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Abstract

An Information Theoretic Algorithm for

Mining and Ranking Phenotype-specific

Sub-networks from Multi-class Gene

Expression Data
Park Jinwoo

Department of Computer Science and Engineering

College Of Engineering

Seoul National University

There have been extensive studies for inferring transcriptional network from

omics data. However, how to utilize networks for specific research projects has

not been well established. One of the main hurdles is lack of algorithms for

mining biological sub-networks. Existing graph mining algorithms do not

consider features of the transcriptional network and they are not effective to

obtain biologically meaningful results. In this paper, we define the biological

sub-network mining problem and present a new graph mining algorithm that

mines and ranks phenotype specific sub-networks of transcriptional regulatory

networks constructed from multi-class gene expression data. Our contributions

in this paper on the computational side are two folds. First, we suggest a

complete research paradigm of utilizing omics data to construct networks and
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then elucidates sub-networks that distinguish phenotypes or disease states.

Second, we developed an information theoretic algorithm for mining phenotype

specific sub-networks. Our contribution on the bio/medical side is that our

TF-module based analysis determined biological pathways(cell cycle: M-phase,

cell adhesion molecules) related to the phenotype(breast tumor grade) by

identifying activation/suppression of specific target genes (TGs) by the

combination of multiple transcription factors (TFs). Expression levels of TGs

clearly shows correlation between activation/suppression of these pathways and

tumor grades. When we used all genes, pathway activation or suppression was

not obvious, which shows the effectiveness of our algorithm. Our TF-centric

pathway activation/suppression analysis technique is applicable to and useful for

many other studies.

Keywords: Transcriptional regulatory network, network mining, subnetwork

Student Number: 2012-23214



iii

Contents

Abstract i

Contents iii

List of Figures v

List of Tables vii

Chapter 1 Introduction 1

Chapter 2 Pheotype specific subnetwork mining problem 5

2.1 Biological network construction methods. . . . . . . . . . . 5

2.2 Necessity of biological sub-network mining algorithm . . . . 6

2.3 Problem formulation . . . . . . . . . . . . . . . . . . . . .. . . . 6

2.4 Our information theoretic algorithm . . . . . . . . . . . . . . . . 7

Chapter 3 Method 10

3.1 TF-TG network construction . . . . . . . . . . . . . . . . . . . 10

3.1.1 Edge set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.2 Multi valued attribute vector . . . . . . . . . . . . . . . . 11

3.2 Information scores for TF-modules . . . . . . . . . . . . . . . . 11

3.2.1 Definition of TF-module . . . . . . . . . . . . . . . . . . . 11

3.2.2 Entropy for TF-module . . . . . . . . . . . . . . . . . . . .12

3.2.3 Best entropy with dynamic programming . . . . . . . . 13



iv

3.2.4 Information score for TF-module. . . . . . . . . . . . . . . 13

3.3 TF-module hyper graph . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Merging of TF-modules on hyper-graph . . . . . . . . . . . . . 15

Chapter 4 Result and Discussion 16

4.1 Raw biological data . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 HCS mining algorithm . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 TF-centric sub-network mining algorithm . . . . . . . . . . . 17

4.4 Cell cycle: M-phase . . . . . . . . . . . . . . . . . . . . . . . 20

4.5 Cell adhesion molecules . . . . . . . . . . . . . . . . . . . . . . . 23

25

27

33

Chapter 5 Conclusion

Bibliography

요약



v

List of Figures

Figure 1.1 Overview

First, TF-TG network topology was generated by NARROMI package

with gene expression matrix of 982 breast cancer samples. Then, we

mapped average z-score of each gene for 4 classes(Normal, Grade 1,

Grade 2, Grade 3) to make multi-valued attribute nodes. For the

generated input graph, we applied our algorithm to discover

phenotype-specific sub-networks . . . . . . . . . . . . . . . . . . . . 4

Figure 2.1 Flow of the algorithm

(a) A TF-TG graph with multi-valued attribute nodes that was inferred

from NARROMI using gene expression omics data (b) TF-TG graph is

transformed to a weighted TF-module hyper graph consists of

TF-modules. Every pair of two TF-modules linked by an edge is a

candidate of merging-procedure, with its edge weight as a measure of the

priority. From the top priority pair, merge two TF-modules if an

information score after merging is higher than each of original two

TF-modules. (c) Once merging is occurred, TF-module hyper graph of

the next iteration is generated. (d) If there is no candidates(edges),

remaining TF-modules are ranked by their scores . . . . .. . . . . . . . 8

Figure 2.2 Process for calculating entropy

Process for calculating entropy of a TF-module for a particular index set

I = {3,6}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9



vi

Figure 4.1 Information scores of the TF-modules.

Information scores of the TF-modules. Rows are sorted by rank of the

TF-module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 4.2 Split result of the phenotype labels for a rank-1 TF-module.

All the phenotype labels in a rank-1 TF-module were split into 4 groups

corresponds to their average z-score values . . . . . . . . . . . . . . . . 19

Figure 4.3 TGs of rank-1 sub-network ({PTTG1, CDC2, UHRF1}) mapped cell

cycle pathway.

(a),(b),(c),(d) Colored by expression value of Normal, Grade 1, Grade 2

and Grade 3 - Red: up-regulated, Blue: down-regulated. (e) Colored by

regulating TFs. This shows activation of cell cycle pathway for higher

grade tumors, especially activation of M-phase, by three TFs. This clear

illustration is not evident when we consider all genes in the cell cycle

pathway, which demonstrates the effectiveness of our TF-module based
approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 4.4 TGs of rank-2 sub-network ({LDB2, PPARG, EBF3, NR5A2, EBF1,

FOSB}) mapped cell adhesion molecules pathway

(a),(b),(c),(d) Colored by expression value of Normal, Grade 1, Grade 2

and Grade 3 - Red: up-regulated, Blue: down-regulated. (e) Colored by

regulating TFs. This shows activation of cell adhesion molecules pathway

for higher grade tumors by three TFs. This clear illustration is not

evident when we consider all genes in the cell adhesion molecules

pathway, which demonstrates the effectiveness of our TF-module based
approach.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



vii

List of Tables

Table 4.1 Result of a HCSs mining algorithm

Result of a HCSs mining algorithm(Cut-off = 0.9) . . . . . . . . . . . 17

Table 4.2 Top 10 TF-modules

“Up" in the TG expression trend indicates that overall TG expressions in

a TF-module are in increasing order of Normal, Grade 1, Grade 2 and

Grade 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Table 4.3 DAVID functional annotation chart

DAVID functional annotation chart of the rank 1 sub-network

 ({PTTG1, CDC2, UHRF1}) . . . . . . . . . . . . . . . . . . . . . 18



1

Chapter 1

Introduction

Sequencing and bio-assay techniques have been developed

dramatically over the years and it has become a routine practice to

measure whole genome level transcriptome data under specific

phenotypes such as high grade breast cancer subtypes. Thus,

characterizing phenotype specific biological mechanisms is now one of

the most important research problems in bioinformatics. Biological

mechanisms underlying specific phenotypes need to consider complex

relationship among genetic elements that distinguish phenotype

specific characteristics. One of the most effective computational

techniques to consider complex relationships of all genes in the whole

cell is to use networks. In fact, network based characterization of

biological systems has been successful for more than a decade and it

is now considered as the gold standard method to understand

complex biological systems. Barabasi, et al. [35] have been pioneering

use of networks for characterizing protein interactions in yeast and



2

further developed the technique for years to characterize biological

mechanisms including human disease networks [12]. As genetic and

protein data rapidly accumulate, research efforts to build and utilize

genetic networks have been successful for specific species such as

yeast [13], C. elegance [19], Arabidopsis [20], and mouse and man

[27]. In succession, there has been significant research efforts on

omics data to construct and utilize networks under specific conditions.

Segal, et al. [30, 31] developed computational analysis techniques to

construct network modules from gene expression data in specific

conditions, showing conditional activity of expression modules in

cancer [29]. This line of research further targeted to develop

computational methods to construct transcriptional regulatory

networks under specific conditions. Pioneering work by Califano, et al.

developed ARACNe [2], an algorithm for the reconstruction of

accurate cellular networks, from gene expression data and further

showed that ARACNe could reveal tumor suppressor gene RUNX1 in

T cell acute lymphoblastic leukemia[9]. Luonan, et al. developed

NARROMI [37], a noise and redundancy reduction technique to infer

transcriptional regulatory networks, from gene expression data and

also further showed that an extended version of NARROMI could

reveal dynamical network biomarkers as early-warning signals for

type-2 diabetes.

Although transcriptional regulatory network based analysis of omics

data has been successful to unveil underlying mechanisms for many

diseases and species, the transcriptional regulatory network based
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analysis techniques have been used by only a handful of research

groups. There are two major reasons for the limited practice of the

transcriptional regulatory network based analysis. First there is no

complete research paradigm of utilizing omics data to construct

networks and then elucidating sub-networks that distinguish

phenotypes or disease states. Second, in this line of argument, a

major missing technique is how to mine and rank phenotype-specific

sub-networks from big networks constructed by utilizing omics data

and other evidences. Although mining sub-networks has been

extensively studied in the field of computer science, mining and

ranking biological networks should utilize characteristics of the

biological research problems under consideration. There are only a

few biological sub-network mining algorithms. For example,

Bhowmick, et al. [28] developed FUSE, a profit maximization

approach for functional summarization of biological networks that can

be useful to mine sub-networks. However, FUSE is not originally

designed to mine phenotype specific sub-networks, for which we will

define the computational problem and present an information theoretic

algorithm for the suggested problem in this paper. (depicted in Figure

1.1)
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Figure 1.1 Overview. First, TF-TG network topology was generated by 
NARROMI package with gene expression matrix of 982 breast cancer
samples. Then, we mapped average z-score of each gene for 4
classes(Normal, Grade 1, Grade 2, Grade 3) to make multi-valued
attribute nodes. For the generated input graph, we applied our
algorithm to discover phenotype-specific sub-networks.
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Chapter 2

PHENOTYPE SPECIFIC SUB-NETWORK

MINING PROBLEM

2.1 Biological network construction methods

Since inferring accurate transcriptional regulatory network (TF-TG

network) has been an important issue over the years, numerous

useful network construction methods using gene expression data were

developed. According to a recent review [10] of the reverse

engineering methods from observational expression data, which is

predominating data type, the current methods can be classified into

two subgroups - correlation based [8], mutual information based [2,

37]. We just picked one of the widely used methods, NARROMI

among them, to construct a TF-TG network using omics data.

In recent, Barabasi, et al. [1] suggested a method to improve the

inferred networks by silencing indirect edges and achieved more than

50% and 6% predictive improvements for correlation based methods
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and mutual information based methods, respectively.

2.2 Necessity of biological sub-network

mining algorithm

Once we have a huge biological network constructed from omics

data, the next step is to mine sub-networks that discriminate

phenotypes. However, we showed that general network mining

algorithms were not suitable for this purpose.

According to the survey on graph mining algorithms developed for

biological context [24], there were three categories: Tree mining,

Frequent sub-graph mining, and Module mining. First of all, none of

them considered TF-TG relationships. Tree mining algorithms could

be applied only to the trees. Also, Frequent sub-graph mining

algorithms are for graphs with different topologies. Finally, most of

the Module mining algorithms were developed for gene-gene

co-expression network or protein-protein interaction network based

on highly connected sub-graphs (HCSs) mining. However, HCSs

mining approaches were not effective for TF-TG graph, when we

tried to use the algorithm (section 4.2).

2.3 Problem formulation

For the K-class data, there is a TF-TG graph with multi-valued

nodes denoted by   , where V, E and W denote vertex set,

edge set and attribute vector assigning function for a node,
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respectively. Vertex set V is a union of TF gene set   and

non-TF gene set     . W assigns every node  in G an

attribute vector :  
   



    , where 

 denotes average

z-score of expression value corresponds to their phenotype  . The

computational problem here was defined to be how to determine

sub-networks that differentiate phenotypes "quantitatively". This issue

has not been discussed so far.

2.4 Our information theoretic algorithm

We defined crucial sub-network for explanation of phenotypes by

using information theory (depicted in Figure 2.1). What we focused

on was sub-networks that have lowest entropy in terms of gene

expression values and phenotypes. See Figure 2.2 for an example of

calculating entropy using gene expression values and phenotypes. The

algorithm proceeded as follows.

1. Build a TF-TG graph with multi-valued node attributes using

omics data.

2. Define initial TF-modules. Each of the initial TF-modules is a

sub-network which consists of a TF and its TGs.

3. Define size-weighted information scores of TF-modules.

4. Build a hyper graph where nodes are initial TF-modules and edge

is defined from TF-TG graph. Edge weights are determined by

the number of genes shared in two TF-module nodes.

5. Determine sub-networks by merging TF-modules progressively.
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When two TF-modules are considered for merging, the

post-merging information score should be higher than the

information scores of two TF-modules.

6. Rank sub-networks with respect to their information scores.

7. Map TGs in the sub-networks to biological pathways to

investigate how phenotype distinguishing sub-networks contribute

to changes in biological pathways.

Figure 2.1  Flow of the algorithm. (a) A TF-TG graph with multi-valued
attribute nodes that was inferred from NARROMI using gene expression omics 
data (b) TF-TG graph is transformed to a weighted TF-module hyper graph
consists of TF-modules. Every pair of two TF-modules linked by an edge is a 
candidate of merging-procedure, with its edge weight as a measure of the 
priority. From the top priority pair, merge two TF-modules if an information
score after merging is higher than each of original two TF-modules. (c) Once 
merging is occurred, TF-module hyper graph of the next iteration is 
generated. (d) If there is no candidates(edges), remaining TF-modules are 
ranked by their scores.
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Figure 2.2. Process for calculating entropy of a TF-module for a
particular index set I = {3,6}.
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Chapter 3

Methods

3.1 TF-TG network construction

3.1.1 Edge set

Here we generated breast tumor specific network topology from

expression data of 982 tumor samples without 144 normal samples

(Details are in section 4.1). NARROMI [37], a Matlab package to

infer transcriptional regulatory network from TF and TG expression

matrix, was adopted here in order to define edge set E. In brief,

NARROMI called a list of TFs for each gene to generate candidate

regulatory TFs based on mutual information, followed by recursive

optimization algorithm for the removal of redundancies. Then, scores

based on recursive optimization algorithm and mutual information

values are mediated by a linear formula. Output from NARROMI

consists of TF-TG relations, and their corresponding strength and

significance in terms of coefficient and p-value, respectively. The
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number of edges resulting from our data was 6312163. However,

many of the resulting edges from NARROMI have very high

potential to be false positives when it comes to biological relevance,

we filtered out edges that have p-values greater than ×  or

absolute coefficients less than 0.4. As a result, we retained 

edges to construct transcriptional regulatory network.

3.1.1 Multi valued attribute vector

For individual gene, we employed z-score normalization of

expression values from 1126 samples of 4 phenotypes. First, for each

gene vi, expression values with their phenotypes of all samples

 
  

   were transformed to z-score vector

 
  

   . Then, for phenotype  , average z-score 



was assigned. Finally, attribute vector of  was defined as :

 
  



    .

3.2 Information scores for TF-modules

3.2.1 Definition of TF-module

For a set of TFs, ST F , we defined a TF-module of the set as a

sub-network  ( ) ∈ G consists of both  and their TGs. As

we assumed that all TGs of a TF share connected roles in biological

pathways, we were focusing on finding the sub-networks in the form

of TF-modules
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3.2.2 Problem formulation

If z-score values of TGs in phenotype A are significantly different

to phenotype B, a biological pathway related to the TF-module would

be signatures for the phenotypes. To measure how the TGs in

TF-module have phenotype-wise distinctive z-score values, we used

an entropy based approach.

First, we joined all n attribute vectors of all TGs,   to the

list 
   



   and sorted them by the z-score values z. We

extracted only phenotypes from the list to get phenotype list, which

were sorted by their z-score values, L =   . If L is split to K

sets, we could calculate an entropy value of L. With a split index list

        , where      .  set could be expressed as 

=      . Then entropy of a set  could be calculated by

Equation (1).

   
  



 
 log 

  (1)

where  
  denotes proportion of  in  . Then, a weighted

average entropy of L could be obtained.

 


  






  



 × 

(2)

where  denotes size of the  .
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3.2.3 Best entropy with dynamic programming

For a TF-module with n TGs, there are nK−1CK−1 possible split

index lists. To calculate entropy for all these split index lists would

be very time-consuming, especially for large K and n. Note that all

TGs need to be considered.

Thus, we used a dynamic programming approach, with following

recurrence relation, where    stands for the best entropy of L

with t cuts (t + 1 sets).

       max 

 
×         

 
×     (3)

First, calculate      for all    I. Then,

     values could be calculated for t=1,...,K−1 in turn.

Through this, just   tries are needed. Best entropy value of

L,      could be calculated using        values

below.

      max
 

×      


×      (4)

3.2.4 Information score for TF-module

Finally, in order for higher score to indicate enhanced goodness we

transform entropy value to information content using Hmax = log K.

Also, we normalized the score by the number of TGs(n). Thus, the
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information score function of the TF-module WV was defined as

below,

    max  × log (5)

3.3 TF-module hyper graph

Let 
 be a weighted TF-module based hyper-graph from original

TF-TG graph G at the j’s iteration. Each node in 
 is a sub-graph

in form of TF-module with their entropy based score defined in

Section 3.2. Nodes in 
 are iteratively merged until there remains

no candidates (Details are in Section 3.4).


 was defined as (

 , 
 ,  ,  ), where 

 , 
 ,  and

are vertex set, edge set, TF-module score function and

edge-weight-assigning function, respectively. 
 is determined by

TF-TG graph G. For two TF-modules  ,  ∈ 
 , edge between

them is defined only if there exists two TFs ,  ∈ G that satisfy

 ∈  ,  ∈ and [(, ) ∈ E or ( , ) ∈ E].  assigns a

weight to the edge using Jaccard similarity coefficient regarding

common TGs of two TF-modules.

   ∪′

∩′ (6)

where, each  and ′ is a set of all TGs of  and  ,

respectively. Thus, the closer to 1 the edge score is, the higher the

two TF-modules have possibility to be involved in a common

biological pathway.



15

Initialization. TF-modules of each TF in TF-TG graph G were

defined as initial vertex of 



   ∈  (7)

3.4 Merging of TF-modules on hyper graph

For hyper graph Gj H at the -iteration, every pair of two

connected nodes is considered for merging. Edge weight indicating

the ratio of common TGs between two TF-modules is used to define

merging priority. For the candidate pair of two TF-modules ( , ),

merging is performed if  (∪)≥max( ( ), ()). Merging

of ( , ) generates (j + 1)th-iteration of hyper-graph 
  =

(
  , 

  ,  ,  ), where 
   = 

 ∪{}−{}−{} ( is a

merged TF-module of  and ). Starting from the initial

hyper-graph 
 , the iterative merging procedure continues until there

is no candidates.
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Chapter 4

Result and Discussion

4.1 Raw biological data

From METABRIC [7], 982 breast primary tumor samples with their

clinical information were used in this study. We chose tumor grade

information (grade 1, 2, and 3) for labelling the class to our data

which in turn located 68, 408, and 506 samples for each grade(1, 2,

and 3), respectively. Grade is defined histologically and it represents

“aggressiveness” of the tumor. The data contained 25228 genes and

1396 of them were TFs. Normal class with 144 samples was also

used

4.2 HCS mining algorithm

Though HCS mining algorithm was not intended for TF-TG graph,

we tested whether it could make meaningful results with our TF-TG

graph. We screened all sub-graphs with higher density than the
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cut-off (=0.9). As a result, 65 sub-networks of size 12 turned out to

be the largest sub-networks. However, functional annotation of each

subnetwork by DAVID [14, 15] showed only DNA binding as

significant, which meant that the resulting sub-networks consisted of

mostly TFs and severely lacked their own biological significance.

This was because TFs were hubs in the network. In addition, no

significant KEGG [16, 17] pathway was detected. Lack of the

biological meaning was because the density-based approach did not

consider most of TGs due to their low degrees.

Size of the sub-network Count
5 170165
6 100561
7 52340
8 51841
9 47071
10 18833
11 2489
12 65

x >= 13 0

Table 4.1. Result of a HCSs mining algorithm (cut-off=0.9)

4.3 TF-centric sub-network mining algorithm

Our algorithm detected 732 TF-modules. Since there were 901

TF-modules in G 0 H, merging was performed 169 times. Scores of

TF-modules are depicted in Figure 4.1. Top ranked TF-modules had

well separated TG expression pattern between classes (Figure 4.2).

Table 4.2 shows top 10 TF-modules with brief explanation. The

DAVID functional analysis showed that, rank-1 and rank-3

TF-modules were associated with cell cycle and rank-2 TF-module
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was related to cell adhesion molecules. We further studied these top

3 TF-modules to investigate whether their TG expression patterns

and biological function were relevant to the phenotypes.

Rank
TF list in a
TF-module

score # TG TG expr trend DAVID cluster

1
PTTG1, UHRF1,

CDC2
10.85 94 Up Cell cycle

2
LDB2,EBF3,EBF1,
PPARG, NR5A2,

FOSB
8.62 224 Down Signal

3 PLK4 8.10 45 Up Cell cycle
4 ZNF6, ZNF483 7.98 90 Down DNA repair

5 ATOH8 7.61 48 Down
Carbohydrate

binding
6 FOXM, TEAD4 7.44 94 Up Cell cycle

7
ZNF683,PRIC285,

STAT1
7.15 127 Up Signal

8 ZNF394, ZNF773 6.96 76 Down
Channel
activity

9 ZNF639, ZNF528 6.79 55 Down Signal
10 SNAPC1, ZNF577 6.76 114 Down DNA repair

Table 4.2. Top 10 TF-modules. “Up" in the TG expression trend indicates
that overall TG expressions in a TF-module are in increasing order of
Normal, Grade 1, Grade 2 and Grade 3.

Term Count P-Value
GO:0000279 M phase 46 2.50E-53
GO:0007049 cell cycle 57 5.62E-53
GO:0022403 cell cycle phase 48 4.49E-52

Table 4.3. DAVID functional annotation chart of the rank 1
sub-network  ({PTTG1, CDC2, UHRF1}).
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Figure 4.2. Split result of the phenotype labels for a rank-1
TF-module. All the phenotype labels in a rank-1 TF-module were 
split into 4 groups corresponds to their average z-score values.

Figure 4.1: Information scores of the TF-modules.



20

4.4 Cell cycle: M-phase

The DAVID functional analysis showed that, 46 genes of 94 TGs

and 23 genes of 45 TGs were mapped to the Mphase term for

rank-1 sub-network  ({PTTG1, CDC2, UHRF1}) and rank-3

sub-network  ({PLK4}), respectively. Also, cell cycle KEGG

pathway was mapped as the most significant for both TF-modules.

Most TGs of the two TF-modules showed increasing expression

pattern from normal to the highest tumor grade as could be seen in

Figure 4.3. Biological relevant from the result were able to be

confirmed by studies showing that the correlation between high

tumor grade and up-regulation of the cell cycle genes [18]. Especially,

Sotiriou, et al. [32] found that most of 97 grade associated genes

from gene expression profiling analysis between grade 1 and grade 3

breast tumor had higher expression value in grade 3 and related to

the cell cycle progression and proliferation.

We focused on 15 genes : BUB1, CCNA2, CCNB1, CCNB2, CCNE2,

CDC20, CDC25C, CDC6, CHEK1, E2F2, MAD2L1, MCM2, MCM6,

PKMYT1, TTK, TGs from TF-module rank 1 and 3 mapped to

KEGG cell cycle pathway. Literature showed expression level of most

of 15 genes were correlated to the breast tumor grade. Yuan, et al.

[36] found increase of expression level for the check point genes

including BUB1, CDC20, MAD2L1, TTK in high grade breast tumor

cells. Also, CCNA2, CCNB1, CCNB2, CCNE2 were overexpressed in

grade 3 breast tumor compared to grade 1 breast tumor [32].

Overexpression of the cell cycle associated genes includes BUB1,
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CCNB2, CCNE2, CDC6,MAD2L1, PKMYT1 were detected in poor

prognosis among breast tumor patients [34].

In addition, there were studies of each 3 TFs in rank-1 TF-module

that showed relations in the role of a TF on mitosis. Ogbagabriel, et

al [23] found that over expression of the securin, the protein encoded

by PTTG1 gene, in high mitotic activity tumors from both western

blot and northern blot analysis. In addition, Marangos, et al. [22]

revealed that securin is the regulator for entry into M-phase.

CDC2(or CDK1) is a very well-known gene that regulates the cell

cycle. Cyclin B binds to CDK1 and Cyclin B/CDK1 complex regulates

the progression into M phase. Finally, Li, et al. [21] suggested that

UHRF1 played an important role in G2/M progression from the

UHRF1 knockdown cell analysis.

4.5 Cell adhesion molecules

The second highest score was assigned to the  ({LDB2, PPARG,

EBF3, NR5A2, EBF1, FOSB}). Corresponding TGs were mapped to

KEGG pathways, and Cell Adhesion Molecules(CAMs) was shown to

be the most highlighted. There have been many studies concerning

both general features of cancer and CAMs (especially E-cadherin) [3,

4]. In this study, selected TGs from mined sub-network without

reflecting biological relevance were proven to be correlated with

breast cancer formation and progression of which several studies

were previously introduced.

10 TGs were included in CAMs of KEGG: CD34, CDH1, CDH5,
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CLDN5, CLDN11, ESAM, ICAM2, JAM2, JAM3, PECAM1. Loss of

both CD34 and CDH1 genes were frequently observed as the grade

of breast cancer become worse [5], [11]. Lower expression level of

ICAM2 appeared in breast tumors compared to that of normal breast

tissue [26] and down-regulated JAM2 and JAM3 expressions were

detected in p53-mutated breast cancer [6]. According to a study [25],

comparison of invasive (n = 7) with non-invasive cases (n = 37)

showed 16q loss where a number of cadherin family including CDH1

and CDH5 were situated. Another study [33] was conducted focusing

on claudin family and they demonstrated that CLDN5 was highly

expressed in endothelial cells whereas reduced or no CLDN5

expression was detected in breast tumor cells.
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Figure 4.3. TGs of rank-1 sub-network  ({PTTG1, CDC2, UHRF1})
mapped cell cycle pathway. (a),(b),(c),(d) Colored by expression value of
Normal, Grade 1, Grade 2 and Grade 3 - Red: up-regulated, Blue:
down-regulated. (e) Colored by regulating TFs. This shows activation of
cell cycle pathway for higher grade tumors, especially activation of
M-phase, by three TFs. This clear illustration is not evident when we 
consider all genes in the cell cycle pathway, which demonstrates the eff
ectiveness of our TF-module based approach.
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Chapter 5

Conclusion

We developed a novel information theoretic algorithm for mining

and ranking phenotype-specific sub-networks from multi-class gene

expression data. Use of information theory on the multi-valued graph

was successful to mine sub-networks that distinguish phenotypes,

breast tumor grades in this paper. Sub-networks that involve multiple

TFs were constructed by building a TF-module hyper graph and

merging TF-modules progressively.

The algorithm was tested by using METABRIC breast tumor

expression data with tumor grades for class labels and it successfully

inferred breast tumor specific TF-TG networks that distinguish

breast tumor grade. Top three TF-modules corresponded to cell cycle

and cell adhesion molecules pathways. Activation of cell cycle

pathway and suppression of cell adhesion molecules pathway in

cancer are well known. Our study provides much more detailed

information than previous studies in two ways. First, our analysis

factored out important TGs that were consistent with phenotypes.
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Figure 4.4. TGs of rank-2 sub-network  ({LDB2, PPARG, EBF3,
NR5A2, EBF1, FOSB}) mapped cell adhesion molecules pathway.
(a),(b),(c),(d) Colored by expression value of Normal, Grade 1, Grade 2
and Grade 3 - Red: up-regulated, Blue: down-regulated. (e) Colored by 
regulating TFs. This shows activation of cell adhesion molecules
pathway for higher grade tumors by three TFs. This clear illustration is 
not evident when we consider all genes in the cell adhesion molecules
pathway, which demonstrates the effectiveness of our TF-module based
approach.



26

Second, our analysis provided how these pathways that are important

in cancer were controlled by a specific set of TFs. In other words,

our algorithm shows which genes are activated or suppressed in

pathways and also shows that transcriptional control mechanisms of

these genes in the pathways, which is novel compared to previous

studies.

As we formulated and proposed the new-class sub-network mining

problem, there remain a number of research problems. First, we plan

to develop an algorithm that mines “maximum-size”TF-modules with

multiple TFs, rather than relying on the hyper-graph based

progressive merging. Subgraph mining algorithm without class labels,

unsupervised learning would be meaningful because vagueness of the

class label in many cases. In addition, algorithm that utilizes all the

samples, not just average values remains as a future work.
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요약

오믹스 데이터로부터 전사인자 네트워크를 유추해내는 연구는 활발하

게 있어왔지만 유추된 네트워크를 특정 생물 연구 프로젝트에 이용하는 

방법론은 아직 미비한 수준이다. 이는 생물학적으로 중요한 서브네트워

크를 발굴하는 마이닝 알고리즘의 부재 때문이다. 전사인자 네트워크에 

기존의 그래프 마이닝 알고리즘을 적용할 경우, 이는 전사인자 네트워크

의 특징을 고려하여 제안된 알고리즘이 아니기 때문에 생물학적으로 의

미 있는 서브 그래프들을 찾아내기에 효과적이지 못하다. 이를 해결하기 

위해 생물학적인 서브 네트워크 마이닝 문제를 새로 정의하였으며 다중 

클래스의 유전자 발현 데이터로부터 구축된 전사인자 네트워크에서 표현

형 특이적인 서브 네트워크를 발굴하고 순위를 매길 수 있는 알고리즘을 

개발하였다. 본 논문에서는 정보 이론 및 조절 유전자들의 발현량 추이

를 이용하는 전사인자-모듈 기반의 분석 기법을 적용하여 표현형 특이적 

서브 네트워크를 발굴하는 알고리즘을 개발하였다. 또한 이를 통하여 오

믹스 데이터를 이용하여 네트워크를 구축하고 이로부터 표현형이나 질병

을 구분 짓는 서브 네트워크를 찾아내는 완성된 연구 패러다임을 제안할 

수 있었다. 이를 실제의 데이터에 적용하여 표현형(유방암의 분화도)과 

연관된 패스웨이들(세포주기: M기, 세포 접착 분자)을 밝혀냈다. 발굴된 

서브네트워크에 속한 조절 유전자들의 발현량은 유방암의 분화도와 명확

한 상관관계를 보였다. 알고리즘을 통하여 필터링 되지 않은 모든 유전

자들을 사용하였을 때는 상관관계가 불분명했으며 이는 또한 제안한 알

고리즘의 유용성을 간접적으로 증명한다. 본 논문의 전사인자 중심의 패

스웨이 활성/억제 정도 분석은 유방암뿐만 아니라 다른 많은 생물학적 

연구에 기여할 수 있다.
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