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Abstract 

 

Predicting live migration performance of 

virtual machines using machine learning 

 

Jinho Song 

Department of Computer Science and Engineering  

College of Engineering 

The Graduate School 

Seoul National University 

 

 

Virtualization is a widely used technology these days as most of server computing 

environments are rapidly shifting to cloud computing. Live migration, one of the 

most compelling features in system virtualization, has been an active area of 

research. Attempts to predict migration performance were made, but most of those 

were limited to analytical approaches with relatively unstable prediction errors or 

not easy to extend to realistic environments as more parameters are identified and 

considered. In this thesis, a novel data driven approach based on the support vector 

regression method providing flexibility and extensibility in parameter selection is 

introduced to predict performance metrics such as total migration time, downtime 

and the total amount of transferred data, especially on QEMU which is hardware 
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virtualization platform that is open-source and the method of this thesis is easy to 

adapt to various purposes. It will facilitate automated system administration with 

live migration more efficiently.  

 

 

Keywords : virtualization, live migration, machine learning, support vector 

machine  

Student number : 2007 - 21003 
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Chapter 1 

Introduction 

System virtualization is a widely used technology in cloud computing environments 

providing system administrators resource management, server consolidation, load 

balancing and system availability. It serves as the abstraction for the physical 

resources and applications so that available resources such as storage, application, 

server and network devices can be shared between hosts according to the usage 

consumption rate in virtualized computing environment. Thanks to elasticity and 

scalability in cloud computing service, OS host applications can increase or 

decrease their resource usage amount on operational needs and user hosted services 

can be switched between physical hosts without service interruption perceived. 

 

One of the most powerful and popular features of system virtualization in cloud 

computing environment is live migration, i.e., moving the entire execution 

environment from one physical host to another without or with minimum service 

interruption. This is very important to system administrator because it makes the 

level of service agreement (SLA) committed by service providers fulfilled as high 
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as 99.999% or higher, which means less than 5 minutes of downtime in a year. [1] 

VM migration makes servers with workload overloaded or overheated balanced 

dynamically to overcome physical host capacity limitation and manages servers that 

needs to be selectively brought down for maintenance after migrating their 

workloads to other servers [2]. For these reasons, latest virtualization solutions such 

as Xen and VMware have already built and embedded these live migration 

functions into their implementation, called XenMotion[3] and Vmotion respectively. 

 

Although live migration is such an attractive feature in virtualization environment 

and many researches have been made to induce prediction models of live migration 

performance, those previous works are either limited to a small set of well-known 

parameters or evaluated on specific solutions only and still seem to be difficult to 

extend to generalized cases. Many modeling approaches have been presented to 

provide prediction for live migration performance for which total migration time 

and downtime are key metrics, but those are mostly analytical model approaches 

and still have limitations in prediction accuracy and its variance. [4][5]–[11] 

  

In this thesis, parameters affecting each live migration algorithm most are 

assumingly listed and evaluated using data-driven modeling approach. The support 

vector regression method in machine learning is used along with more enhanced 

features such as bagging for better performance prediction as well. The results show 

that prediction errors are lower than previous analytical or empirical methods, 

especially with low variance. In addition, it provides extensibility and flexibility to 

system administrators for virtualized computing environment. 
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This thesis is organized as follows : In Section 2 and 3, live migration algorithms 

which are being commonly used are presented and what metrics are affecting 

performance evaluation along with existing models and evaluation attempts. In 

Section 4, data driven approach is introduced to be evaluated in real application 

scenarios and get more accurate prediction rates. Experimental results are explained 

in Section 5. Finally, in Section 6, the conclusion is drawn with still challenging 

areas explaining where more research is necessary to improve live migration 

performance.
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Chapter 2 

Background and related work 

Live migration is a technology transferring system states of an entire running VM 

from one physical host to another. System states including active memory and 

execution state are transferred from the source to the destination machine without 

perceivable interruption in service availability. For example, when migration is 

complete, physical system resources such as virtual I/O devices are disconnected 

from the source and re-directed to the destination physical host under a very short 

down time to make the service running on the host available to users seamlessly. 

There are two main approaches in live migration methods : pre-copy migration and 

post-copy migration. They differ depending on when the state is transferred, i.e. 

before or after VM execution is switched. Pre-copy method, which is more widely 

implemented and used in most VM hypervisors, has many variations in ways to deal 

with resource management or with regards to performance characteristics of live 

migration. 
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2.1 Live migration algorithms 
 

Live migration algorithm consists of steps such as 1) transfer dirty pages, 2) 

suspend at source, 3) transfer last pages, 4) resume at destination. Depending on 

when the step #2 is performed, it is broken into two distinctive approaches as pre-

copy and post-copy memory migration. Post-copy method first suspends the 

migrating VM at the source before transferring dirtied memory pages whereas pre-

copy stops the VM after copying memory pages with VM running on the source 

host. 

 

2.1.1 Pre-copy migration 

 

The main idea of pre-copy migration is transferring system state iteratively and 

minimizing subsequent stop-and-copy phase between migration hosts. Pre-copy live 

migration is performed in the following steps : 

 All memory pages are marked as dirty indicating changes in system states. On 

every iteration, the memory pages that are dirtied in the source host during the 

previous iteration are resent to the destination host so that the system states get 

synchronized on both sides. When the number of memory pages transferring in the 

source host goes below a specified criteria, i.e. when the number of dirtied pages are 

small enough to stop the VM, which is primarily influenced by the network 

bandwidth and the preferred downtime, the VM is suspended at the source host and 

the remaining pages are transferred to the target host to complete the migration. As 

a result, the VM is resumed on the destination. 
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Pre-copy migration process includes 6 distinctive stages as follows:[3] 

 

1) Pre-stage : a target is pre-selected so that the resources required to receive 

migration can be guaranteed. 

2) Reservation: resources at the destination host are reserved. 

3) Iterative pre-copy: pages dirtied during the previous iteration are sent to the 

destination. The entire memory is sent in the first iteration. 

4) Stop-and-copy: the VM is stopped temporarily for a final transfer iteration. 

5) Commitment: the destination host confirms that it has received a consistent copy 

of the VM. 

6) Activation: resources are re-attached to the VM on the destination host. 

 

Stop conditions determine when it is the right time for the stage to terminate. If 

there are no stop conditions, the iterative stage may continue endlessly. These 

conditions which are affected by the design of both the hypervisor and the live 

migration subsystem, are important in reducing the amount of data copied between 

physical hosts while minimizing VM downtime. The existence of these stop 

conditions, however, has a significant effect on migration performance and thus 

may cause non-linear trends in the total migration time and downtime. 

 

 

Figure 2.1 Pre-copy migration 
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2.1.2 Post copy migration 

 

Hines et. al [12] presented the design, implementation, and evaluation of  

post-copy based live migration for virtual machines (VMs) across a Gigabit LAN. 

Post-copy, in contrast to pre-copy live migration approach, is to move the VM 

execution state to the destination host at the beginning of the migration process and 

the memory pages are sent as requested by the VM. Figure 2.2 shows how the 

process is performed. Post-copy approaches are intended to solve the predictability 

of total migration time and reduce downtime with pre-copy migration, but as the 

pages have to be requested over the network even before the VM has access to them, 

VM and its applications experience performance degradation when the VM is 

resumed although a novel attempt was tried to reduce performance penalty for 

retrieving pages in post-copy using Remote Direct Memory Access, RDMA. 

 

 

Figure 2.2 Post-copy migration 

 

2.1.3 Compression algorithm 

 

Original pre-copy live migration was difficult to perform rapid migration with low 

network overhead due to a great amount of transferred data during migration. Jin et. 
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attempt to facilitate fast and reliable virtual machine migration while virtual 

machine services are not so much affected by memory page characteristics. 

Although compression helps network bandwidth to increase its availability and 

takes much less time in transferring compressed dirty pages, it is not sufficient to 

apply to server instances with huge VM size yet. 

2.1.4 XBZRLE algorithm 

 

When migrating VM with high workloads or low network bandwidth, it is very 

probable to encounter service interruption when VM memory pages are dirtied 

faster than they are transferred over the network, which means that it leads to 

extended migration downtime. In order to solve this issue, delta compression 

approach was presented by Svard et. al.[14]. They designed and implemented delta 

compression live migration algorithm as a modification to the KVM hypervisor and 

evaluated its performance by migrating running VMs with different type of 

workloads. The result showed a significant decrease in migration downtime. XOR 

binary RLE(Run Length Encoding) live migration algorithm was adopted as a 

compression algorithm.  Delta compression is performed as follows: 

When transferring a page, if the cache has a previous version of the page in the 

source host, a delta page from the changes between the new version and the cached 

version is made using XOR operations. The delta page is compressed through RLE 

then and the compressed page is transferred after the cache is updated. Likewise on 

the destination side, the delta page is decompressed and the page is recreated from 

the delta page using XOR.  

Delta compression is a definitely key algorithm when migrating large VMs in 

practical perspectives and identifying parameters that affect its performance is very 

important in provisioning and relocating of VMs in cloud infrastructure.  
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2.1.5 Auto-converge algorithm 

 

As a way of live-migrating virtual execution environment in wide-area network, 

pre-copying with write throttling approach was presented by Bradford et al. [15]. 

The algorithm is also called a dynamic rate limiting technique, i.e., the amount of 

hardware resources allocated to the migration task increase dynamically at the 

expense of the performance of the VMs. An entire running web server, including its 

local persistent state, with minimal service interruption can be transferred within 3 

seconds in the LAN and 68 seconds in the WAN environment. 

 

2.2 Performance metrics 
 

Many parameters are known to be affecting migration performance as shown in 

Table 2.1. Page dirty rate is the most influencing one in any pre-copy variants 

among those, because otherwise frequent dirtying of memory page will get 

migration job set back continuously. VM size and writable working set size are also 

commonly referred parameters that are influencing in pre-copy algorithm. VM size 

is the total amount of memory allocated to VM and sets lower bound of number of 

pages to transfer because the total amount of transferring data increases as more 

pages are dirtying. By the way, VM size is notably the only factor that affects 

performance of post-copy algorithm which has nothing to do with memory changes. 

Write density rate imposes direct impact on delta compression algorithm, so it 

should be taken into account when assessing performance evaluation as well. The 

rest of parameters that affect migration performance are listed in Table 2.1.  
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Managing performance overhead of live migration is very important in system 

administration of virtualized computing environment and many researches have 

been made to define and model performance metrics. [2][16][17]. The following list 

of metrics have been commonly used to measure and predict the performance of 

live migration [12] : 

 

1. Downtime: The time between pausing the VM on the source and resuming it on 

the destination  

2. Total Transferred Data: The total amount of memory pages transferred, including 

duplicates, throughout all of the whole migration . 

3. Total Migration Time: Total sum of times spent during of all the migration stages.  

Total time is very important because it is tightly coupled with resource usage on 

both of nodes.  

4. Performance Degradation: The extent to which migration affects application 

performance within the VM such as service availability or responsiveness to end 

user 

 

In this research, downtime, total migration time and total transferred data are 

chosen and evaluated for performance prediction. 

 

Table 2.1 Parameters and performance metrics 

Parameters Performance metrics 

 Page Dirty Rate 

 VM Size 

 Total Migration Time 

 Downtime 
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Parameters Performance metrics 

 Writable Working Set Size 

 Write Density 

 Non Writable Working Set Size 

 Working Set Entropy 

 Non Working Set Entropy 

 Unhalted Cycles 

 Retired Instructions 

 Cache Misses 

 Cache References 

 Cache Hit 

 IPC 

 L2$ WB Count 

 Storage NIC Utilization 

 Available CPU resource on Host 

 Total Transferred Data 

 

2.3 Existing models and evaluation attempts 
 

Although researches have been made to define and evaluate models to predict live 

migration performance, most of which were analytical models, they were designed 
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with regards to an individual parameter, not in a conjunctive fashion, hence not easy 

to extend their application boundaries to general cases as more parameters are to be 

considered. Moreover, their approaches were limited to original pre-copy migration 

on Xen only and yet on the way to model other algorithms. Data driven approaches 

were also made to build performance prediction models, but those are resorting only 

to legacy modeling methods such as power regression or model checker method, so 

not applicable to general migration cases in reality. [18] [19] 
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Chapter 3 

Empirical evaluation 

Empirical evaluations were performed with regard to five different types of live 

migration algorithms supported on QEMU platform for the following reasons : to 

assume parameter set that affects live migration performance most, to generate 

training sample data to evaluate those assumed parameters, finally to build a 

performance prediction model with them.  

 

3.1 Sample generation and evaluation 

 

Parameter samples were generated and collected using monitoring functions 

provided by KVM/QEMU virtual machine hypervisor. Four pre-copy types and 1 

post-copy type algorithms are supported on KVM/Qemu and migrations with those 

algorithms were performed to evaluate performance parameters. Each parameter 

was assessed by turning on VM options or applying methods as follows: 
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Page dirty rate data was generated by enabling global_dirty_log option in 

QEMU: Dirtied bitmaps are cleared every 100ms to calculate page dirty rate. 

(Figure 3.1) : Performance monitoring tool for Linux call ‘perf’ is also used with 

command line option 

  

Each host machine has 3 NICs for VM service, VM management and shared storage 

respectively. VM runs on the machine with 4 CPU and 2 GB memory configuration.  

 

3.2 Workloads 

 

Real application benchmarks were applied to make various types of workloads and 

identify characteristics of each live migration techniques. The list of benchmark 

workloads is listed in Table 3.1 

 

Table 3.1 Benchmark Workloads 

Benchmark Tool Configuration 

Parsec 

canneal, facesim, fluideanimate, freqmine, raytrace, streamcluster, 

swaptions 

Dacapo 

avrora, eclipse, fop, h2, jython, luindex, pmd, sunflow, tomcat, 

tradebeans, tradesoap, xalan 

OLTP  auctionmark, epinions, tatp, tpcc, twitter, ycsb 
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Benchmark Tool Configuration 

benchmarks 

Mplayer Valkaama 720p, Valkaama 1080p, Tears of Steel 1080p 

Bzip2 Compression of Wikipedia dump data 

 

For parsec benchmark generation, total 28 workloads are applied with 7 

applications and 4 threads at the maximum. Various VM sizes with random reboots 

during experiment were tested.  

For Dacapo benchmark, total 48 workloads were made using 12 applications 

with 4 threads at the maximum. In OLTP workload, 5 trials were made with 

variations in start time and found that cache hit ratio of DB was affected by warm-

up time. Total 12 workloads were made for OLTP. Performance degradation could 

be measured during this generation.  

Standalone client applications such as ‘mplayer’, ‘bzip2’ and ‘make’ were used 

to find application specific characteristics. Open source movies were used for 

respective resolution option. (Valkaama 720p, Valkaama 1080p, Tears of Steel 

1080p). Mplayer application was revised to print a message whenever a frame is 

decoded so that performance degradation could be checked accordingly. For bzip2, 

dump data from UK Wikipedia was used. Data was generated for 9 different 

compression levels. The ‘make’ workload was generated by compiling Linux kernel 

4.2.3 with 5 threads at the maximum. A total of 104 workloads were applied. 

 

Figure 3.1 shows workload statistics of performance parameters as 

CDF(cumulative density function) graphs used in this research. For example, the 
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CDF regarding VM size shows the allocated physical memory to a VM with 2 GB 

of virtual memory. Although the average write density rate and non-working set 

entropy have dense distributions around specific ranges, the data sets for most of the 

candidate parameters show quite evenly distributed and seem sufficient to be chosen 

for modeling. 
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Figure 3.1 Workload statistics for each parameter 
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Live migration results with those workloads applied are shown in Figure 3.2. As in 

the graphs, the total migration time shows a more dense distribution with higher 

network bandwidth values assumingly because it has many other affecting variables 

on lower network bandwidths. The post-copy algorithm is directly influenced by the 

network bandwidth which relates with the amount of data while the compress 

algorithms, however, are not being affected by the network bandwidth because the 

CPU overhead prevents network resources from being utilized fully.  

In contrast to the total migration time, the downtime shows that it has a properly 

uniform distribution and does not get affected by the network bandwidth with the 

exception of the post-copy algorithm which has a narrow range of distribution. 

The total amount of data transferred makes a quite clear distinction between post-

copy/compression and other algorithms.  
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b) Downtime with network bandwidth 1,000 / 750 / 500 / 100 Mbit/s respectively 
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c) Total Tranferred data with network bandwidth 1,000 / 750 / 500 / 100 Mbit/s 

respectively 
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d) Network Throughput with network bandwidth 1,000 / 750 / 500 / 100 Mbit/s 

respectively 

 

Figure 3.2 Live migration results for a) Total time, b) Downtime, c) Total 

transferred data, d) Network Throughput 
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As shown in Table 3.2 that lists the coefficient of determination for the parameters, 

the assumed parameters affect migration performance. In particular, the average 

dirty rate is the most dominant factor for performance throughout for the five 

different migration algorithms in concern while the entropy is observed to be less 

affecting, although it has minor effects on the compression algorithm . 

 

Table 3.2 R^2 of parameters for performance metrics 

 

DR SIZE WSS NWSS WSE NWSE L2$_WB WRD STRGU CPUSYS

vanilla pre-copy 0.17 0.48 0.54 0.23 0.14 0.17 0.16 0.09 0.23 0.31

cpu-throttling 0.20 0.50 0.52 0.22 0.13 0.17 0.18 0.12 0.27 0.27

delta-compression 0.08 0.34 0.31 0.24 0.06 0.21 0.13 0.11 0.23 0.10

data-compression 0.24 0.69 0.57 0.44 0.19 0.19 0.24 0.15 0.05 0.16

post-copy 0.09 0.99 0.26 0.86 0.28 0.17 -0.02 0.19 0.05 0.09

vanilla pre-copy 0.72 0.41 0.67 0.21 0.30 0.16 0.48 0.25 -0.01 0.29

cpu-throttling 0.71 0.38 0.67 0.27 0.28 0.10 0.47 0.25 0.01 0.22

delta-compression 0.62 0.36 0.58 0.19 0.07 -0.16 0.43 0.28 -0.18 0.09

data-compression 0.72 0.32 0.58 0.27 0.21 0.12 0.52 0.19 0.06 0.21

post-copy -0.04 -0.02 -0.04 -0.03 -0.01 -0.03 -0.04 -0.04 0.04 -0.04

vanilla pre-copy 0.21 0.47 0.58 0.20 0.14 0.16 0.19 0.10 0.19 0.34

cpu-throttling 0.23 0.49 0.57 0.20 0.13 0.17 0.21 0.13 0.23 0.29

delta-compression 0.10 0.34 0.33 0.24 0.06 0.20 0.15 0.12 0.21 0.11

data-compression 0.23 0.65 0.57 0.43 0.19 0.17 0.21 0.13 0.02 0.19

post-copy 0.09 0.99 0.26 0.86 0.28 0.17 -0.02 0.19 0.05 0.09

Total Time

Downtime

Transferred Data
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Chapter 4 

Data driven approach 

In this section, a novel, machine learning based data-driven approach is introduced 

to analyze and estimate live migration performance. Sets of training samples are 

generated for selected parameter sets which are assumed to affect live migration 

performance and used for regression analysis to build performance models using 

support vector machine. 

 

4.1 Parameter selection and migration algorithms 
 

Profiling data is collected by executing VM migration with 4 pre-copy and 1 post-

copy algorithms and used again to build models based on machine learning 

approach. 

Table 4.1 shows the list of parameters chosen to build model for each live migration 

algorithm respectively. 
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Table 4.1 Parameter selection for each algorithm 

Algorithm 

Writable 

working 

set size 

Page Dirty 

Rate 

VM size Entropy 

Avg. 

Wr. 

Density 

L2 cache 

writeback

count 

Non-halted 

cycles 

Pre-copy O O O X X X X 

XBZRLE O O O X O X X 

Auto 

converge 

O O O X X O O 

Compress O O O O X X X 

 

4.2 Prediction using support vector regression 
 

Support vector machine is a supervised learning method for efficient model 

classification and regression that was first introduced by Vladimir N. Vapnik and 

Alexey Ya. Chervonenkis in 1963. [20]  Once training examples are given, each 

sample is marked to fall into one of two categories and an SVM training algorithm 

builds a model that maps new samples into one category or the other, making it a 

non-probabilistic binary linear classifier. 

Examples are represented as points in space in a SVM model, mapped so that 

the examples of the separate categories are divided by a clear distance gap that is as 

wide as possible called a decision line. Any new examples are then mapped into that 
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same space and predicted to be in a category depending on which side of the gap 

they are close to.  Not only in linear classification, SVMs can also efficiently 

perform a non-linear classification using what is called the kernel trick, implicitly 

mapping their inputs into high-dimensional feature spaces[21]. 

 

The idea of non-linear SVMs is that the original feature space can always be 

mapped to some higher-dimensional feature space where the training set is 

separable. If every data point mapped into high-dimensional space via some 

transformation Φ = 𝜒 → 𝜙(𝜒), the inner product becomes:  

 

Κ(𝑥𝑖, 𝑥𝑗) =  𝜙(𝑥𝑖)𝜏𝜙(𝑥𝑗) 

 

With kernel functions, non-separable problem can be made separable by mapping 

data into better representational space. Among commonly used kernel functions, 

RBF kernel(Radial basis function) is adopted for kernel trick.  

SVR function is . To find the unknown 

parameters of the SVR function, the following function needs to be solved.  

 

 subject to  

 

RBF kernel is   

where optimal ∁, ϵ, and γ values can be found heuristically from training samples. 

 



 

 ２６ 

4.3 Tool architecture 
 

The training and prediction process to build a model using support vector regression 

method is shown in Figure 4.1. The former half of the process is for sample 

generation and the latter half covers building prediction models with those 

generated sample data. 

 

 

Figure 4.1 Process for prediction model using profiling samples 

 

Profiling data is generated and put into sample database which is in turn being used 

for training and validation samples to build a model. In this research, the existing 

tool called LMbench providing integrated analysis and prediction was revised to 

support machine learning method. The overall architecture is depicted as in Figure 

4.2. 
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Figure 4.2 LMbench architecture 

 

 

4.4 Single vs. multiple predictors 
 

Not only the basic learning model where only a single predictor is generated, 

ensemble methods allowing multiple predictors were also used for improvement in 

accuracy and stability. In this conjunctive mode, individual models from original 

training dataset are combined to generate the final model as shown in Figure 4.3. 

Even with small set of training samples, combinative modeling can make 

remarkable results by bootstrapping those samples. One of the ensemble methods, 

bootstrap aggregating, also called bagging  [22] is employed to show improvement 

in stability and accuracy to support vector regression approach in this research.  

 

scenario

descriptions
LMBench

resultresultresultlog

Host1 Host2 Host3 Host4

VM VM

log parser

Estimator

(ML…)

run experiments

benchmark and 

prediction results

Real applications

workloads

Estimator

(ML…)

Estimator

(ML…)

Estimator

(ML…)



 

 ２８ 

For bagging, let L be a training set {(xi, yi) | xi in X, yi in Y}, drawn from the 

set Λ of possible training sets from parameter evaluations. A predictor Φ ∶ Χ →

Y  is a function that for any given x and it produces y =  Φ(x).  A learning 

algorithm is Ψ ∶  Λ → Φ  where given any L in Λ , it produces a predictor 

ϕ =  Ψ(𝐿) in Φ.  This predictor generation is repeated N times and for each 

bootstrap sample Lk from L, a predictor is trained using Lk.  

 

 

 

 

Figure 4.3 Ensemble methods combining multiple predictors 
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Chapter 5 

Experimental evaluation 

5.1 Training setup 
 

A total of 10,000+ samples were generated from real applications benchmark and 

used for training. For a singular predictor, leave-one-out cross validation that was 

suitable for small dataset was used to validate performance model, where all 

samples except for validation samples are used to train model and validate the 

model on the target samples. Feature scaling is also applied as pre-processing of 

data because samples data is assumed to be scaled in SVR.  

    The number of samples for each predictor started from 10 with pre-defined 

step 5 to find out threshold values in bootstrapping with multiple predictors. 

Optional values used for kernel function were chosen with static values because 

those are not affecting results much across the whole set of samples. Thus, C for 1.0, 

epsilon for 0.1 and gamma for 0.0 were used uniformly respectively. 
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5.2 Prediction results 
 

Figure 5.1 – 5.5 show prediction results from SVR models. Each graph has four 

lines with regard to each algorithm where score and accuracy values for single 

predictor and multiple ones (bagging) respectively. Throughout the whole charts, 

score and accuracy values are raised from around 10 samples and approximate to 

upper boundary around 50 or more samples even though more than 50 samples are 

tested for the specific algorithm. While prediction error rates were expected to go 

down with bagging(bootstrap aggregation) methods, it remained the same or 

slightly higher values because bagging is known to show slight degradation in 

performance when used for stable algorithm or data set. 

 

 

 

Figure 5.1 Training score and prediction accuracy for original pre-copy 
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Figure 5.2 Training score and prediction accuracy for auto-converge 

 

 

Figure 5.3 Training score and prediction accuracy for XBZRLE 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

Score (Single)

Score (Bagging)

Accuracy (Single)

Accuracy (Bagging)

Auto Converge
(CPU throttling)

No. of samples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

Score (Single)

Score (Bagging)

Accuracy (Single)

Accuracy (Bagging)

XBZRLE
(Delta Compression)

No. of samples



 

 ３２ 

 

 

Figure 5.4 Training score and prediction accuracy for compression algorithm 
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Figure 5.5 Training score and prediction accuracy for post copy algorithm 

 

 

The number of samples for each predictor started from 10 with pre-defined step 

value 5 to find threshold values in bootstrapping with multiple predictors. Optional 

values for kernel function were chosen with static values because they are not 

affecting results much across the whole set of samples. Thus, C for 1.0, epsilon for 

0.1 and gamma for 0.0 were used uniformly respectively. 

 

    Table 5.1 – 5.5 shows chosen training parameters and predicted total migration 

time from absolute error on average 90
th
 for each live migration algorithm on 

QEMU. In particular, errors in XBZRLE was lower than others, which means delta 

compression is more predictable than others. 
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Table 5.1 Parameters and error rate of original pre-copy. avg_dirty_rate : Average 

Dirty Rate, vm_size : VM’s memory size, ws_size : WWS, avg_IPC : Average IPC, 

L2$_WB_cnt : L2$ write-back count, avg_non_halted_cycles : Average unhalted 

cycles, avg_wr_density : Average scaled write density 

 

Target 

Metric 

90th_abs 

err 
Training parameters 

Total 

migration 

time 

43.06  avg_dirty_rate_20sec 

22.10  avg_dirty_rate_20sec+vm_size 

19.04  avg_dirty_rate_20sec+vm_size+ws_size 

17.34  vm_size+avg_dirty_rate_20sec+ws_pages+avg_IPC_20sec 

Table 5.2 Parameters and error rate of original auto-converge 

Target 

Metric 

90th_abs

_err 
Training parameters 

Total 

migration 

time 

46.38  avg_dirty_rate_20sec 

21.85  avg_dirty_rate_20sec+vm_size 

16.04  avg_dirty_rate_20sec+vm_size+ws_size_20sec 

15.30  
vm_size+avg_dirty_rate_20sec+ws_pages+avg_L2$_WB_cnt_20se

c+avg_non_halted_cycles 

Table 5.3 Parameters and error rate of original XBZRLE 

Target 

Metric 

90th_abs

_err 
Training parameters 

Total 

migration 

time 

38.73  avg_dirty_rate_20sec 

14.89  avg_dirty_rate_20sec+vm_size 

15.44  avg_dirty_rate_20sec+vm_size+ws_size_20sec 

11.23  
avg_dirty_rate_20sec+avg_wr_density_20sec+ws_pages+non_ws

_pages+ws_entropy+non_ws_entropy 

 



 

 ３５ 

Table 5.4 Parameters and error rate of original compression 

Target 

Metric 

90th_abs

_err 
Training parameters 

Total 

migration 

time 

39.20  avg_dirty_rate_20sec 

24.07  avg_dirty_rate_20sec+vm_size 

19.39  avg_dirty_rate_20sec+vm_size+ws_size_20sec 

15.76  
avg_dirty_rate_20sec+ws_entropy_pages+non_ws_entropy_page

s+ws_entropy+non_ws_entropy 

 

Table 5.5 Parameters and error rate of original x-postcopy 

Target 

Metric 

90th_abs

_err 
Training parameters 

Total 

migration 

time 

21.21  avg_dirty_rate_20sec 

2.60  avg_dirty_rate_20sec+vm_size 

2.16  avg_dirty_rate_20sec+vm_size+ws_size_20sec 

2.73  vm_size 

 

Table 5.6 shows relative and absolute error on average, 25th, 50th, 90th. We could 

find the accuracy of fluidanimate Parsec improved much which has extremely low 

write density. For post-copy, 90th relative error is only 5%. Predicting performance 

of post-copy seems trivial. 

The relative error of downtime is much worse than that of the total migration 

time. The average relative error of downtime is more than 20% on average for all 

algorithms except for post-copy. But actually it is not that bad. QEMU tries to 

guarantee the required downtime 300ms on default, so little absolute error in 

downtime is exaggerated in relative error. Table 5.6 shows average of 90th absolute 

error in downtime is only 322ms. Improvement in delta-compression and data-
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compression prove the importance of the proposed feature write density and 

working set and non working set entropy. 

 

Table 5.6 Model accuracy 

 

 

The total migration time has a high correlation with the total transferred data. 

For example, the total migration time can be simply approximated by multiplying 

the available network bandwidth by the total transferred data. Both total migration 

time and total transferred data graph shows similar trends. The average relative 

error in the total data transferred is 7.5%.  

We tried to predict OLTP performance from migration start to 10sec after using 

the same features in other metrics. The OLTP performance model failed to predict 

degradation in performance for pre-copy based algorithms 90th absolute error 

nearly 60%. The reason is, average of throughput is not much dropped in pre-copy 

based algorithm and the variance of the throughput is very high. For post-copy, 90th 

absolute error is 22.6%. It is not that bad number considering the high variance in 

OLTP performance. 

Target Metric Capability avg 25th 50th 90th avg 25th 50th 90th

pre-copy 0.10 0.03 0.06 0.23 7.53 0.83 2.05 17.54

cpu-throttling 0.09 0.03 0.06 0.21 6.88 0.76 1.86 15.43

delta-compression 0.09 0.03 0.06 0.20 7.61 0.69 1.79 12.77

data-compression 0.10 0.03 0.07 0.25 5.86 1.47 2.98 14.26

post-copy 0.02 0.01 0.02 0.05 0.73 0.13 0.33 1.92

pre-copy 0.22 0.06 0.15 0.51 138.38 35.76 76.04 322.42

cpu-throttling 0.22 0.06 0.15 0.52 116.53 28.53 59.34 283.60

delta-compression 0.27 0.09 0.20 0.61 106.31 23.00 52.47 286.78

data-compression 0.37 0.07 0.22 0.75 301.32 77.41 160.61 706.43

post-copy 0.11 0.03 0.08 0.19 27.24 3.05 5.60 39.01

pre-copy 0.09 0.03 0.06 0.21 239.33 58.44 113.84 563.79

cpu-throttling 0.09 0.03 0.06 0.21 224.26 53.63 106.83 549.28

delta-compression 0.10 0.03 0.07 0.21 223.69 51.75 98.49 455.70

data-compression 0.07 0.02 0.05 0.17 60.76 18.53 35.73 128.61

post-copy 0.02 0.01 0.02 0.05 23.92 9.49 21.01 44.06

Total Transferred Data

Downtime

Total Migration Time

Absolute ErrorRelative Error
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Chapter 6 

Conclusion 

This research shows the potential of a data driven approach to predict live migration 

performance. The model can be built with higher transparency and extended to 

parameters which have not been identified yet for various realistic working 

environments. In addition, being able to build a model with minimum set of samples 

means that it enables automated migration for real-time migration cases. 

 

As future work, other ensemble methods such as boosting and random forest will be 

used to build models for predicting the live migration performance, especially 

where not much training data is available. 
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 ４１ 

요약  

가상화는 최근 서버 컴퓨팅 환경이 클라우드로 빠르게 전환되면서 

폭넓게 사용되는 기술이다. 시스템 가상화 기능 중 가장 필요한 기술인 

라이브 마이그레이션은 활발한 연구 분야였고, 특히 그 성능을 예측하기 

위한 시도가 이뤄졌으나 대부분 상대적으로 예측오차가 큰 분석적 

방법이거나 또는 실제 환경에서의 추가적인 변수들로 확장하기에 제약이 

존재한다. 따라서, 본 논문에서는 기계학습의 한 분야인 서포트 벡터 

회귀방식을 기반으로 한 데이터 중심의 접근을 제시한다. 특히 오픈 

소스로서 확장성이 뛰어난 시뮬레이터인 QEMU 기반에서 Live 

Migration의 성능 지표인 전체 마이그레이션 시간, 중단 시간 및 전체 

전송량을 예측함으로써, 향후 마이그레이션 자동화를 위한 역할을 제공할 

것이다. 

 

 

 

 

 

주요어 : virtualization, live migration, machine learning, support vector 

machine 
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