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Abstract

PLF-Join: An Efficient MapReduce

Algorithm for Vector Similarity Join

Hyun Joon Kim

School of Computer Science Engineering

Collage of Engineering

The Graduate School

Seoul National University

Vector similarity join is a problem of finding all pairs of vectors which has a

similarity measure that exceeds a given threshold from a set of vectors. Vector

similarity join is used in many applications such as near duplication detection in

web pages, recommendation, and mining social data. However, it requires O(n2)

complexity where n is the number of vectors. This impractical time complexity

makes it hard to utilize Vector similarity join on many real world problems.

Hence, a lot of the Hadoop MapReduce algorithms were proposed to quickly

compute Vector similarity join. The state-of-the-art algorithm considers prefix

filtering and length filtering methods to reduce the time taken for Vector simi-

larity join operation. To even further reduce this time complexity, we propose

a variation of an algorithm that can be used to reduce the overhead involved

in the network I/O cost. Along with a MapReduce algorithm we propose an

efficient pre-processing technique which facilitates Vector similarity join calcu-

lation.

Keywords: Vector Similarity Join, Prefix Filtering, Length Filtering, All-Pair
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Chapter 1

Introduction

Vector similarity join is a problem of finding all pairs of vectors which

exceeds a given threshold from a set of vectors. Similarity join is used in many

applications such as near duplication detection in web pages, recommendation,

and mining social data. Essentially the problem requires N(N − 1)/2 pairs

examined where N is the number of vectors. Since all of the dimensions need

to be checked to see if each pair is similar, total complexity grows to D ∗

N(N − 1)/2 where D is the number of dimensions in the dataset. To resolve

this time complexity issue, a lot of algorithms were proposed. There are many

approaches in solving similarity join problem. One of the approaches is the

filtering technique. By filtering it means to filter out dissimilar pairs without

actually calculating the similarity value. For instance, recent works such as

PPJoin+ and PNJoin works with combination of prefix filtering, length filtering

and suffix filtering. These methods are all part of filtering techniques and they

do their best to reduce the number of candidate pairs from näıve algorithm’s

O(n2).

Prefix filtering is one of the methods used most widely in similarity join

algorithms. It exploits the fact that for a given threshold, to find another vector
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which is similar above that threshold, we do not have to look at all the elements.

Using this fact we can create a partial inverted index and calculate similarities

by comparing vectors that are gathered by the vector’s dimensions. Details of

the algorithm will be explained in Chapter 2.

Length filtering is another algorithm proposed by [2]. It is applied to prefix

filtering technique to even further reduce the number of candidate pairs. Since

all vectors have length, we can normalize all the vectors and compare their

values. By this way we can drive a formula which uses length information and

prefix element information to get better discriminative power.

Since the advent of the MapReduce framework, many algorithms tried

to find a way to efficiently solve similarity join with MapReduce. VCL[4],

V-SMART[5], and Bjoin[8, 3] are the recent researches in similarity join in

MapReduce framework. VCL exploits prefix filtering technique. Since MapRe-

duce gathers data by distinct key value, VCL algorithm uses dimension of the

vectors as key and send all the vector elements to that dimension and do join

algorithm within same dimension. V-SMART is another algorithm that uses

inverted index for similarity join. It does not use any filtering technique, sim-

ply gathering all the vectors to its’ dimensions where each element is non-zero

value. Lastly, Bjoin is an algorithm that uses both prefix filtering and length

filtering. It uses prefix filtering to first filter out the candidate pairs and gathers

each vector to respective dimensions up to prefix. Then by using length filter-

ing it further filters out the candidate pairs. After that the algorithm finally

joins candidate pairs and checks if indeed the candidate pairs have similarity

value that is higher than given threshold. Bjoin is a good algorithm that uses

both prefix and length filtering, but it suffers from its base design of requiring

network cost in O(p2) where p is a number of prefix elements in a vector.

In this paper we propose an algorithm that is based on Prefix and Length

Filtering called PLF-Join. We efficiently halved network overhead of Bjoin from

O(p2) to O(p2)
2 . Eventually leading to less filtering of dissimilar pairs. We will
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explain our algorithms in Chapter 5. This may seem small improvements in the

mathematical terms, but in practical experiments, the performance difference

is big. We will show the experimental results in Chapter 6
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Chapter 2

Preliminary

In this section we explain the basic prefix and length filtering techniques.

Section 2.2 refers to the contents from Bjoin[3] paper.

2.1 Problem Definition

According to definition from [9], Vector Similarity Measure has four prop-

erties. Positivity, Self-similarity, Maximality and Symmetry. In this paper we

assume non-negative vectors and cosine similarity measure.

Definition 1 Vector Similarity Join With given a number of vectors V and

a threshold value t, vector similarity join is a problem of finding all vector pairs

x, y such that x, y ∈ V where a similarity measure between them Sim(x, y) ≥ t

The definition 1 states the formal definition of vector similarity join problem.

As we explained earlier, the time complexity of naive vector similarity join

is O(N2). Instead of this naive algorithm, if we use inverted index join the

time complexity becomes O(N2 ∗D) where N is the number of vectors and D

is the number of dimensions. It looks like the time complexity increases, but

since usually the real world datasets are sparse and not all vectors have same
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distribution of dimensions, actually it can be used to reduce the real time taken

for total calculation. Addition to this, if we use prefix and length filtering we

can further reduce the time taken for the vector similarity join.

Definition 1 is a general definition for different similarity measures. We can

use any of measures such as Cosine, Dice, Tanimoto, and Jaccard. In this paper

we will use Cosine similarity measure.

Sim(x, y) ≥ t

CosSim(x, y) =
D(x, y)

‖x‖‖y‖
≥ t

(2.1)

Equation 2.1 shows the objective function in this paper. From Definition

1, Sim(x, y) ≥ t was the objective function and since we are assuming cosine

similarity measure in this paper, it can be rewritten as CosSim(x, y) = D(x,y)
‖x‖‖y‖ ≥

t

2.2 Filtering Predicate

We assume all vectors are normalized before we calculate the similarity. If

the vectors are normalized we can calculate the cosine similarity as (2.2).

D(x, y)

‖x‖‖y‖
= D(x, y) (2.2)

‖x‖ denotes the length of a vector x. Since this is 1 in normalized vec-

tors, ‖x‖‖y‖ simply becomes 1 in Equation (2.2). D(x, y) denotes the dot

product of vector x and y. Dot product is a commutative function. So we

can decompose D(x, y) into smaller parts. In other words, D(xp+s, yp+s) =

D(xp, yp) + D(xs, ys). Using this property we can set a certain dimension as

a point where we break a vector into two parts. In our algorithm this will be

determined by the given threshold t and we will call this point as a prefix

point and denote it as pi. Subscript i is denoting vector i. xp denotes the prefix

portion of the vector x. For example, in Figure 2.1, we see that there are two
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Figure 2.1: Filtering terms

non-zero elements in the prefix of vector x. xs is a suffix part of vector x. Suffix

is all the non-zero elements that come after the prefix point. For the Figure 2.1,

xs has four elements.

2.2.1 Prefix Filtering

Prefix Filtering utilizes an inverted index and the given threshold to reduce

the candidates. In inverted index join, we need to calculate all the elements

inside the vector. For example, in the Figure 2.1, we have total 6 non-zero

elements for vector x and 5 non-zero elements for vector y. For inverted index

join, we need to invert all 6 elements for x and 5 elements for y to dimensions and

then calculate the similarity. This incurs too much time and network overhead

that sometimes can take longer than the time needed for naive pairwise join.

On the other hand, given a threshold, prefix filtering can reduce the number

of elements in the vector to be processed. In the Figure 2.1, the given threshold

is 0.9. So we need to find the length of the prefix of the vector that exceeds 0.1.

In both x and y, length of the prefix after 2 elements exceeds 0.1 (‖xp‖ > 0.1).

This means we have to consider two elements before the prefix point px and

we don’t need to care about what comes after the prefix point px. Because

the suffix lengths of the vectors are less than or equal to 0.9 (‖xs‖ ≤ 0.9).

So in prefix filtering, if any non-zero elements’ dimension overlaps with other

vector, the pair becomes a candidate pair. In order to safely conclude that the
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pair is dissimilar, if nothing matches before the prefix point, we will show that

D(xs, y) < t in such case.

‖xs‖
‖x‖

< t

⇒ ‖xs‖ < t‖x‖

⇒ ‖xs‖‖y‖ < t‖x‖‖y‖

⇒ D(xs, y) ≤ ‖xs‖‖y‖ < t‖x‖‖y‖

⇒ D(xs, y) < t‖x‖‖y‖

⇒ D(xs, y) < t

(2.3)

Note that at the first line of Equation 2.3, we set the length of prefix point

part greater than the threshold that is why the suffix length divided by whole

vector length is less than the given threshold. The fourth line comes from

Cauchy-Schwarz inequality. The fifth line’s lengths of two vectors becomes 1

because we are assuming normalized vectors. So we concluded that if we set

the length of prefix point larger than the threshold, dot product of the vector’s

suffix part and any other vector will not be greater than t. VCL algorithm uses

this fact to filter out dissimilar pairs. However this technique alone, can not

differentiate the vectors that share same prefix part but are not similar. For ex-

ample, consider we have two vectors with same one prefix dimension but with

different magnitudes. Then even they have non-zero elements at same dimen-

sion that differs greatly in magnitude that will make them dissimilar, they will

pass this prefix filtering. However, this can be dealt with the length filtering

technique. We will describe this in the next section.

2.2.2 Length Filtering

Length Filtering is a technique proposed by [2]. This technique adds on to

the prefix filtering method and even further discriminates the candidate pairs.

In prefix filtering we found out that if we make prefix point greater than the
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threshold, no matter how much overlap happens at the suffix of the vector,

if nothing overlaps at the prefix part, the similarity value will be below the

threshold. So in length filtering we will even examine these candidate pairs that

passed the prefix filtering predicate and filter them. Length filtering utilizes an

inequality from equation 2.4.

D(xs, ys) ≤ ‖xs‖‖ys‖ (2.4)

The equation 2.4 comes from Cauchy-Schwarz inequality to set an upper

bound. So if the sum of D(xp, yp) and ‖xs‖‖ys‖ is less than a threshold t, then

Cos(x, y) ≤ t. Equation 2.5 is the length filtering predicate equation. We can

see that the first line is the approximation of the second line which is cosine

similarity value of vectors x and y. Since representing length of a vector requires

much less data compared to the actual vector elements, we can reduce data

required for the filtering by this approximation.

D(xp, yp) + ‖xs‖‖ys‖ < t‖x‖‖y‖

⇒ D(xp, yp) + D(xs, ys) < t‖x‖‖y‖

⇒ D(x, y) < t‖x‖‖y‖

⇒ Cos(x, y) < t

⇒ DissimilarPair

(2.5)

There is one important thing to note in the prefix filtering and length filter-

ing. That is the prefix point p does not necessarily mean same thing between

these two filtering techniques. In prefix filtering, p means that all dimensions

smaller than p should be checked to judge whether the candidate pair is similar

or not. So p should satisfy first line of the Equation 2.3.

On the other hand, the prefix point p of length filtering should not follow

this condition. Every p from length filtering should follow Equation 2.5. Vectors

have different prefix points because each vector has different dimensions and
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Figure 2.2: Length Filtering

values. In Figure 2.2, we see different prefix points for vectors x and y, px < py.

In order to apply length filtering predicate, we need to extend ys so that at

least it covers yps part. This is because we don’t know how vector x will match

with yps. In some cases, this part might contain the very similar object which

contains large portion of the vector length. But if we don’t include yps to the

suffix length of y, the pair would be considered not similar. So we need to be

sure to cover these cases. If we have information about the value of yps, then

we can exactly pin point the location of dimension px on y. So when we make

‖ys‖ to include ‖yps‖, we can use length filtering predicate in Equation 2.5.
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Chapter 3

Related Works

3.1 V-SMART Algorithm

V-SMART algorithm is proposed at VLDB 2012, which is earlier than VCL

algorithm which is discussed at Section 3.2. However, since this algorithm has

different characteristics from the other algorithms, we will introduce V-SMART

algorithm first. The algorithm uses the fact that a lot of similarity measures are

composed of Unilateral and Conjunctive functions of vectors. With this fact the

authors of the algorithm proposed an algorithm that makes a virtual inverted

index and calculates actual similarity value of all pairs of vectors on Hadoop

MapReduce framework.

V-SMART is rather a simple algorithm. It is consisted of two MapReduce

jobs. The first job is responsible for building virtual inverted index and send

each value of vectors to the respective dimensions. The second job gathers pairs

of vector ids and calculates actual similarity value of pairs from inverted index

for confirming similar pairs. For example, one key for the second job would be

< x, y > and the values would be dot product of elements that share same

dimensions between vectors x and y.

10



Figure 3.1: An example for V-SMART algorithm

Refer to the Figure 3.1, x, y, z denotes the vectors and A to H denotes the

dimensions for each vector. Note that some places don’t have any boxes. This

indicates the dimensions contain zero value element for that particular vector.

For the first job’s Mapper, V-SMART algorithm outputs Unilateral values,

vector id, and dimension value to each non-zero element appears in the vectors.

These values gather at the first Reducer. Then the Reducer generates vector pair

(e.g. < x, y >) and sends previous Unilateral values and vector information. In

our example, note that there are 11 pairs of vectors generated. For the second

job’s Mapper, does not do anything and it is called Identity-Mapper. At the

second job’s Reducer, each vector elements are gathered at the pairs. So the

algorithm can calculate the similarity value of two vectors.

V-SMART suffers from the performance because the overhead of making the

inverted index is a lot. This incurs a lot of I/O cost because typically MapRe-

duce spill out all data to the disk between jobs. The most inefficient part is

ReduceFirst, because the number of outputs is proportional to the square of

the number of inputs in worst case. Also unlike filtering algorithms, perfor-

mance of V-SMART algorithm does not change for varying threshold. Because

V-SMART is not filtering based and it simply creates the inverted index of

vectors, it is incapable of elastically respond to different threshold values. This

can be critical issue in some applications such as duplicate detection. Duplicate
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detection requires fairly high threshold for the data cleansing purpose. How-

ever, V-SMART can’t efficiently handle the high threshold unlike the other

filtering based algorithms. Our experiments in Chapter 6 show that V-SMART

algorithm is good for only low threshold.

3.2 VCL Algorithm

In this section we describe another vector similarity join algorithm proposed

by Vernica at el. VCL which is proposed at SIGMOD 2010 [4]. VCL is an

algorithm which uses prefix filtering predicate we described in 2.2.1. It generates

partial virtual indexes for prefixes rather than the entire vectors. The vectors

gather at the prefix dimensions so that the matching vectors in the dimensions

can calculate similarity value. VCL assumes set similarity filtering and it uses

Jaccard similarity for similarity measure.

Similar to the Equation 2.3, the algorithm needs to check at least the prefix

of the vectors. If there is a match in the prefix of the vector, the vectors would

not be filtered out. If there is no match, Jac(x, y) cannot exceed a threshold,

which means they are not similar.

How VCL algorithm works is as follows. In Figure 3.2, blocks before the bold

line represent prefix part of the vector and blocks after the bold line represent

suffix part of the vector. Only prefixes, A, B, and C are virtually indexed. For

example, V-SMART generates 11 pairs (3 distinct pairs) from 4 dimensions

in Figure 3.1. VCL generates only 2 pairs from 3 dimensions in Figure 3.2.

VCL usually performs better in most conditions because it generates much less

virtual indexes and conducts the filtering technique. Also it does perform well

with the high threshold values.

First job’s Mapper generates vector ID, x, and vector data, xData, for each

non-zero elements of the prefix of vector. First job’s Reducer can get vector IDs

that have common non-zero elements in the prefixes and calculate similarities

of pairs using xData came with x. The second job just removes duplicated pairs

12



Figure 3.2: An example for VCL algorithm

from the similar pairs result of first job. VCL is a simple algorithm that works

well with the MapReduce system. Since it requires only two jobs for the sim-

ilarity calculation, it minimizes the intermediate data in MapReduce system.

Since MapReduce requires all intermediate data to be spilled to the persistent

storage, this often incurs much disk I/O.

However, VCL has some inefficiency in vector data duplication. Since it only

uses prefix filtering, many vectors do pass this filtering technique, eventually

leading to a lot of network I/O with vectors that are actually not similar. When

first job’s Mapper of VCL reads a vector, it outputs 〈x, xData〉 for every prefix

elements. For instance, assume that a vector x has 100 elements, and the prefix

has 20 elements. VCL needs to replicate the vector x as many as the number

of prefix elements. VCL copies the vector with 100 elements by 20 times and

produces 2,000 elements. This is significantly more overhead compared to Bjoin

algorithm.

3.3 Bjoin Algorithm

Bjoin algorithm was proposed in [3]. The paper extends the length filter-

ing method proposed in [2] and proposes a MapReduce algorithm. The length

filtering method efficiently filters dissimilar pairs.
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Figure 3.3: An example for Bjoin algorithm

Bjoin works as follows. In the Figure 3.3, rectangles with diagonal lines rep-

resent the suffix part of the vectors. Like VCL algorithm Bjoin also virtually

indexes A, B, and C dimensions. However, unlike VCL algorithm, Bjoin does

not index the whole vector but only indexes prefix part of the vector to re-

duce the network overhead. After creating the index, using the length filtering

method presented in 2.2.2, Bjoin algorithm filters out the candidate pairs which

passed the prefix filtering. This results in reducing the candidate pairs even fur-

ther than prefix filtering. After this process, the algorithm needs to check if the

candidate pairs which passed the prefix and length filtering actually have sim-

ilarity measure higher than the threshold. So the algorithm actually performs

the join operation for the pairs and discard pairs that do not have similarity

value above the threshold.

Bjoin’s first job’s Mapper generates vector ID, x, prefix part of the vector,

and length of suffix part of the vector for each non-zero elements of the prefix

of vector. First job’s Reducer receives vector IDs that non-zero element is in

the same dimension of the prefix. From here, Bjoin algorithm applies length

filtering method and using the information about length of the suffix and prefix

elements. Using Equation 2.5, the algorithm filters out the dissimilar pairs.

After this job, both prefix and length filtering techniques are applied and we

have a list of candidate pairs. However, the list does contain some duplicate

14



records, so Bjoin removes these duplicate records with a one more MapReduce

job. The third job needs to access the original input vector data again. Since

MapReduce framework is not capable of holding the data between the stages,

Bjoin re-accesses the input data from Hadoop File System and match it with

the previous job’s output (Candidate pair list). The fourth job is responsible

for the actual calculation of the similarity pairs. If their similarity values exceed

the given threshold value, Bjoin outputs the value and the pairs.

Bjoin achieves much better filtering power because it is not only using

prefix filtering, but also length filtering. However, the extension requires two

more additional MapReduce jobs which incurs much overhead. Basically, Bjoin

algorithm requires network cost of O(p2) at the first MapReduce job because it

is sending prefix elements to each prefix dimension. For the most of datasets, this

is the most time consuming MapReduce job and bottleneck for the performance

issue. So we changed this bottleneck part and reduced the network overhead to

O(p2)
2 . Our algorithm will be presented in Chapter 5

15



Chapter 4

Pre-Processing

Vector pre-processing is also vitally important process for filtering based

vector similarity join algorithms. Algorithms such as VCL and Bjoin applies

pre-processing step to the dataset before it performs the join operation. The

major intuition behind this pre-processing is to reduce the number of vector

pairs for each dimension. The pre-processing orders the dimensions by its fre-

quency. Which means we have less frequent dimensions in the front for the prefix

filtering. This reduces the number of pairs greatly and only requires O(n) for

time complexity where n is the number vectors. In this chapter, we present a

method called StdSort which even further improve the existing pre-processing

method.

4.1 Pre-Processing Method of Previous Researches

Recent researches [4, 3], used frequency as the ordering method of the di-

mensions. We will call this as sparsity method. In sparsity method, dimensions

are sorted with the frequency of dimensions. In other words, the less popular

dimensions go to the front of the vectors. As the popular dimensions go to the
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back of vector, it will be unlikely to have those popular dimensions in the prefix

of vector. Therefore prefix filtering will eventually have less candidate pairs and

reduce the time needed for the algorithm. As dimensions are sorted by their

frequencies, it only requires time complexity of O(n) where n is the number of

vectors. This pre-processing benefits overall computation time compared to the

non-ordered dataset.

4.2 StdSort : Sorting with Standard Deviation

In this section, we will explain intuition for StdSort technique. It is a method

of utilizing the standard deviation values of the dimensions. It is applied to the

dataset only once and then future similarity joins can benefit from the already

ordered dataset.

Standard deviation sorting method may be added on to the sparsity or-

dering explained in Section 4.1. We will first sort the dimensions by frequency

(Number of vectors in that dimension) of these dimensions. Afterwards, if we

have a tie for frequency, we will sort those by standard deviation value from

dimensions. However this standard deviation sorting can only be applied along

with the length filtering technique for the best performance. Because the prefix

filtering technique does not consider the values of the vector, the variation of

values does not mean anything to prefix filtering technique alone. StdSort will

have same performance as sparsity in prefix filtering method alone because in

StdSort, dimensions are sorted by frequency and then by standard deviation

value if we have any tie. The main intuition behind the technique is that if a

dimension has a high standard deviation value, it will be likely to have values

that spread out more. It means that the dimensions will have high and low

values. This is beneficial factor for both prefix filtering and length filtering, be-

cause in prefix filtering, it is better if we have less vector elements in the prefix.

In achieving this, we need a dimension that contains high values to be placed

at the front of the vector. For length filtering, it is better to have low value
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Figure 4.1: Variation of Dot Product Value

as possible because from Equation 2.5, if D(xp, yp) + ‖xs‖‖ys‖ > t, we need to

confirm that candidate pair if it really has a similarity value greater than t. So

for length filtering technique, it is better to have more weight towards D(xp, yp)

than ‖xs‖‖ys‖, because that means we have more discriminative power.

Therefore, in order to satisfy these two contradicting standards from pre-

fix and length filtering technique, we use standard deviation value for sorting

method. It gives the dimensions more weight for having less vector elements in-

side the prefix. At the same time those values are likely to be different because

the dimensions have high standard deviation values. Please refer to Figure 4.1.

We plotted a graph of how different X and Y values can affect dot product

value. In this graph we assumed 1 as the sum value for X and Y . X and Y

plots denotes values for each two variables and Z plot denotes the dot product

(D(X,Y )) of X and Y . Note that when the two variables differs more, we have

lower Z value. For example, dot product of 0.9 and 0.1 is 0.09, whereas dot

product of 0.5 and 0.5 is 0.25. So even the value of two variables add up to
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1, if their values are more apart from one another, the resulting dot product

value is less. This is the reason for using standard deviation for the ordering the

dimensions. As more values in same dimension have different values, it would

have high standard deviation value, resulting in less value for D(xp, yp) from

Equation 2.5.

(a) Sparsity Example

(b) StdSort Example

Figure 4.2: Vector Pre-Processing Examples

Please refer to the Figure 4.2. In this figure, we explain the difference be-
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tween Sparsity and StdSort. Figure 4.2(a) is an example of Sparsity method

and Figure 4.2(b) is an example of StdSort method. Each example contains

three vectors. Letters A through G denote the dimensions and Std. denotes

the standard deviation value of the each dimension. Red bold lines between

dimensions denote the prefix dimension for each vector. Note that dimensions

are sorted by the frequency first and then standard deviation value in Figure

4.2(b). Accordingly, dimension A is on the front of the vector because it is the

only dimension that has one non-zero element. All other dimensions contains at

least two non-zero elements. Since it is the sparsest dimension, it is brought to

the front. Note from the dimension C, all the dimensions have three non-zero

elements. Hence we will consider the standard deviation value for sorting from

dimension C through G. As the standard deviation value increases, the values

from different vectors vary more. Therefore the dot product will be likely to be

less than dimensions with low standard deviation value.

For example, consider the example from this Figure 4.2 with the threshold

0.9. We will consider how many elements will be examined by prefix and length

filtering for each pre-processing methods. For Figure 4.2(a), vector x has four

non-zero elements to be examined until the prefix dimension. For vector y,

there are two elements before the prefix and for vector z one element needs to

be examined. Seven elements need to be considered for prefix filtering in total.

For Figure 4.2(b), a sum of six elements needs to be considered. The difference

arises because dimensions with high standard deviation tend to have elements

with high values inside the dimension. Note that for vector y, prefix dimension

increased from sparsity example. This is because for vector y, high standard

deviation dimension brought low value 0.1 before the prefix dimension therefore

0.67 had to be examined for the proper length of prefix.

In length filtering, consider only the pair of x and y. Firstly, we will see

how Sparsity example works with the length filtering. For any candidate pair

to work with length filtering technique, we need to make same prefix point,
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since vector x’s prefix dimension is larger than y’s prefix dimension. Therefore,

x’s new prefix dimension will be between C and D. Accordingly, the suffix

length of vector x will become 0.93 and length of vector y is 0.84. Now we

can apply the length filtering principle from Equation 2.5. D(xp, yp) = 0.13

and ‖xs‖‖ys‖ = 0.78. So the sum of these two is 0.91, which is greater than

threshold 0.9. Hence sparsity method will classify the vector pair x and y as a

candidate pair and proceed for actual similarity calculation of the pair. However,

the actual similarity value of these two vectors is 0.5, which is less than 0.9,

therefore not similar. On the other hand, StdSort method does not judge this x

and y pair as candidate pair. For StdSort, vector y’s prefix dimension is larger

than that of vector x. So we need to make prefix dimension of y to fit that of

x. Then, D(xp, yp) = 0.08 and ‖xs‖‖ys‖ = 0.45. Sum of these two is only 0.53.

Which is less than 0.9 and therefore this pair is not considered as a candidate

pair in StdSort method. When we actually calculate the similarity value for

each pairs, we need to examine O(d) where d is the number of dimensions for

the dataset. We see that in this example, sparsity will have fifteen elements to

be examined whereas StdSort will have only six elements to be examined.
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Chapter 5

PLF-Join

In this chapter, our MapReduce algorithm PLF-join will be presented. Com-

pared to Bjoin[3], PLF-join efficiently reduces network cost from O(p2) to O(p2)
2

where p is the number of prefix elements in the vector. Also PLF-join is com-

posed of three MapReduce jobs compared to Bjoin’s four MapReduce jobs. The

first job of PLF-join is for filtering out dissimilar pairs with prefix filtering and

length filtering. With the candidate vector pairs from the first job, the second

job re-accesses the dataset vectors and emits vector elements by their pairs.

The third job calculates the actual similarity value from the pairs and emits

them if they are above the threshold.

5.1 Job 1 : Filter Dissimilar Pairs

This job is where we achieved major improvements compared to Bjoin.

The difference comes from the line 6. Unlike Bjoin, PLF algorithm starts from

the end of prefix and starts to append prefix. This is a big difference in terms

of the network cost. Since Bjoin was originally sending prefix to every prefix

dimensions, the cost was O(p2). However, in PLF algorithm, we are reducing
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this amount by aggregating the prefix and it becomes O(p2)
2 . We will explain

about this with the detailed example at Figure Algorithm 1 is the mapper

function of Job1. The algorithm submits dimension ids that are less than or

equal to the prefix point p in Line 4 - 9. Notice that we start from the end of

prefix and then start to aggregate prefix as we go to the front of the vector. This

is because at the front part of the dimensions require later part of dimensions

of prefix in order to fix the prefix point if the other vector matched has less

prefix point than this vector (e.g. Figure 2.2).

Algorithm 1: Mapper of Job 1. Filter Dissimilar Pairs

Input: Key: Vector ID

Value: Vector data.

Format: 〈vid〉, 〈d1 : val1, . . . , dk : valk〉

Output: Key: Dimension id

Value: Vector id, Prefix point, Prefix, Suffix length

Form: 〈dk〉, 〈x.id, p, xp, ‖xs‖〉

1 p← getPrefixPoint(x)

2 ‖xs‖ ← getSuffixLength(x, p)

3 i = p

4 while i ≥ 0 do

5 Key ← 〈dk〉

6 xp ← appendPrefix(xp, vali)

7 V alue← 〈x.id, p, xp, ‖xs‖〉

8 write(Key, V alue)

9 i−−

Algorithm 2 explains the Reducer of Job 1. The input of this reducer are

dimension id and related values of vector information such as prefix elements,

prefix dimension, suffix length of the vector, and vector id. Gathered vectors
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Algorithm 2: Reducer of Job 1. Filter Dissimilar Pairs

Input: Key: Dimension id

Value: A list of vector information

Format: 〈dk〉, 〈xid, p, xp, ‖xs‖〉∗

Output: Key: Candidate Pair

Value: null

Format: 〈xid, yid〉, 〈−〉

1 foreach element x in the value list do

2 foreach element y in the value list do

3 if xid < yid then

4 dotV alue← D(xp, yq)

5 mulV alue← getSuffixLenMul(xp, yp, px, py, ‖xs‖, ‖ys‖)

6 if dotV alue + mulV alue ≥ t then

7 Key ← 〈xid, yid〉

8 V alue← null

9 write(Key, Value)
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inside these key dimensions are all candidates of the similar pair because they

passed the prefix filtering predicate Equation 2.3. If this was the VCL algorithm,

we wouldn’t do anything else but join the gathered vectors, but we will apply

length filtering algorithm. So for all pairs of vectors, we apply the predicate

Equation 2.5. We will calculate the dot product of prefix part of the two vectors

and then multiply the suffix lengths of them. However, as we explained earlier,

there are cases like in Figure 2.2 where px and py doesn’t match for any arbitrary

vector x and y. So in this case, we will have to make the longer prefix to be

same or shorter than the shorter prefix and include the left over length to suffix

length (yps in Figure 2.2). In Algorithm 2, getSuffixLenMul function at Line

5 handles this part.

5.2 Job 2 : Re-import the Vectors

A list of candidate vector id pairs which passed the prefix and length filter-

ing is the input of the Algorithm 3. With the list of these candidates we need

to actually calculate similarity value to if their similarity value really exceed

the given threshold value. Since Hadoop MapReduce doesn’t have the capa-

bility of sharing the data between the jobs, we need to import the data from

HDFS(Hadoop File System) again. This is the reason why the second job is

named as ”Re-import the Vectors”. So there are two types of inputs for the

Algorithm 3. One is the candidate pairs from previous job and the other is re-

imported vector data from HDFS. For calculating the similarity value, we need

to match the candidate vector id pairs to the each vector data. Algorithm 3 does

this job. At Line 1, it first distinguishes input data type from Candidate Pairs

from Vector Data. Note that the Candidate Pairs does contain the duplication

so at Line 2, it checks if the pair was already output by the algorithm before.

This is done by checking the data structure that maintains list of output pairs.

If the input data type is not Candidate Pairs, it goes to the Line 8. Here we

know that the input is Vector Data. So we just use its id for the key and vector
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Algorithm 3: Mapper of Job 2. Re-import the Vectors

Input: Candidate Pairs (With Duplicates)

Format: 〈xid, yid〉

Output: Candidate Pairs

Format: 〈xid, 〈xid, yid,−〉〉 and 〈yid, 〈xid, yid,−〉〉

Input: Vector Data

Format: 〈xid, xData〉

Output: Candidate Vector Data

Format: 〈xid, 〈−,−, xData〉〉

1 if Candidate Pair then

2 if Pair x and y are not already written then

3 Key ← xid

4 V alue← 〈xid, yid,−〉

5 write(Key, V alue)

6 Key ← yid

7 write(Key, V alue)

8 else

9 Key ← xid

10 V alue← 〈−,−, xData〉

11 write(Key, V alue)
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data as their value. So after Algorithm 3, each candidate pairs and the related

vector data can gather at same reducer.

Algorithm 4: Reducer of Job 2. Re-import the Vectors

Input: Candidate Pairs

Format: 〈xid, 〈xid, yid,−〉〉

Input: Candidate Vector Data

Format: 〈xid, 〈−,−, xData〉〉

Output: Half Vector Data

Format: 〈〈xid, yid〉, 〈xData,−〉〉

1 foreach element in the value list do

2 if value is type of xData then

3 xData ← element.xData

4 foreach element in the value list do

5 if element.pair.firstID == xid then

6 Key ← element.pair

7 V alue← 〈xData,−〉

8 write(Key, V alue)

9 else if element.pair.secondID == xid then

10 Key ← element.pair

11 V alue← 〈−, xData〉

12 write(Key, V alue)

Algorithm 4 handles partially aggregated data and generate pair key for the

final similarity calculation. We have two input types one is the candidate pairs

and the other is candidate vector data. What we need to do is send the vector

data to the candidate pair as a key. So that for all candidate pairs, related

vector data can gather and we can perform the similarity calculation. From

Line 1 - 3, the algorithm iterates through the list of values and retrieves vector
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data first. After that for each Candidate Pairs, the algorithm sends Candidate

Pair as a key and vector data as a value. This is done in Line 4 - 12.

5.3 Job 3 : Calculate Similarity

In this job, actual similarity values of the vector pairs are calculated. Ev-

erything we need for the calculation is already gathered from Algorithm 4. So

in this job we do not need any mapper. So for Job 5.3, we only have a reducer.

Algorithm 5 is the responsible reducer for similarity calculation. It simply cal-

culates the similarity value at Line 3 and if the value is greater or equal to t, it

outputs the pair as the similarity pair.

Algorithm 5: Reducer of Job 3. Calculate Similarity

Input: Half Vector Data

Format: 〈〈xid, yid〉, 〈xData,−〉〉

Output: Similarity Value

Format: 〈〈xid, yid〉, 〈Sim(x, y)〉〉

1 xData ← value.first

2 yData ← value.second

3 Similarity V alue ← Cosine(xData, yData)

4 if Similarity V alue ≥ t then

5 Key ← 〈xid, yid〉

6 V alue← Similarity V alue

7 write(Key, V alue)

5.4 Example of PLF-join

In Figure 5.1, we have four vectors with four dimensions in input dataset.

In this example the threshold is set to 0.9 and all the vectors are normalized.

In the table of 〈key, value〉, Vid, P , Prefix, and SuffLen represents the ID of
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Figure 5.1: Example of PLF-join

a vector, prefix point, prefix, and suffix length of the vector, respectively. The

suffix length is used when PLF-join performs length filtering. For simplicity,

we omit the shuffling of MapReduce in the figure.

The mapper of Job 1 reads the input dataset of vectors. For each vector,

it searches for a prefix point p, by finding a dimension where ‖xs‖ < t, i.e.,

the suffix length is less than t. For example, the prefix point of vector V3 is C

since
√

0.752 = 0.75 < 0.9. Note that
√

0.752 + 0.62 = 0.96 > 0.9, so dimension

B cannot be the prefix point. Once we determined the prefix point and suffix

length of the vector, the algorithm will iterate through the elements before the

prefix point and output each element’s dimension as key and Vid, p, Prefix,

and SuffLen as value. The mapper outputs 〈key, value〉 pairs. One of them is

〈B,〈V3,C,{B:0.3, C:0.6},0.74〉〉.

The reducer then inputs〈key, value〉 pairs, and makes candidate pairs of

vectors, during which we perform the length filtering technique. By Equation

2.5 in the section 2.2.2, we calculate D(xp, yp)+‖xs‖‖ys‖. If the value is greater

than or equal to the threshold, we hold the pair. Otherwise, we can safely discard
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the pair. For example, consider a pair V3 and V4 which share the same key value.

Then the value is 0.315+0.6675 = 0.9825 > t = 0.9. So this pair 〈V3, V4〉 remains

candidate. On the other hand, consider another pair V3, V5. D(xp, yp)+‖xs‖‖ys‖

for V3 and V5 is 0.3. Because D(xp, yp) = 0.3 and ‖xs‖‖ys‖ = 0 (‖ys‖ = 0). Since

D(xp, yp) + ‖xs‖‖ys‖ ¡ 0.9, the pair V3, V5 is discarded. If we were using VCL

algorithm, this pair would have survived to the last job because it passed the

prefix filtering. However, PLF-join efficietly filters this dissimilar pair out by

length filtering technique. The reducer uses key to pass the pair candidacy to

the next job.

Job 2 has two inputs. One is the candidate pairs output from Job 1, and

the other is original input vectors. The candidate pairs are split into vector

ids, and output as keys. In the figure, 〈V3, V4〉 is split to V3 and V4. The re-

ducers join candidate pairs and vector elements by common vector id, combine

vector ids, and output it as a key and the related data. For example, 〈V3,

〈{B:0.3,C:0.6,D:0.75}〉〉 and 〈V4, 〈{B:0.15,C:0.45,D:0.89}〉〉, and 〈V3, 〈V3, V4〉〉,

〈V4, 〈V3, V4〉〉 are joined to output the records 〈〈V3, V4〉, 〈{B:0.3,C:0.6,D:0.75},−〉〉

and 〈〈V3, V4〉, 〈−, {B:0.15,C:0.45,D:0.89}〉〉.

At Job 3, the mappers do nothing but shuffle. This is called Identity-Mapper

and this is why we didn’t put anything between Map and Reduce in the Figure

5.1. The reducers calculate the similarity of each candidate pairs. If the simi-

larity exceeds the given threshold, it outputs the pair with its similarity value.

In the figure, 〈〈V3, V4〉, 0.92〉 is the final output of PLF-join.
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Chapter 6

Experiment

We show performance differences between PLF-join algorithms and other

baseline algorithms. We experimented with multiple dataset with multiple thresh-

old values on our algorithm and other algorithms.

6.1 Experiment Setup

We used two datasets in this experiment.

• UKBench- UKBench dataset is a dataset that contains visual information as a

word of bag. Each vector represents an image and each dimension represents

a visual word. The features (dimensions) are extracted by Scale-Invariant

Feature Transform (SIFT) algorithm [10]. One of the applications of this

dataset using similarity join algorithm can be finding similar images. The

dataset is expanded to 7 times. Total size of this dataset is 667 MB.

• MovieLens- This dataset is a movie review dataset from a number of users.

Each vector represents a user and each dimension represents a movie. A

user rates a movie on 5 discrete numbers from 1 to 5. It is collected and

processed by GroupLens, a research group at the University of Minnesota
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[7]. In recommendation systems, finding similar users or items (movies) is a

very frequently used operation. The size of dataset is 87.6 MB.

• LiveJournal- LiveJournal is an online social network service that operates

with almost 10 million users. Users can create journals and group blogs. It

also enables users to have friendship with each other. A user is represented

as a vector and dimensions are other users. So the values inside the vector

represents friendship relationships between users. Similar users are applied

in recommending friends or detecting communities from the network. The

dataset is from SNAP: Network datasets [6].

We used Hadoop 1.1.2 version and 12 nodes for the experiment. Each node is

configured with i7-3820 3.60 GHz CPU, 4GB DDR3 RAM, and 2TB WD HDD.

Since each CPU has 4 cores, we ran 4 reducers for each node.

6.2 Time Performance

We measured the time performance of the algorithms on different thresh-

old values. Figure 6.1 shows the result of the experiment. We tested the four

different thresholds which are 0.3, 0.5, 0.7, and 0.9. Each sub-figure in Figure

6.1 represents an experiment with different dataset. Note that the V-SMART

has same performance over all threshold because the algorithm is not able to

respond to the differing threshold. Except that case, all other algorithms show

generally reduced time when we have higher threshold. This is because higher

threshold results in less or equal number of similar vector pairs to the lower

threshold. As we have more similar pairs to process, they will pass the filtering

process and takes more time. Thus it is important to make the algorithm react

to different threshold elastically. For UKBench and MovieLens, the performance

improvement of PLF-join algorithm is a lot. However, in LiveJournal experi-

ment at Figure 6.1(c), All three algorithms except V-SMART achieves similar

performance. The reason behind this is that compared to other two datasets,
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LiveJournal dataset contains more similar pairs. Since both PLF and Bjoin have

more MapReduce jobs, more similar pairs will result in more intermediate data

between the jobs. This results in the bottleneck of the algorithm. Still PLF-join

achieves reasonable performance with LiveJounrnal dataset, but if a dataset

contains a lot of similar pairs, VCL or other algorithms could perform better

than PLF-join.

6.3 StdSort Experiment

In this section we will describe the experiment with StdSort that was in-

troduced in Chapter 4. We used the Gowalla dataset from SNAP[6]. It is a

social network dataset that contains the user information about check-ins to

local locations. We transformed the dataset into vector representations. Each

dimension represents the location and each vector represents the user. Value in-

side the vector represents the frequency of visits from each user to a particular

location. For the experiment we used similarity threshold 0.9 and the system

was same as our other experiment.

In this experiment we have three methods. No sort which does not employ

any pre-processing sort methods. Here we use the ordering of the vectors as

given from dataset. Sparsity method uses only the sparsity of the dimensions.

Lastly, StdSort utilizes both sparsity and standard deviation for sorting.

Unlike No sort method, we need to take into account the time need for sort-

ing for Sparsity and StdSort. The time complexity of sorting the dimensions

is just O(n). In this experiment it took only 9 seconds in a single machine to

sort the dimensions for this dataset.

First experiment is the Time experiment for measuring the time taken for

the whole similarity join operation. As expected, StdSort showed best per-

formance among all three methods. Second experiment is the Filtering power

effectiveness experiment. Main point of this experiment is to check if sorting

methods does affect filtering power of prefix and length filtering algorithms.
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If we have fewer candidates, we will have less pairs to calculate for similarity

value.

Refer to the Figure 6.2(a). As expected the No sort method takes the most

time. It is as expected result because the dataset is not ordered for prefix filter-

ing. Sparsity method is slightly better method than No sort. This technique

does contribute for the prefix filtering technique so it gives little more advantage

compared to No sort. StdSort is the best method because it not only utilizes

sparsity for the prefix filtering, but also standard deviation value for the length

filtering technique. 6.2(b) shows the experimental result for filtering experiment

of each method. Note that it is in the log scale. Filtering experiment also shows

that StdSort efficiently reduces number of candidate pairs for vector similarity

join.

6.4 Combining PLF-join and StdSort

In this section, we present a combined experimental results of PLF-join and

StdSort and discuss meaning of the results.

Refer to Figure 6.3. The graph shows the time taken for joining MovieLens

dataset on different threshold values. Bjoin+Std denotes Bjoin algorithm with

StdSort applied for the pre-processing. Similarly, PLF+Std denotes PLF-join

algorithm with StdSort applied for the pre-processing. For other algorithms,

Sparsity pre-processing is applied.

Note that StdSort sometimes improves the performance and sometimes not.

For example, compare Bjoin and Bjoin+StdSort at threshold 0.5. In this case

StdSort provides positive effect and speeds up the process. However, PLF+StdSort

at threshold 0.3 slows down the process compared to PLF alone. To understand

the reason behind this, we need to know about the dataset. MovieLens is a

dataset that contains information of users’ review on movies. So each vector

represents a user and each dimension represents a movie. Movie rating is one of

the values from 1, 2, 3, 4, 5. This value distribution is the main reason StdSort
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doesn’t work well with the dataset. Since all values are distributed to only 5

discrete numbers, standard deviation values of the dimensions are not so differ-

ent from each other. Hence StdSort doesn’t have great impact on this dataset.

If we have a dataset with great range, we think StdSort can contribute for the

faster vector similarity join.
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(a) UKBench

(b) MovieLens

(c) LiveJournal

Figure 6.1: Time Performance Experiment
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(a) Time Experiment

(b) Filtering Experiment

Figure 6.2: StdSort Experiment
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Figure 6.3: Time Experiment of PLF-join and StdSort
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Chapter 7

Conclusion

Vector Similarity Join is a fundamental operation that is widely used from

collaborative filtering to graph analytics. However, its O(n2) computational load

made it impractical to use in real world problems. Even a lot of researches have

been conducted after the MapReduce framework was introduced, it is still diffi-

cult to achieve a practical time complexity. Previous researches tried to achieve

better performance through adapting the MapReduce distributed framework.

But there are still many inefficiencies remained. For example, V-SMART wasn’t

able to elastically respond to the different threshold, which made it impractical

to some applications that require high thresholds. VCL algorithm uses prefix

filtering, but it wasn’t able to efficiently filter out dissimilar pairs that shared

same prefix dimensions. Bjoin utilizes both prefix and length filtering tech-

niques, but it suffers from large prefix duplication network overhead and more

numbers of MapReduce jobs. So we proposed MapReduce algorithm PLF-join

which reduced the network overhead of the previous algorithm. The experi-

ments show that our algorithm achieved about 2 times faster than the existing

algorithm. Also we proposed an efficient pre-processing algorithm which uti-

lizes standard deviation values of the vector. The experiments show that it is
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57% faster than the existing pre-processing algorithm. Although we achieved

much performance gain, as the Big Data community is moving toward to more

in-memory processing, these vector similarity join algorithms should also be

able to process large data using in-memory system to be more practical for real

world problems.
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요약

PLF-Join: 벡터 유사 조인을 위한

효율적인 맵리듀스 알고리즘

김현준

전기컴퓨터공학부

서울대학교 대학원

벡터 유사 조인은 주어진 벡터들 중에서 모든쌍의 벡터 유사치가 특정 한계치

를 초과하는 벡터들을 찾는 문제이다. 벡터 유사 조인은 중복 제거나, 추천, 소셜

데이터 마이닝 등 많은 곳에서 사용된다. 그렇지만 n이 벡터의 개수일때 기본적으

로 O(n2)의 시간 복잡도가 필요하다. 이런 비현실적인 시간 복잡도가 벡터 유사

조인이실제적인문제들에활용되는데어려움을주고있다.그렇기때문에,많은하

둡 맵리듀스 기반의 알고리즘들이 제시되었다. 현재 가장 빠른 알고리즘은 Prefix

필터링과 Length 필터링을 고려한 방법으로 벡터 유사 조인 시간을 줄이고 있다.

이보다 더 소요되는 시간을 줄이기 위해서, 이 논문에서는 네트워크 입출력을 줄

인 변형 알고리즘을 제시한다. 이외에도 벡터 유사 조인을 촉진 시키는 효율적인

전처리 방법 또한 제시한다.

주요어: 벡터 유사 조인, Prefix 필터링, Length 필터링, 모든쌍 유사 검색, 표

준편차

학번: 2012-23207

43




	Chapter 1 Introduction
	Chapter 2 Preliminary
	2.1 Problem Definition               
	2.2 Filtering Predicate                   
	2.2.1 Prefix Filtering               
	2.2.2 Length Filtering        


	Chapter 3 Related Works
	3.1 V-SMART Algorithm               
	3.2 VCL Algorithm             
	3.3 Bjoin Algorithm        

	Chapter 4 Pre-Processing
	4.1 Pre-Processing Method of Previous Researches  
	4.2 StdSort : Sorting with Standard Deviation    

	Chapter 5 PLF-Join
	5.1 Job 1 : Filter Dissimilar Pairs                
	5.2 Job 2 : Re-import the Vectors            
	5.3 Job 3 : Calculate Similarity      
	5.4 Example of PLF-join         

	Chapter 6 Experiment
	6.1 Experiment Setup             
	6.2 Time Performance         
	6.3 StdSort Experiment                   
	6.4 Combining PLF-join and StdSort      

	Chapter 7 Conclusion
	Bibliography
	요약


<startpage>9
Chapter 1 Introduction 1
Chapter 2 Preliminary 4
 2.1 Problem Definition                4
 2.2 Filtering Predicate                    5
  2.2.1 Prefix Filtering                6
  2.2.2 Length Filtering         7
Chapter 3 Related Works 10
 3.1 V-SMART Algorithm                10
 3.2 VCL Algorithm              12
 3.3 Bjoin Algorithm         13
Chapter 4 Pre-Processing 16
 4.1 Pre-Processing Method of Previous Researches   16
 4.2 StdSort : Sorting with Standard Deviation     17
Chapter 5 PLF-Join 22
 5.1 Job 1 : Filter Dissimilar Pairs                 22
 5.2 Job 2 : Re-import the Vectors             25
 5.3 Job 3 : Calculate Similarity       28
 5.4 Example of PLF-join          28
Chapter 6 Experiment 31
 6.1 Experiment Setup              31
 6.2 Time Performance          32
 6.3 StdSort Experiment                    33
 6.4 Combining PLF-join and StdSort       34
Chapter 7 Conclusion 39
Bibliography 41
¿ä¾à 43
</body>

