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Abstract

A distance is the degree of model dissimilarity and it 1is
important for effective model selection. This paper suggests a
cross spatial pattern to find permeability distribution from an
injector to a producer. The distance is defined as one minus
correlation coefficient of permeability data obtained by the
spatial pattern.

Using multi—dimensional scaling, initial 400 reservoir
models are projected on two dimensions based on the distance.
By K—medoids clustering, they are classified into 10 groups.
One representative medoid is chosen with the least difference
in productions from the reference field. Then, 100 models are
selected around the medoid for ensemble smoother (ES).

The proposed distance can achieve improved reservoir
characterization and history matching combined with ES. Also,
this method helps to reduce uncertainty ranges of future oil and
water productions, and decreases total simulation time by 75%

with proper sampling of good 100 models.

Keywords: Distance, Ensemble smoother, Uncertainty quantification

Student Number: 2014-22728
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1. Introduction

As oil moves through reservoir rocks, the permeability is one of
the crucial factors to produce oil. The most precise way to
know the permeability distribution is to get many sample data.
However, it is uneconomic in time and cost aspects. Instead,
there are multiple models with equivalent probability generated
using limited data available. These models are called ensemble
members.

Ensemble members are created using limited data in
exploration or early production stages. Thus, the uncertainty of
ensemble is too high to predict reservoir properties correctly.
To improve prediction, ensemble members are often applied to
various reservoir characterization methods. This process is
called ensemble—based reservoir characterization. Many
studies have suggested ensemble—based reservoir
characterization methods. There are two representative
methods.

Ensemble Kalman filter (EnKF) is one of the popular
methods. There are typical steps for EnKF (Fig. 1.1). EnKF was
offered by Evensen(1994) to ocean dynamics for the first time.
Neevdal et al.(2002) used EnKF for reservoir characterization,

and provided that EnKF estimates reservoir permeability



distribution reliably.

Evensen et al.(2007) proved that EnKF could be ineffective
if it was applied to reservoir parameters with non—Gaussian
distributions such as channel field. Therefore, Shin et al.(2010)
proposed a non—parametric approach for EnKF to be applied to
these fields.

With less than 100 ensembles, EnKF was revealed to give
unreliable results with filter divergence problem (Wen and Chen,
2007). Thus, Jung and Choe(2012) suggested a streamline—
assisted EnKF for covariance localization to get accurate
results. This method estimated permeability field without
overshooting or filter divergence. Also, Lee et al.(2013)
grouped initial channel field models using Hausdorff distance,
and applied a clustered covariance to improve EnKF results.

Although, many researchers have studied EnKF to solve
typical problems of 1it, these methods are incapable of
overcoming long simulation time in EnKF. That’s because EnKF
requires hundreds of ensembles to give trustworthy results. To
avoid this problem, ensemble smoother (ES) was introduced.

ES is also one of the well-known ensemble—based
reservoir characterization methods. Fig. 1.2 shows ES
procedures. Skjervheim et al.(2011) first applied ES for history
matching. They suggested that ES showed analogous results to

EnKF provided that initial conditions had small perturbations.



Gervais et al.(2012) proposed repetition of ES twice
showing similar results with EnKF in less simulation time. Lee
et al.(2013) provided ES with a clustered covariance in
channelized fields. With this method, they reduced uncertainty
in 1initial ensembles and managed overshooting or filter
divergence problems due to poor ensembles. By doing this, they
could achieve channel reservoir characterization with only 5%
simulation time of EnKF.

ES can produce reliable results with good initial models in
less simulation time compared with EnKF. However, if initial
models are not proper, the outcome from ES can be inaccurate.
Thus, distance—based methods can improve this problem.

A distance represents dissimilarity between two ensemble
members. By a distance—based sampling scheme, it is possible
to choose more similar ensemble to a reference field and to
reduce high uncertainty in ensemble. Combined with reservoir
characterization methods, a sampling scheme can contribute to

enhanced reservoir characterization and history matching.
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Fig. 1.1 — EnKF process(Kang, 2016).
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Fig. 1.2 — ES process(Kang, 2016).



Many distances have been suggested to select good
reservoir models. For example, Dubuisson and Jain(1994)
combined 6 distance measures via 4 ways, and compared the
results. Suzuki and Caers(2008) measured the dissimilarity
between geologic models with channel by Hausdorff distance.
However, these distances are calculated using entire
permeability data of ensembles. If they are applied to large—
sized fields, the calculation can be encumbered. Kang et
al.(2016) used singular value decomposition(SVD) and
improved ES by sampling better initial ensembles. Nevertheless,
it is difficult to understand the principle of SVD intuitively.

Scheidt and Caers(2009a) defined a distance as a
difference of field oil rates at two time points. Also, Scheidt and
Caers(2009b) obtained a distance matrix by considering
cumulative oil and water productions during total production
period. Jin et al.(2011) defined a distance as difference of
injected stream between ensembles. Lee et al.(2015) proposed
a distance according to a difference of oil sand percentage in
rectangles expanded from an injector. Park et al.(2015)
analyzed travel time of streamlines in ensembles and decided
the difference of generalized travel time as a distance.

These suggested distances require model simulation of all
initial ensembles before sampling, which causes excessive time.

Therefore, it is necessary to define an effective distance



without initial simulation for all ensemble members.

In this paper, a distance 1s defined as a difference in
correlation coefficient between two reservoir models by
applying two spatial patterns. These patterns can consider
representative permeability distributions in reservoir models.
According to the distance, proper models are selected as new

initial models for enhanced ES results.



2. Methodologies

2.1 Definition of a distance from spatial patterns

Permeability data around wells are important to predict
reservoir behaviors. Therefore, two spatial patterns are
suggested to consider key permeability data in typical nine spot
well locations. The first pattern, called 1—line case, consists of
21 by 1 permeability data at the center of x and y
directions (Fig. 2.1a). The second pattern, called cross case,
consists of the 1—line plus two diagonal directions(Fig. 2.1b).
From the comparison of these two cases, it is plausible to
analyze whether it is good or not to consider permeability data
from the injector to all producers.

To compare difference of each ensemble, correlation
coefficients are computed between permeability data acquired
from the two spatial patterns. The Eq. for correlation
coefficient, Corr (A, B) is Eq. 2.1. Then, the distance comes out
as L2—norm of the correlation coefficient subtracted from 1 (Eq.

2.2).

_ > (4;—A)(B;—B)
Corr(4,B) = JZ(4;-A)2/3(B;~B)? 21)




Distance(A,B) = /(1 — Corr(A, B))? (2.2)

where, A; and B; are the i—th data obtained from spatial patterns
of A and B ensembles, respectively.

Fig. 2.2 1s an example of the distance based sampling
scheme procedure in this study. By the simple 1-line spatial
pattern, the distance between two models can be calculated.
After computing all the distances among 4 models shown, they
are presented on 2D—plane to illustrate reservoir models as
points. Then, clustering is conducted to divide them into several
groups. Finally, models are chosen around a group with the

least production difference from a reference field.
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Fig. 2.1 — Two spatial patterns suggested in this study.

1. Calculation of distance

Represenmllve
model

Group A Gruup B

Correlation coefficient = 0.6
Distance =1-0.6 =0.4 /

Group A Group B )

Fig. 2.2 — Distance based sampling scheme procedure.

;ﬂ L

” a:ﬂ T



2.2 Multi—dimensional scaling

Multi—dimensional scaling(MDS) is one of methods to project
data on low dimension according to dissimilarity between data.
If the dissimilarity is high, they are located on MDS space far
away each other (Fig. 2.3). On the other hand, they are located
closely when the dissimilarity is low. Before using MDS, it is
crucial to define a dissimilarity called distance, and 4 terms are

necessary as below (Jin, 2011).

— Negative value cannot be a distance between two data.

— The distance between one point and itself must be zero,
and there is no zero between two different data points.

— The distance between data x and y is same as the
distance between data y and x.

— In a triangle composed of 3 points on space, the sum of

two sides is always greater than or equal to the third.

10
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Fig. 2.3 — The depiction of data from 3D-space on 2D-plane.
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The best advantage of MDS is that it enables people to
present the relationship between two data on two or three
dimensions (3D). Also, the relationship between data points on
low—dimension can be easily visualized and analyzed intuitively
by MDS. Thus, MDS can be helpful to categorize data based on
similar characteristics and to examine data clustering results
visually.

The MDS principle has been widely applied to many fields
because it uses the distance, not the data directly. Sometimes,
people might get results from an alternative model, not the data
itself. In this case, they can compare results from alternative
models and investigate relationships between data using MDS.

By MDS, it is feasible to find new dimension where data
exists. Also, if one knows only dissimilarity between data, data
analysis like a clustering is still achievable. That’s because the
dimension and coordinates of data are obtainable. Generally,
MDS can be conducted using linear algebraic methods without

iterative algorithm. The procedure is explained as below.

— Square each element of distance matrix (Eq. 2.3).

P® = [p?] 2.3)

12



Generate a centering matrix J using Eq. 2.4 as below.

J=1-:11 (24)

where, n means the total number of objects, and I is the

unit matrix. Also, 1 is the column—vector of n ones.

By the matrix J, the matrix B can be computed as in Eq.

2.5.

B=—2JP® (2.5)
Calculate the m largest eigenvalues, 4;, -, 4, and
corresponsive eigenvectors, e;, v, e,. The m means

the number of low dimension.
A coordinate matrix X can be explained using Eq. 2.6 to

present n objects on m—dimensional space.

X = E,AY? (2.6)

m

where, E, means the matrix of m eigenvectors and Ay,
1s the diagonal matrix composed of m eigenvalues from

B.

13



2.3 K—medoids clustering

Clustering 1s used to find out structures among data and to
divide the data into several groups. People can understand the
characteristics of data easily by clustering. Therefore, it is
widely employed in classification, prediction, or inducement of
control rules in pattern recognition, image treatment, data—
mining, and so on.

K—medoids clustering is one of widely applied clustering
methods. It assigns data which have N-—attributes on N-—
dimensional locations, and divides them into K-—clusters to
understand characteristics of data. The location of medoids is
significant because data are assigned to the closest cluster
according to the distance from each medoid. The procedure of
K—medoids is shown in Fig. 2.4.

First, select K data randomly for K clusters, and designate
them as medoids of each group. Then, include the data closest
to a medoid into the medoid’s group by measuring linear
distance. After that, decide new medoids based on the average
of data from each dimension as the third step. The linear
distances between data and medoids are estimated, and the data

are classified as new group if the sum of linear distances 1is

14



smaller than the prior one. The procedure from the second to
third is repeated until the locations of medoids are not changed
as the fourth step.

The initial setup for medoid has huge influence on
clustering results. Thus, appropriate repetition is essential to
get the clustering results with the least linear distance between

data and medoid.

15
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Fig. 2.4 — K-medoids clustering procedure.
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2.4 Ensemble smoother

To be applied to ES, the i—th ensemble is expressed by state

vector, y; as in Eq. 2.7.

,i=1,N, 2.7)

where, N, is the total number of ensemble applied to ES, m® is
the static parameters, m? is the dynamic parameters, and d is
the observed data. At first, ES forecasts observed data of initial
ensemble members by forward simulation. Next, ES assimilates
initial ensemble members using entire accessible data and
Kalman gain, K. Kalman gain can be calculated by minimizing
the estimated error covariance, Cy. Egs. 2.8 and 2.9 show

specific calculation in the assimilation step.

yi =y} + K(d; — Hy}) (2.8)
K = CPHT(HCYHT + Ccp)~t (2.9)

where, the superscripts a and p mean the assimilation step and
the priori state vector, respectively. Also, H 1s the
measurement operator. Cp indicates the measurement error

covariance.

17



3. Results and discussions

In this study, initial 400 ensemble members are generated by
sequential Gaussian simulation using known permeability data in
9 wells. The location of these wells is on 21 by 21 grids as a
typical nine spot spacing. After proper ensemble selection by
the distance—based sampling scheme, ES is applied to them.
The assimilation period is 500 days, and the total production
time 1s 1,000 days. For showing versatility of this method, two
types of fields are used. More detailed simulation setup is

shown in Table 3.1.

Table 3.1 — Reservoir and simulation conditions

Well location,
grid coordinate

(2, 2),(2, 11),(2, 20),(11, 2),(11, 11),
(11, 20),(20, 2),(20, 11),(20, 20)

Known data at well locations of

field type 1, In(md) 54,33,52,31,32,31,32,33,3.0

Known data at well locations of

field type 2, In(md) 3.1,35,5.0,36,45,35,51,34,30

Assimilation time, days

100, 200, 300, 400, 500

Total simulation period, days 1,000
Observed data types Well oil production rates

Porosity, fraction 0.20

Initial water saturation, fraction 0.25

Initial reservoir pressure, psia 2,000

18




3.1 Field with high permeability at the side corners

This field shows high permeability zone at the left side(case
I). Figs. 3.1 and 3.2 show the reference field and averaged
initial 400 ensemble members to illustrate permeability
distributions. Most of permeabilities are low except for the
corners of the left side. For the initial 400 ensemble members,
Figs. 3.3 and 3.4 indicate high uncertainty in productions from
the members.

The red lines are productions from the reference field, and
the blue lines are averaged productions of the initial 400
ensemble. The blue lines do not follow the trend of the red lines
properly. The gray lines are productions from each ensemble
member. The band width of these gray lines is too wide to
predict the production trend of the reference field.

Before checking out selected ensemble from spatial
patterns, randomly selected 50 ensemble members are
presented in Fig. 3.5. This case will be called random case.
There are three ensemble members from the random case (Fig.
3.6). They are randomly selected to look into the permeability
distribution of ensemble members, which are affiliated to the
random case. The high permeability connection between the

injector and producers at the left corner is not considered

19



properly in these ensemble members.

By sampling scheme using the 1-line, Fig. 3.7 illustrates
the initial 400 ensemble members on 2D-—plane. Also, 50
ensemble members are selected for a new initial ensemble
applied to ES. The average of the selected 50 ensemble
members is presented in Fig. 3.8. This case does not consider
the connectivity of high permeability zone at the left corner like
the random case.

Fig. 3.9 displays three randomly selected ensemble
members which belong to the 1-line case. Even though the
connectivity of high permeability appears in the third one, the
other ensemble members seem not to have the similar
permeability distribution of the reference field.

As same as the 1-line case, 50 ensemble members are
presented on 2D—plane, which are chosen among the initial 400
ensemble members using the cross pattern (Fig. 3.10). Fig.
3.11 gives averaged permeability distribution of the selected 50
ensemble members and its histogram from the cross case.
Unlike the other cases, the permeability distribution shows
connectivity from the left corner to the injector. Also, Fig. 3.12
presents three ensemble members randomly selected from the
chosen 50 ensemble of the cross case. Compared with the other
cases, the connection in high permeability zone stands out

among these ensemble members. That's because the cross case

20



can capture the permeability difference between ensemble
members in diagonal directions.

To analyze productions, box plots on cumulative oil and
water productions are drawn as in Fig. 3.13. The horizontal red
lines mean cumulative oil and water productions from the
reference field. The box plots from the cross case are the
closest to the reference field in oil and water productions.
Because the 1-—line pattern can’t investigate high permeability
zone at corners, the box plots of this case do not include the
reference field between the first and third quartiles. The

random case also gives poor prediction for productions.

21
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(c) Third
Fig. 3.6 — Three examples of ensemble members from the random case.
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400 ensemble, random, 1-line, and cross cases before ESincase 1.
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Fig. 3.14 shows updated 400 ensemble members. The ES
results using the random case and two spatial patterns are
presented from Figs. 3.15 to 3.17. Because of many ensemble
members, the histogram of the 400 ensemble members follows
the permeability distribution trend stably. Also, the cross case
estimates the reference field well using just 50 ensemble
members.

Ensemble—based reservoir characterization typically
requires over 100 ensemble members for reliable results. Thus,
the random and 1—line cases show overshooting problem which
means that estimated permeability values are excessively
higher than those of the reference field. Therefore, the random
and 1—line cases are poor at sampling good ensemble members
compared with the cross case.

Also, Fig. 3.18 shows box plots for cumulative oil and water
productions after ES from all cases. The cross case gives
dependable results with better uncertainty assessment
compared with the other cases. Except for the 400 and cross
cases, there are filter divergence problems. Therefore, it is
difficult to predict future productions by the 1—line and random
cases.

The total simulation time is shown in Table 3.2. The cross
case can be conducted with over 80% time reduction compared

with the case using 400 ensemble members, and gives good
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reservoir characterization. The computer specs used in this
study are Intel R Core TM i5—3570 CPU @ 3.40 GHz and RAM
is 8.00 GB.
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Fig. 3.14 — Updated 400 ensemble members after ESincase I.

37 5



40
130
20
10

0

£ 200 -
=
g
Z 100 -
0 - T I T T |l

20 40 60 80 100 120 140 160 180 200 etc.
Permeability, mD

(b) Histogram of permeability
Fig. 3.15 — Updated 50 ensemble members from the random case

after ESincase 1.

38



20 50

40

15

30

10
20

10

0 0

0 5 10 15 20

() The average of updated permeability

300 -

(=]

=

=
1

Numbers
[}
=
=
1

20 40 60 80 100 120 140 160 180 200 etc.
Permeability, mD

=
|

(b) Histogram of permeability
Fig. 3.16 — Updated 50 ensemble members from the 1-line case

after ESincase 1.

39



40

30

20

10

0

0 5 10 15 20

[

=

=
|

Numbers
[}
=
=
1

0_ I —— T ——

20 40 60 80 100 120 140 160 180 200 etc.
Permeability, mD

(b) Histogram of permeability
Fig. 3.17 — Updated 50 ensemble members from the cross case

after ESincase 1.

40



25 i = _—
__If_ %
2
=)
e
©15¢
" =
0.5 - : -
Initial Random 1Line Cross
() Oil
x10° , ‘
—_—
2 +
— 1.5
M
f
2
1 ¥ el
E_‘ i
=+ ==
0.5 : : .
Initial Random 1Line Cross
(b) Water
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Table 3.2 — Total simulation time and its reduction for case 1.

Initial Random One-line Cross
Time, min 90 10 10 10
Reduced time, % - 88 88 88
42



3.2 Field with high permeability in diagonal

direction

Fig. 3.19 shows a reference field with high permeability
distribution in diagonal direction(case II). Fig. 3.20 presents
the averaged permeability distribution of the initial 400
ensemble and its histogram. Because the feature of high
permeability zone is evident in the middle of the field, the
connection of the zone can be easily identified in x and y
directions. Therefore, different from case I, the 1—line case
also discovers characteristics of permeability in ensemble
members. This time, total 100 ensemble members are chosen
to provide enough initial models for stable ES results.

Fig. 3.21 shows the random case composed of 100
ensemble members. To confirm opted ensemble members
individually, three ensemble members are chosen as shown in
Fig. 3.22. Although there might be ensemble comparable to the
reference field, the second and third ensemble members have
lower permeability values in the middle of the diagonal direction
compared with that of the reference field.

After sampling by MDS and K—medoids clustering, Fig.
3.23 illustrates the average of the selected 100 ensemble

members from the 1-—line case. The shape of high permeability
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zone appears like the reference field. Fig. 3.24 indicates the
randomly chosen three ensemble members from the 1-line
case. In the third one, there is a disconnection of high
permeability unlike the reference field.

Likewise, 100 ensemble members are selected by the cross
pattern and presented in Fig. 3.25. The shape of histogram is
almost the same as the 1—line case. However, in Fig. 3.26, the
high permeability zone is described better than that of the 1—
line by analysis of three of the selected members. That is
because the cross case can grasp out diagonal permeability
distributions. This sampling affects the production prediction as
well (Fig. 3.27). The productions from the cross case are
closest to the reference field. Also, the uncertainty range is

decreased a lot compared to the initial one.
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Fig. 3.22 — Three examples of ensemble members from the random case.
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Fig. 3.26 — Three examples of ensemble members from the cross case.
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ES is applied to the initial 400 and selected 100 ensemble
members from the random, 1—line, and cross cases. There are
updated 400 ensemble members(Fig. 3.28). Even though the
400 ensemble case uses a lot of ensemble members, the
updated result is not well—matched to the reference field. The
results using spatial patterns show more improved reservoir
characterization than the initial and random cases.

Compared with the poor results from the initial and random
cases (Figs. 3.28 and 3.29), the histograms from the 1—line and
cross cases are similar to that of the reference field (Figs. 3.30
and 3.31). Looking carefully, the cross case predicts the
reference field better than the 1-—line case in the high
permeability over 150 mD of its histogram.

Fig. 3.32 shows box plots of cumulative oil and water
productions after ES application. The cross case gives the best
results among all the cases. Although the 1-line case shows
decreased uncertainty range compared with the initial and
random cases, it is unreliable because of biased estimation on
water productions.

Therefore, it is apparent that the cross case works more
properly for the reservoir characterization than the other cases.
Table 3.3 shows comparison of total simulation time from all
the cases. By the cross cases with 100 ensemble members,

credible reservoir characterization is accomplished with almost
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75% simulation time reduction. The computer of this study is

Intel R Core TM i5-3570 CPU @ 3.40 GHz and RAM is 8.00 GB.
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Fig. 3.28 —Updated 400 ensemble members after ES in case II.
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Fig. 3.29 — Updated 100 ensemble members from the random case

after ESin case II.
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Table 3.3 — Total simulation time and its reduction for case 1I.

Initial Random One-line Cross
Time, min 90 22 22 22
Reduced time, % - 75 75 75
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4. Conclusions

Even though many distances are suggested for sampling
reservoir models, there are I1nefficiencies such as long
calculation time or data distortion. Therefore, a new distance is
proposed from the spatial pattern, which suitably considers
permeability distribution of a reservoir.

There are two spatial patterns, called 1-line and cross
cases, considering nine spot well locations. In this paper, the
sampling effects from them are compared before and after ES
application. The cross case gives the most improved results in
two different field cases. The proposed method has the

following advantages.

1. This study suggests a simple and fast sampling scheme
for good model selection. By applying the method, high
uncertainty of initial models can be reduced. Also,
approximate permeability distribution of the reference

field is found out.

2. The proposed distance using spatial pattern contributes

to reinforce ES. With the distance—based ES method,
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more precise reservoir characterization can be achieved

with only 10—30% simulation time of the typical ES.

3. The cross case is helpful for good model selection with
around 50 to 100 ensemble members. Also, if over 100
ensemble members are available, the cross case will

produce stable ES results.

4. In comparison with the 1-line case, the cross case
gives more reliable results. It shows the importance of
near—well permeability data progressed from the
injector to all producers when people define spatial
pattern. That is because the water flowing from the
injector pushes oil to producers, and affects reservoir

behaviors significantly.

5. The proposed method can be a practical guideline when
we try to estimate reservoir permeability distributions

using limited data.

The proposed distance—based ensemble smoother can
provide reliable basis on decision making, which is important in

oil production. Also, this method can be used to minimize
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problems in well development and operation by prediction of
reservoir behavior in the future.

Although this method is simple and fast for good reservoir
model selection, it can be only a guideline to define proper
spatial pattern. For a further study, it is important to define
spatial pattern which reflects permeability characteristics of
each field type. We find out flow pattern of reference field
approximately. Therefore, we can decide spatial pattern which

considers the flow pattern.
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