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Abstract 

Good Indoor Localization 

Performance based on Wi-Fi and 

BLE RSS 

Chen Xin 

Computer Science and Engineering 

The Graduate School 

Seoul National University 

Recent years, indoor localization becomes a very hot topic. Indoor 

localization systems usually rely on different technologies, including 

distance measurement to nearby anchor nodes (nodes with known 

positions, e.g., Wi-Fi access points), PDR (Pedestrian-Dead-

Reckoning).  To improve the accuracy, various researches have been 
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carried out. However, the precision of the current popular indoor 

localization systems can be poor, due to the low precision of PDR, Wi-

Fi RSS fluctuation, and the difficulty in localizing a user in large-scale 

space.   

In our framework, we locate user’s location based on PDR 

(Pedestrian-Dead-Reckoning) and calibrate it with Wi-Fi localization 

point. Aiming at improving the accuracy, we exploit BLE beacons as 

landmarks in our indoor localization system, to narrow the Wi-Fi 

Fingerprints scanning range. We put BLE landmarks at the locations 

with poor Wi-Fi localization accuracy. To enlarge BLE landmark's 

sensor field, we set each BLE beacon with a continuously changing Tx 

Power. We did various experiments to evaluate the performance of our 

proposed framework and the accuracy is improved quite a lot. 

Key Words: Indoor Localization, BLE Landmarks, Wi-Fi Fingerprint  

Student Number: 2013-23853 
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Chapter 1 

1. Introduction 

Recent years, there is a popular trend in developing accurate PDR 

(Pedestrian-Dead-Reckoning) based and Wi-Fi Fingerprint based 

localization systems that enable users to navigate indoor spaces much 

like what GPS provides for outdoor environments.  

Currently, many research works are carried out in order to improve the 

accuracy of indoor localization system, such as pedestrian dead 

reckoning (PDR) based and Wi-Fi Fingerprints based indoor 

localization.  

However, the precision of the current popular indoor localization can 

be poor, for instance, Wi-Fi Fingerprints and PDR. Wi-Fi RSSs 

(Received Signal Strengths) of Wi-Fi access points fluctuate due to the 

fading of Wi-Fi signals and human body effects. Moreover, Wi-Fi 

scanning typically takes about 3 to 4 seconds in general smartphones, 

which often leads to disruptions and delays in the context of location 
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updates. Localization based on PDR also can be poor due to errors in 

heading direction estimation. Besides, it is difficult to localize a user in 

large-scale space, such as airport, mart and so on.  

 

 

 

 

 

Thus, in order to increase the accuracy, we improve the current indoor 

localization framework by exploiting BLE beacons. In our framework, 

we locate user’s location based on PDR and calibrate it with Wi-Fi 

localization point. BLE beacons are used as landmarks to narrow the 

Wi-Fi Fingerprints scanning range. We put BLE landmarks at the 

locations with poor Wi-Fi localization accuracy. To enlarge BLE 

landmark's sensor field, we set each BLE beacon with a continuously 

changing Tx Power.  

 

Figure 1.1 Performances with PDR only 
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The balance of this paper is as follows. In Chapter 2, I will briefly 

introduce the principle of our improved framework based on BLE 

beacons, and some comparison among current localization algorithms. 

In Chapter 3, I will explain in details of our proposed framework from 

calibrating PDR with Wi-Fi fingerprint, the deployment of the BLE 

beacons, to calibrating the previous results with BLE landmarks. In 

Chapter 4, I will discuss how our work can be implemented and show 

the experiment results and the analysis of the performance of our 

improved framework based on Wi-Fi and BLE RSS. Finally I will 

conclude my paper in Chapter 5 and show our future plan. 
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Chapter 2 

2. Background and Related Work 

Before explaining proposed localization framework based on Wi-Fi and 

BLE RSS, I will briefly introduce pervious and current research works. 

2.1 PDR based and Wi-Fi Fingerprints based Localization  

Current popular Indoor localization systems are usually based on 

Pedestrian Dead Reckoning (PDR) and Wi-Fi Fingerprints. 

The basic principle of PDR (Pedestrian Dead Reckoning) is that the 

current location can be found out by attaching sensor module to 

pedestrian and estimating movement distance toward moving direction 

from initial location based on information of steps obtained.  

Wi-Fi based localization, leveraging the RSSs (Received Signal 

Strengths) of access points, has long been studied due to its wide and 

often dense deployment.  

However, the position estimation of these popular approaches can be 

poor. The direction estimation of a user solely based on PDR is often 
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inaccurate because of magnetic distortion in indoor environments. On 

the other hand, the fluctuation of Wi-Fi signals due to multipath fading 

and crowded people usually lead to poor accuracy of Wi-Fi based 

localization.  

Motivated by these limitations, we seek to exploit other sources that 

are currently available in smartphones: inertial sensor, and BLE 

(Bluetooth Low Energy), to enhance the performance of Wi-Fi-based 

localization.  
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2.2 Improved framework with BLE beacons 

Basically, we rely on PDR (Pedestrian Dead Reckoning) as a basic 

mechanism to track the user trajectory.  

For the sake of achieving a certain level of precision, we seek to 

exploit landmarks, a reference location that helps a user to localize 

oneself. Depending on landmarks, we can calibrate the cumulative 

errors as PDR continues.  

Thus, BLE landmarks will be used. A BLE landmark is a location where 

a BLE beacon node is installed for the purpose of proximity services. 

We put BLE landmarks at the particular locations with poor Wi-Fi 

localization accuracy to narrow the Wi-Fi fingerprints scanning range, 

as well as improve the localization accuracy.  
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Chapter 3 

3. Improved Framework based on Wi-Fi and BLE RSS 

Basically, we rely on PDR (Pedestrian Dead Reckoning) as a basic 

mechanism to provide smooth navigation services due to its fast 

refreshment intervals. However, because of the magnetic distortion in 

indoor spaces, the estimated direction of a user by PDR is often 

inaccurate. To remedy the PDR errors, we calibrate it with Wi-Fi 

localization point and exploiting landmarks, where a user can fix one’s 

location with a fine-grained precision.  By the Wi-Fi localization point 

and landmark-based calibration, we can reduce the cumulative error of 

PDR substantially.  

The proposed localization framework is depicted in Figure 3.1 
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3.1 PDR as basic mechanism 

PDR (Pedestrian Dead Reckoning) is the process of calculating one's 

current position by using a previously determined position, or fix, and 

advancing that position based upon known or estimated speeds over 

elapsed time and course. In our work, we infer the user’s location per 

step, based on step detection (by using accelerometer), heading 

detection estimation (by using magnetic sensor), and turn detection (by 

using gyroscope).    

PDR can provide localization results much more frequently and faster. 

Usually, per step detection only takes about 0.4s to 0.8s, while Wi-Fi 

based scheme would take nearly 3s to 4s. 

                             

Figure 3.1 The proposed Localization framework 
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However, the error of PDR can be large, due to the magnetic sensor 

pollution in indoor spaces. Moreover, with sufficiently frequent position 

updates, its linearly growing position errors can be accumulated as 

time goes by. 

Figure 3.2 depicts a simple example of large cumulative error of indoor 

localization based on PDR. The error distance between the real 

trajectory and estimated trajectory becomes larger as time goes by. 

  

 

 

Figure 3.2 An example of large cumulative error of the PDR 

Real trajectory Estimated trajectory 
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3.2 Coarse-grained calibration with Wi-Fi localization point 

3.2.1 Wi-Fi Fingerprint matching 

In our framework, we use traditional Wi-Fi fingerprint localization 

matching method, consisting of two phases. The first phase involves 

constructing a fingerprint database in the offline. Then in the second 

phase, variously referred to as tracking phase, signal measurement 

samples collected by a user’s device are used to “look up” the closest 

matching samples in the database to infer the user’s location. 

Environment 

We consider the Second Engineering Building (Building 301) as a 

reference building and focus on the 2nd floor of this building which 

constitutes staff offices, common spaces and classrooms. 
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Figure 3.3 Floor plans for the 2nd floor of building 301 

 

Data Collection 

We obtain our Wi-Fi fingerprint data for the framework using Android 

phones and Indoor Wi-Fi fingerprint collector, a custom mobile 

application we developed for the specific purpose. For each 

measurement position, which we note as the center of each grid, Wi-Fi 

fingerprint collector does multiple scans, collecting 50 fingerprints. We 

use Samsung Galaxy S5 and Sony XPERIA phones, both Android 

based, to generate the various datasets.  The fingerprints are collected 

as [{AP_1’s BSSID, RSS}, {AP_2’s BSSID, RSS}, …]. 
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3.2.2 Similarity Computation between the fingerprints 

We use Euclidean distance of RSSs (of APs) to compute the distance 

between fingerprints from the database, each with an associated 

location and denoted by p, with a tracking fingerprint q. In equation (1), 

n is the number of overlapping APs in two fingerprints in the n-

dimension space. And pi is the RSS value of APi in the fingerprint from 

the database, whereas qi is APi’s RSS value in the tracking fingerprint. 

d(p, q) = √∑ (𝑞𝑖 − 𝑝𝑖)2𝑛
𝑖=1                        (1) 

In our work, we use two ways to compute the Euclidean distance in 

signal space. One is to discard the “missing APs”, which are not shown 

in online phase. The other is to assume that “missing APs” have 

minimum RSS value (i.e. -100dBm).  
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3.2.3 Methods for Coarse-grained calibration 

Due to the errors in heading direction estimation using only PDR, 

which often leads to inaccuracy localization, we calibrate it with Wi-Fi 

localization point. In this case, we propose the following two methods 

as simple and enhanced methods:  

1. Always switch user’s location to Wi-Fi Localization point. 

(simple) 

2. Only switch user’s location to Wi-Fi Localization when the 

distance between PDR and Wi-Fi localization point exceeds the 

thresholds. (enhanced) 

We evaluate the effect of Wi-Fi calibration on PDR, and the cumulative 

error distance per step. As they are shown in Figure 3.4, the average 

location distance error is about 6.5m when we exploit the calibration 

following the simple method; while as described in enhanced method, 

calibrating only when PDR’s error distance is accumulated, shows only 

3.2m of the average location error distance.   
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   Figure 3.4 An example of large cumulative error of the PDR 

                       

Figure 3.5 A simple use case within BLE beacon Tx  Power 
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3.3 BLE Node Deployment  

Calibrating PDR with Wi-Fi localization point improves the localization 

accuracy. However, Multipath fading and crowded people often make 

Wi-Fi RSS fluctuate. Hence, we still need to exploit other sensory data, 

BLE beacon, in our framework, to achieve a certain level of precision. 

In this case, we use the BLE beacon node as a “Proximity Sensor”.  

We propose a BLE-based approach, exploiting BLE bacons, with 

continuously changing Tx Power, in optimal locations, to further 

improve the localization accuracy. When the user walks close to the 

BLE beacons,  

When the BLE beacon is detected, it indicates that the user is entering 

the BLE range. In that case, we search for Wi-Fi fingerprint database 

within this range only. 

We set the BLE beacon Tx Power continuously changing as -23dBm, -

12dBm and 4dBm in each period, with the range of 5m~10m, 20m, 
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40m respectively. Each period lasts 1 second. The interval of each 

BLE beacon is 20Hz, which we can easily read from its header. 

The most important work is to decide the deployment location of the 

BLE beacons. In our framework, we put BLE beacons at the locations 

that show poor Wi-Fi localization performance. We divide the target 

space into 87 grids and give each grid a score of Wi-Fi localization 

performance. Then sort the entire grids by score and select 5 grids 

which hold the 5 highest scores. Finally, those 5 selected grids will be 

the locations to put the BLE beacons. 
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3.3.1 Wi-Fi Grid Scoring 

We calculate the score of each grid based on two intuitions. The 

intuitions can be depicted as: 

Intuition①: Areas that have similar fingerprints with their neighbors 

Based on intuition①, we define the BLE suitability function 1 using P 

(CD) (Probability of Correct Decision). We first find the PCP (Pairwise 

correct probability) between target grid and neighboring grid; then 

compute and aggregate the PCP for all the neighbors within a certain 

range (20m). Supposing Ri is the fingerprint of Target Grid I, and Rk is 

the fingerprint of neighboring grid k, we denote the PCP between Ri 

and Rk using PEP (Ri, Rk) by right tail probability for a standard 

Gaussian random variable, where the random variable exceeds the 

signal distance between Grid i and Grid k. 

 

  

(2) 
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AS shown in Figure 3.6, same color describes grids having similar 

fingerprint, different color shows grids having different fingerprint. 

According to P (CD), grid i with four similar neighboring grids has a low 

P (CD) and a high error probability correspondingly, whereas, grid k 

with only one similar grid has a high P (CD) and a low error probability 

correspondingly.   

 

Figure 3.6 Wi-Fi Grid Scoring 
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Intuition②: Areas that have low stability in terms of AP scans 

Based on intuition②, we calculate the number of observed RSS 

samples for each AP is different from the ones in the offline database 

and define the BLE suitability function 2 using AP appearance 

frequency. Count ratio, shown as follow, is used to depict AP 

appearance frequency in a grid, which is calculated by the number of 

Aps shown frequently over the threshold and the total number of Aps 

shown in a grid.  

 

 

 

3.3.2 Final Score 

We enhanced the P (CD) by dividing the signal distance by the 

physical distance between the grids to normalize P (CD) score by 

physical distance between the target grid and the neighboring grids. 

"Count ratio" of a Grid =
# of APs shown frequently over the threshold

total # of APs shown in a Grid
 (3) 
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Figure 3.7 shows the similar performance between our BLE 

deployment function and the oracle function which is selected by the 

actual location error.  

3.3.3 Selection of the deployment location 

Based on those two intuitions, we sort the entire grids by score and 

select 5 grids in order. We deploy the BLE beacons in the particular 

areas (which hold the 5 highest scores), with bad Wi-Fi localization 

performance.  

 

 

 

  

 

Figure 3.7 Similar performance 
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Chapter 4 

4. Evaluation and Performance 

4.1 Evaluation 

We did plenty of experiment on 2nd floor in Building 301 at SNU, with 

width of about 50m, length of about 60m and height up to 10m, while 

the broad corridor is only about 10m. We divide the target space (2nd 

floor in Building 301) into 87 grids, with a size of 5*5 m2. In our 

experiment, we collect 50 Wi-Fi fingerprints at the center of each grid. 

In the BLE beacons deployment, we deploy BLE beacons as 

landmarks, based on our analysis [3.3], at 5 different positions.  To 

evaluate our approach, we tested 7 trajectories, including walking 

along both middle of the corridor and closing to walls during the 

experiments. 
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Figure 3.10 presents a scenario of our evaluation process, when I was 

walking along the middle of the corridor, collecting data. 

 

 

 

 

 

  

 

Figure 4.1 A scenario of experiment 
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4.2 Result of the Framework Performance 

We test the average distance error of all trajectories, and the 

performance is significantly enhanced in all the data sets. Figure 3.11 

and table show the results with PDR-based only, calibrating PDR and 

Wi-Fi, also PDR, calibrated together with Wi-Fi and BLE beacons. The 

performance of Wi-Fi based and BLE RSS based localization, is 

improved up to 56%. 

 

 

 

  

                 

Figure 4.2 Average distance error of all trajectories 

 
 

traj 1 traj 2 traj 3 traj 4 traj 5 traj 6 traj 7 avg 

pdr only 6.73 7.84 6.02 12.61 7.05 7.8 8.14 8.03 

pdr+wifi 3.53 5.4 4.57 8.08 4.9 3.44 5.16 5.01 

Pdr+wifi+ble 2.7 4.09 3.17 6.48 2.91 2.41 3.05 3.54 
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4.2.1 PDR calibrated by Wi-Fi localization only 

Figure 4.3 shows a snapshot without any landmark calibration. The 

user walked from elevator located as right bottom corner, to room in 

the left end of the floor. In this case, PDR is calibrated by Wi-Fi 

localization only. There is still a certain average error distance between 

ground truth and the estimated path.  

 

 

Figure 4.3 Snapshot without any Landmark Calibration 

Average Error Distance = 5.4m 

         Ground Truth                        Estimated Position 
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4.2.2 PDR with BLE Landmark Calibration 

Figure 4.4 shows a snapshot by exploiting BLE landmark calibration. 

The user also walked from elevator located as right bottom corner, to 

room in the left end of the floor. In such a case, PDR is calibrated by 

both Wi-Fi localization point and BLE nodes, which is deployed on the 

optimal location based on our analysis. The average error distance 

between ground truth and the estimated path decreased about 24.3% 

compared with Wi-Fi localization calibration only, and about 56% 

compared to the PDR based only localization.  

 

 

 

Figure 4.4 Snapshot with BLE Landmark Calibration 

Average Error Distance = 4.09m 

            Ground Truth                      Estimated Position              BLE point   
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4.2.3 BLE Landmark Calibration with changing Tx Power 

To evaluate the performance with changing Tx Power, we deploy the 

BLE beacons at the middle of the corridor on the wall. Figure 4.5 

shows the error distance between the ground truth and the estimated 

user location. The two figures depict a good case (when I walked at 

the middle of the corridor) and a bad case (when I walked at the right 

side of the corridor). The average error distance in the good case is 

about 2.82m, which is decreased about 31% compared to fixed Tx 

Power BLE beacons. However, when the distance between user and 

BLE beacons becomes larger, in the bad case is about 10m, the 

average error distance accordingly increased to 6.98m 
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Figure 4.5 Error distance with changing Tx Power 
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Chapter 5 

5. Conclusion 

5.1 Conclusion 

I have presented an improved indoor localization framework based on 

Wi-Fi Fingerprint and BLE RSS. To achieve a certain level of precision, 

we exploit BLE beacons as proximity sensors at particular locations. 

The deployment locations of BLE beacons are decided by the Wi-Fi 

scoring based on P (CD) and count ratio of a grid. With the deployment 

of BLE beacons, the indoor localization accuracy is improved quite a 

lot. 

5.2 Future Works 

Since we only deployed the BLE beacons at one position, the middle 

of the corridor, the sensor filed is not large enough. In the future, we 

consider deploying the BLE beacons with changing Tx Power at 

multiple optimal locations, to further improve the localization accuracy.  
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초 록 

최근 스마트폰이 많이 보급화되면서 사용자의 위치에 기반한 

서비스들이 많이 각광받게 되면서 매우 흥미로운 주제가 되었다. 

일반적인 실내 측위 시스템들은 주변 앵커 노드(예를 들어, Wi-Fi 

액세스 포인트와 같은 이미 위치가 알려진 노드)를 활용한 핑거프린팅 

기법이나 삼각측량/삼변측량을 활용하기도 한다. 다른 측위 자원으로 

모바일 디바이스의 관성센서 및 지자기센서를 활용한 PDR(Pedestrian-

Dead-Reckoning)을 이용하여 사용자의 위치를 지속적으로 추정하는 

방식이 있다. 그러나, 실내 환경에서 일어날 수 있는 다양한 페이딩 

현상으로 인한 WiFi 신호 세기의 변동이 존재하고, 대규모 공간에서는 

핑거프린트 간의 차이가 크지 않아서 측위에 어려움이 있다. 또한, 

PDR 을 이용한 측위의 경우 센서 자체가 가지고 있는 에러나 강자성을 

띈 외부적 요인으로 인해 부정확한 측위 결과를 나타낼 수 있다,  

본 논문에서는, WiFi, PDR, BLE 를 융합한 효율적인 측위 시스템을 

제안한다. 기본적으로 PDR 에 기반하여 사용자의 위치를 파악하고, 

시간이 지남에 따라 누적되는 에러를 Wi-Fi 핑거프린팅 기법을 

활용하여 보정한다. 또한, 서비스 지역에서 WiFi 측위 오차가 크게 
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나타날 수 있는 지점을 찾는 라디오맵 분석 알고리즘을 제안한다. 

이러한 지점에 BLE 비콘(beacon)을 설치하여 랜드마크로 활용하여 

측위 오차를 줄인다.  

 

주요어 : 실내 측위, BLE 랜드마크, Wi-Fi 핑거프린트(fingerprint) 

학 번 : 2013-23853 
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