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Abstract

Markov random fields have been powerful models in computer vision but tractable

algorithms to obtain exact solution for the corresponding energy functions are lim-

ited; approximate solutions, in most cases are provided for efficiency. In this work

graduated optimization technique is applied in a novel way to develop an efficient al-

gorithm for solving general multi-label MRF optimization problem called Stochastic

Graduated graph approximation (SGGA) algorithm. The algorithm initially min-

imizes a simplified function and progressively transforms that function until it is

equivalent to the original function. However, it is hard to find how to generate the

sequence of intermediate functions and what parameter to use for making transition

from one problem to another. For this we propose a new iterative method of build-

ing the sequence of approximations for the original energy function. We exploit a

stochastic method to generate intermediate functions, which guides the intermedi-

ate solutions to the near-optimal solution for the original problem. The transition

from one intermediate problem to another is controlled by the schedule of gradual

addition of edges. In each iteration, a deterministic algorithm such as block ICM is

applied to minimize intermediate functions and to generate initial solution for the

next problem. The proposed algorithm guarantees the convergence of local mini-

mum. We test on a synthetic image deconvolution problem and also on the set of

experiments with the OpenGM2 benchmark.
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Chapter 1

Introduction

1.1 Background of research

Markov random fields (MRFs) have attracted much attention in computer vision for

recent decades and have been successfully applied to many vision applications [2,3]:

segmentation, stereo matching, denoising, inpainting and more. Generally, MRF

models are formulated as follows. Given a graph G = {V, E} consisting of a set

of nodes V and a set of edges E , a random variable xi associated with each node

i ∈ V takes a value from a set of labels Λ = {1, 2, · · · , L}. Let ψi be unary potential

functions and ψij be pairwise potential functions defined on nodes and edges. The

energy function of the pairwise MRF is given by

E(x) =
∑
i∈V

ψi(xi) +
∑

(i,j)∈E

ψij(xi, xj) (1.1)

for the set of random variables x. The Maximum a Posteriori (MAP) problem of the

joint probability distribution can be transformed to a minimization problem of the

function (4.1).
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The Hammersley – Clifford theorem establishes that the joint probability of any

MRF can be represented by Gibbs distribution. It is so called Markov – Gibbs

equivalence. The Gibbs distribution of MRF x, defined on the graph G, with the

neighboring system E , is given by

P (x) =
1

Z

∏
j

ψj(xj), (1.2)

where Z is a normalizing constant and ψj(xj) is a clique potential function defined

on the set of random variables x for clique j .

Computer vision problems have used MRF to formulate the probability function

for possible solutions and achieve the most probable solution. That is to find the

MAP solution from the given probability function. The MAP solution is defined by

x⋆ = argmax
x

P (x) (1.3)

The energy function (4.1) is connected with the joint probability function by the

following relation

E(x) = −lnP (x) + Z, (1.4)

E(x) =
∑
i

ψi(xi), (1.5)

where

ψi(·) = −lnψi(·) (1.6)

Now the MAP solution x⋆ can be represented by the energy function as follows

x⋆ = argmin
x

E(x) (1.7)
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Therefore, estimating the MAP solution for the given MRF is equivalent to

finding the solution x⋆ which minimizes the energy function (4.1).

Obtaining the global minimum of the energy function (1) is a NP – hard problem;

only few cases can be solved exactly in polynomial time. For example, message

passing algorithms, such as belief propagation (BP) [4] and tree-reweighted message

passing (TRW) [5] provide exact solution for trees and chains. Graph cuts [6,7] can

exactly minimize binary submodular energy functions even in a loopy structure. But

most cases resort to approximate solutions.

For general MRF optimization problem, some algorithms have obtained only ap-

proximate solutions in deterministic search approaches. Move – making algorithms

– iterated conditional modes [8], α – expansion and αβ – swap [6], iteratively make

local moves towards lower energy state. That is, the algorithms simplify an infer-

ence problem to a series of reduced problems by restricting a label space in which

they maintain the current best solution until they cannot find further minimizing

proposals. Thus the deterministic methods are efficient for searching solutions but

get stuck to local optimum.

Stochastic approaches have also been applied to minimize energy functions of

MRF problems. The Markov chain Monte Carlo (MCMC) is an important class of

stochastic methods for the aforementioned problem. It takes samples from a proba-

bility distribution based on Markov chain and approximates the target distribution.

Since the advent of Metropolis – Hastings method [9], the MCMC became a conve-

nient tool that provides simple procedures to design the kernel that converges to the

desired stationary distribution. Gibbsian simulated annealing (Gibbsian SA) [10] is

a general optimization method using the Gibbs sampling, which is simplified MCMC

approach. These sampling based algorithms can reach the global optimal solution in
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theory because stochastic methods are able to avoid getting stuck in local minimum.

However, despite its simplicity and theoretical elegance, they are not widely used in

the MRF optimization because of its slow convergence.

Therefore, recent works [11,12] have focused on methods of improving MCMC’s

finite – time behavior. In [11] they investigated two ideas, breaking detailed bal-

ance and updating multiple nodes at a time to overcome the main obstacle of slow

convergence of MCMC – based algorithms, which significantly improved the con-

vergence speed of Markov chain. Kim and Lee [12] also have combined stochastic

and deterministic algorithms and shown the effectiveness of this approach in solving

challenging MRF problems. This approach achieves lower energy solution than other

sampling – based and deterministic methods. However, the proposed methods are

still slower than deterministic algorithms to get lower energies.

1.2 Objective

In this work, we propose a new efficient algorithm for solving general multi-label

MRF optimization problem. We combine advantages of stochastic and deterministic

methods. Instead of combining MCMC with deterministic methods, we apply an-

other powerful optimization technique, Graduated non-convexity (GNC) [13]. GNC

guides serial local solutions to the global optimum by approximating a complex

function. However, the approximation method has not been used widely due to the

difficulty of application to specific problems. We propose stochastic graduated graph

approximation algorithm (SGGA) for solving general discrete MRF problems. We

generate a series of approximate energy functions by stochastically selecting edges

from an original graph and guide to lower energy state, which is usually close to the

5



global optimum. Here we show that our algorithm:

• Achieves lower energy than conventional deterministic optimization algorithms

and efficient hybrid MCMC-based algorithm from [12], MCMC-GD, in solving

image deconvolution problem and

• faster convergence than MCMC-GD and similar to deterministic algorithms.

As far as we know, this is the first work based on the concept of graduated

optimization for solving discrete MRF optimization problems. We compare our

competitive results for real applications from the OpenGM2 benchmark with

various deterministic methods and with recently published fast MCMC-based

algorithm [11].

1.3 Outline of thesis

In this work graduated optimization technique is applied in a novel way to develop an

efficient algorithm for solving general multi-label MRF optimization problem called

Stochastic Graduated graph approximation (SGGA) algorithm.

In Chapter 2, related works are discussed. SGGA algorithm is based on the con-

cept of graduated optimization. According to our knowledge there are not many

papers devoted to discrete MRF optimization which apply this concept. Graduated

non – convexity (GNC) and sequential Monte Carlo (SMC) are similar to our algo-

rithm. Basic ideas of these methods are described.

In Chapter 3, we introduce a new method for guiding a local search. Our method

is based on the graduated graph approximation. The overall algorithm (SGGA) and

it’s modification are introduced at the end of this chapter.
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In Chapter 4, we describe the block ICM method which is applied for minimizing

intermediate energy functions in our iterative algorithm. Also we describe the dy-

namic programming (DP) algorithm which is applied within block ICM in order to

efficiently update a labeling assignment on a set of nodes in approximated graphs.

In Chapter 5, we evaluate efficiency of SGGA algorithm on a synthetic experi-

ment and OpenGM2 benchmark.

In Chapter 6, we make conclusions about our research work.
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Chapter 2

Related works

2.1 Graduated optimization

Graduated optimization is a global optimization technique that tries to solve a dif-

ficult optimization problem by initially solving a simplified problem, and gradu-

ally transforming that problem (while optimizing intermediate problems) until it is

equivalent to the difficult optimization problem.

Graduated optimization is an improvement to hill climbing that enables a hill

climber to avoid settling into local optima. It decompose a difficult optimization

problem into a sequence of optimization problems, such that the first problem in

the sequence is convex (or nearly convex), the solution to each problem gives a

good initial point to the next problem in the sequence, and the last problem in

the sequence is the difficult optimization problem that it ultimately seeks to solve.

In practice, graduated optimization gives better results than simple hill climbing.

Further, when certain conditions exist, it can be shown to find an optimal solution

to the final problem in the sequence [13]. These conditions are:
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Figure 2.1: Graduated non-convexity method: it breaks a difficult optimization prob-

lem into a sequence of optimization problems, such that the first problem in the

sequence is convex (or nearly convex), the solution to each problem gives a good

starting point to the next problem in the sequence, and the last problem in the

sequence is the difficult optimization problem that it ultimately seeks to solve.

• the first optimization problem in the sequence can be solved exactly given the

initial point;

• the locally convex region around the global optimum of each problem in the se-

quence includes the point that corresponds to the global optimum of the previous

problem in the sequence.

It can be shown inductively that if these conditions are met, then a hill climber

will arrive at the global optimum for the difficult problem. Unfortunately, it can be

difficult to find a sequence of optimization problems that meet these conditions. Of-

ten, graduated optimization yields good results even when the sequence of problems

cannot be proven to strictly meet all of these conditions.

Blake and Zisserman [13] have developed the deterministic and approximate ap-
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proach based on the concept of graduated optimization, Graduated non – convexity

(GNC). This method implies approximation of a general non-convex function by sim-

plified functions, e.g. a convex function. This approximation slowly varies towards

the original function, in the hope that the guided local minimum will converge to

the global minimum in the original solution space (see Figure 2.1). However, they

found the approximation only in special cases, such as a weak string model.

In [14], they extended to a general case and showed that GNC was faster than

Simulated annealing. Terzopoulos and Witkin [15, 16] also proposed continuation

optimization methods similar to GNC.

The issue is that only a general scheme for creating GNC algorithms has been

discussed. For example, any stabilizing term, which is determined as the sum of

functions of the local derivatives of the solution, can be approximated by Gaus-

sian scale space extension, yielding a convex solution space. By slowly varying the

standard deviation of the Gaussian towards zero, the solution space of the approxi-

mation will slowly vary towards the non-convex solution space. In computer vision,

some applications have been exploited in image deblurring [17], shape matching [18],

image segmentation [19], image denoising [20], template matching [21], Hough trans-

form [22], edge detection [23], early vision [24] and image matching [25]. However,

application of GNC method is very limited as no known principle for generating

between approximated ones exist.

Besides, as far as we know, graduated optimization has not been applied for

solving discrete MRF optimization problems.
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2.2 Sequential Monte Carlo

There is another optimization method related to our algorithm, i.e. Sequential Monte

Carlo (SMC) [21].

The SMC methods (e.g. particle filter) [26] are widely used for dynamic problems

in computer vision, such as object tracking [27]. The main idea of the SMC is to

sequentially sample the target probability distribution πt at time t with a set of

particles, that is a group of weighted random samples. A weight w
(i)
t represents the

importance of the associated sample x
(i)
t .

The samples x
(i)
t at a time t are generated from the importance distribution νt,

which is constructed by a Markov transition kernel K and the previous distribu-

tion πt−1; each sample x
(i)
t evolves from x

(i)
t−1 according to the kernel K , and the

importance distribution νt is represented by

νt(xt) =
∑
xt−1

πt−1(xt−1)K(xt−1, xt). (2.1)

The weight w
(i)
t of each sample x

(i)
t is proportional to the ratio of the target

distribution πt to the importance distribution νt, also is defined as

W
(i)
t =

πt(x
(i)
t )

νt(x
(i)
t )

, (2.2)

w
(i)
t =

W
(i)
t∑N

i=1W
(i)
t

. (2.3)

Then, the particles as the weighted samples asymptotically converge to the target

distribution:
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π′t(xt) =

N∑
i=1

w
(i)
t δ

x
(i)
t
(xt) →

a.s.
πt(xt), N → ∞, (2.4)

where δ denotes the Dirac delta function.

SMC has been applied to graph matching problem [28] in which a sequence

of intermediate distributions are introduced from a simple initial distribution and

gradually moving towards the final target distribution equivalent to the original

objective function of the problem.

Our algorithm initially minimizes a simplified energy function and gradually

transforms that function until it is equivalent to the original energy function. In our

case this transformation is performed via graduated graph approximation. Transition

from one function to another is performed by random addition of edges. We get

a new solution by randomly generating a new intermediate graph and optimizing

corresponding energy function by block ICM. It can be interpreted as sampling from

intermediate distribution. Our approach differs from SMC in that we do not increase

dimension of the problem, instead, we increase complexity of the problem. Also we

cannot generate a set of solutions at a time and choose the best one as SMC, because

in that case we need to generate multiple structures in each iteration and optimize

each of them, that is computationally very expensive.

Like Simulated annealing [10], our random selection of edges produces solutions

that allow some uphill moves in energy state, in which the sequence of solutions

ranges in long and gradually in short distance. Instead, our algorithm accepts a new

solution with probability 1 and does change the structure of the function.
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Chapter 3

Stochastic graduated graph

approximation

3.1 Graph approximation by scanlines

The main idea of the graduated optimization is to obtain an optimal solution, which

is aimed to be the global optimum, through intermediate functions simplified from

an original function. For example, the outer bound of a non-convex function is

approximated as a convex function and considered to get a minimum value near

the global optimum. We initially minimize the simplest function of the original one

and progressively generate complex functions gradually until it is equivalent to the

original function. Meanwhile, minimizing the intermediate ones makes the solutions

move towards the global optimum. Thus, the graduated optimization technique aims

to guide the solutions through the sequence of intermediate optimization problems

to obtain a good solution for the original problem. The issue here is how to generate

the sequence of intermediate functions to guide the solutions. For this, we propose
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Figure 3.1: Unified framework: we propose a new iterative method of building the

sequence of approximations for the original energy function. We exploit a stochastic

method to generate intermediate functions, which guides the intermediate solutions

to the near-optimal solution for the original problem. Our framework is unified in the

sense that different problems with different energies share the same approximation

scheme, making our framework widely applicable and general. (The scheme has been

borrowed from [1].)

a new iterative method of building the sequence of approximations for the original

energy function (see Figure 3.1).

For simplicity, we consider a grid graph G with horizontal and vertical edges be-

tween nodes. We exploit edge addition for obtaining approximated functions. This

simple approximation is applicable to any class of energy functions. Let an approxi-

mated graph denoted by G̃, where Ẽ is a subset of E . All the nodes V are maintained

for the same structure and the corresponding potentials, i.e. ψi and ψij are inherited

from the energy function (4.1). Figure 3.2 shows a sequence of graphs are generated

by gradually adding edges to a set of chains (or scanlines) in row and column ways.

By increasing the size of Ẽ , the intermediate graphs G̃ become complex and

14



Figure 3.2: Graduated graph approximation: the basic idea of the overall algorithm.

SGGA builds the sequence of approximated graphs Γ = {G̃0, G̃1, ..., G̃t, ..., G} and

optimizes corresponding energy functions. Optimization of each approximated en-

ergy function is performed by block ICM-based local search method. Scanning gen-

erates initial solution for each subsequent problem. Diversity of proposed initial

solutions is achieved by random addition of edges to approximated graphs. Number

of added edges in each iteration is controlled by user-specified parameter α.
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equivalent to the graph G . Thus, we generate a sequence of intermediate graphs Γ =

{G̃0, G̃1, ..., G̃t, ..., G} with the corresponding energy functions Φ = {Ẽ0, Ẽ1, ..., Ẽt, E}

, where an approximated function Ẽt is formulated as follows:

Ẽt(x) =
∑
i∈V

ψi(xi) +
∑

(i,j)∈Ẽ

ψij(xi, xj) (3.1)

Note that we assume the initial graph G̃0 consists of a set of disjoint chains and

increase the subset of edge Ẽ by adding only edges between the initial chains.

Transition between a series of intermediate graphs is performed by gradual ad-

dition of edges between rows and columns. The schedule of adding edges at each

iteration is an important control parameter in our framework. We increase the num-

ber of active edges by the proportion at iteration t

αt = 1− ρt, (3.2)

where ρ ∈ (0, 1) is a step size.As extreme cases, when ρ = 1, the problem becomes

a scanline approximation, which is performed by row-based and column-based al-

ternation. This type of approximation has been proposed in early stereo matching,

denoising problems and more [11, 29–33]. When ρ = 0 , the graph is equivalent

to the original target graph for which we can exploit any optimization techniques

like move-making algorithms. Therefore, this scheduling recovers the original graph

gradually.

For optimizing each intermediate energy function Ẽt, associated with graph G̃t

depicted in Figure 3.2, dynamic programming algorithm is subsequently applied to

all scanlines in graph G̃t. We summarize all steps described so far in the following

pseudo code of the overall algorithm (3.1).
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Algorithm 1 Stochastic Graduated Graph Approximation Algorithm

Set iteration count t = 0, αt = 1 and ρ ∈ (0, 1)

Initialize the initial assignment x0

for Each scanline direction do

Generate a graph G̃t according to αt

xt+1 = argmin
x

Ẽt(x) by block ICM and DP

Update αt = ραt−1

if the maximum iteration t or αt ≈ 0 then

return the current x

end if

end for

Our algorithm scans rows from top to bottom, then columns from left to right,

then rows from bottom to top and then columns from right to left. Thus, influence of

each node on others is propagated along scanlines in possible directions. This process

has been called scanning. The order of scanning directions can be changed without

degradation of performance of the overall algorithm. For instance, this method pre-

serves vertical and horizontal consistency of an image. In the last iteration, SGGA

solves the original problem, i.e. minimizes the energy function which corresponds

to the graph G but it uses a preoptimized configuration obtained by the sequence

of previous iterations. In the last iteration the reconstructed graph is the original

graph. Using the block ICM algorithm, the convergence of SGGA is guaranteed.

However, given the number of active edges for a graph Ẽt(x), we select the ac-

tive edges randomly at each iteration. This random selection helps guided solutions

pervaded in a wide range between iterations and makes long – range movement in
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solution space. In addition, the varying number of active edges controls complexity

of the optimization problem and also range of move – making proposals. This is, as

more edges are added, the connected nodes are strongly conditioned on each other.

This makes move – making small. On the contrary, the movement becomes large in

solution space.

3.2 Graph approximation by trees

There have been other approaches to approximate the original function in restricted

structures. Some structures are known to be tractable, such as bounded treewidth

subgraphs (e.g. tree and outer-planar graph) [32,34–36].

Instead of updating scanline at a time, we may choose a tree structure. However,

we experimentally have found out it is not good idea. Another version of SGGA has

been developed. It is based on iterative random generating of tree structures. It has

been called Stochastic Tree-based Graph Approximation algorithm (STGA)(2).

A single row (or a single column) in SGGA is substituted by a tree. For each

iteration we randomly generate trees. At each iteration we randomly choose one

node to be a root. Then we examine all the neighboring nodes in random order until

all nodes are examined. If adding a node make a cycle, we throw it out. If adding

a node is ok, we add that node to the current tree. Thus, a random tree is built.

After generating a tree we randomly delete edges between two nodes: one node is

inside the tree, another one is outside. At first iteration we delete all edges, at the

last - none. In order to optimize energy function associated with a tree we apply

general DP algorithm. Experimentally we found out that a tree cannot cover more

than 50% of nodes and therefore information about configuration of nodes might be
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Algorithm 2 Stochastic Tree-based Graph Approximation algorithm

Set iteration count t = 0, αt = 1 and ρ ∈ (0, 1)

Initialize the initial assignment x0

FOR t = 0 to N

Generate a tree T̃t according to αt

xt+1 = argmin
x

Ẽt(x) by general DP

Update αt = ραt−1

if the maximum iteration t or αt ≈ 0 then

return the current x

end if

ENDFOR

lost.

Despite the fact that using tree structure we can update more nodes at a time,

it turns out to be less efficient than scanline approach. The inappropriateness of

these structured approximations to the proposed algorithm can be attributed to

the following reason. By constructing a tree, the distance between two nodes is

distorted. Although two nodes could be close to each other in the original graph,

they can be apart through a detour generated by tree structure. And although close

nodes are more correlated, they influence on each other less in a tree structure than

in a scanline. Therefore, embedding restricted structures to our framework is not

appropriate.
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Chapter 4

Minimization of intermediate

energy functions

4.1 Block Iterated conditional modes

4.1.1 Block Iterated conditional modes: general idea

Block Iterated conditional modes (block ICM) is a generalization of ICM. ICM

algorithm can be applied to any given discrete factor graph but has been originally

proposed for images by Besag [8].

ICM uses the following property: if all but one variable were observed, then

solving for the MAP state of the single dependent variable would be easy. The

algorithm iteratively updates one variable at a time, keeping all other variables

fixed.

This is a local search method with neighborhood relation:

Np(x) = {x1, x2, ..., xp−1, yp, xp+1, ..., xp|yp ∈ xp}, (4.1)
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where p = 1, .., P and P = |V| indexes the dependent variables in the model. Iter-

ating over all the neighborhoods, the values of variables yp are effectively optimized

one – by – one, improving the overall objective function. The solution returned by

ICM guarantees local optimality with respect to the neighborhoods. The larger the

neighborhood, the stronger this local optimality guarantee. The largest neighbor-

hood – the original set of nodes itself, recovers the original problem. In general, it

is desired to select the largest neighborhood relation that still allows for efficient

optimization.

In block ICM algorithm the neighborhood is enlarged by a larger subset of vari-

ables for updating. Fixing a subset of variables to their current values corresponds

to conditioning the probability distribution. In other words, the neighborhood is

defined by the resulting conditioned distribution. Optimization inside the neighbor-

hood is efficiently solvable as long as the subset of variables forms a tree – structured

subgraph in the original graph. Whereas the original ICM neighborhood is as large

as the number of labels the variable can take, the search space explored by the

block ICM neighborhoods is exponential in the number of variables optimized over.

For grid – structured graphs a typical subset of variables induced by chains, i.e.

scanlines.

4.1.2 Block ICM for graduated graph approximation

In Chapter 3, we have generated a set of intermediate functions Φ. Now we can per-

form minimization of the approximated functions. Many existing algorithms are ap-

plicable for this purpose but the performance depends on local optimization method

that is applied in each iteration. We exploit efficient move-making algorithms, i.e.

block ICM –based method to optimize each energy function Ẽt(x). Especially, the
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performance of local search algorithms such as move – making algorithms depends

on the initial values, which enables our algorithm to guide intermediate solutions

to the target solution naturally. For example, the current solution xt from Ẽt(x) is

used for the initial state of the next energy function Ẽt+1(x) for initialization.

In our formulation, the graph G̃t corresponding to Ẽt(x) is represented by a

disjoint set of scanlines Ss = {Vs, Es}, where Vs is the subset of nodes and Es is the

associated edges respectively (see iteration 0 in Figure 3.2). The union of scanlines

should include all the nodes V, i.e. ∪sVs = V. One scanline Ss is selected from the

graph G̃t at a time conditioned on the remaining variables and edges in the graph.

Figure 3.2 describes the procedures of scanning order. The scanning order of block

ICM is 4 directional and the basic blocks of scanlines are considered in row or column

way depending on the direction. Optimization on a block of nodes can be exactly

performed by DP in polynomial time. Other structures on subsets of nodes, e.g.

tree – structures, can be considered but the performance – computation time, exact

solution and move-making range - varies. We choose a chain structure for efficiency

and tractability of exact solution by DP.

Although, block ICM does not guarantee convergence to the MAP but, providing

that the algorithm starts from a good initial configuration, satisfactory results are

obtained in practice [37]. In the last iteration SGGA solves the original problem,

i.e. minimizes energy function which corresponds to the graph G , but it uses a pre

optimized configuration which is obtained by the sequence of previous iterations. It

is known that it each iteration of clock ICM the energy is decreasing. Therefore, the

convergence of SGGA to local minimum is guaranteed.
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4.2 Dynamic programming

4.2.1 Dynamic programming: general idea

The term dynamic programming (DP) was originally used in the 1940s by Richard

Bellman [38] to describe the process of solving problems where one needs to find the

best decisions one after another. In this section we quote the author.

To begin with, the theory of DP was created to treat the mathematical problems

arising from the study of various multi – stage decision processes, which may roughly

be described in the following way: we have a physical system whose state at any time t

is determined by a set of quantities which we call state parameters, or state variables.

At certain times, which may be prescribed in advance, or which may be determined

by the process itself, we are called upon to make decisions which will affect the

state of the system. These decisions are equivalent to transformations of the state

variables, the choice of a decision being identical with the choice of a transformation.

The outcome of the preceding decisions is to be used to guide the choice of future

ones, with the purpose of the whole process that of minimizing (maximizing) some

function of the parameters describing the final state.

The basic idea of the theory of DP is that of viewing an optimal policy as one

determining the decision required at each time in terms of the current state of the

system. Following this line of thought, the basic functional equations given below

describing the quantitative aspects of the theory are uniformly obtained from the

following intuitive

Principle of optimality . An optimal policy has the property that whatever the

initial state and initial decisions are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the first decisions.
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To illustrate the type of functional equation that arises from an application of

the principle of optimality, we consider the simplest case of discrete deterministic

process where the system is described at any time by anM – dimensional vector p =

(p1, p2, .., pM ), constrained to lie within some region D. Let T = {T}k , where k runs

over a set which may be finite, enumerable, or continuous, be a set of transformations

with the property p ∈ D implies that Tk(p) ∈ D for all k.

Let us assume that we are considering an N – stage process to be carried out to

minimize some scalar function, R(p) of the final state. A policy of a selection of N

transformations, P = (T1, T2, ..., TN ), yielding successively the states

p1 = T1(p),

p2 = T2(p1),

. . .

pN = TN (pN−1).

(4.2)

If D is a finite region, if each Tk(p) is continuous in p, and if R(p) is a continuous

function of p for p ∈ D, it is clear than an optimal policy exists. The minimum value

of R(pN ), determined by an optimal policy, will be a function only of the initial

vector p and the number of stages N . Let us then define

fN (p) = min
p
R(pN ) (4.3)

the N – stage return obtained using an optimal policy starting from the initial state

p .

To derive a functional equation for fN (p), we employ the principle cited above.

Assume that we choose some transformation Tk(p). The minimum return from the
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following (N − 1) – stages is, by definition, fN−1(Tk(p)). It follows that k must now

be chosen so as to minimize this. The result is the basic functional equation

fN (p) = min
k
fN−1(Tk(p))

N = 2, 3, . . . .

(4.4)

It is clear that knowledge of any particular optimal policy, not necessarily unique,

will yield fN (p), which is unique. Conversely, given the sequence {fN (p)} , all optimal

policies may be determined.

We thus have a duality between the space of functions and the space of policies

which is of great theoretical and computational importance.

4.2.2 The DP algorithm on scanlines for graduated graph approx-

imation

Dynamic programming is a powerful and efficient optimization tool which can find

global optimal solution of graphs without loops regardless of sub-modularity. Graph-

cut based move-making algorithms (e.g. α – expansion and αβ – swap) are restricted

on submodular functions due to the condition of graph-cuts. Even though those

algorithms are efficient, we focus on more difficult cases via combining DP and

block ICM for efficient move-making on general energy functions.

According to procedure of graduated graph approximation which has been dis-

cussed in Chapter 3, edges are gradually added between scanlines over the sequence

from Γ. Therefore, each scanline has connections with neighboring scanlines in G̃t .

To efficiently apply DP, we follow the preprocessing described in the work of [11].

In particular, we update unary potentials of nodes within the current scanline Ss
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before optimization. Let the objective function for the current scanline Ss formulate

as follows:

es =
∑
i∈Vs

(ψi(xi) +
∑

j∈Nout(i)

ψij(xi, x̃j)) +
∑

(i,j)∈Es

ψij(xi, xj), (4.5)

where Nout(i) is a set of fixed neighboring nodes x̃j for node i, which is outside the

current scanline. The second sum in the function (4.5) represents pairwise potentials

of edges between the current scanline and its neighbors. Actually these potentials

are not pairwise because one variable in the pair is fixed. We first modify the unary

potentials ψi(xi) within Ss as

ψ̃i(xi) = ψi(xi) +
∑

j∈Nout(i)

ψij(xi, x̃j). (4.6)

Replacing with (4.6), the function (4.5) can be rewritten as follows:

es =
∑
i∈Vs

ψ̃i(xi) +
∑

(i,j)∈Es

ψij(xi, xj). (4.7)

Now DP can find global minimum of the function (4.7) in polynomial time and

update current labeling of nodes in Ss. Specifically, the DP algorithm computes the

following cumulative cost C(xi) for each node within Ss and for each possible label

in Λ :

C(xi) = ψ̃i(xi) + min
xi−1∈Λ

(C(xi−1) + ψi−1,i(xi−1xi)). (4.8)

First node in Ss is initialized, for which a recursive term in (4.8) is inactive. Then

by induction each value C(xi) is computed by minimizing C(xi−1) over Λ for the

previous node. Thus, the algorithm computes |Vs||Λ| values for Ss . This procedure

is illustrated in Figure 4.1.

The complexity of this dynamic procedure is O(∥Vs∥|Λ|2).
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Figure 4.1: DP for the approximated graph G̃t. Labels for the gray nodes are fixed.

Cumulative costs C for the red nodes have been computed and the algorithm is now

processing the green node xi . To compute the cumulative cost C(xi), the algorithm

minimizes over terms involving possible assignments xi−1 to the previous node. Blue

nodes will be processed subsequently.

4.2.3 The DP algorithm on trees

DP is a technique to efficiently optimize energy function on chain. We can also

apply DP to the nodes of a tree. The idea is to associate a value with each node that

combines the values defined for each of its children-in some cases we may process the

children in a fixed order. Analogous to regular DP, the message-passing algorithm

is applied to optimize intermediate energy functions in the algorithm (2) which has

been described in Chapter 3.

The message-passing formulation of the DP algorithm can be generalized to find

marginal distributions over individual variables and the MAP estimate in a tree

structured graphical model. The resulting algorithm is known as belief propagation

[4] and has two variants: max-product, for computing the MAP solution, and sum-

product, which allows computation of marginals of individual random variables.

Max-product message passing is similar in spirit to DP algorithms. Like the
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Viterbi [39] algorithm, it works by passing messages between tree nodes in two

stages. In the first stage, messages are passed from the leaf nodes to their parents,

which in turn pass messages to their parents, and so on until the messages reach the

root node. The message mi→j from a node i to its parent j is computed as

mi→j(xj) = max
xi

P (xj , xi)
∏

k∈Nc(i)

mk→i(xi), (4.9)

where Nc(i) is the set of all children of node i. The MAP label of the variable at the

root r of the tree can be computed as

x̂r = argmax
xr

∏
k∈Nc(r)

mk→r(xr). (4.10)

Given the MAP label x̂p of a variable x, the label of any of its children i can be

found as

x̂i = max
xi

P (x̂p, xi)
∏

k∈Nc(i)

mk→i(xi). (4.11)
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Chapter 5

Experiments

5.1 Introduction

In this section, we evaluate efficiency of our SGGA algorithm on a synthetic experi-

ment and OpenGM2 benchmark dataset. All the experiments have been performed

on Intel i5-2500 3.3GHz CPU and 8GB RAM.

5.2 Image deconvolution

Firstly we test our algorithm on a synthetic image deconvolution problem. Image

deconvolution is a task of restoring a blurry and noisy image [40]. Due to the highly

connected structure and strong non – submodularity, this problem has been reported

as a challenging one [41]. In particular, the difficult problem degrades the perfor-

mance of graph cut – based algorithms. We prepare the same MRF models as in [40]

for comparison.

The goal of image deconvolution is to recover an image X from its convolution

with a known blurring function h. This is equivalent to solving the linear inverse
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problem:

Y = HX, (5.1)

for X given Y , where H is the convolution matrix corresponding to h. In this work

we consider the generalized image deconvolution problem, where H is an arbitrary

nonnegative matrix. Inverse problems of this form are ill – posed, and are typically

solved by minimizing a regularized energy function. The energy of a solution X is

given by

∥Y −HX∥22 +G(X), (5.2)

which is the sum of a unary term and a pairwise term.

A natural class of pairwise terms is

GMRF (X) =
∑

(i,j)∈E

ψij(xi, xj). (5.3)

The neighborhood E consists of pairs of adjacent pixels, usually the 4 – connected

neighbors. The pairwise term ψ(l, l′) gives the cost to assign l and l′ to neighboring

pixels. Typically the pairwise term has a form such as ψ(l, l′) = min(|l − l′|,K) for

some metric | · | and constant K.

The problem we address is to efficiently minimize

E(X) = ∥Y −HX∥22 +GMRF . (5.4)

When H is diagonal, as in image denoising, the unary term has a restricted form

that makes it computationally tractable to minimize E. Specifically,
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∥Y −HX∥22 =
∑
i

(yi −Hi,ixi)
2, (5.5)

which means that the unary term for the pixel i to have the hypothesized label

(i.e. intensity) xi only depends on xi and yi. With such an H, the energy E can be

efficiently minimized by graph cuts.

Graph cuts, however, can only be applied to certain energy functions, i.e. binary

submodular. Existing graph cut energy minimization methods cannot be applied

when H is non – diagonal. Intuitively, this is because the unary term for a pixel to

have a label depends on the hypothesized labels of other nearby pixels.

In this work we consider the generalized deconvolution problem with non –

diagonal matrix H. Consider the correlation matrix of H defined by RH(i, j) =
N∑
i=1

Hr,iHr,j . We can then write

∥Y −HX∥22 =
∑
i

y2i − 2
∑
i

(
∑
j

yjHj,i)xi +
∑
i

R2
H(i, i)xixj . (5.6)

For experiments images (colored with three labels) are blurred with 3× 3 Gaus-

sian kernel with σ = 3. Then the image is distorted with Gaussian noise with σ = 10.

The pairwise potentials are imposed with Potts model for smoothness prior. We

have tested all the comparing algorithms on three datasets: ”Characters” dataset

(5 images), ”White chessmen” dataset (6 images) and ”Black chessmen” dataset (6

images). Some of images from these datasets are shown in Figure 5.1. Examples of

original images and distorted ones are shown in Figures 5.2, 5.3, 5.4.

We compare SGGA with conventional deterministic algorithms: alpha-expansion,

TRW-S and Belief Propagation (BP) and with MCMC – GD, a hybrid algorithm

recently proposed by Kim and Lee [12]. A source code of the last algorithm has been
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provided by the authors.

(a) (c)

(b)

Figure 5.1: Representative images from datasets for image deconvolution problem

The optimal schedule of adding edges for our algorithm has been found by cross-

validation: ρ = 0.9. For MCMC – GD algorithm, an optimal relative rate of a

dynamic and static anchor-based proposal is set as QD = 0.1.

Results of experiments for image deconvolution problem are summarized in Table

5.1.

Our algorithm achieves the lowest energy over all the test images as well as the

lowest average error rate. It converges to a local minimum faster than MCMC – GD

on average. Deterministic algorithms achieve much higher energy than SGGA but

converge faster. The fastest algorithm among deterministic ones is α – expansion,

which converges in 3.51 seconds on average. Overall the deterministic algorithms are

efficient in running time but converge to higher energy state than the others. Our

algorithm provides the lowest values with comparable running time to the determin-

istic methods.

Visual result of experiments with the image ”Mickey” from the ”Characters”

32



(a) Original image (b) Corrupted image

Figure 5.2: An example from the dataset ”Characters”, the image ”Mickey”: (a) the

original image , (b) the image after blurring and distortion. The image is blurred

with 3 × 3 Gaussian kernel with σ = 3. Then the image is distorted with Gaussian

noise with σ = 10.

dataset, ”White rook” from the ”White chessmen” dataset and ”Black king” from

the ”Black chessmen” dataset are shown in Figures 5.5, 5.6 and 5.7. The convergence

of energy states of these experiments are shown in Figures 5.8, 5.9, 5.10.

We also test our algorithm on more challenging problem. Images are blurred with

3× 3 Gaussian kernel with σ = 7 . Then the image is distorted with Gaussian noise

with σ = 100 (see Figure 5.12).

In Figure 5.11 graphs of energies for the image “Santa” obtained by the com-
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(a) Original image (b) Corrupted image

Figure 5.3: An example from the dataset ”Characters”, the image ”White rook”: (a)

the original image , (b) the image after blurring and distortion. The image is blurred

with 3 × 3 Gaussian kernel with σ = 3. Then the image is distorted with Gaussian

noise with σ = 10.
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(a) Original image (b) Corrupted image

Figure 5.4: An example from the dataset ”Characters”, the image ”Black king”: (a)

the original image , (b) the image after blurring and distortion. The image is blurred

with 3 × 3 Gaussian kernel with σ = 3. Then the image is distorted with Gaussian

noise with σ = 10.
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(a) BP (b) TRW-S (c) α-exp

(d) MCMC-GD (e) SGGA (f) STGA

Figure 5.5: Visual results of experiments with image ”White rook” - from ”White

chessmen”. Results obtained by each algorithm are shown.
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(a) BP (b) TRW-S (c) α-exp

(d) MCMC-GD (e) SGGA (f) STGA

Figure 5.6: Visual results of experiments with image ”Black king” - from ”Black

chessmen”. Results obtained by each algorithm are shown.
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(a) BP (b) TRW-S (c) α-exp

(d) MCMC-GD (e) SGGA (f) STGA

Figure 5.7: Visual results of experiments with images ”Mickey” from the dataset

”Characters”. Results obtained by each algorithm are shown.
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STGA

TRW-S

BP

alpha-Exp

MCMC-GD

SGGA

Figure 5.8: Numerical results of experiments with the image ”White rook”. The

proposed algorithm SGGA achieves the lowest energy and converges faster than

stochastic MCMC-GD.

STGA

MCMC-GD

SGGA

TRW-S

BP

alpha-exp

Figure 5.9: Numerical results of experiments with the image ”Black king”. The

proposed algorithm SGGA achieves the lowest energy and converges faster than

stochastic MCMC-GD.
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STGA

TRW-S

BP

MCMC-GD

alpha-Exp

SGGA

Figure 5.10: Numerical results of experiments with the image ”Mickey”. The pro-

posed algorithm SGGA achieves the lowest energy and converges faster than stochas-

tic MCMC-GD.

BP

TRW-S

alpha-Exp

MCMC-GD

SGGA

STGA

Figure 5.11: Numerical results of experiments with the image ”Santa”. More chal-

lenging problem is considered. The image is blurred with 3 × 3 Gaussian kernel

with σ = 7 . Then the image is distorted with Gaussian noise with σ = 100. The

proposed algorithm SGGA achieves the lowest energy and converges faster than

stochastic MCMC-GD.
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(a) Original image (b) Corrupted image

Figure 5.12: An example from the dataset ”Characters”, the image ”Santa” (a) the

original image , (b) the image after blurring and distortion. The image is blurred

with 3× 3 Gaussian kernel with σ = 7 . Then the image is distorted with Gaussian

noise with σ = 100.
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(a) BP (b) TRW-S (c) α-exp

(d) MCMC-GD (e) SGGA (f) STGA

Figure 5.13: Visual results of experiments with image ”Santa” from the dataset

”Characters”. Results obtained by each algorithm are shown.
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pared algorithms are shown. In Figure 5.13 corresponding visual results are depicted.

Energy values and running time for the compared algorithms are reported in Table

5.2.

5.3 OpenGM2 benchmark

We also evaluate the proposed method on OpenGM2 benchmark [2]. This bench-

mark includes various types of energy functions in different applications. We com-

pare the performance of SGGA with conventional stochastic algorithm Gibbsian

SA, and also with conventional deterministic algorithms. We report average ener-

gies of SGGA,STGA and Gibbsian SA. SGGA achieves the lowest energy in the

Stereo problem (see Table 5.3). The images obtained by all comparable algorithms

are shown in Figure 5.14.

Furthermore, for color segmentation problem, inpainting-n4, and image restora-

tion SGGA gives competitive results compared to deterministic algorithms. Ob-

tained images for these problems are reported in Figure 5.15, 5.16 and 5.17. Energies

and running time are reported in Tables 5.4, 5.5 and 5.6, respectively. Gibbsian SA

algorithm gives the worst results compared to SGGA and the deterministic algo-

rithms and produces visually poor images.

Scheduling the portion of added edges is an important control parameter in our

algorithm. According to our experiments, the parameter ρ should be high enough.

In Figure 5.18, we report energies obtained by SGGA for different values of ρ.It

justifies our intuition that energy function should be approximated slightly from one

to another. With a low value of ρ the algorithm initially solves a complex problem

and gets stuck in a ”bad” local minimum because it has smaller range of possible
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(a) BP (b) TRW-S (c) α-exp

(d) fast Gibbsian SA (e) slow Gibbsian SA (f) STGA

(g) SGGA (h) Ground truth

Figure 5.14: Results of experiments with Stereo problem, image “Venus”. Results

obtained by each algorithm are shown.

44



(a) Gibbsian SA (b) STGA (c) SGGA

Figure 5.15: Color segmentation: visual results of experiments with the image

”Clown-fish” of Gibbsian SA, STGA and SGGA respectively. SGGA gives a bit

worse result than deterministic algorithms (difference with TRW-S=3.4 %). SGGA

achieves visually similar results to deterministic methods.

(a) Gibbsian SA (b) STGA (c) SGGA

Figure 5.16: Inpainting-n4: visual results of experiments. SGGA gives the same result

as deterministic algorithms. Images obtained by Gibbsian SA, STGA and SGGA are

reported. STGA gives poor result.
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(a) BP (b) TRW-S (c) Input (d) α-exp

(e) Gibbsian SA (f) STGA (g) SGGA

Figure 5.17: Results of experiments with restoration problem, image “Penguin”.

TRW-S and SGGA algorithms show best results.
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ro=0.3

ro=0.6

ro=0.9

Figure 5.18: Stereo: the image ”Venus”. Energies obtained by SGGA with different

schedules of adding edges.

moves.
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Table 5.1: Image deconvolution results. Energies, average error rates and average

convergence time are reported. Mean values of energies for SGGA and MCMC-GD

are reported.

Energy (×106)

SGGA MCMC-GD α-Exp BP TRW-S STGA

[characters dataset]

Santa -3.72 5.57 15.78 8.84 14.40 767.469

Pororo -3.35 5.40 35.24 8.45 15.72 329.005

Mickey -2.90 8.57 35.29 12.51 18.26 352.52

Rodin -4.75 1.66 27.72 4.04 9.67 239.98

Gangnam 1.17 2.79 20.23 34.84 37.97 655.941

[white chessmen dataset]

white king -0.08 5.15 16.94 6.80 10.26 203.139

white queen -1.45 7.43 16.11 9.40 12.48 245.658e

white rook -0.50 5.24 17.18 7.16 9.20 214.694

white bishop -0.62 5.01 12.96 6.83 9.24 193.108

white knight -0.56 5.77 13.61 8.09 9.99 219.863

white pawn -0.93 3.12 8.45 4.10 5.39 132.122

[black chessmen dataset]

black king 1.87 19.24 14.12 23.53 27.88 446.691

black queen 1.61 20.67 14.13 24.19 26.88 464.596

black rook 1.59 20.76 13.66 25.78 28.15 474.631

black bishop 1.36 22.74 13.60 27.21 29.66 505.85

black knight 1.41 20.35 12.78 24.16 26.56 451.905

black pawn 0.97 23.10 7.25 28.89 30.20 518.15

Average
1.22 % 6.2% 8.18% 34.47% 35.98% 65.98%

Error

Average
5.46 7.33 3.51 6.43 3.82 9.91

running time,sec
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Table 5.2: Energy values and running time obtained by the compared algorithms for

deconvolution of the image “Santa”.

Methods BP TRW-S α-exp MCMC-GD STGA SGGA

Energy (×108) 5.41049 5.53433 6.51233 5.37346 9.27569 5.2756

Time, sec. 10.139 10.12 0.14 23.901 13.288 1.76

Table 5.3: Energy values and running time obtained by the compared algorithms for

stereo matching of the image “Venus”.

Methods BP TRW-S α-exp Fast Gibbsian SA Slow Gibbsian SA STGA SGGA

Energy (×106) 4.456640 4.276870 3.13305 96.9633 3.17854 4.03015 3.10828

Time, sec. 23.47 22.59 14.25 300.175 300.175 75.544 70.461

Table 5.4: Energy values and running time obtained by the compared algorithms for

color segmentation of the image “Clown – fish”.

Methods BP TRW-S α-exp Gibbsian SA STGA SGGA

Energy 14820.1 14817.5 14826.5 27234 42125.9 14867.5

Time, sec. 10.139 10.12 0.14 30.11 38.99 1.33

Table 5.5: Energy values and running time obtained by the compared algorithms for

inpainting – n4 problem.

Methods BP TRW-S α-exp Gibbsian SA STGA SGGA

Energy 484.591 484.591 484.591 502.655 227303 484.591

Time, sec. 0.03 0.19 0.02 24.63 33.19 0.38
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Table 5.6: Energy values and running time obtained by the compared algorithms for

image restoration problem.

Methods BP TRW-S α-exp Gibbsian SA STGA SGGA

Energy (×107) 1.77758 1.66137 1.73497 2.00826 8.54049 1.66203

Time, sec. 29.167 24.029 28.318 34.951 48.97 31.44
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Chapter 6

Conclusion

In this work, we have proposed a new efficient algorithm for solving discrete multi-

label MRF optimization problems. Our algorithm is based on the concept of gradu-

ated optimization. The algorithm initially minimizes a simplified function and pro-

gressively proposes a set of simpler functions that the original function. In the pro-

cedure, we have contributed how to generate the sequence of intermediate functions,

which is not well known in discrete MRF problems. Our algorithm combines ad-

vantages of stochastic and deterministic methods. We have exploited a stochastic

method to generate intermediate functions, which guides the intermediate solutions

to the near-optimal solution for the original problem. The transition from one inter-

mediate problem to another is controlled by the schedule of gradual addition of edges.

Then we have utilized efficient deterministic algorithm - block ICM and dynamic

programming. However, we have controlled only the amount of active edges, which

allows various range of move-making. We have shown that our algorithm generally

achieves lower energy than conventional deterministic and stochastic optimization

algorithms in solving image deconvolution problem and convergence rate similar to
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deterministic algorithms. Also the efficiency of our SGGA has been supported by

the set of experiments with problems from the OpenGM2 benchmark.
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국문 초록

마르코프 랜덤 필드 (MRF) 모델은 컴퓨터 비전 분야에서 매우 중요한 모델이다.

하지만 대부분의 기존 알고리즘들은 주어진 에너지 함수에 대하여 정확한 해를 효율

적으로 찾지 않고, 계산 효율을 위하여 최적 해의 근사치만을 구한다는 한계가 있다.

본 학위 논문에서는 일반적인 다중 라벨 MRF 최적화 문제를 풀기 위해 순차적 최적화

기법을 적용한 확률론적 순차적 그래프 근사 (SGGA) 알고리즘을 제시한다. 제시된 알

고리즘은 먼저 간소화된 함수의 최적 해를 구한 뒤, 원래의 목적 함수와 같아질 때까지

순차적으로함수를변환한다.그러나,중간과정의함수들을정해주는것과각함수들이

변환될 때 사용하는 매개 변수들의 종류와 값을 정해주는 것은 매우 어려운 문제이다.

이를 해결하기 위해 본래의 목적 함수를 순차적으로 근사하는, 새로운 반복적 방법을

제안한다.중간과정의함수들을생성하기위하여확률론적방법이사용되고,이방법은

중간 과정의 최적 해들을 본래의 목적 함수에 대한 최적 해와 거의 유사한 값을 갖도록

유도해 준다. 중간 함수들 사이의 변환은 순차적으로 에지를 추가해 줌으로써 조절된

다. 매 반복마다 블록 ICM과 같은 결정론적 알고리즘이 적용되어 중간 함수들의 해를

찾고 다음 중간 함수의 초기 해를 생성하는 방식이다. 제안된 알고리즘은 지역 최적해

로의 수렴이 보장되어 있다. 제안된 알고리즘의 성능을 평가하기 위하여 합성된 영상

디콘볼루션 문제와, OpenGM2 벤치마크의 다양한 문제에 대하여 실험이 시행되었다.

주요어: : MRF, discrete optimization, graph approximation.

학번: 2013-22506
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