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Abstract

Cooperative Power Management for Chip

Multiprocessors using Space-Shared

Scheduling

Seungyul Lee

Department of Electrical Engineering & Computer Science

Collage of Engineering

The Graduate School

Seoul National University

Nowadays, many-core chips are especially attractive for data center opera-

tors to provide cloud computing service models. The trend in operating system

designs, furthermore, is changing from traditional time-sharing to space-shared

approaches to support recent many-core architectures. These CPU and OS

changes make power and thermal constraints becoming one of most important

design issues. Additional power management methods and core re-allocation

techniques are necessary to overcome the limitations of traditional dynamic

voltage and frequency scaling (DVFS).

In this thesis, we present a cooperative hierarchical power management for

many-core systems running a space-shared operating system. We consider two

levels of space-shared system resources: space in the form of cores and physi-

cal memory. Recent chip multiprocessors (CMPs) provide group-level DVFS in

which the voltage/frequency of cores is managed at the level of several cores in-

stead of every single core. Memory is also allocated by a coarse-grained resource
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manager to isolate space partitions. Our research reflects these characteristics

of CMPs.

We show how to integrate core re-allocation and DVFS techniques through

cooperative hierarchical power management. The core re-allocation technique

considers the data performance in dependence of the core location. In addition,

two important factors are performance loss caused by DVFS and the benefit

of core re-allocation. We have implemented this framework on the Intel Single

Chip Cloud Computer (SCC) and achieve a 27-32% better performance per

watt ratio than näıve DVFS policies at the expense of a minimal 1-2% overall

performance loss. Furthermore, we have achieved a 5-11% higher performance

than previous research with a migration technique that uses a näıve migration

algorithm that does also not consider the migration benefit and data locality.

Keywords: Many-core Architecture, Scheduling, DVFS, Energy Efficiency

Student Number: 2013-23128
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Chapter 1

Introduction

In the past decade, we have seen amazing improvement in transistor integra-

tion techniques. The recent trend of CPU architecture has changed from single-

or dual-core to multi- or many-core and integrate more and more cores onto

one processor die called chip multiprocessors (CMPs) [1, 2, 3, 4]. The CMPs led

to chip-level power and thermal constraints to become one of most important

design issues and performance limitations. A lot of cores increase energy cost

and higher die temperature adversely affect chip reliability and lifetime [5].

Most processors include CMPs provide the dynamic voltage and frequency

scaling (DVFS) technique to handle the voltage and frequency levels. The op-

erating system (OS) periodically monitors the load of the processor, the volt-

age and frequency are scaled to use energy more efficiently. For the multi-core

system, each core can be controlled individually but it is too costly in the

CMPs [6]. To reduce these overheads, cores are clustered into voltage and fre-

quency domains that leading to multiple-voltage/multiple-frequency (MVMF)

designs [7, 8, 5]. All cores are clustered a specific domain have the same power

properties; it can reduce the hardware overhead and increase the performance.

Furthermore, the trend in OS designs is changing to space-shared approaches
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from traditional time-sharing to support recent many-core architectures [9, 10,

11, 12, 13]. This model divides the role of the OS to a coarse-grained resource

manager and a runtime library. It could reduce the complexity of runtime

scheduling so that it guarantees scalability. The coarse-grained resource man-

ager provides cores and memory allocation and chip-wide power management.

The runtime library, on the other hand, provides scheduling of the processes

and threads. These two designs isolate applications so they do not interfere with

each other.

H L H L H H H Hdvfs

(a) DVFS

H L H L H H L L H H L Ldvfsmig

(b) DVFS after migration

Figure 1.1: Simple migration effect to DVFS

This thesis proposes a hierarchical power management architecture for CMPs

that runs completely isolated applications such as the OS. Existing power man-

agement techniques for CMPs do not suite MVMF designs and clustered do-

mains because the OS could not move to other compositions. We propose that it

is possible to change the allocation of the physical core to the clustered domain

with zero copy migration on CMPs and could combined with existing DVFS

policies. Figure 1.1 (a) shows the result of applying DVFS with considering the

clustered frequency domain. Even though there are two high and two low cores,

DVFS sets all the cores to high in order to provide the required performance.

On the other hand, Figure 1.1 (b) shows the result of DVFS combined with the

migration technique. These figures show simplified migration technique. The

heuristic core re-allocation algorithm that is based on a cost-benefit buyer-seller
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model is presented in the thesis. It includes several techniques such as perfor-

mance loss to get lower energy consumption, migration benefit ratio by evalu-

ating power and migration overhead, and data performances as core location.

We have implemented this technique in the Linux operating system running

on the Intel Single-chip Cloud Computer (SCC) [14]. As a result, the proposed

technique achieves 27-32% better performance per watt ratio than näıve DVFS

policies at the expense of a minimal 1-2% overall performance loss. Furthermore,

we have achieved 5-11% higher performance than previous research [15] that

used a simple migration technique without heuristic re-allocation algorithm and

migration evaluation.

The remainder of this thesis is organized as follows: Chapter 2 discusses

the related work. Chapter 3 discusses the many-core architecture and gives

detailed information. Chapter 4 describes how zero-copy OS migration works.

Chapter 5 describes the cooperative hierarchical power management. Chapter 6

discuss the core re-allocation and the DVFS policies. The experimental setup

and the results are presented in Chapter 7. Finally, Chapter 8 concludes the

thesis.
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Chapter 2

Related Work

Recent researches on the power management techniques for CMPs suggest

various manner with or without additional hardware. Some of them have consid-

ered heterogeneous CMP designs to reduce energy consumption with minimal

performance loss. Kumar et al. [16] and Ghiasi [17] proposed power manage-

ment technique to improve power consumption and thermal management. But

these two techniques need hardware design change or additional hardware sup-

port. Meisner et al. proposed PowerNap [18] and DreamWeaver [19] that assume

hardware support for quick transitions between on- and off-states focused on

exploiting idle periods. In case of a frequently changing state, these techniques

would lead to longer execution time which in turn reduces the potential to sleep.

Our research interested in orthogonal phase that lower frequency by DVFS

technique occurs longer execution time. They should consider the performance

effect.

A number of researchers have proposed another power management tech-

niques for CMPs [20, 21, 22, 23, 24, 25]. Isci et al. [22] apply different DVFS

policies controlled globally under a given power budget. Their best performing

policy achieves as good as an oracle policy within very low performance degra-
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dation. Ma et al. [23] propose grouping cores with running same application and

partition the power budget to these groups. The groups divide power budget

to each core and cores scale their frequencies. Meng et al. [24] propose multi-

optimization power saving strategy for multi-core power management through

run-time adaptation of highly configurable processor cores. Rangan et al. [25]

propose ThreadMotion that is fine-grained power-management to migrate appli-

cations between cores in a multi-core system. They also need hardware support

to quickly migrate threads to another cores.

The work most closely related to ours has been presented by Ioannou et

al. [20] and Qiong et al. [21]. Ioannou et al. [20] suggest a hierarchical power

manager to scaling the voltages and frequencies for the SCC. Qiong et al. [21]

propose the thread shuffling that migrates critical threads to same DVFS do-

main and scales frequencies for non-critical threads. This method of combining

DVFS features and thread migration could reduce the energy of non-critical

threads in one operating system. We show that core re-allocation technique re-

gardless of the number of OSes significantly improves the performance per watt

ratio than only considered the DVFS and thread migrations without additional

hardware support.

Our previous research [15] considered similar hierarchical architecture for

migration and DVFS on CMPs, but it handled only CPU overhead and didn’t

evaluate the result of migrations. In this thesis, we propose the heuristic core

re-allocation algorithm that evaluates the migration cost and benefit combined

with CPU overhead and memory performance according to core location.

5



Chapter 3

Many-core Architectures

Many-core architectures exhibit a number of typical characteristics [26] in

order to effectively manage and utilize the large number of cores. First of all,

global memory addressing to access memory by all cores via memory controllers.

Secondly, shared memory to share data or communicate with other cores. Fi-

nally, an interconnection network to transmit data to/from the memory or I/O

devices. In this chapter, we provide overviews of two kinds of many-core ar-

chitectures; the Intel single-chip cloud computer (SCC) and the TILE-Gx8036

processor (Tilera). In this thesis, we focus on the SCC architecture and imple-

ment our cooperative power management on it.

3.1 The Intel Single-chip Cloud Computer

3.1.1 Architecture Overview

Intel Labs has created the experimental SCC for many-core research. They

integrated 48 cores consist of Intel P54C Pentium R© on a silicon CPU chip that

interconnected by network-on-chip (NoC). Each core has 16KB L1 caches and

256KB L2 caches that there is no cache coherence. SCC incorporates tech-
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Figure 3.1: Intel SCC block diagram

nologies such as advanced power management and additional support for 16KB

message-passing buffer. Two cores are grouped together to form a tile that share

network resource, clock management technique, interrupt handling and other

system features. Each tile connected router mesh network with 256GB/s bit-

section bandwidth. Four memory controllers located in the four corners of the

mesh network to access to maximum 64 GBs of memory. The FPGA is the

bridge between the SCC and the management-console PC (MCPC) provides

allow the environment setup and communication each other. Figure 3.1 shows

the SCC block diagram.

3.1.2 Memory Addressing

There are four memory controllers on the SCC mesh could access physical

memory, and each core uses the 32-bit physical address that is not enough to

addressing the entire 64 GBs system memory. To access system memory via

memory controllers, it needs additional address translation.

Each core has 256-entry lookup table (LUT) that provide additional infor-

mation to access memory controllers and system configuration registers. The
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top 8-bit of core-level address indicates LUT index could get 22-bit informa-

tion; a bypass bit, an 8-bit destID, a 3-bit subdestID, and a 10-bit system

address extension. The bypass bit is provided for local tile memory buffer

access. The 8-bit router destination ID (destID) designates one of the four

memory controllers (MC). The 3-bit intra-tile sub-ID (subdestID) determines

selecting the memory controller, the voltage regulator controller, or the system

interface. The 10-bit system address extension is prepended to the remain-

ing 24 bits of the core address to form a 34-bit address. Figure 3.2 illustrates

the core-to-system address translation.

24 bit8 bit

24 bit

LUT

10 bit3 bit8 bit1 bit

core address

system address
destID MC addressbypass subdestID

Figure 3.2: Core-to-system address translation on the SCC

In addition to address translation, there is another characteristic of LUT

entries. Front 8-bit of core address makes 256 LUT entries and one entry maps

to 16 MB of memory. In our configuration, the 8 GBs per memory controller

are divided to the 12 cores located closest to the controller; i.e., the physical

memory space of one core is mapped using 42 LUT entries by default. We use

these 42 entries to migrate memory information in the Chapter 4.

3.1.3 DVFS Capabilities

The SCC provides voltage and frequency scaling technique for the domains

and the NoC. Scaling frequency for tile that is clock domain, all cores in the same

tile run at the same frequency. The voltage domain that is a group of four tiles

control the voltage and it affect to all tiles inside of voltage domain. Figure 3.3
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voltage domain 0 voltage domain 1 voltage domain 3

voltage domain 4 voltage domain 5 voltage domain 7

clock 
domain

clock 
domain

clock 
domain

clock 
domain

Figure 3.3: Voltage and clock domains on the Intel SCC

illustrates the clock and voltage domains on the SCC. Voltage domains 2 and

6 are not shown in this figure because they work for the NoC and the system

interface.

To control the voltage and frequency, the SCC uses specific registers: a

voltage regulator controller (VRC) register and a system configuration registers.

The system configuration registers change frequencies in few clocks. Voltage

change, by the way, may take up to 30ms and several voltage changes must be

serialized because it uses only one VRC register.

The SCC supports seven different supply voltage levels from 1.1V to 0.7V ,

however, only four are of practical interest: 1.1V to run at a frequency of

800MHz, 0.9V to run at 533MHz, 0.8V for 400MHz, and 0.7V for frequen-

cies below 400MHz. The frequency is set by writing a divisor between 2 and 16

for the 1600MHz clock resulting in core frequencies from 800MHz to 100MHz.

Table 3.1 shows the available voltage and frequency settings.
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Voltage (V) Frequency (MHz)

1.1 800

0.9 533

0.8 400

0.7 320, 266, 228, 200, 178, 160, 145, 133

123, 114, 106, 100

Table 3.1: Voltage and frequency settings on the SCC

3.2 Tilera

3.2.1 Architecture Overview

Tilera’s TILE-Gx processor [27] is based on the MIT alewife project contain-

ing cache-coherent, distributed shared memory and user-level message-passing

concepts. Tile-Gx8036 processor is one of TILE-Gx processors consisting of

thirty-six 64-bit RISC cores. Each core runs at 1.2GHz and three way VLIW

process with 12 Mbytes 3-level coherent on-chip cache architecture. There are

two 72-bit DDR3 DRAM controllers with ECC. And it provides 40Gbps of inte-

grated Ethernet I/O. Figure 3.4 shows the Tilera block diagram. Tilera’s TILE-

Gx processors archive isolation through the so-called multicore hardwall [28].

3.2.2 Memory Architecture

The memory architecture of Tilera defines a flat, globally shared 64-bit

physical and virtual address space. Tile-Gx processors implement a 40-bit subset

physical address and provide the mechanism by which software running on

different tiles, and I/O devices, share instructions and data. Page tables are used

to translate virtual-to-physical addresses. The virtual address is architecturally

64-bit, but is used 42-bit in the Tile-Gx processor. Virtual addresses consist of

three parts, which are two legal VA regions, lower and upper, and an illegal

region in the middle, as shown in Figure 3.5.
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Figure 3.4: TILE-Gx36 SoC block diagram (source: Tilera Architecture

Overview [29])

The translation process verifies the protected regions of memory and des-

ignates the page of physical address; coherent, non-coherent, uncacheable, or

memory mapped I/O (MMIO). Recently-accessed values are stored in cache lo-

cation in each tile for coherent and non-coherent pages. However, uncacheable

and MMIO addresses are never stored into a tile cache.

3.2.3 Switch Interface and Mesh

Tilera inter-network communication within the tile array takes place over

the iMeshTM Interconnect shown in Figure 3.6. The iMeshTM Interconnect

provides two classes of networks that support low and high bandwidth commu-
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Figure 3.6: TILE-Gx Switch Interfaces (source: Tilera Architecture

Overview [29])

nication. The first class comprises a set of software visible networks for applica-

tion level streaming and messaging. Another class used by the memory system

to handle memory requests, exchange cache coherency commands and support

high performance shared memory communication. Dedicated switches are used

to implement the iMesh Interconnect, allowing for a complete decoupling of

data routing from the processor.
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Chapter 4

Zero-copy OS Migration

Variety workloads on cores could make inefficient use of the CMP. In order

to optimize the execution of workloads towards a specific goal, often need to

move the workloads to another core. Such goals include, but are not limited

to even heat dissipation and adherence to a given power budget. For the heat

reduction, workloads of high temperature cores move to other idle cores. The

second case is motivated by the need to cluster workloads with similar perfor-

mance requirements in voltage and/or frequency domains to achieve optimal

power usage during operating DVFS. The task migration techniques on the op-

erating system also provide the similar effect, but the space-shared environment

on CMPs needs another workload management manner because task migration

could not handle the workload over the operation system. We suggest, there-

fore, OS migration technique on the CMPs and describe the necessary steps in

the following sections.
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4.1 Cooperative OS Migration

Moving an OS to another physical core can be implemented two types that

are with or without the cooperation of the migration. The migrated OS should

enter a safe state to move to the newly assigned core and resume with the

co-operative setting. Transparent migration, on the other hand, does not need

interactions and knowledge of the OS.

The main risk of migration is how to deal with the volatile state, i.e., the

assigned memory and last values of registers. If the CMP uses only global shared

memory address, it does not need to consider memory migration. However,

memory migration is still critical issue because each core use the one of memory

controllers depending on core location. Section 4.3 would discuss these volatile

state.

4.2 Migration Steps

In the hierarchical architecture, zero-copy OS migration is orchestrated by a

migration manager that is part of the chip controller. The steps are illustrated

in Figure 4.1. It reveals that migration is, in fact, rather a circular swap of two

(or more) OSes rather than a unidirectional migration from one core to another.

Since we require a minimal amount of cooperation from all involved cores, we

assume that a cooperative OS runs on all (including the currently unused)

cores. (1) The migration manager sends the signal on the form of an interrupt

to the cores who involved in the migration. (2) This interrupt is handled by

the cooperative OS’ interrupt handler which saves the necessary registers into

a per-core designated memory area. (3) After all registers have been saved, the

affected cores signal completion to the migration manager and completely flush

their caches. (4) The migration manager then stops all cores involved in the

migration by gating their clock, and (5) swaps the cores’ register values and

the memory mappings. (6) The migration manager signals completion of the
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Figure 4.1: OS Migration Steps

migration by resuming the clock on the migrated cores. (7) The cores proceed by

restoring the (new) register values from memory, exit the interrupt handler and

(8) update internal network routing tables. Finally, (9) each core who involved

in migration resume their operation. In addition, all cores who do not involved

in migration need to update internal network routing tables to reflect the new

locations of the cores (see Section 4.4).

4.3 Migration Volatile State

The cores who are involved in the core re-allocation phase save and restore

their register values to a designated memory area. After saving registers, the

migrated cores flushing all caches and enter a busy loop for migration. It is

impossible to set the program counter to the exactly correct instruction after

resume cores because we don’t know what instruction was executing in the busy

loop when the clock was gated. However, it can be ignored by assuring the busy
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loop.

The memory of the migrated cores also need copying to another cores, but its

costs are too huge. Instead of copying all memory area, copy the corresponding

entries in the LUT that translates physical memory address to system memory

address. The migrated cores could access their private memory by copying 42

LUT entries as mentioned Chapter 3.1.2.

4.4 Networking

There are two types of network exist on the SCC. For the on-chip network,

the SCC uses interrupt and MPB. The network sender put data to MPB then

send the interrupt signal to network receiver. The network receiver fetches the

data from the sender’s MPB in the interrupt service routine. Instead of chang-

ing this MPB location, migration phase updates IP-to-coreID mappings. To

send data, sender make interrupt according to the IP-to-coreID mapping table.

Therefore, it does not need complex MPB change because every cores update

their mapping table on last step of migration.

The subnet for communication with the MCPC, on the other hand, used

eMAC interface. Internally all eMAC modules have a 4Kbyte FIFO buffer for

the TX and RX directions and a connected to the FPGA router via the client

interface. The sending core writes its frames into the buffer, informs the FPGA

hardware that new frames are present. The hardware then pulls the frames

from the buffer and transfers them to the external ethernet ports. When the

HW receives frames on the external ethernet port, it puts them into the cor-

responding memory buffer, tells the core that new frames are present and the

receiving core starts pulling the frames from the buffer. Signaling can be done

sending interrupts to the core. The cores involved in the migration need to

change the configurations of eMAC. When the migration is finished, they read

the mac address from eMAC general configuration registers then change their

configurations.
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Chapter 5

Cooperative Hierarchical Power
Management

A global power management technique for CMPs is hard to controlling entire

chips because there are different frequency and voltage domains. If the policy

is simple, it could get low energy effect with small calculation and vice versa.

The hierarchical structure is an alternative management technique for these

domains characteristics on CMPs. This chapter describes the organization of

the cooperative hierarchical power manager in detail.

5.1 Cooperative Core Re-Allocation

Space-sharing provides more opportunities for application-specific runtimes

to allow efficient user-level scheduling within an application container. This

design, however, hinders chip-level optimizations such as global load balancing

or power management since the coarse-grained OS has no control over which

core an application task is executed on. If orchestrated properly, the architecture

of CMPs, however, allows for dynamic resource (core) re-allocation with no

or very little application-runtime involvement. The idea is to reclaim a core
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from an application container and assign it to another partition without the

application-specific scheduler knowing about it.

Core re-allocation combined with DVFS allows the power manager to group

cores with similar performance requirements into the same frequency/voltage

domains and then select a close-to-optimal frequency/voltage for these domains.

The re-allocation operation is a circular re-assignment of cores c0, c1, . . . , ck−1

belonging to the application containers a0, a1, . . . , ak−1 with k ≥ 2 where core

ci is assigned from ai → a(i+1) mod k. That is, the number of cores per applica-

tion does not change and can be done transparently to the application-specific

runtime. Re-assigning a core ci from application container ai → a(i+1) mod k re-

quires flushing the local caches, save the volatile state of the core ci, and finally

restore the state of core c(i+1) mod k.

The volatile state includes only the core registers; physical memory does not

need to be copied since CMPs provide a global memory address space. Without

explicit hardware support, it is impossible to read a core’s volatile state from

outside a core. With a minimal level of cooperation by the application-specific

runtime executing on each core it is possible to emulate the missing hardware

support by explicitly saving and restoring the volatile state of a specific core to

global shared memory as discussed in the Section 4.3.

5.2 Hierarchical Organization

The logical structure of the hierarchical power manager reflects the struc-

ture of the CMP with separate frequency and voltage domains (Figure 5.1). At

the lowest level in the hierarchy are the core controllers that represent a single

core. The second level, the frequency controllers, represents a frequency domain

with m individual cores all running at the same frequency. The voltage con-

trollers at next level constitute a voltage domain. At this level, voltage changes

are initiated. The top level in the hierarchy, finally, is represented by the chip

controller and models the entire chip. Each level only communicates directly
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Figure 5.1: Logical abstraction of the hierarchical power manager and the map-

ping to the physical structure.

with the level above or below, i.e., the clock domain manager interacts with the

voltage domain manager.

• Core Controller: The task of the core controllers is to monitor and

predict the performance of the associated core. Without explicit hard-

ware support to externally read performance counters of single cores, a

locally-running software agent is required on each core. This is the role

of the core controller that monitors the current performance of its core

through periodically querying the core’s performance monitoring units

(PMU). The core controllers also predict the required computational per-

formance based on extrapolated measured data as is common in DVFS

policies. At regular intervals, the core controllers communicate with their

frequency controllers. Data received from the frequency controller includes

the additional information to using in DVFS policies. Data sent upstream

comprises the estimated required frequency of the core. Depending on

the load factor, the core controller requests a higher, the same, or lower

frequency from the frequency controller.
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• Frequency Controller: For each frequency domain, the frequency con-

troller gathers data about the requested frequencies from its core con-

trollers, and processes and forwards that data to the voltage controller.

The frequency controllers also compute and set the operation frequency

of the domain. The clock frequency is constrained by the current volt-

age level of the corresponding voltage domain and computed based on

the requested frequency levels reported by the core controllers and the

currently active DVFS policy (see Section 6.4). Voltage and frequency

changes require careful coordination: if the voltage of a voltage domain

is to be lowered, the frequencies of all cores within that domain need to

be lowered below the maximal supported frequency at that voltage before

the voltage change is performed. In the opposite case, the frequencies can

only be increased after the voltage level of the superior voltage domain

has been raised.

• Voltage Controller: The voltage controller gathers data from its fre-

quency controllers, and forwards it to the global chip domain. The volt-

age controller also computes and sets the operating voltage of its domain,

in close collaboration with the frequency controllers as discussed in the

frequency controller.

• Chip Controller: The chip controller uses the processed frequency and

voltage requests from the subordinate controllers to compute a core as-

signment that allows more optimal DVFS settings at the voltage and fre-

quency domain level. The core assignment is then translated into a series

of circular core re-assignment units, and the cores are migrated. Once mi-

gration has completed, the chip controller notifies the voltage controllers

which then proceed and orchestrate the frequency/voltage changes.
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Chapter 6

Core Re-Allocation and DVFS
Policies

This thesis focuses on optimizing the performance per watt ratio of the over-

all chip through the combination of the core re-allocation and DVFS policies.

The core re-allocation policy uses the core migration technique as discussed in

Chapter 4. Other policies, such as, heat dissipation or adhering to the given

power budget, can also be implemented within the framework.

Without core re-allocation, cores are pinned to their applications. For volt-

age domains containing both very busy cores and idle cores there is no optimal

voltage setting: if the voltage is too low, the idle cores run at the optimal fre-

quency but the performance of the busy cores is severely affected because the

low voltage prevents the frequency domain controller from selecting the required

frequency. On the other hand, if the voltage is set high enough to satisfy the

performance needs of the busy cores, the idle cores waste energy because they

operate at a higher than necessary voltage.

In this chapter, we describe the core re-allocation considerations and algo-

rithm, employed DVFS techniques, and other considerations.

21



6.1 Core Re-Allocation Considerations

The core re-allocation should occur before applying DVFS techniques be-

cause migrated cores affect to frequencies and voltages. The probability of mi-

gration occurrence, voltage, and frequency changes is determined by the cost

of these operations; the time for migration is largely unaffected by the number

of cores begin migrated because all involved cores can store/restore the volatile

state in parallel. Migrated cores are stopped and have their caches flushed while

unaffected cores continue to run during the migration process. Voltage changes

are quite an expensive operation because the clock of all affected cores (i.e.,

whole cores in one voltage domain) is stopped during the rather long voltage

adjustment. Frequency changes, on the other hand, are almost instantaneous

and can thus be often performed. On the SCC specifically, it has measured laten-

cies of each operation: ≤ 20ms for migration and ≤ 30ms for voltage changes.

On this particular architecture, migration is cheaper than voltage changes. In

addition, the SCC only supports one voltage change at a time: i.e., different

domains cannot change the voltage in parallel.

Core re-allocation enables consolidation of cores with similar performance

requirements into one voltage/frequency domain. This allows setting the volt-

age/frequency of the domain to a value that is close to the optimal value for

most involved cores. As an application’s computational requirements change

during execution, the core re-allocation is invoked at periodical intervals.

A näıve algorithm would be to sort the cores by their performance require-

ments and then assign them in order to the voltage and frequency domains.

While the resulting allocation of cores to domains is optimal for CPU-bound ap-

plications and one time quantum, this algorithm fails to consider the overhead of

core re-allocation. The re-allocation of a core itself is very quick (measurements

on a real system yield an overhead of ≤ 3ms), each time a core is re-allocated

the application’s processes executing on the newly assigned core experience a
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Frequency Dist 0 Dist 1 Dist 2 Dist 3 Dist 4 Dist 5 Dist 6 Dist 7 Dist 8

800MHz 100 95.7 88.1 84.7 81.6 76.0 73.5 71.0 66.7

533MHz 87.9 81.5 78.5 75.8 73.2 69.9 66.6 63.8 61.1

400MHz 78.6 73.3 73.2 68.7 66.6 64.7 61.1 59.4 56.4

320MHz 73.2 69.3 66.0 62.8 62.8 58.7 56.7 54.9 53.3

200MHz 57.7 54.9 52.4 50.0 50.0 47.7 47.7 45.7 45.7

100MHz 36.5 34.4 34.4 34.4 32.2 32.2 32.2 30.6 30.6

Table 6.1: Normalized memory throughput according to frequencies and dis-

tances from memory controller

lot of cold misses in the local instruction and data caches which will lead to

both a performance loss as well as increased memory traffic. A good core re-

allocation algorithm must thus also consider the current core assignments and

minimize the number of migrations.

Another consideration is the location of the core on the grid. The effect of

re-allocation a core to an application container is in fact that the application

container executes its tasks on the newly assigned cores since the location of

the physical cores on the CMP is immutable. Such a re-assignment can have

significant effects on the access latency and bandwidth of memory accesses,

namely, if a memory-intensive application originally executing on a core close

to the memory controller holding the required data is moved to a core located

far away from said memory controller. Table 6.1 shows memory throughput

depend on the frequencies and the distances from the memory controller. As this

result, the performances according to the distance from the memory controller

are quite different on the same frequency; i.e., if a core running the memory-

intensive application with 800MHz frequency migrates from besides of memory

controller to corner of opposite position, its performance might drop down to

66.7%. Migrating to near the memory controller, furthermore, could get higher

memory performance than raise frequency of running core.
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6.2 Core Re-Allocation Algorithm

We employ a buyer-seller heuristic where, for a given target frequency ftarget,

the domain controllers put up for sale (by adding to their respective Sell

list) (a) all frequency domains which request a frequency that can be run at

a lower voltage than vtarget that set the highest voltage value in the first it-

eration and reduce 1 voltage level for each iteration, i.e., vreq(tile) ≤ vtarget,

and (b) all single cores that require a voltage smaller than vtarget but are co-

located with other cores that requests a higher voltage, vreq(core) ≤ vtarget.

vreq(core) > vtarget means that this core already migrated or kept in previous

iteration. On the Keep list frequency domains and cores that request voltage

vtarget, that is vreq(tile/core) = vtarget, are included. As an illustrative example

on the Intel SCC, consider Table 6.2 showing the Keep and Sell lists for the

configuration shown in Figure 6.1 (a). Note that the Keep list does not list the

core which requests a lower frequency but instead the co-located core from the

same frequency domain. Consider vdom0: the two frequency domains at the top

are expected to require the frequencies 8 and 5. The Keep list of vdom0 then

contains two single core entries (5), (5), expressing that it contains two tiles

with one core each already running at the target frequency that it wants to

keep. It offers to buy two single cores running at vtarget and can in return offer

two single cores running at frequency 5. On the Sell side, on the other hand,

the actual cores are listed. Sell for vdom0 contains the two single core entries

(5), (5), representing the fact that vdom0 is offering two single cores expected

to run at frequency 5. The reason for this somewhat inconsistent notation is

that it is then straightforward to match single cores on the buyer list with those

from the seller side by comparing the requested/offered voltage levels.

After initializing the Keep/Sell lists, the buyer-seller algorithm runs. The

algorithm repeatedly selects two frequency domains or single cores to swap

based on the information in the Keep/Sell lists until no further changes occur.
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Figure 6.1: Buyer-seller algorithm: (a) initial configuration, (b) configuration

after running the first round for v = 8, (c) configuration after running the

second round for v = 5, (d) final configuration after running the last round

for v = 4. Bold values represent frequency domains/cores migrated in that

iteration.

In each repetition, the voltage domain that offers the fewest tiles for sale and

as its counterpart the domain that tries to keep the fewest tiles are selected.

In the first round for vtarget = 8 the domains vdom0 and vdom1 are chosen

(Table 6.2). Vdom0 offers only two tiles for sale which means that it tries to

keep the other two. Vdom1 is the only domain containing a tile running at the

target frequency vtarget. The algorithm pairs the two domains up with vdom0

representing the buyer and vdom1 the seller. When selecting a tile to exchange

on the Sell side, the tile that most closely matches the average frequency of the

seller after selling the tile running at vtarget is chosen. In the example at hand,

vdom1 contains the frequencies 2, 2, 4, 5, 3, 2 after giving tile {8, 8} away with

an average of 3.2. Tile {3, 3} in vdom0’s seller list is closest to this value and
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vdom Keep Sell

0 (5), (5) {3, 3}, {2, 3}, (5), (5)

1 {8, 8} {2, 2}, {4, 5}, {3, 2}

3 (4) {3, 3}, {2, 2}, {2, 2}, (4)

4 {5, 4}, {5, 4}, {3, 3}, {4, 4}

5 (5) {3, 1}, {5, 3}, {2, 2}, (5)

7 (4) {1, 1}, {4, 5}, {1, 1}, (4)

Table 6.2: Keep/Sell lists for the configuration given in Figure 6.1 (a). vdom4

will not participate in this round of the algorithm because it does not try to

keep any frequency domains/cores at all.

is thus selected and exchanged with tile {8, 8} from vdom1. This operation also

updates the domains’ Keep/Sell lists. This process is repeated until no more

tiles can be exchanged, then the algorithm proceeds to swap single cores. First,

again the domain with the fewest frequency domains to sell is chosen, then the

Keep lists of all other domains are searched for a matching value. Keep in mind

that the actual core to be exchanged is a core running at frequency vtarget and

the entry in the Keep list represents the frequency of the sibling in the same

frequency domain. Again, this process is repeated until no further cores can be

exchanged. Cores of frequency domains on the Keep list can be split up into

single core entities if there are single cores to be sold but the Keep lists only

contain entire domains. In our running example, again vdom0 is chosen as the

seller domain since it contains the fewest tiles to be sold (one after the tile

exchange). The core to be sold runs at frequency 5; vdom5 is offering a core

running at frequency 8 and would like to get one running at 5 in return. The

two are thus exchanged, and the Keep/Sell lists updated.

Figure 6.1 (a) displays the estimated frequencies for each core before the

buyer-seller algorithm starts. Figures 6.1 (b) - (d) show the layout after each

repetition for vtarget = 8, 5 and 4, respectively; (d) represents the final configu-
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ration.

6.3 Evaluation of Core Re-Allocation

The last step of the core re-allocation is to compute the expected benefit of

the migration plan. The energy for the next time quantum t of the status quo

is computed as

Estatus quo = Pstatus quo · t (6.1)

where Pstatus quo can be obtained from the on-chip sensors or, in the absence

of such, from power measurements obtained offline for each frequency. The

expected energy consumption if the migration is performed is given as follows

Emigrated = Pmigrated · (t + Omigration + Omemory) (6.2)

Omigration = tmigration + tcache fill(ftarget) (6.3)

Omemory = t · throughput(status quo)

throughput(migrated)
(6.4)

where Pmigrated is computed based on the power prediction formula with offline

profiled chip capacitance values for each frequency level on the SCC as below

Pdynamic = Kactivityfactor ∗ Cchipcapacitance ∗ V 2
voltage ∗ ffrequency (6.5)

The migration overhead, Omigration is the overhead incurred by the actual mi-

gration and the (worst-case) time required to re-fill the entire caches at the

target frequency ftarget. The memory overhead, Omemory captures the sensitiv-

ity of an application to the location of the assigned core(s) on the CMP. The

maximum memory throughput at each frequency and core location is profiled

once offline shown in Table 6.1; the required throughput of an application based

on the core’s last-level cache misses (as obtained by the core controllers).

The migration plan is only executed if the following equation holds

Estatus quo > Emigrated · (1 + ∆m) (6.6)
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that is, the expected benefit of migration has to be above a certain threshold

∆m.

The buyer-seller algorithm returns the instructions to perform the actual

migration in form of several circular lists of cores that are to be migrated. This

list is then processed by the migration manager as discussed in Section 4.2.

6.4 DVFS Policies

We employ two DVFS policies in the hierarchical power manager for CMPs

proposed by Ioannou et al. [20]. Their work has been implemented and evaluated

on the same hardware and thus provides a good reference point.

• Allhigh: set clock frequency of all cores within a voltage domain to the

highest requested frequency.

• Tile: each clock domain chooses higher requested frequency within in-

volved cores. A voltage domain sets own voltage level for the highest

clock frequency. Note: in [20] this policy is denoted Simple.

We do not employ the Alllow and Allmean policies since they sacrifice too

much performance in return for power savings.
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Chapter 7

Experimentation and Evaluation

7.1 Experimental Setup

All experiments were conducted on the Intel Single-chip Cloud Computer.

The chip controller and other OS services such as monitoring logging, run on

dedicated cores in voltage domain 3. The applications containers run modified

versions of sccLinux in one of the remaining domains. We chose this separation

in order to separate the power consumption of the core OS from the application

containers, voltage domain 3 does not participate in core re-allocation. However,

the SCC only allows measuring the total chip power; the power consumption of

the OS services are therefore also included in all results.

The benchmark scenarios consist of a varying number of single-core applica-

tion containers executing different profiled workloads. The potential of the pro-

posed technique is demonstrated on a synthetic benchmark; profiled workloads

by monitoring desktop computers of 20 users over a period of several months

and webserver access logs from the soccer World Cup in France 1998 [30].

The baseline of the experiments is obtained by running the benchmark sce-

nario on the SCC at full speed (800MHz) with no power management enabled.
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Unlike the work in [20] we do not use a phase-detector based on message passing

since we are aiming at independent OSes running on a CMP. Instead, we apply

the workload prediction method based on a weighted average. We compare the

DVFS policies of [20], Allhigh and Tile, against the same policies with core

re-allocation. In addition, we consider the additional techniques that the lower

performance for lower power consumption and migration benefit threshold to

get higher migration effects. The next section discusses about these loss and

benefit.

The SCC provides a number of voltage and ampere meters on-board. The

total power consumed by the SCC chip is obtained by multiplying the (constant)

supply voltage with the supply current for the entire SCC chip. The power

consumption of individual voltage domains cannot be computed because only

the per-domain supply voltage is available but not the current consumed by

the domain. We thus always report the total chip power in our experiments in

Section 7.3.

The sensors and meters can be read by directly querying the system FPGA

from a core in the SCC. The management console also can be read through a

board management microcontroller (BMC) that is connected by PCI-Express

cable to the SCC. We choose the BMC approach because it does not affect the

SCC core’s operation.

7.2 Power Management Considerations

To get the more efficient effect of the DVFS and the migration, we consider

performance loss for lower power consumption and migration benefit for better

performance per watt ratio. Memory performance according to the core loca-

tion, furthermore, is the important factor for core re-allocation. In this section,

we describe how obtain these thresholds and evaluate core re-allocation with or

without data-location aware technique.
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BM

Acceptable performance loss (∆p)

0% 10% 20% 30%

Power Perf PPW Power Perf PPW Power Perf PPW Power Perf PPW

Profiled1 98.9 99.8 101.0 97.7 99.8 102.1 92.3 99.6 107.9 87.8 98.7 112.4

Profiled2 93.3 98.9 106.0 92.0 98.7 107.3 92.6 98.5 106.4 87.8 97.4 110.9

Profiled3 93.2 99.0 106.2 92.2 98.8 107.1 91.2 98.4 107.8 87.0 97.4 112.0

Average 95.1 99.2 104.4 94.0 99.1 105.5 92.0 98.8 107.4 87.5 97.8 111.8

Table 7.1: Result for performance penalty with Allhigh DVFS policy

BM
Acceptable performance loss (∆p)

0% 10% 20% 30%

Power Perf PPW Power Perf PPW Power Perf PPW Power Perf PPW

Profiled1 92.5 97.3 105.1 86.8 96.8 111.5 86.8 96.4 111.1 87.6 94.7 108.0

Profiled2 91.6 96.4 105.2 89.5 95.7 107.0 90.0 95.0 105.5 87.1 93.8 107.7

Profiled3 86.4 94.2 109.1 84.7 93.7 110.6 84.7 92.3 109.0 81.5 89.9 110.2

Average 90.2 96.0 106.5 87.0 95.4 109.7 87.2 94.6 108.5 85.4 92.8 108.6

Table 7.2: Result for performance penalty with Tile DVFS policy

7.2.1 DVFS Performance Loss

One of DVFS’ purposes is how to use energy more efficiently. There is a

trade-off between the performance and the power consumption. If we allow

some performance loss, we can get the energy benefit. To determine ∆p as per-

formance loss threshold with this trade-off, we have experimented with the per-

formance penalty with 3 profiled benchmark scenarios that would be explained

in Section 7.3. The performance penalty means DVFS policies request lower

frequency than they really need. Even though we set ∆p as 30%, it does not

mean performance drop to 30% because requested frequency is set same level

in many cases; i.e., DVFS policies require 800MHz even if they need 560MHz

with 30% loss that is higher than 533MHz (Table 3.1 shows frequency levels).

We have experimented with this lower rate (∆p) as 0%, 10%, 20% and 30%.

Table 7.1 and table 7.2 show results of these experiments and it obviously

appears trade-off. If we choose large performance penalty, it might use less
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BM

Minimal migration benefit (∆m)

< 5% ≥ 5% ≥ 10% ≥ 15% ≥ 20%

Pow Perf PPW Mig Pow Perf PPW Mig Pow Perf PPW Mig Pow Perf PPW Mig Pow Perf PPW Mig

Profiled1 78.6 99.0 126.0 600 78.8 99.5 126.2 273 83.1 97.46 117.2 177 80.5 97.3 120.8 69 82.9 96.5 116.5 47

Profiled2 73.1 98.1 134.1 331 72.1 98.3 136.3 220 73.7 97.5 132.3 150 75.6 98.2 130.0 79 81.2 97.4 120.0 44

Profiled3 71.0 99.2 139.7 300 66.4 97.5 146.8 188 71.5 97.6 136.6 154 70.7 98.5 139.2 127 88.1 97.9 111.1 78

Ave 74.2 98.8 133.3 410 72.4 98.4 136.4 277 76.1 97.5 128.7 160 75.6 98.0 130.0 92 84.1 97.3 115.9 56

Table 7.3: Result for migration benefit with Allhigh DVFS policy

BM

Minimal migration benefit (∆m)

< 5% ≥ 5% ≥ 10% ≥ 15% ≥ 20%

Pow Perf PPW Mig Pow Perf PPW Mig Pow Perf PPW Mig Pow Perf PPW Mig Pow Perf PPW Mig

Profiled1 74.0 84.4 114.2 682 77.3 92.7 120.0 462 75.6 90.4 119.6 394 78.3 93.2 119.1 170 81.0 95.2 117.5 98

Profiled2 68.9 86.6 125.8 404 69.7 92.9 133.2 288 72.0 93.5 129.8 218 74.6 95.1 127.4 119 74.6 93.4 125.2 64

Profiled3 64.8 93.9 144.9 332 67.3 94.3 140.2 233 69.9 94.3 135.0 200 69.7 95.9 137.6 123 78.5 96.9 123.4 112

Ave 69.2 88.3 128.3 473 71.4 93.3 131.1 328 72.5 92.7 128.1 271 74.2 94.7 128.0 137 78.0 95.2 122.0 91

Table 7.4: Result for migration benefit with Tile DVFS policy

energy but deteriorating performance. The result of 30% performance penalty

shows the lowest power consumption but performance degradation is highest.

We decide 10% as ∆p that drops performance as little as possible and keep

higher the performance per watt ratio in these results.

7.2.2 Migration Benefit

There are a number of core re-allocation effects that mentioned previous

sections. One of these effects is gathering high frequency cores that need the

same voltage. Distributed high frequency cores make several voltage domains to

the high value. So this effect reduces the energy wastes because only gathered

voltage domains use high voltage. But sometimes this benefit is too small to

reduce energy; even migration costs that contain migration overhead, perfor-

mance degradation by core location and so on are higher than energy reduction

in some cases. The overhead of migration depends on the migration count and

the migration distance as discussed in Section 6.1 are also important facts that

affect the migration cost. The core re-allocation algorithm, therefore, obtains

high migration benefit with minimum cost.
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BM
AH+M AH+M+D T+M T+M+D

Power Perf PPW Power Perf PPW Power Perf PPW Power Perf PPW

Mem Synthetic1 74.29 91.80 123.56 73.47 92.95 126.52 76.0 92.63 121.87 74.88 93.78 125.25

Mem Synthetic2 61.46 96.89 157.78 59.41 96.99 163.23 61.67 97.99 158.88 60.65 98.27 162.03

Table 7.5: Normalized result with or without data-location aware technique

To determine ∆m as migration benefit threshold, we have experimented

with the same 3 scenarios from Section 7.2.1 that applied several ∆m as no

limit, 5%, 10%, 15% and 20%. Table 7.3 and table 7.4 show the relation between

migration benefit and migration count. If set higher ∆m, it decreases migration

count but uses more energy. We decide 5% as ∆m that could get the highest

performance per watt ratio within 1-2% performance loss.

7.2.3 Data-location Aware Migration

Table 6.1 shows memory throughput depend on the frequencies and the dis-

tances from the memory controller. It does not mean that core re-allocation

always affects significant performance changes even though cores are allocated

differently on every migration phase. Because lower memory performance suf-

ficiently satisfy cpu-bound and weak memory-bound applications.

However, memory-bound applications that need huge memory access might

raise or drop their performance according to the distance from the memory

controller. It is possible to get a little improvement on memory performance by

migrating to a location closer to the memory controllers within same frequency

cores. We have experimented with two kinds of memory synthetic benchmark

are listed in Appendix A.2. Table 7.5 shows results of a data-location aware tech-

nique combined with core re-allocation that gets 3-5% higher performance per

watt improvement with 0.1-1.2% higher performance than a technique with-

out data-location. This approach consistently enhance core re-allocation for

memory-bound applications.
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7.3 Results

We have conducted a wide range of experiments with the proposed cooper-

ative hierarchical power management technique for CMPs. To show the effect

of core re-allocation with DVFS, we first present the results of a synthetic pe-

riodic workload before presenting the results for profiled benchmarks and the

workload of the webservers of the France 1998 Soccer World Cup. We conclude

this section with the overall results over all benchmark scenarios.

7.3.1 Synthetic Periodic Workload

Figure 7.1 shows the setup and the result of synthetic periodic workload

patterns. Figure 7.1 (a) shows the load patterns that alternate between 10%

and 90%. These two load patterns have the same pattern but 15 seconds time-

shifted. We distributed these two patterns to every voltage domain.

Figures 7.1 (b) and (c) show the results of this synthetic benchmark. The

right-hand of Figure 7.1 (b) and Figure 7.1 (c) show the normalized power

consumption, performance and performance per watt ratio for the AH and the

T that means the Allhigh and the Tile DVFS policy. We have experimented

each DVFS policies without and with (postfix +M) core re-allocation.

We observe that both DVFS only and DVFS+migration stay within the

allowed performance loss of ∆p ≤ 10%. Even though core re-allocation incurs

additional overhead, this overhead is correctly reflected by the migration cost-

benefit model (Chapter 6). The trade-off between performance and energy is

reflected in the normalized power consumption shown in Figure 7.1 (b) on the

right-hand side, the reduction in power by far outweighs the loss in performance.

In terms of performance per watt ratio (right-hand of Figure 7.1 (c)), both

DVFS only and DVFS+migration outperform the base case. In particular, the

proposed method of combining DVFS with migration achieves about a 30%

improved performance per watt ratio compared to DVFS-only policies.
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Figure 7.1: Simple alternating synthetic load
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(a) Requested frequency map - Allhigh

(b) Requested frequency map - Tile

Figure 7.2: Frequency map for simple alternating synthetic load
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Figure 7.2, finally, visualizes the effect of DVFS only and DVFS+migration

on the individual voltage domains’ frequency settings for the two DVFS policies

Allhigh and Tile. The frequency over time is shown for each voltage domain

for DVFS only (upper part) and DVFS+migration (middle part of the figure).

Higher frequency (and thus voltage) settings are represented by darker levels

of gray. The lower part of the chart shows the number of migrations over time.

We observe how the cooperative core re-allocation technique manages to group

cores with similar performance requirements together, thereby allowing more

optimal DVFS settings.

7.3.2 Profiled Workload

Figure 7.3 shows the results of a scenario based on actual, measured work-

load patterns. Seven different load patterns obtained from profiling data of

university staff and graduate students’ computers, s1 to s7, have been selected

and are assigned to a total of 40 application containers and initially placed onto

the different voltage domains as shown in left-hand of Figure 7.3 (b).

Compared to the synthetic workload, the performance loss (left-hand in

Figure 7.3 (c)) is less severe (0.2% and 1.6% for AH and AH+M, and 2.7% and

3.7% for T and T+M, respectively). This is because profiled workloads exhibit

smoother workload changes; the performance prediction is thus more accurate.

The DVFS-only policies cannot group cores with similar workload characteris-

tics together, and all voltage domains run at maximal voltage during most of

the benchmark (upper-hand VDOM charts in Figure 7.4). As a consequence,

only minimal total energy savings are obtained (1.1% and 7.5% for AH and T).

With OS migration, the scheduler is able to group workloads exhibiting

similar load patterns into voltage domains as shown by the lower-hand VDOM

charts in Figure 7.4. The total energy savings are significant (24.2% and 25.5%

for AH+M and T+M) and lead to a much better performance per watt ratio increase

compared to DVFS only (0.9% and 5.1% for DVFS only, 29.8% and 29.3% for
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Figure 7.3: Frequency map for profiled load patterns
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(a) Requested frequency map - Allhigh

(b) Requested frequency map - Tile

Figure 7.4: Results for profiled load patterns
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DVFS+migration).

7.3.3 World Cup Workload

The World Cup workload obtained from [30] is fed into a request generator

on the MCPC. On the SCC, we run 40 independent application containers, each

of which runs an HTTP server. In the absence of load balancing, we feed data

from 40 different days to each of the 40 HTTP servers.

Figure 7.5 shows the workload patterns and the normalized power, response

time, and performance per watt ratio. The World Cup scenarios have a long-

term idle time in the morning and late night. Also, these network overheads

peak before and after playing the game. DVFS policies, therefore, could get a

huge reduction of power consumption and improve a lot of performance per watt

ratio. An interesting observation is that core re-allocation reduces the average

response time of the benchmark compared to a DVFS-only solution (Figure 7.5

(b) right-hand side). This is caused by the fact that core migration allows the

DVFS algorithm to select frequencies closer to the optimum value than without

migration.

The right-hand of Figure 7.5 (c) shows the sensitivity of the core location

and the accessed data for the Tile DVFS policy. T denotes the DVFS only

policy, T+M is the data-location aware DVFS+migration algorithm, and T+M w/o

data location shows the results if the location of the cores’ data is ignored.

Comparing T+M with T+M w/o data location, we note that ignoring the data

location causes a 1% decrease in the performance/watt and a 6% faster response

time.

7.3.4 Overall Results

Table 7.6 displays the normalized power, performance, and performance per

watt ratio over the baseline, respectively, for the Allhigh and the Tile policy,

denoted AH and T, without and with (appended +M postfix) OS migration for
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Figure 7.5: Results for the France 1998 World Cup load pattern.
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BM
AH AH+M T T+M

Power Perf PPW Power Perf PPW Power Perf PPW Power Perf PPW

Synthetic1 79.1 92.7 117.1 63.8 92.4 144.9 85.7 90.6 105.7 64.2 90.9 141.6

Synthetic2 91.9 99.5 108.3 65.0 98.9 152.3 84.3 97.7 115.9 61.2 93.8 153.1

Profiled1 98.9 99.8 100.9 75.8 98.4 129.8 92.5 97.3 105.1 74.5 96.3 129.3

Profiled2 90.3 99.0 109.7 71.4 98.8 138.3 88.8 96.7 108.9 68.2 90.5 132.7

Profiled3 93.7 98.5 105.1 66.9 98.6 147.4 86.2 96.7 112.1 67.4 95.1 141.2

WorldCup 60.2 99.9 166.1 54.9 99.8 181.9 58.6 98.7 170.6 54.7 98.9 182.9

Average 85.7 98.2 117.9 66.3 97.8 149.1 82.7 96.3 119.7 65.0 94.3 146.8

Table 7.6: Normalized power, performance, and performance per watt (PPW)

two synthetic workload patterns, three profiled workload patterns, and the sim-

ulated webserver for the soccer World Cup in France 1998. The details for two

synthetic benchmark are listed in Appendix A.1 and three profiled benchmark

are listed in Appendix A.3. The web server access logs for the soccer World

Cup in France 1998 are available in [31].

Independent of the workload at hand, re-allocating cores before applying

a DVFS policy results in a significantly reduced power consumption at the

expense of a very moderate performance degradation. Taking the DVFS-only

policy as the baseline, Allhigh+Migration achieves a 35% better power-per-

watt energy efficiency than Allhigh at a relative performance loss of only 0.8%.

Similarly, Tile+Migration outperforms Tile by 25% at a performance loss of

2.9%. We observe that Tile outperforms Allhigh without migration whereas

with migration they achieve similar performance. The reason is that OS migra-

tion is able to group OSes with similar performance requirements into voltage

domains such that the superior Tile DVFS policy has less effect.
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Chapter 8

Conclusion

We have presented a cooperative hierarchical power management technique

for existing and future many-core systems running a space-shared operating sys-

tem. We show that the combination of core re-allocation and DVFS techniques

archive significant energy savings through space sharing manner.

Without explicit hardware support, the application runtimes only executing

on the individual cores cooperate with the global power management by saving

and restoring the volatile state of the core on demand. Combined with dynamic

monitoring of each core’s performance metrics and, this technique allows the

power manager to group cores with similar performance requirement so that

traditional DVFS policies can apply DVF settings closer to the optimal value on

the CMP. Furthermore, our technique considers the data location for memory-

bound applications, performance penalty and migration benefit threshold to get

higher performance per watt ratio with a minimum performance degradation.

The cooperative power manager has been implemented and evaluated on a

real system, the Intel Single-chip Cloud Computer. Experiments show that, on

average, the proposed technique outperforms existing DVFS policies by 27-32%

at the expense of a small performance loss of 1-2%.
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Appendix A

Profiled Workload Benchmark
Scenarios

This appendix describes the details of the benchmarks evaluated in this

work. Each benchmark scenario consists of two parts:

• Two or more workload patterns that describe how the workload changes.

• An initial assignment of the workloads to the 48 cores of the SCC.

Each workload pattern (WL), denoted S{1-10} in the tables below, lists the

CPU workload as C and MEM workload as M for every epoch (10 or 15 seconds,

depending on the benchmark) for the duration of one period (300 seconds).

A workload never stops, it keeps repeating the workload pattern period after

period. Only memory synthetic benchmark contains CPU and MEM workload

together. Another workloads are pure CPU-based workloads.

The core assignment tables show what workload patterns are assigned to

which cores when the experiment starts. In our setup, voltage domain 3 runs

various logging and measurement services and is thus not available for bench-

marks. The power measurements include the power consumed by vdom3 because

power is only reported for the entire chip and not for individual voltage domains.
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A benchmark ends after the predefined number of seconds (in our example,

after 300 seconds). The total progress of each workload is measured externally

and thus includes all overheads caused by migration, voltage changes or slow-

downs cause by too low frequency settings.

A.1 Synthetic Benchmark Scenario based on Periodic

Workloads

A.1.1 Synthetic Benchmark Scenario 1

Workload patterns:

WL
Epoch (1 epoch = 15 sec)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S1 95 95 10 10 95 95 10 10 95 95 10 10 95 95 10 10 95 95 10 10 10

S2 10 95 95 10 10 95 95 10 10 95 95 10 10 95 95 10 10 95 95 10 10

Core assignment:
vdom0 vdom1 vdom3 vdom4 vdom5 vdom7

- - - - n/a n/a - - - - - -

S2 - S2 - n/a n/a S2 S2 S2 - S2 -

- - - - n/a n/a - - - - -

S1 S2 S1 S1 n/a n/a S1 S1 S1 S2 S1 S1

A.1.2 Synthetic Benchmark Scenario 2

Workload patterns:

WL
Epoch (1 epoch = 10 sec)

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

S1 42 77 25 11 34 36 30 14 33 26 22 58 100 52 30 13 15 0 21 39 48 43 40 41 40 42 41 40 39 36 35

S2 45 15 6 27 25 9 64 55 27 28 18 51 46 100 56 20 25 25 12 0 0 0 0 0 0 0 0 0 0 0 0

S3 71 53 26 9 34 25 23 38 37 26 30 23 34 41 39 29 29 12 17 30 27 21 31 35 41 84 89 63 100 96 2

S4 11 22 20 10 27 12 45 100 22 9 4 14 9 43 19 6 17 18 14 21 5 5 5 6 25 16 7 0 0 0 0

S5 42 66 40 67 57 67 66 71 75 72 31 38 59 54 86 80 68 55 95 100 89 85 86 77 64 0 0 0 0 0 0

Core assignment:
vdom0 vdom1 vdom2 vdom4 vdom5 vdom7

S5 - - - n/a n/a S5 - S5 - S5 -

- - S5 - n/a n/a S4 - S4 - S4 -

S2 S4 S2 S4 n/a n/a - S3 S2 S3 S2 -

S1 S3 S1 S3 n/a n/a S1 S2 S1 - S1 S3

45



A.2 Memory Synthetic Benchmark Scenario based on

Periodic Workloads

A.2.1 Memory Synthetic Benchmark Scenario 1

Workload patterns:

WL
Epoch (1 epoch = 15 sec)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S1 C 95 95 10 10 95 95 10 10 95 95 10 10 95 95 10 10 95 95 10 10 10

S2 C 10 95 95 10 10 95 95 10 10 95 95 10 10 95 95 10 10 95 95 10 10

S3 M 100 100 5 5 100 100 5 5 100 100 5 5 100 100 5 5 100 100 5 5 5

S4 M 5 100 100 5 5 100 100 5 5 100 100 5 5 100 100 5 5 100 100 5 5

Core assignment:
vdom0 vdom1 vdom3 vdom4 vdom5 vdom7

- S4 - - n/a n/a S4 S3 - S4 S3 -

S2 S3 S2 S3 n/a n/a S2 S2 S2 S3 S2 -

S4 S4 - S3 n/a n/a S3 S4 S4 - S4 S3

S1 S2 S1 S1 n/a n/a S1 S1 S1 S2 S1 S1

A.2.2 Memory Synthetic Benchmark Scenario 2

Workload patterns:

WL
Epoch (1 epoch = 10 sec)

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

S1 c 42 77 25 11 34 36 30 14 33 26 22 58 100 52 30 13 15 0 21 39 48 43 40 41 40 42 41 40 39 36 35

S2 c 45 15 6 27 25 9 64 55 27 28 18 51 46 100 56 20 25 25 12 0 0 0 0 0 0 0 0 0 0 0 0

S3 c 71 53 26 9 34 25 23 38 37 26 30 23 34 41 39 29 29 12 17 30 27 21 31 35 41 84 89 63 100 96 2

S4 c 11 22 20 10 27 12 45 100 22 9 4 14 9 43 19 6 17 18 14 21 5 5 5 6 25 16 7 0 0 0 0

S5 c 42 66 40 67 57 67 66 71 75 72 31 38 59 54 86 80 68 55 95 100 89 85 86 77 64 0 0 0 0 0 0

S6 m 42 77 25 11 34 36 30 14 33 26 22 58 100 52 30 13 15 0 21 39 48 43 40 41 40 42 41 40 39 36 35

S7 m 45 15 6 27 25 9 64 55 27 28 18 51 46 100 56 20 25 25 12 0 0 0 0 0 0 0 0 0 0 0 0

S8 m 71 53 26 9 34 25 23 38 37 26 30 23 34 41 39 29 29 12 17 30 27 21 31 35 41 84 89 63 100 96 2

S9 m 11 22 20 10 27 12 45 100 22 9 4 14 9 43 19 6 17 18 14 21 5 5 5 6 25 16 7 0 0 0 0

S10 m 42 66 40 67 57 67 66 71 75 72 31 38 59 54 86 80 68 55 95 100 89 85 86 77 64 0 0 0 0 0 0

Core assignment:
vdom0 vdom1 vdom2 vdom4 vdom5 vdom7

S10 - - - n/a n/a S5 - S10 - S5 -

- - S5 - n/a n/a S9 - S4 - S9 -

S2 S4 S7 S9 n/a n/a - S3 S2 S8 S7 -

S6 S8 S1 S3 n/a n/a S1 S7 S6 - S1 S3
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A.3 Benchmark Scenario based on Profiled Workloads

A.3.1 Profiled Benchmark Scenario 1

Workload patterns:

WL
Epoch (1 epoch = 10 sec)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

S1 27 49 31 32 62 77 80 44 0 6 1 1 8 73 87 81 80 91 100 99 89 67 13 52 0 0 10 46 27 86 63

S2 69 57 68 60 55 66 61 63 69 58 56 57 63 59 62 58 57 67 68 64 61 71 78 63 71 82 69 14 0 2 4

S3 28 84 41 12 83 48 55 0 35 69 42 59 17 46 59 49 51 2 46 47 80 40 4 73 41 53 47 18 100 42 45

S4 27 49 31 32 62 77 80 44 0 6 1 1 8 73 87 81 80 91 100 99 89 67 13 52 0 0 10 80 66 56 32

S5 71 53 26 9 34 25 23 38 37 26 96 92 34 41 89 100 100 12 17 30 27 21 31 35 41 84 89 63 100 96 84

S6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 96 63 100 27 0 0 0 0 0 0 0 0 0 0 0

S7 5 4 5 7 2 4 5 6 6 4 100 6 2 4 1 1 0 1 2 2 4 2 2 4 6 6 6 5 2 10 5

Core assignment:
vdom0 vdom1 vdom3 vdom4 vdom5 vdom7

S4 S6 S4 S4 n/a n/a S5 S5 S5 S6 S5 S5

S3 S3 S3 S7 n/a n/a S3 S3 S4 S4 S2 S2

S2 S5 S2 S2 n/a n/a S2 S6 S2 S7 S3 S4

S1 S1 S1 S5 n/a n/a S1 S4 S1 S3 S1 S1

A.3.2 Profiled Benchmark Scenario 2

Workload patterns:

WL
Epoch (1 epoch = 10 sec)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

S1 27 49 31 32 62 77 80 44 0 6 1 1 8 73 87 81 80 91 100 99 89 67 13 52 0 0 10 46 27 86 63

S2 82 39 55 42 96 42 100 33 53 20 20 10 11 14 13 11 13 13 1 5 1 0 23 45 61 42 83 83 20 15 3

S3 8 20 21 30 80 100 24 50 36 54 83 92 91 73 27 1 0 1 1 1 1 0 1 1 10 1 21 17 33 5 7

S4 27 49 31 32 62 77 80 44 0 6 1 1 8 73 87 81 80 91 100 99 89 67 13 52 0 0 10 10 15 30 27

S5 27 49 31 32 62 77 80 44 0 6 1 1 8 73 87 81 80 91 100 99 89 67 2 2 1 0 5 3 7 13 0

S6 53 21 52 48 33 92 89 100 39 38 29 41 48 4 64 45 36 31 42 41 42 35 15 80 93 62 10 23 48 32 0

Core assignment:
vdom0 vdom1 vdom2 vdom4 vdom5 vdom7

S6 - S6 - n/a n/a S6 - S6 - S6 -

S3 S4 S3 S4 n/a n/a S3 S4 S3 S4 S3 S4

- S5 - S5 n/a n/a - S5 - S5 - S5

S1 S2 S1 S2 n/a n/a S1 S2 S1 S2 S1 S2
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A.3.3 Profiled Benchmark Scenario 3

Workload patterns:

WL
Epoch (1 epoch = 10 sec)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

S1 27 49 31 32 62 77 80 44 0 6 1 1 8 73 87 81 80 91 100 99 89 67 13 52 0 0 10 46 27 86 63

S2 82 39 55 42 96 42 100 33 53 20 20 10 11 14 13 11 13 13 1 5 1 0 23 45 61 42 83 83 20 15 3

S3 28 84 41 12 83 48 55 0 35 69 42 59 17 46 59 49 51 2 46 47 80 40 4 73 41 53 47 18 100 42 45

S4 27 49 31 32 62 77 80 44 0 6 1 1 8 73 87 81 80 91 100 99 89 67 13 52 0 0 10 10 15 30 27

S5 71 53 26 9 34 25 23 38 37 26 96 92 34 41 89 100 100 12 17 30 27 21 31 35 41 84 89 63 100 96 84

S6 53 21 52 48 33 92 89 100 39 38 29 41 48 4 64 45 36 31 42 41 42 35 15 80 93 62 10 23 48 32 0

Core assignment:
vdom0 vdom1 vdom3 vdom4 vdom5 vdom7

- - - - n/a n/a - - - - - -

S5 S6 S5 S6 n/a n/a S3 S6 S4 S5 S4 S5

- - - - n/a n/a - - - - - -

S1 S4 S1 S2 n/a n/a S1 S2 S2 S3 S1 S3
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[1] Luiz André Barroso et al. Piranha: A scalable architecture based on single-

chip multiprocessing. In Proceedings of the 27th Annual International Sym-

posium on Computer Architecture, ISCA ’00, pages 282–293, New York,

NY, USA, 2000. ACM.

[2] Alejandro Duran and Michael Klemm. The intel many integrated core

architecture. In High Performance Computing and Simulation (HPCS),

2012 International Conference on, pages 365–366, July 2012.

[3] NVIDIA. GeForce GTX TITAN X. http://www.geforce.com/hardware/

desktop-gpus/geforce-gtx-titan-x. Online, accessed June 2015.

[4] EZchip. TILE-MX Multicore Processor. http://www.tilera.com/

products/?ezchip=585&spage=686. Online, accessed June 2015.

[5] Saurabh Dighe et al. Within-die variation-aware dynamic-voltage-

frequency-scaling with optimal core allocation and thread hopping for

the 80-core teraflops processor. Solid-State Circuits, IEEE Journal of,

46(1):184–193, Jan 2011.

[6] Wonyoung Kim, Meeta Sharma Gupta, Gu-Yeon Wei, and David Brooks.

System level analysis of fast, per-core dvfs using on-chip switching regu-

lators. In High Performance Computer Architecture, 2008. HPCA 2008.

IEEE 14th International Symposium on, pages 123–134. IEEE, 2008.

49



[7] Sebastian Herbert and Diana Marculescu. Analysis of dynamic volt-

age/frequency scaling in chip-multiprocessors. In Low Power Electron-

ics and Design (ISLPED), 2007 ACM/IEEE International Symposium on,

pages 38–43. IEEE, 2007.

[8] Efraim Rotem, Avi Mendelson, Ran Ginosar, and Uri Weiser. Multiple

clock and voltage domains for chip multi processors. In Proceedings of the

42nd Annual IEEE/ACM International Symposium on Microarchitecture,

pages 459–468. ACM, 2009.

[9] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and

Larry Peterson. Container-based operating system virtualization: A scal-

able, high-performance alternative to hypervisors. In Proceedings of the

2Nd ACM SIGOPS/EuroSys European Conference on Computer Systems

2007, EuroSys ’07, pages 275–287, New York, NY, USA, 2007. ACM.

[10] Silas Boyd-Wickizer et al. Corey: An operating system for many cores.

In Proceedings of the 8th USENIX Conference on Operating Systems De-

sign and Implementation, OSDI’08, pages 43–57, Berkeley, CA, USA, 2008.

USENIX Association.

[11] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,

Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
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요약

최근 Cloud Computing 서비스를 제공하는 데이터센터 등에서는 Many-core

chip이 기존 Multi-core를 대체하여 사용되고 있으며 Operating System도 Many-

core 시스템을 사용할 수 있게 Space-sharing 방식으로 설계가 변경되고 있다.

이러한 추세속에서 기존의 전통적인 DVFS 방식을 이용해서는 Many-core 환경에

서 효율적인 전력 사용이 어렵기 때문에 추가적인 전력 관리 방법과 Many-core의

특성을 고려한 Core 재배치 기술이 필요하다.

Space-shared OS는 Core와 물리적인 메모리의 구성에 대한 자원 관리를 하는

데,최근의 Chip multiprocessor (CMP)들은각각의 Core에서독립적으로 DVFS

를 동작하도록 하지 않고 몇개의 Core들을 그룹화하여 Voltage 또는 Frequency

를 함께 변경할 수 있도록 지원하고 있으며 메모리 또한 Coarse-grained 방식으로

독립된 파티션으로 할당 할 수 있게 관리된다. 본 연구는 이러한 CMP의 특성을

고려하여 Core 재배치와 DVFS 기술을 이용한 계층적 전력 관리 시스템을 연구

하는데 목표가 있다. 특히 Core 재배치 기술은 Core의 위치에 따른 Data 성능도

함께 고려하고 있다. 이에 추가로 DVFS 성능 손실을 고려한 에너지 효율성 상

승과 Core 재배치시 발생할 수 있는 효과를 미리 계산하여 최소한의 성능저하로

더 좋은 에너지 효율성을 얻을 수 있도록 연구를 진행하였다. 또한 실제 구현 및

실험은 Intel에서 출시한 Single-chip Cloud Computer (SCC)에서 진행하였으며

시나리오별로 1-2%의 성능 손실로 Performance per watt ratio가 27-32% 향상되

었다. 또한 Migration 효과와 Data 지역성 등을 고려하지 않았던 기존 연구보다

성능이 5-11% 좋아졌다.

주요어: 매니코어 아키텍쳐, 스케쥴링, 동적 전압 및 주파수 변경, 에너지 효율

학번: 2013-23128
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