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Abstract 

Greedy Confidence Bound Techniques 

for Restless Multi-armed Bandit Based 

Cognitive Radio 
 

The electromagnetic radio spectrum is a natural resource, the use of which 

by transmitters and receivers is licensed by governments. The underutilization of 

the electromagnetic spectrum leads us to think in terms of spectrum holes, where 

a spectrum hole is a band of frequencies assigned to a primary user, but, at a 

particular time and specific geographic location, the band is not being utilized by 

that user. Spectrum utilization can be improved significantly by making it 

possible for a secondary user (who is not being serviced) to access a spectrum 

hole unoccupied by the primary user at the right location and the time in 

question. 

Cognitive radio is viewed as a novel approach for improving the utilization 

of a precious natural resource: the radio electromagnetic spectrum. The cognitive 

radio, built on a software-defined radio, is defined as an intelligent wireless 

communication system that is aware of its environment and uses the 

methodology of understanding-by-building to learn from the environment and 

adapt to statistical variations in the input stimuli, with two primary objectives in 

mind: Highly reliable communication whenever and wherever needed; Efficient 

utilization of the radio spectrum. 

Multi-armed bandit (MAB) problems are a class of sequential resource 

allocation problems, which has fundamental conflict between a strategy yielding 

high present reward and a strategy sacrificing present gain for better future 

reward. In a multi-armed bandit problem, there are multiple (N) arms which 
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generate stochastic reward, and a player seeks a policy to select multiple K ≥ 1 

arms in order to maximize the expected total reward over multiple time-slots. 

A particularly challenging variant of MAB problems is the restless multi-

armed bandit problem (RMAB), in which all arms evolve as Markov chains. 

Even in the Bayesian case, where the parameters of the Markov chains are 

known, this problem is difficult to solve, and has been proved to be PSPACE 

hard. We consider more challenging non-Bayesian RMAB problems, in which 

the parameters of the Markov chain are further assumed to be unknown a priori. 

We demonstrate our approach on a practical problem related to dynamic 

spectrum sensing for cognitive radio applications. If the primary user occupancy 

on each channel is modeled as an identical but independent Markov chain with 

unknown parameters, we obtain a non-Bayesian RMAB. Our main contribution 

in this work is that we develop an efficient new multi-channel spectrum sensing 

algorithm for unknown dynamic channels based on the two-slot greedy 

confidence bound algorithm (Two-slot GCB), which combines the Markov Chain 

parameter estimation and the channels sensing simultaneously and provides a 

new analysis which shows that UCB algorithms have the regret rate of ln(t). And 

finally we give out another solution for the accessing policy for Cognitive Radio 

of unconstrained continuous time Markov chain channel model. 

Keywords: Cognitive Radio, MAB, Markov chain, Greedy Algorithm, Two-slot 

GCB 

Student number: 2011-24072 
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Chapter 1  

Introduction 

1.1 Cognitive Radio (CR)  

The electromagnetic radio spectrum is a natural resource, the use of which 

by transmitters and receivers is licensed by governments. In November 2002, the 

Federal Communications Commission (FCC) published a report prepared by the 

Spectrum-Policy Task Force, aimed at improving the way in which this precious 

resource is managed in the United States [1]. The task force was made up of a 

team of high-level, multidisciplinary professional FCC staff—economists, 

engineers, and attorneys—from across the commission’s bureaus and offices. 

Among the task force major findings and recommendations, the second finding 

on page 3 of the report is rather revealing in the context of spectrum utilization: 

“In many bands, spectrum access is a more significant problem than physical 

scarcity of spectrum, in large part due to legacy command-and-control regulation 

that limits the ability of potential spectrum users to obtain such access.” 

Indeed, if we were to scan portions of the radio spectrum including the 

revenue-rich urban areas, we would find that [2]-[4]: 

1) Some frequency bands in the spectrum are largely unoccupied most of the 

time; 

2) Some other frequency bands are only partially occupied; 

3) The remaining frequency bands are heavily used. 

 

The underutilization of the electromagnetic spectrum leads us to think in 

terms of spectrum holes, for which we offer the following definition [2]: 
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A spectrum hole is a band of frequencies assigned to a primary user, but, at a 

particular time and specific geographic location, the band is not being utilized by 

that user. 

Spectrum utilization can be improved significantly by making it possible for 

a secondary user (who is not being serviced) to access a spectrum hole 

unoccupied by the primary user at the right location and the time in question. 

Cognitive radio [5], [6] is viewed as a novel approach for improving the 

utilization of a precious natural resource: the radio electromagnetic spectrum. 

The cognitive radio, built on a software-defined radio, is defined as an intelligent 

wireless communication system that is aware of its environment and uses the 

methodology of understanding-by-building to learn from the environment and 

adapt to statistical variations in the input stimuli, with two primary objectives in 

mind: 

 Highly reliable communication whenever and wherever needed;  

 Efficient utilization of the radio spectrum. 

In this thesis, we focus on the second aspect, especially the channel 

accessing policy of secondary users. 

  

 

1.2 MAB problem 

Multi-armed bandit (MAB) problems are a class of sequential resource 

allocation problems, which has fundamental conflict between a strategy yielding 

high present reward and a strategy sacrificing present gain for better future 

reward [7]. In a multi-armed bandit problem, there are multiple (N) arms which 

generates stochastic reward, and a player seeks a policy to select multiple (K >= 

1) arms in order to maximize the expected total reward over multiple time-slots. 

MAB problems can be generally classified into Bayesian and non-Bayesian 
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problems. The model becomes Bayesian when the statistical model/parameters of 

the reward process for each are known, and it becomes non-Bayesian when they 

are unknown. In the case of non-Bayesian MAB problems, the objective is to 

design an arm selection policy that minimizes regret, which is defined as the gap 

between the expected reward that can be achieved by a genie that knows the 

parameters, and the reward from the given policy. 

A particularly challenging variant of MAB problems is the restless multi-

armed bandit problem (RMAB) [8], in which all arms evolve as Markov chains. 

Even in the Bayesian case, where the parameters of the Markov chains are 

known, this problem is difficult to solve, and has been proved to be PSPACE 

hard [9]. One approach to this problem has been Whittle's index, which is 

asymptotically optimal under certain regimes. However it does not always exist. 

Even when it does, it is not easy to compute. It is recently shown that non-trivial 

tractable classes of RMAB where computable Whittle's index exists have been 

identified [10]. 

 

1.3 Combination 

We consider more challenging non-Bayesian RMAB problems, in which the 

parameters of the Markov chain are further assumed to be unknown a priori. Our 

main contribution in this work is providing a novel approach that can produce 

higher reward than the UCB algorithms [11],[12] for arms with a markov chain 

reward process, and provides a new analysis which shows that UCB algorithms 

have the regret rate of ln(t). We demonstrate our approach on a practical problem 

related to dynamic spectrum sensing for cognitive radio applications. We 

consider a scenario where a secondary user must select one of N channels to 

sense at each time slot to maximize its expected reward. 

If the primary user occupancy on each channel is modeled as an identical but 

independent Markov chain with unknown parameters, we obtain a non-Bayesian 

RMAB. Note that for RMAB with a known model staying with the best arm is 

suboptimal. Thus, the sub-linear regret is not appropriate because the deviation 



4 
 

from the maximum average reward can be arbitrarily large. In this thesis, we use 

accumulated reward instead of regret as the performance measure. We develop 

an efficient new multi-channel spectrum sensing algorithm for unknown 

dynamic channels based on the two-slot greedy confidence bound algorithm 

(Two-slot GCB), which combines the Markov Chain parameter estimation and 

the channels sensing simultaneously. 
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Chapter 2 

MAB algorithms with a Markov Chain Reward 

Process 

2.1 The multi-armed bandit problem 

In probability theory, the multi-armed bandit problem is the problem a 

gambler faces at a row of slot machines, sometimes known as “one-armed 

bandits”, when deciding which machines to play, how many times to play 

each machine and in which order to play them. When played, each machine 

provides a random reward from a distribution specific to that machine. The 

objective of the gambler is to maximize the sum of rewards earned through a 

sequence of lever pulls.  

In practice, multi-armed bandits have been used to model the problem of 

managing research projects in a large organization, like a science foundation 

or a pharmaceutical company. Given its fixed budget, the problem is to 

allocate resource among the competing projects, whose properties are only 

partially known now but may be better understood as time passes. 

In the early versions of the multi-armed bandit problem, the gambler has 

no initial knowledge about the levers. The crucial tradeoff the gambler faces 

at each trial is between “exploitation” of the lever that has the highest 

expected payoff and “exploration” to get more information about the 

expected payoffs of the other levers [13]. 
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The multi-armed bandit (or just bandit for short) can be seen as a set of 

real distributions B = {R1, … , RK}  , each distribution being associated with 

the rewards delivered by one of the K levers. Let μ1, … , μK be the mean 

values associated with these reward distributions. The gambler iteratively 

plays one lever per round and observes the associated reward. The objective 

is to maximize the sum of the collected rewards. The bandit problem is 

formally equivalent to a one-state Markov decision process. The regret ρ(T) 

after T rounds is defined as the difference between the reward sum 

associated with an optimal strategy and the sum of the collected rewards[14]: 

𝜌(𝑇) = 𝑇𝜇∗ −∑𝑟𝑡

𝑇

𝑡=1

, 𝜇∗ = 𝑚𝑎𝑥𝑘{𝜇𝑘} 

Where 𝜇∗ is the maximal reward mean, and 𝜇𝑘is the reward at time t. A 

strategy whose average regret per round ρ/T tends to zero with probability 1 

when the number of played rounds tends to infinity is a zero-regret strategy. 

Intuitively, zero-regret strategies are guaranteed to converge to an optimal 

strategy, not necessarily unique, if enough rounds are played.  

 

 

 

𝑅2  𝑅𝐾  𝑅1  

….. 

Figure 1: Slot machines 

http://en.wikipedia.org/wiki/Markov_decision_process
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mi(t) +  √
2 ∗ ln(t)

ti
 

2.2 UCB algorithm for MAB 

Upper Confidence Bound (UCB) Algorithm [11] is very simple but 

effective for MAB problem with reward generated independently for each 

time slot (here we use time slot instead of round). And it can also be applied 

for MAB problem with a Markov Chain Reward process, where the 

generated reward for each time slot is related. For each time slot, the bandit 

arm we decide to play is chosen through calculating the following value of 

each arm shown as below: 

Where mi(t) is channel i′s mean reward by time t, and ti is the times 

channel i is played by time t. 

It’s intuitive to choose the channel with the highest mean reward so 

mi(t) in the equation acts as the exploitation part of the channels. But we 

also need an exploration part to guarantee the judgment of the best channel 

(with highest mean reward) is right. So the second part of the equation 

√
2∗ln(t)

ti
 acts as the exploration part. 

2.3 A simple induction for UCB’s regret rate of log(t)  

Suppose there’re just two arms 1 and 2, with mean reward m1, m2  and  

m1 > m2. The arm choosing criteria is calculated as below:  

ucb1 (t) = m1(t − 1) +  √
2 ∗ ln(t)

k1(t − 1)
 

ucb2 (t) = m2(t − 1) +  √
2 ∗ ln(t)

k2(t − 1)
 

 

(3-1) 
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                     = t∗ (1 − 𝛼) (m1 −m2)                               (3-5) 

 

ρ(t∗) = m1t
∗ − (m1t

∗𝛼 +m2t
∗(1 − 𝛼)) 

Where m(t) is the reward mean at time t, k(t) is the number of plays of 

the arm after t time slots. 

Suppose at time 𝑡∗ (large enough), α is arm 1’s played times percentage: 

Then we can rewrite Equation (3-1): 

Furthermore we get: 

(m1(t
∗ − 1) −m2(t

∗ − 1))2 =
2∗ln(t∗)

t∗
   

1

1−α
  (1 − √

1−α

α
)2       (3 − 4)           

The regret ρ(t∗) by time t∗ is:  

 

From Equation (3-4) we have: 

       t∗ (1 − 𝛼) (m1(t
∗ − 1) −m2(t

∗ − 1)) = 
(1−√

1−α

α
)2ln (t∗)

m1(t
∗−1)−m2(t

∗−1)
        (3-6) 

As t →   , we know t∗ →  and α → 1 (   l in   l t  ), then: 

                          ρ(t∗) = t∗ (1 − 𝛼) (m1 −m2) 

(3-2) 

k1(t
∗) = αt∗ 

            k2(t
∗) = (1 − α)t∗ 

       ucb1(t
∗) = ucb2(t

∗) 

 

ucb1 (𝑡
∗) = ucb2 (𝑡

∗) 

                                                    =  m1(𝑡
∗ − 1) +  √

2 ∗ ln(𝑡∗)

𝛼𝑡∗
 

                                                    = m2(𝑡
∗ − 1) +  √

2 ∗ ln(𝑡∗)

(1 − 𝛼)𝑡∗
 

 

(3-3) 
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                                         =
2∗ln(t∗)

m1−m2
  (1 − √

1−α

α
)2     

                                         = Cln(t∗)                                                          (3-7) 

Where C =
(1−√

1−𝛼

𝛼
)2

𝑚1−𝑚2
=

1

𝑚1−𝑚2
 is a constant. 

Here we suppose we have just 2 arms, in fact, we can do the same 

deduction for arbitrary number of arms by taking the other arms except the 

best one as an equivalent arm with an average mean, then the calculation still 

holds for these two special arms.  Now we can conclude that the regret rate 

of UCB algorithm increases with a rate ln (t). 

From the mathematic deduction, we notice that the ln (t) part in Equation 

(3-1) remains unchanged. So we can replace ln (t) with other terms. 

From Equation (3-5) and (3-7) we have: 

               1 − α =
2∗ln(t∗)

t∗
   

1

(m1−m2)
2   (1 − √

1−α

α
)2                  (3-8) 

From Equation (3-8), as t∗ →  , α → 1 with a converging speed 
ln(t∗)

t∗
. 

Then we have the idea to replace ln (t) with other terms which have a 

faster converging rate. But that doesn’t mean the faster it converges, the 

higher total reward will be, since it should be guaranteed enough time to 

explore the arms. Obviously, 
ln(ln (t))

t
 converges to 0 much faster than 

ln(t)

t
. 

For simplicity, the changed UCB algorithm by replacing ln (𝑡) with ln (ln (t)) 

is named as Log-UCB algorithm and similarly we have an Exp-UCB by 

replacing 
ln(t)

t
 with  −𝑡. 
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Here are some simulation results for comparing UCB, Log-UCB and 

Exp-UCB algorithm under I.I.D arm reward distribution. The simulation 

environment settings are 10 arms, the number of players varies from 1 to 10 

and each arm generates its reward according to a uniform distribution. 

 

 

 

Figure 2: Centralized various UCB algorithms 

Figure 3: Zoom-in of Figure 2 
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In the simulation, expected means if there are N arms played for each 

time slot then the best N arms among the total K arms are played, namely the 

maximum reward. Judging from Figure 2, Log-UCB do outperforms UCB in 

aspect of total reward and the Exp-UCB’s total reward is quite poor. The 

total rewards are relevant to both exploitation part and exploration part in the 

various UCB equations. If it converges to some arm too fast that means too 

less exploration, it may probably lead a biased estimation about the best arm.  

 

Through Figure 4, we can see that for most of the time slots both UCB 

and Log-UCB stays on arm 4 (there’s almost a horizontal line), which is the 

best arm among the 10 arms. Exp-UCB has too fast a converging speed and 

it mistook arm 1 as the best arm and stays in that arm (keeps exploiting that 

arm), due to too less exploration of the arms. The line of Log-UCB, 

representing exploitation of the best arm, is more obvious than that of UCB, 

meaning that in spite of less exploration but a faster converging into the best 

arm can still guarantee more exploitation and consequently a higher total 

reward.  

 

UCB 

 

 

Log-UCB 

 

 

Exp-UCB 

Figure 4: Track of channels played each time slot 
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2.4 CR with Markov Chain channel model and 

Greedy algorithm 

2.4.1 Problem Modeling 

The channels in Cognitive Radio communication system are viewed as 

the arms in MAB problem with two states: Busy (0) & Idle (1). The reward 

in MAB problem here refers to the channel utilization, namely when the 

channel chosen to access is busy the secondary user can get no reward 

(reward=0) while if it’s idle then the user can get a reward (reward=1). The 

channel accessing decision problem in CR now is formed as a MAB 

problem, we aim to design a channel accessing algorithm to maximize the 

total reward. 

2.4.2  Belief Vector based Greedy Algorithm 

When the state When the state transition possibilities of each channel are 

pre-known and channels are independent, MAB problem with Markov 

Chain Reward Process can be specified as a Partially Observable Markov 

Decision Problem (POMDP), while Belief Vector based Greedy Algorithm 

[15] acts as an optimal solution to this problem. 

Belief vector λ(t) = [λ1(t), λ2(t), λ3(t),… , λN(t)], means the user’s 

expectation of each arm's reward in the next slot, which is updated 

according to: 

  

Busy Idle 

Figure 5: Markov chain model 
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       (t) is the index of the chosen channel to be played at time t; Θa(t) is the 

state of channel  (t). This equation calculates the idle possibility for each 

arm according to whether the channel is observed or not and whether the 

observed channel is Idle or Busy. 

2.5 UCB algorithm for CR Markov Chain channel 

model 

      UCB algorithm can be applied directly to the MAB problem developed 

from CR Markov chain channel model even without any information about 

the channel state transition parameters because it can always view the two 

states Markov Chain as an equivalent binary distribution. Meanwhile, it is 

also due to its special dealing of the actual Markov Chain as a binary 

distribution, it cannot make use of the observations of the channels to make a 

more profitable decision of which channel to access. Its information about 

the channel’s mean reward is more a historical long time estimation instead 

of real time estimation, namely we can utilize the current time slot’s channel 

state observation result to estimate the possibility of this channel to be idle 

for the next time slot, that’s the property of Markov Chain which is ignored 

by UCB algorithm. 

 

 

 

 

 

 

 

( 1)*(1 ) (1 ( 1))* ,  if a(t) i

( ) 1 ,                                       if a(t)=i, (t)=1

,                                            if a(t)=i, (t)=0

i i i i

i i a

i a

t t

t

   

 



     


  
 
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2.6 Two and One slot algorithm for CR Markov Chain 

channel model 

2.6.1  Two-slot Algorithm 

Since Belief Vector based Greedy Algorithm is optimal to POMDP, we 

want to modify this algorithm so that it can still performs well without the 

requirement of the Markov state transition possibility. The intuitive idea is 

that we can calculate the belief vector for two slots λ 
i

(2)
(t) instead of one, 

namely we calculate the idle possibility of each channel in the next two slots. 

Since each time we access one channel and stay in that channel for two slots, 

the observations can be used to do the channel state transition possibility 

estimation. Furthermore, if the current access channel is also chosen in last 

time then we can observe one more state transition to make a better 

estimation. Inspired by the exploitation and exploration parts in UCB 

algorithms, we also introduce the part √
2∗ln(t)

ti
 to act as the channel 

exploration; finally we come to the following channel accessing algorithm 

Two-slot Greedy Confidence Bound Algorithm (TGCB): 

 

  

The updating of 𝜆 
𝑖

(2)
(𝑡) in TGCB is a little different from that of 𝜆1(𝑡) 

in greedy algorithm, shown as below: 

λ i
(2)(t) + 0.5 ∗  𝑚𝑖 +  √

2 ∗ ln(t)

ti
 

 

if a(t-2)=i,

     if  (t-1)=1,  ( ) 1 ;

     if  (t-1)=0,  ( ) ;

if a(t-2) i,

    ( 1) ( 2)*(1 ) (1 ( 2))* ,

         ( ) ( 1)*(1 ) (1 ( 1))* ;

a i i

a i i

i i i i i

i i i i i

t

t

t t t

t t t

 

 

    

    




  

  



       


     

 



15 
 

The coefficient of 0.5 of the term mi is an empirical parameter from 

simulation results.  

TGCB is quite similar to UCB algorithms and in fact it is indeed 

equivalent to UCB algorithms: for the channel accessed, the mean reward 

(namely the possibility to be idle) will be the possibility of transiting from 

Idle to Idle if the channel’s state is idle and be the possibility of transiting 

from Busy to Idle if the state is busy; for those channels not accessed, the 

mean reward will be the statistic mean reward. Namely, only those channels 

observed can provide real time estimation about the next time slot while 

those channels not observed can only make use of their average mean reward 

to do the estimation. 

2.6.2  One-slot Algorithm 

One-slot Greedy Confidence Bound Algorithm (OGCB), which is almost 

the same with TGCB except that it just calculate one slot belief vector 

( updating process is the same with Greedy algorithm) and how it completes 

parameter estimation. It has an expression as below: 

In the simulation, we tract the channel chosen to access for each time 

slot and find that the user will stay in the same channel for several slots in 

series, which can be used to do the transition possibility estimation. 

 

 

 

 

𝜆𝑖 +   0.5 ∗ 𝑚𝑖 +  √
2 ∗ 𝑙𝑛(𝑡)

𝑡𝑖
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2.6.3  Combination of Two-slot and One-slot 

algorithms 

The difference between Two-slot and One-slot algorithms mainly lies in 

the updating calculation of the belief vector, is there any possibility that we 

can unify them into one algorithm? 

In fact, there do exit some method to combine these two algorithms. 

During each calculation for selection of channels to access, firstly we 

calculate the belief vector for One-slot and Two-slot, and then we compare 

these two vectors and choose the larger one, the slot is chosen accordingly. 

Here below is the mathematic expression: 

λ(t) = [λ1(t), λ2(t), λ3(t),… , λN(t)] ∶   On − slot 

 λ(2)(t) = [λ1
(2)(t), λ2

(2)(t), λ3
(2)(t),… , λN

(2)(t)]:  Two − slot 

After the calculation, we sort λ(t) and λ(2)(t) in a descending order into 

λ′(t) and λ′(2)(t). If one secondary user chooses L (L ≤ N) channels to 

access, then we decide how many slots to access the channels by comparing: 

𝐴 = ∑λi′(t)

𝐿

𝑖=1

 𝑎𝑛𝑑 𝐵 =  ∑
1

2
 [λi′(t) + λi

′(2)(t)

𝐿

𝑖=1

] 

There are two possible combination versions by changing the conditions 

for comparing. Firstly the slot number (I define this parameter “  cu ”) for 

calculating the belief vector is set to be 2. One possible condition is that 

recur can have single way changing: once A ≥ B, recur will be set to be 1 

and no more changed, namely turned into a pure One-slot algorithm ; The 

other possible condition is that the value of recur is set according to the 

comparing result of A  n  B. We label the combined algorithm for the first 

condition as “12slot-s” and for the second condition as “12slot-d” in the 

simulation results. 
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2.7 Simulation 

2.7.1  Single User Single Play 

First we simulate for the case “Sing User Sing Play”, the simulation 

environment settings are: 10 channels, 10000 time slots, one secondary user 

chooses one channel to access. Here we compare Greedy algorithm, Two-slot 

algorithm, One-slot algorithm, UCB algorithm and Log-UCB algorithm in terms 

of their total rewards and the tracking of channels accessed for each time slot. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Single User Single Play 

Figure 7: Arm played Tracks 
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From Figure 6, we can see that in terms of total rewards, Greedy 

algorithm gains the highest reward, followed by Two-slot algorithm, One-slot 

algorithm and UCB in series. From Figure 7, which shows for each time slot, 

which channel is accessed by each of the four algorithms, we can see that Two-

slot algorithm’s channel access behavior is more similar with that of Greedy 

algorithm compared to One-slot and UCB, meaning a closer total reward with 

Greedy algorithm. 

2.7.2 Single User Multi play  

Then we simulate the situation where there are multiple secondary users 

and each user can only access one channel at a time. The simulation environment 

settings are: 5 channels, 10000 time slots, one secondary user chooses multiple 

channels to access (from 1 to 5 channels). 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Single User Multi play 
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From Figure 8 and Figure 10, we can conclude that the 12slot-s 

algorithm performs similar to 1slot algorithm; and12slot-d algorithm performs 

similar to 2slot. In section 2.6.3, we distinguish two combination conditions to 

get 12slot-s algorithm and 12slot-d algorithm. For 12slot-s, once the parameter 

recur changes it will hold the same value of 1, then it is just the same with the 

One-slot algorithm, which means the total reward difference just depends on 

when  A ≥ B. While for 12slot-d algorithm, the parameter recur changes 

Figure 9: Zoom-in of Figure 4 

Figure 10: Single User Multi Play (Low state transition probability) 
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according to the comparison result of A  n  B. The parameter recur has more 

chances to be set to be 2, which makes this algorithm has an intrinsic similar 

performance as Two-slot algorithm. All of the algorithms containing the greedy 

part in the selection calculation of channel accessing gain a higher total reward 

than UCB algorithms and the differences among these algorithms depend on 

both the number of channels to access and the transition probabilities. The 

slower the channels shift from one state to another, the larger total reward 

difference would be. This phenomenon can be explained as: if the state changing 

probabilities are very small, suppose the secondary user currently chooses the 

best channel to access and find it to be busy, from the angle of UCB algorithms, 

it would probably ignore the fact that for next time slot the best channel would 

stay in busy state (0 reward) with a very large probability and still chooses the 

best channel to access for next time slot while for those algorithms containing a 

greedy belief part, they would probably choose channels with higher 

probabilities to be idle (1 reward) for next time slot. 

The situation, single user multi play is equal to the situation of 

centralized multi user single play. 
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2.7.3  Decentralized Multi User Single Play 

Before we begin the simulation, we should specify some details on 

decentralized settings and collision models for Multi-user (U secondary users & 

N channels). 

 To ensure fairness and make multi users work in a decentralized manner, 

we introduce the following settings into the algorithms: 

 Initially each user will be assigned an index (index=1,2,3,…,U) 

representing their channel accessing priority (if the user get the index 2 that 

means it can only access the second best channel according to its own estimation 

of the channels’ order for the current time). After each round of channel 

accessing (round=2 slots for Two-slot algorithm and round=1 slot for the rest 

algorithms), each user increase their index by 1. In the next round, only those 

users with an index not great than N (the number of channels) can access the 

channels. 

 Collision happens when more than one user choose the same channel to 

access and under this situation, we randomly choose one user from those users 

choosing the same channel to get the reward and only this user can update its 

parameters. 

 Expected reward means if we know each channel’s mean reward, we 

would always access the best K channels, K=U (the number of users) when 

U<=N (the number of channels) otherwise K=N. It is used as a baseline to 

compare the performances of these algorithms. 

The simulation environment settings are: 3 channels, 10000 time slots, 

the number of secondary users vary from 1 to 6 and the channel access priority 

keeps for just one round.  
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Figure 12: (2) Decentralized multi user single play priority 1 

Figure 11: (1) Decentralized multi user single play priority 1 
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Under decentralized case, these algorithms could still perform much worse 

compared to centralized case (in centralized situation, all the total rewards are 

larger than the expected mean reward), which we could see from Figure 11.  

Figure 14: Decentralized multi user single play priority infinity 

Figure 13: (3) Decentralized multi user single play priority 1 
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Judging from figure 12, we can see that both UCB algorithms and Two-slot 

algorithm are better even than greedy algorithm while One-slot algorithm has a 

very bad performance.  

From figure 13, we can see that UCB algorithms perform better than those 

algorithms containing greedy belief vectors.  

We provide the following explanations to explain the simulation results:  

First, each secondary user keeps its own channel ranking order, which will 

cause lots of collisions when they choose channels to access according to their 

assigned accessing order. That’s the reason why all the algorithms under 

decentralized condition cannot gain a better total reward than that of centralized 

condition. 

Secondly, the exploration part in UCB algorithms has a higher weight than 

that in algorithms containing greedy belief vector, which will ensure a more 

accurate ranking of channels and less collisions. This may explain why UCB 

algorithms can gain higher total rewards than greedy algorithm, Two-slot 

algorithm and One-slot algorithm. 

Thirdly, Each secondary user can only keep channel accessing priority for 

just one round, which makes One-slot algorithm can’t work because One-slot 

algorithm relies on its intrinsic property to stay in the same channel for a series 

of time slots to make channel transition probability estimation.  

Then we try to set the priority keeping time to be infinity, we get the 

simulation result of Figure 14. From Figure 14, we can see that the change 

degrade UCB algorithms quite a lot due to the fact that if a secondary user can 

only access the second best channel then it can hardly achieve a right ordered 

ranking of channels and this ranking won’t be revised until the weight of 

exploration part is larger than that of the exploitation part which keeps 

decreasing due to their wrong estimation about the channels. The reason for that 

both greed algorithm and Two-slot algorithm’s performances are not affected is 



25 
 

due to that their estimation about the ranking is unrelated to the priority keeping 

time. 
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Chapter 3 

Un-slotted channel access policy 

    This chapter explains how the mathematic expression for Markov channel 

collision probability constrained accessing policy is developed and two general 

policies are presented based on the two general solutions to this math problem, 

which either utilizes expectation or variance to avoid the requirement of knowing 

the channel idle distributions.   

And we develop another model for collision time constrained channel 

accessing policy based on renewal theory. 

3.1 Continuous-time Markov channel model 

 

In this model we use random variable X1, X2, … and Y1, Y2, …to represent the 

length of channel being idle/busy, with mean value lI  and lB，and we use 0/1 to 

represent the sample result of idle/busy.  

Figure 15: Continuous-time Markov channel model 
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3.2 Channel access policy without distribution constraints 

3.2.1 Channel access behavior and mathematic modeling 

Suppose the transmission of secondary users is slotted with a length ls, 

ls ≤ lI, ls ≤ lB and ls ≤ lp，where lp is the packet length of the primary user. We 

don’t require the synchronization between primary users (PU) and secondary 

users (SU) but suppose that SU always have packets to transmit. When SU sense 

the channel idle, they will choose to transmit with some possibility or to simply 

back-off some time.  

There could be two kinds of collisions between primary users and 

secondary users: 

Type A: 

       When PU comes back to the channel while SU haven’t finished their 

transmission, collision type A will occur under the proposition that SU can’t 

carry out transmission and channel sensing simultaneously. Even with perfect 

channel sensing, this type of collision is not avoidable except that SU can predict 

the exact coming back time of PU, as a consequence SU chooses not to transmit 

even the channel sensing result is idle. 

        

Type B: 

      When channel sensing is imperfect, SU may mistake the busy channel 

condition as idle and transmit, which causes extra collisions with PU [16]. 
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Parameter table 

 

 

 

 

 



29 
 

max
( ) max{ : ( ) }

h
h Busy


   


 

The portion of channel being idle is  


I

I B

l

l l
，which is also the 

upper bound of how large a portion SU can make use of the channel. The 

collision possibility observed by PU is defined as the percentage of transmitted 

packages collided with SU: 

 

                                       （3-1） 

s
G represents the random variable of successfully transmitted time in one 

idle-busy period of PU. The throughput of SU 
s

 is defined as the portion of 

successfully transmitted time percentage in one idle-busy period. Then: 

 

                                 （3-2） 

    Usually, optimal strategy makes decisions based on current and 

historical action information, so we express the access strategy as a function 

of channel’s current and  historical values, note  [0, ]h T   as the current 

time,       ( ) { | ( ) , }h Busy h  as the history observations， 

 ( ) represents the observation of time .The access policy 

   [ ( , ( )): [0, ]]q h h h T determines the possibility ( , ( ))q h h to 

transmit at each time, obviously  ( , ( )) 0q h h  when ( )h Busy  。 

Let 
max
( )h  be the latest time one channel busy interval ends by time h ，

t  means time difference: 

                    （3-3） 
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1

p
n

 

1

1 0
( ( ))Pr[ ( )]

( )

k

s lk l
s

B I

l q t Z k

l l


 

  


 

                                （3-4） 

Now policy   can be simply expressed as 0 1
[ ( ), ( ),...]q t q t  ,

 

0 1
, ,...t t is the possible value t  may be. For simplicity, we use ( )t  replace 

max
( ) ( ( ) )h h t    。 

Under perfect sensing only collision type A can occur，due to s p
l l ，

so at most one packet collision happens，so to make collision threshold 

effective, it should： 

 

 

 

(if         , then the secondary user can just transmit whenever it senses the  

 

channel being idle)  

  Let ( )Z k  be the event that primary user comes back during [ , )
k k s
t t l , 

then during one idle-busy period the expectation of collision times 
c
n : 

 

            

                     （3-5） 

 

 

 

SU’s throughput ( )
s
 : 

 

 （3-6） 
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expectation of packets SU has already transmitted. 

 ( )
s

 increases as 
s
l  decreases, then as 0

s
l  ，turn the sum-

equations into integrations we get: 

 

                    (3-7) 

     

 

                   (3-8) 

 

So now the channel access problem can be modeled as a mathematic 

problem as above[16]. 

 

3.2.2 One general channel access policy  

One general solution is [ ( ): 0,1, ]q t t
 

     ： 

 

                

                       （3-9） 

 

We can easily get： 

 

 

                          （3-10） 

 

 

This general policy can guarantee a throughput which is optimal for 

exponential distribution Markov channel, while this channel situation is the 

worst channel condition for secondary users. 
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3.2.3 Another general channel access policy 
We start from the mathematic expressions and try to find another solution 

for this problem and develop a policy based on it. 

 

 

（3-11）                         

 

 

The previous solution makes use of expectation to avoid the requirement of 

knowing the exact function of the distribution while we know besides the 

expectation; we can also make use of variance which can also spare us from that 

difficulty. 

Based on the thinking above，we can express ( )q t  as a linear function of 

t ： 

( ) 2q t at b                           （3-12） 

Since linear function can’t converge as time goes to infinity, so this requires 

the channel idle time should be upper bounded, which is also reasonable for 

some heavy loaded channels: 

 

 

 

 

 

（3-13）      
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2
p I

b n al  into ( )
s
  we get: 
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 
                （3-14） 

         It is noticed that the right part of this throughput is right the previous 

general solution’s throughput. 

If we take ,a b  as 

2

22 ( )

I

p I I

a l l

b n l l l






 
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                   （3-15） 

This policy can always guarantee a better throughput than the previous one. 

While ( )q t  is a possibility, then 

    
max

1 ( ) 2 0, t [0, ]q t at b L ，so take ,a b  according to（3-

15） will not always be valid. 
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 
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I p I I
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Although this policy can achieve a throughput not lower than previous 

policy, but knowing exactly when the channel becomes idle is very vital since 

the possibility to transmit is closely related with the time while for the previous 

policy, the exactness of idle starting time just decrease the throughput a little (I 

already work out the exact mathematic expression for this) but doesn’t make it 

unworkable. 

3.3 Another model for collision time constraint 

We develop a model based on renewal theory [17] to describe the collision 

time constrained channel access problem. We suppose secondary user can know 

exactly when the channel becomes idle. We define success transmit factor   

and the uncollided transmit factor   when collision happens, both of them are 

positive and   .The channel idle distribution is ( )f t ，
I
l

 
and 

B
l  are 

the mean value of channel idle and busy，the collision possibility constraint is 

。 

Let   represent the time primary user plans to stay in this channel right 

after the channel is sensed idle, and s  represent the successful transmission 

time，then its expectation is： 

 

 















  0

[ ] [ | PU is absent during ]

      [ | PU comes back during ]

    ( ) ( )

E S E S

E S

f t dt tf t dt

            (3-17) 

Collision time T ： 



 0[ ] ( )( )E T f t t dt                      （3-18） 

According to the collision time constraint:  
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  4 ( )
I I B
l l l

0
( )( )[ ]

I B I B

f t t dtE T
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



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 
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                 (19) 

Express throughput W as: 

      [ ] [ | PU is absent during ] [ | PU comes back during ]E W E S E S
                   

Then the channel access problem can be expressed as: 

. .
[ ] ( )

max { [ ]}

I B

s t
E T l l

E W
 

                       (20) 

We show here an example: 

 suppose ( )f t  is a uniformly distribution over (0,2 )
I
l

,
 

2

[ ] (1 )
2 4

I I

E W
l l

 
    ，we set 0  （it means retransmit all the 

packet even some of them are well received），then 

21
[ ] ( ( ) )

2 2
I

I

I

l
E W l

l
     。Under the constraint 

[ ] ( )
I B

E T l l  ，we have 4 ( )
I I B
l l l  

.  

 That means we can choose to achieve the 

theoretical throughput. 
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Chapter 4 

Conclusions 

This thesis is mainly on applying Multi-Armed Bandit (MAB) problem 

to model Cognitive Radio’s channel accessing behavior with Markov chain 

channel model. First we introduce Upper Confidence Bound (UCB) algorithms 

to solve I.I.D MAB problems which can achieve a regret rate of log(t) and we 

give out a simple analysis for why the regret rate is log(t). By replacing the log(t) 

part, which drives the player to do the exploration, we get Log-UCB and Exp-

UCB and by simulation we can see the effects of converging speed with the 

stability and total rewards of that algorithm. 

Then we introduce the Cognitive Radio Markov chain channel model 

and its optimal solution, Greedy algorithm, when the channel transition 

parameters are pre-known and channels are independent to each other. And 

inspired from the exploration part and exploitation part in UCB algorithm, we 

develop an algorithm named Two-slot Greedy Confidence Bound Algorithm 

(TGCB) which contains both greedy algorithm and UCB algorithm without need 

of channel transition parameters due to the fact that each time the secondary user 

access the channel would stay in that channel for two time slots. By making use 

of the observation of that two time slots, the user can do channel transition 

parameter estimations. After noticing the intrinsic property of UCB algorithm 

that the user would choose to stay in the same channel for several time slots in 

series, we get One-slot Greedy Confidence Bound Algorithm (OGCB) that will 

make use of this property to do the channel transition parameter estimation. 

Finally after adding some comparing condition we can combine TGCB and 

OGCB. And we simulate to compare the properties of these algorithms under 3 

cases: Single User Single Play, Single User Multi Play (equal to Centralized 
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Multi User Single Play) and Decentralized Multi User Single Play. We give out 

simulation analysis in detail in section 2.7. 

 In centralized cases, the simulation can show us that all of the 

algorithms containing the greedy part in the selection calculation of channel 

accessing can gain a higher total reward than UCB algorithms and the 

differences among these algorithms depend on both the number of channels to 

access and the transition probabilities. The slower the channels shift from one 

state to another, the larger total reward difference would be.  

 In decentralized cases, we first give the details about the rules how each 

secondary user can access the channels (especially when the number of 

secondary users is larger than that of channels). We find that UCB algorithms can 

gain a much better total reward due to their heavily weighted exploration part in 

their expression which can ensure a more accurate channel ranking order so that 

much less collisions (if more than one secondary user choose to access the same 

channel) would occur. 
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개 요 

Restless Multi-armed Bandit에 기반한 

인지 라디오시스템을 위한 Greedy 

신뢰도 분석 기법  
 

인지 라디오는 제한된 스펙트럼 리소스를 활용하는 효율적인 기술이다. 

이러한 소프트웨어 기반 인지 라디오 시스템은 무선 통신환경이 가지고 

있는 통계적인 특성을 인식 하고 그것에 기반하여 스스로를 적응시키는 

동작을 수행한다. 인지 라디오 시스템이 추구하는 목표는 크게 신뢰도 높은 

통신을 언제 어디서나 구축하는것과 스펙트럼을 효율적으로 사용하는 

두가지로 요약할수있다.  

연속성이있는 자원의 효율적인 할당문제는 MAB로 알려진 알고리즘적 

방식을 통해 모델링하여 반복적인 실험을 통해 해를 구할수있다. MAB 

문제에서는 현재의 적절한 보상을 달성하기위한 전략과 현재의 이득을 

어느정도 포기하고 미래에 예측가능한 이득을 증진시키는 두가지 전략을 

적절히 배합하여 최적의 해를 찾는다. 일반적인 MAB 관련 문제에서는 

확률적인 보상을 생성하는 다중 Arm 또는 이에 상응하는 등가의 미리 

정의된 동작이 있으며, 플레이어는 예상되는 총 보상을 극대화하기 위한 

K개의 Arm을 연속적으로 선택하는 정책을 찾는다.  

이 논문에서는 보다 도전적인 문제인 비 베이지안 RMAB 문제를 

다룬며 이때 Markov chain의 파라미트들은 미리 알려지지 않았다고 

가정된다. 또한 이를 이용해 인지 라디오 시스템을 위한 실용적인 동적 

스펙트럼 센싱에에대한 연구를 진행한다. 만약 채널 사용에 있어 

우선순위를 갖는 1차 사용자의 채널 사용 패턴이 동일하고 독립적인 
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Markov chain으로 모델링 할때 이를 비 베이지안 RMAB문제로 다룰수있다. 

본 논문의 기여도는 통계적 특성이 알려지지 않은 동적 채널에서 2시간 

슬롯 Greedy 신뢰도 범위 알고리즘을 (Two slot GCB) 이용해 효율적인 다중 

채널 스펙트럼 센싱 알고리즘을 개발한데에 있다. 이는 Markov 파라미터 

추정기법과 채널 센싱기법이 결합된 형태를 띄고 있으며 이를 통해 기존의 

UCB 알고리즘의 Regret rate이 ln(t) 을 가짐을 보일수있다. 마지막으로 본 

연구를 통해 제한조건이 없는 연속 시간 Markov chain 채널 모델을 적용한 

인지 라디오 시스템에서의 채널 접근 정책을 제안한다.  
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