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Abstract 

 
A distance is the degree of model dissimilarity and it is 

important for effective model selection. This paper suggests a 

cross spatial pattern to find permeability distribution from an 

injector to a producer. The distance is defined as one minus 

correlation coefficient of permeability data obtained by the 

spatial pattern. 

Using multi-dimensional scaling, initial 400 reservoir 

models are projected on two dimensions based on the distance. 

By K-medoids clustering, they are classified into 10 groups. 

One representative medoid is chosen with the least difference 

in productions from the reference field. Then, 100 models are 

selected around the medoid for ensemble smoother(ES).  

The proposed distance can achieve improved reservoir 

characterization and history matching combined with ES. Also, 

this method helps to reduce uncertainty ranges of future oil and 

water productions, and decreases total simulation time by 75% 

with proper sampling of good 100 models. 
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1. Introduction 

 

As oil moves through reservoir rocks, the permeability is one of 

the crucial factors to produce oil. The most precise way to 

know the permeability distribution is to get many sample data. 

However, it is uneconomic in time and cost aspects. Instead, 

there are multiple models with equivalent probability generated 

using limited data available. These models are called ensemble 

members. 

Ensemble members are created using limited data in 

exploration or early production stages. Thus, the uncertainty of 

ensemble is too high to predict reservoir properties correctly. 

To improve prediction, ensemble members are often applied to 

various reservoir characterization methods. This process is 

called ensemble-based reservoir characterization. Many 

studies have suggested ensemble-based reservoir 

characterization methods. There are two representative 

methods. 

Ensemble Kalman filter(EnKF) is one of the popular 

methods. There are typical steps for EnKF(Fig. 1.1). EnKF was 

offered by Evensen(1994) to ocean dynamics for the first time. 

Nævdal et al.(2002) used EnKF for reservoir characterization, 

and provided that EnKF estimates reservoir permeability 
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distribution reliably.  

Evensen et al.(2007) proved that EnKF could be ineffective 

if it was applied to reservoir parameters with non-Gaussian 

distributions such as channel field. Therefore, Shin et al.(2010) 

proposed a non-parametric approach for EnKF to be applied to 

these fields.  

With less than 100 ensembles, EnKF was revealed to give 

unreliable results with filter divergence problem(Wen and Chen, 

2007). Thus, Jung and Choe(2012) suggested a streamline-

assisted EnKF for covariance localization to get accurate 

results. This method estimated permeability field without 

overshooting or filter divergence. Also, Lee et al.(2013) 

grouped initial channel field models using Hausdorff distance, 

and applied a clustered covariance to improve EnKF results. 

Although, many researchers have studied EnKF to solve 

typical problems of it, these methods are incapable of 

overcoming long simulation time in EnKF. That’s because EnKF 

requires hundreds of ensembles to give trustworthy results. To 

avoid this problem, ensemble smoother(ES) was introduced. 

ES is also one of the well-known ensemble-based 

reservoir characterization methods. Fig. 1.2 shows ES 

procedures. Skjervheim et al.(2011) first applied ES for history 

matching. They suggested that ES showed analogous results to 

EnKF provided that initial conditions had small perturbations.  
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Gervais et al.(2012) proposed repetition of ES twice 

showing similar results with EnKF in less simulation time. Lee 

et al.(2013) provided ES with a clustered covariance in 

channelized fields. With this method, they reduced uncertainty 

in initial ensembles and managed overshooting or filter 

divergence problems due to poor ensembles. By doing this, they 

could achieve channel reservoir characterization with only 5% 

simulation time of EnKF. 

ES can produce reliable results with good initial models in 

less simulation time compared with EnKF. However, if initial 

models are not proper, the outcome from ES can be inaccurate. 

Thus, distance-based methods can improve this problem. 

A distance represents dissimilarity between two ensemble 

members. By a distance-based sampling scheme, it is possible 

to choose more similar ensemble to a reference field and to 

reduce high uncertainty in ensemble. Combined with reservoir 

characterization methods, a sampling scheme can contribute to 

enhanced reservoir characterization and history matching.  
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Fig. 1.1 – EnKF process(Kang, 2016). 

 

 

 

 

Fig. 1.2 – ES process(Kang, 2016). 
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Many distances have been suggested to select good 

reservoir models. For example, Dubuisson and Jain(1994) 

combined 6 distance measures via 4 ways, and compared the 

results. Suzuki and Caers(2008) measured the dissimilarity 

between geologic models with channel by Hausdorff distance. 

However, these distances are calculated using entire 

permeability data of ensembles. If they are applied to large-

sized fields, the calculation can be encumbered. Kang et 

al.(2016) used singular value decomposition(SVD) and 

improved ES by sampling better initial ensembles. Nevertheless, 

it is difficult to understand the principle of SVD intuitively. 

Scheidt and Caers(2009a) defined a distance as a 

difference of field oil rates at two time points. Also, Scheidt and 

Caers(2009b) obtained a distance matrix by considering 

cumulative oil and water productions during total production 

period. Jin et al.(2011) defined a distance as difference of 

injected stream between ensembles. Lee et al.(2015) proposed 

a distance according to a difference of oil sand percentage in 

rectangles expanded from an injector. Park et al.(2015) 

analyzed travel time of streamlines in ensembles and decided 

the difference of generalized travel time as a distance.  

These suggested distances require model simulation of all 

initial ensembles before sampling, which causes excessive time. 

Therefore, it is necessary to define an effective distance 
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without initial simulation for all ensemble members.  

In this paper, a distance is defined as a difference in 

correlation coefficient between two reservoir models by 

applying two spatial patterns. These patterns can consider 

representative permeability distributions in reservoir models. 

According to the distance, proper models are selected as new 

initial models for enhanced ES results. 
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2. Methodologies 

 

2.1 Definition of a distance from spatial patterns 

 

Permeability data around wells are important to predict 

reservoir behaviors. Therefore, two spatial patterns are 

suggested to consider key permeability data in typical nine spot 

well locations. The first pattern, called 1-line case, consists of 

21 by 1 permeability data at the center of x and y 

directions(Fig. 2.1a). The second pattern, called cross case, 

consists of the 1-line plus two diagonal directions(Fig. 2.1b). 

From the comparison of these two cases, it is plausible to 

analyze whether it is good or not to consider permeability data 

from the injector to all producers. 

To compare difference of each ensemble, correlation 

coefficients are computed between permeability data acquired 

from the two spatial patterns. The Eq. for correlation 

coefficient, Corr(A, B) is Eq. 2.1. Then, the distance comes out 

as L2-norm of the correlation coefficient subtracted from 1(Eq. 

2.2). 

 

𝑪𝒐𝒓𝒓(𝑨,𝑩) =
∑(𝑨𝒊−𝑨̅)(𝑩𝒊−𝑩̅)

√∑(𝑨𝒊−𝑨̅)
𝟐√∑(𝑩𝒊−𝑩̅)

𝟐
                               (2.1) 



８ 

 

𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆(𝑨,𝑩) = √(𝟏 − 𝑪𝒐𝒓𝒓(𝑨,𝑩))𝟐                     .  (2.2) 

 

where, Ai and Bi are the i-th data obtained from spatial patterns 

of A and B ensembles, respectively. 

Fig. 2.2 is an example of the distance based sampling 

scheme procedure in this study. By the simple 1-line spatial 

pattern, the distance between two models can be calculated. 

After computing all the distances among 4 models shown, they 

are presented on 2D-plane to illustrate reservoir models as 

points. Then, clustering is conducted to divide them into several 

groups. Finally, models are chosen around a group with the 

least production difference from a reference field. 
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(a) 1-line 

 

(b) Cross 

Fig. 2.1 – Two spatial patterns suggested in this study. 

 

 

 

Fig. 2.2 – Distance based sampling scheme procedure. 
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2.2 Multi-dimensional scaling  

 

Multi-dimensional scaling(MDS) is one of methods to project 

data on low dimension according to dissimilarity between data. 

If the dissimilarity is high, they are located on MDS space far 

away each other(Fig. 2.3). On the other hand, they are located 

closely when the dissimilarity is low. Before using MDS, it is 

crucial to define a dissimilarity called distance, and 4 terms are 

necessary as below(Jin, 2011).  

 

- Negative value cannot be a distance between two data. 

- The distance between one point and itself must be zero, 

and there is no zero between two different data points. 

- The distance between data x and y is same as the 

distance between data y and x. 

- In a triangle composed of 3 points on space, the sum of 

two sides is always greater than or equal to the third. 
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Fig. 2.3 – The depiction of data from 3D-space on 2D-plane. 
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The best advantage of MDS is that it enables people to 

present the relationship between two data on two or three 

dimensions(3D). Also, the relationship between data points on 

low-dimension can be easily visualized and analyzed intuitively 

by MDS. Thus, MDS can be helpful to categorize data based on 

similar characteristics and to examine data clustering results 

visually.  

The MDS principle has been widely applied to many fields 

because it uses the distance, not the data directly. Sometimes, 

people might get results from an alternative model, not the data 

itself. In this case, they can compare results from alternative 

models and investigate relationships between data using MDS.  

By MDS, it is feasible to find new dimension where data 

exists. Also, if one knows only dissimilarity between data, data 

analysis like a clustering is still achievable. That’s because the 

dimension and coordinates of data are obtainable. Generally, 

MDS can be conducted using linear algebraic methods without 

iterative algorithm. The procedure is explained as below.  

 

- Square each element of distance matrix(Eq. 2.3). 

 

𝑷(𝟐) = [𝒑𝟐]                                         (2.3) 
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- Generate a centering matrix J using Eq. 2.4 as below.  

 

𝑱 = 𝑰 −
𝟏

𝒏
𝟏𝟏                                         (2.4) 

 

where, n means the total number of objects, and I is the 

unit matrix. Also, 1 is the column-vector of n ones. 

 

- By the matrix J, the matrix B can be computed as in Eq. 

2.5. 

 

𝑩 = −
𝟏

𝟐
𝑱𝑷(𝟐)                                       (2.5) 

 

- Calculate the m largest eigenvalues, 𝜆1 , …, 𝜆𝑚  and 

corresponsive eigenvectors, 𝑒1 , …, 𝑒𝑚 . The m means 

the number of low dimension. 

- A coordinate matrix X can be explained using Eq. 2.6 to 

present n objects on m-dimensional space. 

 

𝐗 = 𝐄𝐦𝚲𝐦
𝟏/𝟐

                                        (2.6) 

 

where, Em means the matrix of m eigenvectors and Λm 

is the diagonal matrix composed of m eigenvalues from 

B.   
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2.3 K-medoids clustering 

 

Clustering is used to find out structures among data and to 

divide the data into several groups. People can understand the 

characteristics of data easily by clustering. Therefore, it is 

widely employed in classification, prediction, or inducement of 

control rules in pattern recognition, image treatment, data-

mining, and so on.  

K-medoids clustering is one of widely applied clustering 

methods. It assigns data which have N-attributes on N-

dimensional locations, and divides them into K-clusters to 

understand characteristics of data. The location of medoids is 

significant because data are assigned to the closest cluster 

according to the distance from each medoid. The procedure of 

K-medoids is shown in Fig. 2.4. 

First, select K data randomly for K clusters, and designate 

them as medoids of each group. Then, include the data closest 

to a medoid into the medoid’s group by measuring linear 

distance. After that, decide new medoids based on the average 

of data from each dimension as the third step. The linear 

distances between data and medoids are estimated, and the data 

are classified as new group if the sum of linear distances is 
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smaller than the prior one. The procedure from the second to 

third is repeated until the locations of medoids are not changed 

as the fourth step.         

The initial setup for medoid has huge influence on 

clustering results. Thus, appropriate repetition is essential to 

get the clustering results with the least linear distance between 

data and medoid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



１６ 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4 – K-medoids clustering procedure. 

 

 

 

 

 

 



１７ 

 

2.4 Ensemble smoother 

 

To be applied to ES, the i-th ensemble is expressed by state 

vector, yi as in Eq. 2.7.  

 

𝒚𝒊 = [
𝒎𝒔

𝒎𝒅

𝒅
] , 𝒊 = 𝟏,𝑵𝒆                                         (2.7) 

 

where, Ne is the total number of ensemble applied to ES, ms is 

the static parameters, md is the dynamic parameters, and d is 

the observed data. At first, ES forecasts observed data of initial 

ensemble members by forward simulation. Next, ES assimilates 

initial ensemble members using entire accessible data and 

Kalman gain, K. Kalman gain can be calculated by minimizing 

the estimated error covariance, CY. Eqs. 2.8 and 2.9 show 

specific calculation in the assimilation step. 

 

𝒚𝒊
𝒂 = 𝒚𝒊

𝒑
+𝑲(𝒅𝒊 −𝑯𝒚𝒊

𝒑
)                                     (2.8) 

 

𝑲 = 𝑪𝒀
𝒑
𝑯𝑻(𝑯𝑪𝒀

𝒑
𝑯𝑻 + 𝑪𝑫)

−𝟏           (2.9) 

 

where, the superscripts a and p mean the assimilation step and 

the priori state vector, respectively. Also, H is the 

measurement operator. CD indicates the measurement error 

covariance. 
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3. Results and discussions 

 

In this study, initial 400 ensemble members are generated by 

sequential Gaussian simulation using known permeability data in 

9 wells. The location of these wells is on 21 by 21 grids as a 

typical nine spot spacing. After proper ensemble selection by 

the distance-based sampling scheme, ES is applied to them. 

The assimilation period is 500 days, and the total production 

time is 1,000 days. For showing versatility of this method, two 

types of fields are used. More detailed simulation setup is 

shown in Table 3.1.  

 

Table 3.1 – Reservoir and simulation conditions 

Well location, 

grid coordinate 

(2, 2),(2, 11),(2, 20),(11, 2),(11, 11),  

(11, 20),(20, 2),(20, 11),(20, 20) 

Known data at well locations of  

field type 1, ln(md) 
5.4, 3.3, 5.2, 3.1, 3.2, 3.1, 3.2, 3.3, 3.0 

Known data at well locations of  

field type 2, ln(md) 
3.1, 3.5, 5.0, 3.6, 4.5, 3.5, 5.1, 3.4, 3.0 

Assimilation time, days 100, 200, 300, 400, 500 

Total simulation period, days 1,000 

Observed data types Well oil production rates 

Porosity, fraction 0.20 

Initial water saturation, fraction 0.25 

Initial reservoir pressure, psia 2,000 
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3.1 Field with high permeability at the side corners 

 

This field shows high permeability zone at the left side(case 

Ⅰ). Figs. 3.1 and 3.2 show the reference field and averaged 

initial 400 ensemble members to illustrate permeability 

distributions. Most of permeabilities are low except for the 

corners of the left side. For the initial 400 ensemble members, 

Figs. 3.3 and 3.4 indicate high uncertainty in productions from 

the members.   

The red lines are productions from the reference field, and 

the blue lines are averaged productions of the initial 400 

ensemble. The blue lines do not follow the trend of the red lines 

properly. The gray lines are productions from each ensemble 

member. The band width of these gray lines is too wide to 

predict the production trend of the reference field.  

Before checking out selected ensemble from spatial 

patterns, randomly selected 50 ensemble members are 

presented in Fig. 3.5. This case will be called random case. 

There are three ensemble members from the random case(Fig. 

3.6). They are randomly selected to look into the permeability 

distribution of ensemble members, which are affiliated to the 

random case. The high permeability connection between the 

injector and producers at the left corner is not considered 
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properly in these ensemble members.  

By sampling scheme using the 1-line, Fig. 3.7 illustrates 

the initial 400 ensemble members on 2D-plane. Also, 50 

ensemble members are selected for a new initial ensemble 

applied to ES. The average of the selected 50 ensemble 

members is presented in Fig. 3.8. This case does not consider 

the connectivity of high permeability zone at the left corner like 

the random case.  

Fig. 3.9 displays three randomly selected ensemble 

members which belong to the 1-line case. Even though the 

connectivity of high permeability appears in the third one, the 

other ensemble members seem not to have the similar 

permeability distribution of the reference field.    

As same as the 1-line case, 50 ensemble members are 

presented on 2D-plane, which are chosen among the initial 400 

ensemble members using the cross pattern (Fig. 3.10). Fig. 

3.11 gives averaged permeability distribution of the selected 50 

ensemble members and its histogram from the cross case. 

Unlike the other cases, the permeability distribution shows 

connectivity from the left corner to the injector. Also, Fig. 3.12 

presents three ensemble members randomly selected from the 

chosen 50 ensemble of the cross case. Compared with the other 

cases, the connection in high permeability zone stands out 

among these ensemble members. That’s because the cross case 



２１ 

 

can capture the permeability difference between ensemble 

members in diagonal directions.  

To analyze productions, box plots on cumulative oil and 

water productions are drawn as in Fig. 3.13. The horizontal red 

lines mean cumulative oil and water productions from the 

reference field. The box plots from the cross case are the 

closest to the reference field in oil and water productions. 

Because the 1-line pattern can’t investigate high permeability 

zone at corners, the box plots of this case do not include the 

reference field between the first and third quartiles. The 

random case also gives poor prediction for productions.  
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(a) Reference field 

 

 
(b) Histogram of permeability 

Fig. 3.1 – Reference field of case Ⅰ. 
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(a) The average permeability 

 

 
(b) Histogram of permeability 

Fig. 3.2 – Initial 400 ensemble members of case Ⅰ. 
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(a) Oil 

 

 
(b) Water 

Fig. 3.3 – Cumulative oil and water productions of the initial 400 ensemble 

members. 
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(a) Oil rates 

 

 
(b) Water rates 

Fig. 3.4 – Well production rates of the initial 400 ensemble members. 
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(a) The average permeability 

 

 
(b) Histogram of permeability 

Fig. 3.5 – Randomly selected 50 ensemble members from case Ⅰ. 
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(a) First  

  
(b) Second 

  
(c) Third  

Fig. 3.6 – Three examples of ensemble members from the random case. 
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(a) MDS 

 

 
(b) K-medoids clustering 

 

 
(c) Selected 50 ensembles on 2D-plane 

Fig. 3.7 – Sampling scheme results by the 1-line pattern from case Ⅰ. 
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(a) The average permeability 

 

 
(b) Histogram of permeability 

Fig. 3.8 – Selected 50 ensemble members by the 1-line pattern from case Ⅰ. 
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(a) First  

  
(b) Second 

  
(c) Third 

Fig. 3.9 – Three examples of ensemble members from the 1-line case. 
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(a) MDS 

 

 
(b) K-medoids clustering 

 

 
(c) Selected 50 ensembles on 2D-plane 

Fig. 3.10 – Sampling scheme results by the cross case from case Ⅰ. 
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(a) The average permeability 

 

 
(b) Histogram of permeability 

Fig. 3.11 – Selected 50 ensemble members by the cross pattern from case Ⅰ. 
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(a) First 

  
(b) Second 

  
(c) Third 

Fig. 3.12 – Three examples of ensemble members from the cross case. 
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(a) Oil 

 

 
(b) Water 

Fig. 3.13 – Box plots for cumulative oil and water productions from the initial 

400 ensemble, random, 1-line, and cross cases before ES in case Ⅰ. 
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Fig. 3.14 shows updated 400 ensemble members. The ES 

results using the random case and two spatial patterns are 

presented from Figs. 3.15 to 3.17. Because of many ensemble 

members, the histogram of the 400 ensemble members follows 

the permeability distribution trend stably. Also, the cross case 

estimates the reference field well using just 50 ensemble 

members.  

Ensemble-based reservoir characterization typically 

requires over 100 ensemble members for reliable results. Thus, 

the random and 1-line cases show overshooting problem which 

means that estimated permeability values are excessively 

higher than those of the reference field. Therefore, the random 

and 1-line cases are poor at sampling good ensemble members 

compared with the cross case. 

Also, Fig. 3.18 shows box plots for cumulative oil and water 

productions after ES from all cases. The cross case gives 

dependable results with better uncertainty assessment 

compared with the other cases. Except for the 400 and cross 

cases, there are filter divergence problems. Therefore, it is 

difficult to predict future productions by the 1-line and random 

cases.  

The total simulation time is shown in Table 3.2. The cross 

case can be conducted with over 80% time reduction compared 

with the case using 400 ensemble members, and gives good 
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reservoir characterization. The computer specs used in this 

study are Intel R Core TM i5-3570 CPU @ 3.4o GHz and RAM 

is 8.00 GB.  
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(a) The average of updated permeability 

 

 
(b) Histogram of permeability 

Fig. 3.14 – Updated 400 ensemble members after ES in case Ⅰ. 
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(a) The average of updated permeability 

 

 
(b) Histogram of permeability 

Fig. 3.15 – Updated 50 ensemble members from the random case  

after ES in case Ⅰ. 
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(a) The average of updated permeability 

 

 
(b) Histogram of permeability 

Fig. 3.16 – Updated 50 ensemble members from the 1-line case  

after ES in case Ⅰ. 
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(a) The average of updated permeability 

 

 
(b) Histogram of permeability 

Fig. 3.17 – Updated 50 ensemble members from the cross case  

after ES in case Ⅰ. 
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(a) Oil 

 

 
(b) Water 

Fig. 3.18 – Box plots for cumulative oil and water productions from the 400 

ensemble, random, 1-line, and cross cases after ES in case Ⅰ. 
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Table 3.2 – Total simulation time and its reduction for case Ⅰ. 

 Initial Random One-line Cross 

Time, min 90 10 10 10 

Reduced time, % - 88 88 88 
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3.2 Field with high permeability in diagonal 

direction 

 

Fig. 3.19 shows a reference field with high permeability 

distribution in diagonal direction(case Ⅱ). Fig. 3.20 presents 

the averaged permeability distribution of the initial 400 

ensemble and its histogram. Because the feature of high 

permeability zone is evident in the middle of the field, the 

connection of the zone can be easily identified in x and y 

directions. Therefore, different from case Ⅰ, the 1-line case 

also discovers characteristics of permeability in ensemble 

members. This time, total 100 ensemble members are chosen 

to provide enough initial models for stable ES results.   

Fig. 3.21 shows the random case composed of 100 

ensemble members. To confirm opted ensemble members 

individually, three ensemble members are chosen as shown in 

Fig. 3.22. Although there might be ensemble comparable to the 

reference field, the second and third ensemble members have 

lower permeability values in the middle of the diagonal direction 

compared with that of the reference field. 

After sampling by MDS and K-medoids clustering, Fig. 

3.23 illustrates the average of the selected 100 ensemble 

members from the 1-line case. The shape of high permeability 
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zone appears like the reference field. Fig. 3.24 indicates the 

randomly chosen three ensemble members from the 1-line 

case. In the third one, there is a disconnection of high 

permeability unlike the reference field. 

Likewise, 100 ensemble members are selected by the cross 

pattern and presented in Fig. 3.25. The shape of histogram is 

almost the same as the 1-line case. However, in Fig. 3.26, the 

high permeability zone is described better than that of the 1-

line by analysis of three of the selected members. That is 

because the cross case can grasp out diagonal permeability 

distributions. This sampling affects the production prediction as 

well(Fig. 3.27). The productions from the cross case are 

closest to the reference field. Also, the uncertainty range is 

decreased a lot compared to the initial one. 
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(a) Reference field 

 

 
(b) Histogram of permeability 

Fig. 3.19 – Reference field of case Ⅱ. 
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(a) The average permeability 

 

 
(b) Histogram of permeability 

Fig. 3.20 – Initial 400 ensemble members of case Ⅱ. 
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(a) The average permeability 

 

 
(b) Histogram of permeability 

Fig. 3.21 – Randomly selected 100 ensemble members from case Ⅱ. 
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(a) First 

  
(b) Second 

  
(c) Third 

Fig. 3.22 – Three examples of ensemble members from the random case. 
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(a) The average permeability 

 

 
(b) Histogram of permeability 

Fig. 3.23 – Selected 100 ensemble members  

by the 1-line pattern from case Ⅱ. 
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(a) First 

  
(b) Second 

  
(c) Third 

Fig. 3.24 – Three examples of ensemble members from the 1-line case. 
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(a) The average permeability 

 

 
(b) Histogram of permeability 

Fig. 3.25 – Selected 100 ensemble members  

by the cross pattern from case Ⅱ. 

 

 

 

 

 

 

 

 

 

 



５２ 

 

  
(a) First 

  
(b) Second 

  
(c) Third 

Fig. 3.26 – Three examples of ensemble members from the cross case. 

 



５３ 

 

 
(a) Oil 

 

 
(b) Water 

Fig. 3.27 – Box plots for cumulative oil and water productions from the initial 

400 ensemble, random, 1-line, and cross cases before ES in case Ⅱ. 
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ES is applied to the initial 400 and selected 100 ensemble 

members from the random, 1-line, and cross cases. There are 

updated 400 ensemble members(Fig. 3.28). Even though the 

400 ensemble case uses a lot of ensemble members, the 

updated result is not well-matched to the reference field. The 

results using spatial patterns show more improved reservoir 

characterization than the initial and random cases. 

Compared with the poor results from the initial and random 

cases(Figs. 3.28 and 3.29), the histograms from the 1-line and 

cross cases are similar to that of the reference field(Figs. 3.30 

and 3.31). Looking carefully, the cross case predicts the 

reference field better than the 1-line case in the high 

permeability over 150 mD of its histogram.  

Fig. 3.32 shows box plots of cumulative oil and water 

productions after ES application. The cross case gives the best 

results among all the cases. Although the 1-line case shows 

decreased uncertainty range compared with the initial and 

random cases, it is unreliable because of biased estimation on 

water productions.  

Therefore, it is apparent that the cross case works more 

properly for the reservoir characterization than the other cases. 

Table 3.3 shows comparison of total simulation time from all 

the cases. By the cross cases with 100 ensemble members, 

credible reservoir characterization is accomplished with almost 
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75% simulation time reduction. The computer of this study is 

Intel R Core TM i5-3570 CPU @ 3.4o GHz and RAM is 8.00 GB.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



５６ 

 

 
(a) The average of updated permeability 

 

 
(b) Histogram of permeability 

Fig. 3.28 –Updated 400 ensemble members after ES in case Ⅱ. 
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(a) The average of updated permeability 

 

 
(b) Histogram of permeability 

Fig. 3.29 – Updated 100 ensemble members from the random case  

after ES in case Ⅱ. 
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(a) The average of updated permeability 

 

 
(b) Histogram of permeability 

Fig. 3.30 –Updated 100 ensemble members from the 1-line case  

after ES in case Ⅱ. 
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(a) The average of updated permeability 

 

 
(b) Histogram of permeability 

Fig. 3.31 – Updated 100 ensemble members from the cross case  

after ES in case Ⅱ. 
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(a) Oil 

 

 
(b) Water 

Fig. 3.32 –Box plots for cumulative oil and water productions from the 400 

ensemble, random, 1-line, and cross cases after ES in case Ⅱ. 
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Table 3.3 – Total simulation time and its reduction for case Ⅱ. 

 Initial Random One-line Cross 

Time, min 90 22 22 22 

Reduced time, % - 75 75 75 
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4. Conclusions 

 

Even though many distances are suggested for sampling 

reservoir models, there are inefficiencies such as long 

calculation time or data distortion. Therefore, a new distance is 

proposed from the spatial pattern, which suitably considers 

permeability distribution of a reservoir.   

There are two spatial patterns, called 1-line and cross 

cases, considering nine spot well locations. In this paper, the 

sampling effects from them are compared before and after ES 

application. The cross case gives the most improved results in 

two different field cases. The proposed method has the 

following advantages. 

 

1. This study suggests a simple and fast sampling scheme 

for good model selection. By applying the method, high 

uncertainty of initial models can be reduced. Also, 

approximate permeability distribution of the reference 

field is found out.  

 

2. The proposed distance using spatial pattern contributes 

to reinforce ES. With the distance-based ES method, 
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more precise reservoir characterization can be achieved 

with only 10-30% simulation time of the typical ES. 

 

3. The cross case is helpful for good model selection with 

around 50 to 100 ensemble members. Also, if over 100 

ensemble members are available, the cross case will 

produce stable ES results.  

 

4. In comparison with the 1-line case, the cross case 

gives more reliable results. It shows the importance of 

near-well permeability data progressed from the 

injector to all producers when people define spatial 

pattern. That is because the water flowing from the 

injector pushes oil to producers, and affects reservoir 

behaviors significantly. 

 

5. The proposed method can be a practical guideline when 

we try to estimate reservoir permeability distributions 

using limited data. 

 

The proposed distance-based ensemble smoother can 

provide reliable basis on decision making, which is important in 

oil production. Also, this method can be used to minimize 
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problems in well development and operation by prediction of 

reservoir behavior in the future. 

Although this method is simple and fast for good reservoir 

model selection, it can be only a guideline to define proper 

spatial pattern. For a further study, it is important to define 

spatial pattern which reflects permeability characteristics of 

each field type. We find out flow pattern of reference field 

approximately. Therefore, we can decide spatial pattern which 

considers the flow pattern. 
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국문초록 

유체투과율 분포패턴에 거리기반의 

앙상블 스무더를 이용한 저류층 특성화 

이지윤 

에너지시스템공학부 

서울대학교 

 

효과적인 저류층모델 샘플링을 위하여 두 모델 사이의 차이인 

거리의 정의는 중요하다. 본 논문에서는 주입정과 생산정 사이의 

공간적 유체투과율 분포의 상관계수차이를 새로운 거리로 

제안하였다. 

먼저, 초기 400개 모델에 제안된 거리를 계산하고 

다차원척도법을 이용하여 이들을 2차원 평면에 나타낸다. 또한 K-

메도이드 클러스터링을 통해 이들을 10개 그룹으로 나눈다. 각 

그룹의 중심인 메도이드로부터 나온 생산량을 참조필드의 생산량과 

비교하여 가장 그 차이가 가장 작은 메도이드를 대표모델로 

선정한다. 대표모델 주변 총 100개 저류층모델을 선택하여 앙상블 

스무더에 적용한다.  

그 결과, 본 연구방법은 약 75% 감소된 시간 내 향상된 

저류층 특성화 및 히스토리 매칭을 보였다. 또한 적절한 모델 

샘플링으로 미래 생산량 예측 시 그 불확실성 폭이 크게 

감소하였다. 본 연구는 실제 필드 내 유체투과율 파악에 도움을 줄 

수 있다. 

 

주요어: 거리기반, 앙상블 스무더, 불확실성 평가 

학번: 2014-22728 
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