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Abstract

Image inpainting, which is the filling-in of missing regions in an image, is one of

the most important topics in the area of computer vision and image processing. The ex-

isting non-hybrid image inpainting techniques can be broadly classified into two types.

One is the texture-based inpainting and the other is the structure-based inpainting. One

critical drawback of those techniques is that their inpainting results are not effective for

the images with a mixture of texture and structure features in terms of visual quality or

processing time. However, the conventional hybrid inpainting algorithms, which aim

at inpainting images with texture and structure features, do not effectively deal with the

two items: (1) what is the most effective application order of the constituents? and (2)

how can we extract a minimal sub-image that may contain best candidates of inpaint-

ing source? In this work, we propose a new hybrid inpainting algorithm to address the

two tasks fully and effectively. Precisely, our algorithm attempts to solve two key in-

gredients: (1) (right time) determining the best application order for inpainting textu-

ral and structural missing regions and (2) (right place) extracting the sub-image con-

taining best candidates of source patches to be used to fill in a target region. Through

experiments with diverse image testcases, it is shown that our algorithm integrating

the enhancements has greatly improved the inpainting quality compared to that of the

previous non-hybrid inpainting methods while even spending much shorter processing

time compared to the conventional hybrid inpainting methods.

keywords: image processing, hybrid image inpainting, texture and structure distribu-

tion

student number: 2013-23842
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Chapter 1

INTRODUCTION

The task of image inpainting, which refers to filling-in one or more missing regions

in an image, is one of the most important research areas in the field of computer vi-

sion and image processing. The task can be used in various applications such as image

restoration, object removal, loss concealment. Guillemot and Le Meur in [1] surveyed

the image inpainting methods in the literature. In particular, they observed that the pix-

els in some known and unknown parts of an image were very likely to share identi-

cal statistical properties or geometrical structures and reviewed the existing inpainting

methods that were based on that observation. Specifically, they classified the methods

into two categories: diffusion-based inpainting (e.g., [2, 3, 4, 5, 6, 7]) and exemplar-

based inpainting (e.g., [8, 9, 10, 11, 12, 13]).

Diffusion-based inpainting diffuses the image information from the known region

into the missing region. Bertalmio et al. [2] first proposed a diffusion-based inpaint-

ing method, which propagates image Laplacians from the surrounding neighborhood

towards the interior of the missing region. Later, they employed Navier-Stokes equa-

tions to further improve the quality of image inpainting [3], in which they transformed

the image intensity along smooth level curves into stream of fluid dynamics and the

isophote lines into flow stream lines. Chan and Shen [4] proposed an inpainting frame-

work which minimizes total variation energy of the image inside the missing region.
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To reduce the processing time complexity further, Telea [5] proposed a method that es-

timates the image smoothness as a weighted average over known image neighborhoods

and propagates the image information by using a so-called fast marching method. On

the other side, Qin et al. [6] used anisotropic heat transfer model in which they included

a texture term in their numerical implementation of the partial differential equations

(PDEs) to propagate texture information. Besides the traditional PDE-based methods,

it has been known that TV (total variation) regularization is able to effectively recover

sharp edges in certain conditions. TV regularization regards image as a function of

bounded variation and transforms image inpainting into a variational problem. The

work in [7] is one of the recent TV methods. It applies the Split Bregman algorithm

to TV inpainting. The strength of the diffusion-based inpainting is that the processing

time is very short. However, it degrades image quality such as blurs or smoothness in

texture intensive images and is not effective for images with large size missing region.

For example, the introduced texture term in [6] does not effectively handle irregular

textures, which means it is effective only for textures with dominant direction.

Fig. 1.1 is the inpainting results by using diffusion-based method [5]. Black re-

gions in these two images label the inpainting regions (or the missing regions). For the

circle image, inpainting region covers two region, white region and grey region. In-

painting result shows blur effect on the boundary line between white region and grey

region, while for those inpainting parts locate totally in whiter region or grey region,

the result shows no blur effect. For the farmland image, the inpainting region is rela-

tively large, and covers lots of texture features like plants features. The corresponding

inpainting result shows obvious blur effect. That is the general drawback of diffusion-

based method which causes diffusion-based methods are not well suited for textured

images, especially if the missing region is large.

On the contrary, exemplar-based inpainting is suitable for texture dominating im-

ages as shown in Fig. 1.2. It is motivated by a local region growing approach which

grows the texture one pixel or one patch at a time. Wei and Levoy [8] introduced a

2



Figure 1.1: Drawbacks and benefits of diffusion-based inpainting method [5]: inpaint-

ing results of circle and farmland. Blur effects damage texture dominating regions sig-

nificantly, while can be ignorable on smooth regions.

Figure 1.2: Drawbacks and benefits of exemplar-based inpainting method [9]: inpaint-

ing results of circle and farmland. Exemplar-based inpainting can preserve textures.
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pixel-by-pixel exemplar-based inpainting method in which missing pixels are learned

from their known neighborhood by calculating and comparing distance metrics such as

SSD (sum of squared differences), and copying the central pixels of the best matches.

Later, Criminisi et al. [9] proposed a patch-by-patch exemplar-based inpainting method

in which instead of copying pixel, entire patch is copied, one at a time, to reduce run

time. Since the inpainting quality highly depends on the selection of target patch to

be filled at each iteration and the extraction or derivation of source patch(s) to fill-in

the target patch, many works have looked for more effective methods to solve these

two subproblems. One noticeable research progress on these subproblems is using the

concept of ‘patch sparsity’ (e.g., [10, 11, 12]). The idea is that instead of copying the

most similar source patch, a combination of several source patches formed by pre-

defined waveforms (e.g., [11]) or linear combination (e.g.,[10, 12]) is used to enhance

the robustness. In addition, methods (e.g., [13]) which recover the full resolution im-

age by applying existing exemplar-based method to low resolution image as a pre-

processing turned out to be effective to save run time. The main differences of the ex-

isting exemplar-based inpainting methods lie on (i) how they search for best matching

patches and (ii) how they estimate the region of inpainting source. Even though lots

of efforts have been made on implementing the tasks by the existing methods, we will

show later that they do not fully exploit the surrounding image context of target (miss-

ing) patch for (i) and (ii).

Note that even though some methods such as [14, 15] took the texture and structure

characteristics of processing units of image into account, they were effective only when

image has a single or a few contiguous missing blocks. For example, [14] performed

block classification for each of 8×8 missing blocks whereas our method determines the

size of processing units1 dynamically according to the images’ global characteristics.

In addition, [15] tried to preserve edges in the processing units rather than texture
1Processing units and source (search) window refer to the same meaning and used interchangeably in

this work.

4



information while ours exactly preserves texture of image.

(a) (b) (c) (d) (e) (f)

Figure 1.3: Hybrid-inpainting method step-by-step illustration of barbala. (a)-(g) are

original image, original structure image, original texture image, inpainted structure

image, inpainted texture image, inpainted result image.

To overcome the blur effect in diffusion-based inpainting and the long run time in

exemplar-based inpainting, hybrid inpainting methods (e.g., [16, 17, 18]) have been

proposed. Two works in [16] and [17] basically performed the following three steps:

(1) separating the original image into two image layers, one containing structure infor-

mation such as strong edges and corners, and the other containing texture information

such as texture patterns; (2) applying an existing exemplar-based inpainting technique

to the texture image layer and an existing diffusion-based inpainting technique to the

structure image layer; (3) combining the two inpainted results obtained from last step

into one. Fig. 1.3 takes barbala as an example to show the hybrid inpainting proce-

dure. The circle region marked in (g) shows one problem of this method, the blur effect

of structure image result still have effect on the final result, even though the effect is

reduced by combining texture image. Another problem of this method is that instead

of inpainting one image by one method, this method actually inpaints two images by

two methods, which will be more time consuming and doesn’t make full use of the

advantages of two inpainting methods. Another kind of hybrid method, Bugeau et al.
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[18] combined the following three basic techniques: copy-and-paste texture synthe-

sis, geometric partial differential equations (PDEs) and coherence among neighboring

pixels in one framework, and formulated it into a problem of minimizing an energy

function. However, the run time is not satisfactory, taking 5 minutes for image of size

256×163.

In this work, we propose a new hybrid inpainting algorithm, called InP-h, to over-

come the long processing time of the conventional hybrid methods while maintain-

ing the visual quality. Precisely, InP-h addresses two tasks: (1) determining the best

application sequence for inpainting textual and structural missing target patches and

(2) extracting the sub-image (i.e., source window) containing the best candidates of

source patches.

The rest of the paper is organized as follows. Section 2 reviews a state-of-the-art

exemplar-based inpainting method, which is integrated into InP-h, together with our

improvement on critical limitation (i.e., task 2) of exemplar-based inpainting. Section 3

describes our enhanced execution procedure (i.e., task 1) and details of our hybrid

inpainting algorithm integrated with exemplar-based and diffusion-based inpaintings.

Then, comparisons of our inpainting results with those produced by diverse existing

methods are shown in Section 4. Finally, a conclusion of the work is given in Section 5.
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Chapter 2

Exemplar-based Inpainting: Review and Enhancement

This section overviews one of the most up-to-date methods of exemplar-based inpaint-

ing [12] (Subsection 2.1), which we adopt for our integration, followed by proposing

an improvement on a core part of exemplar-based inpainting (Subsection 2.2).

2.1 Preliminary: A State-of-the-Art Exemplar-based Inpaint-

ing

Let I and Ω denote an input image and a sub-region to be inpainted, respectively. Then,

I − Ω (= Φ) represents the source region of image. The basic idea of exemplar-based

inpainting is to utilize the image information in Φ to recover the inpainting region

iteratively one patch at a time. The most recent method of exemplar-based inpainting

in [12] consolidated the following two procedures:

1. Processing order of patches: Fig. 2.1 shows the diagram to explain the steps

of exemplar-based inpainting. It paints the patches in the missing region, one

patch at a time, according to the patches’ priority. For example, q1, q2, q3, · · ·

in Fig. 2.1 are the source pixel points, p is a point on the boundary of missing

region, and Ψp and Ψqi are the patches centered at points p and qi, respectively.

7
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Figure 2.1: Diagram to explain the procedure of exemplar-based inpainting. A target

patch Ψp is selected at each iteration based on the priority decided by several factors

such as the confidence value which is the number of source pixels in a certain patch,

the data value which represents the directions and values of5I⊥p and np, followed by

selecting a best source patch Ψqi or a set of patches to fill the target patch Ψp.

5I⊥p along the direction of the existing edge in the source region represents the

isophote, where direction is represented by arrow and intensity by the length

of arrow at point p, and np is the normal to the boundary δΩ at point p. After

comparing the target patch Ψp with every candidate source patch (e.g., Ψq1,

Ψq2, Ψq3), if Ψqi is judged as the best match to the Ψp, Ψqi is copied to Ψp. The

selection of target patch to be filled in the current iteration is determined based

on several criterias. One representative computation of the priority is shown in

Eqs.(2.1), (2.2), and (2.3) according to [10]:

P (p) = C (p)×D (p) , (2.1)

C (p) =

∑
q∈Ψp∩(I−Ω)C(q)

|Ψp|
, (2.2)

D (p) =
|∇I⊥p • np|

α
(2.3)
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where P (p) indicates the priority value of the patch Ψp. C(p) and D(p) repre-

sent the number of known pixels in Ψp and the strength of isophotes hitting the

boundary δΩ, respectively. α is set to 255 to scale D(p) ∈ [0, 255].

Guillemot, Turkan, Le Meur, and Ebdelli [12] updated the processing order

defined in Eq.(2.1) to take into account the textures which are not perpendicular

to the front line. They introduced a new term E(p) in Eq.(2.4) to represent the

edgeness of patch Ψp and included it to P (p) in Eq.(2.5):

E (p) =

∑
q∈Ψp∩Φ γ(q ∈ Edge)
|Ψp ∩ Φ|

, (2.4)

P (p) = C (p)×D (p)× E (p) , ∀p ∈ δΩ (2.5)

where Edge set of pixels is determined by Canny edge detector and γ(·) is a

binary function which returns 1 if the input is true and 0 otherwise.

2. Searching for the most similar source patches: The SSD (sum of squared dif-

ferences) metric has been widely used to search for patches similar to the target

patch. It measures the difference and cross-correlation between the color values

of pixels. However, it is shown that using SSD tends to copy pixels from uniform

regions [1]. To improve the accuracy of the measurement, the combined similar-

ity (distance) metric of the SSD and weighted Bhattacharya has been proposed

[1, 13]:

dSSD,BC(Ψp,Ψqi) = dSSD(Ψp,Ψq1)× (1 + dBC(Ψp,Ψq1)) (2.6)

where Ψp and Ψqi are the target patch and candidate source patch, respectively,

and dSSD and dBC indicate the SSD metric and weighted Bhattacharya metric,

respectively.
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The most time consuming part of exemplar-based inpaintings is finding the

top K most similar patches of Ψqi , which is called K nearest neighbor (K-NN)

searching. This means that identifying a minimal searching window is critical

to reduce the time for K-NN searching since as the searching window increases,

the number of candidate source patches to be checked increases. The current

scheme sets the size of searching window by a pre-defined radius (e.g., [9, 12]).

Once the top K source patches are extracted, the K patches are combined to es-

timate the target patch by applying a neighbor embedding (NE) technique. The

locally linear embedding technique with low-dimensional neighborhood repre-

sentation (LLE-LDNR) [12] has been proven to be one of the most effective NE

techniques. We adopt LLE-LDNR in our hybrid inpainting framework.

2.2 Context-Driven Determination of Window Sizes

As mentioned before, searching window size affects the run time significantly, and

most up-to-date exemplar-based methods use pre-defined radius value to restrict search-

ing window size. In order to save the run time, the searching window size should be

as small as possible. However, as shown in Fig. 2.2, images with different sizes and

different target regions achieve the best results at different searching window size. 40

for bungee, 80 for dog, 120 for sea. Thus an automatical way to decide the searching

window size is needed.

Our determination of searching window sizes for texture-intensive target patches

is based on the following intuition:

1. A block (Bi) with size of n-pixel×n-pixel to be included in the searching win-

dow is likely to be placed close to the target patch block (Ψ).

2. Inclusion of a block with more texture feature into searching window is likely

to lead a better inpainting quality.

10



(a) original (b) radius = 40 (c) radius = 60 (d) radius = 80 (e) radius = 100 (f) radius = 120

Figure 2.2: Exemplar-based inpainting [12] results of images bungee, dog, and sea

with different searching window sizes.

Based on the intuition, we expand the searching window starting from the target

basic block by iteratively checking if it is beneficial to include the basic block on the

boundary into the searching window. The guideline for the inclusion of a block Bi is

based on the value of ρ(Bi), which measures the degree of textureness of that block:

ρ(i) = β1 ×
∑

q∈Bi∩Φ γ(q ∈ Is edge(i))

|Bi ∩ Φ|
+ β2 ×

∑
q∈Bi∩Φ γ(q ∈ Iw edge(i))

|Bi ∩ Φ|
(2.7)

where Bi is a block of size n-pixel×n-pixel and should have at least one known

pixel, and ρ(i) = −1, otherwise. (Bi with ρ(i) = −1 means that all the pixels in

Bi are missing (i.e., unknown).) Is edge and Iw edge represent the sets of pixels on the

‘strong’ and ‘weak’ edges in the Edge set produced by the application of Canny edge

detector to Bi, respectively. Thus, the first and second terms indicate the portions of

the known pixels of Bi which exhibit strong and weak edges, respectively. β1 and β2

are weighting factors. The searching window will be expanded as long as the window

covers the blocks whose ρ values are close to the ρ value of the target block. The details

of setting the parameter values and procedure of window expansion will be discussed

in Subsection 3.3.
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Chapter 3

The Proposed Context-Driven Hybrid Inpainting

3.1 Overall Flow

Fig. 3.1 depicts the flow diagram of our proposed hybrid inpainting algorithm InP-h.

InP-h consists of three steps: (Step 1) a pre-processing is performed to extract texture

feature related data from input image I0; (Step 2) the texture-intensive target patches

are filled in sequentially by applying an exemplar-based inpainting technique; (Step 3)

the remaining target patches are then filled all together by applying a diffusion-based

inpainting technique.

Application order for inpainting: a hybrid inpainting can consider several options for

the application order of exemplar-based inpainting and diffusion-based inpainting.

Three options are feasible: (1) diffusion-first, (2) exemplar-first, and (3) diffusion-

exemplar-alternate. From the facts that our objective is to reduce the processing time

of hybrid inpainting without losing the inpainting quality and most diffusion-based in-

painting techniques can formulate multiple target patches to be inpainted all together

into a set of partial differential equations, the first and second options would be more

acceptable than the last option in terms of saving processing time. Furthermore, since

contrary to exemplar-based inpainting, diffusion-based inpainting requires the process-

ing time for selecting target patches in the execution order of the first option, the second

12



Input:

Io

Pre-processing:   

Imask Is_edge , Iw_edge ,

Bi , L(i), (i)

i:                            

L(i) = = this_level

&&  (i) > sharp

Main processing:                            

1. Select Bstart ,                           

2. Expand Bstart to form Up ,       

3. Inpaint Up

Update:

Io , Imask , Is_edge , Iw_edge , 

(i), sharp , smooth

Inpaint the remaining miss

ing blocks

Y

N

Output:

Io 

this_level [1, Lnum], 

this_level ++

Re-evaluation:     

(i), sharp , smooth

Y

N

Exemplar

-based      

inpainting

Step 1

Step 2

Step 3

Step 2.3

Step 2.3

Step 2.2

Step 2.1 Diffusion-based 

inpainting

Figure 3.1: Algorithmic flow of our proposed hybrid inpainting method InP-h. It con-

sists of three steps, which are explained in Subsections 3.2, 3.3, and 3.4. Note that com-

paring to the pure exemplar-based inpainting, introducing diffusion-based inpainting

speeds up the processing time while the adaptive window sizing in Step 2 speeds up the

processing time of exemplar-based inpainting phase without degrading image quality.
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option will save more time than the first one. Note that InP-h reduces the processing

time spent in the exemplar-based inpainting (Step 2) by our window resizing scheme

that is driven by the context of the surrounding image of the target patch, which will

be discussed in Subsection 3.3.

3.2 Step 1: Pre-processing

• Generation of auxiliary images: From I0, InP-h extracts three types of images:

Imask (mask image), Is edge (strong edges), and Iw edge (weak edges).

- Imask: it is used to mark the region to be inpainted, i.e., setting the pixels

in that region to white and the rest to black.

- Is edge: the Canny edge detector assigns a value for each pixel to indicate

the degree of edgeness in I0. Is edge is the collection of pixels whose ed-

geness values are greater than 0.9. Is edge represents strong textures.

- Iw edge: similar to the definition of Is edge, Iw edge is the collection of pixels

whose edgeness values are in between 0.3 and 0.9. Iw edge represents weak

textures.

• Initialization of parameters: Each of I0, Imask, Is edge, and Iw edge is then uni-

formly partitioned into basic blocks Bi of n× n size. For each Bi, two parame-

ters ρ(i) and L(i) are initialized.

- ρ(i): it is computed by the formulation in Eq.(2.7). A high value of ρ(i)

implies that the image in blockBi is skewed toward texture-intensive while

a low value means the image is skewed to structure-intensive. The ρ(·) val-

ues will be used to make a decision on the inclusion of the corresponding

blocks into the searching window.

- L(i): it is the distance between Bi and Φ, from the location of Bi to the

closest block on the boundary of the missing region that contains Bi. For

14



Figure 3.2: The distribution of target basic block level L(i). The left image shows the

source region and target region, the right image shows the L(i). Both the black region

in the left image and the curve in the right image represent the inpainting region, and

in the right image, the value of L(i) increases with the color depth.

Bi with no unknown pixel,L(i) = 0 and forBi with mixture of known and

unknown pixels, L(i) = 1, and so on. Fig. 3.2(b) shows the distribution of

L(·) values for the input image I0 where the source and missing regions

are marked with white and black colors, respectively. A high (low) value

of L(i) implies that block Bi is likely to have a low (high) chance to be

selected as a target patch. (Note that the target patch selection is determined

based on the values of L(·) and ρ(·), as indicated in the second condition

test in Fig. 3.1. The details will be explained in Subsection 3.3.)

3.3 Step 2: Exemplar-based Inpainting

Step 2 consists of three sub-steps: (Step 2.1) re-evaluation of parameters, (Step 2.2)

selection of target patch, generation of source window and inpainting, and updating

parameters, and (Step 2.3) termination conditions.

• (Step 2.1) Re-evaluation of parameters: Just before this step, our algorithmic

flow asserts that ρ(·) is 0 for every block with no known pixel at the current

iteration. This step estimates the ρ(·) values for such blocks by referring the ρ(·)
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values of their neighbor blocks. The ρ(·) is computed by

ρ(i) =


ρ(i) if ρ(i) ≥ 0,

η ×max
Bj

(ρ(j)) if ρ(i) = −1,
(3.1)

in which Bj represents every neighbor of Bi such that L(j) = L(i)− 1 and η is

a control parameter in [0, 1].

From the ρ(·) values of all blocks, the average (ρavg), minimum (ρmin), and

maximum (ρmax) are computed. Then, we define two parameters ρsmooth and

ρsharp:

ρsmooth = ρmin + ε1 · (ρavg − ρmin), (3.2)

ρsharp = ρavg + ε2 · (ρmax − ρavg) (3.3)

in which ε1 and ε2 are in [0, 1], and empirically set to 0.5 and 0 in InP-h, respec-

tively.

By using the values of ρsmooth and ρsharp, we divide the interval [ρmin, ρmax]

into three sub-intervals: rgsmall = [ρmin, ρsmooth], rgmiddle = [ρsmooth, ρsharp],

and rglarge = [ρsharp, ρmax].

• (Step 2.2) Selection of target patch and generation of source window: We select,

among all target patches (basic blocks) whose L(·) values are the level number

(this level) in the current iteration of the upper-loop in Fig. 3.1, the one with the

largest ρ(·) ∈ rglarge. For example, Fig. 3.3(a) shows the classification of blocks

into rgsmooth (red), rgmix (yellow), and rgtexture (blue). (The missing region is

marked with gray color.) Let the L(·) values of B1 through B6 all equal to the

value of this level, and ρ(6) ∈ rglargest is the largest. Then, B6 will be selected

as the starting target block Bstart for expansion.
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Figure 3.3: An example illustrating the selection of starting target patch (basic block),

Bstart, and generation of source window by expanding the target patch: (a)∼(e) steps

of window expansion, (b1)∼(b4) candidate expansion directions, (c1)∼(c3) termina-

tion of window expansion.

InP-h iteratively expands Bstart toward one of four directions: left, right, up,

and down. (See Fig. 3.3(b).) The expansion direction is chosen based on the ρ

value of the resulting window of each expansion. Let ρexp be the largest value

and the corresponding direction is chosen for expansion. The process of iterative

expansion considers the following two cases.

Case-1 (Figs. 3.3(c1) and (c2)): the expansion stops if ρexp ∈ rgsmall since the

expansion leads to dimming texture feature.

Case-2 (Fig. 3.3(c3)): the expansion continues as long as ρexp ∈ rgmiddle∪rglarge.

In addition, there are three exceptions for handling the termination/continuation

of the expansion other than Cases 1 and 2.

Exp-1 : If the expansion stops too early, the resulting source window is so small

that the source information is not enough to recover the target block natu-
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rally. Thus, we continue the expansion if the window size is below a lower

threshold.

Exp-2 : A long expansion to one direction may cause unbalanced information of

source image to be used for painting target block. Thus, a minimal control

for expansion direction is internally installed in InP-h.

Exp-3 : Too large window produced by expansion may contain unnecessary or

redundant texture information with respect to the target block. Thus, we

control the number of expansion iterations so that the resultant window is

below an upper threshold.

Once a source window is extracted by the expansion, a conventional exemplar-

based inpainting is applied to the target block1 in the window using the source

information in the window. Then, images I0, Imask, Is edge, Iw edge, and ρ values

are updated accordingly, as illustrated in Fig. 3.3(e). Then, the lower-loop in

Fig. 3.1 (i.e., Step 2.2) repeats until there is no block which has larger ρ value

than ρsharp or has L value of this level.

• (Step 2.3) Termination: The iteration of exemplar-based inpainting stops when

there is no block to be inpainted, which means there is no block whose ρ value

is no less than ρsharp. This condition is checked at the two loops in Fig. 3.1.

3.4 Step 3: Diffusion-based Inpainting

The target blocks that remain after Step 2 will be those located on the relatively smooth

regions. Diffusion-based inpainting is applied to all the remaining blocks in Ω all to-

gether by generating a set of partial differential equations for the blocks. Note that

since we estimate the value of each target pixel with the average of the values of its

neighbor pixels, the window extraction task is no longer needed in this step.

1Note that the block could have multiple basic blocks with unknown pixels.
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Chapter 4

Experimental Results

We have tested our proposed hybrid method InP-h on a set of images in the literature,

and compared against several state-of-the-art inpainting methods. For exemplar-based

inpainting, InP-h internally used the modified version of [12] described in Section 2

in which our context-driven scheme for extracting source window (sub-image) is in-

stalled while for diffusion-based inpainting the method in [5] is installed. The exist-

ing inpainting methods whose results are compared with ours are that in [12] for pure

exemplar-based inpainting, that in [5] for pure diffusion-based inpainting, that in [17]

for hybrid inpainting, the super-resolution-based inpainting in [13], and the total vari-

ation (TV) inpainting in [7].

All experiments were run on a 2.93-GHZ Intel i7 with 4.00 GB RAM and per-

formed in three folds: (1) checking the effectiveness of generating source windows,

(2) checking the effectiveness of performing object removal, and (3) checking the ef-

fectiveness of performing loss concealment.

• Assessing the performance of adaptive window sizing: At each iteration in Step

2 of InP-h, a source window Ui containing a target block for inpainting is ex-

tracted by examining the blocks surrounding the target block. Fig. 4.1 shows ex-

tracted windows for images circle, bungee, and camera. It is visually confirmed

that the size of windows is well controlled and sufficiently enough to enable nat-
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Figure 4.1: InP-h inpainting procedure for images circle, bungee, and camera. Source

windows U1, U2, · · · are generated for inpainting. The images in the windows be-

fore and after the applications of exemplar-based inpainting in Step 2 of InP-h and

diffusion-based inpainting in Step 3 of InP-h are shown.

ural inpainting.

• Assessing the effectiveness of object removal: Fig. 4.2 shows comparison of vi-

sual quality. It is seen that diffusion-based inpainting produces blur effect. Even

though the total variation (TV) method reduces the blur effect, it still fails to re-

cover the texture information, in particular, for image bungee. As we mentioned,

the size of source window greatly affects the inpainting quality in exemplar-

based inpainting. Either too large or too small may produce inferior quality.

Here, we choose two (fixed) searching window sizes: radius = ∞ to consider

the whole image as searching source and radius = 80 to consider the circled

image centered at target block with radius of 80 pixels. For image baseball,

matching the target block with the blocks in the whole image failed. For image

sea, matching with window of radius = 80 failed as well. The hybrid method

tested here used the pure exemplar-based method of radius = 80 [12] and the
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pure diffusion-based method [5]. It is seen that the blur effect in the structure

layer poses a strong negative effect on the final result and the recovered texture

is almost invisible. In addition, the super-resolution-based method shows an un-

stable performance.

Figure 4.2: Comparison of visual quality of object removal for images bungee, dog,

circle, elephant, baseball, and sea, in sequence from left to right and top to bottom.

The tested methods are labelled under the images.

Table 4.1 summarizes the run times used by the conventional inpainting meth-

ods and our InP-h for inpainting the images in Figs. 4.2 and 4.3. When the

21



searching window is set to the whole image, the exemplar-based method takes

considerably long processing time. The run time specified in Table 4.1 used by

the super-resolution-based method in [13] excludes the time spent for SR phase

(super-resolution phase means re-generating the high resolution image from the

low resolution image). Note that even though the diffusion method uses much

short run time, the blur effect is too severe to be ignored.

Figure 4.3: Comparison of the visual quality of inpainting results for loss concealment

on images fur, barbara, house, and camera. The tested inpainting methods are listed

below the corresponding images.

• Assessing the effectiveness of loss concealment: Fig. 4.3 summarizes a compari-

son of visual quality. All concealments were selectively chosen so that they can

cover both texture region and smooth region uniformly. The difference between

the visual qualities of the results is measured by using the PSNR metric, as listed

in Table 4.2. Since the diffusion-based inpainting recovers the target region by
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Table 4.1: Comparison of run time (sec.) spent by the existing inpainting methods and

ours
bungee circle dog elephant baseball

Missing areas 13.8% 4.9% 7.7% 17.3% 13.1%

Exemplar

(radius = 80)

[12] 11.66 9.31 6.56 19.38 17.07

Exemplar

(radius =∞)

[12] 32.89 79.72 22.73 220.7 177.1

Diffusion [5] 0.06 0.06 0.04 0.16 0.13

Hybrid [17] 12.41 11.51 7.08 20.4 17.76

Super-Reso. [13] 45 36 24 137 96

Total-Variation [7] 11 9 2 30 28

InP-h 6.59 1.4 1.22 5.17 12.46

sea barbara fur camera house

Missing areas 10.9% 4.5% 6.3% 8.6% 7.1%

Exemplar

(radius = 80)

[12] 24.47 18.64 4.47 22.9 5.4

Exemplar

(radius =∞)

[12] 505.8 221.4 10.03 376.7 18.7

Diffusion [5] 0.2 0.1 0.02 0.15 0.03

Hybrid [17] 25.76 19.45 4.67 23.6 5.8

Super-Reso. [13] 192 74 21 203 41

Total-Variation [7] 50 51 1 16 4

InP-h 8.45 3.13 1.58 5.39 1.22
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using the neighbor pixels’ average value, it achieves relatively stable PSNR re-

sults. However, when taking the blur effect as well as the numbers in the Ta-

ble 4.2 into consideration, our InP-h outperforms the diffusion-based inpaint-

ing. Finally, as shown in Table 4.1, InP-h exhibits a better performance than the

other methods in run time. Note that image circle in the experiments was tested

as both cases of object removal, removing the dark circle and loss concealment,

recovering information under the dark circle.

Table 4.2: Comparison of the values of PSNR metric for the images inpainted by the

existing methods and ours

barbara fur camera house circle

Exemplar

(radius = 80)

[12] 34.8 33.4 34.5 38.9 31.0

Exemplar

(radius =∞)

[12] 35.2 27.8 33.8 35.6 31.1

Diffusion [5] 35.7 31.9 37.8 34.8 42.0

Hybrid [17] 27.5 27.5 31.2 31.6 41.2

Super-Reso. [13] 32.1 29.0 33.5 37.6 36.8

Total-Variation [7] 34.9 34.8 35.9 35.8 41.6

InP-h 35.8 34.8 37.0 38.1 64.7
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Chapter 5

Conclusion

A comprehensive image inpainting method was proposed to enhance the two critical

tasks in the prior hybrid methods, which are (1) setting up the best application order

for inpainting textural and structural missing regions and (2) extracting the sub-image

containing best candidates of source patches to be used to fill in a missing region.

By integrating our execution-order analysis based solution to task 1 and our image

context-driven source image extraction solution to task 2, we were able to consistently

improve inpainting quality compared to that of the previous non-hybrid inpainting

methods while even spending much shorter processing time compared to the conven-

tional hybrid inpainting methods.

25



Bibliography

[1] C. Guillemot and O. Le Meur, “Image inpainting: overview and recent advances,”

IEEE Signal Processing Magazine, vol. 31, no. 1, pp. 127-144, Jan. 2014.

[2] M. Bertalmio and G. Sapiro and V. Caselles and C. Ballester, “Image inpainting,”

in ACM SIGGRAPH, New Orleans, USA, July 2000. pp. 417-424.

[3] M. Bertalmio and A. L. Bertozzi and G. Sapiro, “Navier-stokes, fluid dynamics,

and image and video inpainting,” in IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Kauai, HI, USA, Dec. 2001. pp. 355-362.

[4] T. F. Chan and J. Shen, “Local inpainting models and TV inpainting,” SIAM

Journal of Applied Mathematic, vol. 62, no. 3, pp. 1019-1043, Mar. 2001.

[5] A. Telea, “An image inpainting technique based on the fast marching method,”

Journal of Graphics Tools, vol. 9, no. 1, pp. 25-36, 2004.

[6] C. Qin and S. Wang and X. Zhang, “Simultaneous inpainting for image structure

and texture using anisotropic heat transfer model,” Multimedia Tools and Appli-

cations, vol. 56, no. 3, pp. 469-483, Sep. 2012.

[7] P. Getreuer, “Total variation inpainting using split bregman,” Image Processing

On Line, vol. 2, pp. 147-157, July 2012.

[8] L-Y. Wei and M. Levoy, “Fast texture synthesis using tree-structured vector quan-

tization,” in ACM SIGGRAPH, New Orleans, USA, July 2000. pp. 479-488.

26



[9] A. Criminisi and P. Perez and K. Toyama, “Region filling and object removal by

exemplar-based inpainting,” IEEE Transactions on Image Processing, vol. 13,

no. 9, pp. 1200–1212, Sep. 2004.

[10] A. Wong and J. Orchard, “A nonlocal-means approach to exemplar-based inpaint-

ing,” IEEE Transactions on Image Processing, pp. 2600-2603, Oct. 2008.

[11] Z. Xu and J. Sun, “Image inpainting by patch propagation using patch sparsity,”

IEEE Transactions on Image Processing, vol. 19, no. 5, pp. 1153-1165, May

2010.

[12] C. Guillemot and M. Turkan and O. Le Meur and M. Ebdelli, “Object removal

and loss concealment using neighbor embedding methods,” Signal Processing:

Image Communication, vol. 28, no. 10, pp. 1405-1419, Nov. 2013.

[13] O. Le Meur and M. Ebdelli and C. Guillemot, “Hierarchical super-resolution-

based inpainting,” IEEE Transactions on Image Processing, vol. 22, no. 10, pp.

3779-3790, Oct. 2013.

[14] S. D. Rane and G. Sapiro and M. Bertalmio, “Structure and texture filling-in of

missing image blocks in wireless transmission and compression applications,”

IEEE Transactions on Image Processing, vol. 12, no. 3, pp. 296-303, Mar. 2003.

[15] C. Qin and F. Cao and X. P. Zhang, “Efficient image inpainting using adaptive

edge-preserving propagation,” The Image Science Journal, vol. 59, no. 4, pp.

211-218, Aug. 2011.

[16] M. Bertalmio and L. Vese and G. Sapiro and S. Osher, “Simultaneous structure

and texture image inpainting,” IEEE Transactions on Image Processing, vol. 12,

no. 8, pp. 882-889, Aug. 2003.

27



[17] J. Wu and Q. Ruan, “A novel hybrid image inpainting model,” in International

Conference on Audio, Language and Image Processing (ICALIP), Shanghai,

China, July 2008. pp. 138-142.

[18] A. Bugeau and M. Bertalmio and V. Caselles and G. Sapiro, “A comprehensive

framework for image inpainting,” IEEE Transactions on Image Processing, vol.

19, no. 10, pp. 2634-2645, Oct. 2010.

[19] L. Liang and C. Liu and Y. Xu and B. Guo and H. Shum, “Real-time texture

synthesis by patch-based sampling,” ACM Trans. Graph, vol. 20, no. 3, pp. 127-

150, Oct. 2001.

[20] J. Stark and M. Elad and D. Donoho, “Image decomposition via the combination

of sparse representations and variational approach,” IEEE Trans. Image Process-

ing, vol. 14, pp. 1570-1582, Oct. 2005.

28



초록

이미지중에손상된부분을채우고원하지않은대상을치우는것은이미지

인페인팅이라고 한다. 이 것은 컴퓨터 비전이나 영상 처리 분야에서 중요한 주

제로 알려졌다. 기존 이미지 인페인팅 기술은 크게 텍스처 기반 인페인팅과 구

조기반인페인팅　두유형으로분류될수있다.이름에서　알　수　있듯각각

텍스처정보나구조정보를이용해서인페인팅하므로,이로인한장점과단점이

있다. 텍스처와 구조 특정을 동시에 가지고 있는 이미지의 경우, 둘 중 하나를

이용하는 기술 보다 둘을 모두 고려하여 활용하는 하이보리드 기술이 더 좋은

결과를얻을수있다.흔히알려진하이브리드기술이두가지문제를효율적으

로해결하지못한다. (1)텍스처기반인페인팅과구조기반인페인팅방법을어

떤순서로사용해야하느가? (2)어떻게인페인팅할이미지후보들을포함하는

최소의서브이미지를추출할수있는가?

이논문에서이두가지문제점을해결하고적절한시점에적절한위치에있

는정보를이용해더나은인페인팅기술을적용하는새로운하이브리드방법을

제시했다.다양한이미지를테스트한결과,제안된알고리즘은텍스처기반인

페인팅과구조기반인페인팅방법의장점을유지하면서기존방법보다더빠른

기간내에더욱안정된이미지품질을보였다.

주요어:영상처리,하이보리드이미지인페인팅,텍스처구조특정분포

학번: 2013-23842
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