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Abstract

To obtain subsurface information from onshore seismic exploration data using
full waveform inversion (FWI) based on the acoustic wave equation, elastic
waves, such as ground rolls and mode-converted waves, should be suppressed
through heavy preprocessing. However, the preprocessing deforms not only
the elastic waves but also the acoustic waves. Moreover, it is not easy to
separate body waves and surface waves in seismic traces. For these reasons, in
the modeling step, we need to generate both types of waves to obtain more
similar seismic waves to the real seismic waves. Therefore, elastic full
waveform inversion using elastic wave equation is necessary for more
accurate full waveform inversion. In addition, elastic full waveform inversion
can give better geological information than acoustic full waveform inversion
because it inverts P-wave velocity, S-wave velocity and density. Laplace-
Fourier domain FWI using time-domain modeling combines time-domain
wave propagation modeling and Laplace-Fourier-domain FWI. To obtain
forward wavefield and adjoint wavefield in the time domain, we implemented
staggered grid finite difference method. The residuals between the recorded
and modeled data, virtual sources, hessian matrices and gradient directions
were calculated in the Laplace-Fourier domain. We used time domain wave
propagation modeling for the forward and adjoint wavefield because it is
more intuitive to treat the wavefield in the time domain than in the Laplace-
Fourier domain. Moreover, time domain wave propagation modeling using
staggered grid finite difference method does not need matrix solver which is
necessary for the conventional Laplace-Fourier domain FWI. The

optimization procedure is conducted in the Laplace-Fourier domain because



Laplace-Fourier-domain FWI can be applied to real seismic data, which lacks
low-frequency components. To validate our proposed algorithm, we
performed numerical tests with synthetic data and real exploration data. We
applied the algorithm to Model 94 synthetic onshore data and Benjamin Creek

real onshore data.

Keywords : Laplace-Fourier domain full waveform inversion, Elastic

full waveform inversion, Foothills, onshore data
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Chapter 1 Introduction

The purpose of seismic exploration is to determine the subsurface structure.
Several types of migration algorithms, such as Kirchhoff migration and
reverse time migration (RTM)(Claerbout, 1971; Whitmore, 1983), have been
used to explore the subsurface structures. Migration algorithms require prior
knowledge of the subsurface material properties such as velocity or density,
and the accuracy of the velocity or density model is the most important factor
in obtaining the correct migration image. Moreover, the propertied of
subsurface materials are also meaningful because they can give important
information which is essential for the petroleum exploration. Many
geophysicists have used travel time tomography and FWI to accurately model
the properties of subsurface media. Since the development of the adjoint
method by Lailly (1983) and Tarantola (1984), FWI has been performed in the
time(Mora, 1987; Bunks et al., 1995) and frequency domains (Pratt et al.,
1998; Operto et al., 2004).

Even though the development of adjoint method suggested the possibility of
FWI algorithm, the practical usage of the FWI still has some difficulties. The
first problem is caused by the huge computational cost. To calculate the
forward and adjoint wavefield for each shot, we need to solve the impedance
matrix related to the model parameters. For the two dimensional case, high
efficient computational approach such as direct solver (Kim and kim, 1999;
Davis, 2006) or iterative solver (Trefethen and Bau, 1997) are implemented to
solve the matrix. However, the extension to three dimensional FWI is
challenging because it needs much larger computational resources. Since

direct solver requires storing LU factors in random access memory (RAM) or



disk space, iterative solver is widely used to solve the three dimensional
problem (Operto et al., 2007). Plessix (2009) used iterative solver with a
multigrid preconditioner to perform three dimensional frequency domain FWI.
He successfully inverted P-wave velocity from the three dimensional real
deepwater OBS data set. Pyun et al. (2011) applied iterative solver to the three
dimensional Laplace domain acoutic FWI. Ben-Hadj-Ali et al. (2008)
performed acoustic FWI in frequency domain by solving the forward problem
with a frequency domain finite difference method based on a massively
parallel direct solver. Sirgue et al. (2008) suggested an alternative approach.
To obtain frequency domain wavefield, time domain wavefield is calculated
from three dimensional time domain finite difference method and the
wavefield is transformed to the frequency domain through the discrete fourier
transform. Kim et al. (2013) used the same approach and applied it to the
three dimensional Laplace-Fourier domain acoustic FWI. In this research we
also followed Sirgue et al. (2008)'s approach and applied it to the two

dimensional Laplace-Fourier domain elastic FWI.

The second problem is generated from the nonlinearity of the inverse
problem. FWI is considered as nonlinear problem because of the existence of
local minimum points in the objective function. Especially, when the starting
model is located far from the real model, the problem of nonlinearity becomes
severer (Gauthier et al., 1986). To overcome this problem, Bunks et al. (1995)
suggested the multiscale approach to the seismic inversion problem and
reduced the local minima by using the multigrid method. Shipp and Singh
(2002) and Sirgue and Pratt (2004) selected the starting model which is
similar to the real model to avoid the problem of local minimum. There are a
few approach to reduce the local minima in objective function by suggesting

the robust objective function. Guitton and Symes (2003) applied Huber norm



(Huber, 1973) to the noisy seismic data inversion. Shin and Min (2006)
proposed logarithmic objective function. By taking the logarithmic objective
function, the wavefield can be separated into amplitude and phase, and
objective function can be constructed from amplitude only, phase only and
both. Shin and Cha (2008) suggested Laplace domain FWI using logarithmic
objective function and large damping constants. The Laplace domain FWI
cannot invert the high resolution image, but can attenuate the nonlinearity in
FWI and give a long wavelength result even when the seismic data is lack of
low-frequency components. For the onshore data, the problem of nonlinearity
is severer than onshore data. For the onshore seismic data, the seismic waves
are recorded in receivers after being filtered by water which is acoustic media.
However, for the onshore data, the energy generated from the source makes
not only body waves but also surface waves which contain the large energy.
The co-existence of body waves and surface waves increases the nonlinearity
of the onshore data FWI. For the application of the FWI, there were some
attempts to mute or attenuate the surface waves to separate them from the
body waves. Sheng et al. (2006) used early arrival waveform tomography
with time window which can exclude the surface waves or other unpredicted
waves. Operto et al. (2004) and Ravaut et al. (2004) performed several
preprocessing steps to improve signal to noise ratio and transformed the data
suitable for the acoustic full waveform tomography through the acoustic
approximation. Brenders and Pratt (2007) removed phases in the data which
cannot be modeled by the acoustic wave equation such as shear wave and
mode converted wave for the stable convergence in frequency domain FWI.
Also the rayleigh waves which is dominant near the surface was suppressed
by offset-dependent cosine taper. Ha et al. (2010) used acoustic FWI to invert

the P-wave velocity of synthetic onshore and offshore seismic data in the



Laplace domain with minimum preprocessing. The Laplace domain acoustic
FWI yielded correct long wavelength velocity model even with the noise

originated from elastic waves.

Although preprocessing can suppress the surface waves or unwanted noises,
it also alters important signals and degrades the imaging result because P-
waves are typically mixed with the other signals (Yan and Sava, 2008). To
minimize the damage on the recorded signals, elastic FWI should be used.
The studies to invert the elastic components of subsurface material have been

performed in both global scale and local scale.

Tarantola (1986) proposed a strategy for nonlinear inversion of real seismic
reflection data. He solved inverse problem with sequential optimization
technique. First, P-wave velocity and impedance are optimized. Then,
optimizing for the S-wave velocity and impedance is performed. Finally
density is optimized. Mora (1987) performed an inversion using P-wave
velocity, S-wave velocity and density rather than using Lame constants. He
validate his approach using multioffset seismic data generated from synthetic
model and showed the excellent spatial resolution of the high-frequency
components of elastic parameters. Crase et al. (1990) inverted P-impedance
and S-impedance from real marine reflection data by using several criteria.
Tests showed the Cauchy and hyperbolic secant criteria give good results in
both noise-free and noise-added data. Igel et al. (1996) inverted P-impedance
and Poisson's ratio. He suggested two step approach; the first step is inverting
P-impedance and the second step is inverting Poisson's ratio with inverted P-
impedance. Poisson's ratio only makes sense when the P-impedance model is
given with high accuracy. Sears et al. (2008) exploited both P-wave and
mode-converted S-waves from wide-angle, multicomponent OBC data set to

invert both P-wave and S-wave velocity by using time domain FWI algorithm.
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They tested FWI with different component-types and temporal windowing.
Fichtner et al. (2009, 2013) performed full waveform tomography and full
waveform inversion in the global scale. Through these studies, they resolved
the details of crustal and mantle structure. Choi et al. (2008) implemented
frequency domain FWI to invert P-wave velocity, S-wave velocity and density
in acoustic-elastic coupled media. He applied the algorithm to the synthetic
data and real offshore data using linear increase with depth model as initial
model. Bae et al. (2010) performed Laplace domain FWI in acoustic-elastic
coupled media to obtain long wavelength P-wave velocity and S-wave
velocity results. Both studies are based on the finite-element modelling
technique and used acoustic wave equation for the acoustic media and elastic
wave equation for the elastic media. To combine the acoustic wave equation
and elastic wave equation, they used continuity condition for interface.
Brossier et al. (2009) proposed frequency domain elastic FWI for onshore
synthetic data by using complex frequencies which is equivalent to damped
seismograms in the time domain and offset-dependent weighting function.
They showed successive inversion of overlapping frequency groups
outperforms successive inversion of single frequencies. Romdhane et al.
(2011) showed frequency domain elastic FWI is effective to image
heterogeneous shallow structures when the data contains both surface waves
and body waves. Two strategies were taken to attenuate the strong
nonlinearity. First, they took successive inversion technique with overlapping
frequency groups. The second is to introduce time damping to the seismic
signal. The algorithm was applied to a realistic onshore synthetic data and

inverted P-wave and S-wave velocity model.

Based on these studies, we inverted the P-wave velocity, the S-wave velocity

and density from synthetic and real onshore data using Laplace-Fourier



domain FWI with time domain wave propagation modeling. Conventional
Laplace-Fourier domain FWI suggested by Shin and Cha (2009) uses matrix
solver for the forward and adjoint wavefield. On the other hand, we followed
Sirgue et al. (2008)'s approach and combined time domain wave propagation

modeling and the Laplace-Fourier domain FWI.

In this paper, we first briefly review time domain wave propagation
modeling using staggered-grid finite-difference method and Laplace-Fourier
domain FWI. Second, the Laplace-Fourier domain FWI using time domain
modeling algorithm is introduced. Third, we apply our algorithm to Model 94
synthetic onshore data, compare the Laplace-Fourier-transformed wavefields
of the recorded and modeled data, plot extracted time traces and perform
frequency-domain FWI with a low damping constant (Brossier et al., 2009) to
obtain high-resolution images. Finally, we apply Laplace-Fourier domain FWI
to Benjamin Creek real onshore data and compare the RTM images obtained

using the initial and inverted velocities.



Chapter 2 Theory

2.1 Time domain wave propagation modeling

The wave equation in two dimensional elastic media is defined by Newton's

equation of motion:

pl =2 (a+2m 2z +2%e) + 2 (u(2e422)) 4 £,

0%u, _9 duz | duy auz 6ux
patz 6x(u(6x+6z)) ((/1+2 ) )+fz )

(ug,u,) are the horizontal and vertical displacement components; (f, f,)

are the body forces; A and p are the Lamé coefficients and p is density.

Velocity can be expressed as first derivative of displacement respect to time.
Therefore, the equation (1) and (2) can be changed into first-order differential
equation respect to time by substituting displacement components with

velocity components. Then, the equations (1) and (2) are rewritten as follows.

0vyx  OTyy 6‘L'xz

P = o T3, Thx 3)
and
Sl s @
where,
arxx = (142 )6vx 6vz ' (5)



0ty _ vy | 0w
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Gr=u(Gety) (7)

(v, v,) are the velocity components and (Tyy, Tyz Tzz) are the stress
components. We exploited a staggered-grid finite-difference method
(Madariaga, 1976; Virieux, 1986; Levander, 1988; Graves, 1996) for the wave
propagation modeling in time domain and adapted sponge boundary condition
(Cerjan et al., 1985) to reduce the edge reflection. In this study, we obtained
forward modeled wavefield and adjoint wavefield in the time domain and
transformed them to the Laplace-Fourier domain for the Laplace-Fourier

domain FWI.



2.2 Wavefield in the Laplace-Fourier domain

From Shin and Cha (2009), the wavefield in the Laplace-Fourier domain is

expressed as
ii(s) = [ u()estdt = [Ju(t)e otewtdt (8)

where, complex number s is substituted by o + iw. o is a Laplace damping
constant, w is an imaginary part of the complex frequency, u(t) is a time
domain wavefield and {i(s) is the Laplace-transformed wavefield. Shin and
Cha (2008) performed Laplace-domain FWI with the Laplace-transformed
wavefield which is the zero frequency component of the Fourier transform of
the damped wavefield where o is real number and w is zero. If we choose
o as widely varying variables and w as small variables, it is Laplace-
Fourier-domain FWI (Shin and Cha, 2009). If we choose o as O (Pratt et al.,
1998; Operto et al., 2004) or small variables (Brossier et al., 2009), and w as

widely varying variables, it is frequency-domain FWI.



2.3 Full waveform inversion in the Laplace-Fourier

domain

The logarithmic objective function at an angular frequency can be expressed

as

where ng is the number of shots, n, is the number of receivers, * denotes
the complex conjugate and #;; and dij are the modeled and recorded
displacement in the Laplace-Fourier domain at the i™™ shot and j™ receiver,
respectively.

By taking the partial derivative of the objective function with respect to a

model parameter m,, we can obtain a gradient vector as follows:

OE s ou\T . .
22— 37 Re |(22) 1] = Rey"r] (10)
where,
U; = [Ty Ugp Tz o Up]” (11)
1 7 \* 1 o\ * 1 Tin, \ " T
L Zi1 — Ziz iny
i = [ﬁn n (511'1) Uiy n (aiz) Uin, n (ainr) 0 0] (12)
and
ou;
J= 6—7’;11 . (13)

Re means the real part of a complex value, n is the number of nodes in

domain, r; is a residual vector, J is the Frechét derivative matrix and T is a
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transposed matrix.

The wave equation in the Laplace-Fourier domain can be expressed as

Su=f (14)
with

S=Ms?’+K (15)

S is an impedance matrix, u is a vector for the modeled wavefields , f is a
source vector, M is a mass matrix, K is a stiffness matrix and s is a
complex frequency. By taking the partial derivative of equation (14) with
respect to model parameter m;, the partial derivative wavefields can be

obtained as follows:

ou _g1(_ 5 H)=s1
am_s(am@_Svl (16)
where,
as .~
171 = —a—mlu . (17)

v, is a virtual-source vector for 1™ model parameter. By putting equation
(16) into equation (10), the gradient vector can be expressed by using the
impedance matrix.

0E
6ml -

Y Re[(S'w)Tri] = X5, Re[v] S]] (18)

where, S™1r} is the adjoint wavefield in the Laplace-Fourier domain.

For the adjoint wavefield, we need to obtain it in the time domain and
transform it to the Laplace-Fourier domain because we exploit Laplace-
domain FWI using time domain modeling algorithm. The adjoint wavefield

can be obtained in the time domain by using time domain wave propagation

11



modeling with the equation through (3) to (7). We perform forward modeling
by giving the vertical source in source term f; in the equation (4). In the
same context, to calculate adjoint wavefield in the time domain, we need to
perform time domain wave propagation modeling with the equation through
(3) to (7) by using the residual vector rj" in equation (12) as a vertical source

in the equation (4).
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2.4 The construction of the virtual source vectors

In this study, we calculate virtual source vector in the Laplace-Fourier
domain with the wavefield transformed from the time domain by the equation
8. Using the finite element formulation, the impedance matrix in the Laplace-
Fourier domain is expressed in equation (15) and virtual source that we have
to calculate is expressed in equation (17). The mass matrix for an element in
two-dimensional domain u(x,z) can be calculated by using the first-order

basis function ¢.

M. = [, NTPN dQ (19)
where
= (0505050 &
and

P=(29) . 1)

In the same manner, the stiffness matrix for an element Q in u(x,z) can be

calculated by using the first-order basis function ¢.

K, = fﬂ BTCB dQ (22)
where

001 99 993 994
[696 0 ox 0 ox 0 ox 0
_ LY 992 993 9¢s
B=|0 > 0 -2 0 —* 0 — I (23)
061 001 092 092 0¢s 0¢s 0¢s EJ
0z ox 0z ox 0z ox 0z x
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and

pvh pvy 0
C=|pvi—2pv¢ pvj O (24)
0 0 pv2

where p is the density and v, and v, are the P-wave and S-wave velocities,
respectively. Therefore, the virtual-source vectors for constructing the partial-
derivative wavefields with respect to the P-wave and S-wave velocities and

the density can be obtained for an element as follows:

2pv, 2pv, O
S =Ky — [ BT|2 2 0| B dQ 25)
T T, T Ja PVp 2PV u (
0 0 O
and
s s 0 —4pv, 0
__suz— Keu:—f BT —4p175 0 0 B dQu . (26)
v ovg Q
0 0 2pvg

The virtual-source vector for the density can be expressed as follows:

M, _ 2 [l 0
" oy W= S Jo N [O 1]NdQu. 27
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2.5 Update model parameters with the pseudo-Hessian

From Pratt et al. (1998) hessian matrix can be expressed as follows:
H=H,+R (28)
where,
H, = Re(J"J") (29)

and

R=re{|())r God)r - GO [} o

H, is the approximate Hessian matrix. With approximate Hessian matrix, we

obtain the Gauss-Newton formula
mf*tt =mk — H 'V, E (31)

where, m%‘ is the 1™ model parameter at the k™ iteration and V,E is the
gradient direction. However, full Hessian matrix H and approximate Hessian
matrix H,need a lot of computational cost. To reduce the computational cost,
Shin et al. (2001) normalized the gradient direction with the pseudo-Hessian
using the diagonal elements of the Hessian matrix for the stable convergence

of the FWI. The pseudo-Hessian matrix is given by
H, = Re(v] v]) (32)

Ha et al. (2009) updated the model parameter with the normalized gradient.
Chung et al. (2010) also used normalized gradient to invert P-wave velocity,

S-wave velocity and density in the Laplace domain. In this study, we followed

15



Chung et al. (2010)'s approach and the gradient direction for a single complex
frequency is as follows:

TS, Re(v] S71r))

k+1 k
= — X —_—
mj m; —a X NRM Y5 Re(v]v})+Al

(33)

where, m}‘ is the 1" model parameter at the kth iteration, iis the shot

index, ng is the number of shots, o is the step length, A represents the
stabilizing constant (Marquardt, 1963) and NRM is the normalization

operator.
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2.6 Algorithm of the Laplace-Fourier domain FWI using

time domain modeling

In the Laplace-Fourier domain FWI using time domain wave propagation
modeling, forward and adjoint wavefield modeling are conducted in the time
domain. The residual, virtual source, pseudo-hessian and gradient direction
are calculated in the Laplace-Fourier domain. The specific procedure is
illustrated in Figure 1. We first need to perform wave propagation modeling in
the time domain. Then, the Laplace-Fourier transform of the recorded and
modeled data is executed. Next, the residuals between the recorded and
modeled data are calculated in the Laplace-Fourier domain. Then, the inverse
Laplace-Fourier transform must be performed to calculate the adjoint
wavefield. The virtual source is obtained from the residual vector, and the
hessian is computed from the virtual source. The gradient direction is then
calculated from the adjoint wavefield and virtual source. Finally, the model

parameters are updated with the gradient direction and hessian.
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Chapter 3 Numerical Examples

3.1 Comparison of the memory and time

For the conventional Laplace-Fourier domain FWI, matrix related to model
parameters should be solved by matrix solver. When two dimensional FWI is
performed, direct matrix solver and iterative matrix solver are widely used
because using them is efficient to solve the matrix and makes easy to
parallelize the algorithm. However, when the domain becomes larger, the
more memory space is necessary. For this reason, Sirgue et al. (2008) and
Kim et al. (2013) suggested alternative approach which uses time domain
wave propagation modeling. When the forward and adjoint wavefields are
computed in the time domain, there is no memory problem because time
domain wave propagation algorithm usually needs a little size of memory. In
this section, we compared the requirement of memory and time to perform the
wave propagation modeling used in conventional Laplace-Fourier domain
FW1 algorithm and suggested Laplace-Fourier domain FWI algorithm. For the
conventional Laplace-Fourier domain FWI, finite element method (FEM) was
implemented with matrix solver and the modeling was performed in the
Laplace-Fourier domain. The suggested FWI algorithm used staggered-grid
finite-difference method (FDM) for the time domain wave propagation
modeling without matrix solver and transformed the wavefield to the Laplace-
Fourier domain to perform Laplace-Fourier domain FWI. The parameters
used for the test are in Table 1. Test was performed for the mono-frequency

and single shot data with single CPU core, because these parameters are the
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ground value for the parallel computation with muti-CPUs. 10 tests were
conducted with various domain size from 101x101 to 1001x1001. Intel®
Xeon® E5420 CPU with 32Gb of maximum memory was used for the test.
For the memory test, the highest memory usage was checked while
performing wave propagation modeling by using “gnome-system-monitor”
program. For the computing time test, Fortran90 built-in function “cpu_time”
was implemented. Domain-wise Multi-frontal Solver (DMS) suggested by
Kim and Kim (1999) was used as direct matrix solver. Test results are shown
in Table 2 and Figure 2. Required (a) memory and (b) time to perform wave
propagation modeling in the time domain using FDM and the Laplace-Fourier
domain using FEM.Figure 2. Required memory to solve the matrix is larger
than memory to perform the time domain modeling. Required time shows
same aspect as the memory requirement. It means that use of time domain
modeling without matrix solver is more efficient than using Laplace-Fourier
domain modeling with matrix solver. When there are many shot gathers to be
generated, using matrix solver has an advantage in the computing time
because it needs only one matrix factorization procedure per a frequency,
which takes most of the time. Even in that case, using time domain modeling
still has an advantage in the memory requirement. For the parallel
computation with multi-CPUs, shots are parallelized for the Laplace-Fourier
domain FWI using time domain modeling and frequencies are parallelized for

the conventional Laplace-Fourier domain FWI.
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Parameter | dx (m) | dz (m) | dt(s) nt Domain (x,z)

Value 25 25| 0.002 2000 | nx(101,101), (n=1,2,---,10)

Table 1. Parameters used for the comparison test of memory and time

FDM FEM
Domain size | Memory (Mb) | Time (s) | Memory (Mb) | Time (s)
1 101x101 1 0.458 49.3 1.076
2 201x201 3 1.847 283 4.129
3 301x301 7 3.685 620 9.88
4 401x401 10 6.61 1100 19.036
5 501x501 16 11.824 1700 31.68
6 601x601 21 17.751 2400 50.974
7 701x701 28 23.889 3500 82.478
8 801x801 35 30.695 4700 | 108.889
9 901x901 44 37.813 5500 | 147.799
10 | 1001x1001 53 48.812 6900 | 185.564

Table 2. Required memory and time to perform wave propagation modeling in

the time domain using FDM and the Laplace-Fourier domain using FEM.
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3.2 Synthetic data FWI Example

3.2.1 Model 94 synthetic onshore data

We applied the proposed algorithm to the Model 94 synthetic model (Gray
and Marfurt, 1995), which is based on the complex geometry of the Canadian
Foothills. We modified the size of the P-wave velocity model and generated
the S-wave velocity model by assuming the Poisson’s ratio as 0.25. The
density was generated from Gardner's relation (Gardner et al., 1974). The
number of shots was 301 and the shot spacing was 50 m. Each shot had 601
receivers, which were separated by 25 m. The receivers recorded signals for 8
s and recording interval was 4 ms. The velocity and density models were
15.025 km wide by 7.525 km deep. The true P-wave, S-wave velocity and
density models are shown in Figure 3. Synthetic shot gathers were computed
with staggered-grid finite-difference method which is the same algorithm used
for forward modeling and backward modeling in the inversion process.
Source wavelet that we used to generate synthetic shot gathers was ricker

wavelet with 20 Hz of maximum frequency.
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3.2.2 Laplace-Fourier domain FWI

For Laplace-Fourier-domain FWI, we used 6 different complex frequency
(s = o + w) groups sequentially. The complex frequencies and the number of
iterations for each group are given in Table 3. We used 301 shots with interval
of 50 m and 601 receivers per shot with interval of 25 m for the FWI. The
estimated source wavelet was used for FWI (Shin and Min, 2006). The initial
models are shown in Figure 4. We used models that increase linearly with the

depth for the P-wave velocity, S-wave velocity and density.

Figure 5 shows the inverted long wavelength velocity models obtained after
240 iterations of the Laplace-Fourier domain FWI. At the shallow part of the
inverted P-wave velocity and S-wave velocity, structures are similar to the
true velocity models. The overall trend of inverted velocities follows the true
velocity models with long wavelength structures. The inverted density is not
as good as inverted P-wave and S-wave velocities. These models can be used
as the initial velocity models for frequency domain FWI to obtain high-
resolution images. To verify the FWI results, we first compared Laplace-
Fourier-transformed wavefields. Figure 6 presents the Laplace-Fourier-
transformed wavefields of the 150™ shot gather obtained after 240 iterations.
As we calculated the residual in the Laplace-Fourier domain, the wavefield
fitness in the Laplace-Fourier domain is important. The results show that the
recorded wavefield and modeled wavefield transformed respect to the each
complex frequency are well fitted. Even thought, the amplitude information is
more important than the phase information for the Laplace-Fourier domain
FWI, we cannot ignore the phase information. To compare the amplitude and
phase of the wavefield together, we extracted time traces from 0.4 second to

2.0 second at the 150" shot gather made from the true model, initial model
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and inverted model, respectively. Comparison of the time traces is plotted in
Figure 7. The amplitude and phase of the time trace from the initial models
are not similar to those of the time trace from true models. However, the time
trace extracted from the inverted models fits well with the trace from the true
models. These results mean that the Laplace-Fourier domain FWI successfully
inverted the long wavelength models. To obtain the high-resolution images,
we performed frequency domain FWI with a low damping constant. We
employed the models in Figure 5 as the initial models. The complex
frequency (s = o + iw) groups used are given in Table 4. Figure 8 shows the
inverted images after 187 frequency domain FWI iterations. Figure 8(a) is the
inverted P-wave velocity. It inverted most of the structures in the true P-wave
velocity model with high-resolution and correct values. Figure 8 (b) is the
inverted S-wave velocity. The structures upper the 4-km-deep are well
inverted. However, deeper than 4 km, we cannot figure out the exact
structures. Figure 8 (c) is the inverted density. We can see the clear lines
located on the exact location, but the values are not correctly inverted. Figure
9, Figure 10 and Figure 11 present the P-wave velocity vertical profiles, S-
wave velocity vertical profiles and density vertical profiles at 1.875 km and
8.75 km from the left edge, respectively. The vertical profiles of the Laplace-
Fourier domain FWI results represent the same overall trends as the vertical
profiles of true models. These results demonstrate that the use of proposed
algorithm is acceptable because the purpose of the Laplace-Fourier FWI is to
invert the long wavelength model. The profiles of the frequency domain FWI

results are in good agreement with the profiles of true models.
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No. w (Hz) o (1/s) Iterations
1 2n x 0.1 3,579 60
2 2m x 0.3 3,579 35
3 2ntx 0.8 3,579 34
4 2m x 1.2 3,579 24
5 2nx 2.0 3,579 47
6 2m X 2.4 3,579 40

Table 3. Complex frequency groups for the Laplace-Fourier domain FWI used

to invert Model 94 synthetic data

No. w (Hz) o (1/s) Iterations
1 21 % (2.5,3.0,3.75,5.3) 0.5 40
2 | 2nx(5.3,5.6,6.2,6.8,7.5) 0.5 40
3 21 % (7.8,8.7,9.6,10.5) 1 40
4 2m x (11.25,13.2,15.6) 1 40
5 21 x (17.5,19.5) 1 27

Table 4. Complex frequency groups for the frequency domain FWI used to

invert Model 94 synthetic data
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3.3 Field data FWI Example

3.3.1 Benjamin Creek field onshore data

The Benjamin Creek data set was provided by the CSEG (Canadian Society
of Exploration Geophysicists) Workshops on Structural Imaging in the mid-
1990s. The data was recorded from Alberta, Canada. It has Canadian foothill
geometry. This data set has 143 shots with a shot spacing of 100 m, and
approximately 300 receivers per shot. The receiver spacing is 20 m, and the
terrain elevation changes as much as 300 m along the line. The velocities and
density models are 14.5 km wide by 7.0 km deep. The original shot gathers

are in Figure 12.
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3.3.2 Laplace-Fourier domain FWI

For the Laplace-Fourier FWI, we used 5 different complex frequency groups.
The complex frequencies and number of iterations for each group are listed in
Table 5. The estimated source wavelet was used for the FWI. Before the FWI,
we performed signal muting before the first arrival because the signals emerge
earlier than the first arrival can be severe noise in the Laplace-Fourier domain
FWI. Also we eliminated bad traces. The initial models of P-wave and S-wave
velocities increased linearly with the depth, and a homogeneous density

model was employed as shown in Figure 13 (a), (b) and (c), respectively.

Figure 14 shows the inverted long wavelength models for the P-wave
velocity, S-wave velocity and density after 117 iterations of the Laplace-
Fourier domain FWI. In the real seismic data, the signals are attenuated by
subsurface materials in three dimensions during propagating in the
heterogeneous Earth (Fichtner et al., 2008). The Laplace-Fourier domain FWI
uses the Laplace damping constant, allowing it to capture the three
dimensional attenuation with the two dimensional FW1 algorithm. However, it
is difficult to model the three dimensional attenuation with the two
dimensional frequency domain FWI algorithm. Therefore, we did not perform

frequency domain FWI.

To validate the Laplace-Fourier domain FWI results, we performed RTM
using the P-wave velocity. Figure 15 shows the RTM results using the initial
and inverted P-wave velocity. The RTM result obtained with the inverted
velocity gives a more detailed image of subsurface structures with a higher
concentration of lines than the result obtained with the initial velocity. For a

more detailed comparison, we first compared the reference prestack depth
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migration result from Wu et al. (1998) (Figure 16) with the RTM results from
the initial and inverted P-wave velocity. There are three major reflectors
located on about 3 km depth, 5 km depth and 7 km depth. When the accurate
velocity is used as a background velocity for RTM, the reflectors would be
located on the exact location. The reflectors in RTM result from inverted
velocity located on the same position as the reference result. However, the
reflectors in RTM result from initial velocity are not in the exact locations.
The first reflector is located on 2 km depth, the second reflector is located in 4
km depth and the third reflector is located on 5 km depth. These results mean
that the Laplace-Fourier domain FWI inverted velocity correctly. We also
compared the common image gathers (CIGs). We extracted CIGs from three
different locations: 2 km, 7 km and 10 km from the left edge of the model.
Most of the reflectors in Figure 18 are flatter than those in Figure 17. In the
Figure 18(a), most of the reflectors are flat but the reflectors in Figure 17(a)
are not at enough. The reflectors at 2 km, 3 km and 5 km depth in Figure 17(b)
are curved and not concentrated enough while the reflectors at the same
location in Figure 18(b) show better flatness and concentration. If we compare
the base rock in Figure 17(c) and Figure 18(c), we can find out that the base
rock in Figure 18(c) is well located about 6 km depth with better flatness. In
addition, we compared Laplace-Fourier-transformed wavefield of recorded
data and modeled data. In Figure 19, we plotted Laplace-Fourier-transformed
wavefields of the 60" shot gather at the last iteration of the FWI. The
waveforms of recorded data are severely fluctuating because the data is real
onshore data with foothill geometry. Even though the severe fluctuation, we
can figure out that the transformed wavefields of the modeled data are well
fitted with the transformed wavefields of the recorded data. These results

show that the wvelocity was successfully inverted by the Laplace-Fourier
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domain FWI.
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No. w (Hz) o (1/s) Iterations
1 2m % 0.3 1,35 13
2 2 X 1.2 1,35 21
3 2m X 2.4 1,3,5 23
4 21 X 3.6 1,35 30
5 2mx 5.5 1,3,5 30

Table 5. Complex frequency groups for the Laplace-Fourier domain FWI used

to invert Benjamin Creek field data.
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Chapter 4 Conclusions

We developed Laplace-Fourier domain elastic FWI using time domain wave
propagation modeling algorithm to invert the P-wave velocity, S-wave
velocity and density from elastic seismic data. We applied our new algorithm
to elastic onshore data. First, Model 94 synthetic onshore data was inverted
using the proposed FWI algorithm. After inverting the long wavelength
models, we conducted frequency domain FWI to obtain high-resolution
images. The Laplace-Fourier-transformed wavefields of the modeled and
recorded data were compared. The wavefields of the modeled data were in
good agreement with those of the recorded data. To compare the phase and
amplitude of the seismogram simultaneously, we obtained time traces from
three different seismograms by using true models, initial models and inverted
models. Time trace from inverted models shows good correlation with the
trace from true models. The vertical profiles of the P-wave and S-wave
velocities and density also show the long wavelength models were
successfully inverted from the Laplace-Fourier domain FWI. These results
show that the proposed FWI algorithm successfully inverted the long
wavelength models. Next, our algorithm was applied to Benjamin Creek field
onshore data. The RTM results obtained with the initial and inverted P-wave
velocities as the background velocity model were compared to validate our
algorithm. The lines in the migration image obtained from the inverted
velocity model were better resolved than those obtained from the initial
velocity model. Specifically, three major reflectors were compared with the
reflectors in reference depth migration image. We also compared CIGs of

each migration result. Most of the reflectors in the CIGs based on the inverted
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velocity model were flatter and more concentrated than those in the CIGs
based on the initial velocity model. Finally, we compared Laplace-Fourier-
transformed wavefields of the modeled and recorded data. The results show
that the wavefields fit well each other. However, we did not apply frequency
domain FWI to the real onshore data because it is hard to model the three
dimensional wave attenuation with the two dimensional FWI algorithm.
Through this study multi-parameters were successfully inverted with the
proposed algorithm. However, the proposed algorithm still has some limits.
First, while P-wave velocity and S-wave velocity were inverted to the right
direction, density is not well inverted. Second, complex frequencies are
selected based on the trial and error. Therefore, we need to improve the
algorithm to invert density correctly. Proper way to select the complex
frequency groups should also be studied. Moreover, the future work would

involve the extension of our algorithm to three-dimensional elastic FWI.
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