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Abstract

Gaussian process is a powerful probabilistic estimation tool which is used

widely in engineering fields such as Computer vision, Robotics and sensor net-

works, etc. This thesis implemented an estimation algorithm of the total map

with sparse sensing data using Gaussian Process. In the implemented algorithm,

two kinds of kernel functions are applied to the spatial Gaussian Process model;

squared exponential kernel and neural network kernel. The performance of the

proposed algorithm was verified by the experiments with a simple mobile sensor

network. To construct a simple mobile sensor network based on ROS (Robot

Operating System) platform, a two wheeled mobile robot (Pioneer3DX) and a

two dimensional laser scanner (SICKlms200) are used.

keywords: Gaussian Process, Mobile Sensor Network, Estimation of map.

Kernel
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Chapter 1

Introduction

In this thesis, an estimation algorithm of the total map with sparse training

data will be proposed using Gaussian Process. Compared with the existing

estimation algorithm, the proposed one is more intuitive and simpler to use.

The performance of the proposed algorithm will be verified by the experiments

with a simple mobile sensor network.

1.1 Mobile Sensor Network

A mobile sensor network (MSN) consists of mobile robots and several sensors

which are attached on the robots [Figure 1.1]. Comparing with a stationary

sensor network, it has pros and cons. The feature of mobility makes a mobile

sensor network much more flexible than a stationary sensor network for detecing

a dynamic environment or exploring an unknown area. Additionally, it is more

convenient to use than a stationary one because we don’t have to install a large

number of sensors to construct a sensor network. However, owing to this factor,

that is simplicity, it is less precise than a stationary one. For these reasons, a

mobile sensor network is widely applied on various engineering fields as well as

Robotics. Sensors can be attached to people for health monitoring, which may
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(a) (b)

Figure 1.1: Mobile Sensor Networks.

include heart rate, blood pressure etc. Animals can have sensors attached to

them in order to track their movements for research purposes. Sensors may also

be attached to mobile robots for environment mapping.

1.2 Simulataneous Localization and Mapping (SLAM)

Simultaneous localization and mapping (SLAM) is a technique used by robots

and autonomous vehicles to build up a map within an unknown environment

(without a priori knowledge), or to update a map within a known environment

(with a priori knowledge from a given map), while at the same time keeping

track of their current location.

To make use of a mobile sensor network effectively, SLAM must be solved

in advance. Without solving this problem, we cannot figure out the environ-

ment and also not be able to deal with the abrupt change of the environement.

Altough the given algorithm from this thesis is just the mapping algorithm, we

also need to talk about localization to understand the importance of mapping

problem for the mobile sensor networks.

Maps are used to determine a location within an environment and to depict

an environment for planning and navigation; they support the assessment of

2



actual location by recording information obtained from a form of perception

and comparing it to a current set of perceptions. The benefit of a map in aiding

the assessment of a location increases as the precision and quality of the current

perceptions decrease. Maps generally represent the state at the time that the

map is drawn; this is not necessarily consistent with the state of the environment

at the time the map is used.

The complexity of the technical processes of locating and mapping under

conditions of errors and noise do not allow for a coherent solution of both tasks.

Simultaneous localization and mapping (SLAM) is a concept that binds these

processes in a loop and therefore supports the continuity of both aspects in

separated processes; iterative feedback from one process to the other enhances

the results of both consecutive steps.

Mapping is the problem of integrating the information gathered by a set

of sensors into a consistent model and depicting that information as a given

representation. It can be described by the first characteristic question, What

does the world look like? Central aspects in mapping are the representation of

the environment and the interpretation of sensor data.

In contrast to this, localization is the problem of estimating the place (and

pose) of the robot relative to a map; in other words, the robot has to answer

the second characteristic question, Where am I? Typically, solutions comprise

tracking, where the initial place of the robot is known, and global localization,

in which no or just some a priori knowledge of the environmental characteristics

of the starting position is given.

SLAM is therefore defined as the problem of building a model leading to

a new map, or repetitively improving an existing map, while at the same time

localizing the robot within that map. In practice, the answers to the two char-

acteristic questions cannot be delivered independently of each other.

SLAM can be thought of as a chicken or egg problem: An unbiased map
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is needed for localization while an accurate pose estimate is needed to build

that map. This is the starting condition for iterative mathematical solution

strategies.

Beyond, the answering of the two characteristic questions is not as straight-

forward as it might sound due to inherent uncertainties in discerning the robot’s

relative movement from its various sensors. Generally, due to the budget of noise

in a technical environment, SLAM is not served with just compact solutions,

but with a bunch of physical concepts contributing to results.

If at the next iteration of map building the measured distance and direction

traveled has a budget of inaccuracies, driven by limited inherent precision of

sensors and additional ambient noise, then any features being added to the map

will contain corresponding errors. Over time and motion, locating and mapping

errors build cumulatively, grossly distorting the map and therefore the robot’s

ability to determine its actual location and heading with sufficient accuracy.

There are various techniques to compensate for errors, such as recogniz-

ing features that it has come across previously (i.e., data association or loop

closure detection), and re-skewing recent parts of the map to make sure the

two instances of that feature become one. Statistical techniques used in SLAM

include Kalman filters, particle filters (aka. Monte Carlo methods) and scan

matching of range data. They provide an estimation of the posterior proba-

bility function for the pose of the robot and for the parameters of the map.

Set-membership techniques are mainly based on interval constraint propaga-

tion [1] [2]. They provide a set which encloses the pose of the robot and a set

approximation of the map.

1.3 Occupancy Grid Map

For the two dimensional mapping problem, a mobile robot with a laser scanner

would be the most suitable mobile sensor network. Exploring the target area
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Figure 1.2: An occupancy grid map which plots a single frame of laser scanner.

(White pixel : Unoccupied, Gray pixel : Unknown, Black pixel : Occupied)

by a mobile sensor network, we can collect the data set for the mapping. Then

an occupancy grid map is contructed with the collected data set from a laser

scanner [Figure 1.2]. This map would be made up with pixels that contains

information whether the corresponding space is occupied or not. So we call

this map an occupancy grid map. Since the introduction of the occupancy grid

maps in the late 1980’ s by Elfes and Moravec [3], they have been widely used

throughout the mobile robotics community. Their simplicity and computational

efficiency have made occupancy grid map popular particularly when mapping

indoor environments and they can be easily adapted to process data from a

wide range of sensors as laser scanner [4].

However, despite their widespread success, occupancy grid models have a

number of drawbacks. Perhaps the most obvious is the manner in which occu-

pancy grids decompose high dimensional mapping problems into single dimen-

sional calculations by making the ‘independence between cells’ assumption:

The probability of each cell being occupied is solely dependent on the rays
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which pass through it and is not influenced in any way by the status of neigh-

bouring cells. This simplification ignores the fact that in the real-world, cells

of occupancy are not distributed randomly over the environment but rather

there exists a spatial correlation between cells due to the physical structure of

objects and environment. The independency assumption frequently results in

cells of high uncertainty in regions where spatial context could assist in deter-

mining the state of a cell. This is perhaps most clearly seen in occluded areas

or segments between sensor beams.

A number of other drawbacks to the traditional occupancy grids include the

fact that they are constrained to representing structures at a single scale, suffer

from discretisation errors, and require large amounts of memory to represent

3D environments at any reasonable level of detail.
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Chapter 2

Related Work

2.1 Mapping

SLAM in the mobile robotics community generally refers to the process of

creating geometrically consistent maps of the environment. Topological maps

are a method of environment representation which capture the connectivity

(i.e., topology) of the environment rather than creating a geometrically accurate

map. As a result, algorithms that create topological maps are not referred to

as SLAM.

SLAM is tailored to the available resources, hence not aimed at perfec-

tion, but at operational compliance. The published approaches are employed in

unmanned aerial vehicles, autonomous underwater vehicles, planetary rovers,

newly emerging domestic robots and even inside the human body [5].

It is generally considered that ”solving” the SLAM problem has been one of

the notable achievements of the robotics research in the past decades [6]. The

related problems of data association and computational complexity are among

the problems yet to be fully resolved.

A significant recent advance in the feature based SLAM literature involved

the re-examination of the probabilistic foundation for Simultaneous Localisation

7



and Mapping (SLAM) where it was posed in terms of multi-object Bayesian

filtering with random finite sets that provide superior performance to leading

feature-based SLAM algorithms in challenging measurement scenarios with high

false alarm rates and high missed detection rates without the need for data

association [7].

2.2 Sensing and Locating

SLAM will always use several different types of sensors to acquire data with

statistically independent errors. Statistical independence is the mandatory re-

quirement to cope with metric bias and with noise in measures.

Such optical sensors may be one dimensional (single beam) or 2D- (sweep-

ing) laser rangefinders, 3D Flash LIDAR, 2D or 3D sonar sensors and one or

more 2D cameras. Since 2005, there has been intense research into VSLAM (vi-

sual SLAM) using primarily visual (camera) sensors, because of the increasing

ubiquity of cameras such as those in mobile devices [8].

Recent approaches apply quasi-optical wireless ranging for multi-lateration

(RTLS) or multi-angulation in conjunction with SLAM as a tribute to erratic

wireless measures.

A special kind of SLAM for human pedestrians uses a shoe mounted inertial

measurement unit as the main sensor and relies on the fact that pedestrians

are able to avoid walls. This approach called FootSLAM can be used to au-

tomatically build floor plans of buildings that can then be used by an indoor

positioning system [9].

The results from sensing will feed the algorithms for locating. According to

propositions of geometry, any sensing must include at least one lateration and

(n+1) determining equations for an n-dimensional problem. In addition, there

must be some additional a priori knowledge about orienting the results versus

absolute or relative systems of coordinates with rotation and mirroring.
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2.3 Probabilistic Solution for Mapping Problem

Many papers have attempted to address the problematic issues inherent in the

occupancy grid with varying degrees of success. One interesting approach is

the use of forward models [10]. Let m denote the map or the robot’ s physical

surroundings and z the observation. Forward models consider p(z|m) rather

than the traditional inverse model p(m|z). This enables the likelihood of the

sensor measurements to be calculated and the problem becomes an optimization

task in the original high dimensional space. The method works particularly

well with sonar where large beam-width would normally result in “regions of

conflict” around narrow openings where certain cells appear to be both occupied

and non-occupied. Optimizing the likelihood in the original high dimensional

space using the Expectation Maximisation (EM) algorithm helps to resolve

this issue. An unfortunate drawback with this approach is the requirement to

optimise the map each time an update is computed which may be impractical

for online applications.

Pagac et al. [11] tried to overcome this independence assumption by devel-

oping an accurate model of range sensor performance and using the Dempster-

Shafer inference rule to fuse the sensor readings into the map. While this evi-

dential approach worked well with sonar because of its wide beam, the method

has limited value when using a narrow-beam sensor such as a laser.

Paskin [12] proposed using of polygonal random fields to geometrically rep-

resent occupancy based on a consistent probability distribution over the envi-

ronment. This created a dependency between regions allowing for inference in

regions of the map which were not scanned by the sensor. A significant disad-

vantage of this approach is the computation required to get the random fields

to converge, as noted by the authors. Even for reasonably sized indoor datasets,

the random fields can take several hours to converge to a final representation.

The Gaussian process is a non-parametric method which is frequently used

9



to solve regression and classification problems [13]. Gaussian processes have

previously been used with great success in mobile robotics. As the extension of

regression problem, Gaussian Process has also inspired the contextual mapping

of the unknown area[14]. The Gaussian process’ ability to learn behavioral char-

acteristics of non-linear, non-parametric functions has resulted in their growing

use in modeling real world phenomena [15].
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Chapter 3

Gaussian Process (GP)

There are several ways to interpret Gaussian process (GP) regression models.

One can think of a Gaussian process as defining a distribution over functions,

and inference taking place directly in the space of functions, the function-space

view. Although this view is appealing it may initially be difficult to grasp, so we

start our exposition in [Section 3.1] with the equivalent weight-space view which

may be more familiar and accessible to many, and continue in [Section 3.2] with

the function-space view. Gaussian processes often have characteristics that can

be changed by setting certain parameters and in [Section 3.4] we discuss how

the properties change as these parameters are varied. The predictions from a

GP model take the form of a full predictive distribution.

3.1 Weight-space View

The simple linear regression model where the output is a linear combination of

the inputs has been studied and used extensively. Its main virtues are simplic-

ity of implementation and interpretability. Its main drawback is that it only

allows a limited flexibility; if the relationship between input and output can-

not reasonably be approximated by a linear function, the model will give poor
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predictions.

In this section we first discuss the Bayesian treatment of the linear model.

We then make a simple enhancement to this class of models by projecting the

inputs into a high-dimensional feature space and applying the linear model

there. We show that in some feature spaces one can apply the “kernel trick” to

carry out computations implicitly in the high dimensional space; this last step

leads to computational savings when the dimensionality of the feature space is

large compared to the number of data points.

We have a training set D of n observations, D = {(xi, yi) | i = 1, · · · , n},

where D denotes an input vector (covariates) of dimension D and y denotes a

scalar output or target (dependent variable); the column vector inputs for all n

cases are aggregated in the D×n design matrix X, and the targets are collected

in the vector y, so we can write D = (X,y). In the regression setting the targets

are real values. We are interested in making inferences about the relationship

between inputs and targets, i.e. the conditional distribution of the targets given

the inputs (but we are not interested in modelling the input distribution itself).

3.1.1 The Standard Linear Model

We will review the Bayesian analysis of the standard linear regression model

with Gaussian noise

f(x) = x⊤w

y = f(x) + ε

ε ∼ Normal(0, σ2n)

where x is the input vector, w is a vector of weights (parameters) of the linear

model, f is the function value and y is the observed target value. Often a bias

weight or offset is included, but as this can be implemented by augmenting the

input vector x with an additional element whose value is always one, we do not

12



explicitly include it in our notation. We have assumed that the observed values

y differ from the function values f(x) by additive noise, and we will further

assume that this noise follows an independent, identically distributed Gaussian

distribution with zero mean and variance σ2n
This noise assumption together with the model directly gives rise to the

likelihood, the probability density of the observations given the parameters,

which is factored over cases in the training set (because of the independence

assumption) to give

p(y|X,w) =

n∏
i=1

p(yi|xi,w)

=

n∏
i=1

1√
2πσn

exp(−(yi − x⊤w)2

2σ2n
)

=
1√

(2πσ2n)
n
exp(− 1

2σ2n
|y −X⊤w|2)

= Normal(X⊤w, σ2nI)

wehre |z| denotes the Euclidean length of vector z. In the Bayesian formalism

we need to specify a prior over the parameters, expressing our beliefs about the

parameters before we look at the observations. We put a zero mean Gaussian

prior with covariance matrix Σp on the weights

w ∼ Noraml(0,Σp). (3.1)

The role and properties of this prior will be discussed in [Section 3.2]; for now

we will continue the derivation with the prior as specified.

Inference in the Bayesian linear model is based on the posterior distribution

over the weights, computed by Bayes’ rule,

posterior =
likelihood× prior

marginal likelihood

p(w|y, X) =
p(y|X,w)p(w)

p(y|X)

13



where the normalizing constant, also known as the marginal likelihood, is inde-

pendent of the weights and given by

p(y|X) =

∫
p(y|X,w)p(w)dw (3.2)

The posterior combines the likelihood and the prior, and captures everything

we know about the parameters. Writing only the terms from the likelihood and

prior which depend on the weights, and “completing the square” we obtain

p(w|X,y) ∼ exp(− 1

2σ2n
(y −X⊤w)⊤(y −X⊤w))exp(−1

2
w⊤Σ−1

p w)

∼ exp(−1

2
(w −w)⊤(

1

σ2n
XX⊤ +Σ−1

p )(w −w))

where w = σ−2
n (σ−2

n XX⊤ +Σ−1
p )−1Xy, and we recognize the form of the pos-

terior distribution as Gaussian with mean w and covariance A−1

p(w|X,y) ∼ Normal(w =
1

σ2n
A−1Xy, A−1), (3.3)

where A = σ−2
n XX⊤ + Σ−1

p . Notice that for this model (and indeed for any

Gaussian posterior) the mean of the posterior distribution p(w|y, X) is also its

mode, which is also called the maximum a posteriori (MAP) estimate of w.

In a non-Bayesian setting the negative log prior is sometimes thought of as a

penalty term, and the MAP point is known as the penalized maximum likeli-

hood estimate of the weights, and this may cause some confusion between the

two approaches. Note, however, that in the Bayesian setting the MAP estimate

plays no special role.

To make predictions for a test case we average over all possible parame-

ter values, weighted by their posterior probability. This is in contrast to non-

Bayesian schemes, where a single parameter is typically chosen by some crite-

criterion. Thus the predictive distribution for f∗
def
= f(x∗) at x∗ is given by
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averaging the output of all possible linear models w.r.t. the Gaussian posterior

p(f∗|x∗, X,y) =
∫
p(f∗|x∗,w)p(w|X,y)dw

= Normal(
1

σ2∗
x⊤
∗ A

−1Xy,x⊤
∗ A

−1x∗)

The predictive distribution is again Gaussian, with a mean given by the pos-

terior mean of the weights multiplied by the test input, as one would expect

from symmetry considerations. The predictive variance is a quadratic form of

the test input with the posterior covariance matrix, showing that the predictive

uncertainties grow with the magnitude of the test input, as one would expect

for a linear model.

3.1.2 Projections of Inputs into Feature Space

We can figure out that the linear model suffers from limited expressiveness. A

very simple idea to overcome this problem is to first project the inputs into

some high dimensional space using a set of basis functions and then apply

the linear model in this space instead of directly on the inputs themselves.

For example, a scalar input x could be projected into the space of powers of

x : ϕ(x) = (1, x, x2, x3, · · · )⊤ to implement polynomial regression. As long as

the projections are fixed functions (i.e. independent of the parameters w) the

model is still linear in the parameters, and therefore analytically tractable.

Specifically, we introduce the function ϕ(x) which maps a D-dimensional

input vector x into N dimensional feature space. Further let the matrix Φ(X)

be the aggregation of columns ϕ(x) for all cases in the training set. Now the

model is

f(x) = ϕ(x)⊤w (3.4)

where the vector of parameters now has length N . The analysis for this model

is analogous to the standard linear model, except that everywhere Φ(X) is
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substituted for X. Thus the predictive distribution becomes

f∗|x∗, X,y ∼ Normal(
1

σ2n
ϕ(x∗)

⊤A−1Φy, ϕ(x∗)
⊤A−1ϕ(x∗)) (3.5)

with Φ = Φ(X) and A = σ−2
n ΦΦ⊤ + Σ−1

p . To make predictions using this

equation we need to invert the A matrix of size N × N which may not be

convenient if N , the dimension of the feature space, is large. However, we can

rewrite the equation in the following way

f∗|x∗, X,y ∼ Normal(ϕ⊤ΣpΦ(K+σ2nI)−1y, ϕ⊤∗ Σpϕ∗−σ⊤∗ ΣpΦ(K+σ2nI)−1Φ⊤Σpϕ∗),

(3.6)

where we have used the shorthand ϕ(x∗) = ϕ∗ and defined K = Φ⊤ΣpΦ. To

show this for the mean, first note that using the definitions of A and K we have

σ−2
n Φ(K + σ2nI) = σ−2

n Φ(Φ⊤ΣpΦ + σ2nI) = AΣpΦ. Now multiplying through by

A−1 from left and (K+σ2nI)−1 from the right gives σ−2
n A−1Φ = ΣpΦ(K+σ2nI)−1,

showing the equivalence of the mean expressions in two previous equations.

Geometrically, note that n datapoints can span at most n dimensions in the

feature space.

Notice that in previous equations the feature space always enters in the form

of Φ⊤ΣpΦ, ϕ
⊤
∗ ΣpΦ, orϕ

⊤
∗ Σpϕ∗; thus the entries of these matrices are invariably of

the form ϕ(x)⊤Σpϕ(x′) where x and x′ are in either the training or the test sets.

Let us define k(x,x′) = ϕ(x)⊤Σpϕ(x′). For reasons that will become clear later

we call k(·,·) a covariance function or kernel. Notice that ϕ(x)⊤Σpϕ(x′) is an

inner product (with respect to Σp). As Σp is positive definite we can define Σ
1/2
p

so that (Σ
1/2
p )2 = Σp; for example if the SVD (singular value decomposition)

of Σp = UDU⊤, where D is diagonal, then one form for Σ
1/2
p is UD1/2U⊤.

Then defining ψ(x) = Σ
1/2
p ϕ(x) we obtain a simple dot product represenstation

k(x,x′) = ψ(x)·ψ(x′).

If an algorithm is defined solely in terms of inner products in input space

then it can be lifted into feature space by replacing occurrences of those inner
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products by k(x,x′); this is sometimes called the kernel trick. This technique is

particularly valuable in situations where it is more convenient to compute the

kernel than the feature vectors themselves. As we will see in the coming sections,

this often leads to considering the kernel as the object of primary interest, and

its corresponding feature space as having secondary practical importance.

3.2 Function-space View

An alternative and equivalent way of reaching identical results to the previous

section is possible by considering inference directly in function space. We use a

Gaussian process (GP) to describe a distribution over functions. Formally we

define a Gaussian process as a collection of random variables, any finite number

of which have a joint Gaussian distribution.

A Gaussian process is completely specified by its mean function and co-

variance function. We define mean function m(x) and the covariance function

k(x,x′) of a real process f(x) as

m(x) = E [f(x)]

k(x,x′) = E
[
(f(x −m(x))(f(x′ −m(x′))

]
and will write the Gaussian process as

f(x) ∼ GP(m(x), k(x,x′)) (3.7)

Usually, for notational simplicity we will take the mean function to be zero.

In our case the random variables represent the value of the function f(x)

at location x. Often, Gaussian processes are defined over time, i.e. where the

index set of the random variables is time. This is not (normally) the case in

our use of Gaussian processes; here the index set X is the set of possible inputs,

which could be more general, e.g. RD. For notational convenience we use the

(arbitrary) enumeration of the cases in the training set to identify the random
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variables such that fi
def
= f(xi) is the random variable corresponding th the case

(xi, yi) as would be expected.

A Gaussian process is defined as a collection of random variables. Thus,

the definition automatically implies a consistency requirement, which is also

sometimes known as the marginalization property. This property simply means

that if the Gaussian process e.g. specifies (y1, y2) ∼ Normal(−→µ ,Σ), then it

must also specify y1 ∼ Normal(µ1,Σ11) where Σ11 is the relevant submatrix

of Σ. In other words, examination of a larger set of variables does not change

the distribution of the smaller set. Notice that the consistency requirement is

automatically fulfilled if the covariance function specifies entries of the covari-

ance matrix. The definition does not exclude Gaussian processes with finite

index sets (which would be simply Gaussian distributions), but these are not

particularly interesting for our purposes.

A simple example of a Gaussian process can be obtained from our Bayesian

linear regression model f(x) = ϕ(x)⊤w with prior w ∼ Normal(0,Σp). We

have for the mean and covariance

E [f(x)] = ϕ(x)⊤E [w] = 0,

E
[
f(x)f(x′)

]
= ϕ(x)⊤E

[
ww⊤

]
ϕ(x′) = ϕ(x)⊤Σpϕ(x′).

Thus f(x) and f(x′) are jointly Gaussian with zero mean and covariance given

by ϕ(x)⊤Σpϕ(x′). Indeed, the function values f(x1), ...,xn corresponding to

any number of input points n are jointly Gaussian, although if N < n then this

Gaussian is singular (as the joint covariance matrix will be of rank N).

In this chapter our running example of a covariance function will be the

squared exponential (SE) covariance function. The covariance function specifies

the covariance between pairs of random variables

cov(f(xp), f(xq)) = k(xp,xq) = exp(−1

2
|xp − xq|2). (3.8)
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Note, that the covariance between the outputs is written as a function of the

inputs. For this particular covariance function, we see that the covariance is

almost unity between variables whose corresponding inputs are very close, and

decreases as their distance in the input space increases.

It can be shown that the squared exponential covariance function corre-

sponds to a Bayesian linear regression model with an infinite number of basis

functions. Indeed for every positive definite covariance function k(·,·), there

exists a (possibly infinite) expansion in terms of basis functions. We can also

obtain the SE covariance function from the linear combination of an infinite

number of Gaussian-shaped basis functions.

The specification of the covariance function implies a distribution over func-

tions. To see this, we can draw samples from the distribution of functions eval-

uated at any number of points; in detail, we choose a number of input points,

X∗ and write out the corresponding covariance matrix using Equation 3.8 el-

ementwise. Then we generate a random Gaussian vector with this covariance

matrix

f∗ ∼ Normal(0,K(X∗, X∗)) (3.9)

and plot the generated values as a function of the inputs. Figure 3.1 shows three

such samples.

In the example in Figure 3.1 the input values were equidistant, but this need

not be the case. Notice that “informally” the functions look smooth. In fact the

squared exponential covariance function is infinitely differentiable, leading to

the process being infinitely mean-square differentiable. We also see that the

functions seem to have a characteristic length-scale, which informally can be

thought of as roughly the distance you have to move in input space before

the function value can change significantly. For Equation 3.8 the characteristic

length-scale is around one unit. By replacing |p−q| by |p−q|/l in Equation 3.8

for some positive constant l we could change the characteristic length-scale of
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(a) (b)

Figure 3.1: Panel (a) shows three functions drawn at random from a GP prior;

the dots indicate values of y actually generated; the two other functions have

(less correctly) been drawn as lines by joining a large number of evaluated

points. Panel (b) shows three random functions drawn from the posterior, i.e.

the prior conditioned on the five noise free observations indicated. In both plots

the shaded area represents the pointwise mean plus and minus two times the

standard deviation for each input value (corresponding to the 0.95 confidence

region), for the prior and posterior respectively.

the process. Also, the overall variance of the random function can be controlled

by a positive pre-factor before the exp in Equation 3.8. We will discuss more

about how such factors affect the predictions in [Section 3.4].

3.2.1 Prediction with Noise-free Observations

We are usually not primarily interested in drawing random functions from the

prior, but want to incorporate the knowledge that the training data provides

about the function. Initially, we will consider the simple special case where

the observations are noise free, that is we know {(xi, fi)|i = 1, ..., n}. The joint

distribution of the training outputs, f , and the test outputs f∗ according to the
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prior is  f

f∗

 ∼ Normal(0,

K(X,X) K(X,X∗)

K(X∗, X) K(X∗, X∗)

) (3.10)

If there are n training points and n∗ test points then K(X,X∗) denotes the

n × n∗ matrix of the covariances evaluated at all pairs of training and test

points, and similarly for the other entries K(X,X), K(X∗, X∗) and K(X∗, X).

To get the posterior distribution over functions we need to restrict this joint

prior distribution to contain only those functions which agree with the observed

data points. Graphically in Figure 3.1 we may think of generating functions from

the prior, and rejecting the ones that disagree with the observations, although

this strategy would not be computationally very efficient. Fortunately, in prob-

abilistic terms this operation is extremely simple, corresponding to conditioning

the joint Gaussian prior distribution on the observations to give

f∗|X∗, X, f ∼

Normal(K(X∗, X)K(X,X)−1f,K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗))

(3.11)

Function values f∗ (corresponding to test inputs X∗) can be sampled from the

joint posterior distribution by evaluating the mean and covariance matrix from

Equation 3.11.

Figure 3.1(b) shows the results of these computations given the five data-

points marked with + symbols. Notice that it is trivial to extend these computa-

tions to multidimensional inputs – one simply needs to change the evaluation of

the covariance function in accordance with Equation 3.8, although the resulting

functions may be harder to display graphically.

3.2.2 Prediction using Noisy Observations

It is typical for more realistic modelling situations that we do not have access

to function values themselves, but only noisy versions thereof y = f(x) + ε.
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Assuming additive independent identically distributed Gaussian noise ε with

variance ε2n, the prior on the noisy observations becomes

cov(yp, yq) = k(xp,xq) + σ2nδpq

or

cov(y) = K(X,X) + σ2n,

(3.12)

where δpq is a Kronecker delta which is one iff p = q and zero otherwise. It follows

from the independence assumption about the noise, that a diagonal matrix is

added, in comparison to the noise free case, Equation 3.8. Introducing the noise

term in Equation 3.10. we can write the joint distribution of the observed target

values ans the function values at the test locations under the prior asy

f∗

 ∼ Normal(0,

K(X,X) + σ2n K(X,X∗)

K(X∗, X) K(X∗, X∗)

). (3.13)

Deriving the conditional distribution corresponding to Equation 3.11 we arrive

at the key predictive equations for Gaussian process regression

f∗|X,y, X∗ ∼ Normal(f∗, cov(f∗)), where (3.14)

f∗ = E [f∗|X,y, X∗] = K(X∗, X)
[
K(X,X) + σ2nI

]−1 y (3.15)

cov(f∗) = K(X∗, X∗)−K(X∗, X)
[
K(X,X) + σ2nI

]−1
K(X,X∗). (3.16)

Notice that we now have exact correspondence with the weight space view when

identifying K(C,D) = Φ(C)⊤ΣpΦ(D), where C,D stand for either X or X∗. For

any set of basis functions, we can compute the corresponding covariance func-

tion k, there esxists a (possibly infinite) expansion in terms of basis functions.

The expressions involving K(X,X), K(X,X∗) and K(X∗, X∗) etc. can look

rather unwieldy, so we now introduce a compact form of the notation setting

K = K(X,X) and K = K(X,X∗). In the case that there is only one test point

x∗ we write k(x∗) = k∗ to denote the vector of covariances between the test
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point and the n training points. Using this compact notation and for a single

test point x∗, Equation 3.15 and Equation 3.16 reduce to

f∗ = k⊤
∗ (K + σ2nI)−1y, (3.17)

V [f∗] = k(x∗,x∗)− k⊤
∗ (K + σ2nI)−1k∗. (3.18)

Let us examine the predictive distribution as given by equations Equation 3.17

and Equation 3.18. Note first that the mean prediction Equation 3.17 is a linear

combination of observations y; this is sometimes referred to as a linear predictor.

Another way to look at this equation is to see it as a linear combination of n

kernel functions, each one centered on a training point, by writing

f(x∗) =

n∑
i=1

αik(xi,x∗) (3.19)

where −→α = (K + σ2nI)−1y. The fact that the mean prediction for f(x∗) can

be written as Equation 3.19. We can understand this result intuitively because

although the GP defines a joint Gaussian distribution over all of the y variables,

one for each point in the index set X, for making predictions at x∗ we only care

about the (n+1)-dimensional distribution defined by the n training points and

the test point. As a Gaussian distribution is marginalized by just taking the

relevant block of the joint covariance matrix, it is clear that conditioning this

(n+1)-dimensional distribution on the observations gives us the desired result.

A graphical model representation of a GP is given in Figure 3.2.

Note also that the variance in Equation 3.16 does not depend on the ob-

served targets, but only on the inputs; this is a property of the Gaussian

distribution. The variance is the difference between two terms: the first term

K(X∗, X∗) is simply the prior covariance; from that is subtracted a (positive)

term, representing the information the observations gives us about the function.

We can very simply compute the predictive distribution of test targets y∗ by

adding σ2nI to the variance in the expression for cov(f∗).
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Figure 3.2: Graphical model (chain graph) for a GP for regression. Squares

represent observed variables and circles represent unknowns. The thick hori-

zontal bar represents a set of fully connected nodes. Note that an observation

yi is conditionally independent of all other nodes given the corresponding latent

variable, fi. Because of the marginalization property of GPs addition of further

inputs, x, latent variables, f , and unobserved targets, y∗, does not change the

distribution of any other variables.

The predictive distribution for the GP model gives more than just point-

wise errorbars of the simplified Equation 3.18. Although not stated explicitly,

Equation 3.16 holds unchanged when X∗ denotes multiple test inputs; in this

case the covariance of the test targets are computed (whose diagonal elements

are the pointwise variances). In fact, Equation 3.15 is the mean function and

Equation 3.16 the covariance function of the (Gaussian) posterior process. The

posterior covariance is illustrated in Figure 3.3.

It will be useful to introduce the marginal likelihood (or evidence) p(y|X)

at this point. The marginal likelihood is the integral of the likelihood times the

prior

p(y|X) =

∫
p(y|f, X)p(f|X)df. (3.20)

The term marginal likelihood refers to the marginalization over the function

values f. Under the Gaussian process model the prior is Gaussian, f|X ∼
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(a) (b)

Figure 3.3: Panel (a) is identical to Figure 3.1(b) showing three random func-

tions drawn from the posterior. Panel (b) shows the posterior co-variance be-

tween f(x) and f(x′) for the same data for three different values of x′. Note,

that the covariance at close points is high, falling to zero at the training points

(where there is no variance, since it is a noise-free process), then becomes nega-

tive, etc. This happens because if the smooth function happens to be less than

the mean on one side of the data point, it tends to exceed the mean on the

other side, causing a reversal of the sign of the covariance at the data points.

Note for contrast that the prior covariance is simply of Gaussian shape and

never negative.

Normal(0,K), or

log p(f|X) = −1

2
f⊤K−1f − 1

2
log|K| − n

2
log2π, (3.21)

and the likelihood is a factorized Gaussian y|f ∼ Normal(f, σ2nI) so we can

perform the integration yielding the log marginal likelihood

logp(y|X) = −1

2
y⊤(K + σ2nI)−1y − 1

2
log|K + σ2nI| − n

2
log2π (3.22)

This result can also be obtained directly by observing that y ∼ Normal(0,K+

σ2nI).
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3.3 Varying Hyperparameters

Typically the covariance functions that we use will have some free parameters.

For example, the squared-exponential covariance function in one dimension has

the following form

ky(xp, xq) = σ2f exp(−
1

2l2
(xp − xq)

2) + σ2nδpq (3.23)

The covariance is denoted ky as it is for the noisy targets y rather than for the

underlying function f . Observe that the length-scale l, the signal variance σ2f
and the noise variance σ2n can be varied. In general we call the free parameters

hyperparameters.

In Figure 3.4, we will explore the effects of varying the hyperparameters

on GP prediction. Consider the data shown by + signs in Figure 3.4(a). This

was generated from a GP with the SE kernel with (l, σf , σn) = (1,1,0.1).

The figure also shows the 2 standard-deviation error bars for the predictions

obtained using these values of the hyperparameters, using Equation 3.16. Notice

how the error bars get larger for input values that are distant from any training

points. Indeed if the x-axis were extended one would see the error bars reflect

the prior standard deviation of the process σf away from the data.

If we set the length-scale shorter so that l = 0.3 and kept the other pa-

rameters the same, then generating from this process we would expect to see

plots like those in Figure 3.4(a) except that the x-axis should be rescaled by a

factor of 0.3; equivalently if the same x-axis was kept as in Figure 3.4(a) then

a sample function would look much more wiggly.

If we make predictions with a process with l = 0.3 on the data generated

from the l = 1 process then we obtain the result in Figure 3.4(b). The remaining

two parameters were set by optimizing the marginal likelihood, as explained in

Section 4.2. In this case the noise parameter is reduced to σn=0.00005 as the

greater flexibility of the “signal” means that the noise level can be reduced. This

26



(a) (b)

(c)

Figure 3.4: (a) Data is generated from a GP with hyperparameters (l, σf , σn) =

(1, 1, 0.1), as shown by the + symbols. Using Gaussian process prediction with

these hyperparameters we obtain a 0.95 confidence region for the underlying

function f (shown in grey). Panels (b) and (c) again show the 0.95 confidence

region, but this time for hyperparameter values (0.3, 1.08, 0.00005) and (3.0,

1.16, 0.89) respectively.

can be observed at the two datapoints near x=2.5 in the plots. In Figure 3.4(a)

(l = 1) these are essentially explained as a similar function value with differing

noise. However, in Figure 3.4(b) (l = 0.3) the noise level is very low, so these two

points have to be explained by a sharp variation in the value of the underlying

function f . Notice also that the short length-scale means that the error bars in
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Figure 3.4(b) grow rapidly away from the datapoints.

In contrast, we can set the length-scale longer, for example to l = 3, as shown

Figure 3.4(c). Again the remaining two parameters were set by optimizing the

marginal likelihood. In this case the noise level has been increased to σn = 0.89

and we see that the data is now explained by a slowly varying function with a

lot of noise.

Of course we can take the position of a quickly-varying signal with low

noise, or a slowly-varying signal with high noise to extremes; the former would

give rise to a white-noise process model for the signal, while the latter would

give rise to a constant signal with added white noise. Under both these models

the datapoints produced should look like white noise. However, studying Fig-

ure 3.4(a) we see that white noise is not a convincing model of the data, as the

sequence of y’ s does not alternate sufficiently quickly but has correlations due

to the variability of the underlying function. Of course this is relatively easy to

see in one dimension, but methods such as the marginal likelihood discussed in

Section 4.2 generalize to higher dimensions and allow us to score the various

models. In this case the marginal likelihood gives a clear preference for (l, σf ,

σn)=(1,1,0.1) over the other two alternatives.
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Chapter 4

GP Applied to Mapping Problem

The occupancy grid map can be treated as a form of classification problem. A

Gaussian Process is used to identify regions of occupancy, unoccupancy and

uncenrtainty based on probability threshold. This section is divided up into

two parts. The primary equations of the Gaussian Process are first discussed

and some explanations about covariance functions are given. The following part

introduce the optimization methods for the covariance function and finally pro-

vides an overview of the total classification process.

4.1 Overview of Contextual Mapping

The occupancy grid map by GP is based upon the Gaussian Process’ ability to

predict p(O|x), where O is the occupancy hypothesis (generally output of the

function) and x represents a physical location within the map (generally input

for the function). In this thesis, xi is assumed to be two dimensional, however it

is relatively straightforward to extend the theory to three dimensions. Oi is es-

sentially a class, either occupied or unoccupied, referenced by its corresponding

location, xi.

The Gaussian process is used to fit a likelihood function to the training
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data {xi, yi}i=1:n where n is the number of training points and yi represents

occupancy (+1) or nonoccupancy (−1) at a given location. The resulting con-

tinuous function can then be used to interpolate between data points to predict

the occupancy probability in unscanned and occluded regions.

The Gaussian process itself can be viewed as a distribution over functions

and inference takes place directly in the space of functions. By assuming that

all occupancy hypotheses, indexed by their corresponding location in the envi-

ronment, are jointly Gaussian, we obtain

f(x∗) = Normal(µ, σ). (4.1)

where

µ = k(x∗,x)T [K(x,x) + σ2nI]
−1y (4.2)

σ = k(x∗,x∗)− k(x∗,x)[K(x,x) + σ2nI]
−1k(x,x∗) (4.3)

Here, x∗ refers to a query or test location, y represents the noisy target

data, σ2n the variance of the global noise, and K is the covariance matrix.

Typically, the data is scaled to have an empirical mean, µ, of 0. The elements

of the covariance matrix Kij = k(xi,xj) are defined depending on a covariance

function k parameterized by hyperparameters θ. The global noise variance is

taken to be quite low based on the fact that σ2n relates to the output, Oi or

the sensor’s ability to detect occupancy/non-occupancy, and is not an input

noise originating from uncertatinty in the sensor’s bearing and range readings.

A detailed explanation and derivation of the Gaussian process can be found in

[13].

The trained covariance function is used to represent prior knowledge ob-

tained about the underlying function f(·). Due to the non-stationary behaviour
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of typical map datasets (sudden changes from non-occupied to occupied re-

gions), the commonly used squared exponential covariance function with its

smoothing properties

k(x,x∗) = σ2f exp
[
(x − x∗)

TΣ−1(x − x∗)
]

(4.4)

is not suitable for this application. The neural network covariance function

is non-stationary and is capable of modeling the sharp shifts in the trend of

f(·).

The covariance function is derived from a neural network with a single layer,

a bias and N hidden units. It is demonstrated in [16] that as the number of

units tends towards infinity, the network becomes a universal approximator

for a wide range of transfer functions. By employing the error function as the

neutral network’ s transfer function and allowing the number of hidden units to

increase to infinity, [17] and [18] show that the following covariance function can

be derived where the hidden weights are chosen to be Gaussian distributions

with zero mean and a learnt covariance of Σ,

k(x,x∗) = σ2f arcsin( 2x̃TΣx̃∗√
(1 + 2x̃TΣx̃)(1 + 2x̃∗

TΣx̃∗)
). (4.5)

Here, x̃ = (1,x1, · · · ,xd)
T is an augmented vector and σ2f is a hyperparamter

signal variance used to scale the correlation between points. Translational sym-

metry does not exist in this function giving it non-stationary properties.

4.2 Training Hyperparameters

A crucial aspect of the Gaussian Process is the optimization of the hyperpa-

rameters (σ2f , Σ and σ2n). These are key to developing a realistic model of the

dataset and so it is important to ensure that the covariance function they gen-
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erate accurately captures the extent of the correlation in the environment. This

is achieved by maximizing a log marginal likelihood function given by

p(y|X) =

∫
p(y|f,X)p(f|X)df, (4.6)

from which it follows that:

ln p(y|X) = −1

2
yT (K + σ2nI)

−1 − 1

2
ln|K + σ2nI| −

n

2
ln2π. (4.7)

The primary advantage of the marginal likelihood is that it incorporates a

trade-off between model fit and model complexity. A function which over-fits the

data leads to poor inference and large uncertainties while an over-generalized

outcome can result in a likelihood function which chooses to ignore many of

the data points in favour of adopting a less responsive behavior. Equation 4.7

helps to ensure an even balance between these two extremes. The training data

itself can be generated by randomly sampling a representative subset of the en-

vironment that consists of both occupied and non-occupied points obtained by

discretizing the sensor data in the Cartesian space. The optimal hyperparam-

eters for the neural network covariance function are learnt by maximising the

marginal likelihood over those training points using a combination of simulated

annealing to identify an approximation of the global maximum and a gradient

descent algorithm for further tuning of the parameters.
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Chapter 5

Experimental results

The experiment is divided up into two parts; the mapping problem in a real

indoor environment and the estimation problem in a simulated environment.

We assume that the localization problem of a mobile robot is solved for the

both experiments. This assumption was satisfied by measuring the location

of the mobile robot manually, where the small error of the measurement can

be almost ignored. In case of the second experiment that was performed in a

simulated environment, there does not exist even a small error for the location

measurement.

5.1 The Mapping Problem in a Real Indoor Envi-

ronment

For the mapping problem, we designed an indoor experimental environment.

Fist, we organized a simple mobile sensor network by attaching a 2D laser

scanner(SICKlms200) and a laptop whose operating system is Linux on a 2-

wheeled mobile robot(Pioneer3DX) [Figure 5.1]. On the Linux platform, a soft-

ware called ROS (Robot Operating System) is installed to control the robot and

collect scanning data from laser scanner. The tutorial for ROS can be easely ac-
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Figure 5.1: A mobile robot (Pioneer3DX) on which a 2D laser scanner

(SICKlms200) is attached.

(a) (b)

Figure 5.2: A maze for Experiment

cessed at [20]. Additionally, we built a simple indoor maze with wooden boards

to run the organized mobile sensor network [Figure 5.2].

A single frame of a laser scanner (SICKlms200) is in the form of

b1 b2 . . . bn

r1 r2 . . . rn


that ri is a distance to the obstacle from the laser scanner on the i-th bear-

ing bi. Controlling a mobile robot (Pioneer3DX) manually by the keyboard of

the laptop using ROS [21], the given mobile sensor network can explore the

maze to collect the data for mapping. After processing the collected data using
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Figure 5.3: Plotted occupancy grid map of the maze

MATLAB, we can finally plot the occupancy grid map of the maze [Figure 5.3].

5.2 GP Estimation for Single Frame of Laser Scanner

Using the Gaussian Process (GP) introduced at Chapter 4, an estimation al-

gorithm for the incomplete map would be proposed. GP makes the mapping

problem more logical and effective. The whole process is divided up into 4 parts.

5.2.1 The given Training Data

For the two dimensional mapping problem, a single data point is in the form of

{xi, yi}, where xi indicates the two dimensional location of ith data point and

yi represents the occupancy hypothesis, p(O|(x), at the location corresponding

to xi. p(O|(x) is classified as occupied(+1) and unoccupied(0), where it will be

scaled into the occupancy probability(value of 0 to 1) by GP estimation. The

total data set would be in the form of

{xi, yi}i=1:n (5.1)
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(a) (b)

Figure 5.4: An example of training data for a single frame of laser scanner.

(a)Ground truth (b)Training data

(White pixel : Unoccupied, Gray pixel : Unknown, Black pixel : Occupied)

that is the set of n data points. Here, we call {xi, yi}i=1:n (n:number of the

sampled data point) the training data set and y the target data (training output

vector). In estimation problem, the given training data set tend to be incomplete

and sparse. But it must be an only key to the solution.

5.2.2 Selecting a Kernel Function

Taking the training data set for the estimation, we have to select a covariance

function (kernel) k for estimation. Because the elements of the covariance matrix

Kij = k(xi,xj) ([Equation 4.2], [Equation 4.3]) are defined depending on k, we

can say that a kernel function k defines the influence relation between the given

data points. So in mapping problem, a kernel function can be understood as

the the property or tendency of the map; for example, maps of the indoor area

tend to have sharp edges and those of the cave area tend to have round edges.

Therefore, we should select kernel function depending on the property of tar-
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get area for estimation. Owing to the indoor experimental environment, squared

exponential (SE) kernel [Equation 4.4] and neural network (NN) kernel [Equa-

tion 4.5] will be used in this thesis. Estimation by SE tend to be smoothing one

while estimation by NN tend to be diverging one from the origin [Figure 5.5].

5.2.3 Optimizing Hyper-parameters

After selecting a kernel, we should optimize the hyper-parameters θ, the set

of σ2f , Σ and σ2n. Here, σ2f can be inferred as a scaling coefficient for a kernel

function and Σ as a coefficient matrix that defines the mutual influence be-

tween different dimensions. σ2n is a noise parameter that originated from the

experiment error.

Hyper-parameters can be optimized by finding the values of σ2f , Σ and σ2n

that minimize the marginal likelihood [Equation 4.7] of Gaussian Process[13].

Optimization can be translated into learning or training. The computational

complexity of this step is proportional to n3, where n is a number of training

data point. Every numerical computaion of this step is performed on MATLAB

using the package provided from [22].

5.2.4 Estimation

For the estimation step, we define the test location x∗. This is the location where

we want to predict the the corresponding location is occupied or not. With the

given training data set {xi, yi}i=1:N [Section 5.2.1], the selected kernel function

k [Section 5.2.2], the optimized hyper-parameters θ [Section 5.2.3] and the newly

defined test location x∗, we can compute Equation 4.2 and Equation 4.3. (We

know that the the covariance matrix can be constructed as Kij = k(xi,xj).)

The computed values, µ and σ, are respectively the mean and variance of the

occupancy hypothesis corresponding to the given test location. We can consider

the mean µ as the probability that the given location is occupied, whereas the
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(a) (b)

Figure 5.5: Estimated frame of Figure 5.4(b) by GP : (a)SE (b)NN

variance σ indicates the credibility for the calculated mean µ. Here, we have to

establish the threshold value for the credibility value σ to refine the probability

value µ. If the calculated credibility is lower than the established threshold,

the calculated probability will be ignored and the occupancy hypothesis corre-

sponding to the given location will be classified to ’unknown’ neither occupied

or unoccupied.

Here is an experimental result of the proposed estimation algorithm applied

to a single frame of two dimensional laser scanner[Figure 5.5].

5.3 The Estimation Problem in a Simulated Envi-

ronment

For the estimation problem of the incomplete map, we designed a simulated

environment analogous to the real one of the first experiment. Every process

of the simulation was performed in ROS. A ground truth map of the virtual

environment is indicated at Figure 5.6(a) and we explored this area using a
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(a) (b)

Figure 5.6: (a)Ground Truth (b)Plotted map by Collected Data

(The blue arrows indicate the route of exploration.)

same mobile sensor network with Section 5.1 virtually. The virtually collected

data set in simulated environment is plotted at Figure 5.6(b).

Here, we would not use the total set of the collected data to establish an

estimation problem of the assumption that the given data set is sparse and

not complete. Therefore, a small data set sparsely sampled from the total one

would be given as a training data set for the proposed estimation algorithm of

this thesis [Figure 5.7].

With the obtained training data from the simulation [Figure 5.7], we apply

the proposed estimation algorithm [Section 5.2]. Then we can get the estimated

maps as results [Figure 5.8]. The origin of the NN kernel is indicated as a red

point in [Figure 5.7].

Comparing [Figure 5.8] with the results from [14] [Figure 5.9], we can con-

firm that the implemented estimation worked well. As mentioned before, esti-

mation by SE kernel tends to be smoothing one while estimation by NN tends

to have sharp edges.
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Figure 5.7: Sampled Data for Estimation

(a) (b)

Figure 5.8: Estimated map by (a) SE kernel and (b) NN kernel.
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(a)

(b)

Figure 5.9: Estimated (a) mean value and (b) variance value. [14]
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Chapter 6

Conclusion

We have verified that Gaussian processes provide an attractive technique for

modeling occupancy grid maps in real-world environment. Optimizing the co-

variance function’ s hyperparameters to model the underlying characteristics

of the environment allows for estimation of the probability of occupancy, with

associated variance, in regions where no sensory information is available. The

continuous nature of the resulting underlying function allows for maps of various

resolutions to be generated easily at a scale that suits the intended application.

6.1 Contribution of GP for Mapping Problem

The Gaussian Process can be used to compensate the mentioned defect of oc-

cupancy grid models. Intuitively, the Gaussian process approach to occupancy

maps seeks to exploit the fact that environments contain spatial structure to

predict a continuous non-linear, non-parametric function representing the map.

The GP uses an optimized covariance function to model the context in the

robot’ s surroundings. The Gaussian process is a Bayesian regression technique

that trains a covariance function to model a non-parametric underlying distri-

bution. A learning algorithm of GP uses prior knowledge of the environment to
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shape the covariance function into a function that characterizes the correlation

between points in the dataset. This knowledge can either be acquired from a

previous scan of a similar environment, or using a subset of the new data to

train the Gaussian process. The resulting predictive mean and variance distri-

butions can then be used to classify regions of the robot’ s surroundings into

areas of occupancy, non-occupancy or uncertainty [Section 5.2.4].

The primary contributions of applying GP to occupancy models are in the

following [14].

• Removes independencies between data points.

• Enables accurate maps to be generated with relatively sparse sensor in-

formation.

• Eliminates the restriction of constructing a map on a single scale.

• Produces an associated variance plot which could be used to highlight

unexplored regions and optimise a robot’ s search plan.

6.2 Future Works

Despite these encouraging results, there is still room for improvement. A current

drawback the proposed algorithm is that the estimation results vary excessively

depending on the origin location of NN kernel. We may extend this research to

the algorithm to find out the origin location of non-stationary kernel automat-

ically.

There are several more potential areas for further research. Using the cred-

ibility value of the prediction, we can develop the search algorithms which can

identify paths that would maximize information gained regarding environment

on exploration of a mobile robot. We can also define a new kernel function to

reflect a particular characteristic of the environment.
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Another potential area for further research is evolving the process so as to

model a 3-D environment using data acquired at multiple angles of elevation.

The Gaussian process is capable of accommodating additional dimensions with-

out any alterations to the principle theory. The ability of this implementation

to accurately represent real-world environments with quite sparse data readings

could enable the large datasets typically acquired from 3-D laser range-finders

to be reduced in size through sub-sampling without significantly affecting the

appearance of the resulting occupancy map. Also, as the Gaussian process pro-

duces a continuous nonparametric underlying function which models the envi-

ronment rather than a dense grid of cells, the computational issues which limit

3-D implementations of occupancy grids should not be as pressing with the GP

approach.
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국문 초록

가우시안 프로세스는 컴퓨터 비전, 로보틱스, 센서 네트워크 등 공학분야 전

반에 걸쳐 널리 응용되는 확률추정 방법론이다. 본 논문은 가우시안 프로세스를

이용하여 적은 양의 센서 데이터만으로 전체 지도를 추측하는 알고리즘을 구현

했다. 구현된 알고리즘에서는 두 가지의 커널 함수, squared exponential 커널과

neural network 커널이 가우시안 공간 모델에 적용되었다. 구현된 알고리즘의

성능은 간단한 모바일 센서 네트워크를 이용한 실험으로 검증했다. ROS (Robot

Operating System) 플랫폼 기반의 모바일 센서 네트워크를 구축하기 위해서 2

륜 로봇 Pioneer3DX와 2차원 레이저 스캐너 SICKlms200을 사용했다.

주요어: 가우시안 프로세스, 모바일 센서 네트워크, 지도 추정

학번: 2010-23261
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