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In this thesis, a novel geometric tracking controller for a fully actuated rigid body

system is proposed utilizing the geodesic distance and the parallel transport along the

geodesic. The choice of geodesic distance allows us to design a position error vector

which is exactly proportional to the actual size of the error. A geometric controller

based on the previous choice is investigated, especially for the case of SO(3). Nu-

merical simulation is carried out using the state-of-the-art Lie group integrator which

preserves Lie group structure so that produces a very accurate results. Simulation

results are compared among three different choice of configuration error function.
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Chapter 1

Introduction

Acrobatic maneuver of a rotorcraft requires a highly robust and very fast controller

that can handle sudden change of large position error as well as large velocity error.

Apparent disadvantages are observed in case of the local coordinate representation

based approach, such as using Euler angles or quarternions, because some problems

are merely induced by the choice of a coordinate and are not inherent problems of

the given situation. [7]

Many authors actively investigated the geometric control which is to design a

stabilizer of tracking controller directly on the configuration manifold avoiding the

arbitrary choice of any coordinate system.[1, 12]

Some authors[4] show very thorough and systematic approach based on the differ-

ential geometry and Lie group theory. A general Lyapunov based geometric controller

is proposed on the condition that one can find a compatible pair of a configuration

error on the given manifold and the transport map of the tangent vectors. If such pair

can be found, it is shown that stabilizes exponentially or that tracks the reference tra-

jectory asymtotically. However, they showed some examples of possible compatible

pairs.

We start to think about the choice of these pairs with the geodesic distance of the

given manifold of Lie group and the parallel transport along it. Trivial R3 case and

important SO(3) case will be investigated.
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Chapter 2

Mathematical Preliminaries

In this chapter, we briefly review some mathematical concepts that are essential in

the following chapters. For more detailed exposition of Riemannian Geometry, we

refer to [2, 6]. For an introduction to Lie group, we refer to [14, 8].

2.1 Riemannian Geometry

A smooth manifold M with a Riemannian metric G defined on it is said to be a

Riemannian manifold (M,G). A Ck-Riemannian metric on M is a class Ck(0, 2)-

tensor field G on M

G(x) : TxM × TxM → R

having the property that G(x) is an inner product on TxM . For x ∈ M , we have

associated isomorphisms

G[(x) : TxM → T ∗xM

G](x) : T ∗xM → TxM,

and the inner product of covectors on T ∗xM

G−1(x) : T ∗xM × T ∗xM → R

2



is defined by

G−1(αx, βx) := G(G](αx),G](βx)).

An affine connection ∇ on M is a smooth map that assigns to the pair (X, Y ) of

smooth vector fields X and Y a vector field ∇XY such that the following properties

are satisfied:

(i) (X, Y ) 7→ ∇XY is R-bilinear,

(ii) ∇fXY = f∇XY for all function f on M ,

(iii) ∇XfY = f∇XY + (LXf)Y for all function f on M , where LXf is the Lie

derivative of f .

Using the Christoffel symbols Γkij for an affine connection, the coordinate formula for

the covariant derivative of Y with respect to X is

∇XY = (
∂Y k

∂xi
X i + ΓkijX

iY j)
∂

∂xk
. (2.1)

A certain affine connection is of more interest. The Levi-Civita affine connection
G
∇ is an affine connection uniquely determined by a given Riemmanian metric G such

that

(i)
G
∇ is a metric connection, or ∇G = 0,

(ii)
G
∇XY −

G
∇YX = [X, Y ] for all vector fields X, Y ∈ TM .

2.2 Lie Group

A Lie group (G, ?) is a topological group that is also a manifold, in which the group

and the inverse operations are smooth. A Lie algebra g is R-vector space endowed

with a bilinear operation [·, ·].

3



The group structure of a Lie group induces the left translation map such that

Lg : G→ G

h 7→ g ? h,

and for g ∈ G, the natural isomorphism between tangent spaces is given by TeLg :

TeG → TgG. The right translation map Rg : G → G and its tangent map TeRg :

TeG→ TgG are also defined in the similar manner.

From the left translation map, we define the left-invariant vector field, a left-

invariant Riemannian metric, and a left-invariant affine connection.

A vector field is left-invariant if L∗gX(h) = X(Lgh) is equal to ThLg(X(h)).

A left-invariant Riemmanian metric G on a Lie group (G, ?) satisfies

G(g) · (Xg, Yg) = G(h ? g) · (TgLh(Xg), TgLh(Yg)).

Moreover, if we define an inner product I on g a smooth left-invarint Riemanian

metric GI on G can be expressed in terms of the inner product I on g as follows:

GI(g) · (Xg, Yg) = I(TgLg−1(Xg), TgLg−1(Yg)).

A left-invariant affine connection on G satisfies L∗g(∇XY ) = ∇L∗gXL
∗
gY .

Similarly, the right tranlation map gives the right-invariant vector field, a right-

invariant Riemannian metric and a right-invariant affine connection. Finally, if a Rie-

mannian metric is both left- and right-invariant, it is called bi-invariant Riemannian

metric; if an affine connection is as such, it is called a bi-invariant affine connection.

An exponential map is a map from the given Lie algebra g to its associated Lie

group G such that

exp : g→ G

ξ 7→ exp(ξ) = ΦξL
1 (e),
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where ξL is the left-invariant vector field whose value is ξ at the identity elemnt e

of G and ΦξL
1 (e) is the flow from the identity element e of G along the vector field

ξL. The image of a smoothe group homomorphism ρ : R → G is the integral curve

ρ(t) = exp(tξ) = ΦξL
t (e) called a one-parameter subgroup of G.

2.3 Geodesics and Parallel Transport

If an affine connection is defined, two important definitions naturally follow; geodesics

and the parallel transport.

2.3.1 Geodesics and Parallel Transport on a Riemannian Man-

ifold

A geodesic of an affine connection, especially of a Levi-Civita affine coonection for

our use, on M is a curve γ : I 7→M satisfyling

G
∇γ′(t)γ

′(t) = 0. (2.2)

The parallel transport is the map τ γt0,t : Tγ(t0)M 7→ Tγ(t)M that moves a vector

X(t0) ∈ Tγ(t0)M to the vector X(t) ∈ Tγ(t)M in a parallel way. Given a curve

γ(t) ∈M , a vector field X(t) ∈ Tγ(t) is said to be parallel if

G
∇γ′(t)X(t) = 0. (2.3)

For example, on a Riemannian manifold (R3,G) the geodesic equation (2.2) can

be written in coordinates according to (2.1) as

γ̈ = 0, γ ∈ R3.

The solution to this second order differential equation with the boundary condition

γ(t0) = x0 and γ(tf ) = xf ∈ R3 is simply a straight line connecting x0 and xf .

5



The parallel transport equation (2.3) along a geodesic γ(t) can be written in

coordinates as

Ẋ i(t) = 0 where i ∈ {1, 2, 3}

X i(0) = X i
0.

The solution to the systems of first order differential equations is a constant vector

field on R3.

2.3.2 Geodesic and Parallel Transport on a Lie Group

To obtain the geodeics on a general Riemannian manifold, we often have to solve the

system of the second order differential equations with non-constant coeffients, which

is not at all an easy task. After solved for the geodesic, to get the parallel transport

requires to solve another system of the first order differential equations.

However, this can be greatly simplified if we know the given Riemannian manifold

is actually a symmetric one. For example, every compact connected Lie group G can

be proved to be a symmetric space with respect to the bi-invariant metric. Moreover,

a geodesic connecting any two points on a compact, connected Lie group G with bi-

invariant metric is either the one-parameter subgroup or the left(or right) translation

of these one-parameter subgroups.[2]

If G is the special orthogonal group SO(3), then the bi-invariant metric is always

defined by the Frobenious inner product of its Lie algebra so(3) as

G(g) · (X(g), Y (g)) = G(e) · (TgLg−1X(g), TgLg−1Y (g))

= G(e) · (X(e), Y (e))

:= trace(Y (e)TX(e)).

It is trivial to show Riemannian metric defined as above is bi-invariant.

Hence, the geodesic connecting g and gref ∈ SO(3) is obtained without solving

6



any differential equation.

γ(t) = grefexp(tξ) where ξ = log(gTrefg). (2.4)

The parallel transport of a tangent vector τ γgref ,g : Tgref → Tg is shown to be

τ γgref ,g( ˙gref ) = TL(exp(
ξ

2
))TR(exp(

ξ

2
))TLg−1

ref
( ˙gref ). (2.5)

If the bi-invariant metric cannot be defined on a Lie group G but the defined Rie-

mannian affine connection is either + or − Cartan-Schouten connections, the geodesic

and the one-parameter subgroup on G still coincides and the parallel transport in

these cases become[8]

τ γgref ,g( ˙gref ) = TLg−1
refg

( ˙gref ), if left(or +)-Cartan (2.6)

τ γgref ,g( ˙gref ) = TRg−1
refg

( ˙gref ). if right(or -)-Cartan. (2.7)

Matrix exponetial is defined as

expA =
+∞
Σ
k=0

Ak

k!
.

Especially for SO(3), matrix exponential can be written as

exp ω̂ =

I3 ω = 0,

I3 +
sin‖ω‖R3
‖ω‖R3

ω̂ +
1−cos‖ω‖R3
‖ω‖R3

ω̂2 ω 6= 0

(2.8)

where ω ∈ R3, and ·∨ : so(3)→ R3 is the inverse map of ·∧ : R3 → so(3) by ω̂y = ω×y

for all ω, y ∈ R3. Equation (2.8) is referred to as Rodrigues’s Formula.

Matrix logarithm is define as the inverse map of the matrix exponential.

log : {R ∈ SO(3)|trace(R) 6= −1} → {ω̂ ∈ so(3)|ω ∈ R3, ‖ ω ‖R3< π}

7



is given by[4]

log(R) =

03 R = I3,

φ(R)
2 sin(φ(R))

(R−RT ) R 6= I3,

where φ(R) = arccos(
1

2
(tr(R)− 1)).

8



Chapter 3

Geometric control using Geodesics

and Parallel Transport

In this chapter, we quickly review equations of motion on a general Riemannian

manifold (M,G) and on a connected compact Lie group (G, ?). Especially, the cases

of R3 and SO(3) are considered, respectively. Then, we follow the argument of [4] to

design a geometric tracking controller for each case. A novel pair of error function

and transport map (Ψ, T ) using the geodesic distance and the parallel transport is

proposed to design the geometric tracking controller.

3.1 Equations of Motion

Applying the Lagrange-d’Alembert Principle on Riemannian manifolds to a fully ac-

tuated C∞-simple mechanical control system Σ = (M,G, V = 0,F), where G is a

Riemannian metric which is equal to the twice of the system’s kinetic energy, V is a

potential field and F is a collection of allowed control forces, the equations of motion

along a trajectory γ(t) ∈M becomes

G
∇γ′(t)γ

′(t) = G](F (t, γ′(t))). (3.1)

Note that this equations of motion is written in terms of spatial frame.

9



If given differentiable manifold is actually a Lie group and if there exists a bi-

invariant metric induced by the inner product on the associated Lie algebra I, then

the fully-actuated simple mechanical control system on a Lie group Σ = (G, I,F),

the equations of motion along a trajectory γ(t) becomes

γ′(t) = TeLγ(t)(v(t)) (3.2)

v′(t)− I](ad∗v(t) I[(v(t))) = I](f(t, γ(t), v(t))),

where ad is a linear map by adξ : V → V by adξη = [ξ, η].

3.2 Geometric tracking control on R3

In this section, we apply a novel error function and transport map (Ψ, T ) to the trivial

case of R3 to understand what needs to be done for more complicated examples.

3.2.1 Error function by geodesic distance

First of all, we define a Riemannian metric to conform the requirement of 3.1. If the

system trajectory can be written in a coordinate system as γt = (x1(t), x2(t), x3(t)) ∈

R3, and if m is the mass of the given system, define

G := mGR3 =


m

m

m


so that

1

2
G(γ(t)) · (γ′(t), γ′(t)) = Kinetic Energy

G] =
1

m
I3×3

10



and

G
Γ
k

ij =
1

2
Gkl(

∂Gil

∂xi
+
∂Gjl

∂xi
− ∂Gij

∂xl
), where i, j, k, l ∈ {1, 2, 3}

≡ 0 since G is constant.

Therefore, the equation (3.1) becomes

G
∇γ′(t)γ

′(t) = γ′′(t) =
1

m
F (γ(t), γ′(t)) (3.3)

Next, from the result of section 2.3.1 define the geodesic distance between q1, q2 ∈

R3 where the geodesic connecting q1 and q2 is denoted by γ(t) with γ(0) = q1, and

γ(1) = q2:

dG(q1, q2) = inf

∫ 1

0

√
G(γ′, γ′) dt

= inf

∫ 1

0

√
dt

=‖ γ(tf )− γ(t0) ‖mGR3
.

Then, we propose the natural configuration error function[4] for a fully actuated

C∞-simple mechanical control system Σ is

Ψ(γ(t), γref (t)) :=
1

2
{dG(·., ·)}2. (3.4)

3.2.2 Transport map by parallel transport

Differentiating 3.4 gives

d

dt
Ψ(γ, γref ) =< d1Ψ(γ, γref );

dγ

dt
> + < d2Ψ(γ, γref );

dγref
dt

>

=< γ(t)− γref (t);
dγ

dt
> + < −γ(t) + γref (t);

dγref
dt

>

11



=< γ(t)− γref (t);
dγ

dt
> + < −(I3×3)∗(γ(t)− γref (t));

dγref
dt

> (3.5)

=< d1Ψ(γ, γref );
dγ

dt
> + < −(T )∗d1Ψ(γ, γref );

dγref
dt

>

=< d1Ψ(γ, γref );
dγ

dt
> + < d1Ψ(γ, γref );−(T )

dγref
dt

>

=< d1Ψ(γ, γref );
dγ

dt
− (T )

dγref
dt

>

=< γ(t)− γref (t); γ′(t)− γ′ref (t) >

Hence, from the compatibility condition of the pair (Ψ, T )[4],

d2Ψ(·, ·) = −(T )∗d1Ψ(·, ·)

holds if we pick the transport map T ≡ I3×3, which, in turn, implies that the transport

map is actually the parallel transport in R3 according to the result of section 2.3.1.

Also, we make an observation that by differentiating the compatible (Ψ, T ) pair, we

obtained one covector d1Ψ(·, ·) to represent a position error vector (by the sharp map)

and one vector dγ
dt
− (T )

dγref
dt

to represent a velocity error vector, both of which agrees

with the conventional choice of errors. Later, we will use analogy to this trivial

example when choosing both position and velocity error vectors for some complex

systems.

3.2.3 Tracking controller

The coincidence of our choice of the square of the geodesic distance and the parallel

transport along the geodesic with the configuration error and transport map, respec-

tively, makes our geometric tracking controller be the same with normal Lyapunov

based nonlinear controller for the same system. Hence, we omit the detailed design

of the geometric tracking controller on R3.

12



3.3 Geometric tracking control on SO(3)

3.3.1 Error function by geodesic distance

Given Σ = (G, I,F) with G = SO(3) and I = αI3×3 α ∈ R, the equations of motion

are

Ṙ(t) = R(t)Ω̂(t)

Ω̇(t) = [I]−1([I]Ω(t)× Ω(t)) + [I]−1f

From section 2.3.2, SO(3) admits a bi-invariant metric and therefore the geodeisc

coincides with the one parameter subgroup. Hence, the geodesic distance can be

defined as follows:

dist(R,Rref ) =

∫ 1

0

√
GI(γ(t))(γ′(t), γ′(t)) dt

=

∫ 1

0

√
I(TγLγ−1γ′(t), TγLγ−1γ′(t)) dt

=

∫ 1

0

√
I(γ−1γ′, γ−1γ′)

=

∫ 1

0

√
I(γ−1γ log(RT

refR), γ−1γ log(RT
refR))

=

∫ 1

0

√
I(log(RT

refR), log(RT
refR))

=
√

I(log(RT
refR), log(RT

refR))

=

√
α

1

2
tr(log(RT

refR)T log(RT
refR))

=
√
α ‖ (log(RT

refR))∨ ‖2
R3 .

So we design a novel tracking error function:

Ψ(R,Rref ) =
1

2
(dist(R,Rref ))2 =

α

2
(‖ θ − θref ‖)2

13



3.3.2 Transport map by parallel transport

By differentiating the proposed tracking error function, we get

d

dt
Ψ(R,Rref ) =< α(log(RT

refR))∨T ;
d

dt
(log(RT

refR))∨ >

=< α(log(RT
refR))∨T ; v − AdRT

refR
vref >

=< ((TeLRT )∗α(log(RT
refR))∨)T ;TeLR(v − AdRT

refR
vref ) >

=< d1Ψ(R,Rref );RΩ̂e,r >

Hence we get a new error vector

d1Ψ(R,Rref ) = α(R log(RT
refR))∨)T

And a velocity error vector

Ω̂e = TeLR(v − AdRT
refR

vref )

= TeLR(Ade v − AdRT
refR

vref )

Observe that the velocity vector is the same with previous work while position

error vector differes.[4, 10] Also, observe that htis velocity vector is not a parallel

transport for the bi-invariant metric, which is disappointing, but is indeed a parallel

transport for the right-Cartan map. Futher investigation on this matter is required.

3.3.3 Tracking controller

Energy function which is used for a Lyapunov candidate function is

Ecl,r(t) = Ψ(R,Rref ) +
1

2
G(R)(RΩ̂e,r, RΩ̂e,r)

= Ψ(R,Rref ) +
1

2
I(Ω̂e,r, Ω̂e,r).

14



Then, the new geometric controller has feedforward and feedbackward terms as

follows

fFD = −kP · d1Ψ(R,Rref )− kD · Ωe,r

fFF = I[(
so(3)

∇ Ω(RTRrefΩref ) + (RTRrefΩref )× Ω +RTRref Ω̇ref ).

We refere to the Appendix for the stability proof of this controller.
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Chapter 4

Numerical Simulations

4.1 Assumptions and Simulation Environment

Numerical simulations are carried out for the case of the fully-actuated rigid body

system on SO(3). We choose the moment of inertia of the system to be as a Ic =

I3×3 kg m
2.

Novel geometric controller is tested alongside previously propsed [4] and [10], both

of which share the same controller structure, for comparison. All controller gains for

each case are set to the unit number.

General purpose numerical integrator does not preserve the special structure of

SO(3) and usually requires combersome post-processing at each step. Recently,

Structure-preserving Lie group integrators have been actively developed using the

concept of the variational integrators.[11, 3, 5] In this paper, we use a slightly mod-

ified version of the state-of-the-art Lie group integrator[9] to obtain more accurate

numerical results. Program code for the new Lie group integrator is thorouly inspected

and hevily tested for the integrity of result before the actual numerical simulations

are carried out.

4.2 Simulation Results

We consider two cases:

16



(i) tracking on SO(3) with

(a) the reference trajectory with a constant angular velocity around z-axis,

(b) the almost largest possible initial attitude error,

(c) zero initial velocity error.

The initial conditions of the system are

R(0) = exp([0;
π

4
; 0.99π]), Ω(0) = [0; 0; 0] rad/sec.

The reference attitude and the reference angular velocity are

Rref (0) = I3×3, Ω(t) = [0; 0;
2

10
π] rad/sec.

(ii) tracking on SO(3) with

(a) the reference trajectory with a constant angular velocity around z-axis,

(b) the almost largest possible initial attitude error,

(c) very large initial velocity error in the reverse direction of the velocity of the

reference trajectory.

The initial conditions of the system are

R(0) = exp([0;
π

4
; 0.99π]), Ω(0) = [0;−5;−5] rad/sec.

The reference attitude and the reference angular velocity are

Rref (0) = I3×3, Ω(t) = [0; 0;
2

10
π] rad/sec.
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4.2.1 Large initial attitude error
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Figure 4-1: Snapshots of animiation. once per second
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Figure 4-2:
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4.2.2 Large initial attitude error with large velocity error
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Figure 4-3: Snapshots of animiation. once per second
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Figure 4-4:
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Chapter 5

Conclusion

In this thesis, we proposed a novel pair of the configuration error and transport map,

which are the pair of the square of the geodesic distance and the parallal transport.

Our configuration error function is proved to be a Morse Function.[13] From this

choice, a new position error vector on SO(3) is found. The norm of this position

error vector is, by design, exactly proportional to the actual angular error measured

by the instantaneous screw motion connecting current attitude and current reference

attitude. The geometric controller based on our configuration error and transport

map is shown to be almost globally exponentially stable as well as to be able to track

reference trajectory almost globally asymtotically.

Numerical simulation is carried out by the state-of-the-art Lie group integrator.

Our controller estimated configuration error exactly while others’ [?, 4] were nearly

proportional or even inversely proportional in some range. Therefore, our controller

showed the fastest response while the error between the staten and the reference is

relatively large. Interestingly enough, however, the settling time of the three com-

pared controller is very similar. Hence, further investigation on the convergence rate

is required. Also, we observed that all the compared controllers exert force in the

opposite direction of the desired control direction at some points. The time stamps of

this strange behavior is almost identical among the controllers considered. Intuitively,

this phenomenon tells that our estimate of velocity error vector is wrong somehow

because all the three controllers differ by the choice of configuration functions and
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their position error vector but at, the same time, share the exactly same velocity error

vector. This also needs to be added to the long list of future work.

Our controller is based on the existence of the geodesic distance and in turn the

existence of bi-invariant metric. Some Lie groups, such as Special Euclidean Group

or SE(3), does not have this property. Hence, extention to the current result is

necessary.
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