

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

Predicting live migration performance of

virtual machines using machine learning

기계 학습을 통한 가상화 플랫폼의

라이브 마이그레이션 성능 예측

FEBRUARY 2016

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Jinho Song

위 원 장 : 문 병 로 (인)

부위원장 : Bernhard Egger (인)

위 원 : Srinivasa Rao Satti (인)

Predicting live migration performance of virtual machines

using machine learning

지도교수 Dr. Bernhard Egger

이 논문을 공학석사학위논문으로 제출함

2015 년 10 월

서울대학교 대학원

컴퓨터 공학부

송 진 호

송 진 호의 석사학위논문을 인준함

2015 년 12 월

 ii

Abstract

Predicting live migration performance of

virtual machines using machine learning

Jinho Song

Department of Computer Science and Engineering

College of Engineering

The Graduate School

Seoul National University

Virtualization is a widely used technology these days as most of server computing

environments are rapidly shifting to cloud computing. Live migration, one of the

most compelling features in system virtualization, has been an active area of

research. Attempts to predict migration performance were made, but most of those

were limited to analytical approaches with relatively unstable prediction errors or

not easy to extend to realistic environments as more parameters are identified and

considered. In this thesis, a novel data driven approach based on the support vector

regression method providing flexibility and extensibility in parameter selection is

introduced to predict performance metrics such as total migration time, downtime

and the total amount of transferred data, especially on QEMU which is hardware

 iii

virtualization platform that is open-source and the method of this thesis is easy to

adapt to various purposes. It will facilitate automated system administration with

live migration more efficiently.

Keywords : virtualization, live migration, machine learning, support vector

machine

Student number : 2007 - 21003

 iv

Contents

Contents iv

List of Figures vi

List of Tables vii

Chapter 1 Introduction 1

Chapter 2 Background and related work 4

2.1 Live migration algorithms 5

2.2 Performance metrics 9

2.3 Existing models and evaluation attempts 11

Chapter 3 Empirical Evaluation 13

3.1 Sample generation and evaluation 13

3.2 Workloads 14

 v

Chapter 4 Data driven approach 23

4.1 Parameter selection and migration algorithms. 23

4.2 Prediction using support vector regression. 24

4.3 Tool architecture 26

4.4 Single vs. multiple predictors 27

Chapter 5 Experimental evaluation 29

5.1 Training setup 29

5.2 Prediction results 30

Chapter 6 Conclusion 37

Bibliography 38

Abstract in Korean 41

Acknowledgement 42

 vi

List of Figures

Figure 2.1 Pre-copy migration 6

Figure 2.2 Post-copy migration. 7

Figure 3.1 Workload statistics for each parameter 18

Figure 3.2 Live migration results 21

Figure 4.1 Process for prediction model using profiling samples . . 26

Figure 4.2 LMbench architecture. 27

Figure 4.3 Ensemble methods combining multiple predictors 28

Figure 5.1 Training score and prediction accuracy for original pre-copy 30

Figure 5.2 Training score and prediction accuracy for auto-converge . . 31

Figure 5.3 Training score and prediction accuracy for XBZRLE . . . 31

Figure 5.4 Training score and prediction accuracy for compression algorithm

. . 32

Figure 5.5 Training score and prediction accuracy for post copy algorithm 33

 vii

List of Tables

Table 2.1 Parameters and performance metrics 10

Table 3.1 Benchmark Workloads 14

Table 3.2 R^2 of parameters for performance metrics 22

Table 4.1 Parameter selection for each algorithm 24

Table 5.1 Parameters and error rate of original pre-copy 34

Table 5.2 Parameters and error rate of auto-converge 34

Table 5.3 Parameters and error rate of XBZRLE 34

Table 5.4 Parameters and error rate of compression. 35

Table 5.5 Parameters and error rate of x-postcopy. 35

Table 5.6 Model accuracy. 36

 １

Chapter 1

Introduction

System virtualization is a widely used technology in cloud computing environments

providing system administrators resource management, server consolidation, load

balancing and system availability. It serves as the abstraction for the physical

resources and applications so that available resources such as storage, application,

server and network devices can be shared between hosts according to the usage

consumption rate in virtualized computing environment. Thanks to elasticity and

scalability in cloud computing service, OS host applications can increase or

decrease their resource usage amount on operational needs and user hosted services

can be switched between physical hosts without service interruption perceived.

One of the most powerful and popular features of system virtualization in cloud

computing environment is live migration, i.e., moving the entire execution

environment from one physical host to another without or with minimum service

interruption. This is very important to system administrator because it makes the

level of service agreement (SLA) committed by service providers fulfilled as high

 ２

as 99.999% or higher, which means less than 5 minutes of downtime in a year. [1]

VM migration makes servers with workload overloaded or overheated balanced

dynamically to overcome physical host capacity limitation and manages servers that

needs to be selectively brought down for maintenance after migrating their

workloads to other servers [2]. For these reasons, latest virtualization solutions such

as Xen and VMware have already built and embedded these live migration

functions into their implementation, called XenMotion[3] and Vmotion respectively.

Although live migration is such an attractive feature in virtualization environment

and many researches have been made to induce prediction models of live migration

performance, those previous works are either limited to a small set of well-known

parameters or evaluated on specific solutions only and still seem to be difficult to

extend to generalized cases. Many modeling approaches have been presented to

provide prediction for live migration performance for which total migration time

and downtime are key metrics, but those are mostly analytical model approaches

and still have limitations in prediction accuracy and its variance. [4][5]–[11]

In this thesis, parameters affecting each live migration algorithm most are

assumingly listed and evaluated using data-driven modeling approach. The support

vector regression method in machine learning is used along with more enhanced

features such as bagging for better performance prediction as well. The results show

that prediction errors are lower than previous analytical or empirical methods,

especially with low variance. In addition, it provides extensibility and flexibility to

system administrators for virtualized computing environment.

 ３

This thesis is organized as follows : In Section 2 and 3, live migration algorithms

which are being commonly used are presented and what metrics are affecting

performance evaluation along with existing models and evaluation attempts. In

Section 4, data driven approach is introduced to be evaluated in real application

scenarios and get more accurate prediction rates. Experimental results are explained

in Section 5. Finally, in Section 6, the conclusion is drawn with still challenging

areas explaining where more research is necessary to improve live migration

performance.

 ４

Chapter 2

Background and related work

Live migration is a technology transferring system states of an entire running VM

from one physical host to another. System states including active memory and

execution state are transferred from the source to the destination machine without

perceivable interruption in service availability. For example, when migration is

complete, physical system resources such as virtual I/O devices are disconnected

from the source and re-directed to the destination physical host under a very short

down time to make the service running on the host available to users seamlessly.

There are two main approaches in live migration methods : pre-copy migration and

post-copy migration. They differ depending on when the state is transferred, i.e.

before or after VM execution is switched. Pre-copy method, which is more widely

implemented and used in most VM hypervisors, has many variations in ways to deal

with resource management or with regards to performance characteristics of live

migration.

 ５

2.1 Live migration algorithms

Live migration algorithm consists of steps such as 1) transfer dirty pages, 2)

suspend at source, 3) transfer last pages, 4) resume at destination. Depending on

when the step #2 is performed, it is broken into two distinctive approaches as pre-

copy and post-copy memory migration. Post-copy method first suspends the

migrating VM at the source before transferring dirtied memory pages whereas pre-

copy stops the VM after copying memory pages with VM running on the source

host.

2.1.1 Pre-copy migration

The main idea of pre-copy migration is transferring system state iteratively and

minimizing subsequent stop-and-copy phase between migration hosts. Pre-copy live

migration is performed in the following steps :

 All memory pages are marked as dirty indicating changes in system states. On

every iteration, the memory pages that are dirtied in the source host during the

previous iteration are resent to the destination host so that the system states get

synchronized on both sides. When the number of memory pages transferring in the

source host goes below a specified criteria, i.e. when the number of dirtied pages are

small enough to stop the VM, which is primarily influenced by the network

bandwidth and the preferred downtime, the VM is suspended at the source host and

the remaining pages are transferred to the target host to complete the migration. As

a result, the VM is resumed on the destination.

 ６

Pre-copy migration process includes 6 distinctive stages as follows:[3]

1) Pre-stage : a target is pre-selected so that the resources required to receive

migration can be guaranteed.

2) Reservation: resources at the destination host are reserved.

3) Iterative pre-copy: pages dirtied during the previous iteration are sent to the

destination. The entire memory is sent in the first iteration.

4) Stop-and-copy: the VM is stopped temporarily for a final transfer iteration.

5) Commitment: the destination host confirms that it has received a consistent copy

of the VM.

6) Activation: resources are re-attached to the VM on the destination host.

Stop conditions determine when it is the right time for the stage to terminate. If

there are no stop conditions, the iterative stage may continue endlessly. These

conditions which are affected by the design of both the hypervisor and the live

migration subsystem, are important in reducing the amount of data copied between

physical hosts while minimizing VM downtime. The existence of these stop

conditions, however, has a significant effect on migration performance and thus

may cause non-linear trends in the total migration time and downtime.

Figure 2.1 Pre-copy migration

Transfer

dirty pages

Suspend VM

at source

Transfer CPU state

and remaining pages

Resume VM

at destination

Down time

Total migration time

 ７

2.1.2 Post copy migration

Hines et. al [12] presented the design, implementation, and evaluation of

post-copy based live migration for virtual machines (VMs) across a Gigabit LAN.

Post-copy, in contrast to pre-copy live migration approach, is to move the VM

execution state to the destination host at the beginning of the migration process and

the memory pages are sent as requested by the VM. Figure 2.2 shows how the

process is performed. Post-copy approaches are intended to solve the predictability

of total migration time and reduce downtime with pre-copy migration, but as the

pages have to be requested over the network even before the VM has access to them,

VM and its applications experience performance degradation when the VM is

resumed although a novel attempt was tried to reduce performance penalty for

retrieving pages in post-copy using Remote Direct Memory Access, RDMA.

Figure 2.2 Post-copy migration

2.1.3 Compression algorithm

Original pre-copy live migration was difficult to perform rapid migration with low

network overhead due to a great amount of transferred data during migration. Jin et.

al.[13] designed and implemented a novel memory-compression based VM

migration algorithm called MECOM. Memory compression approach was the first

Suspend VM

at source

Transfer CPU

State

Resume VM

at destination

Transfer

Remaining pages

Down time

Total migration time

 ８

attempt to facilitate fast and reliable virtual machine migration while virtual

machine services are not so much affected by memory page characteristics.

Although compression helps network bandwidth to increase its availability and

takes much less time in transferring compressed dirty pages, it is not sufficient to

apply to server instances with huge VM size yet.

2.1.4 XBZRLE algorithm

When migrating VM with high workloads or low network bandwidth, it is very

probable to encounter service interruption when VM memory pages are dirtied

faster than they are transferred over the network, which means that it leads to

extended migration downtime. In order to solve this issue, delta compression

approach was presented by Svard et. al.[14]. They designed and implemented delta

compression live migration algorithm as a modification to the KVM hypervisor and

evaluated its performance by migrating running VMs with different type of

workloads. The result showed a significant decrease in migration downtime. XOR

binary RLE(Run Length Encoding) live migration algorithm was adopted as a

compression algorithm. Delta compression is performed as follows:

When transferring a page, if the cache has a previous version of the page in the

source host, a delta page from the changes between the new version and the cached

version is made using XOR operations. The delta page is compressed through RLE

then and the compressed page is transferred after the cache is updated. Likewise on

the destination side, the delta page is decompressed and the page is recreated from

the delta page using XOR.

Delta compression is a definitely key algorithm when migrating large VMs in

practical perspectives and identifying parameters that affect its performance is very

important in provisioning and relocating of VMs in cloud infrastructure.

 ９

2.1.5 Auto-converge algorithm

As a way of live-migrating virtual execution environment in wide-area network,

pre-copying with write throttling approach was presented by Bradford et al. [15].

The algorithm is also called a dynamic rate limiting technique, i.e., the amount of

hardware resources allocated to the migration task increase dynamically at the

expense of the performance of the VMs. An entire running web server, including its

local persistent state, with minimal service interruption can be transferred within 3

seconds in the LAN and 68 seconds in the WAN environment.

2.2 Performance metrics

Many parameters are known to be affecting migration performance as shown in

Table 2.1. Page dirty rate is the most influencing one in any pre-copy variants

among those, because otherwise frequent dirtying of memory page will get

migration job set back continuously. VM size and writable working set size are also

commonly referred parameters that are influencing in pre-copy algorithm. VM size

is the total amount of memory allocated to VM and sets lower bound of number of

pages to transfer because the total amount of transferring data increases as more

pages are dirtying. By the way, VM size is notably the only factor that affects

performance of post-copy algorithm which has nothing to do with memory changes.

Write density rate imposes direct impact on delta compression algorithm, so it

should be taken into account when assessing performance evaluation as well. The

rest of parameters that affect migration performance are listed in Table 2.1.

 １０

Managing performance overhead of live migration is very important in system

administration of virtualized computing environment and many researches have

been made to define and model performance metrics. [2][16][17]. The following list

of metrics have been commonly used to measure and predict the performance of

live migration [12] :

1. Downtime: The time between pausing the VM on the source and resuming it on

the destination

2. Total Transferred Data: The total amount of memory pages transferred, including

duplicates, throughout all of the whole migration .

3. Total Migration Time: Total sum of times spent during of all the migration stages.

Total time is very important because it is tightly coupled with resource usage on

both of nodes.

4. Performance Degradation: The extent to which migration affects application

performance within the VM such as service availability or responsiveness to end

user

In this research, downtime, total migration time and total transferred data are

chosen and evaluated for performance prediction.

Table 2.1 Parameters and performance metrics

Parameters Performance metrics

 Page Dirty Rate

 VM Size

 Total Migration Time

 Downtime

 １１

Parameters Performance metrics

 Writable Working Set Size

 Write Density

 Non Writable Working Set Size

 Working Set Entropy

 Non Working Set Entropy

 Unhalted Cycles

 Retired Instructions

 Cache Misses

 Cache References

 Cache Hit

 IPC

 L2$ WB Count

 Storage NIC Utilization

 Available CPU resource on Host

 Total Transferred Data

2.3 Existing models and evaluation attempts

Although researches have been made to define and evaluate models to predict live

migration performance, most of which were analytical models, they were designed

 １２

with regards to an individual parameter, not in a conjunctive fashion, hence not easy

to extend their application boundaries to general cases as more parameters are to be

considered. Moreover, their approaches were limited to original pre-copy migration

on Xen only and yet on the way to model other algorithms. Data driven approaches

were also made to build performance prediction models, but those are resorting only

to legacy modeling methods such as power regression or model checker method, so

not applicable to general migration cases in reality. [18] [19]

 １３

Chapter 3

Empirical evaluation

Empirical evaluations were performed with regard to five different types of live

migration algorithms supported on QEMU platform for the following reasons : to

assume parameter set that affects live migration performance most, to generate

training sample data to evaluate those assumed parameters, finally to build a

performance prediction model with them.

3.1 Sample generation and evaluation

Parameter samples were generated and collected using monitoring functions

provided by KVM/QEMU virtual machine hypervisor. Four pre-copy types and 1

post-copy type algorithms are supported on KVM/Qemu and migrations with those

algorithms were performed to evaluate performance parameters. Each parameter

was assessed by turning on VM options or applying methods as follows:

 １４

Page dirty rate data was generated by enabling global_dirty_log option in

QEMU: Dirtied bitmaps are cleared every 100ms to calculate page dirty rate.

(Figure 3.1) : Performance monitoring tool for Linux call ‘perf’ is also used with

command line option

Each host machine has 3 NICs for VM service, VM management and shared storage

respectively. VM runs on the machine with 4 CPU and 2 GB memory configuration.

3.2 Workloads

Real application benchmarks were applied to make various types of workloads and

identify characteristics of each live migration techniques. The list of benchmark

workloads is listed in Table 3.1

Table 3.1 Benchmark Workloads

Benchmark Tool Configuration

Parsec

canneal, facesim, fluideanimate, freqmine, raytrace, streamcluster,

swaptions

Dacapo

avrora, eclipse, fop, h2, jython, luindex, pmd, sunflow, tomcat,

tradebeans, tradesoap, xalan

OLTP auctionmark, epinions, tatp, tpcc, twitter, ycsb

 １５

Benchmark Tool Configuration

benchmarks

Mplayer Valkaama 720p, Valkaama 1080p, Tears of Steel 1080p

Bzip2 Compression of Wikipedia dump data

For parsec benchmark generation, total 28 workloads are applied with 7

applications and 4 threads at the maximum. Various VM sizes with random reboots

during experiment were tested.

For Dacapo benchmark, total 48 workloads were made using 12 applications

with 4 threads at the maximum. In OLTP workload, 5 trials were made with

variations in start time and found that cache hit ratio of DB was affected by warm-

up time. Total 12 workloads were made for OLTP. Performance degradation could

be measured during this generation.

Standalone client applications such as ‘mplayer’, ‘bzip2’ and ‘make’ were used

to find application specific characteristics. Open source movies were used for

respective resolution option. (Valkaama 720p, Valkaama 1080p, Tears of Steel

1080p). Mplayer application was revised to print a message whenever a frame is

decoded so that performance degradation could be checked accordingly. For bzip2,

dump data from UK Wikipedia was used. Data was generated for 9 different

compression levels. The ‘make’ workload was generated by compiling Linux kernel

4.2.3 with 5 threads at the maximum. A total of 104 workloads were applied.

Figure 3.1 shows workload statistics of performance parameters as

CDF(cumulative density function) graphs used in this research. For example, the

 １６

CDF regarding VM size shows the allocated physical memory to a VM with 2 GB

of virtual memory. Although the average write density rate and non-working set

entropy have dense distributions around specific ranges, the data sets for most of the

candidate parameters show quite evenly distributed and seem sufficient to be chosen

for modeling.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000

C
D

F

Page Dirty Rates (MB/s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50000 100000 150000 200000 250000 300000

C
D

F

Number of Working Set Pages

 １７

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100000 200000 300000 400000 500000

C
D

F

Number of Non Working Set Pages

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000

C
D

F

VM Size (MB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

C
D

F

Working Set Entropy

 １８

Figure 3.1 Workload statistics for each parameter

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

C
D

F

Non Working Set Entropy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40

C
D

F

Average Write Density

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5

C
D

F

Average IPC

 １９

Live migration results with those workloads applied are shown in Figure 3.2. As in

the graphs, the total migration time shows a more dense distribution with higher

network bandwidth values assumingly because it has many other affecting variables

on lower network bandwidths. The post-copy algorithm is directly influenced by the

network bandwidth which relates with the amount of data while the compress

algorithms, however, are not being affected by the network bandwidth because the

CPU overhead prevents network resources from being utilized fully.

In contrast to the total migration time, the downtime shows that it has a properly

uniform distribution and does not get affected by the network bandwidth with the

exception of the post-copy algorithm which has a narrow range of distribution.

The total amount of data transferred makes a quite clear distinction between post-

copy/compression and other algorithms.

 1,000 Mbit/s 750 Mbit/s

 500 Mbit/s 100 Mbit/s

a) Total Migration Time with network bandwidth 1,000 / 750 / 500 / 100 Mbit/s

respectively

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

C
D

F

Total Migration Time (sec)

original

auto-converge

xbzrle

compress

x-postcopy-ram

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140

C
D

F

Total Migration Time (sec)

original

auto-converge

xbzrle

compress

x-postcopy-ram

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

C
D

F

Total Migration Time (sec)

original

auto-converge

xbzrle

compress

x-postcopy-ram

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

C
D

F

Total Migration Time (sec)

original

auto-converge

xbzrle

compress

x-postcopy-ram

 ２０

1,000 Mbit/s 750 Mbit/s

500 Mbit/s 100 Mbit/s

b) Downtime with network bandwidth 1,000 / 750 / 500 / 100 Mbit/s respectively

1,000 Mbit/s 750 Mbit/s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7

C
D

F

Downtime (sec)

original

auto-converge

xbzrle

compress

x-postcopy-ram

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8

C
D

F

Downtime (sec)

original

auto-converge

xbzrle

compress

x-postcopy-ram

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8

C
D

F

Downtime (sec)

original

auto-converge

xbzrle

compress

x-postcopy-ram

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7

C
D

F

Downtime (sec)

original

auto-converge

xbzrle

compress

x-postcopy-ram

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000

C
D

F

Total Transferred Data (MB)

original

auto-converge

xbzrle

compress

x-postcopy-ram

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000

C
D

F

Total Transferred Data (MB)

original

auto-converge

xbzrle

compress

x-postcopy-ram

 ２１

500Mbit/s 100 Mbit/s

c) Total Tranferred data with network bandwidth 1,000 / 750 / 500 / 100 Mbit/s

respectively

1,000 Mbit/s 750 Mbit/s

500 Mbit/s 100 Mbit/s

d) Network Throughput with network bandwidth 1,000 / 750 / 500 / 100 Mbit/s

respectively

Figure 3.2 Live migration results for a) Total time, b) Downtime, c) Total

transferred data, d) Network Throughput

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000

C
D

F

Total Transferred Data (MB)

original

auto-converge

xbzrle

compress

x-postcopy-ram

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000

C
D

F

Total Transferred Data (MB)

original

auto-converge

xbzrle

compress

x-postcopy-ram

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

C
D

F

Memory Transfer Rate (Mbit/s)

original

auto-converge

xbzrle

compress

x-postcopy-ram

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

C
D

F

Memory Transfer Rate (Mbit/s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

C
D

F

Memory Transfer Rate (Mbit/s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

C
D

F

Memory Transfer Rate (Mbit/s)

 ２２

As shown in Table 3.2 that lists the coefficient of determination for the parameters,

the assumed parameters affect migration performance. In particular, the average

dirty rate is the most dominant factor for performance throughout for the five

different migration algorithms in concern while the entropy is observed to be less

affecting, although it has minor effects on the compression algorithm .

Table 3.2 R^2 of parameters for performance metrics

DR SIZE WSS NWSS WSE NWSE L2$_WB WRD STRGU CPUSYS

vanilla pre-copy 0.17 0.48 0.54 0.23 0.14 0.17 0.16 0.09 0.23 0.31

cpu-throttling 0.20 0.50 0.52 0.22 0.13 0.17 0.18 0.12 0.27 0.27

delta-compression 0.08 0.34 0.31 0.24 0.06 0.21 0.13 0.11 0.23 0.10

data-compression 0.24 0.69 0.57 0.44 0.19 0.19 0.24 0.15 0.05 0.16

post-copy 0.09 0.99 0.26 0.86 0.28 0.17 -0.02 0.19 0.05 0.09

vanilla pre-copy 0.72 0.41 0.67 0.21 0.30 0.16 0.48 0.25 -0.01 0.29

cpu-throttling 0.71 0.38 0.67 0.27 0.28 0.10 0.47 0.25 0.01 0.22

delta-compression 0.62 0.36 0.58 0.19 0.07 -0.16 0.43 0.28 -0.18 0.09

data-compression 0.72 0.32 0.58 0.27 0.21 0.12 0.52 0.19 0.06 0.21

post-copy -0.04 -0.02 -0.04 -0.03 -0.01 -0.03 -0.04 -0.04 0.04 -0.04

vanilla pre-copy 0.21 0.47 0.58 0.20 0.14 0.16 0.19 0.10 0.19 0.34

cpu-throttling 0.23 0.49 0.57 0.20 0.13 0.17 0.21 0.13 0.23 0.29

delta-compression 0.10 0.34 0.33 0.24 0.06 0.20 0.15 0.12 0.21 0.11

data-compression 0.23 0.65 0.57 0.43 0.19 0.17 0.21 0.13 0.02 0.19

post-copy 0.09 0.99 0.26 0.86 0.28 0.17 -0.02 0.19 0.05 0.09

Total Time

Downtime

Transferred Data

 ２３

Chapter 4

Data driven approach

In this section, a novel, machine learning based data-driven approach is introduced

to analyze and estimate live migration performance. Sets of training samples are

generated for selected parameter sets which are assumed to affect live migration

performance and used for regression analysis to build performance models using

support vector machine.

4.1 Parameter selection and migration algorithms

Profiling data is collected by executing VM migration with 4 pre-copy and 1 post-

copy algorithms and used again to build models based on machine learning

approach.

Table 4.1 shows the list of parameters chosen to build model for each live migration

algorithm respectively.

 ２４

Table 4.1 Parameter selection for each algorithm

Algorithm

Writable

working

set size

Page Dirty

Rate

VM size Entropy

Avg.

Wr.

Density

L2 cache

writeback

count

Non-halted

cycles

Pre-copy O O O X X X X

XBZRLE O O O X O X X

Auto

converge

O O O X X O O

Compress O O O O X X X

4.2 Prediction using support vector regression

Support vector machine is a supervised learning method for efficient model

classification and regression that was first introduced by Vladimir N. Vapnik and

Alexey Ya. Chervonenkis in 1963. [20] Once training examples are given, each

sample is marked to fall into one of two categories and an SVM training algorithm

builds a model that maps new samples into one category or the other, making it a

non-probabilistic binary linear classifier.

Examples are represented as points in space in a SVM model, mapped so that

the examples of the separate categories are divided by a clear distance gap that is as

wide as possible called a decision line. Any new examples are then mapped into that

 ２５

same space and predicted to be in a category depending on which side of the gap

they are close to. Not only in linear classification, SVMs can also efficiently

perform a non-linear classification using what is called the kernel trick, implicitly

mapping their inputs into high-dimensional feature spaces[21].

The idea of non-linear SVMs is that the original feature space can always be

mapped to some higher-dimensional feature space where the training set is

separable. If every data point mapped into high-dimensional space via some

transformation Φ = 𝜒 → 𝜙(𝜒), the inner product becomes:

Κ(𝑥𝑖, 𝑥𝑗) = 𝜙(𝑥𝑖)𝜏𝜙(𝑥𝑗)

With kernel functions, non-separable problem can be made separable by mapping

data into better representational space. Among commonly used kernel functions,

RBF kernel(Radial basis function) is adopted for kernel trick.

SVR function is . To find the unknown

parameters of the SVR function, the following function needs to be solved.

 subject to

RBF kernel is

where optimal ∁, ϵ, and γ values can be found heuristically from training samples.

 ２６

4.3 Tool architecture

The training and prediction process to build a model using support vector regression

method is shown in Figure 4.1. The former half of the process is for sample

generation and the latter half covers building prediction models with those

generated sample data.

Figure 4.1 Process for prediction model using profiling samples

Profiling data is generated and put into sample database which is in turn being used

for training and validation samples to build a model. In this research, the existing

tool called LMbench providing integrated analysis and prediction was revised to

support machine learning method. The overall architecture is depicted as in Figure

4.2.

VM

profiling

model

prediction

scoresample

training

validate

Phase 1 : Sample generation Phase 2 : Modeling and Prediction

 ２７

Figure 4.2 LMbench architecture

4.4 Single vs. multiple predictors

Not only the basic learning model where only a single predictor is generated,

ensemble methods allowing multiple predictors were also used for improvement in

accuracy and stability. In this conjunctive mode, individual models from original

training dataset are combined to generate the final model as shown in Figure 4.3.

Even with small set of training samples, combinative modeling can make

remarkable results by bootstrapping those samples. One of the ensemble methods,

bootstrap aggregating, also called bagging [22] is employed to show improvement

in stability and accuracy to support vector regression approach in this research.

scenario

descriptions
LMBench

resultresultresultlog

Host1 Host2 Host3 Host4

VM VM

log parser

Estimator

(ML…)

run experiments

benchmark and

prediction results

Real applications

workloads

Estimator

(ML…)

Estimator

(ML…)

Estimator

(ML…)

 ２８

For bagging, let L be a training set {(xi, yi) | xi in X, yi in Y}, drawn from the

set Λ of possible training sets from parameter evaluations. A predictor Φ ∶ Χ →

Y is a function that for any given x and it produces y = Φ(x). A learning

algorithm is Ψ ∶ Λ → Φ where given any L in Λ , it produces a predictor

ϕ = Ψ(𝐿) in Φ. This predictor generation is repeated N times and for each

bootstrap sample Lk from L, a predictor is trained using Lk.

Figure 4.3 Ensemble methods combining multiple predictors

Training Data

L

Data1 Data kData2        

Learner

L1

Learner

L2

Learner

LN
       

Learner

Lk

       Model

P1

Model

P2

Model

PN

Model

Pk

Model Combiner Final Model

 ２９

Chapter 5

Experimental evaluation

5.1 Training setup

A total of 10,000+ samples were generated from real applications benchmark and

used for training. For a singular predictor, leave-one-out cross validation that was

suitable for small dataset was used to validate performance model, where all

samples except for validation samples are used to train model and validate the

model on the target samples. Feature scaling is also applied as pre-processing of

data because samples data is assumed to be scaled in SVR.

 The number of samples for each predictor started from 10 with pre-defined

step 5 to find out threshold values in bootstrapping with multiple predictors.

Optional values used for kernel function were chosen with static values because

those are not affecting results much across the whole set of samples. Thus, C for 1.0,

epsilon for 0.1 and gamma for 0.0 were used uniformly respectively.

 ３０

5.2 Prediction results

Figure 5.1 – 5.5 show prediction results from SVR models. Each graph has four

lines with regard to each algorithm where score and accuracy values for single

predictor and multiple ones (bagging) respectively. Throughout the whole charts,

score and accuracy values are raised from around 10 samples and approximate to

upper boundary around 50 or more samples even though more than 50 samples are

tested for the specific algorithm. While prediction error rates were expected to go

down with bagging(bootstrap aggregation) methods, it remained the same or

slightly higher values because bagging is known to show slight degradation in

performance when used for stable algorithm or data set.

Figure 5.1 Training score and prediction accuracy for original pre-copy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

score (Single)

Score (Bagging)

Accuracy (Single)

Accuracy (Bagging)

Original Pre-copy
(Vanilla)

No. of samples

 ３１

Figure 5.2 Training score and prediction accuracy for auto-converge

Figure 5.3 Training score and prediction accuracy for XBZRLE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

Score (Single)

Score (Bagging)

Accuracy (Single)

Accuracy (Bagging)

Auto Converge
(CPU throttling)

No. of samples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

Score (Single)

Score (Bagging)

Accuracy (Single)

Accuracy (Bagging)

XBZRLE
(Delta Compression)

No. of samples

 ３２

Figure 5.4 Training score and prediction accuracy for compression algorithm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

Score (Single)

Score (Bagging)

Accuracy (Single)

Accuracy (Bagging)

Auto Converge
(CPU throttling)

No. of samples

 ３３

Figure 5.5 Training score and prediction accuracy for post copy algorithm

The number of samples for each predictor started from 10 with pre-defined step

value 5 to find threshold values in bootstrapping with multiple predictors. Optional

values for kernel function were chosen with static values because they are not

affecting results much across the whole set of samples. Thus, C for 1.0, epsilon for

0.1 and gamma for 0.0 were used uniformly respectively.

 Table 5.1 – 5.5 shows chosen training parameters and predicted total migration

time from absolute error on average 90
th
 for each live migration algorithm on

QEMU. In particular, errors in XBZRLE was lower than others, which means delta

compression is more predictable than others.

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250

Score (Single)

Score (Bagging)

Accuracy (Single)

Accuracy (Bagging)

Post-copy

No. of samples

 ３４

Table 5.1 Parameters and error rate of original pre-copy. avg_dirty_rate : Average

Dirty Rate, vm_size : VM’s memory size, ws_size : WWS, avg_IPC : Average IPC,

L2$_WB_cnt : L2$ write-back count, avg_non_halted_cycles : Average unhalted

cycles, avg_wr_density : Average scaled write density

Target

Metric

90th_abs

err
Training parameters

Total

migration

time

43.06 avg_dirty_rate_20sec

22.10 avg_dirty_rate_20sec+vm_size

19.04 avg_dirty_rate_20sec+vm_size+ws_size

17.34 vm_size+avg_dirty_rate_20sec+ws_pages+avg_IPC_20sec

Table 5.2 Parameters and error rate of original auto-converge

Target

Metric

90th_abs

_err
Training parameters

Total

migration

time

46.38 avg_dirty_rate_20sec

21.85 avg_dirty_rate_20sec+vm_size

16.04 avg_dirty_rate_20sec+vm_size+ws_size_20sec

15.30
vm_size+avg_dirty_rate_20sec+ws_pages+avg_L2$_WB_cnt_20se

c+avg_non_halted_cycles

Table 5.3 Parameters and error rate of original XBZRLE

Target

Metric

90th_abs

_err
Training parameters

Total

migration

time

38.73 avg_dirty_rate_20sec

14.89 avg_dirty_rate_20sec+vm_size

15.44 avg_dirty_rate_20sec+vm_size+ws_size_20sec

11.23
avg_dirty_rate_20sec+avg_wr_density_20sec+ws_pages+non_ws

_pages+ws_entropy+non_ws_entropy

 ３５

Table 5.4 Parameters and error rate of original compression

Target

Metric

90th_abs

_err
Training parameters

Total

migration

time

39.20 avg_dirty_rate_20sec

24.07 avg_dirty_rate_20sec+vm_size

19.39 avg_dirty_rate_20sec+vm_size+ws_size_20sec

15.76
avg_dirty_rate_20sec+ws_entropy_pages+non_ws_entropy_page

s+ws_entropy+non_ws_entropy

Table 5.5 Parameters and error rate of original x-postcopy

Target

Metric

90th_abs

_err
Training parameters

Total

migration

time

21.21 avg_dirty_rate_20sec

2.60 avg_dirty_rate_20sec+vm_size

2.16 avg_dirty_rate_20sec+vm_size+ws_size_20sec

2.73 vm_size

Table 5.6 shows relative and absolute error on average, 25th, 50th, 90th. We could

find the accuracy of fluidanimate Parsec improved much which has extremely low

write density. For post-copy, 90th relative error is only 5%. Predicting performance

of post-copy seems trivial.

The relative error of downtime is much worse than that of the total migration

time. The average relative error of downtime is more than 20% on average for all

algorithms except for post-copy. But actually it is not that bad. QEMU tries to

guarantee the required downtime 300ms on default, so little absolute error in

downtime is exaggerated in relative error. Table 5.6 shows average of 90th absolute

error in downtime is only 322ms. Improvement in delta-compression and data-

 ３６

compression prove the importance of the proposed feature write density and

working set and non working set entropy.

Table 5.6 Model accuracy

The total migration time has a high correlation with the total transferred data.

For example, the total migration time can be simply approximated by multiplying

the available network bandwidth by the total transferred data. Both total migration

time and total transferred data graph shows similar trends. The average relative

error in the total data transferred is 7.5%.

We tried to predict OLTP performance from migration start to 10sec after using

the same features in other metrics. The OLTP performance model failed to predict

degradation in performance for pre-copy based algorithms 90th absolute error

nearly 60%. The reason is, average of throughput is not much dropped in pre-copy

based algorithm and the variance of the throughput is very high. For post-copy, 90th

absolute error is 22.6%. It is not that bad number considering the high variance in

OLTP performance.

Target Metric Capability avg 25th 50th 90th avg 25th 50th 90th

pre-copy 0.10 0.03 0.06 0.23 7.53 0.83 2.05 17.54

cpu-throttling 0.09 0.03 0.06 0.21 6.88 0.76 1.86 15.43

delta-compression 0.09 0.03 0.06 0.20 7.61 0.69 1.79 12.77

data-compression 0.10 0.03 0.07 0.25 5.86 1.47 2.98 14.26

post-copy 0.02 0.01 0.02 0.05 0.73 0.13 0.33 1.92

pre-copy 0.22 0.06 0.15 0.51 138.38 35.76 76.04 322.42

cpu-throttling 0.22 0.06 0.15 0.52 116.53 28.53 59.34 283.60

delta-compression 0.27 0.09 0.20 0.61 106.31 23.00 52.47 286.78

data-compression 0.37 0.07 0.22 0.75 301.32 77.41 160.61 706.43

post-copy 0.11 0.03 0.08 0.19 27.24 3.05 5.60 39.01

pre-copy 0.09 0.03 0.06 0.21 239.33 58.44 113.84 563.79

cpu-throttling 0.09 0.03 0.06 0.21 224.26 53.63 106.83 549.28

delta-compression 0.10 0.03 0.07 0.21 223.69 51.75 98.49 455.70

data-compression 0.07 0.02 0.05 0.17 60.76 18.53 35.73 128.61

post-copy 0.02 0.01 0.02 0.05 23.92 9.49 21.01 44.06

Total Transferred Data

Downtime

Total Migration Time

Absolute ErrorRelative Error

 ３７

Chapter 6

Conclusion

This research shows the potential of a data driven approach to predict live migration

performance. The model can be built with higher transparency and extended to

parameters which have not been identified yet for various realistic working

environments. In addition, being able to build a model with minimum set of samples

means that it enables automated migration for real-time migration cases.

As future work, other ensemble methods such as boosting and random forest will be

used to build models for predicting the live migration performance, especially

where not much training data is available.

 ３８

Bibliography

[1] S. Akoush, R. Sohan, A. Rice, A. W. Moore, and A. Hopper, “Predicting the

Performance of Virtual Machine Migration,” 2010, pp. 37–46.

[2] D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C.

Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D.

Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, W. Voorsluys, J. Broberg,

S. Venugopal, and R. Buyya, “Cost of Virtual Machine Live Migration in

Clouds: A Performance Evaluation,” vol. 5931, M. G. Jaatun, G. Zhao, and

C. Rong, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp.

254–265.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and

A. Warfield, “Live migration of virtual machines,” in Software, IEEE, 2005,

vol. 21, no. 4, pp. 273–286.

[4] S. Nathan, U. Bellur, and P. Kulkarni, “Towards a Comprehensive

Performance Model of Virtual Machine Live Migration,” 2015, pp. 288–301.

[5] L. Deng, H. Jin, H. Chen, and S. Wu, “Migration Cost Aware Mitigating Hot

Nodes in the Cloud,” 2013, pp. 197–204.

[6] D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C.

Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D.

Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, A. Aldhalaan, and D. A.

Menascé, “Analytic Performance Modeling and Optimization of Live VM

Migration,” vol. 8168, M. S. Balsamo, W. J. Knottenbelt, and A. Marin, Eds.

 ３９

Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 28–42.

[7] D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C.

Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D.

Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, V. Mann, A. Gupta, P.

Dutta, A. Vishnoi, P. Bhattacharya, R. Poddar, and A. Iyer, “Remedy:

Network-Aware Steady State VM Management for Data Centers,” vol. 7289,

R. Bestak, L. Kencl, L. E. Li, J. Widmer, and H. Yin, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2012, pp. 190–204.

[8] Jie Zheng, T. S. E. Ng, K. Sripanidkulchai, and Zhaolei Liu, “Pacer: A

Progress Management System for Live Virtual Machine Migration in Cloud

Computing,” IEEE Trans. Netw. Serv. Manag., vol. 10, no. 4, pp. 369–382,

Dec. 2013.

[9] H. Liu and B. He, “VMbuddies: Coordinating Live Migration of Multi-Tier

Applications in Cloud Environments,” IEEE Trans. Parallel Distrib. Syst.,

vol. 26, no. 4, pp. 1192–1205, Apr. 2015.

[10] F. Xu, F. Liu, L. Liu, H. Jin, B. Li, and B. Li, “iAware: Making Live

Migration of Virtual Machines Interference-Aware in the Cloud,” IEEE

Trans. Comput., vol. 63, no. 12, pp. 3012–3025, Dec. 2014.

[11] J. Zhang, F. Ren, and C. Lin, “Delay guaranteed live migration of Virtual

Machines,” 2014, pp. 574–582.

[12] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy live migration of

virtual machines,” ACM SIGOPS Oper. Syst. Rev., vol. 43, no. 3, p. 14, Jul.

2009.

[13] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan, “Live virtual machine migration

with adaptive, memory compression,” 2009, pp. 1–10.

[14] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth, “Evaluation of delta

compression techniques for efficient live migration of large virtual

machines,” ACM SIGPLAN Not., vol. 46, no. 7, p. 111, Jul. 2011.

[15] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg, “Live wide-

 ４０

area migration of virtual machines including local persistent state,” 2007, p.

169.

[16] X. Feng, J. Tang, X. Luo, and Y. Jin, “A performance study of live VM

migration technologies: VMotion vs XenMotion,” 2011, vol. 8310, p.

83101B–83101B–6.

[17] Y. Kuno, K. Nii, and S. Yamaguchi, “A Study on Performance of Processes

in Migrating Virtual Machines,” 2011, pp. 567–572.

[18] H. Liu, H. Jin, C.-Z. Xu, and X. Liao, “Performance and energy modeling

for live migration of virtual machines,” Cluster Comput., vol. 16, no. 2, pp.

249–264, Jun. 2013.

[19] S. Kikuchi and Y. Matsumoto, “Performance Modeling of Concurrent Live

Migration Operations in Cloud Computing Systems Using PRISM

Probabilistic Model Checker,” 2011, pp. 49–56.

[20] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20,

no. 3, pp. 273–297, Sep. 1995.

[21] “Wikipedia-Support Vector Machine.” [Online]. Available:

https://en.wikipedia.org/wiki/Support_vector_machine.

[22] “Bootstrap Aggregating.” [Online]. Available:

https://en.wikipedia.org/wiki/Bootstrap_aggregating.

 ４１

요약

가상화는 최근 서버 컴퓨팅 환경이 클라우드로 빠르게 전환되면서

폭넓게 사용되는 기술이다. 시스템 가상화 기능 중 가장 필요한 기술인

라이브 마이그레이션은 활발한 연구 분야였고, 특히 그 성능을 예측하기

위한 시도가 이뤄졌으나 대부분 상대적으로 예측오차가 큰 분석적

방법이거나 또는 실제 환경에서의 추가적인 변수들로 확장하기에 제약이

존재한다. 따라서, 본 논문에서는 기계학습의 한 분야인 서포트 벡터

회귀방식을 기반으로 한 데이터 중심의 접근을 제시한다. 특히 오픈

소스로서 확장성이 뛰어난 시뮬레이터인 QEMU 기반에서 Live

Migration의 성능 지표인 전체 마이그레이션 시간, 중단 시간 및 전체

전송량을 예측함으로써, 향후 마이그레이션 자동화를 위한 역할을 제공할

것이다.

주요어 : virtualization, live migration, machine learning, support vector

machine

학 번 : 2007-21003

	Chapter 1 Introduction
	Chapter 2 Background and related work
	2.1 Live migration algorithms
	2.2 Performance metrics
	2.3 Existing models and evaluation attempts

	Chapter 3 Empirical Evaluation
	3.1 Sample generation and evaluation
	3.2 Workloads

	Chapter 4 Data driven approach
	4.1 Parameter selection and migration algorithms
	4.2 Prediction using support vector regression
	4.3 Tool architecture
	4.4 Single vs. multiple predictors

	Chapter 5 Experimental evaluation
	5.1 Training setup
	5.2 Prediction results

	Chapter 6 Conclusion
	Bibliography
	Abstract in Korean

<startpage>10
Chapter 1 Introduction 1
Chapter 2 Background and related work 4
 2.1 Live migration algorithms 5
 2.2 Performance metrics 9
 2.3 Existing models and evaluation attempts 11
Chapter 3 Empirical Evaluation 13
 3.1 Sample generation and evaluation 13
 3.2 Workloads 14
Chapter 4 Data driven approach 23
 4.1 Parameter selection and migration algorithms 23
 4.2 Prediction using support vector regression 24
 4.3 Tool architecture 26
 4.4 Single vs. multiple predictors 27
Chapter 5 Experimental evaluation 29
 5.1 Training setup 29
 5.2 Prediction results 30
Chapter 6 Conclusion 37
Bibliography 38
Abstract in Korean 41
</body>

