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ABSTRACT 

 
An HR-MAS MR Metabolomics Study on Breast 

Tissues Obtained with Core Needle Biopsy 
 

LI MULAN, M.D. 

Department of Biomedical Sciences 

The Graduate School 

Seoul National University 

 

 
Introduction: Much research has been devoted to the development of new breast 

cancer diagnostic measures, including those involving high-resolution magic 

angle spinning (HR-MAS) magnetic resonance (MR) spectroscopic techniques. 

Previous HR-MAS MR results have been obtained from surgical specimen, which 

limits their direct clinical applicability. 

Methodology/Principal Findings: In the present study, we performed HR-MAS 

MR spectroscopic studies on 31 breast tissue samples (13 cancer and 18 non-

cancer) obtained by percutaneous core needle biopsy. We employed Carr Purcell 

Meiboom Gill (CPMG) pulse sequence which can selectively suppress signals 

with short relaxation times, most notably, lipid signals abundant in core needle 

biopsy samples. Cancer and non-cancer samples were discriminated very well 

with Orthogonal Projections to Latent Structure-Discriminant Analysis (OPLS-
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DA) multivariate model on the MR spectra. A subsequent blind test showed 69% 

sensitivity and 94% specificity in the prediction of the cancer status. A spectral 

analysis showed that in cancer cells, taurine- (3.43 ppm) and choline- (3.23 ppm) 

containing compounds are elevated. 

Conclusions/Significance: HR-MAS MR metabolomics on intact breast tissues 

obtained by core needle biopsy may have a potential to be used as a complement 

to the current diagnostic measures for breast cancers. 

 

* This work is published in PLoS ONE Journal (Li M, Song Y, Cho N, Chang JM, Koo HR, Yi A, 

Kim H, Park S, Moon WK. An HR-MAS MR Metabolomics Study on Breast Tissues Obtained 

with Core Needle Biopsy. PLoS ONE. 2011 Oct; 6(10): e25563.). 

---------------------------------------------------------------------------------------------------

------------- 

Keywords:  HR-MAS, Metabolomics, Breast cancer, Core needle biopsy 

Student Number:  2009-30778 
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INTRODUCTION 

Breast cancer is the most common cancer in women all over the world. 

According to reports, breast cancer affects eight out of every ten women in the 

United States of America and Europe 1. Therefore, early diagnosis and correct 

assessment of prognosis are of great importance. Due to its high reliability and 

sensitivity in distinguishing cancer from benign disease, percutaneous core needle 

biopsy has been confirmed as an accurate, less-invasive, and cost-effective 

alternative to surgical biopsy for the histologic assessment of non-palpable breast 

lesions 2-5. Using core needle biopsy, immuno-histochemical assays for the three 

standard molecular markers (estrogen receptor: ER, progesterone receptor: PR, 

and human epidermal growth factor receptor: HER2/neu) in breast cancer are 

critical for determining appropriate adjuvant systemic therapy options. This 

information can be a guide to make decisions in regard to adjuvant chemotherapy 

and endocrine therapy. 

Magnetic resonance (MR) spectroscopic techniques has been a primary 

method employed in investigations of metabolite changes in biofluids such as 

urine, blood, and bile 
6-8. Recent technological advances have enabled detection of 

metabolites also in intact tissues, using magic angle spinning (MAS) methods 9. 

MAS narrows the line widths of metabolite signals by eliminating dipolar 

relaxation in the semi-solid tissues through rapid sample spinning (typically ≥ 
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2000 Hz) at a magic angle (54.7 degrees) against the magnetic field. The resulting 

spectra show features with high resolution (HR) that are typically seen in solution 

MR data 9. Such HR-MAS MR spectroscopy has been applied in metabolomics 

studies on breast, prostate, liver, colon, and lung tissues10-15. In the case of breast 

cancer tissues, several studies employing HR-MAS MR have addressed issues 

including metabolite identification, diagnostic usefulness, and prognostic marker 

correlation 
16-19. However, these studies were conducted retrospectively with 

surgically obtained tissues; their results, therefore could not be directly applicable 

to surgical decision making or to cancer patients that do not need axillary 

dissection. Samples alternatively obtained by minimally invasive fine needle 

aspiration biopsy (FNAB) or core needle biopsy before surgery would, in fact, be 

applicable. A standard high-resolution MR (non-HR-MAS) spectroscopic study 

with FNAB has been conducted, but it, too, used intraoperative samples 20. 

Moreover, this method would be ineffective with breast tissue samples obtained 

by core needle biopsy, due to the high lipid contents of those tissues. 

The data obtained via MR spectroscopic techniques are inherently complex, 

and contain information on many metabolites; such data, accordingly, have been 

analyzed by multivariate analysis. Variables are reduced in number, and marker 

signals are identified by the weights of the original variables in the reduced 

variables that contribute to the differentiation of the classes of interest. Principal 
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component analysis (PCA), partial least square-discriminate analysis (PLS-DA), 

and neural networks are among the frequently-used methods for breast cancer 

metabolomics studies 18, 21. Recently, Orthogonal Projections to Latent Structure-

Discriminant Analysis (OPLS-DA) was proposed as an effective tool for 

metabolomic analysis 22, 23. The main merit of OPLS-DA is its separation of the 

class-orthogonal variations that can obscure class differentiation. It is similar to 

the combination of orthogonal signal correction and PLS-DA, but, advantageously, 

can be completed in a single analysis. Its utility in fact has been shown in many 

metabolomics studies in which intra-group variation is very large 8, 24, 25.  

We prospectively conducted HR-MAS MR spectroscopic studies on breast 

tissue samples obtained by percutaneous core needle biopsy. We employed Carr 

Purcell Meiboom Gill (CPMG) pulse sequence which can selectively suppress 

signals with short relaxation times, most notably, lipid signals abundant in core 

needle biopsy samples. An OPLS-DA analysis yielded information on elevated 

metabolites in the cancer samples as well as quantitative measures on the 

performance of our approach in classification and blind sample prediction. On the 

basis of the results, we believe that minimally invasive core needle biopsy 

combined with the HR-MAS MR metabolomics approach may complement the 

currently existing breast cancer diagnostic and assessment measures. 
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MATERIALS AND METHODS 

Ethics Statement 

 

Institutional review board approval was obtained for this prospective study 

from the Seoul National University Hospital Institutional Review Board (H-1003-

037-312), and all patients provided written informed consent. 

 

Patients 

 

Between May 2010 and November 2010, 22 consecutive women (mean age, 

49 years; age range, 20–68 years) who had been scheduled to undergo an 

ultrasound-guided percutaneous core needle biopsy were examined. We had 

obtained the 31 breast tissue samples (13 cancer, 9 benign and 9 normal) from a 

total of 22 women (13 patients with breast cancer and 9 patients with benign 

tumors) (Table 1). The normal breast tissue samples were obtained from sites 

adjacent to the periphery of the benign tumors from patients with benign breast 

tumors by simply changing the direction of the needle. Among the cancer patients, 

eleven of them had infiltrating ductal carcinoma and the rest of two had ductal 

carcinoma in situ. Four of the patients with infiltrating ductal carcinoma also had 
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metastasis on the lymph nodes (Table 2). We did not apply any exclusion criteria 

and analyzed all the samples of the patients enrolled in the study to maximize the 

patient diversity. 

For HR-MAS MR spectroscopy, tissue samples were placed in cryogenic 

vials and were immersed in liquid nitrogen immediately after dissection. 

 

Sample obtain and MR spectroscopy data acquisition 

 

All patients underwent 14-guage core needle biopsy using an automated gun 

device (Bard Peripheral Technologies, Covington, GA). Biopsy was done under 

the guidance of high resolution ultrasound with a 10- or 12-MHz linear transducer 

(HDI 5000, Advanced Technology Laboratories, Bothell, WA) with the patient in 

the supine or lateral decubitus position. The samples were stored at -70℃ until 

ready for HR-MAS MR spectroscopy. 

Frozen samples were thawed in NMR laboratory, weighed, and placed into a 

NMR spectrometer equipped with a 4mm gHX nano-probe (Agilent, Walnut 

Creek, CA). The total volume of the sample cell was 40 µl, and an average of 12.2 

mg core-biopsy samples were put in the cell with the remaining volume filled 

with D2O (0.01% TSP). The rotor was then assembled and placed into the 

spectrometer after a handling time of 2-4 min. The probe was an inverse-detection 
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type and equipped with single Z-gradient coil. The spectra were taken with 

CPMG pulse sequence to impose a T2 filter. The total T2 delay was set to 290 

msec and the sample was spun at 2 KHz. The spectra were acquired with total 

complex points of 16 K, sweep width of 7961 Hz, and 1024 transients. The 90 

degree pulse was calibrated with each sample on water resonance. Water signal 

was saturated using weak power continuous wave during the recycle delay. 

All one-dimensional HR-MAS MR spectra of the tissue samples were 

measured with an NMR spectrometer (Agilent, VNMRS 500) operating at a 

proton NMR frequency of 500.13 MHz (11.7T). Temperature was set to 19℃ 

after calibration with methanol. Each experiment took approximately 1 hour. All 

these processes from CNB method to HR-MAS MR spectra study were illustrated 

in Fig 1. 

 

Data processing 

 

The time-domain spectra were apodized with exponential function (1 Hz), 

and then Fourier-transformed, phased and baseline-corrected manually. Spectra 

were referenced to the TSP signal at 0.00 ppm which was also checked by alanine 

signals at 1.48 ppm in case the TSP signal is split due to protein binding. To 

reduce the complexity of the NMR data for the subsequent multivariate analysis, 
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the spectra were binned by 0.005 ppm interval and normalized by integration 

values over the region of 0.99, 5.59 ppm. As the aliphatic lipid signals were vastly 

different from sample to sample, only the regions that are not affected by those 

signals were used (1.44, 1.91 ppm and 2.15, 5.59 ppm). Within those regions, the 

water region (4.61, 5.03) was excluded in the normalization due to its irregular 

behavior. These binning and normalization were done using an in-house built Perl 

program. To compensate for possible peak shift mismatch due to the relatively 

high resolution binning, the spectra were aligned using correlation-optimized 

warping algorithm 
26.  

 

Multivariate and spectral analysis 

 

Matlab (MathWorks, Natick, MA), SIMCA-P 11.0 (Umetrics, Sweden), and 

Excel (Microsoft, Seattle, WA) programs were used to process the numeric data 

for statistical analysis. Chenomx (Spectral database; Edmonton, Alberta, Canada) 

was used for spectral analysis. PCA, PLS-DA, and OPLS-DA were performed to 

identify latent patterns and distinguish patient groups. PCA models are fitted for 

each class, and model residuals are utilized to classify unknown metabolite group 

to several classes. PLS regression is a multivariate method for assessing a 

relationship between a descriptor matrix X and a response matrix Y. PLS 
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regression has been used in the field of multivariate calibration where the 

response matrix is quantitative. OPLS is an extension to the supervised PLS 

regression method featuring an integrated orthogonal signal correction filter. In 

simple terms, OPLS uses information in the Y matrix to decompose the X matrix 

into blocks of structured variation correlated to and orthogonal to Y, respectively. 

The block containing the correlated variation, also referred to as the predictive 

variation, can also be derived from the normalized PLS regression vectors 

followed by a procedure called ‘target rotation’. Class discrimination models were 

built until the cross-validated predictability value does not meaningfully increase 

to avoid over-fitting of the statistical model. The statistical model was validated 

by prediction of the unknown samples using leave-oneout analysis. An a priori 

cut-off value of 0.5 was used to evaluate the prediction results 
6. Signals 

contributing to the class differentiation were identified by S-plot and the 

corresponding metabolites were identified using Chenomx (Spectral database; 

Edmonton, Alberta, Canada) software and an in-house built database. 

 

Immunohistochemistry 

 

After HR MAS analysis, each core needle biopsy specimen was fixed in ice-

cold acetone for histopathology. Tissues were sectioned at a thickness of 5 μm and 
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hematoxylin and eosin (H & E) staining for microscopic examination were 

performed. Another section was stained immuno-histochemically for ER, PR, and 

HER-2/neu using anti-human ER (ab7825, abcam, USA), PR (sc52358, santa cruz, 

USA) and HER-2/neu (sc71667, santa cruz, USA) and Dako REAL EnVision 

Peroxidase/3,3’ diamino benzidine (DAB)+ in a Dako Autostainer Plus. 
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RESULTS 

HR-MAS MR spectra of core needle biopsy samples 

 

The 31 breast tissue samples (13 cancer, 9 benign and 9 normal) obtained by core 

needle biopsy were examined, and the representative MR spectra of cancer and 

non-cancer samples are shown in Fig. 2. As has been the case with spectra 

previously reported for samples obtained through surgery, our MR spectra 

featured large peaks at 0.91 and 1.31 ppm due to the aliphatic fatty acid sidechains 

of lipids. These peaks were by far the most intense, even with the CPMG T2 filter 

and regardless of the cancer status, indicating that it is not easy to avoid inclusion 

of adipose tissues in core biopsy samples. The intensity variations of those signals 

were so large as to dwarf those of any others. Therefore, we excluded them from 

the subsequent analysis. Still, there were readily observable and reasonably 

resolved signals in the 2.2, 4.2 ppm region. In addition, the S/N ratios were 

adequate for identification of a number of metabolites that have been reported in 

surgically obtained samples (Fig. 2). 

 

Multivariate analysis of MR spectral data 

 

As it was difficult to isolate differences between the patient groups by simple 
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visual inspection due to the large intra-group variation, we performed a 

multivariate statistical analysis for a more holistic view of the data. We used the 

0.99~5.59 ppm region, but excluded water and aliphatic fatty acid sidechains 

signals, as stated above. Initially, we wanted to see if the approach could 

discriminate among the three groups (cancer, benign tumor, and normal), but 

found that it was not possible to distinguish differences within the non-cancerous 

samples (benign tumor vs. normal) (Fig. S1). Therefore, we tried to build a model 

that can address the difference between cancer and non-cancer groups using the 

OPLS-DA approach, by which structured noise can be dealt with efficiently 
8, 22, 27. 

The resultant OPLS-DA model, for all of the 31 samples, separated the two major 

groups, cancer (n =13) and non-cancer (n =18), without overlap using one 

predictive and two orthogonal components (Fig. 3). Overall, though each sample 

within a group showed considerable variation, our model could discriminate them 

very effectively. 

Although a perfect separation was achieved (see the Fig. 3: score plot), it was 

yet possible that the distinction was due to model over-fitting. Therefore, we 

performed a predictive test by leaving out one patient sample at a time and 

constructing the OPLS-DA prediction model with the rest of the data. The cancer 

or non-cancer status of the left-out sample was then predicted based on the new 

model. This step amounts, then, to a blind test for an unknown sample, and as 
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such can serve as a cross-validation for the distinction model. The prediction 

approach was taken with the same number of predictive and orthogonal 

components as in the original OPLS-DA model. The class membership of the left-

out sample was predicted using an a priori cut-off value of 0.5. The prediction 

results showed that the model correctly predicted 26 samples out of the total 31 

(Fig. 4). Among the incorrectly predicted samples were four cancer samples 

predicted as non-cancer samples, and one non-cancer sample predicted as a cancer 

sample. Thus, the sensitivity, specificity, and accuracy were 69% (9/13), 94% 

(17/18), and 84% (26/31), respectively, in the prediction of the cancer status. 

 

Analysis of group-relevant signals 

 

After the establishment of the model, we tried to identify the variables 

responsible for the differentiation of the cancer and non-cancer groups. We built 

an S-plot that shows the modeled correlation (p(corr)p) and covariation (p p) in a 

single figure, enabling easy selection of significant markers among noisy signals. 

The p(corr) p values of the signals suggest that multiple signals account for group 

differentiation (Fig. 5) 6, 8. Still, we could pick up 3.43 and 2.77 ppm signals as the 

most reliable contributors for the cancer and non-cancer groups, respectively, as 

they had large values for both correlation and covariation. Based on the above 
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signal assignments, the signals were identified as coming from taurine (3.43 and 

3.26 ppm) and aspartate (2.77 ppm). The assignment of aspartate was tentative, 

though, as its signal was broad and possibly overlapped with those from other 

metabolites. The signals from choline-containing compounds (3.22~3.24 ppm), 

particularly phosphor-choline centered at 3.230 ppm, were also correlated with the 

cancer group. To test the statistical validity of the signals found by this 

multivariate analysis, we carried out a Mann-Whitney U-test (Fig. 6) 28. In 

addition, we obtained the average spectra of each group after normalization and 

alignment (Fig. 7). Both of these analyses showed that taurine and aspartate had a 

biased distribution in the cancer and non-cancer groups, respectively.  

 

Correlation with prognostic markers 

 

Based on the cancer/non-cancer correlation with the MR spectral data, we 

tested if PR status, an important prognostic marker, can also be correlated. We 

divided the cancer patient group into two according to the PR status (positive or 

negative), and obtained an OPLS-DA separation model of the MR data of each 

group (Fig. 7A). Although we observed cross-over of some samples along the p p 

line of the model, we could see general clustering of the samples into their 

respective regions. We also tested the predictability of the model on blind samples 
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using the same method used for cancer/non-cancer status. Out of the total of 13 

cancer samples, 10 were predicted correctly and 3 were mis-predicted, with 1 PR-

positive and 2 PR-negative samples among the latter. Other important prognostic 

markers, ER status and HER-2/neu, could not be evaluated, due to the small 

number of patients with ER negative (n= 2) and HER-2/neu negative (n= 1) in our 

cancer patient group (See Table 2). 

We also evaluated the correlation of MR spectral data with the axillary 

lymph node metastasis status. Inclusion of all of the cancer patients (metastasis = 

4, non-metastasis = 9) did not yield a reliable discrimination model. Exclusion of 

two possible outliers (both from the non-metastasis group) based on a PCA and 

subsequent OPLS-DA modeling resulted in a reasonable distinction between the 

two groups (Fig. 7B). Three of the four samples in the axillary lymph node 

metastatic group could be separated from seven samples in the non-metastatic 

group. 
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DISCUSSION 

We evaluated the relevance of HR-MAS MR metabolomics to core needle 

biopsy samples in breast cancer diagnostics. Although there have been studies 

using similar spectroscopic techniques on surgically obtained breast cancer 

samples, there have been none, to our knowledge, that have utilized intact breast 

tissue obtained by core needle biopsy. As percutaneous image-guided biopsy is a 

standard procedure for inspecting suspicious breast lesions in most hospitals, the 

results can be directly translated into real clinical situation. Compared with open 

surgical biopsies, image-guided core needle biopsy has added advantage of 

avoiding an incision on the breast that may be difficult to incorporate into a 

mastectomy incision or may compromise the cosmetic outcome of immediate 

breast reconstruction. It has advantages over needle localization biopsy in the 

diagnosis of non-palpable breast cancer. The goal of breast cancer screening 

programs is to detect cancers when they are small and can be most successfully 

treated. Image-guided biopsy also offers an option for the grading and typing of 

tumors and assessment of ER, PR status and HER-2/neu by immunocytochemistry, 

thereby making diagnostic information more available for treatment options. 

Another important advantage of our approach is that HR-MAS MR spectroscopy 

is non-destructive, enabling re-use of samples for later histopathological 

examinations 16, 21. We did not find any degradation of the tissue samples after 
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HR-MAS MR spectroscopy and successfully performed H&E staining and 

immunohistochemistry analysis (Fig. S2). One possible caveat regarding the core 

biopsy approach is the small amount of the obtained sample and uncertainties 

associated with the actual sampling positions for small tumors. Still, it seems that 

the metabolomics approach might be more suited to analyzing core-biopsy 

samples than other-omics approaches. This is due to the fact that the small 

molecules analyzed by MR-based metabolomics are more diffusible than proteins 

or DNA molecules, and, therefore, can reflect the status of neighboring tissues 

better than much larger macromolecules. Again, the non-destructive nature of the 

technique is in contrast with proteomics and genomics, which entail sample 

destruction. The current study used non-cancer samples for comparison with 

cancer samples, unlike previous studies, which used non-involved tissues from 

cancer patients 19-21, 29. In addition, these earlier studies included relatively 

advanced-cancer patients undergoing surgery, which fact might have facilitated 

the tissue distinction. Therefore, our patient group might be more variable even 

though the sample size is much smaller than some of the previous ones. 

Mountford et al. reported the diagnostic utility of ex vivo HR-MR 

spectroscopy combined with linear-discriminant analysis (LDA) for FNAB 

samples from breast cancer patients. They tried the same approach for core needle 

biopsy samples, but were unsuccessful due to the high fat content masking 
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diagnostic signals 20. The successful discrimination of cancer status with core 

needle biopsy samples in our present study was owed to several methodological 

differences. First, we used HR-MAS, which can significantly narrow the line 

width of signals from semi-solid tissue samples. This line-narrowing is directly 

translated into increased signal intensities. Second, we also employed CPMG 

pulse sequence, which can selectively suppress signals with short relaxation times, 

most notably, lipid signals. This increases the relative contributions of other 

regions that carry diagnostic information. Third, despite the use of the above 

spectroscopic techniques, saturated fatty acid signals were the most intense peaks. 

Therefore, we removed those regions from the spectra and normalized the data 

with the total integral of the remaining regions. This step proved to be particularly 

important, as a variety of other normalizations failed to produce acceptable results. 

In addition to the above measures to obtain or process the spectral data, the use of 

OPLS-DA multivariate analysis 22, 23 also contributed to our results. OPLS-DA is 

different from PLS-DA in that it rotates the score matrix so that the class-

orthogonal variation can be separated from the class-predictive one. Therefore, it 

can provide easier interpretation of the factors contributing to class difference in 

the presence of large intra-group variation, such as that seen in the current case. 

HR-MAS MR spectroscopy with CPMG pulse sequence has been applied to tissue 

samples obtained during surgical procedures 16, 18, 19, 29. However, adipose tissues 
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could be physically avoided in those cases 16, whereas, in core needle biopsy, their 

contents cannot be controlled, and the resulting samples may be difficult to 

analyze with more conventional approaches. OPLS-DA has been also used 

successfully to analyze other demanding metabolomic cases 
8, 24, 30, including the 

one concerning data obtained from genetically homogenous animals 
31.  

In addition to the above stated merits, OPLS-DA provided easily 

interpretable data (S-plot, see Fig. 5) concerning metabolites relevant to 

discrimination of cancer and non-cancer groups. Our data showed that taurine and 

choline-containing compounds, especially phosphocholine, were elevated in the 

cancer samples compared with the non-cancer ones. Choline-containing 

compounds have been found to be elevated in breast cancer 32-34, as well as in 

other cancers 35. In addition, phosphocholine level was higher in breast cancers or 

cancer cell lines than normal counterparts 36-38. Choline is used for the synthesis of 

phosphatidylcholine, the principle phospholipid in cell membranes. Choline and 

phosphocholine are intermediates in the synthesis of the phospholipid lecithin. 

Phosphocholine levels can increase through an increase in transport, 

phosphorylation, or phospholipase activity. This strongly suggests that the 

presence of high phosphocholine in proliferating breast cancer cells reflects the 

up-regulation of specific choline transporters and choline kinase genes and may 

serve as a biomarker of breast malignant transformation. Taurine levels have also 
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been known to be higher in prostate 
39 and breast cancers 40. Taurine is one of the 

most abundant amino acids in tissues. Taurine synthesis occurs in the pancreas via 

the cysteine sulfinic acid pathway. Taurine increases glucose uptake uses to build 

protein blocks and enhances glycogenesis, glycolysis, and glucose oxidation. This 

consistency supports the relevance of our approach using minimally invasive HR-

MAS MR spectroscopy with core needle biopsy in metabolite analysis of cancer 

tissues. There have been several studies on the diagnostic performance of MR 

spectroscopic techniques with biopsy-obtained breast cancer samples. In one such 

report, HR-MR spectroscopic data on intraoperative FNAB samples analyzed by 

multivariate analysis showed 94% sensitivity and 98% specificity in 

discriminating cancer and non-cancer tissues 20. Another study using HR-MAS 

MR spectroscopy on surgically obtained tissue samples reported 82% sensitivity 

and 100% specificity based on the intensities of choline-containing compounds 17. 

It should be noted that the values of the former study were obtained with only a 

training set, and those of the latter were from an intensity comparison of choline 

that is not applicable to multivariate blind tests. If we apply the same criterion, 

that is, diagnostic performance on a training set without a blind test, to the OPLS-

DA classification model, we obtain 100% for both sensitivity and specificity 

based on the predictive component. However, these approaches tend to yield over-

optimistic values, and more relevant estimation should be obtained with blind 
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tests using samples that were not used to build the classification model 18. It is 

notable that blind sample prediction was done to evaluate the performance of 

prognostic markers from surgical samples in later studies 18, 21. A blind test on our 

data set, excluding one sample at a time until all of them had been left out showed 

69% sensitivity, 94% specificity and 84% accuracy. Another intriguing feature of 

our results is the correct blind-test prediction of ductal carcinoma in situ, a very 

early stage cancer. Although the number of cases was small (n = 2), this could be 

an interesting point to focus on in a larger study. 

Our approach did not yield a reliable discrimination model for ER status 

(data not shown), whereas it did provide a reasonable distinction for PR status. 

Recently, Giskeodegard et al. presented a good prediction for the two prognostic 

markers based on HR-MAS studies with surgically obtained tissue samples 18. In 

their case, most patients had a similar ER/PR status whereas the two factors were 

hardly correlated in our patient groups. Therefore, it is not surprising that there are 

differences between the results for their and our patient groups. Another important 

prognostic marker is axillary lymph node status. We could obtain a reasonable 

classification only after the exclusion of two non-metastatic samples based on a 

PCA analysis. At this point, it is not clear what properties of these two samples 

made them closer to the metastatic ones, which issue might be elucidated with a 

larger-sample-size study. Still, the difficulty in lymph node status prediction is not 



21 

surprising in that a recent study also reported an unsatisfactory result 18. As noted 

in that study, earlier high-accuracy results 20 could not be directly compared, due 

to the lack of a blind test.  

Because of the small number of cancer samples we cannot be a further 

evaluation of breast subtype or degree of cancer molecular markers in 

metabolomics. In future, we will try to find such closely related with the  

prognosis and treatment of cancer molecular markers. It is impossible, because 

HR-MAS MR spectroscopy more sensitive than traditional in vivo MRS. It can 

detect up to dozens of cancer metabolomics.  

In conclusion, the HR-MAS MR metabolomics approach was shown to be 

feasible with intact breast tissues obtained by core needle biopsy. Specifically, our 

results show that this approach has the potential to discriminate cancer and non-

cancer and to classify breast cancers according to their metabolite profiles. If 

validated in a larger study, the approach may be used as a complement to the 

current diagnostic and prognostic measures for the management of women with 

breast cancers. 
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Table 1.  Clinical and histological data of 31 samples from 22 patients. 

Characteristics Summary (n) 

Age (years) 

 
      Median  50 

      Mean (range) 49 (16-68) 

Pathologic Diagnosis 
 

      Infiltrating Duct Carcinoma (IDC) 11 

      Duct Carcinoma In Situ (DCIS) 2 

      Fibroadenoma 6 

      Fibrocystic change 2 

      Adenosis 1 

Normal* 9 

*Normal samples (n = 9) were obtained from the patient with benign tumors. 
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Table 2. Tumor characteristics of the 13 patients with breast cancer. 

Characteristics Summary (n) 

Tumor size 
 

      Mean (SD*)  1.4 ± 1.6 (cm3) 

      Range  0.5 – 3.5 cm 

Histologic grade 
 

      I 2 

      II 8 

      III 3 

Lymph node status  
 

      N0 9 

      N1 3 

      N2 1 

      N3 0 

Receptor status(ER, PR and HER-2/neu) 
 

     ER+  PR+  HER-2/neu+ 6 

     ER+  PR -  HER-2/neu+ 4 

     ER+  PR -  HER-2/neu - 1 

     ER -  PR -  HER-2/neu+ 2 

*SD: Standard deviation. 
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Figure 1. Schematic illustration of HR-MAS MR spectra study. 
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Figure 2. HR-MAS MR spectra of breast tissue samples obtained by core 

needle biopsy. 

 

Representative 500 MHz HR-MAS MR spectra of breast samples from a cancer 

patient (upper) and a non-cancer patient (lower). The spectra were taken for an 

average of 12.2 mg of core needle biopsy samples in D2O and 0.01% TSP with 

CPMG pulse sequence and 2 KHz spinning. Individual choline species were 

identified according to previous reports17, 41 and comparison with an authentic 

choline sample. 
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Figure 3. Multivariate discrimination model for cancer and non-cancer 

samples. 

 

Orthogonal Projections to Latent Structure-Discriminant Analysis (OPLS-DA) 

score plot for cancer and non-cancer samples. The model was obtained using one 

predictive and two orthogonal components. Filled box and solid line: cancer 

samples; open triangle and dotted line: non-caner samples. 
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Figure 4. Prediction result for cancer status based on OPLS-DA model. 

 

One patient sample was left out at a time, and a new OPLS-DA prediction model 

was constructed with the rest of the data. The class membership of the left-out 

samples was predicted using an a priori cutoff value of 0.5(dashed line). Filled 

box: cancer samples, filled triangle: non-cancer samples. The Y values of the 

filled symbols are from the analysis using the entire dataset. In the case of mis-

classified samples, the predicted Y values are also shown as open boxes (cancer 

samples) and open triangles (non-cancer samples). 
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Figure 5. Signals contributing to differentiation. 

 

Signals contributing to the differentiation of cancer and non-cancer samples are 

plotted based on their p(corr)p and p p values. These values represent modeled 

correlation and modeled covariation, respectively. The most relevant chemical 

shift values are shown next to the symbols representing the signals. 3.43(Taurine) 

and 2.77(Aspartate) ppm signals were the most reliable contributors for the 

differentiation of cancer and non-cancer groups. 
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Figure 6. Average spectra and Mann-Whitney U test for marker signals. 

 

The levels of the makers identified by the multivariate analysis were assessed by 

average spectral plot and Mann-Whitney U-test. A and B: Normalized and 

averaged intensities of the indicated marker signals from the cancer and non-

cancer samples. C and D: Box plots of the Mann-Whitney U test results with the 

resulting p values. In all of the plots, red represents the non-cancer samples and 

blue the cancer samples.
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Figure 7. Discrimination based on prognostic markers: PR and lymph node 

metastases. 

 

OPLS-DA score plots based on the statuses of progesterone receptor (A) and 

lymph node metastasis (B). All of the models were obtained using one predictive 

and two orthogonal components. Two samples were excluded based on the PCA 

analysis for (B). Filled box: positive samples; open circle: negative samples. 
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Supplement Figure 1. Multivariate discrimination model for normal and 

benign tumors samples. 

 

OPLS-DA score plot for normal and benign tumors samples. The model was 

obtained using one predictive and two orthogonal components. Filled box: normal 

samples; open circle: benign tumors samples. 
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Supplement Figure 2. H&E staining and immunohistochemistry analysis.  

 

Histological sections obtained from the breast cancer samples after HR-MAS MR 

spectroscopy. A representative ER+PR-HER2/neu+ tumor was shown. Scale bar = 

200 µm. The sample in H&E (Lower right) was not found degradation of the 

tissue. Scale bar = 100 µm. 
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국문초록 

서론: 많은 연구들에서는 새로운 유방암진단법을 개발하는데 초점을 

두고 있다. 고해상도 매직앵글스핀 핵 자기공명 분광기술이 그 중 

하나이다. 이런 연구결과들은 수술 후 얻은 환자의 조직샘플에서 

대사체를 분석했기에  제한된 임상적 실용가치를 가지고 있다. 

실험방법 및 결과: 초음파 유도하 침생검법을 이용하여 얻은 31개의 

사람유방조직(13개 암 조직 및 18개 정상조직)에서 고해상도 

매직앵글스핀 핵자기공명분광기술로 CPMG 펄스 시퀀스를 이용해 

선택적으로 지방신호를 감소시킨 대사체 스펙트럼을 얻었고 다변량 

통계분석(OPLS-DA)을 통해 유방암 조직과 정상조직의 대사체를 비교 

분석하였다. 기존의 조직병리 검사와 비교했을 때 OPLS-DA방법을 

이용해 69%의 민감도와 94%의 특이도로 유방암을 정확하게 진단할 

수 있었으며 프로게스테론 수용체(progesterone receptor)암과 림프절 

전이암을 예측할 수 있었다. 정상조직에 비해 유방암 조직에서 타우린 

(3.43 ppm)과 콜린 (3.23 ppm) 대사체 함량이 높게 관찰되었다. 

결론: 고해상도 매직앵글스핀 핵 자기공명 분광기술을 이용하여 유방 

침생검법으로 얻은 조직에서 대사체 분석은 유방암 조기진단의 가능성
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을 제시하며 효과적인 치료법 개발에 이용될 수 있을 것으로 사료된다. 

* 본 내용은 PLoS ONE (Li M, Song Y, Cho N, Chang JM, Koo HR, Yi A, Kim H, 

Park S, Moon WK. An HR-MAS MR Metabolomics Study on Breast Tissues 

Obtained with Core Needle Biopsy. PLoS ONE. 2011 Oct; 6(10): e25563.)에 출판 

완료된 내용임. 

---------------------------------------------------------------------------------------------------
------------- 

주요어: 고해상도 매직앵글스핀, 대사체, 유방암, 침 생검법. 

학  번:  2009-30778 
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