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Abstract

Greedy Confidence Bound Techniques
for Restless Multi-armed Bandit Based
Cognitive Radio

The electromagnetic radio spectrum is a natural resource, the use of which
by transmitters and receivers is licensed by governments. The underutilization of
the electromagnetic spectrum leads us to think in terms of spectrum holes, where
a spectrum hole is a band of frequencies assigned to a primary user, but, at a
particular time and specific geographic location, the band is not being utilized by
that user. Spectrum utilization can be improved significantly by making it
possible for a secondary user (who is not being serviced) to access a spectrum
hole unoccupied by the primary user at the right location and the time in

question.

Cognitive radio is viewed as a novel approach for improving the utilization
of a precious natural resource: the radio electromagnetic spectrum. The cognitive
radio, built on a software-defined radio, is defined as an intelligent wireless
communication system that is aware of its environment and uses the
methodology of understanding-by-building to learn from the environment and
adapt to statistical variations in the input stimuli, with two primary objectives in
mind: Highly reliable communication whenever and wherever needed; Efficient

utilization of the radio spectrum.

Multi-armed bandit (MAB) problems are a class of sequential resource
allocation problems, which has fundamental conflict between a strategy yielding
high present reward and a strategy sacrificing present gain for better future

reward. In a multi-armed bandit problem, there are multiple (N) arms which
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generate stochastic reward, and a player seeks a policy to select multiple K > 1

arms in order to maximize the expected total reward over multiple time-slots.

A particularly challenging variant of MAB problems is the restless multi-
armed bandit problem (RMAB), in which all arms evolve as Markov chains.
Even in the Bayesian case, where the parameters of the Markov chains are
known, this problem is difficult to solve, and has been proved to be PSPACE
hard. We consider more challenging non-Bayesian RMAB problems, in which
the parameters of the Markov chain are further assumed to be unknown a priori.
We demonstrate our approach on a practical problem related to dynamic
spectrum sensing for cognitive radio applications. If the primary user occupancy
on each channel is modeled as an identical but independent Markov chain with
unknown parameters, we obtain a non-Bayesian RMAB. Our main contribution
in this work is that we develop an efficient new multi-channel spectrum sensing
algorithm for unknown dynamic channels based on the two-slot greedy
confidence bound algorithm (Two-slot GCB), which combines the Markov Chain
parameter estimation and the channels sensing simultaneously and provides a
new analysis which shows that UCB algorithms have the regret rate of In(t). And
finally we give out another solution for the accessing policy for Cognitive Radio

of unconstrained continuous time Markov chain channel model.

Keywords: Cognitive Radio, MAB, Markov chain, Greedy Algorithm, Two-slot

GCB

Student number: 2011-24072
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Chapter 1

Introduction

1.1 Cognitive Radio (CR)

The electromagnetic radio spectrum is a natural resource, the use of which
by transmitters and receivers is licensed by governments. In November 2002, the
Federal Communications Commission (FCC) published a report prepared by the
Spectrum-Policy Task Force, aimed at improving the way in which this precious
resource is managed in the United States [1]. The task force was made up of a
team of high-level, multidisciplinary professional FCC staff—economists,
engineers, and attorneys—from across the commission’s bureaus and offices.
Among the task force major findings and recommendations, the second finding

on page 3 of the report is rather revealing in the context of spectrum utilization:

“In many bands, spectrum access is a more significant problem than physical
scarcity of spectrum, in large part due to legacy command-and-control regulation

that limits the ability of potential spectrum users to obtain such access.”

Indeed, if we were to scan portions of the radio spectrum including the

revenue-rich urban areas, we would find that [2]-[4]:

1) Some frequency bands in the spectrum are largely unoccupied most of the
time;
2) Some other frequency bands are only partially occupied,;

3) The remaining frequency bands are heavily used.

The underutilization of the electromagnetic spectrum leads us to think in

terms of spectrum holes, for which we offer the following definition [2]:



A spectrum hole is a band of frequencies assigned to a primary user, but, at a
particular time and specific geographic location, the band is not being utilized by

that user.

Spectrum utilization can be improved significantly by making it possible for
a secondary user (who is not being serviced) to access a spectrum hole
unoccupied by the primary user at the right location and the time in question.
Cognitive radio [5], [6] is viewed as a novel approach for improving the
utilization of a precious natural resource: the radio electromagnetic spectrum.
The cognitive radio, built on a software-defined radio, is defined as an intelligent
wireless communication system that is aware of its environment and uses the
methodology of understanding-by-building to learn from the environment and
adapt to statistical variations in the input stimuli, with two primary objectives in

mind:

e Highly reliable communication whenever and wherever needed;
o Efficient utilization of the radio spectrum.
In this thesis, we focus on the second aspect, especially the channel

accessing policy of secondary users.

1.2 MAB problem

Multi-armed bandit (MAB) problems are a class of sequential resource
allocation problems, which has fundamental conflict between a strategy yielding
high present reward and a strategy sacrificing present gain for better future
reward [7]. In a multi-armed bandit problem, there are multiple (N) arms which
generates stochastic reward, and a player seeks a policy to select multiple (K >=
1) arms in order to maximize the expected total reward over multiple time-slots.

MAB problems can be generally classified into Bayesian and non-Bayesian



problems. The model becomes Bayesian when the statistical model/parameters of
the reward process for each are known, and it becomes non-Bayesian when they
are unknown. In the case of non-Bayesian MAB problems, the objective is to
design an arm selection policy that minimizes regret, which is defined as the gap
between the expected reward that can be achieved by a genie that knows the
parameters, and the reward from the given policy.

A particularly challenging variant of MAB problems is the restless multi-
armed bandit problem (RMAB) [8], in which all arms evolve as Markov chains.
Even in the Bayesian case, where the parameters of the Markov chains are
known, this problem is difficult to solve, and has been proved to be PSPACE
hard [9]. One approach to this problem has been Whittle's index, which is
asymptotically optimal under certain regimes. However it does not always exist.
Even when it does, it is not easy to compute. It is recently shown that non-trivial
tractable classes of RMAB where computable Whittle's index exists have been

identified [10].

1.3 Combination

We consider more challenging non-Bayesian RMAB problems, in which the
parameters of the Markov chain are further assumed to be unknown a priori. Our
main contribution in this work is providing a novel approach that can produce
higher reward than the UCB algorithms [11],[12] for arms with a markov chain
reward process, and provides a new analysis which shows that UCB algorithms
have the regret rate of In(t). We demonstrate our approach on a practical problem
related to dynamic spectrum sensing for cognitive radio applications. We
consider a scenario where a secondary user must select one of N channels to

sense at each time slot to maximize its expected reward.

If the primary user occupancy on each channel is modeled as an identical but
independent Markov chain with unknown parameters, we obtain a non-Bayesian
RMAB. Note that for RMAB with a known model staying with the best arm is

suboptimal. Thus, the sub-linear regret is not appropriate because the deviation
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from the maximum average reward can be arbitrarily large. In this thesis, we use
accumulated reward instead of regret as the performance measure. We develop
an efficient new multi-channel spectrum sensing algorithm for unknown
dynamic channels based on the two-slot greedy confidence bound algorithm
(Two-slot GCB), which combines the Markov Chain parameter estimation and

the channels sensing simultaneously.



Chapter 2

MAB algorithms with a Markov Chain Reward

Process

2.1  The multi-armed bandit problem

In probability theory, the multi-armed bandit problem is the problem a
gambler faces at a row of slot machines, sometimes known as “one-armed
bandits”, when deciding which machines to play, how many times to play
each machine and in which order to play them. When played, each machine
provides a random reward from a distribution specific to that machine. The
objective of the gambler is to maximize the sum of rewards earned through a
sequence of lever pulls.

In practice, multi-armed bandits have been used to model the problem of
managing research projects in a large organization, like a science foundation
or a pharmaceutical company. Given its fixed budget, the problem is to
allocate resource among the competing projects, whose properties are only
partially known now but may be better understood as time passes.

In the early versions of the multi-armed bandit problem, the gambler has
no initial knowledge about the levers. The crucial tradeoff the gambler faces
at each trial is between “exploitation” of the lever that has the highest
expected payoff and “exploration” to get more information about the

expected payoffs of the other levers [13].



o o o
Jackpot!!!

Jackpot!!! Jackpot!!!

Figure 1: Slot machines

The multi-armed bandit (or just bandit for short) can be seen as a set of
real distributions B = {Ry, ..., R} , each distribution being associated with
the rewards delivered by one of the K levers. Let 4, ..., ik be the mean
values associated with these reward distributions. The gambler iteratively
plays one lever per round and observes the associated reward. The objective
is to maximize the sum of the collected rewards. The bandit problem is
formally equivalent to a one-state Markov decision process. The regret p(T)
after T rounds is defined as the difference between the reward sum

associated with an optimal strategy and the sum of the collected rewards[14]:

T
p(T) =Tu" — Z e, 0 = maxy {uy}

t=1
Where p* is the maximal reward mean, and pis the reward at time t. A
strategy whose average regret per round p/T tends to zero with probability 1
when the number of played rounds tends to infinity is a zero-regret strategy.
Intuitively, zero-regret strategies are guaranteed to converge to an optimal

strategy, not necessarily unique, if enough rounds are played.


http://en.wikipedia.org/wiki/Markov_decision_process

2.2 UCB algorithm for MAB
Upper Confidence Bound (UCB) Algorithm [11] is very simple but

effective for MAB problem with reward generated independently for each

2 xIn(t)

m;(t) +
i® »

time slot (here we use time slot instead of round). And it can also be applied
for MAB problem with a Markov Chain Reward process, where the
generated reward for each time slot is related. For each time slot, the bandit
arm we decide to play is chosen through calculating the following value of

each arm shown as below:

Where m; (t) is channel i’s mean reward by time t, and t; is the times

channel i is played by time t.

It’s intuitive to choose the channel with the highest mean reward so
m; (t) in the equation acts as the exploitation part of the channels. But we
also need an exploration part to guarantee the judgment of the best channel

(with highest mean reward) is right. So the second part of the equation

’2*1 t .
%U acts as the exploration part.
i

2.3 A simple induction for UCB’s regret rate of log(t)

Suppose there’re just two arms 1 and 2, with mean reward m;, m, and

m; > m,. The arm choosing criteria is calculated as below:

by (O t—1)+ 2 *In(t)
ucb; (t) = m,(t— —
ki(t—1)

(3-1)
2 *In(t)
ucb, (t) =m,(t—1) + m



Where m(t) is the reward mean at time t, k(t) is the number of plays of

the arm after t time slots.

Suppose at time t* (large enough), a is arm 1’s played times percentage:

ky (t") = at”
ko (t) = (1 — a)t” (3-2)
uch; (t*) = uch, (t*)

Then we can rewrite Equation (3-1):

ucb, (t*) = ucb, (t")
2 *In(t")
= tt—1 -7
ml( ) + at*
(3-3)
3 RPN 2 *In(t")
Furthermore we get:
* % 2*In(t* 1 1—
(my(t =D —my(t ~ D)2 =252 (1= 592 (B-4)
The regret p(t*) by time t* is:
p(t") = myt* — (myt'a + myt* (1 — @)
=t"(1—-a) (m; —my) (3-5)

From Equation (3-4) we have:

(1- [=H2In(t)
t"(1—a) (m(t"—1) —my(t" — 1)) = JT (3-6)

m, (t*—1)—m,(t*—1)

Ast— o, we know t* = ooand a — 1 (explained later), then:

p(t) =t" (1 —a) (m; —my)



__ 2xIn(t")
- my—m;

(1= 5
= Cln(t") (3-7)

(- 55?2 1
Where C = = 1S a constant.

mp—m; mp—m;

Here we suppose we have just 2 arms, in fact, we can do the same
deduction for arbitrary number of arms by taking the other arms except the
best one as an equivalent arm with an average mean, then the calculation still
holds for these two special arms. Now we can conclude that the regret rate

of UCB algorithm increases with a rate In(t).

From the mathematic deduction, we notice that the In(t) part in Equation

(3-1) remains unchanged. So we can replace In(t) with other terms.

From Equation (3-5) and (3-7) we have:

. _ 2xIn(th) 1 _ [1-ay2 _
l—a="2 = (1= ) (3-8)

In(t*)
t

From Equation (3-8), as t* — oo, a = 1 with a converging speed

Then we have the idea to replace In(t) with other terms which have a
faster converging rate. But that doesn’t mean the faster it converges, the

higher total reward will be, since it should be guaranteed enough time to

In(In(t)) In(t)

explore the arms. Obviously, converges to 0 much faster than 4

For simplicity, the changed UCB algorithm by replacing In(t) with In(In(t))
is named as Log-UCB algorithm and similarly we have an Exp-UCB by

replacing @ with et



Here are some simulation results for comparing UCB, Log-UCB and
Exp-UCB algorithm under L.I.D arm reward distribution. The simulation
environment settings are 10 arms, the number of players varies from 1 to 10

and each arm generates its reward according to a uniform distribution.

x 10 centralized
2.5 T T T T T T T T
2 L
- 156F
=
=
z
= c-uch
B 1 c-log-uch |
c-exp-uch
expected
05k i
0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
Number of Users
Figure 2: Centralized various UCB algorithms
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Figure 3: Zoom-in of Figure 2
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In the simulation, expected means if there are N arms played for each
time slot then the best N arms among the total K arms are played, namely the
maximum reward. Judging from Figure 2, Log-UCB do outperforms UCB in
aspect of total reward and the Exp-UCB’s total reward is quite poor. The
total rewards are relevant to both exploitation part and exploration part in the
various UCB equations. If it converges to some arm too fast that means too

less exploration, it may probably lead a biased estimation about the best arm.

Track of channels played each time slot

UCB

0 I 1 I I I I I I 1

0 1000 2000 3000 4000 5000 6000 YOOD 8OO0 9000 10000
3 10
=
o]
=
S -
= Log-UCB
% UI I I I I I I I I I
= 1000 2000 3000 4000 5000 6OOO 7¥OOO 8OOD 9000 10000

2

1

0 Exp-UCB

1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 &000 5000 10000
time slots

Figure 4: Track of channels played each time slot

Through Figure 4, we can see that for most of the time slots both UCB
and Log-UCB stays on arm 4 (there’s almost a horizontal line), which is the
best arm among the 10 arms. Exp-UCB has too fast a converging speed and
it mistook arm 1 as the best arm and stays in that arm (keeps exploiting that
arm), due to too less exploration of the arms. The line of Log-UCB,
representing exploitation of the best arm, is more obvious than that of UCB,
meaning that in spite of less exploration but a faster converging into the best
arm can still guarantee more exploitation and consequently a higher total

reward.

11 A -1l i



24 CR with Markov Chain channel model and
Greedy algorithm
2.4.1 Problem Modeling

1-a Busy 1-B

B

Figure 5: Markov chain model

The channels in Cognitive Radio communication system are viewed as
the arms in MAB problem with two states: Busy (0) & Idle (1). The reward
in MAB problem here refers to the channel utilization, namely when the
channel chosen to access is busy the secondary user can get no reward
(reward=0) while if it’s idle then the user can get a reward (reward=1). The
channel accessing decision problem in CR now is formed as a MAB
problem, we aim to design a channel accessing algorithm to maximize the

total reward.

2.4.2 Belief Vector based Greedy Algorithm

When the state When the state transition possibilities of each channel are
pre-known and channels are independent, MAB problem with Markov
Chain Reward Process can be specified as a Partially Observable Markov
Decision Problem (POMDP), while Belief Vector based Greedy Algorithm

[15] acts as an optimal solution to this problem.

Belief vector A(t) = [A;(t), A, (1), A5(1), ..., Ax ()], means the user’s
expectation of each arm's reward in the next slot, which is updated

according to:

b i i
12 H 2-1H



At-D*(1- )+ -2 (t-D)*a, ifat) =i
A(t)=11- 3, if a(t)=i,0, (t)=1
a, if a(t)=i,0, (t)=0

a(t) is the index of the chosen channel to be played at time t; ©,(t) is the
state of channel a(t). This equation calculates the idle possibility for each
arm according to whether the channel is observed or not and whether the

observed channel is Idle or Busy.

2.5 UCB algorithm for CR Markov Chain channel

model

UCB algorithm can be applied directly to the MAB problem developed
from CR Markov chain channel model even without any information about
the channel state transition parameters because it can always view the two
states Markov Chain as an equivalent binary distribution. Meanwhile, it is
also due to its special dealing of the actual Markov Chain as a binary
distribution, it cannot make use of the observations of the channels to make a
more profitable decision of which channel to access. Its information about
the channel’s mean reward is more a historical long time estimation instead
of real time estimation, namely we can utilize the current time slot’s channel
state observation result to estimate the possibility of this channel to be idle
for the next time slot, that’s the property of Markov Chain which is ignored
by UCB algorithm.

13 A 2- 1l



2.6 Two and One slot algorithm for CR Markov Chain
channel model

2.6.1 Two-slot Algorithm
Since Belief Vector based Greedy Algorithm is optimal to POMDP, we

want to modify this algorithm so that it can still performs well without the

requirement of the Markov state transition possibility. The intuitive idea is

that we can calculate the belief vector for two slots A 1( 2 (t) instead of one,
namely we calculate the idle possibility of each channel in the next two slots.
Since each time we access one channel and stay in that channel for two slots,
the observations can be used to do the channel state transition possibility
estimation. Furthermore, if the current access channel is also chosen in last
time then we can observe one more state transition to make a better

estimation. Inspired by the exploitation and exploration parts in UCB

. . *]
algorithms, we also introduce the part /Zt—n(t) to act as the channel

exploration; finally we come to the following channel accessing algorithm

Two-slot Greedy Confidence Bound Algorithm (TGCB):

2 *In(t)
4

Ai(z)(t) + 0.5 m; +

The updating of A 52) (t) in TGCB is a little different from that of 1, (t)

in greedy algorithm, shown as below:

if a(t-2)=i,
if ©,t-1)=1, 4(t)=1-4;
if ®,(t-1)=0, A(t)=a;;
if a(t-2) =1,
A-D)=A4t-2)*A-£)+1-A4(t-2))*a,
A@)=40-D)*A-4)+A-A4(t-D)*e;

14 A 2- 1l



The coefficient of 0.5 of the term m; is an empirical parameter from

simulation results.

TGCB is quite similar to UCB algorithms and in fact it is indeed
equivalent to UCB algorithms: for the channel accessed, the mean reward
(namely the possibility to be idle) will be the possibility of transiting from
Idle to Idle if the channel’s state is idle and be the possibility of transiting
from Busy to Idle if the state is busy; for those channels not accessed, the
mean reward will be the statistic mean reward. Namely, only those channels
observed can provide real time estimation about the next time slot while
those channels not observed can only make use of their average mean reward

to do the estimation.

2.6.2 One-slot Algorithm
One-slot Greedy Confidence Bound Algorithm (OGCB), which is almost

the same with TGCB except that it just calculate one slot belief vector

('updating process is the same with Greedy algorithm) and how it completes

2 xIn(t)

Al’ + 0.5 *m; +
ti

parameter estimation. It has an expression as below:

In the simulation, we tract the channel chosen to access for each time
slot and find that the user will stay in the same channel for several slots in

series, which can be used to do the transition possibility estimation.

3 ) g
15 H Z2-1H &



2.6.3 Combination of Two-slot and One-slot

algorithms

The difference between Two-slot and One-slot algorithms mainly lies in
the updating calculation of the belief vector, is there any possibility that we

can unify them into one algorithm?

In fact, there do exit some method to combine these two algorithms.
During each calculation for selection of channels to access, firstly we
calculate the belief vector for One-slot and Two-slot, and then we compare
these two vectors and choose the larger one, the slot is chosen accordingly.

Here below is the mathematic expression:
A = A (0, 22(0,A3(0), ..., An(D)] : One — slot
A2 = [MP©,2,2®,2:2®, ... WP ®]: Two - slot

After the calculation, we sort A(t) and A®)(t) in a descending order into

A’ (t) and '@ (t). If one secondary user chooses L (L < N) channels to

access, then we decide how many slots to access the channels by comparing:

A= in'(t) and B = z% N © + 4 PO

There are two possible combination versions by changing the conditions
for comparing. Firstly the slot number (I define this parameter “recur”) for
calculating the belief vector is set to be 2. One possible condition is that
recur can have single way changing: once A = B, recur will be set to be 1
and no more changed, namely turned into a pure One-slot algorithm ; The
other possible condition is that the value of recur is set according to the
comparing result of A and B. We label the combined algorithm for the first
condition as “12slot-s” and for the second condition as “12slot-d” in the

simulation results.
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2.7 Simulation

2.7.1 Single User Single Play

First we simulate for the case “Sing User Sing Play”, the simulation
environment settings are: 10 channels, 10000 time slots, one secondary user
chooses one channel to access. Here we compare Greedy algorithm, Two-slot
algorithm, One-slot algorithm, UCB algorithm and Log-UCB algorithm in terms

of their total rewards and the tracking of channels accessed for each time slot.

total rewards
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From Figure 6, we can see that in terms of total rewards, Greedy
algorithm gains the highest reward, followed by Two-slot algorithm, One-slot
algorithm and UCB in series. From Figure 7, which shows for each time slot,
which channel is accessed by each of the four algorithms, we can see that Two-
slot algorithm’s channel access behavior is more similar with that of Greedy
algorithm compared to One-slot and UCB, meaning a closer total reward with

Greedy algorithm.

2.7.2 Single User Multi play

Then we simulate the situation where there are multiple secondary users
and each user can only access one channel at a time. The simulation environment
settings are: 5 channels, 10000 time slots, one secondary user chooses multiple

channels to access (from 1 to 5 channels).

w10 centralized
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Figure 8: Single User Multi play
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Figure 10: Single User Multi Play (Low state transition probability)

From Figure 8 and Figure 10, we can conclude that the 12slot-s
algorithm performs similar to 1slot algorithm; and12slot-d algorithm performs
similar to 2slot. In section 2.6.3, we distinguish two combination conditions to
get 12slot-s algorithm and 12slot-d algorithm. For 12slot-s, once the parameter
recur changes it will hold the same value of 1, then it is just the same with the
One-slot algorithm, which means the total reward difference just depends on
when A > B. While for 12slot-d algorithm, the parameter recur changes

19 = A -t &



according to the comparison result of A and B. The parameter recur has more
chances to be set to be 2, which makes this algorithm has an intrinsic similar
performance as Two-slot algorithm. All of the algorithms containing the greedy
part in the selection calculation of channel accessing gain a higher total reward
than UCB algorithms and the differences among these algorithms depend on
both the number of channels to access and the transition probabilities. The
slower the channels shift from one state to another, the larger total reward
difference would be. This phenomenon can be explained as: if the state changing
probabilities are very small, suppose the secondary user currently chooses the
best channel to access and find it to be busy, from the angle of UCB algorithms,
it would probably ignore the fact that for next time slot the best channel would
stay in busy state (0 reward) with a very large probability and still chooses the
best channel to access for next time slot while for those algorithms containing a
greedy belief part, they would probably choose channels with higher

probabilities to be idle (1 reward) for next time slot.

The situation, single user multi play is equal to the situation of

centralized multi user single play.

b i i
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2.7.3 Decentralized Multi User Single Play

Before we begin the simulation, we should specify some details on
decentralized settings and collision models for Multi-user (U secondary users &

N channels).

To ensure fairness and make multi users work in a decentralized manner,

we introduce the following settings into the algorithms:

Initially each user will be assigned an index (index=1,2,3,...,U)
representing their channel accessing priority (if the user get the index 2 that
means it can only access the second best channel according to its own estimation
of the channels’ order for the current time). After each round of channel
accessing (round=2 slots for Two-slot algorithm and round=1 slot for the rest
algorithms), each user increase their index by 1. In the next round, only those
users with an index not great than N (the number of channels) can access the

channels.

Collision happens when more than one user choose the same channel to
access and under this situation, we randomly choose one user from those users
choosing the same channel to get the reward and only this user can update its

parameters.

Expected reward means if we know each channel’s mean reward, we
would always access the best K channels, K=U (the number of users) when
U<=N (the number of channels) otherwise K=N. It is used as a baseline to

compare the performances of these algorithms.

The simulation environment settings are: 3 channels, 10000 time slots,
the number of secondary users vary from 1 to 6 and the channel access priority

keeps for just one round.
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Under decentralized case, these algorithms could still perform much worse

compared to centralized case (in centralized situation, all the total rewards are

larger than the expected mean reward), which we could see from Figure 11.
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Judging from figure 12, we can see that both UCB algorithms and Two-slot
algorithm are better even than greedy algorithm while One-slot algorithm has a

very bad performance.

From figure 13, we can see that UCB algorithms perform better than those

algorithms containing greedy belief vectors.
We provide the following explanations to explain the simulation results:

First, each secondary user keeps its own channel ranking order, which will
cause lots of collisions when they choose channels to access according to their
assigned accessing order. That’s the reason why all the algorithms under
decentralized condition cannot gain a better total reward than that of centralized

condition.

Secondly, the exploration part in UCB algorithms has a higher weight than
that in algorithms containing greedy belief vector, which will ensure a more
accurate ranking of channels and less collisions. This may explain why UCB
algorithms can gain higher total rewards than greedy algorithm, Two-slot

algorithm and One-slot algorithm.

Thirdly, Each secondary user can only keep channel accessing priority for
just one round, which makes One-slot algorithm can’t work because One-slot
algorithm relies on its intrinsic property to stay in the same channel for a series

of time slots to make channel transition probability estimation.

Then we try to set the priority keeping time to be infinity, we get the
simulation result of Figure 14. From Figure 14, we can see that the change
degrade UCB algorithms quite a lot due to the fact that if a secondary user can
only access the second best channel then it can hardly achieve a right ordered
ranking of channels and this ranking won’t be revised until the weight of
exploration part is larger than that of the exploitation part which keeps
decreasing due to their wrong estimation about the channels. The reason for that

both greed algorithm and Two-slot algorithm’s performances are not affected is

T
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due to that their estimation about the ranking is unrelated to the priority keeping

time.
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Chapter 3

Un-slotted channel access policy

This chapter explains how the mathematic expression for Markov channel
collision probability constrained accessing policy is developed and two general
policies are presented based on the two general solutions to this math problem,
which either utilizes expectation or variance to avoid the requirement of knowing

the channel idle distributions.

And we develop another model for collision time constrained channel

accessing policy based on renewal theory.

3.1 Continuous-time Markov channel model

busy

idle

Figure 15: Continuous-time Markov channel model

In this model we use random variable X, X5, ... and Yy, Y, ...to represent the
length of channel being idle/busy, with mean value |} and lg, and we use 0/1 to

represent the sample result of idle/busy.
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3.2 Channel access policy without distribution constraints

3.2.1 Channel access behavior and mathematic modeling

Suppose the transmission of secondary users is slotted with a length I,
s <1pls <lgandlg <1, where I, is the packet length of the primary user. We

don’t require the synchronization between primary users (PU) and secondary
users (SU) but suppose that SU always have packets to transmit. When SU sense
the channel idle, they will choose to transmit with some possibility or to simply

back-off some time.

There could be two kinds of collisions between primary users and
secondary users:
Type A:

When PU comes back to the channel while SU haven’t finished their
transmission, collision type A will occur under the proposition that SU can’t
carry out transmission and channel sensing simultaneously. Even with perfect
channel sensing, this type of collision is not avoidable except that SU can predict
the exact coming back time of PU, as a consequence SU chooses not to transmit

even the channel sensing result is idle.
Type B:

When channel sensing is imperfect, SU may mistake the busy channel

condition as idle and transmit, which causes extra collisions with PU [16].
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Parameter table

Symbol Definition
Ly (Lg) the sojourn time of PU idle (busy) state
Iy (Ip) average PU idle (busy) time
o percentage of PU idle time
() (F(+)) PDF (CDF) of PU idle time
Np (Ne) number of (collided) PU packets in a PU busy time
np (ne) mean of Np (N¢)
Ip (1) the packet length of PU (SU)
Pe collision probability perceived by the PU
p2 (pB) type-A (B) collision probability
n collision probability constraint

N2 (NB)

number of type-A (B) collisions in a PU busy time

nd (nB)

mean of N2 (N5)

| SU throughput performance
G SU successful transmission time
q SU transmission probability
7s (fs) sensing time (sampling frequency)
P (Py) probability of missed detection (false alarm)
ag (02) power of PU signal (noise)
t amount of time elapsed since latest PU idle state
k (m) Index of PU idle-busy periods (SUs)
B, 1 K o parameters of PU idle time distribution

28 oy ,.JE;E =5 'l:_] 51” iTU



The portion of channel being idle is & = 7 - 7 which is also the

j+b’

upper bound of how large a portion SU can make use of the channel. The
collision possibility observed by PU is defined as the percentage of transmitted

packages collided with SU:

;= Hn S <
DoV, (K) (3-1)

G represents the random variable of successfully transmitted time in one

idle-busy period of PU. The throughput of SU I"  is defined as the portion of

successfully transmitted time percentage in one idle-busy period. Then:

(3-2)

Usually, optimal strategy makes decisions based on current and

historical action information, so we express the access strategy as a function

of channel’s current and historical values, note 2 € [0, 7] as the current
time, A(4) = {zr | ¢(r) = Busy, r < h} as the history observations,
¢(T) represents the observation of time 7 .The access policy

7 = [q(h, A(h)) : h e [0, T'] ]determines the possibility ¢(/4, A(A))to

transmit at each time, obviously (4, A(A)) = 0 when ¢(h) = Busy .

Let 7 (4) be the latest time one channel busy interval ends by time /4,

t means time difference:

Tmux(h> = mahX{T : ¢(T) = BUSY} (3-3)
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t =h-r1,(h) (3-4)

Now policy 7 can be simply expressed as 7 = [C](fo), C](tl), e d,
tys L) -+ -is the possible value ¢ may be. For simplicity, we use¢(¢) replace
§(h) = ¢z (h) +1).

Under perfect sensing only collision type A can occur, dueto / < / ,

so at most one packet collision happens, so to make collision threshold

effective, it should:

1
; then the secondary user can just transmit whenever it senses the
D

Gf 7 2

channel being idle)

Let Z(k) be the event that primary user comes back during [tk, t, + ]S),

then during one idle-busy period the expectation of collision times 7, :

k=0

n = »1-Pr[Z(k),SU transmits at time ¢,]

S qle,) - Pri2()]

(3-5)
Prizik) ) =Prle, <L, <t +1]
SU’s throughput I"_ (7)
© k-1
I o) = > O La@) Priz(k)]
s - (3-6)
1, + 1,

k-1 .
Z 1o 1.(¢,) means before PU comes back during (¢, ¢, + 1), the
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expectation of packets SU has already transmitted.
Fs(ﬂ) increases as ]S decreases, then as ]S — 0, turn the sum-

equations into integrations we get:

0 = 2 = L[7 rw)gte)de (3-7)
n, n, 0

JOO f(t)r q(r)drdt
r = 20 0 (3-8)
) 1+ 1

So now the channel access problem can be modeled as a mathematic

problem as above[16].

3.2.2 One general channel access policy

One general solutionis 7 = [g(t) : ¢ = 0,1, - -]:

A nn, if ®©(t) = Idle,
ae) = 1"
0, otherwise. (3-9)

We can easily get:

pc = 77’ Gs(ﬂ-) = npn]/')

][

I + 1

I B

r(z)=nn = n no (3-10)

This general policy can guarantee a throughput which is optimal for
exponential distribution Markov channel, while this channel situation is the

worst channel condition for secondary users.
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3.2.3 Another general channel access policy
We start from the mathematic expressions and try to find another solution

for this problem and develop a policy based on it.

plm) = - ijm r(t)g(r)dr
n, n %
I (z) = |, <f>J; ¢(z)drdt (3-11)
() = T

The previous solution makes use of expectation to avoid the requirement of
knowing the exact function of the distribution while we know besides the
expectation; we can also make use of variance which can also spare us from that
difficulty.

Based on the thinking above, we can express ¢(¢) as a linear function of

qg(t) = 2at + b (3-12)

Since linear function can’t converge as time goes to infinity, so this requires
the channel idle time should be upper bounded, which is also reasonable for

some heavy loaded channels:

p.(m) = — [ () Qat + bt
n 0
D

= i(2a]] +b)<n

n
p

o LL"‘“ £(0) (at® + bt)dt
r =
o 1+ 1,

[ FO)lale = 17 + b + 2a1)¢ - aldde 313

1, + 1,
al; + (b +2al)l, - a]]Z ,
1, + 1,

]5 is the variance of idle time

Now we need to decide the value of a, o in g(t) = 2at + b. Take
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b = nmn—2alinto T (7) we get:

a(l, - I}) + nnl,
1, + 1,
a(l; — ]f) . nnli,
1, + 1, 1, + 1,

r (r) =

(3-14)

It is noticed that the right part of this throughput is right the previous

general solution’s throughput.

If we take a, b as

a=1;~- r
b =nn- 21,(1; - ) (3-15)

This policy can always guarantee a better throughput than the previous one.

While ¢(z) is a possibility, then
1>qg(t) =2at+b>0, tel0 L 1, sotake a, b accordingto (3-

15) will not always be valid.

O. When I, — I} >0, nn—21( — 1) >0, wecanset a, b

according to (3-15) ;

, 1
O. When [, — [} <0, nn--—— >0,thenseta, b
L

1
b — Hp;] — L_]
1, (16)



Although this policy can achieve a throughput not lower than previous
policy, but knowing exactly when the channel becomes idle is very vital since
the possibility to transmit is closely related with the time while for the previous
policy, the exactness of idle starting time just decrease the throughput a little (I
already work out the exact mathematic expression for this) but doesn’t make it

unworkable.

3.3 Another model for collision time constraint

We develop a model based on renewal theory [17] to describe the collision
time constrained channel access problem. We suppose secondary user can know
exactly when the channel becomes idle. We define success transmit factor o
and the uncollided transmit factor S when collision happens, both of them are
positive and & > . The channel idle distribution is #(z), /, and /, are
the mean value of channel idle and busy, the collision possibility constraint is
77 °

Let = represent the time primary user plans to stay in this channel right
after the channel is sensed idle, and s represent the successful transmission

time, then its expectation is:

ELS] = ELS | PU is absent during 7]
+ E[S | PU comes back during 7] (3-17)

-7 j " F@)dt +J'0T t£(t)dt
Collision time 7 :

E[T] = .[OT £(t) (r — t)dt (3-18)

According to the collision time constraint:
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f —t)d
ET] Io () (z = t)dt . 9
1, + 1, 1+ 1,

Express throughput # as:

EWW] = a - ELS | PU is absent during 7]+ £ - £[S | PU comes back during 7]

Then the channel access problem can be expressed as:

max {EW]} 20

s.t.
ELT)<n(1,+1,)
We show here an example:

suppose 7°(¢) is a uniformly distribution over (0, 27,)

2

EW] = az(l — 2) + yij , weset # = 0 (it means retransmit all the

T
21, 41

7

packet even some of them are well received) , then

1/
EN] = al- % (r — 1) + Ej) - Under the constraint

I

Erl <n, + 1), wehaver < \J4/n(l, + 1))

That means we can choose 7 = «f4]]77(][ + 1,) to achieve the

theoretical throughput.
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Chapter 4

Conclusions

This thesis is mainly on applying Multi-Armed Bandit (MAB) problem
to model Cognitive Radio’s channel accessing behavior with Markov chain
channel model. First we introduce Upper Confidence Bound (UCB) algorithms
to solve L.I.LD MAB problems which can achieve a regret rate of log(t) and we
give out a simple analysis for why the regret rate is log(t). By replacing the log(t)
part, which drives the player to do the exploration, we get Log-UCB and Exp-
UCB and by simulation we can see the effects of converging speed with the

stability and total rewards of that algorithm.

Then we introduce the Cognitive Radio Markov chain channel model
and its optimal solution, Greedy algorithm, when the channel transition
parameters are pre-known and channels are independent to each other. And
inspired from the exploration part and exploitation part in UCB algorithm, we
develop an algorithm named Two-slot Greedy Confidence Bound Algorithm
(TGCB) which contains both greedy algorithm and UCB algorithm without need
of channel transition parameters due to the fact that each time the secondary user
access the channel would stay in that channel for two time slots. By making use
of the observation of that two time slots, the user can do channel transition
parameter estimations. After noticing the intrinsic property of UCB algorithm
that the user would choose to stay in the same channel for several time slots in
series, we get One-slot Greedy Confidence Bound Algorithm (OGCB) that will
make use of this property to do the channel transition parameter estimation.
Finally after adding some comparing condition we can combine TGCB and
OGCB. And we simulate to compare the properties of these algorithms under 3

cases: Single User Single Play, Single User Multi Play (equal to Centralized

b i i
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Multi User Single Play) and Decentralized Multi User Single Play. We give out

simulation analysis in detail in section 2.7.

In centralized cases, the simulation can show us that all of the
algorithms containing the greedy part in the selection calculation of channel
accessing can gain a higher total reward than UCB algorithms and the
differences among these algorithms depend on both the number of channels to
access and the transition probabilities. The slower the channels shift from one

state to another, the larger total reward difference would be.

In decentralized cases, we first give the details about the rules how each
secondary user can access the channels (especially when the number of
secondary users is larger than that of channels). We find that UCB algorithms can
gain a much better total reward due to their heavily weighted exploration part in
their expression which can ensure a more accurate channel ranking order so that
much less collisions (if more than one secondary user choose to access the same
channel) would occur.
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