used

the consensus-based bundle algorithm(CBBA) for the problem. In [14], heterogeneous un-

manned ground vehicles(UGV) and micro-air vehicles (MAV) are considered for explo-

ration. The authors applied integer programming for optimization and graph partitioning

for dividing agents into multiple teams. There are papers which did not consider heteroge-

neous agents, but considered different roles of agents [15, 16]. These papers assumed that

agents play two roles(maintainers or explorers).

1.2 Contributions

We propose persistent surveillance algorithm with time-interval constraints using mixed

integer linear programming in the thesis. The first contribution of the thesis is that we pro-

posed time-interval constraints in persistent surveillance. For the second contribution, the

2



protocol for cooperative movement of heterogeneous agents is considered during surveillance

operation.

1.3 Thesis Overviews

The thesis is structured as follows: in chapter 2, we describe setup for the persistent surveil-

lance. Next, we introduce theory of mixed integer linear programming and the problem

formulation using MILP in chapter 3. The problem formulation consists of the objective

function and constraints(location constraints, movement constraints, capability constraints,

and time constraint). In chapter 4, we present the protocol for cooperative movement of

heterogeneous agents. Chapter 5 shows the simulation setting and results and conclusion

follows.
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2
Setup for Persistent Surveillance

In this chapter, we introduce characters of each agent type and then the basic environment

setting.

2.1 Heterogeneous Agents

We assume that heterogeneous agents cooperate for persistent surveillance. There are three

types of agents. In table 2.1, agents of type A and B are unmanned ground vehicles(UGVs),

and an agent of type C is UAV.

Depending on vehicle type, there are different characteristics. First, they have different

sensing ranges. A UGV can sense only its current cell. However, a UAV can sense its current

located cell and adjacent cells. The moving range is also different. While UGVs can move

one cell at a step, UAVs can move two cells at a step. The reason we divide UGVs into

two types is that they have different major capabilities. We assume a type A UGV has

equipment. For example, in a military scenario, a type A UGV is armed so it is better for

defense. On the other hand, type B UGVs are more suitable for surveillance than type A

UGVs. Type C UAVs are also suitable for surveillance.
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Table 2.1: Characteristics of agents

Type Vehicle Sensing range(depth(d)) Moving range(cell/step) Major capability

Type A UGV 1 1 Armed

Type B UGV 1 1 Surveillance

Type C UAV 2 2 Surveillance

2.2 Environment Setting

The known environment is modeled as a 2-dimensional grid. A cell can be a free cell or an

obstacle cell.

Each cell has its own risk value and time-interval constraint. The risk is changed at

each step by agent’s movement. The specific rule for changing risk is introduced in chapter

3. As for time-interval constraint, a cell should be visited at least once within specific time-

interval by any agent. It is strictly related to priority of the region. If a cell has a small

time-interval constraint, it indicates that the cell needs to be observed frequently. Therefore

the priority of the cell is high. In opposite, if a cell has a large time-interval constraint, the

cell has less priority because it does not need to be observed often.

For example, in Fig. 2.1a, if the orange cells have smaller time interval constraints than

the white cells, agents should visit orange cells more often. Conversely, blue cells, which

have bigger time interval constraints than white cells, can be visited less often.

In the environment, there are special locations for tasks. Brown cells and yellow cells are

special locations in Fig. 2.1b. A brown cell is assumed to be a very dangerous region since

it is highly possible for a threat such as a sniper attack. Therefore, it needs protection for

surveillance. Only when an agent of type A which is good for defense operation is located

in the yellow region and it protects the brown cell against a threat, can an agent of type

B or C reconnoitre the brown cell and do a task for three continuous steps. In short, the
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(a) the map for time-interval constraints

(white, orange, blue : free cell, gray : ob-

stacle cell)

(b) the map for special locations

Figure 2.1: Example of grid environment map
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task in special locations should be assigned to teams of heterogeneous agents.
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3
MILP Formulations

This chapter describes mixed integer linear program, the objective function for the problem,

and important constraints.

3.1 Introduction to MILP

A mixed integer linear program(MILP) is given by c, an n-dimensional column vector, b an

m-dimensional column vector, an m by n matrix A, and an n-dimensional column vector

of variables, x. A MILP is described as

max cTx

subject to Ax ≤ b,

x ≥ 0

(3.1)

While all variables are integer in an integer program(IP), if some variables are integer

and the others are continuous, that is a MILP. The goal of the problem is to find a vector

x solving the optimization problem in Eq. 3.1.
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MILP has been an interesting approach for decades since it can be applied to various

fields such as task assignment, scheduling, and path planning. Also, the optimal solution

can be obtained using commercially available software. We solve the problem using the

CPLEX optimization software with an AMPL/Matlab interface.

3.2 Objective Function

In chapter 2, we mentioned that each cell has its own risk, and the risk of a cell is changed

by agents’ movements. An agent moves around to minimize the maximum risk of the region.

The objective function at step k can be written as

min {maxrk{ i ∈ [1, · · · , N ] | rki }}

for k = 1, · · · , K
(3.2)

In Eq. 3.2, i is a cell index, N is the total number of cells, and rki is the risk of cell i at

step k.

3.3 Location Constraints

The first constraint is about the location of agents.

Each agent’s location in the region is described by binary variables. xji indicates the

binary variable. When an agent j is located in cell i, xji becomes 1. When an agent j is not

located in cell i, xji becomes 0.

∀ j ∈ [1, · · · , M ] :
N∑
i=1

xji = 1. (3.3)

where the index of an agent is j ∈ [1, · · · , M ].

In Eq. 3.3, each agent can occupy only one cell and has to be located in the region,

not outside of the region. Therefore, sum of the all binary location variables for each agent

becomes 1.

9



UGV

∀ i ∈ [1, · · · , N ] :

0 ≤
A∑

a=1

xai +
B∑
b=1

xbi ≤ 1, when cell i is a free cell

A∑
a=1

xai +
B∑
b=1

xbi = 0, when cell i is an obstacle cell

(3.4)

where the index of a type A agent is a ∈ [1, · · · , A] and the index of a type B agent is

b ∈ [1, · · · , B].

A UGV agent cannot be located in an obstacle cell and also cannot be located in same

cell with another UGV agent. To avoidance collision with other UGV agents and obstacles,

Eq. 3.4 should be satisfied.

UAV

We assume a UAV agent flies over an obstacle, so constraints about obstacle avoidance are

not considered for UAV agents. Eq. 3.5 should be satisfied to avoid collision with other

UAV agents.

∀ i ∈ [1, · · · , N ] :

0 ≤
C∑
c=1

xci ≤ 1
(3.5)

where the index of a type C agent is c ∈ [1, · · · , C]

3.4 Movement Constraints

Each agent should decide the next position among candidate cells.

∀ j ∈ [1, · · · , M ] :
H∑

h=1

xj
sjh

= 1
(3.6)

where the index of a candidate cell is h ∈ [1, · · · , H] and sjh is a candidate cell of agent

j.
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Figure 3.1: Illustration for sensing range and moving range of UGV and UAV

A UGV agent moves one cell per step, and a UAV agent moves two cells per step. In

Fig. 3.1, the range of the UGV’s candidate cells is inside the red square, and the range of

the UAV’s candidate cells is inside the blue square. Hence they have different conditions

for a candidate cell. A cell becomes a candidate cell if it is satisfies the following conditions.

UGV

• an adjacent cell of the agent

• not occupied by an obstacle

UAV

• an adjacent cell of the agent / a cell which is two cells distant from the agent

• regardless of obstacle occupancy

3.5 Capability Constraints

Sensing ranges are different between UGVs and UAVs. In case of a UGV, it can sense only

its current position, one cell, but a UAV can sense its current position and also its adjacent

cells. In Fig. 3.1, sensing range of the UGV’s candidate cells is inside the green square,
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and sensing range of the UAV’s candidate cells is inside the red square. This fact affects

capability of an agent.

In chapter 2, we introduced that each cell has its risk and the objective function is the

maximum risk minimization. A risk of a cell is changed at each step by following rules. If

an agent is located in cell i,

TypeA : rki = rk−1
i − α (3.7)

TypeB : rki = rk−1
i − β (3.8)

where rki is the risk of cell i at step k, and α and β are risk reduction values of a type

A agent and type B agent, respectively.

TypeC : rki = rk−1
i − γ

rko = rk−1
o − γ ∀ o ∈ Pi

(3.9)

In Eq. 3.9, Pi is the set of cell i’s neighbor cell indices and γ is the risk reduction value of

a type C agent. Unlike type A and B agents, an agent of type C, which is a UAV, covers

up to the right next cells, so it can reduce risk of its current cell and neighbor cells.

If cell i is not covered at step k by any agent, rki is increased by 1 in Eq. 3.10.

rki = rk−1
i + 1 (3.10)

3.6 Time-interval Constraints

The key point of the proposed algorithm is time-interval constraints. Each cell has its own

fixed time-interval constraint and changing time-interval. Like risk reduction capability,

time-interval is affected by sensing range. If cell i is covered at step k by a type A or B

agent,

TypeA, B : T k
i = 1. (3.11)
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If cell i is covered at step k by a type C agent,

TypeC : T k
i = 1

T k
o = 1 ∀o ∈ Pi

(3.12)

However, if no agent covers cell i at step k, the time-interval of cell i at step k is

increased by 1 from the time-interval of cell i at step k − 1 like in Eq. 3.13.

T k
i = T k−1

i + 1 (3.13)

To achieve the primary objective of the proposed algorithm, upper bounds of these

time-interval values become time-interval constraint values. The constraints can then be

described as follows:

∀i ∈ [1, · · · , N ] :

T k
i ≤ TCi

(3.14)

where TCi is the time-interval constraint of cell i.

By this constraint, each cell i can be visited at least once within the specific time interval

constraint.
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4
Protocol for Cooperative Movement

In chapter 2, we described about special locations for cooperative movement of hetero-

geneous agents. Now, we first explain the protocol for cooperative movement for special

locations in detail from section 4.1 to 4.3, and then the overall algorithm will follow in

section 4.4

4.1 Definition of Safe Zone

In the environment, there are special locations that need operation of a heterogeneous

team. The location is called a task Vl where l is the task index. In Fig. 2.1b, brown cells are

task locations, and yellow cells are defense locations. As we mentioned in chapter 2, only

agents of type B and C can be located in task location when an agent of type A is located

in defense location. The task is done after the task is covered continuously for three steps.

We call agents of type A as a defense team and agents of type B and C as a surveillance

team.

For the protocol for cooperative movement, a task Vl defines its safe zone at each step,

and uses the safe zone to decide to execute the protocol or not. Radius of the safe zone is

14



Figure 4.1: Safe zone of the task Vl

described as

sr = TCVl
− T k

vl
− ε (4.1)

where sr is the radius of the safe zone and ε is a coefficient to make the safe zone tighter.

TCVl
−T k

vl
indicates how many steps remain for keeping the time-interval constraint of task

Vl. Namely, the protocol executes when it is possible to break the time-interval constraint.

The criteria for execution the protocol is introduced in the next section.

4.2 Task Assignment

Using safe zone of the task Vl at each step, the task decides to execute the protocol or not.

Like in Fig. 4.2a, if there is at least one agent from the surveillance team and defense team

respectively inside of safe zone, the task Vl is assumed to be safe. But the other cases are

not safe situations. Unsafe situations are described as follow:

• The nearest agent(s) of the surveillance team or(and) the defense team is(are) located

in boundary of the safe zone.

15



• The nearest agent(s) of the surveillance team or(and) the defense team is(are) located

in outside of the safe zone.

When an unsafe situation of the task Vl occurs, the task Vl is assigned by following steps.

First, the task is assigned to the nearest agent of the surveillance team and the nearest

agent of the defense team among agents who do not have a task. Second, if there is no agent

who does not have a task, the task is just assigned to the nearest one of the surveillance

team and the nearest one of the defense team. After two agents are decided to do the

task Vl, the agents generate a path from their current position to the task Vl using the A*

algorithm. However, in case of the defense agent, it can be located around the task Vl, and

cannot be located in the task Vl. So the defense agent uses the path to the right before the

cell of the task Vl.
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(a)

(b)

Figure 4.2: Check the status of safety (a)Safe situation (b)Unsafe situations
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4.3 Decision Making Behaviour Model

Figure 4.3: Model for decision making behaviour

During the execution of the protocol, various situations could be occurred. In this sec-

tion, we introduce the decision making behaviour model(Fig. 4.3) to handle these situations.

This behaviour model of the agent([17]) is applied to the agent assigned the task, and is

not applied to a free agent which is not assigned a task.

The transition relations of the decision making behaviour model are as follows in detail:

• p1: if the task Vl is assigned

• p2: if the path is remained

• p3: if there is one remained the path

• p4: if the both agents of the surveillance team and the defense team are arrived to

the task Vl region

the surveillance team: arrived to the task Vl

the defense team : arrived to the defense region(the right next region of the Vl)

• p5: if the task is done

18



• p6: if there is no remained a task

• p7: if there is remained a task

• p8: if the agent got the additional task from p9, p10, p12, and p13

• p9, p10, p12, and p13: if there is execution of the protocol for additional task and no

agent available for the additional task

• p11: if another agent has same location for the next step,

the defense agent waits until the surveillance agent passes

• p14: if another agent who got same task assignment is not arrived to the task Vl region

• p15: if all agents who got same task assignment are arrived to the task Vl region

4.4 Overall Algorithm

In Fig. 4.4, we introduce the overall algorithm of the thesis. When the program starts, MILP

with general constraints, as explained in chapter 3 runs using initial risk, time-interval, and

agents’ locations. From MILP, we get the results which are risk, time-interval, and agents’

locations. From this information, it decides execution of the protocol for cooperative move-

ment or not. If an agent gets the task, the agent runs MILP with specific path constraints

for the task. If an agent gets no task, the agent runs MILP with general constraints as

before. This procedure iterates continually.

19



Figure 4.4: Overall algorithm
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5
Simulation

5.1 Simulation Setting

For simulation, we assume a 10x10 grid environment and two agents of type A, type B,

and type C, respectively. It means there are four members of the surveillance team and two

members of the defense team. The obstacle ratio is 0.15 and black cells are an obstacle cells

in Fig. 5.1a. There are three special locations for cooperative operation of heterogeneous

agents. In Fig. 5.1b, the tasks V1, V2, and V3 are located in special locations and yellow

regions around the tasks are defense regions. As you see, we assume more tasks than the

number of defense agents, so it is possible for to get occur one agent to get two tasks at

the same time step.

As for time-interval constraints, the entire region consists of cells with different time

interval constraints in Fig. 5.1a and 5.1b. Obviously, if a cell has the smallest time-interval

constraint, the cell is the most important cell to observe. Conversely, if a cell has the largest

time-interval constraint, the cell is the lowest priority within the entire region.

The risk of each cell is initialized to 100 at first, and risk reduction capability differs by
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(a) Time-interval constraint of a cell

(b) Grid environment map for simulation

Figure 5.1: Simulation environment
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type of agents. A type A agent can reduce the risk by 20, and the risk reduction capability

of a type B agent is 25. Also, a type C agent can reduce risk by 23. If more agents than one

agent cover a cell, the risk of the cell is reduced by the sum of each agent’s risk reduction

capability. We also assume a lower bound of risk as 0, and high risks pop up at unexpected

time step.

5.2 Simulation Results

Simulation video images are described from Fig. 5.2 to Fig. 5.5. We would like to explain

the simulation video first. In the simulation video, the left bottom figure is the entire

environment. Squares tinged with red are type A UGVs, and circles tinged with blue are

type B UGVs. Triangles with green are type C UAVs. When a task Vl executes, a red

bold line appears, and the team of heterogeneous agents assigned the task Vl change their

shape to be bigger and bolder. The center top message is the announcement for the current

step and execution of the protocol for cooperative movement. If the protocol of a task

executes, a CALL massage appears. Also, the right figure is the risk distribution for the

entire environment at each step.

There are moments when all three tasks are executed at the same step. As we mentioned,

because the number of defense agents is two and the number of tasks is three, one defense

agent should do two tasks in this situation. The situation is described from Fig. 5.3 to Fig.

5.5.

The objective function of the proposed algorithm is the maximum risk minimization. In

Fig. 5.6, we show the maximum risk is decreased eventually to about 30 in plus-minus 15

range. Even though high risk unexpectedly occurred, the maximum risk is reduced within

the maximum 4 steps. Since cells have different time-interval constraints, risk reduction

speed and convergence range of each time-interval constraint are various. In case of a cell

with 10TC, agents covered the cell most often so speed of risk reduction is the fastest, and

the convergence range of risk is the lowest.
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Fig. 5.7 shows the state of safety for each task Vl. 1 indicates that the task region is

safe, so there is no need to execute the protocol for cooperative movement. In the other

cases, it is 0. With the results, each task calls a team of heterogeneous agents once within

its time-interval constraint.

As for time-interval constraints, all time-interval constraints are well satisfied in Fig.

5.8. Each graph is a histogram of the maximum time-interval at each step amongst cells

with the same time-interval constraint. For example, in case of first histogram, we found

the cells which have 10 time-interval constraint only, and then we choose the maximum

time-interval among these cells at each step. Therefore, the histogram results show all cells

covered within its time-interval constraint perfectly.
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(a) Step 1

(b) Step 2

Figure 5.2: Simulation video image: start
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(a) Step 136 (b) Step 137

(c) Step 138 (d) Step 139

(e) Step 140 (f) Step 141

Figure 5.3: Simulation video image: the protocol for cooperative movement(from step 136

to step 141)
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(a) Step 142 (b) Step 143

(c) Step 144 (d) Step 145

(e) Step 146 (f) Step 147

Figure 5.4: Simulation video image: the protocol for cooperative movement(from step 142

to step 147)
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(a) Step 148 (b) Step 149

(c) Step 150 (d) Step 151

(e) Step 152 (f) Step 153

Figure 5.5: Simulation video image: the protocol for cooperative movement(from step 148

to step 153)
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(a)

(b)

Figure 5.6: Performance measure(a)The maximum risk at each step (b)The maximum risk

at each step amongst cells with the same time-interval constraint
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Figure 5.7: State of safety for each task
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Figure 5.8: Histogram of the maximum time-interval at each step amongst cells with the

same time-interval constraint
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6
Conclusions

In this thesis, we proposed a multi-agent centralized path planning algorithm for persistent

surveillance using MILP. The key point of the thesis is time-interval constraints are involved

in the problem. Also, we consider three types of agent and the protocol for cooperative

movement of team of heterogeneous agents.

By using MILP, we got local optimal results for the maximum risk minimization sub-

ject to time-interval constraints. In the simulation result, the maximum risk of the entire

region is decreased to certain range and agents can handle unexpected high risk. Also, The

simulation results show agents explore the region within all constraints and cooperate with

other heterogeneous agents for special tasks efficiently.
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국   문   초   록 

 

본 논문에서는 각 지역을 방문하는 시간 간격이 구속조건으로 주

어져 있는 상황에서 다중 로봇 시스템이 지속적인 정찰 임무를 수

행하는 문제를 정식화 하고, 혼합정수계획법을 사용하여 접근하였

다. 정찰 임무에 대한 대부분의 기존 연구들이 지역의 중요도를 달

리하여 고려하지 않은 반면, 본 논문에서는 전체 환경에서 각 지역

이 다른 중요도를 갖고 있는 경우를 고려하고, 이를 최소 한번 이

상 정찰이 되어야 하는 시간 간격 구속조건과 함께 반영하여 연구

를 진행하였다. 또한 기본적인 정찰 임무와 함께, 이종(異種) 로봇

들의 협업을 필요로 하는 특이 지역이 있는 경우 이러한 임무를 

수행하기 위한 협업 프로토콜을 설계하였다. 경로 계획 부분은 혼

합정수계획법을 이용하였고, 이에 특정 지역의 임무 할당을 위한 

협업 프로토콜 알고리즘을 통합 구성하였다. 환경을 지속적으로 탐

색/정찰하는 임무에 대한 시뮬레이션을 수행한 결과, 정찰 임무가 

지속 될수록 지역 내의 최대 위험도 값이 감소하여 일정 범위 내

에서 수렴하고, 혼합 정수계획법을 위한 구속조건들이 만족되었다. 

또한 지역 내의 모든 셀들이 정해진 시간 간격 내에 최소 한번 이

상 방문되는 것과 이종 로봇들의 협업이 필요한 특이 지역 또한 

해당 시간 간격 제한 안에 정확히 한번 프로토콜이 활성화 되어 

로봇 팀에 의해 감지되는 것을 확인하였다. 

 

 

 

주요어: 혼합 정수계획법, 지속 정찰, 경로 계획, 다중 로봇, 협업 

학  번: 2012-20712 
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