

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

Approximate Calculation of DCT for HEVC
and JPEG Hardware Encoders

HEVC와 JPEG 하드웨어 부호화기를 위한 DCT의
Approximate Calculation

BY

ANISH MAHENDRA TAMSE

AUGUST 2015

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Approximate Calculation of DCT for HEVC and JPEG

Hardware Encoders

HEVC와 JPEG 하드웨어 부호화기를 위한 DCT의
Approximate Calculation

지도교수 이 혁 재

이 논문을 공학석사 학위논문으로 제출함

2015 년 8 월

서울대학교 대학원

전기 컴퓨터 공학부

아 니 쉬

Anish Mahendra Tamse의 공학석사 학위논문을 인준함

2015 년 8 월

위 원 장

부위원장

위 원

Abstract

Discrete Cosine Transform (DCT) is widely used for various image and video

compression applications because of its excellent energy compaction property.

DCT is computationally intensive and the calculations are parallelizable. There-

fore it is often implemented in hardware for speeding up the calculation. How-

ever due to large size of DCT or multiple modules of DCT required for some

applications, the hardware area taken up by DCT in image or video encoders

become significant. The DCT required in most applications doesn’t need to be

exact. Taking advantage of this fact, here a novel approach is provided to re-

duce the hardware area cost of the DCT module. The DCT hardware module

consists of combinational logic and memory. Both the components are reduced

and the complete implementation is described. The application being aimed at

is for HEVC and JPEG, however the idea is applicable to any DCT hardware

implementation. Finally the degradation caused to encoded image and video in

terms of BDBR is discussed and the gate count results from the synthesis is

provided.

Keywords: Discrete Cosine Transform, HEVC, JPEG, Approximate DCT

Student Number: 2013-23847

i

Contents

Abstract i

Chapter 1 Introduction 1

1.1 2D DCT Hardware Module . 2

1.1.1 Pipelining the process . 5

1.2 Approximate DCT . 6

Chapter 2 Related Works 9

Chapter 3 The Moving Window Idea for Bit-Width Reduction 12

3.1 ML Recovery for Moving Window 16

Chapter 4 Approximate DCT for HEVC 19

4.1 HEVC Overview . 19

4.2 HEVC Encoder . 20

4.3 DCT in HEVC Encoder . 21

4.4 Approximate DCT in HEVC . 23

4.4.1 The three components of the DCT module 27

4.4.2 Optimizing Partial Butterfly Adder/Subtractors 29

4.4.3 Optimizing the multiplication module 30

ii

4.4.3.1 Multiple Constant Multiplication (MCM) 32

4.4.3.2 Approximate MCM 32

4.4.4 Optimizing the transpose memory 36

Chapter 5 Approximate DCT for JPEG 39

5.1 JPEG Overview . 39

5.2 Approximate DCT . 41

5.3 Application of Moving Window to DCT transpose memory . . . 42

5.3.1 Ideal implementation . 43

5.3.2 Window position based on first row 43

5.3.2.1 Cases of failure 46

5.3.3 Position based on first column 48

5.3.3.1 Cases of failure 49

5.4 Hybrid implementation . 50

Chapter 6 Experimental Results 54

6.1 HEVC Experiments and Results 55

6.2 JPEG Experiments and Results 55

Chapter 7 Conclusion 64

초록 70

iii

List of Figures

Figure 1.1 2D DCT module implemented as 1D Row DCT followed

by transpose memory followed by 1D Column DCT . . . 3

Figure 1.2 Representation of movement of coefficients within the

transpose memory. The shaded cells represent the filled

memory locations. 5

Figure 1.3 Pattern of movement of coefficients within transpose mem-

ory when pipelined. The different shades of grey repre-

sent coefficient from different input blocks. 7

Figure 1.4 The complete 32×32 DCT module architecture. 8

Figure 3.1 Example of an 8 bit moving window and 16 bit inte-

ger. The moving window can be aligned in 8 different

positions and can store one of the corresponding eight

possible binary sequence. 13

Figure 3.2 The ideal window alignment for the shown binary in-

teger. The recovered binary sequence when the window

position is known will be 0001011100110000. 14

iv

Figure 3.3 PSNR vs bytes curves for Hydrangeas image encoded

using JPEG for different sized bit windows. Using ML

estimate improves PSNR as is especially evident from

the curve for 4 bit window. 17

Figure 4.1 Overview of HEVC encoder structure 20

Figure 4.2 Distortion calculation in complete RDO (at A) vs sim-

plified RDO (at B). Simplified RDO doesn’t use inverse

transform for calculating the distortion. 24

Figure 4.3 The three feasible cases of RDO transform module and

encoding transform module combinations. All the cases

try to minimize area compared to the original implemen-

tation where RDO contains both transform and inverse

transform module and encoding transform is exact. . . . 26

Figure 4.4 Approximate area composition of the components for

32×32 DCT in HEVC. 27

Figure 4.5 Internal architecture of the 32 point 1D DCT module in

HEVC. 28

Figure 4.6 Internal structure of 1D row/column DCT module. The

partial butterfly structure is shown in detail. 29

Figure 4.7 The exact implementation of 16 point multiplication sub-

module using MCM algorithm [1]. There are 13 add/subtract

operations and 23 shift operations. 33

Figure 4.8 The exact implementation of 8 point multiplication sub-

module using MCM algorithm [1]. There are 8 add/subtract

operations and 11 shift operations. 34

v

Figure 5.1 The convention followed for the transpose memory align-

ment. The left most column contains all the DC coeffi-

cients and right most column the highest frequency co-

efficients. 42

Figure 5.2 Breakup of each memory location in the transpose mem-

ory. One bit is used to denote the sign of the number,

three bits for the window position and five bits for the

magnitude. 44

Figure 5.3 Memory overhead for moving window implementation

based on first row. Additional 24 bits are required to

store the positions. 45

Figure 5.4 JPEG encoding result of row based moving window im-

plementation. Artefacts can be seen for blocks near the

edges especially at the edges between flower and leaves. . 46

Figure 5.5 Input block to the DCT module showing pixels used for

detecting the fail case of row based moving window im-

plementation. 47

Figure 5.6 JPEG encoding result of column based moving window

implementation. Artifacts can be seen for blocks near

the vertical edges. 49

Figure 5.7 Input block to the DCT module showing pixels used for

detecting the fail case of column based moving window

implementation. 50

Figure 5.8 The architecture for implementing the hybrid algorithm

for moving window. This architecture is the combina-

tional logic overhead required for the implementation. . . 53

vi

Figure 6.1 PSNR vs bytes plots for the original JPEG encoding

and our final implementation. The four plots are for four

different test images used. 58

Figure 6.2 Test sample image - Desert 59

Figure 6.3 Test sample image - Hydrangeas 60

Figure 6.4 Test sample image - Koala 60

Figure 6.5 Test sample image - Penguins 61

Figure 6.6 Final decoded image - Desert 61

Figure 6.7 Final decoded image - Hydrangeas 62

Figure 6.8 Final decoded image - Koala 62

Figure 6.9 Final decoded image - Penguins 63

vii

List of Tables

Table 3.1 The relation between the window size and the maximum

error possible when an integer is encoded using the ideal

window position. 15

Table 4.1 Gate count for sub-modules of the multiplier block 31

Table 4.2 Gate count for different modules of the multiplier block . 31

Table 4.3 Summary of the various sets of modified coefficients. Also

shown are the add/subtract operations required to realize

them and the degradation caused by the modification. . . 37

Table 6.1 BDBR degradation for HEVC for different sized bit widths. 56

Table 6.2 Summary of gate count for modified DCT for JPEG . . . 57

viii

Chapter 1

Introduction

Discrete Cosine Transform or DCT is used to express a finite sequence of num-

bers in terms of components of cosine functions of multiple frequencies. Unlike

Fourier transform, DCT doesn’t use imaginary numbers for calculations. The

DCT is widely used for various signal processing applications and for image

and video compression. DCT is a popular choice for these applications because

of its excellent signal energy compaction properties [2]. It almost approaches

Karhunen-Loève transform in its compaction efficiency. Karhunen-Loève trans-

form is the ideal transform in de-correlation sense.

Here, the focus is on image/video compression application of DCT. DCT

plays a prime role in each of these applications. DCT is very computationally

intensive. The size of DCT required for newer applications only keep increas-

ing, further adding to its complexity. Therefore DCT computation is generally

implemented in hardware to improve the computation time. However because

of large size of DCT as in HEVC video compression standard or due to multiple

DCT modules required as in JPEG image compression standard, DCT imple-

1

mentation in hardware requires significant area. But the DCTs for most of the

applications doesn’t need to be accurate. Our goal is to design an approximate

DCT architecture which results in reduced area with minimal degradation in en-

coded image or video quality. The standards chosen here are HEVC and JPEG.

HEVC is an upcoming video compression standard which is very promising.

JPEG is an extremely popular image compression standard. The type of DCT

required in both the cases is two-dimensional. Therefore our focus throughout

will be on 2D DCT architecture.

Formally, the discrete cosine transform transform is a linear, invertible func-

tion on a set of real numbers. It is calculated as:

Xk =
N−1∑
n=0

xn cos
[
π

N

(
n+ 1

2

)
k

]
k = 0, ..., N − 1

The two dimensional DCT follows from the one dimensional definition. It is

obtained by performing the 1D DCT once along the two dimensions.

1.1 2D DCT Hardware Module

The 2D DCT is computationally intensive. However, the calculations are highly

parallizable. Hence it is frequently implemented in hardware. It is used com-

monly in many video and image compression standards. The calculation of DCT

requires multiple independent multiplications and additions. Hence implement-

ing the module as a whole in hardware speeds up the process multifold.

Computing 2D DCT is essentially multiplication of two matrices, an input

matrix and a DCT coefficient matrix. However 2D DCT can also be computed

equivalently by computing two 1D DCTs as mentioned earlier. The advantage

of calculating 2D DCT in this fashion is that it requires fewer multiplication

and addition operations. Therefore when it is implemented in software in this

manner, it is faster. Moreover, for hardware implementation, using this method

2

���������	
�����

�
�
��
�
�
��
�
�

�
�
��
�
	

�
�
��
�
�

Figure 1.1 2D DCT module implemented as 1D Row DCT followed by transpose

memory followed by 1D Column DCT

of computing saves area cost and enables pipelining. Thus significant number

of clock cycles as well as area can be saved.

The architecture generally used for implementing a DCT module in hard-

ware is fairly standard. In its basic form, the complete 2D DCT module can

be divided into three sub-modules, namely 1D row DCT module, transpose

memory and 1D column DCT module.

The 1D row DCT module is completely combinational in nature. Given N

input coefficients, it calculates its N point 1D DCT. The 1D column DCT mod-

ule similarly is combinational in nature too. The transpose memory comprises

the non-combinational area of the complete module. It consists of registers to

store the result of the row 1D DCT until it is required by the column 1D DCT.

The transpose memory also contains multiplexers, the purpose of which will be

described later.

Let us suppose that this module calculates the 2D DCT of an N ×N block.

A row of the input block is sent every clock cycle to the 1D row DCT module.

3

The output (1D DCT of the input row) is available at the end of the clock cycle.

Since the 2D DCT size is N ×N , there will be N × 1 input coefficients and N

resulting output coefficients for every clock cycle to the 1D row module. These

output coefficients at the end of the clock cycle are pushed into the transpose

memory. Since there are N rows in a given block, all the row 1D DCTs will

be completed at the end of N th clock cycle. At the end of N clock cycles the

transpose memory hence contains all the row DCT coefficients.

In the next N cycles, the column 1D DCT is calculated for the coefficients

inside the transpose memory. Initially, the first coefficient of the each row DCT

result is sent to the column DCT module. In the next cycle, the second coeffi-

cient of each row is sent and so on till all the coefficients are eliminated. The

coefficients obtained from the 1D column module are the required 2D DCT

coefficients, which can be then forwarded to the appropriate module.

It can be observed that the fashion in which the coefficients are written and

read from the transpose memory is unique. While writing into the memory, the

rows are written as a whole whereas while reading, one element from each row

is read. To enable this form of input and output from the transpose memory,

the coefficients within the transpose memory are moved every cycle.

The method of moving the coefficients inside the memory is described below.

We will study the case of 4×4 DCT for ease of representation (the size of the

DCT required in HEVC varies from 4×4 to 32×32).

The transpose memory shown in Figure 1.2 consists of 4×4 register array.

The bit width of the registers depends on the application. DCTs in HEVC re-

quire 16 bit registers. The diagram represents the movement of the coefficients

within the memory. The first row of the figure shows the result of row DCT out-

put pushed into the memory. At the beginning of next cycle, all the coefficients

move to the respective register in the next row. Once all the rows are filled, all

4

�����

���	
��
�

������

� � � � �

�����

���	
��
�

������

� � � 	

Figure 1.2 Representation of movement of coefficients within the transpose

memory. The shaded cells represent the filled memory locations.

the coefficients start to move in the horizontal direction. The coefficients leaving

the transpose memory are the inputs to the column 1D transform module.

As described above, the transpose memory consists of registers. The move-

ment of the coefficients is facilitated by using multiplexers. Each register receives

the coefficient for the immediate next cycle either from the register above it or

to the left of it. Hence all the registers except the ones in the first row or the

first column need 2×1 multiplexers.

1.1.1 Pipelining the process

It can be seen that in the process described earlier, the column DCT module

is idle while the row DCT is being calculated and vice versa. The transpose

memory is also not utilized fully all of the time. These issues can be addressed

by pipelining the complete process. For a single sized DCT module, the process

can be perfectly pipelined, such that both the 1D DCT modules are used all

5

the time and all of the registers in transpose memory are used all the time.

The pipelining architecture needs a minor modification to be made to the

original architecture. It requires additional hardware area but the overhead

is negligible. Earlier, the input to the transpose memory was always coming

into the first row of the memory. For pipelining however, we need to add a

multiplexer such that we can redirect the input to either the first row or the

first column of the memory. Similarly, we need another multiplexer at the output

to control whether the output is read from the last column (like earlier) or from

the last row.

With these modifications, the transpose memory coefficient pattern is as

shown in Figure 1.3.

Here, the white block in the cycles 0 to 3 represents empty memory locations.

The memory is fully filled in clock cycle 4. From the 5th cycle onward, the 1D

row transform coefficients of the next 4x4 input is pushed into the first column

of the transpose memory. Hence the row transform module is still engaged and

all the memory locations are still being used. Similarly, in the 9th cycle, we can

see the output from the row transform of the third input block arriving into

the first row of the transpose memory.

1.2 Approximate DCT

For codec applications in image compression and video compression, the DCT

doesn’t need to be exact. DCT is only used on the encoder side, therefore it

has the option to encode the coefficients differently. Furthermore, in HEVC,

the standard reference implementation specifies an integer DCT matrix, which

is already an approximation of the original DCT. In JPEG image compression

standard, even though the encoder can make use of a floating point DCT,

6

�����

���	
��
�

������

� � � � �

�����

���	
��
�

������

� � � � �

�����

���	
��
�

������

�� �� ��

Figure 1.3 Pattern of movement of coefficients within transpose memory when

pipelined. The different shades of grey represent coefficient from different input

blocks.

7

���������	
����

�
�
��
�
��
�
�
	

�
��
�

��������	
���
	 ��������

�
�
��
�
��
�
�
�
		

�

�
�
�

����	��	��������

�����

Figure 1.4 The complete 32×32 DCT module architecture.

most encoders use integer/fixed point DCT which is an approximation of the

original DCT. These approximate fixed point DCTs are used because they avoid

floating point operations completely at negligible loss in final encoding quality.

In JPEG there is an option to use the floating point DCT but the difference

between the image compressed with fixed point DCT and floating point DCT

is barely perceivable.

If we further loosen the criteria of exact integer DCT requirement, we can

modify the architecture of the DCT module so as to save area cost of the

hardware. We must however make sure that the effect it has on the resulting

encoded image/video quality is minimal.

8

Chapter 2

Related Works

Discrete cosine transform has been studied for a long time. Some of the earliest

works on discrete cosine transform are [3, 4, 5, 6, 7, 8]. Most of the early works

were related to studying the properties of DCT and reducing the complexity of

calculating the DCT. Once its high energy compaction efficiency was studied [2],

it became a popular choice for many applications. The main target applications

were speech signal processing and image/video compression.

Because of the computationally intensive and parallelizable nature of DCT,

it is implemented in hardware. [9, 10] and [11] discuss efficient architecture

for implementing it in hardware. [9] shows an implementation for 8×8 DCT

aimed for realtime image and video compression applications. Row-parallel ar-

chitecture is used. They save area by reducing the number of 1D DCT modules

required at the cost of increased result latency. [10] removes all the multipli-

ers from the architecture and uses distributed arithmetic architecture. They

minimize the number of additions required by exploiting the timing property

of the DCT. The focus of [11] is for realtime image processing applications.

9

They describe an associative processor architecture. The architecture uses an

associative memory and multiple processors, one for each pixel.

The architectures are further optimized specifically for target application in

H.264 in [12, 13]. This is possible since the H.264 standard specifies an integer

coefficient matrix for inverse DCT. Therefore ideally, the forward DCT should

be the inverse of the provided transform, hence the exact integer coefficients can

be known. Since the values of the integer constants are known, the combina-

tional logic of the generic architecture can be further optimized. [12] discusses

two architectures, one optimized for hardware area and the other one for result

throughput. Both the architectures implement the exact DCT for the IDCT

specified in the standard. The two architectures differ in the number of 1D

DCT modules used for the implementation. The FPGA and ASIC implemen-

tation of the architectures are discussed. [13] describes an architecture wherein

the different sizes of DCT required are combined into a single architecture.

Similarly the DCT architectures specific to HEVC are discussed in [14, 15, 16].

The architectures of [14, 15] are similar, differing in their implementation of

the multiplication logic. Both avoid the use of complete multipliers and use

adders and shifters instead. The architecture of [16] combines the HEVC DCTs

of different sizes into a single architecture.

Our focus is on approximate computation of DCT. Works related to ap-

proximate DCT can be classified into two types.

• Algorithmic Modification: Here, the algorithm for the computation of

DCT is modified, the main aim being reducing the total arithmetic opera-

tions required. They are mainly aimed to speed up software computatation

of DCT, although some benefit may translate to hardware too due to re-

duced number of adders/multipliers required. Two main approaches have

been used to achieve algorithmic modification of DCT, namely, frequency

10

selection and accuracy selection. Frequency selection approach tries to

eliminate the computation of the less significant frequencies and the ac-

curacy selection approach tries to reduce the accuracy with which each

coefficient is computed. [17] uses the first approach to calculate select

few components. It also shows analysis for the error introduced with the

method. [18] is an example of the second approach. [19] combines the two

approaches. The idea is to mask the error of each coefficient of the DCT

output by making sure that the error introduced in the quantizaiton step

is larger. Hence depending on the quantizaiton parameter, a balance of

the two approaches is provided.

• Hardware Modification: The emphasis here is on modifying the architec-

ture directly. The changes may not have any significant benefit if this

modified DCT is implemented in software. [20] discusses low power ap-

proximate architecture. They perform analysis of experimental results of

lowering power while losing accuracy. A point is then chosen for opti-

mal tradeoff between the two.[21] achieves reduction in hardware area by

changing the partial butterfly structure in hardware so that it uses only

14 adders for 8× 8 DCT. [22] aims at reducing DCT hardware for H.264,

the focus here too being on combinational logic reduction. Their approach

for the reduction is by decomposing the 8 point DCT to 4 point DCT.

Our work belongs to the second type, i.e. aimed at hardware modification.

Our aim is to provide an approximate DCT implementation for HEVC/JPEG

with main focus on the non-combinational area (transpose memory) reduction.

We try to reduce the amount of transpose memory required for the complete

module. To the best of our knowledge, there hasn’t been any other work which

aims at reducing the transpose memory in a DCT architecture.

11

Chapter 3

The Moving Window Idea for
Bit-Width Reduction

An integer when stored in binary format is usually stored in 2’s complement

format. For the discussion example, consider 16 bit binary integer with the most

significant bit to the left and the least significant bit to the right. Our aim is

to approximately represent the same integer with fewer bits, eight in this case,

and hence effectively save memory.

Let us consider the case of positive integer. A 16 bit positive integer will

have n prefix 0s, where 1 ≤ n ≤ 16 and the remaining bits will be 1s and 0s.

n = 1 represents the case where the number is greater than 214 and n = 16

when the number is 0. Therefore if we know the location of the most significant

bit which is 1 in the binary representation of the number, we automatically

know all the bits to the left of it are zeroes. Let the most significant bit which

is a 1 be the kth bit in the n bit integer. Then, if we know the value of k and

all the bits from k to LSB, we can fully reconstruct the original integer.

As mentioned, we can recover the original number by storing all the bits

12

�
�
�

�
�
�

���������	
�
���

�
�
�	�	���

�������������

Figure 3.1 Example of an 8 bit moving window and 16 bit integer. The mov-

ing window can be aligned in 8 different positions and can store one of the

corresponding eight possible binary sequence.

from the kth bit to the LSB along with the position of the most significant 1.

The number of bits between the kth bit to the LSB can vary, hence the number

of bits to be stored can vary. Next we impose an additional constraint that the

total number of bits we can store is W . For the discussion, let W = 8. We can

store any eight consecutive bits occurring in the binary representation of the

number. Since we store consecutive bits and the starting point of these eight

bits can be varied, this is called a moving window. If we know the contents

of the window and the position of the window, we can approximately recover

the original integer. To recover the original number from the contents of the

window and its position, the method followed is as follows:

• We know the continuous sequence of eight bits and their positions (de-

duced from the starting position of the window). Hence the corresponding

8 bits in the number to be recovered are filled with the bits from the win-

dow.

• The remaining unknown bits to the left side if any, are filled with 0s.

• The remaining unknown bits to the right if any, are fill with 1 followed

13

� � � � � � � � � � � � � � � �

� � � � � � � �

�
�
�

�
�
�

���������	
�
���

�
�
�	�	���

�������������

Figure 3.2 The ideal window alignment for the shown binary integer. The

recovered binary sequence when the window position is known will be

0001011100110000.

by 0s to fill completely.

Eight bit window is not always enough to completely cover the original 16

bits. If the magnitude of the integer is less than 28, it can be fully recovered with

the correct window position (since the number can be represented within 8 bits).

However, whenever the number exceeds 28, we have to decide which bits will

be accommodated in the window and which ones will be discarded. Varying the

position of the window, we can either discard some bits towards the MSB side

or the LSB side or both. When we recover the number, the recovered number

will be a good approximation if the bits lost were on the LSB side rather than

the MSB side.

If the bits (non-zero) are discarded on the MSB side, the recovered num-

ber will be vastly different than the original number (at least by an order of

magnitude of 2)

However if the bits discarded (non-zero) were on the LSB side, the error is

contained. The original number and the recovered number in this case follow

the following inequality.

|Integerrecovered − Integeroriginal| ≤ 2(LSB bits ignored)

14

Table 3.1 The relation between the window size and the maximum error possible

when an integer is encoded using the ideal window position.
Window Size Error Percentage

2 50.00%

3 25.00%

4 12.5%

5 6.25%

6 3.13%

7 1.56%

8 0.78%

Thus for the ideal window position, it should be made sure that the most

significant 1 bit is included in the window and the number of LSB bits ignored

is minimized. This happens when the window starts at the position of the first

bit which is 1 from the MSB side.

Furthermore, for ideal window position,

|Integerrecovered − Integeroriginal|
|Integeroriginal|

≤
(1

2

)(window size)

i.e. the error decreases exponentially with the size of the window. The max-

imum case errors for some of the window sizes is summarized in Table 3.1.

In case of negative integers, everything remains the same except that instead

of prefix 0s, we have prefix 1s. Thus the changes are as follows:

• For recovering the number from the window and its position, we prefix 1s

to the unknown locations to the left of the window instead of 0s.

• The ideal window position starts from first 0 from MSB side instead of

first 1.

15

Checking the MSB of the original binary representation of the integer tells us if

the integer is positive or negative. The appropriate window position can then be

chosen as described earlier and the position and window values can be encoded.

Similarly in the recovery stage, the sign bit can be checked to determine whether

the original integer was positive or negative. Once determined, the appropriate

recovery procedure can be followed.

3.1 ML Recovery for Moving Window

Earlier, the method to recover the original integer from the window and its

position was mentioned. We will now look at the rationale behind the logic

of recovery. When the window position is such that the first 1 from MSB for

positive integers or first 0 from MSB for the negative integers is lost, the number

recovered will not be an approximation of the original number hence it doesn’t

make sense to talk about error in this case. If this is not the case, then the

number would have lost bits only on the LSB side. Therefore,

Intorig − 2LSB bits lost−1 ≤ Intrecovered ≤ Intorig + 2LSB bits lost−1.

The error is contained and the recovery logic tries to minimize the error on

average. For all the unknown positions to the left of the window, 1s were filled

if the integer was negative and 0s if it was positive. This is to comply with the

2’s complement representation of the integers.

For all the unknown positions to the right of the window, we are free to

choose the bits since those bits in the original number could range from 0 (all

bits being 0) to 2LSB bits lost − 1 (all bits are 1). Assuming the original number

to be distributed uniformly between the lowest possible number and the largest

possible number, we can conclude all the trailing sequences of 1s and 0s are

equally likely. And error is defined as the difference between the magnitude

16

0 1 2 3 4 5 6

Bytes (×105)

15

20

25

30

35

40

45

P
S
N

R

16 Bit Window

ML Estimate

Non-ML Estimate

0 1 2 3 4 5 6

Bytes (×105)

15

20

25

30

35

40

45

P
S
N

R

12 Bit Window

ML Estimate

Non-ML Estimate

0 1 2 3 4 5 6

Bytes (×105)

15

20

25

30

35

40

45

P
S
N

R

8 Bit Window

ML Estimate

Non-ML Estimate

0 1 2 3 4 5 6

Bytes (×105)

15

20

25

30

35

40

P
S
N

R

4 Bit Window

ML Estimate

Non-ML Estimate

Figure 3.3 PSNR vs bytes curves for Hydrangeas image encoded using JPEG for

different sized bit windows. Using ML estimate improves PSNR as is especially

evident from the curve for 4 bit window.

of the trailing sequence and magnitude of the trailing sequence in the original

integer. Magnitude of the trailing sequence is a constant once the recovery logic

is decided. Thus for the estimate to be maximum likelihood (ML) estimate for

minimizing error for an average case, we choose the middle value for recovering

the trailing sequence. Since the number of possibilities is an even number, we

have two equally valid candidates 1 followed by 0s or 0 followed by 1s. The first

case is then decided to be the recovery logic at random.

The plot in Figure 3.3 shows two cases of moving window encoding applied

17

to the transpose memory of DCT while JPEG compression. The first case has

recovery method which doesn’t use ML estimate (all the trailing positions are

filled with 0s) and the second case has the recovery method which uses ML

estimate. In the first case all the pixels will show an overall shift to the darker

side compared to the original image. The brightness of the image encoded using

ML estimate won’t have this issue and will be a truer replication of the original

image. This is because when not using ML estimate, all the recovered values

have inherent bias to move towards one direction (lower in this case), whereas

in the second case, the variations are canceled out on the average. This shows

it is important that ML estimate is used for lower error.

The memory overhead for moving window implementation is the bits re-

quired to store the window position. As long as the bits required is smaller

than the bits saved due to the small window size, we save bits overall. The

example discussed earlier had a window of size 8 bits. This can be generalized

to other sizes as follows.

Let

total = Total original bit width

window = size of themoving windowε[1, total]

then,

Total BitsRequired = min{ceil(log(total−window))+window, ceil(log(total))+window−1}

MaximumError Fraction < 0.5window

18

Chapter 4

Approximate DCT for HEVC

4.1 HEVC Overview

HEVC or High Efficiency Video Codec is also known as H.265 for being the suc-

cessor to the earlier video encoding/decoding standard H.264. HEVC as a video

compression standard has taken over its predecessor H.264. HEVC promises up

to 50% more compression efficiency, which means that HEVC can essentially

deliver essentially the same quality of video at up to half the bit rate. This is

especially true for higher resolution videos. This large amount of saving comes

at the cost of increased encoding and decoding complexity. For example, the

intra prediction in HEVC has 33 directional modes as opposed to 8 of H.264.

HEVC has higher bit depth for each of the vertical and horizontal motion vec-

tors compared to H.264, in addition to new modes for predicting the motion

vector, AMVP (Advanced Motion Vector Prediction) and Merge Mode. The

DCT which plays a major role in compression is also made more complex for

HEVC. The DCT sizes supported for HEVC are 4×4, 8×8, 16×16 and 32×32

19

�������

���	
�������
��

�

�
������

���
��

��

������

�����

��

������

������������

������������
�����

��� ������������

��� ������������
�
��������

��
���

���������

��	����
!�
��

�
�
��
�

	�����

���������

�

������

�������
��

���
�

�����

Figure 4.1 Overview of HEVC encoder structure

whereas the sizes supported for H.264 were only 4×4 and 8×8.

4.2 HEVC Encoder

The encoder structure in HEVC is as shown in Figure 4.1. The reference frame

is available in the memory for encoding. The mode decision module decides

whether to use inter prediction or intra prediction for every macro-block or

CU (compression unit, as it is referred to in HEVC) of every frame. For intra

prediction, various directional modes are tried based on the settings to find out

the best one. For the inter prediction mode, various reference frames are tried

and motion estimation is performed to obtain the ideal motion vector. The best

mode is then sent as the output.

To decide which mode is better, the mode decision module needs to quantify

a cost associated with each mode and for each of the sub-modes (directions in

case of intra and motion vector in case of inter) within the mode. This job is

20

performed by RDO (Rate Distortion Optimization) module within the mode

decision module. Each of the prediction modes is associated with a rate, i.e.

the bits required to encode the block using this mode and a distortion i.e. the

total distortion caused if this block is used as the prediction mode. The rate

distortion optimization module uses the two values to calculate the cost for

each of the modes. The mode with the least cost is used as the final mode to

be encoded and is given as the output of the mode decision module.

The previous reconstructed frames are kept in the memory. The recon-

structed frames are used for inter prediction. Not using actual frames and using

reconstructed frames makes sure that the encoder always calculates the pre-

dicted blocks using what the decoder will be using for prediction. Hence there

will not be any mismatch between the encoder and decoder. Otherwise the mis-

match would keep adding up with every inter-predicted frame and will result

in error accumulation.

In the next step, the predicted macro-block is used to calculate the residual

i.e. the difference between the values of the predicted pixels and the actual

pixels. The residual is then sent as input to the transform and quantization

module where the actual lossy compression takes place. Once quantized, the

values of the residual can be encoded with fewer bits than earlier but the exact

values of the residual pixels cannot be obtained back. The quantized values

are then written into the bit-stream using lossless entropy encoding technique

called CABAC (Context-Adaptive Binary Arithmetic Coding).

4.3 DCT in HEVC Encoder

Transform calculation plays a significant role in compressing videos. However,

it requires a large amount of multiplication and addition operations. The DCT

21

calculations in HEVC can take up to 30% of the total encoding time. Also, these

arithmetic operations required for the transform can be highly parallelized.

Because of the parallel nature and large amount of calculations, it is often

implemented in hardware.

In the HEVC encoder described earlier, the DCT calculation occurs at two

places.

1. Rate Distortion Optimization module : This module exists within the

mode decision module. It is used to decide which of the various avail-

able prediction modes for the given macro-block will be optimal. Since

the decoder just needs to know the prediction mode from the bit stream

and not how it is calculated, HEVC doesn’t specify any constraints on

how this is decided. Hence the architecture of the RDO module varies

with the implementation. The most ideal implementation will be the one

where transform and quantization is performed which is followed by in-

verse quantization and inverse transform. The distortion is then calcu-

lated by SSE and rate is calculated by CABAC and then finally the cost

is computed using these two values. Since this has to be repeated for ev-

ery mode possible, it takes a significant amount of time. Hence various

research has been performed to find methods with much less complexity

which give near optimal results [23, 24, 25]. Most of the alternative meth-

ods make use of DCT and quantization but not inverse DCT and inverse

quantization.

2. Transform and Quantization module : This module receives the macro-

block residual from the mode decision module. The residual is then trans-

formed using DCT and then quantized. The output of the quantization is

forwarded to the CABAC module for encoding into the bit stream.

22

4.4 Approximate DCT in HEVC

As we saw earlier, DCT is used in two modules. If we analyze the role of DCT

in each of the two modules, it can be noticed that the DCT need not be exact

for either of the cases. The DCT module can be replaced with an approximate

DCT calculation without causing any errors with the encoding. We will need

to make sure the degradation resulted by the approximate nature is minimized

to keep the approximate DCT usable. We look at both of the instances of DCT

separately and study as to why an approximate DCT is fine in each case.

• The first module where DCT is used in is the Rate Distortion Optimiza-

tion (RDO) module. The result of the DCT here need not be accurate

because the RDO module doesn’t need to provide exact result. In fact,

most of the implementations of the RDO module don’t provide the exact

result as to which mode is the most optimal. The exactness is generally

traded off for a large reduction in the complexity. Thus using an approx-

imate DCT does not result in erroneously encoded video.

• The second module where the DCT is used in is the transform and quanti-

zation module, just before the bit stream encoding takes place. The result

of this module is critical since its output coefficients are directly encoded

into the bit stream of the final output. However, the DCT used here can

still differ from the DCT used in other encoders without causing errors in

encoding. As long as the inverse DCT used is the same throughout (in the

encoder and all the decoders), there will not be any mismatch between

the reconstructed frames. Hence there will not be any error accumulation.

Another way to think of this is to say that originally, the loss incurred

in the encoding was only due to quantization whereas now there will be

some information lost in the forward DCT step too. In fact, the HEVC

23

� �� ��

�

��������

�

�

�

�������	�
�����
����
���	�
��

�����
�
��
�	�	��	�

������
	������	�
�����
����

��

��	
�
������
�

Figure 4.2 Distortion calculation in complete RDO (at A) vs simplified RDO (at

B). Simplified RDO doesn’t use inverse transform for calculating the distortion.

standard specifies just the inverse DCT matrix. The forward DCT used

need not be the exact inverse of the inverse DCT matrix.

The two DCT modules, one in RDO and the one in transform and quantization

module are not functionally independent of each other. The result of the RDO

module affects the final prediction mode and hence the residual input given to

the transform and quantization module. Therefore it is necessary that the RDO

and the transform and quantization module are in sync, i.e. the RDO correctly

approximates the distortion and rate of what will be encoded. This is studied

in more detail.

The RDO module calculates the cost from rate and distortion. The rate cal-

culation is based on the quantized coefficients which will always provide correct

approximation of the final encoded rate. The distortion calculation however

is generally implemented in two different ways. The first method calculates

transform followed by quantization followed by inverse quantization and finally

24

inverse transform. The distortion is then calculated by calculating as the sum of

squared errors between the result and the original residuals. The second method

uses only the inverse quantization result to calculate the distortion. This pro-

vides an approximate result of the distortion but hardware cost is reduced since

inverse transform is not required.

The schematic in Figure 4.2 shows the distortion calculation part of the

RDO module. Initially let us consider the transform module used is the exact

one. A and B are the two methods of calculating the distortion. At both A

and B, the sum of squared errors are calculated. The distortion calculated at

A is the exact distortion and B is an approximate method of calculating the

same distortion (called as simplified distortion henceforth). The advantage with

simplified distortion is that another inverse transform module is not required.

Now we replace the forward transform module with an approximate for-

ward transform module. Now, the inverse transform module in the final stage

no longer corresponds to the inverse of the forward transform used. Therefore

the distortion becomes worse because there is distortion added not only by

quantization but also by approximate nature of the transform. The distortion

calculation at A correctly reflects this change. However, the distortion calcu-

lated at B still estimates the old distortion (for the exact forward transform)

albeit with lesser accuracy than before. Thus we have two cases for using the

approximate transform module:

Case 1: Use approximate transform module only for RDO. The encoding

process will be using the exact transform.

Case 2: Use approximate transform module for both RDO and for encoding

process. Include the inverse transform module for distortion calcu-

lation, i.e. RDO will not use simplified distortion.

25

�� �� ��
��������

�	

�	

�
�
�

�
�
��
�
	�

����������	
���
���
�	

����	�����	
��

����
�
��	
���	��	

�
�

����
� �	�
�	�
�	���	

���
����

Figure 4.3 The three feasible cases of RDO transform module and encoding

transform module combinations. All the cases try to minimize area compared

to the original implementation where RDO contains both transform and inverse

transform module and encoding transform is exact.

The two cases along with a third case of using exact forward transform at both

places are shown in Figure 4.3.

The first column in Figure 4.3 is the reference case for comparison; the

second column is the Case 1 and the third column is the Case 2. Just from this,

it cannot be concluded which of the two cases will have lesser area and/or which

case will perform better. It will depend on the accuracy of the approximate

transform and the area saving it imparts. Suppose the approximate transform

estimates the actual transform without any error, then case 2 will not cause

any degradation. And the degradation in case 1 will be that of the reference

case.

Here we will always assume the case of RDO using the inverse transform

module. Therefore, the approximate transform module designed will be used

in both the places where DCT occurs, i.e. the RDO and in the transform and

quantization module just before the bit stream encoding. This case is chosen

to maintain generality, i.e. the approximate DCT can be used on unmodified

26

���������	
�����

�
�
��
��
��
��
��
	

��

	
�
�
�

�
�
��

��
��
��
�
�
��
�
�

�
�
��
��
��
��
��
	

��

	
�
�
�

�
�
��

��
��
��
�
�
��
�
�

�� ���

�� �� �� �����

Figure 4.4 Approximate area composition of the components for 32×32 DCT

in HEVC.

HEVC encoder. Otherwise we need to tailor the modifications separately for

different types of RDO.

4.4.1 The three components of the DCT module

The DCT module can be roughly divided into three components:

• Butterfly Adders / Subtractors: The calculation of 1D DCTs for rows/columns

require each row/column to be multiplied with a coefficient array of equal

dimension. Therefore for calculating 32 point 1D DCT, we require a total

of 32×32 multiplications. In case of HEVC, the integer DCT coefficients

are so chosen that the number of these multiplications can be greatly re-

duced by using partial butterfly algorithm. Butterfly adders/subtractors

shown in Figure 4.4 is the component which implements this logic. This

component is used at two places, once for row 1D DCT and once for col-

umn 1D DCT. The area contributed by the two is roughly 14% of the

total area.

27

�����

�����	��
����

����� ���

����� ���

����� ���

����� ���
���

�����	��
����

���

������

�
�
��
��
�
�
	

�
�
��

�
��

Figure 4.5 Internal architecture of the 32 point 1D DCT module in HEVC.

• Multiplication Module: The result of the partial butterfly addition/subtraction

is sent to the multiplication module as shown in the Figure 4.5. Each of

the coefficient which is sent to the multiplication module needs to be

multiplied with a set of pre-defined coefficients. Using algorithm for mul-

tiple constant multiplication (MCM), the multipliers can be completely

eliminated and the whole logic can be implemented with just adders and

shifters. After this optimization the area contributed by the two multi-

plication modules (for row and column DCT) to the total area is roughly

16%.

• Transpose Memory: This composes the non-combinational area for the

complete module. It also contributes to the combinational area because

of the multiplexers attached to each register to facilitate coefficient move-

ment within the memory. Transpose memory stores the result of row 1D

DCT before forwarding it to the column 1D DCT module. The area con-

tributed by this transpose memory towards the total area is roughly 60%.

28

�
�
��
��
��
�
�	
�

�
�
��

�
�
�
�
�

��
�
�
��
�
��

�

���������	
���

��

��
�
�

�

��

�
�
	�

�
��
��
��
�
�

Figure 4.6 Internal structure of 1D row/column DCT module. The partial but-

terfly structure is shown in detail.

We observe that none of the components is negligible in terms of area, and

therefore for overall reduction in the hardware cost, we optimize each of the

components.

4.4.2 Optimizing Partial Butterfly Adder/Subtractors

A more detailed view of the 1D row/column DCT module is shown in Fig-

ure 4.6. The adders/subtractors occurs before and after the multiplier module.

The adders and subtractors before the multiplier module compose the partial

butterfly logic and the ones after the multiplier are used to calculate the final

transformed coefficients from the multiplier result.

Any modification to the partial butterfly structure causes a ripple effect.

The resulting approximation errors flow through the multiplier module and the

latter adders and subtractors. The errors get amplified in the multiplier mod-

ule resulting in large degradation. Therefore approximations can be performed

only for the latter set of adders and subtractors. The latter set of adders and

29

subtractors implement the logic shown below for computing the first coefficient

of the row DCT result. The other coefficients involve similar computations.

Xtemp1 = (90×O0+90×O1+88×O2+85×O3+82×O4+78×O5+73×O6+67×

O7+61×O8+54×O9+46×O10+38×O11+31×O12+22×O13+13×O14+4×O15)

X1 = (Xtemp1 + add)/2shift

The multiplication results required for computing Xtemp1 are obtained from

the multiplication module. The results of the multiplication module is added

among themselves as detailed and Xtemp is then rounded. The rounding is

performed by adding a constant value (add term) and right shifting by another

constant amount. The right shifting doesn’t require any hardware cost. However

rounding adders contribute significant area since the result of multiplication is

a 16 bit integer. This addition of the add term is eliminated and the rounding

is performed just by shifting at the cost of negligible loss in the encoded video

quality.

4.4.3 Optimizing the multiplication module

As seen in Figure 4.5, there are four different sizes of multiplication modules

in the DCT module, namely 16 point, 8 point, 4 point and 2 point. There are

16, 8, 4 and 2 inputs to the four module respectively. Since the result for these

inputs need to be computed simultaneously, each of the multiplication modules

consists of multiple identical sub-modules. The 16 point module consists of

sixteen identical sub-modules. Each of those sub-modules, given a variable input

provides the product of that input with 16 predefined coefficients. Similarly the

other sub-modules of smaller sizes provide product of the input with respective

number of predefined coefficients. The number of gates required by each type

of sub-modules is summarized in Table 4.1.

There are 16, 8, 4 and 2 identical sub-modules within the 16 point, 8 point, 4

30

Table 4.1 Gate count for sub-modules of the multiplier block
Multiplication Sub-Module Size Gate Count

16 point 1077

8 point 633

4 point 350

2 point 278

Table 4.2 Gate count for different modules of the multiplier block
Multiplication

Sub-Module Size

Number of

Sub-Modules

Effective Gate

Count

Percentage of

Total Area

16 point 16 17232 71.1%

8 point 8 5064 20.9%

4 point 4 1400 5.8%

2 point 2 556 2.2%

point and 2 point multiplication modules respectively. Hence the effective areas

of each multiplication module is as shown in the Table 4.2.

We observe that the 4 point and 2 point multiplication sub-modules con-

tribute negligible areas. Therefore we focus the optimization on the first two.

The set of coefficients for which we need to provide the products of the input

with for 16 point multiplication module are as follows:

90, 90, 88, 85, 82, 78, 73, 67, 61, 54, 46, 38, 31, 22, 13 and 4.

The set of coefficients for which we need to provide the products of the input

with for 8 point multiplication module are as follows:

90, 87, 80, 70, 57, 43, 25 and 9.

31

4.4.3.1 Multiple Constant Multiplication (MCM)

Given a constant, its product with a variable can be implemented with just

shifting and addition operations. A full multiplier is not required. The Multiple

Constant Multiplication or MCM is the problem of having given a variable

and a set of constants, providing the product of the variable with each of the

constants with least number of adders. The problem as such is NP complete

and various heuristic algorithms have been.

Here we have an instance of MCM problem where we are given a variable

input and we have to provide the product with sixteen coefficients for 16-point

module and similarly for 8 point module. The algorithm used for our purpose

is [1]. Using the algorithm, the 16-point multiplication module can be imple-

mented with thirteen adders/subtractors and twenty three shift operations. The

flow of the additions/subtractions and shifting is shown in Figure 4.7.

The 8-point multiplication module can be similarly implemented with eight

add/subtract and eleven shift operations as shown in Figure 4.8.

4.4.3.2 Approximate MCM

In our case, exact result of the multiplication is not needed. Hence we extend

the original MCM problem to approximate MCM problem. The idea is to reduce

the number of adders even further at the cost of getting an approximate result.

Our aim is to modify the set of constants for which the products have to be

found in such a manner that the number of adders required is fewer than before

and the degradation caused is minimized.

When we have two sets of coefficients which result in same number of adders,

we will need to determine which set causes less degradation. This can be per-

formed by encoding a set of benchmark videos with the modified coefficient

32

Figure 4.7 The exact implementation of 16 point multiplication sub-module

using MCM algorithm [1]. There are 13 add/subtract operations and 23 shift

operations.

33

Figure 4.8 The exact implementation of 8 point multiplication sub-module using

MCM algorithm [1]. There are 8 add/subtract operations and 11 shift opera-

tions.

34

DCT and comparing the encoded result. However the process becomes very

intensive and time consuming once the number of candidates are large. We

therefore developed a set of heuristics which can approximately quantify the

degradation. The following are the various heuristics which act as cost function

for a given set of coefficients.

• Sum of absolute difference between the original and the modified coeffi-

cient sets

• Sum of absolute percentage changes to the original set of coefficients

• Comparing diagonal matrix with the result of its modified forward trans-

form followed by inverse transform

• Comparing impulse matrix with the result of its modified forward trans-

form followed by inverse transform

• Check correlation coefficient between DCT of original and modified coef-

ficients

These five heuristics were tested against actual degradation by adding random

noise to the original set of coefficients. The last three options perform very

closely and are well correlated with the actual degradation result. For our case,

we have proceeded with the last heuristic.

We follow the following guideline roughly to obtain at a new set of coeffi-

cients with a reduced number of adders.

• Rate all the adders with a importance value. Importance value of an adder

is the number of edges coming out of the adder. A high importance value

implies the result of the adder is used at many places.

35

• Choose the adder with the lowest importance value and eliminate its

requirement by changing the coefficient(s) affected by it appropriately.

The coefficients are changed to the closest value which is already occurring

in the map as a result of some other adder. Therefore the original adder

will not be required anymore.

• If two or more adders have similar importance values, check the degrada-

tion caused by each set of resulting coefficients using the heuristic men-

tioned earlier.

By repeating the process, we obtain a new set of coefficients at each iter-

ation which requires fewer adders to implement using the MCM algorithm [1]

than the previous set. The summary of the different set of coefficients and the

corresponding degradation in the final encoding is given in Table 4.3.

4.4.4 Optimizing the transpose memory

The transpose memory contributes 60% of the total area and is therefore a

critical component of the area optimization process. Each of the coefficients in

the transpose memory is represented by 16 bits. Most of the time the non-DC

coefficients in the transpose memory are not very large in magnitude. Therefore

they don’t use all the 16 bits for in their binary format. Therefore we can

effectively apply the idea of moving window to the DCT transpoe memory as

not many bits will be lost.

In Chapter 3 we studied the idea of moving window. A 16 bit binary integer

can be approximately represented with a window and its position. The idea is

extended to transpose memory of the DCT by representing each of the coef-

ficients in that manner. For every coefficient, we encode the moving window

in along with the bits describing the position. By our convention, the first bit

36

Table 4.3 Summary of the various sets of modified coefficients. Also shown

are the add/subtract operations required to realize them and the degradation

caused by the modification.

Coefficient Set
Add/Sub

Operations

BDBR Degradation

Class D Class B

90, 90, 88, 85, 82, 78, 73, 67,

61, 54, 46, 38, 31, 22, 13, 4
13 0.00% 0.00%

92, 92, 88, 88, 82, 78, 73, 62,

62, 54, 46, 41, 31, 22, 13, 4
8 0.00% 0.00%

92, 92, 88, 88, 80, 80, 72, 64,

64, 54, 46, 40, 32, 22, 13, 4
6 0.00% 0.02%

88, 88, 88, 88, 80, 80, 72, 64,

64, 52, 44, 40, 32, 22, 13, 4
4 0.01% 0.08%

88, 88, 88, 88, 80, 80, 64, 64,

64, 52, 44, 40, 32, 22, 13, 4
3 0.11% 0.19%

88, 88, 88, 88, 80, 80, 72, 64,

64, 64, 44, 40, 32, 22, 16, 4
2 0.86% 1.37%

37

describes the sign of the integer being encoded, the next three bits describe the

position and the remaining the magnitude. Experiments are performed for var-

ious window sizes and 6 bit window (including the sign bit) and 3 bit position

marker is used for final implementation. The results for different bit sizes are

summarized in Table 6.1 in Chapter 6.

The original transpose memory consisted of 32×32×16 bits. The modified

transpose memory is composed of 32×32×6 bits for the windows and 32×32×3

bits for the positions. Thus each of the coefficient is effectively reduced to 9

bits from 16 bits. The overhead cost will be in the form of combinational logic

required to compute the contents of the window and the position bits.

38

Chapter 5

Approximate DCT for JPEG

5.1 JPEG Overview

"JPEG" stands for Joint Photographic Experts Group, the name of the commit-

tee that created the JPEG standard. The JPEG standard specifies the codec,

which defines how an image is compressed into a stream of bytes and decom-

pressed back into an image, but not the file format used to contain that stream.

Although a JPEG file can be encoded in various ways, most commonly it is

done with JFIF encoding. The encoding process consists of several steps.

1. The representation of the colors in the image is converted from RGB to

YCBCR, consisting of one luma component (Y), representing brightness,

and two chroma components, (Cb and Cr), representing color.

2. The resolution of the chroma data is reduced, usually by a factor of 2 or

3. This reflects the fact that the eye is less sensitive to fine color details

than to fine brightness details.

39

3. The image is split into blocks of 8×8 pixels, and for each block, each of

the Y, Cb and Cr data undergoes DCT.

4. The amplitudes of the frequency components are quantized. Human vision

is much more sensitive to small variations in color or brightness over

large areas than to the strength of high-frequency brightness variations.

Therefore, the magnitudes of the high-frequency components are stored

with a lower accuracy than the low-frequency components. The quality

setting of the encoder (for example 50 or 95 on a scale of 0–100 in the

Independent JPEG Group’s library) affects to what extent the resolution

of each frequency component is reduced. If an excessively low quality

setting is used, the high-frequency components are discarded altogether.

5. The resulting data for all 8×8 blocks is further compressed with a lossless

algorithm.

The decoding process reverses these steps, except the quantization because it

is irreversible.

As can be seen from the summary of the steps involved, DCT plays a prime

role in compressing an image in JPEG. It is also the most computationally

intensive step performed for each macro-block. A difference between the DCT

used in HEVC and JPEG apart from size variation is the input coefficients. The

DCT in HEVC gets residuals as its input whereas the DCT for JPEG receives

actual image pixels as input. For calculating the residuals, information about the

surrounding macro-blocks is generally required, whereas the pixel information

of one macro-block is independent of the surrounding ones. Therefore in JPEG

each macro-block of 8×8 pixels can be processed independently. What this

implies in terms of hardware implementation is that there can be multiple

processing units in a JPEG encoder each capable of handling an 8×8 matrix of

40

pixels improving the encoding speed. Since each unit has an 8×8 DCT, there

are multiple DCT modules in a complete encoder. Thus saving area cost using

approximate DCT causes multiple times the saving overall due to replication

making the savings more significant.

5.2 Approximate DCT

As mentioned in earlier chapter, DCT hardware is essentially composed of

combinational logic implementing the row and column 1D DCT and a non-

combinational transpose memory to store the 1D transformed coefficients. For

the DCT for JPEG encoder application, we perform the modifications on its

transpose memory component. The fraction of the hardware area composed

by the transpose memory varies with the size of DCT but is significant. The

percentage of the area used by transpose memory for 8×8 DCT (which is the

size of the macro-block used by JPEG) is ~53%. Henceforth in this chapter, by

DCT, we refer to 8 point DCT unless specified otherwise.

The transpose memory when fully filled, contains the result of 1D row trans-

form of each row of the input pixel matrix.

In the actual implementation, the position of which coefficient is stored in

which memory location can vary and is immaterial. But for ease of discussion,

let us follow a convention as shown in Figure 5.1. By our convention, let us

assume that the result of each row 1D transform is stored row wise in the

transpose memory with the lower frequency coefficients to the left. Then all the

coefficients in a given column will have the same frequency components. The

left most column will all be DC components and the right most will be the

highest frequency components.

41

��
�
��
��
�
	
�

��
��
�
�
��

�

�

��

�

�
�
��
��
�
	
�

��
��
�
�
��

�

�

��

Figure 5.1 The convention followed for the transpose memory alignment. The

left most column contains all the DC coefficients and right most column the

highest frequency coefficients.

5.3 Application of Moving Window to DCT transpose
memory

Due to the good energy compaction property of DCT, most of the non-DC coef-

ficients have small values. Hence the whole range of possible values of coefficients

is seldom utilized. Most of the bits of non-DC elements remain unused.Therefore

it is possible to use moving window implementation for saving memory without

much loss in the final image quality.

The transpose memory in JPEG DCT is an 8×8 coefficient matrix with

each coefficient being 16 bits wide. Hence the total memory is 8×8×16 bits.

We modify the transpose memory so that instead of storing 16 bits for each

coefficient, we only store the moving window. Thus

totalmemory = moving window size× 8× 8.

We will be however encoding the positions of the windows which will result

42

in some overhead cost. Three ways for storing the positions are discussed along

with their limitations. The final implementation uses the hybrid implementation

which combines the advantages of these method.

5.3.1 Ideal implementation

In this case the ideal window position is calculated for each of the coefficients

in the transpose memory separately. Since each coefficient has its own unique

window position, window position of each of the coefficients needs to be stored.

Therefore the overhead in this case is the bits required store all the positions.

For an 8 bit window for representing a 16 bit integer, eight different positions

are possible. Hence 3 bits will be required for denoting the position of the 8

bit window. For a 7 bit window, the total positions possible increase to nine

and the bits required to 4. But if we can discard one of the positions, we can

still continue to use 3 bits and limit ourselves to 8 positions. In case of 7 bit

window, we choose to discard the right most position, thus bringing down the

total possible positions to 8 and we continue to use 3 bits for denoting the

window position.

Hence now the overhead will be 8×8×3 bits, which is effectively another

matrix of size 8×8 and each cell of width 3 bits. Instead of having another

separate matrix of registers, we increase the width of the first register matrix

to accommodate bits for encoding positions. Each cell of transpose memory

now has the structure as shown in Figure 5.2.

5.3.2 Window position based on first row

As mentioned previously, every row of DCT transpose memory consists the

result of 1D DCT of one row of pixels according to our convention. Another

observation which can be made is that since the image being encoded is mostly

43

�
��
�
��
��

�
	

�
��
	
�
�

�
��

�
	
�
��
�
�

��
�
	
�

Figure 5.2 Breakup of each memory location in the transpose memory. One bit

is used to denote the sign of the number, three bits for the window position

and five bits for the magnitude.

smooth at pixel level and doesn’t vary abruptly, the adjacent pixel rows are

likely to be similar. Hence in a macro-block of 8×8 pixels, the eight rows will

have pixel values similar to each other. This translates to the result of their 1D

DCT as well, i.e. the 1D row DCT result of each row will be similar in value to

each other. Furthermore, if the values are similar, the ideal starting positions

of the windows will be similar too (since the window position directly relates

to the magnitude of the integer, larger the magnitude, more to the MSB side is

the window position). Hence the window positions for every coefficient in the

transpose memory need not be stored. Only the position for the first row can

be stored and the positions for other rows can be assumed to be same as the

first row.

The overhead is greatly reduced in this case as the positions are stored only

for the first row. Since position for each coefficient requires 3 bits and there

are 8 coefficients in total in the first row, we require 24 bits in addition to the

transpose memory. It can be merged within the memory for the first row and

make the window size smaller by 3 bits. However since the overhead is very

small and to maintain consistency for all the rows, we add an additional array

44

�
��
�
�
��
�
��
��
	
�
��
�
�
�
��
��
	

�
��
��
�
�
��

�
��
�
�
�
��
��
�	
�
��
��
�

��
�
�
��
�
��
�

�
�
�
�
��

Figure 5.3 Memory overhead for moving window implementation based on first

row. Additional 24 bits are required to store the positions.

of registers for storing the positions.

The idea here as mentioned is that the coefficients in every row will be

similar to other rows and hence have similar window position values. But in

case a value in the first row is close to a power of 2 (2x), then a small increase

in this value causes the ideal window position to jump by 1 which will cause

the most significant 1 (and most significant 0 for negative numbers) to be lost.

This causes significant degradation for that particular row when the image is

reconstructed. To avoid this, we provide some leeway by actually choosing the

window position as the ideal position + 1.

45

Figure 5.4 JPEG encoding result of row based moving window implementation.

Artefacts can be seen for blocks near the edges especially at the edges between

flower and leaves.

5.3.2.1 Cases of failure

The prime assumption in this method was that all the rows of a given block

are similar in values. In case there is a horizontal edge in the image passing

through the block, this is not the case anymore. Therefore in this case the rows

which are not similar to the first row will be reconstructed wrongly. Figure 5.4

shows the result of encoding using this method and the artifacts which arise

where the horizontal edges exist.

This can be prevented by attempting to detect for which blocks this is likely

to happen and encoding that block differently. We detect the blocks for which

this could happen by the following rudimentary formula based on Figure 5.5.

46

�
�

�
�

�
�

�
�

�
�

Figure 5.5 Input block to the DCT module showing pixels used for detecting

the fail case of row based moving window implementation.

∣∣∣∣p0 −
p0 + p1 + p2 + p3 + p4

5

∣∣∣∣ < 32

∣∣∣∣p1 −
p0 + p1 + p2 + p3 + p4

5

∣∣∣∣ < 32

∣∣∣∣p2 −
p0 + p1 + p2 + p3 + p4

5

∣∣∣∣ < 32

∣∣∣∣p3 −
p0 + p1 + p2 + p3 + p4

5

∣∣∣∣ < 32

∣∣∣∣p4 −
p0 + p1 + p2 + p3 + p4

5

∣∣∣∣ < 32

47

The detection algorithm needs to be kept simple in order to keep the hard-

ware overhead cost low. Once detected, ideal implementation is performed for

those blocks with three bits in the window reduced to accommodate for the win-

dow position. The overhead of this method are the additional logic for detecting

the likely blocks (3 adders and four comparators. A divider isn’t required for the

logic since we have carefully chosen four pixels to average over so that division

can be performing by simple right shift operation) and the memory array of

8×3 bits.

5.3.3 Position based on first column

Another observation for the result of 1D row transform which is stored in the

transpose memory is that the DC coefficient is generally the largest of all the

eight coefficients. This is due to the fact that image is generally smooth at pixel

level and hence the high frequency variations will almost always be lower than

the DC value. This fact can be used for not having to store the window positions

repeatedly. For every row we perform the ideal window position calculation

for the DC coefficient and assume the same window position for the rest of

the coefficients. Thus we need to store the positions only once per row of the

macro-block.

Hence the initial overhead of storing the position for each of the coefficients

is vastly reduced. We can choose to use three bits of the DC coefficient memory

location to store its position hence eliminating any memory overhead. But as the

overhead is small and since visually we are more perceptible to DC component

of the image, we add an additional array of memory (3 bits × 8) to store the

window positions for each of the rows.

48

Figure 5.6 JPEG encoding result of column based moving window implemen-

tation. Artifacts can be seen for blocks near the vertical edges.

5.3.3.1 Cases of failure

The prime assumption in this case was that the value of the DC component

is larger than the rest of the components for every row. In case that is not

true, that particular row will be recovered wrongly causing distortion in the

final image. This can happen in cases where the block contains some kind of

edge and is not mostly uniform. It helps to worsen the case further if the block

contains a vertical edge and/or is mostly dark. This results in a reduced DC

value which is easy for other coefficients to exceed.

As before, we attempt to detect the blocks which might fail this encoding

and then encode those blocks ideally. The algorithm used to detect should be

rudimentary to keep the overhead hardware cost low as before. The algorithm

49

�
�

�
�

�
�

�
�

Figure 5.7 Input block to the DCT module showing pixels used for detecting

the fail case of column based moving window implementation.

used is based on Figure 5.7 as follows.

|p0 − p1| < 32

|p2 − p3| < 32

The final overhead of this method is the memory array of 8×3 bits and the

combinational logic required for detecting blocks likely to fail the encoding.

5.4 Hybrid implementation

In the last two cases we reduced the overhead of storing the window positions

for every coefficient. Then we added logic to detect those block which are likely

to fail the algorithm. The transpose memory contents of these blocks were then

50

encoded using the ideal encoding algorithm, wherein the window position is

stored for every coefficient.

One observation to be made about the above two cases is that the logic for

pre-detecting the blocks likely to fail is a heuristic algorithm. This means that

it is not fail proof and can fail in some cases. The resulting distortion artifacts

caused in the resulting image for both the images where the detection logic fails

to identify will be strongly visible.

This therefore might not be acceptable for applications where the resulting

image needs to be of high quality. We therefore use another detection algorithm

to identify the blocks which are going to fail which combines the ideal method

with the above methods. This is not based on heuristic and hence will identify

all the failing blocks.

Instead of pre-detecting the macro-blocks likely to fail, we perform the de-

tection calculations once the 1D transform coefficients are calculated.

• Window position based on first row: For the first row, the encoding is

performed as usual. The first row will always be decoded correctly since

the positions being stored in the position array are ideal with respect to

the first row. From the second row onward, for each row, the ideal positions

are calculated for each of the eight coefficients as in the ideal case. These

eight ideal positions are compared to the respective ideal positions of the

first row. If any of the positions exceed the corresponding position value of

the first row, the row is flagged. If flagged, the row (not the whole block)

is encoded with ideal case encoding. We do not require the heuristic logic

any more and can save the area used by the logic. The additional memory

overhead for this method compared to the previous methods are:

– Eight flag bits to indicate whether the row should be decoded using

51

ideal method or base on first row

– Eight comparators to compare the ideal position of a given row with

the first row

• Window position based on first column: In this case, every row is indepen-

dent and needs independent computation (unlike the previous case where

the rows are related to the first row). The DC coefficient is assumed to be

larger than all the others. Even in the cases where the DC coefficient is

smaller but the ideal window position for the DC coefficient is equal to the

ideal window positions of the other coefficients, we can continue with the

original method. The reconstructed result is erroneous only in case where

any of the ideal window positions of the non-DC coefficients is larger than

that of the DC coefficient. Therefore for detecting, we calculate the ideal

window positions for all the coefficients as before. Then we compare each

of the non-DC coefficients’ ideal window positions with the DC coefficient

positions and make sure the latter is always larger or equal. In case the

comparison fails, a marker flag is raised and the encoding method for

transpose memory reverts to the ideal method. The heuristic logic is not

required, however the two overheads exist as before:

– Eight flag bits to indicate whether the row should be decoded using

ideal method or base on first column

– Seven comparators to compare the ideal position of a given row with

the DC coefficient of the row

In both the cases when a row is flagged and is encoded using ideal method,

the position bits need to be encoded for each of the eight coefficients. Since

additional memory doesn’t exist, these bits have to be accommodated within

52

|�|

|�|

|�|

|�|�
�

�
�
�

�
�
�
�
	

�
�

�
�
�
��
�
��

�
�

�
�
	�
�
	�

�
�

� �

�

�

�
�

�
�
�
��
�

�

�
�
	�
�
	�

�
�

�

�

��

�
�

��
�
��

�
�
�
�
��

�

�

Figure 5.8 The architecture for implementing the hybrid algorithm for moving

window. This architecture is the combinational logic overhead required for the

implementation.

the window itself. This is performed by discarding three least significant bits of

the window and using them to store the position bits. This effectively reduces

the window size by 3 bits when a row is flagged.

Out of the two cases, the second case (based on first column) performs better

and is hence used for the final implementation. The additional combinational

logic architecture required for the implementing this is shown in Figure 5.8.

The window position calculator module computes the ideal window position

for each of the integer input. The positions are then compared to the DC co-

efficient’s ideal window position. The multiplexer then chooses the appropriate

set of window positions based on the flag value. The window content calcula-

tor module then takes the integers and their window positions, and gives the

window content as the output.

The decoder follows the similar procedure. If the flag is raised, each coeffi-

cient is decoded separately or else decoded based on DC coefficient’s position.

53

Chapter 6

Experimental Results

This section summarizes all the important results for both HEVC and JPEG us-

ing approximate DCTs mentioned in the respective sections. For the HEVC the

approximate DCT used has modified combinational logic (multiplication mod-

ule and rounding adders) as well as modified transpose memory (with the ideal

moving window implementation). The approximate DCT used for JPEG uses

only the modified transpose memory using hybrid moving window implemen-

tation. The idea of memory reduction can be easily generalized for applications

other than HEVC or JPEG too.

The architectures for all the DCTs were implemented in Verilog and syn-

thesized with the TSMC 65nm technology. The gate counts of the final imple-

mentation is detailed along with the degradation.

54

6.1 HEVC Experiments and Results

The experiments for HEVC were performed with HM 13.0 as reference. HM

stands for HEVC Test Model and provides reference C++ code implementing

the H.256 encoder and decoder. The modifications were performed in the HM

13.0 code in software to reflect the changes in hardware implementation.

All the results are provided for two sets of videos, one set is of B class

sequences (full HD - 1920×1080pp) and the other set contains D class sequences

(low resolution - 416×240pp). The first set contains sequences Basketball Drive,

BQ Terrace and Park Scene. The second set consists of the sequences Blowing

Bubbles, Basketball Pass and BQ Square. The results for B class is the average

of the first three sequences and the results for the D class the average of the

latter three sequences.

The final implementation for transpose memory was performed with 6 bit

moving window. The memory overhead is 3 bits for describing the position of

the window. The coefficient modified multiplier module with 4 add/subtract

operations was chosen for the final implementation.

The original gate count for 32×32 DCT module was 318K, of which the

transpose memory requires 192K gates. The new memory requires 115K gates

with a combinational logic overhead of 16K resulting in a total saving of 61K

(31% of the initial memory gate count). The multiplier module was reduced

from 50K to 16K. The final gate count is 218K resulting in a total saving of

32%. The degradation caused by the final implementation is 0.42%.

6.2 JPEG Experiments and Results

All the JPEG experiments were performed with IJG JPEG software as ref-

erence. The IJG JPEG reference software provides C code implementing the

55

Table 6.1 BDBR degradation for HEVC for different sized bit widths.
Bits Allowed BDBR Degradation

16 0.00%

15 0.00%

14 0.00%

13 0.01%

12 0.02%

11 0.03%

10 0.03%

9 0.09%

8 0.17%

7 0.19%

6 0.23%

5 0.44%

4 1.10%

56

Table 6.2 Summary of gate count for modified DCT for JPEG
Module Gate Count

Original 8×8 DCT 19407

Original transpose memory 10392

New total memory 4557

Combinational logic overhead 3038

Modified 8×8 DCT 11727

JPEG image encoder and decoder. All the modifications emulating the trans-

pose memory modification were performed in the C code.

Four images were used as set of reference images for all the experiments. The

images used are Desert, Hydrangeas, Koala and Penguins. These images were

selected for their varying features. Desert image contains a lot of smooth and

bright areas, Hydrangeas contains decent amount of sharp edges alternating

between bright and dark regions. The Koala image contains lots of minute

details with sharp features and high frequency components and the Penguins

image contains smooth and dark regions.

The final implementation of moving window uses 7 bit moving window with

hybrid algorithm.

From the summary in Table 6.2 the effective saving on area is ~27%. The

memory itself composes ~53% of the total DCT hardware area. The total saving

for the complete DCT module translates to ~14%. The comparison of the PSNR

values using the original JPEG encoding and the modified JPEG encoding is

shown in Figure 6.1 for four test images. The resulting BDBR degradation

doesn’t exceed 0.86% for any of the tested images.

Original set of images are shown in Figures 6.2, 6.3, 6.4 and 6.5. The re-

57

0 1 2 3 4 5 6 7 8

Bytes (×105)

10

15

20

25

30

35

P
S
N
R

Desert

Original

Final Implementation

0 1 2 3 4 5 6 7

Bytes (×105)

15

20

25

30

35

40

45

P
S
N
R

Hydrangeas

Original

Final Implementation

0 1 2 3 4 5 6 7 8

Bytes (×105)

15

20

25

30

35

40

45

P
S
N
R

Koala

Original

Final Implementation

0 1 2 3 4 5 6 7

Bytes (×105)

15

20

25

30

35

40

P
S
N
R

Penguins

Original

Final Implementation

Figure 6.1 PSNR vs bytes plots for the original JPEG encoding and our final

implementation. The four plots are for four different test images used.

58

Figure 6.2 Test sample image - Desert

sulting images obtained when encoded using modified DCT implementation are

shown in Figures 6.6, 6.7, 6.8 and 6.9.

59

Figure 6.3 Test sample image - Hydrangeas

Figure 6.4 Test sample image - Koala

60

Figure 6.5 Test sample image - Penguins

Figure 6.6 Final decoded image - Desert

61

Figure 6.7 Final decoded image - Hydrangeas

Figure 6.8 Final decoded image - Koala

62

Figure 6.9 Final decoded image - Penguins

63

Chapter 7

Conclusion

Two key ideas are presented to reduce the area of the DCT hardware module.

• The first idea is for the non-combinational part (register memory) of the

complete module.

• The second idea is for reducing the multiplication block which composes

a part of the combinational logic of the module.

The idea used for reducing the register memory is called moving window im-

plementation. It reduces the bits required to represent a single integer. This is

further extended to all the integers stored in the transpose memory. The over-

head cost of the implementation is the additional combinational logic required

to calculate the contents of the window. However, the gates required for the

overhead logic doesn’t exceed the number of gates saved by reducing the mem-

ory. Therefore the idea is viable. The combinational logic overhead required for

implementing this idea for the DCT module scales linearly with the 2D DCT

size, i.e. the combinational area overhead for a 32×32 DCT will roughly be

64

four times the size of the overhead for an 8×8 DCT. The memory savings on

the other hand increase as a square of the 2D DCT size, i.e. the memory area

saved for 32×32 DCT will be sixteen times that for an 8×8 DCT. Therefore

the percentage savings improve with size of the DCT. It should be noted that

the idea of moving window is generic. Hence it can easily be extended to other

memory applications too where approximate values can be tolerated.

The idea for reducing the multiplier block aims to do so by changing the

multiplication coefficients of the block. The MCM output which is generated by

an existing algorithm for the original multiplier block is simplified, thus reduc-

ing the adders and shifters required. The process of changing the coefficients

is performed manually with multiple iterations. The benefit of this idea too

improves with the size of the DCT module. Larger the DCT module, more the

original number of adders and more coefficients are available for modification.

Therefore there is more scope for larger reduction.

These ideas were applied to the DCT modules of JPEG and HEVC encoders.

JPEG encoder utilizes 8×8 DCT module. The moving window implementation

with 7 bit window was used and no combinational logic reduction was imple-

mented (benefit of multiplication module reduction was not much since the

coefficients available are few), resulting in ~14% area reduction. HEVC encoder

utilizes DCT of maximum size of 32×32. Both the reductions, register memory

as well as multiplication module were implemented. The total area reduction

32% is achieved. The quality loss in both the cases is non-significant.

65

Bibliography

[1] Y. Voronenko, “Spiral multiplier block generator. spiral project,” 2010.

[2] C.-T. Hsu and J.-L. Wu, “Energy compaction capability of dct and dht

with ct image constraints,” in Digital Signal Processing Proceedings, 1997.

DSP 97., 1997 13th International Conference on, vol. 1, Jul 1997, pp. 345–

348 vol.1.

[3] N. Ahmed, T. Natarajan, and K. Rao, “Discrete cosine transform,” Com-

puters, IEEE Transactions on, vol. C-23, no. 1, pp. 90–93, Jan 1974.

[4] W.-H. Chen, C. Smith, and S. Fralick, “A fast computational algorithm for

the discrete cosine transform,” Communications, IEEE Transactions on,

vol. 25, no. 9, pp. 1004–1009, Sep 1977.

[5] B. Lee, “A new algorithm to compute the discrete cosine transform,”

Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 32,

no. 6, pp. 1243–1245, Dec 1984.

[6] M. Wagh and H. Ganesh, “A new algorithm for discrete cosine transform

of arbitrary number of points,” Computers, IEEE Transactions on, vol.

C-29, no. 4, pp. 269–277, April 1980.

66

[7] B. Tseng and W. Miller, “On computing the discrete cosine transform,”

Computers, IEEE Transactions on, vol. C-27, no. 10, pp. 966–968, Oct

1978.

[8] H. Malvar, “Fast computation of the discrete cosine transform and the

discrete hartley transform,” Acoustics, Speech and Signal Processing, IEEE

Transactions on, vol. 35, no. 10, pp. 1484–1485, Oct 1987.

[9] A. Edirisuriya, A. Madanayake, R. Cintra, V. Dimitrov, and N. Rajapak-

sha, “A single-channel architecture for algebraic integer-based 8 × 8 2-d dct

computation,” Circuits and Systems for Video Technology, IEEE Transac-

tions on, vol. 23, no. 12, pp. 2083–2089, Dec 2013.

[10] Y. Chen, X. Cao, Q. Xie, and C. Peng, “An area efficient high perfor-

mance dct distributed architecture for video compression,” in Advanced

Communication Technology, The 9th International Conference on, vol. 1,

Feb 2007, pp. 238–241.

[11] Y. Shain, A. Akerib, and R. Adar, “Associative architecture for fast dct,”

in Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998

IEEE International Conference on, vol. 5, May 1998, pp. 3109–3112 vol.5.

[12] R. Kordasiewicz and S. Shirani, “Asic and fpga implementations of h.264

dct and quantization blocks,” in Image Processing, 2005. ICIP 2005. IEEE

International Conference on, vol. 3, Sept 2005, pp. III–1020–3.

[13] J. Bruguera and R. Osorio, “A unified architecture for h.264 multiple block-

size dct with fast and low cost quantization,” in Digital System Design:

Architectures, Methods and Tools, 2006. DSD 2006. 9th EUROMICRO

Conference on, 2006, pp. 407–414.

67

[14] R. Jeske, J. de Souza, G. Wrege, R. Conceicao, M. Grellert, J. Mattos, and

L. Agostini, “Low cost and high throughput multiplierless design of a 16

point 1-d dct of the new hevc video coding standard,” in Programmable

Logic (SPL), 2012 VIII Southern Conference on, March 2012, pp. 1–6.

[15] P. Meher, S. Y. Park, B. Mohanty, K. S. Lim, and C. Yeo, “Efficient integer

dct architectures for hevc,” Circuits and Systems for Video Technology,

IEEE Transactions on, vol. 24, no. 1, pp. 168–178, Jan 2014.

[16] S. Y. Park and P. Meher, “Flexible integer dct architectures for hevc,” in

Circuits and Systems (ISCAS), 2013 IEEE International Symposium on,

May 2013, pp. 1376–1379.

[17] A. Hossen and U. Heute, “Fast approximate dct: basic-idea, error analysis,

applications,” in Acoustics, Speech, and Signal Processing, 1997. ICASSP-

97., 1997 IEEE International Conference on, vol. 3, Apr 1997, pp. 2005–

2008 vol.3.

[18] R. Haweel, W. El-Kilani, and H. Ramadan, “A fast modified signed dis-

crete cosine transform for image compression,” in Computer Engineering

Systems (ICCES), 2014 9th International Conference on, Dec 2014, pp.

56–61.

[19] K. Lengwehasatit and A. Ortega, “Scalable variable complexity approx-

imate forward dct,” Circuits and Systems for Video Technology, IEEE

Transactions on, vol. 14, no. 11, pp. 1236–1248, Nov 2004.

[20] A. Madanayake, R. Cintra, V. Dimitrov, F. Bayer, K. Wahid, S. Kulasek-

era, A. Edirisuriya, U. Potluri, S. Madishetty, and N. Rajapaksha, “Low-

power vlsi architectures for dct/dwt: Precision vs approximation for hd

68

video, biomedical, and smart antenna applications,” Circuits and Systems

Magazine, IEEE, vol. 15, no. 1, pp. 25–47, Firstquarter 2015.

[21] U. Sadhvi Potluri, A. Madanayake, R. Cintra, F. Bayer, S. Kulasekera, and

A. Edirisuriya, “Improved 8-point approximate dct for image and video

compression requiring only 14 additions,” Circuits and Systems I: Regular

Papers, IEEE Transactions on, vol. 61, no. 6, pp. 1727–1740, June 2014.

[22] B. Shen, “From 8-tap dct to 4-tap integer-transform for mpeg to h.264/avc

transcoding,” in Image Processing, 2004. ICIP ’04. 2004 International

Conference on, vol. 1, Oct 2004, pp. 115–118 Vol. 1.

[23] X. Zhao, J. Sun, S. Ma, and W. Gao, “Novel statistical modeling, analysis

and implementation of rate-distortion estimation for h.264/avc coders,”

Circuits and Systems for Video Technology, IEEE Transactions on, vol. 20,

no. 5, pp. 647–660, May 2010.

[24] H. Shen, X. Sun, and F. Wu, “Fast h.264/mpeg-4 avc transcoding using

power-spectrum based rate-distortion optimization,” Circuits and Systems

for Video Technology, IEEE Transactions on, vol. 18, no. 6, pp. 746–755,

June 2008.

[25] Z. Chen, Q. Chen, and C. Wang, “Content-dependent frequency domain

based rdo mode decision,” in Information, Communications and Signal

Processing, 2005 Fifth International Conference on, 2005, pp. 1140–1144.

69

초록

Discrete Cosine Transform(DCT)는 뛰어난 에너지 압축(energy compaction) 특

성 덕분에 다양한 이미지, 비디오 압축 분야에서 널리 사용된다. DCT는 연산의

복잡도가 높고, 병렬화가 가능한 특성이 있다. 따라서 연산의 속도를 높이기 위

해 주로 하드웨어로 구현된다. 그러나 일부 application에서는 크기나 큰 DCT나

다수의 DCT 모듈이 필요하기 때문에 이미지, 비디오 부호화기(encoder) 하드웨

어의면적에서 DCT가차지하는비중이상당히커지고있다.대부분의 application

에서는 DCT가 정확(exact)할 필요는 없다. 이러한 점을 이용하여 본 논문에서는

DCT 모듈의 하드웨어 면적을 줄이기 위한 새로운 방법을 제안한다. DCT 하드

웨어 모듈은 조합 논리회로(combinational logic)와 메모리로 구성되어 있다. 두

가지 구성요소 모두의 크기를 감소시켰으며, 전체 구현을 설명한다. 목표로 하는

application은 HEVC와 JPEG이지만, 제안하는 방법은 어느 DCT 하드웨어 구

현에나 적용 가능하다. 마지막으로 이미지, 비디오 압축 성능의 저하를 BDBR을

이용해 논의하며 합성을 통해 얻은 gate count도 제시된다.

주요어: Discrete Cosine Transform, HEVC, JPEG, Approximate DCT

학번: 2013-23847

70

	Chapter 1 Introduction
	1.1 2D DCT Hardware Module
	1.1.1 Pipelining the process

	1.2 Approximate DCT

	Chapter 2 Related Works
	Chapter 3 The Moving Window Idea for Bit-Width Reduction
	3.1 ML Recovery for Moving Window

	Chapter 4 Approximate DCT for HEVC
	4.1 HEVC Overview
	4.2 HEVC Encoder
	4.3 DCT in HEVC Encoder
	4.4 Approximate DCT in HEVC
	4.4.1 The three components of the DCT module
	4.4.2 Optimizing Partial Butterfly Adder/Subtractors
	4.4.3 Optimizing the multiplication module
	4.4.4 Optimizing the transpose memory

	Chapter 5 Approximate DCT for JPEG
	5.1 JPEG Overview
	5.2 Approximate DCT
	5.3 Application of Moving Window to DCT transpose memory
	5.3.1 Ideal implementation
	5.3.2 Window position based on first row
	5.3.3 Position based on first column

	5.4 Hybrid implementation

	Chapter 6 Experimental Results
	6.1 HEVC Experiments and Results
	6.2 JPEG Experiments and Results

	Chapter 7 Conclusion

<startpage>12
Chapter 1 Introduction 1
 1.1 2D DCT Hardware Module 2
 1.1.1 Pipelining the process 5
 1.2 Approximate DCT 6
Chapter 2 Related Works 9
Chapter 3 The Moving Window Idea for Bit-Width Reduction 12
 3.1 ML Recovery for Moving Window 16
Chapter 4 Approximate DCT for HEVC 19
 4.1 HEVC Overview 19
 4.2 HEVC Encoder 20
 4.3 DCT in HEVC Encoder 21
 4.4 Approximate DCT in HEVC 23
 4.4.1 The three components of the DCT module 27
 4.4.2 Optimizing Partial Butterfly Adder/Subtractors 29
 4.4.3 Optimizing the multiplication module 30
 4.4.4 Optimizing the transpose memory 36
Chapter 5 Approximate DCT for JPEG 39
 5.1 JPEG Overview 39
 5.2 Approximate DCT 41
 5.3 Application of Moving Window to DCT transpose memory 42
 5.3.1 Ideal implementation 43
 5.3.2 Window position based on first row 43
 5.3.3 Position based on first column 48
 5.4 Hybrid implementation 50
Chapter 6 Experimental Results 54
 6.1 HEVC Experiments and Results 55
 6.2 JPEG Experiments and Results 55
Chapter 7 Conclusion 64
</body>

