
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


공학석사 학위논문

Minimizing Expected Losses in

Perturbation Models with

Multidimensional Parametric

Min-cuts

다차원 Parametric Min-cut을 응용한

섭동확률모델에서의 예측손실 최적화

김정명

2015 년 8 월

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY



Minimizing Expected Losses in Perturbation Models

with Multidimensional Parametric Min-cuts

다차원 Parametric Min-cut을 응용한

섭동확률모델에서의 예측손실 최적화

지도교수 정 교 민

이 논문을 공학석사 학위논문으로 제출함

2015 년 3 월

서울대학교 대학원

전기 컴퓨터 공학부

김 정 명

김정명의 공학석사 학위논문을 인준함

2015 년 6 월

위 원 장

부위원장

위 원



Abstract

We consider the problem of learning perturbation-based probabilistic models

by computing and differentiating expected losses. This is a challenging compu-

tational problem that has traditionally been tackled using Monte Carlo-based

methods. In this work, we show how a generalization of parametric min-cuts

can be used to address the same problem, achieving high accuracy of faster than

a sampling-based baseline. Utilizing our proposed Skeleton Method, we show

that we can learn the perturbation model so as to directly minimize expected

losses. Experimental results show that this approach offers promise as a new

way of training structured prediction models under complex loss functions.

Keywords: Parameter Learning, Image Segmentation, Perturbation Model,

Skeleton Method, Expected Loss, Monte-Carlo Sampling

Student Number: 2013-23109

i



Contents

Abstract i

Chapter 1 Introduction 1

Chapter 2 Background: Perturbations, Expected Losses 4

Chapter 3 Algorithm: Skeleton Method 6

3.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Finding a New Facet . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Updating the Skeleton GY . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Calculating Expected Loss R . . . . . . . . . . . . . . . . . . . . 11

3.5 Example: Two Parameters . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 4 Learning 14

4.1 Computing Gradients: Slicing . . . . . . . . . . . . . . . . . . . . 14

4.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Exploiting the Skeletond Method . . . . . . . . . . . . . . . . . . 17

Chapter 5 Experiments and Discussion 18

5.1 Data and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

ii



5.2 Calculating Expected Losses . . . . . . . . . . . . . . . . . . . . 19

5.3 Calculating Gradients . . . . . . . . . . . . . . . . . . . . . . . . 20

5.4 Model Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.4.1 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.4.2 Other Loss Functions . . . . . . . . . . . . . . . . . . . . 23

5.5 Expected Segmentations . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 6 Conclusion 27

Bibliography 29

초록 32

Acknowledgements 33

iii



List of Tables

Table 5.1 Expected Hamming Losses. Expected losses are com-

puted with three ways 1) Average loss of 20 samples

2) Skeleton method 3) Single sampled loss from center.

The performance for each model is described in each row,

where values were computed separately on the training

set and test set. . . . . . . . . . . . . . . . . . . . . . . . 24

iv



List of Figures

Figure 3.1 Visual Example of the Skeleton Method with Two Pa-

rameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 3.2 Comparisons between the Monte Carlo Estimator and

the Skeleton Method. Using both methods we computed

expected Hamming losses to identical settings and com-

pared by runtime. Images of size [90x120] taken from

[10] are used. . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 4.1 Visual Discription of Slices. The slicing method uses

only the thin gray regions in (b) of thickness δ to com-

pute gradients respect to parameter θi. . . . . . . . . . . 16

Figure 5.1 Gradients of Expected Hamming Loss for θ1. (a) Sam-

pling and Skeleton method on two full regions (b) Skele-

ton method on two full regions and Slicing method . . . 21

Figure 5.2 Parameter Learning with Perturb-MAP and the Slic-

ing Method. (a)-(c): Parameter updates (d): Expected

Hamming Loss updates . . . . . . . . . . . . . . . . . . 23

v



Figure 5.3 Learning Other Expected Losses. Orange and blue lines

represent the values computed from the test set and

training set respectively. Dashed lines are Approximate

MBR prediction loss values, while the solid lines are

learned from the Slicing method. . . . . . . . . . . . . . 25

Figure 5.4 Expected Segmentations. (a) Ground Truth (b) Noised

Input (c) Default (0,0,0) (d) P&M (e) Skeleton P&M (f)

Slicing Method . . . . . . . . . . . . . . . . . . . . . . . 26

vi



Chapter 1

Introduction

Many problems in machine learning can be formulated as structured-output

prediction, such as pixel labelling problems in computer vision and protein

side-chain prediction in bio-informatics. A key challenge in the solution of these

problems is to build structured prediction models that capture key correlations

within the outputs and to learn these models from data. There are a range

of approaches to this problem, including training a deterministic predictor to

minimize (regularized) empirical risk (e.g., structural SVMs [13, 14]), PAC

Bayesian-based approaches where the goal is to train a randomized predictor

to minimize a regularized empirical risk [6], and probabilistic modelling paired

with Bayesian decision theory [11].

Perturbation models [7, 12, 3] are an approach that have been a focus of in-

terest in recent years, and are closely related to both PAC-Bayesian approaches

and probabilistic modelling. The idea is to build a probabilistic model over

structured outputs by drawing a random energy function and then returning

the argmin of the random energy function as a sample from the model. These

1



models can then be trained under maximum likelihood-like objectives [7, 12, 3]

or to minimize expected loss [6, 4]. Typically the distribution over energy func-

tions is restricted so that the optimization step is tractable (e.g., it is a min-cut

problem). When this is the case, perturbation models have the desirable prop-

erty that exact samples can be drawn efficiently with a single call to an efficient

optimization procedure.

Our aim in this work is to revisit the problem of training perturbation

models to minimize expected losses. Previous works [6, 4] have used Monte

Carlo-based methods to estimate the needed gradients. A concern with these

approaches is that the gradient estimates can have high variance, as is the case

with the well-known REINFORCE algorithm [15]. Instead, our approach here

is to explore combinatorial methods that take advantage of the structure of

the optimization problem in order to more efficiently make use of optimizer

runs. As a first foray into this approach, we restrict attention to the case where

the perturbation model takes the form of a uniform distribution over model

parameters followed by a call to a min-cut/maxflow routine.

Our method is based on a generalization of the parametric min-cut algo-

rithm [2] which in the 1-dimensional case is able to efficiently compute all

parameter values (breakpoints) where the minimum energy (MAP) solution

changes. To demonstrate the efficacy of our method, we compare estimated

expected losses and their gradients computed by our method with those ob-

tained from a sampling-based scheme. Experimental results show that we get

more accurate solutions with fewer calls to the optimization procedure and less

overall wall time.

As a full application, we also show that our method is useful towards train-

ing structured prediction models to minimize expected losses. The method is

indifferent to the loss function used, so there is potential to use the same method

2



for loss functions that are typically difficult to work with. Experimentally, we

compare our method to learning using Perturb-and-MAP (a.k.a. P&M) [7] to

learn a probabilistic model, then making loss-aware predictions using Bayesian

Decision theory. We also show that the Skeleton method can be used in place

of sampling within the training procedure from [7] to give gradients with lower

variance.

3



Chapter 2

Background: Perturbations,
Expected Losses

We will focus on the case where perturbation models are used to define a con-

ditional probability model P (y |x; θ), where x is an input (e.g., an image),

y ∈ {0, 1}n is a structured output (e.g., a foreground-background image seg-

mentation), and θ ∈ Rm is a real-valued vector of parameter values. We addi-

tionally assume access to a feature vector φ(x, y) ∈ Rm which contains unary

and pairwise potentials. Perturbation models begin by defining an energy func-

tion E(y |x; θ) = ⟨θ, φ(x, y)⟩. The second component to a perturbation model

is the noise distribution P (γ) which is a distribution over noise vectors γ ∈ Rm.

The probability model P (y |x; θ) can then be defined as follows:

γ ∼ P (γ) (2.1)

y = argmin
y′

E(y′ |x; θ + γ). (2.2)

It will be useful to define minimizer f(θ) = argminy E(y |x; θ), dual function

g(θ) = miny E(y |x; θ), and inverse set f−1(y) = {θ : f(θ) = y}. Under this

4



definition, the probability of a configuration y can be expressed as P (y |x; θ) =∫
1{θ+γ∈f−1(y)}P (γ)dγ. We are interested in expected losses under perturbation

models. The expected loss (or risk) is a function of a given y∗ (in our case, the

ground truth configuration) and parameters θ. It is defined as

R(y∗, θ) =
∑

y∈{0,1}n
P (y |x; θ)L(y∗, y) (2.3)

=
∑

y∈{0,1}n

∫
1{θ+γ∈f−1(y)}P (γ)L(y∗, y)dγ, (2.4)

where L(y∗, y) assigns a loss value for predicting y when the ground truth is

y∗. The ultimate goal we are working towards is to learn parameters θ so as

to minimize R(y∗, θ). First, we focus on the prerequisite tasks of computing

and differentiating R(y∗, θ). We will use deterministic update rules to calculate

gradients with the Skeleton method to learn the model.

5



Chapter 3

Algorithm: Skeleton Method

We begin by making some assumptions. First, let P (γ) be a uniform distribu-

tion such that θ + γ is distributed uniformly over a m-dimensional hyperrect-

angular region Sθ =
∏m

i=1[θi, θi + wi], where γi ∈ [0, wi] and wi ∈ R>0. Also

assume that the minimizer f(θ) is unique for all θ except for a set with measure

zero, so f(θ) can be treated as having a unique value. Finally, assume that for

all θ ∈ S, E(y |x; θ) is submodular and can be optimized efficiently.

In the following, it will be convenient for us to redefine the inverse set f−1(y)

so that only regions in S are included. That is, f−1(y) = {θ : f(θ) = y∧θ ∈ S}.

Then from above, we can reformulate the expected loss R(y∗, θ) as the following.

R(y∗, θ) =
∑

y∈{0,1}n

∫
1{θ+γ∈f−1(y)}P (γ)L(y∗, y)dγ (3.1)

=
∑
y∈YS

L(y∗, y)Volume(f−1(y))/Volume(S) (3.2)

Noting that L(y∗, y) is not a function of γ and that
∫
1{θ+γ∈f−1(y)}P (γ)dγ =

6



Volume(f−1(y))/Volume(S), we can rewrite R(·) as (3.2), where YS = {y :

∃θ, θ ∈ S ∧ f(θ) = y} is the set of configurations that are minimizers for some

θ ∈ S.

In this paper, we introduce a novel method to find the minimizers y ∈ YS

and their inverse sets by iteratively updating a graph structure that we call

a skeleton. Note that for a fixed y, E(y |x; θ) is a linear function of θ, which

implies that the dual function g(θ) = miny E(y |x; θ) is a piecewise concave

function, where pieces are hyperplanes corresponding to minimizers y. Let hy

be the corresponding hyperplane for some fixed minimizer y. Intuitively, the

skeleton GY = (VY , EY ) is a graphical representation of the dual g(θ) over S.

The skeleton will be constructed on the given parameter space S by finding new

minimizers, or hyperplanes, at each iteration until there are no more minimizers.

At each iteration, the growing skeleton represents an upper bound on the dual

g, which we call the subset dual.

Definition 1 (Subset dual gY ) For some given minimizer set Y ⊆ YS, let

gY (θ) = miny∈Y E(y |x; θ) be the subset dual, which is a piecewise concave

function.

For some given subset dual gY (·), each hyperplane hy has a corresponding graph

which we refer as a facet Gy. A facet Gy = (Vy, Ey) is defined as the smallest

convex hull made by the intersections of hy and other hyperplanes, where Vy, Ey

are boundary vertices and edges of the convex hull. Let θv be the parameter

value and zv = gY (θv) be the subset dual value corresponding to the vertex v.

Note that a facet can be cut because of the boundaries the given parameter

space makes. A skeleton is defined using the union of these facets as follows.

Definition 2 (Skeleton of gY over S) For some given subset dual gY , the

7



skeleton of gY on S can be represented by the following structure GY = (VY , EY ).

Let (u, v) be an edge between u and v, where u, v ∈ VY .

• VY =
⋃

y∈Y {v : Boundary vertices of Gy, where θv ∈ S, zv = gY (θv)}

• EY =
⋃

y∈Y {(u, v) : Boundary edges of Gy, where u, v ∈ VY } ∪ {(u, v) :

u ∈ VY , θu ∈ Πm
i=0{w

−
i , w

+
i }, v = (θu,−∞)}

For example, Figure 3.1 is a skeleton over some parameter space S ∈ R2 given

a subset dual gY , where Y = {y1, ..., y5}. There are five facets on the skeleton,

where four are cut by the boundaries of S.

From the given definitions, it is clear that an inverse set f−1
Y (y) = {θ : y =

argminy′∈Y fθ(y
′)∧θ ∈ S} of y defined on a subset dual gY directly corresponds

to the projection of the facet Gy. Thus, in order to calculate the volume of

θY (y), we can use the projected vertices of Gy on S. One of the main points

of our method is that we are able to track every facet with every iteration, so

that we can calculate the approximate expected loss every time we update the

skeleton.

We now describe our Skeleton method and how it works. Figure 3.1 describes

a visual example on how a skeleton is constructed and updated by a single

iteration of our algorithm. Algorithm 1 is the pseudo code of the algorithm.

3.1 Initialization

The initial skeleton GY = (VY , EY ) is given by the following.

• Y = φ

• VY = {(θvn , zvn) : θvn = Πm
i=0{w

−
i , w

+
i }, zvn =∞}

• EY = {(u, v) : u ∈ VY , v = (θu,−∞)}

8



Algorithm 1 Skeleton Method

Input: Oracle f , Loss function L(y∗, y)

(Y,GY )← InitSkeleton()

for all u = (θu, zu) ∈ Vi do

yu = f(θu)

if hyu(θu) < zu then

Add yu to Y

(I,H)← FindIntersection(GY , hyu)

Add fyu = (yu, I) to FY

VY = (VY ∪ I)−H

for all Intersection vertices p ∈ I do

if p is a new vertex then

Add p to all Gy ∈ {Facets sharing (pt, ph), where ph is above and pt

is below hyu}

Append new edge (pt, p) to EY

end if

end for

Remove head vertices r ∈ H from all facets

Remove E− = {(u, v) : u or v ∈ H} from EY

Append E+ = {Boundary edges of Gyu} to EY

R =
∑

y∈Y V olumef−1(y)L(y
∗, y)

end if

end for

9



3.2 Finding a New Facet

In order to find a new facet, the algorithm first picks some vertex u = (θu, zu) ∈

VY . Using graph cut, a new solution yu = f(θu) can be found. The first step is

to determine whether the new solution improves the current dual in any region.

This can be checked by hyu(θu) < zu. If this is the case, we say that a cut is

made, and yu is added to Y .

Next, we must find new intersection points where hyu intersects other hyper-

planes defining the subset dual. The key property of the new intersection points

is that they will either appear at existing vertices v ∈ VY , or they appear on an

edge (ph, pt) ∈ EY that “crosses” the new hyperplane; that is hyph (θph) < zph

and hypt (θpt) > zpt . The set of vertices where hyv(θv) < zv, form a connected

component H ⊂ GY , and the crossing edges are the boundary edges of this

connected component. Thus, the intersection points can be found by explor-

ing a search tree outwards from u. When a vertex v is encountered such that

hyv(θv) < zv, the intersection point between v and its parent is computed by

finding some point p where hyp(θp) = zp, and the search tree is not searched

further down that path. Upon termination, vertices of the connected compo-

nent H are removed from VY , and the new intersection points, notated as I,

are added. A step of this procedure is illustrated in Figure 1(b), where there is

a cut after selecting vertex ui, colored in red.

3.3 Updating the Skeleton GY

When a cut is done in the skeleton, it should be updated with the new upper

bound made by hyu . The nontrivial case is when some intersection point p ∈ I

is a new point made on some edge (ph, pt) ∈ EY , which is (u1, v1) for p1 in

Figure 1b. The new vertex p is added to all facets which share the edge (ph, pt).

10



Also, a new edge (pt, p) should be added to the skeleton. Boundary edges made

from the convex hull of the new polytope Gyu are also added to EY . Finally,

the skeleton update is done when all vertices r ∈ H are deleted from every facet

and all edges including r are removed from EY .

3.4 Calculating Expected Loss R

At this point, the skeleton is fully updated. To compute expected loss R(y∗, θ),

we use an off-the-shelf subroutine for computing the volume of each inverse set

f−1
Y (y) for y ∈ Y . The volumes are multiplied by the loss value for each y, and

the products are summed to get the full expected loss. For normalization, the

value is divided by the volume of S.

3.5 Example: Two Parameters

Figure 3.1 describes a single iteration of the Skeleton Method on a pertur-

bation model having two parameters, θ1, θ2. Note that the left　side repre-

sents the subset dual gY and that the right image is　the projection of facets

on the given parameter space S. The iteration starts from a skeleton which

has already done five iterations by the algorithm (Y = {y1...y5}). There are

five facets on the parameter space so that the expected loss is R(y∗, θ) =∑5
n=1Volume(f−1

Y (yn))L(y
∗, yn)/Volume(S). Suppose we take some unused

vertex u1. In this case, we can see that the hyperplane hy6 makes a cut in the

skeleton (Y ′ = Y ∪ {y6}). By updating the skeleton, a new facet f6 is found.

Since there is a unique loss value for each facet, we can calculate the expected

loss as R(y∗, θ) =
∑6

n=1Volume(f−1
Y ′ (yn))L(y

∗, yn)/Volume(S).

11



𝜃1

𝑌 = {𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5}

𝑓−1 𝑦3

𝑓−1 𝑦1𝑓−1 𝑦2 𝑓−1(𝑦4)

𝑓−1 𝑦5

𝑆 = 𝜃1, 𝜃2

𝜃2

𝜃1 𝜃2

(a)

𝑢1

𝑢1
𝑢2

𝑣1

𝑣2

𝑣4 𝑣3

𝑣4
𝑣3

𝑣1 𝑣2

𝑝1

𝑝3 𝑝2

𝐻 = {𝑢1, 𝑢2}

𝐼 = {𝑝1, 𝑣2, 𝑝2, 𝑝3}

𝑌′ = 𝑌 ∪ {𝑦6}𝑦6 = 𝑓(𝜃𝑢1)

ℎ𝑦5

𝑢2

𝜃1

𝜃2

𝜃1 𝜃2

(b)

𝑌′ = {𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6}

𝜃1 𝜃2
𝜃1

𝜃2

𝑓−1 𝑦3

𝑓−1 𝑦1

𝑓−1 𝑦2 𝑓−1(𝑦4)

𝑓−1 𝑦5

𝑓−1(𝑦6)

(c)

Figure 3.1: Visual Example of the Skeleton Method with Two Parameters.

12



Figure 3.2: Comparisons between the Monte Carlo Estimator and the Skeleton

Method. Using both methods we computed expected Hamming losses to iden-

tical settings and compared by runtime. Images of size [90x120] taken from [10]

are used.

13



Chapter 4

Learning

4.1 Computing Gradients: Slicing

Our main focus is not only computing expected losses; the ultimate aim is to

learn parameters that yield a perturbation model that achieves low expected

loss. In order to update the perturbation model to minimize the expected

loss, we calculate the gradients by applying a simple finite-differencing-based

technique named slicing.

Before going through details, we add more assumptions from the previous

section. To be more flexible, let the parameter space where θ + γ is sampled

from notated as Sθ = θ + S = θ + Πm
i γ, where γi ∈ [0, wi]. The expected loss

of the region which S creates on parameter θ will be notated as RS(y
∗, θ). The

approximation we use is

∂R(y∗, θ)

∂θi
≈ RS(y

∗, θ + δei)−RS(y
∗, θ)

δ
, (4.1)

where δ is a small value and ei ∈ Rm is a unit vector with 1 in the ith coor-

dinate and 0 elsewhere. Intuitively, this is identical to the difference between

14



expected losses of regions shifted to the + direction of θi by a small distance of

δ. Therefore, we can use a Monte Carlo-based method or the Skeleton method

on these two regions and compute the differences to find the gradients.

When shifting a region by δ, we see that the contribution to the gradient

comes just from the δ-width end-regions illustrated in Figure 4.1 (b). We call

these end regions slices. Motivated by this, instead of computing expected losses

of the shifted and unshifted full regions, we compute expected losses only on

the slices. Intuitively, we expect the slices to have fewer minimizers defining the

Skeleton structure than the full regions that include them, and we expect that

focusing only on the regions of difference will lead to faster and more accurate

gradient estimates.

Let si = Πm
j γj be the size of the thin slice where γj = [0, wj ] except the ith

range γi ∈ [0, δ]. From this setting, Rsi(y
∗, θ) stands for the expected loss of

the sliced region of size si. Using this we can apply gradient descent updates.

∂R(y∗, θ)

∂θi
≈ Rsi(y

∗, θ + wi)−Rsi(y
∗, θ) (4.2)

θi(t+ 1) = θi(t)− αi
∂R(y∗, θ)

∂θi
(4.3)

Each parameter θi in iteration t + 1 is updated with the gradient value

with a constant step size of αi, which is proportional by the feature size of θi.

One thing to be cautious about when selecting a learning rate is, that if the

learning rate is too large, then the parameters may make the model jump to an

unlearnable state (plateau in the objective), which is a state where Sθ holds

only one inverse set.

15



𝜃𝑖

(a) Sθ

𝛿

𝜃𝑖

(b) Sθ → Sθ+δei

Figure 4.1: Visual Discription of Slices. The slicing method uses only the thin

gray regions in (b) of thickness δ to compute gradients respect to parameter θi.

4.2 Training

In order to learn the parameters for our perturbation model, we exploit the

Slicing method so that the model is trained directly from minimizing expected

loss. One main advantage for our method is that we can use an arbitrary loss

function very easily in this process. Suppose we have a training set with a size

of N and have m parameters. For each iteration, we make 2m slices from the

model. Parameters are updated by using the mean value of gradients from all

training images like the following equation.

θi(t+ 1) = θi(t) + αi
1

N

N∑
n

∂R(y∗n, θ)

∂θi
(4.4)

Note that it is not necessary to evaluate the expected loss objective at every

step of the optimization.

16



4.3 Exploiting the Skeleton Method

Previous approaches focus on how to use sampling methods to learn their mod-

els, which although many have well understood theoretical convergence proper-

ties as the sample size goes to infinity, suffer from problems with high variance

in practice. In fact, the Skeleton method can be used in place of sampling

more generally; for example, the P&M model in [7] is trained using a moment-

matching objective described in Eq. 9-11.

θi(t+ 1) = θi(t)− αi∆θi (4.5)

∆θi = ESθ
[φi(y)]− E[φi(y

∗)] (4.6)

ESθ
[φi(y)] =

1

M

M∑
j

φi(yj) (4.7)

To compute the expectations ESθ
[φi(y)], where φi(y) is a feature func-

tion, the standard approach is to use sampling. However, we can replace the

sampling-based approach with a skeleton-based approach. Specifically, we re-

place the term to be ESθ
[φi(y)] =

∑
y∈{0,1}n P (y |x, θ)LH(y∗, yj) and then use

the method described above to compute the quantities needed in Eq. 9-11.

This gives an alternative method for optimizing the original P&M objective;

we call this approach Skeleton Perturb-and-MAP (Skeleton P&M).

17



Chapter 5

Experiments and Discussion

5.1 Data and Setup

In this section, we apply the Skeleton Method to a foreground-background im-

age segmentation task, comparing against Monte Carlo baselines which estimate

expected losses by drawing samples from the prior and reporting the average

incurred loss. All images used in experiments are originally from the Berkeley

image segmentation set by [10]. The energy function used is of the following

form:

E(y |x; θ) = ⟨θ, φ(x, y)⟩

= E(x) + θ1

n∑
i

xi

+ θ2
∑

(yi,yj)∈Ev

(yi ̸= yj) + θ3
∑

(yi,yj)∈Eh

(yi ̸= yj)

(5.1)

where Ev, Eh are each sets of neighboring vertical and horizontal pairs of pixels

respectively. xi is the ith pixel’s label of the noised input, which is made by

switching values of ground truth labels with a uniform probability of 5%.

18



Expected losses were computed over a parameter space Sθ = θ + γ ⊆ Rm

defined from a uniform distribution γ ∼ P (γ) where γ ∈ [0, 1]3. Intuitively, Sθ is

a cube shaped region positioned by θ on the parameter space where parameters

are sampled from. Expected loss over region Sθ will be notated as RS(y
∗, θ).

In default, the loss function for the following experiments will be defined as

the Hamming distance, LH(y∗, y) =
∑n

i=1(yi ̸= y∗i ). Note that this formulation

supports arbitrary loss functions other than the Hamming distance.

5.2 Calculating Expected Losses

To evaluate the methods, it would be ideal to have a ground truth value of

expected losses for a given parameter setting. Unfortunately this is hard to

calculate accurately, because the Skeleton method does not always run to ter-

mination within practical time, and there is necessarily some variance in the

estimates returned by the sampling estimate. Thus, we report the estimates

from each method along with 95% confidence intervals derived from the sam-

pling method. For the sampling method, in each trial, parameters were inde-

pendently sampled 100k times, and this was repeated 10 times.

Figure 3.2 shows plots of expected losses calculated by the two methods

versus runtime. The average sampling estimate (across all trials) appear as red

dashed lines in Figure 3.2(a) -3.2(c). Also shown are the cumulative averages

for three representative trials of the sampling (green to blue curves), and the

Skeleton method (magenta). The main take-away is that the expected loss

values of both methods converge to similar values, but particularly with few

samples, there is high variance in sampling. While the Monte Carlo estimator

has significant variance even after 1000 seconds, the Skeleton Method has essen-

tially converged to its final, accurate estimate after approximately 10 seconds.

19



This suggests that we can even stop running the method in the middle of the

algorithm to estimate the expected loss with high accuracy. The reason such

behavior appears is related to the high concentration of vertices in the later

iterations of the algorithm. Many calculations made in later iterations induce

inverse sets which have very small volumes, implying the low contribution to

the expected loss.

5.3 Calculating Gradients

We now turn attention to evaluating the Skeleton method and Monte Carlo

method for computing gradients of expected losses. For the Skeleton method,

we evaluate our recommended Slicing method, and also a variant that computes

expected losses over full regions that are shifted by δ, which would be the

more standard finite-difference approach. We use the thickness δ = 0.001 and

parameter θ1, which is for the unary term, for the experiments. A comparison of

the Monte Carlo approach (red) and the full-region Skeleton method (magenta)

appear in Figure 5.1 (a). The red curve shows the cumulative average Monte

Carlo estimate averaged across 10 repetitions. Even with this averaging, we see

a great deal of variance in the estimates. The Skeleton method, by contrast,

quickly converges to a value near where the Monte Carlo estimator appears to

be converging to.

We then zoom in (note the y-axis scales) and consider the recommended

Slicing variant of the Skeleton method and compare it to the full-region version

shown in Figure 5.1 (a). The result appears in Figure 5.1 (b). Here we see that

the Slicing variant is faster and much more stable than the full-region variant.

As mentioned above, we believe the reason for the disparity is that number of

unique inverse sets in the Slicing variant is smaller, and there is no variance that

20



arises from the two runs computing slightly different estimates of the expected

loss in the middle region that is contained by both the original and shifted full

region.

(a) (b)

Figure 5.1: Gradients of Expected Hamming Loss for θ1. (a) Sampling and

Skeleton method on two full regions (b) Skeleton method on two full regions

and Slicing method

5.4 Model Learning

Learning was done an image set including 30 images each having approximately

2500 pixels. The data set was randomly split into N = 24 training images and

N ′ = 6 test images.

5.4.1 Learning

We performed learning with the Slicing method, where gradients are computed

with slices having a thickness of δ = 0.001. The starting parameter is θ =

(0, 0, 0), with a uniform perturbation γ ∈ Π3
i [0, 1] defining a cube-shaped region

on the parameter space. Gradients are computed for each parameter, which

21



makes 6 slices to use. All slices can be computed independently, where in most

cases 1-3 seconds are enough to get significant accuracy. By every iteration,

the region will shift to a certain direction, and the process is repeated. The

orange plots of Figure 5.2 show how the Slicing method learns the model for 60

iterations.

As a baseline for our method, we trained the P&M model with the same set-

tings. Note that the Slicing method and P&M model have different behaviors,

which are due to the difference in objectives; our Slicing method directly tries

to minimize expected Hamming loss while the P&M model uses a moment-

matching rule to estimate the posterior. The behavior of the learning P&M

model is illustrated as the solid blue line of Figure 5.2, with the Skeleton P&M

model being the dotted blue line. Take note that the Skeleton P&M strongly

resembles the original P&M trace, but its trajectory is smoother, presumably

due to lower variance in the gradient estimates.

At test time, instead of computing expected losses accurately, there may

be a desire to sacrifice accuracy over runtime in estimating the value. One

easy example is to use a finite number of samples such as 20 and compute

the average of losses. Another approach is to sample a single output from

a moderate position such as the center of the parameter space. Table 5.1

shows the expected losses computed from the mentioned methods. Each column

represents the method we choose to compute expected loss. Each row represents

the selected model trained for 60 iterations. Both from Figure 5.2(d) and Table

5.1, it is clear that our method is superior to the P&M model in optimizing the

expected Hamming loss.

22



(a) (b)

(c) (d)

Figure 5.2: Parameter Learning with Perturb-MAP and the Slicing Method.

(a)-(c): Parameter updates (d): Expected Hamming Loss updates

5.4.2 Other Loss Functions

With our method, it is possible to minimize an arbitrary loss function’s ex-

pected value. In the following experiments we try to minimize the following

loss function.

- Boundary-only Pixel Loss LP : Hamming loss on only pixels which

have at least one neighbor with a different label in the ground truth

LP (y
∗, y) =

∑
y∗i ̸=y∗j

(yi ̸= y∗i )

23



Table 5.1: Expected Hamming Losses. Expected losses are computed with three

ways 1) Average loss of 20 samples 2) Skeleton method 3) Single sampled loss

from center. The performance for each model is described in each row, where

values were computed separately on the training set and test set.

METHOD SAMPLED EXPECTED CENTER

P&M (Train) 1.694±.0011 1.812 .2369

Skel. P&M (Train) 1.764±.0017 1.816 .2369

Slicing (Train) 1.480±.0012 1.535 .2932

P&M (Test) 2.186±.0011 2.257 1.172

Skel. P&M (Test) 2.197±.0016 2.268 1.178

Slicing (Test) 2.048±.0043 2.134 1.391

The solid lines of Figure 5.3 shows the expected losses changing by the Slic-

ing method in 60 iterations. The dashed lines are loss values from a baseline

where we use the learned Skeleton P&M parameters to make loss-directed pre-

dictions using an approximation of Bayesian decision theory, similar to that

used by [9]. approximation Bayesian Decision Theory prediction framework.

Specifically, we sample M = 100 segmentations Y = {y(1), . . . , y(M)} from

the learned model, then we make predictions by restricting possible predic-

tions to be one of the M sampled segmentations, and we approximate expected

losses by taking averages over the M segmentations; specifically, we predict as

argminy′∈Y
∑

y∈Y ∆(y′, y). Figure 5.3 shows the expected boundary-only pixel

loss being learned from the Slicing method as solid lines and the approximate

Minimum Bayes Risk (MBR) prediction loss as dashed lines. This experiment

shows that our method gives better results than the classical approach in min-

24



imizing expected losses.

Figure 5.3: Learning Other Expected Losses. Orange and blue lines represent

the values computed from the test set and training set respectively. Dashed

lines are Approximate MBR prediction loss values, while the solid lines are

learned from the Slicing method.

5.5 Expected Segmentations

To visualize how different parameters, or regions, effect the expected loss, we

can use a probabilistic image constructed from every solution captured by our

algorithm. This image or expected segmentation is made by weighting each

configuration by the volume of its inverse set and summing up to a gray scale

image. Note that this implies that the values of Table 5.1 are identical to the

l1 distance between the ground truth image and the expected segmentation.

Examples are shown in Figure 5.4. The example images were selected from

the test set. From the figure, you can see that expected segmentations made

25



(a) (b) (c) (d) (e) (f)

Figure 5.4: Expected Segmentations. (a) Ground Truth (b) Noised Input (c)

Default (0,0,0) (d) P&M (e) Skeleton P&M (f) Slicing Method

from our perturbation model have higher quality, smoother segmentations than

those from the P&M models.

26



Chapter 6

Conclusion

Our results show that the Skeleton method is a promising alternative to Monte

Carlo methods. The Skeleton method converges in a nice deterministic behav-

ior, which shows higher accuracy than using samples. Another benefit of the

Skeleton method is that it is applicable for any loss function. We have shown

it applied to a boundary-only pixel loss; in future work it would be interest-

ing to apply it to even more complicated loss functions. The Skeleton method

also appears to be a general drop-in replacement for sampling-based computa-

tion of expectations in perturbation models. We showed this by adapting the

method to the moment-matching objective that the original P&M paper pro-

posed, showing that the Skeleton method leads to similar-but-smoother learning

trajectories.

The idea of iteratively building piecewise linear approximations arises in

many cases, such as when computing the value function in POMDPs [8, 5, 1].

While the high level ideas are similar to these and other methods, the details

are quite different; for example, in the above works, no volume computations

27



are required, whereas they are core to our method.

The primary challenge going forward is to broaden the applicability of the

method, extending to higher dimensions and enlarging the space of supported

perturbation distributions. It is likely in these cases that exactness of the

method will need to be abandoned due to the fact that the number of solutions

will likely grow, and the computations of necessary volumes will become com-

putationally hard. Despite this, we believe the algorithm presented here will

be useful going forward. There are two possibilities we are interested in ex-

ploring: first, using a hybrid of the Skeleton and sampling methods where some

dimensions are sampled and some are integrated analytically using the Skeleton

method (producing a Rao-Blackwellized sampler); second, we believe there to

be opportunities for computing and differentiating upper bounds based on the

Skeleton structure, which could lead to interesting new learning methods.

28



Bibliography

[1] Brechtel, Sebastian and Gindele, Tobias, et al. ”Solving continuous

POMDPs: Value iteration with incremental learning of an efficient space

representation” in Proceedings of the 30th International conference on ma-

chine learning, pp. 370-378, 2013.

[2] Gallo, Giorgio, Grigoriadis, Michael D, and Tarjan, Robert E, ”A fast

parametric maximum flow algorithm and applications”. SIAM Journal on

Computing, vol. 18, no. 1, pp. 30–55, 1989.

[3] Hazan, Tamir and Jaakkola, Tommi S, ”On the Partition Function and

Random Maximum A-Posteriori Perturbations”. ICML, pp. 991–998, 2012.

[4] Hazan, Tamir, Maji, Subhransu, Keshet, Joseph, and Jaakkola, Tommi,

”Learning efficient random maximum a-posteriori predictors with non-

decomposable loss functions”, In Advances in Neural Information Pro-

cessing Systems, pp. 1887–1895, 2013.

[5] Isom, Joshua D and Meyn, Sean P and Braatz, Richard D. ”Piecewise

Linear Dynamic Programming for Constrained POMDPs”, AAAI, pp. 291-

296, 2008.

29



[6] Keshet, Joseph, McAllester, David, and Hazan, Tamir. Pac-bayesian ap-

proach for minimization of phoneme error rate. In Acoustics, Speech and

Signal Processing (ICASSP), 2011 IEEE International Conference on, pp.

2224–2227. IEEE, 2011.

[7] Papandreou, G. and Yuille, A., ”Perturb-and-MAP Random Fields: Us-

ing Discrete Optimization to Learn and Sample from Energy Models”,

ICCV, pp. 193–200, Barcelona, Spain, November 2011. doi: 10.1109/ICCV.

2011.6126242.

[8] Porta, Josep M and Vlassis, Nikos and Spaan, Matthijs TJ and Poupart,

Pascal, ”Point-based value iteration for continuous POMDPs”, JMLR, vol.

7, pp. 2329-2367, 2006.

[9] , Premachandran, Vittal and Tarlow, Daniel and Batra, Dhruv, ”Empirical

Minimum Bayes Risk Prediction: How to extract an extra few performance

from vision models with just three more parameters”, IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 1043-1050, 2014.

[10] Rother, Carsten, Kolmogorov, Vladimir, and Blake, Andrew, ”Grabcut:

Interactive foreground extraction using iterated graph cuts”, In ACM

Transactions on Graphics (TOG), vol. 23, pp. 309–314. ACM, 2004.

[11] Schmidt, Uwe, Gao, Qi, and Roth, Stefan, ”A generative perspective on

mrfs in low-level vision”, IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pp. 1751–1758. IEEE, 2010.

[12] Tarlow, Daniel, Adams, Ryan Prescott, and Zemel, Richard S, ”Random-

ized Optimum Models for Structured Prediction”, AISTATS, pp. 21–23,

2012.

30



[13] Taskar, Ben, Guestrin, Carlos, and Koller, Daphne, ”Maxmargin markov

networks”, In Advances in Neural Information Processing Systems, 2003.

[14] Tsochantaridis, Ioannis, Joachims, Thorsten, Hofmann, Thomas, and Al-

tun, Yasemin, ”Large margin methods for structured and interdependent

output variables” In Journal of Machine Learning Research (JMLR), pp.

1453–1484, 2005.

[15] Williams, Ronald J., ”Simple statistical gradient-following algorithms

for connectionist reinforcement learning”, Machine learning, vol. 8, pp.

229–256, 1992.

31



초록

이 논문에서는 섭동확률모델(Perturbation based probability model)의 예측손실

을 계산하고 최적화하는 문제를 다루고 있다. 지금까지는 이 문제를 풀기 위해서

몬테카를로(Monte Carlo) 중심의 접근법을 사용해왔으나 이 접근법은 결과값의

분산이 크며, 신뢰도가 높은 결과값에 수렴하기까지 오래걸린다는 문제점이 있다.

이 연구에서는 파라메트릭 최소컷(Parametric min-cut) 기법의 일반화된 형태에

서 착안하여 기존의 접근보다 빠르고 정확하게 예측손실을 계산하는 알고리즘을

제시한다. 또한, 제시된 알고리즘을 활용하여 임의의 손실함수에 대해 모델을

학습시켜서 모델에서 MAP 결과를 샘플링할 때의 예측손실을 직접 최소화할 수

있는 프레임워크를 제시한다. 실험에서는 배경분리 문제를 다뤘으며, 제시된 학습

모델은 기존에 쓰여졌던 접근법보다 더 유연한 프레임워크를 갖고 있으면서도

좋은 결과를 보여준다는 것을 볼 수 있다.

주요어: 섭동확률모델, 파라미터 학습, 스켈레톤 기법, 예측손실, 몬테카를로

학번: 2013-23109

32


	1. Introduction
	2. Background: Perturbations, Expected Losses
	3. Algorithm: Skeleton Method
	3.1 Initialization
	3.2 Finding a New Facet
	3.3 Updating the Skeleton GY
	3.4 Calculating Expected Loss R
	3.5 Example: Two Parameters

	4. Learning
	4.1 Computing Gradients: Slicing
	4.2 Training
	4.3 Exploiting the Skeletond Method

	5. Experiments and Discussion
	5.1 Data and Setup
	5.2 Calculating Expected Losses
	5.3 Calculating Gradients
	5.4 Model Learning
	5.4.1 Learning
	5.4.2 Other Loss Functions
	5.5 Expected Segmentations


	6. Conclusion


<startpage>10
1. Introduction 1
2. Background: Perturbations, Expected Losses 4
3. Algorithm: Skeleton Method 6
 3.1 Initialization 8
 3.2 Finding a New Facet 10
 3.3 Updating the Skeleton GY 10
 3.4 Calculating Expected Loss R 11
 3.5 Example: Two Parameters 11
4. Learning 14
 4.1 Computing Gradients: Slicing 14
 4.2 Training 16
 4.3 Exploiting the Skeletond Method 17
5. Experiments and Discussion 18
 5.1 Data and Setup 18
 5.2 Calculating Expected Losses 19
 5.3 Calculating Gradients 20
 5.4 Model Learning 21
  5.4.1 Learning 21
  5.4.2 Other Loss Functions 23
  5.5 Expected Segmentations 25
6. Conclusion 27
</body>

