

저작자표시-비영리-동일조건변경허락 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.
- 이차적 저작물을 작성할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

동일조건변경허락. 귀하가 이 저작물을 개작, 변형 또는 가공했을 경우 에는, 이 저작물과 동일한 이용허락조건하에서만 배포할 수 있습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

의학박사 학위논문

An HR-MAS MR Metabolomics Study on Breast Tissues Obtained with Core Needle Biopsy

유방 바늘생검조직에서 HR-MAS 자기공명분광법을 이용한 암 진단용 대사체 연구

2013년 2월

서울대학교 대학원 의과학과

LI MULAN

유방 바늘생검조직에서 HR-MAS 자기공명분광법을 이용한 암 진단용 대사체 연구

지도교수 문 우 경

이 논문을 의학박사 학위논문으로 제출함

2013년 2월 서울대학교 대학원 의과학과 LI MULAN

LI MULAN의 박사 학위논문을 인준함 2013년 2월

위원장(구진모 인)

부위원장 (문 우 경 인)

위 원(김현진인)

위 원 (조나리야 인)

위 원 (김은경인)

An HR-MAS MR Metabolomics Study on Breast Tissues Obtained with Core Needle Biopsy

by LI MULAN, M.D.

A Thesis Submitted to the Department of Biomedical Sciences in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Medical Science in Department of Biomedical Sciences at the Seoul National University Graduate School

October 2012

Doctoral	committee:	
Professor	Jinmo Goo	_, Chairman
Professor	Wookyung Moon	_ Vice chairman
Professor	Hyeonjin Kim	_
Professor	Nariya Cho	_
Professor	Eunkyung Kim	

학위논문 원문제공 서비스에 대한 동의서

본인의 학위논문에 대하여 서울대학교가 아래와 같이 학위논문 저작물을 제공하는 것에 동의합니다.

1. 동의사항

- ① 본인의 논문을 보존이나 인터넷 등을 통한 온라인 서비스 목적으로 복제할 경우 저작물의 내용을 변경하지 않는 범위 내에서의 복제를 허용합니다.
- ② 본인의 논문을 디지털화하여 인터넷 등 정보통신망을 통한 논문의 일부 또는 전부의 복제.배포 및 전송 시 무료로 제공하는 것에 동의합니다.
- 2. 개인(저작자)의 의무 본 논문의 저작권을 타인에게 양도하거나 또는 출판을 허락하는 등 동의 내용을

변경하고자 할 때는 소속대학(원)에 공개의 유보 또는 해지를 즉시 통보하겠습니다.

3. 서울대학교의 의무

- ①서울대학교는 본 논문을 외부에 제공할 경우 저작권 보호장치(DRM)를 사용하여야 합니다.
- ②서울대학교는 본 논문에 대한 공개의 유보나 해지 신청 시 즉시 처리해야 합니다.

논문제목: An HR-MAS MR Metabolomics Study on Breast Tissues Obtained with Core Needle Biopsy

학위구분 : **석사 □.박사 ■**

학 과 : 의과학과

학 번: 2009-30778

저 작 자 : LI MULAN (인)

제 출일:2012년 12월 18일

서울대학교총장 귀하

ABSTRACT

An HR-MAS MR Metabolomics Study on Breast Tissues Obtained with Core Needle Biopsy

LI MULAN, M.D.
Department of Biomedical Sciences
The Graduate School
Seoul National University

Introduction: Much research has been devoted to the development of new breast cancer diagnostic measures, including those involving high-resolution magic angle spinning (HR-MAS) magnetic resonance (MR) spectroscopic techniques. Previous HR-MAS MR results have been obtained from surgical specimen, which limits their direct clinical applicability.

Methodology/Principal Findings: In the present study, we performed HR-MAS MR spectroscopic studies on 31 breast tissue samples (13 cancer and 18 non-cancer) obtained by percutaneous core needle biopsy. We employed Carr Purcell Meiboom Gill (CPMG) pulse sequence which can selectively suppress signals with short relaxation times, most notably, lipid signals abundant in core needle biopsy samples. Cancer and non-cancer samples were discriminated very well with Orthogonal Projections to Latent Structure-Discriminant Analysis (OPLS-

DA) multivariate model on the MR spectra. A subsequent blind test showed 69%

sensitivity and 94% specificity in the prediction of the cancer status. A spectral

analysis showed that in cancer cells, taurine- (3.43 ppm) and choline- (3.23 ppm)

containing compounds are elevated.

Conclusions/Significance: HR-MAS MR metabolomics on intact breast tissues

obtained by core needle biopsy may have a potential to be used as a complement

to the current diagnostic measures for breast cancers.

* This work is published in PLoS ONE Journal (Li M, Song Y, Cho N, Chang JM, Koo HR, Yi A,

Kim H, Park S, Moon WK. An HR-MAS MR Metabolomics Study on Breast Tissues Obtained

with Core Needle Biopsy. PLoS ONE. 2011 Oct; 6(10): e25563.).

Keywords: HR-MAS, Metabolomics, Breast cancer, Core needle biopsy

Student Number: 2009-30778

ii

LIST OF TABLES AND FIGURES

Chapter 1

Table 1. Clinical and histological data on 31samples from 22 patients	22
Table 2. Tumor characteristics of the 13 patients	23
Chapter 2	
Figure 1. Schematic illustration of HR-MAS MR spectra study	24
Figure 2. HR-MAS MR spectra of breast tissue samples	25
Figure 3. Multivariate discrimination model	26
Figure 4. Prediction result for cancer status based on OPLS-DA model	27
Figure 5. Signals contributing to differentiation	28
Figure 6. Average spectra and Mann-Whitney U test for marker signals	29
Figure 7. Discrimination based on prognostic markers	30
Supplement Figure 1. Multivariate discrimination model	31
Supplement Figure 2. H&E staining and immunohistochemistry analysis	32

LIST OF ABBREVIATIONS

MR: Magnetic resonance

MAS: Magic angle spinning

HR: High resolution

NMR: Nuclear magnetic resonance

FNAB: Fine needle aspiration biopsy

PCA: Principal component analysis

PLS-DA: Partial least square-discriminate analysis

OPLS-DA: Orthogonal partial least square discriminant analysis

CPMG: Carr Purcell Meiboom Gill

TSP: Tri-methylsilyl propionate

H&E: Hematoxylin and eosin

ER: Estrogen receptor

PR: Progesterone receptor

LDA: Linear-discriminant analysis

CONTENTS

ABSTRACT	i
LIST OF TABLES AND FIGURES	iii
LIST OF ABBREVIATIONS	iv
INTRODUCTION	1
MATERIALS AND METHODS	4
RESULTS	10
DISCUSSION	15
REFERENCES	33
ABSTRACT IN KOREAN	38

INTRODUCTION

Breast cancer is the most common cancer in women all over the world. According to reports, breast cancer affects eight out of every ten women in the United States of America and Europe ¹. Therefore, early diagnosis and correct assessment of prognosis are of great importance. Due to its high reliability and sensitivity in distinguishing cancer from benign disease, percutaneous core needle biopsy has been confirmed as an accurate, less-invasive, and cost-effective alternative to surgical biopsy for the histologic assessment of non-palpable breast lesions ²⁻⁵. Using core needle biopsy, immuno-histochemical assays for the three standard molecular markers (estrogen receptor: ER, progesterone receptor: PR, and human epidermal growth factor receptor: HER2/neu) in breast cancer are critical for determining appropriate adjuvant systemic therapy options. This information can be a guide to make decisions in regard to adjuvant chemotherapy and endocrine therapy.

Magnetic resonance (MR) spectroscopic techniques has been a primary method employed in investigations of metabolite changes in biofluids such as urine, blood, and bile $^{6-8}$. Recent technological advances have enabled detection of metabolites also in intact tissues, using magic angle spinning (MAS) methods 9 . MAS narrows the line widths of metabolite signals by eliminating dipolar relaxation in the semi-solid tissues through rapid sample spinning (typically \geq

2000 Hz) at a magic angle (54.7 degrees) against the magnetic field. The resulting spectra show features with high resolution (HR) that are typically seen in solution MR data ⁹. Such HR-MAS MR spectroscopy has been applied in metabolomics studies on breast, prostate, liver, colon, and lung tissues¹⁰⁻¹⁵. In the case of breast cancer tissues, several studies employing HR-MAS MR have addressed issues including metabolite identification, diagnostic usefulness, and prognostic marker correlation ¹⁶⁻¹⁹. However, these studies were conducted retrospectively with surgically obtained tissues; their results, therefore could not be directly applicable to surgical decision making or to cancer patients that do not need axillary dissection. Samples alternatively obtained by minimally invasive fine needle aspiration biopsy (FNAB) or core needle biopsy before surgery would, in fact, be applicable. A standard high-resolution MR (non-HR-MAS) spectroscopic study with FNAB has been conducted, but it, too, used intraoperative samples ²⁰. Moreover, this method would be ineffective with breast tissue samples obtained by core needle biopsy, due to the high lipid contents of those tissues.

The data obtained via MR spectroscopic techniques are inherently complex, and contain information on many metabolites; such data, accordingly, have been analyzed by multivariate analysis. Variables are reduced in number, and marker signals are identified by the weights of the original variables in the reduced variables that contribute to the differentiation of the classes of interest. Principal

component analysis (PCA), partial least square-discriminate analysis (PLS-DA), and neural networks are among the frequently-used methods for breast cancer metabolomics studies ^{18, 21}. Recently, Orthogonal Projections to Latent Structure-Discriminant Analysis (OPLS-DA) was proposed as an effective tool for metabolomic analysis ^{22, 23}. The main merit of OPLS-DA is its separation of the class-orthogonal variations that can obscure class differentiation. It is similar to the combination of orthogonal signal correction and PLS-DA, but, advantageously, can be completed in a single analysis. Its utility in fact has been shown in many metabolomics studies in which intra-group variation is very large ^{8, 24, 25}.

We prospectively conducted HR-MAS MR spectroscopic studies on breast tissue samples obtained by percutaneous core needle biopsy. We employed Carr Purcell Meiboom Gill (CPMG) pulse sequence which can selectively suppress signals with short relaxation times, most notably, lipid signals abundant in core needle biopsy samples. An OPLS-DA analysis yielded information on elevated metabolites in the cancer samples as well as quantitative measures on the performance of our approach in classification and blind sample prediction. On the basis of the results, we believe that minimally invasive core needle biopsy combined with the HR-MAS MR metabolomics approach may complement the currently existing breast cancer diagnostic and assessment measures.

MATERIALS AND METHODS

Ethics Statement

Institutional review board approval was obtained for this prospective study from the Seoul National University Hospital Institutional Review Board (H-1003-037-312), and all patients provided written informed consent.

Patients

Between May 2010 and November 2010, 22 consecutive women (mean age, 49 years; age range, 20–68 years) who had been scheduled to undergo an ultrasound-guided percutaneous core needle biopsy were examined. We had obtained the 31 breast tissue samples (13 cancer, 9 benign and 9 normal) from a total of 22 women (13 patients with breast cancer and 9 patients with benign tumors) (Table 1). The normal breast tissue samples were obtained from sites adjacent to the periphery of the benign tumors from patients with benign breast tumors by simply changing the direction of the needle. Among the cancer patients, eleven of them had infiltrating ductal carcinoma and the rest of two had ductal carcinoma in situ. Four of the patients with infiltrating ductal carcinoma also had

metastasis on the lymph nodes (Table 2). We did not apply any exclusion criteria and analyzed all the samples of the patients enrolled in the study to maximize the patient diversity.

For HR-MAS MR spectroscopy, tissue samples were placed in cryogenic vials and were immersed in liquid nitrogen immediately after dissection.

Sample obtain and MR spectroscopy data acquisition

All patients underwent 14-guage core needle biopsy using an automated gun device (Bard Peripheral Technologies, Covington, GA). Biopsy was done under the guidance of high resolution ultrasound with a 10- or 12-MHz linear transducer (HDI 5000, Advanced Technology Laboratories, Bothell, WA) with the patient in the supine or lateral decubitus position. The samples were stored at -70°C until ready for HR-MAS MR spectroscopy.

Frozen samples were thawed in NMR laboratory, weighed, and placed into a NMR spectrometer equipped with a 4mm gHX nano-probe (Agilent, Walnut Creek, CA). The total volume of the sample cell was 40 µl, and an average of 12.2 mg core-biopsy samples were put in the cell with the remaining volume filled with D2O (0.01% TSP). The rotor was then assembled and placed into the spectrometer after a handling time of 2-4 min. The probe was an inverse-detection

type and equipped with single Z-gradient coil. The spectra were taken with CPMG pulse sequence to impose a T2 filter. The total T2 delay was set to 290 msec and the sample was spun at 2 KHz. The spectra were acquired with total complex points of 16 K, sweep width of 7961 Hz, and 1024 transients. The 90 degree pulse was calibrated with each sample on water resonance. Water signal was saturated using weak power continuous wave during the recycle delay.

All one-dimensional HR-MAS MR spectra of the tissue samples were measured with an NMR spectrometer (Agilent, VNMRS 500) operating at a proton NMR frequency of 500.13 MHz (11.7T). Temperature was set to 19°C after calibration with methanol. Each experiment took approximately 1 hour. All these processes from CNB method to HR-MAS MR spectra study were illustrated in Fig 1.

Data processing

The time-domain spectra were apodized with exponential function (1 Hz), and then Fourier-transformed, phased and baseline-corrected manually. Spectra were referenced to the TSP signal at 0.00 ppm which was also checked by alanine signals at 1.48 ppm in case the TSP signal is split due to protein binding. To reduce the complexity of the NMR data for the subsequent multivariate analysis,

the spectra were binned by 0.005 ppm interval and normalized by integration values over the region of 0.99, 5.59 ppm. As the aliphatic lipid signals were vastly different from sample to sample, only the regions that are not affected by those signals were used (1.44, 1.91 ppm and 2.15, 5.59 ppm). Within those regions, the water region (4.61, 5.03) was excluded in the normalization due to its irregular behavior. These binning and normalization were done using an in-house built Perl program. To compensate for possible peak shift mismatch due to the relatively high resolution binning, the spectra were aligned using correlation-optimized warping algorithm ²⁶.

Multivariate and spectral analysis

Matlab (MathWorks, Natick, MA), SIMCA-P 11.0 (Umetrics, Sweden), and Excel (Microsoft, Seattle, WA) programs were used to process the numeric data for statistical analysis. Chenomx (Spectral database; Edmonton, Alberta, Canada) was used for spectral analysis. PCA, PLS-DA, and OPLS-DA were performed to identify latent patterns and distinguish patient groups. PCA models are fitted for each class, and model residuals are utilized to classify unknown metabolite group to several classes. PLS regression is a multivariate method for assessing a relationship between a descriptor matrix X and a response matrix Y. PLS

regression has been used in the field of multivariate calibration where the response matrix is quantitative. OPLS is an extension to the supervised PLS regression method featuring an integrated orthogonal signal correction filter. In simple terms, OPLS uses information in the Y matrix to decompose the X matrix into blocks of structured variation correlated to and orthogonal to Y, respectively. The block containing the correlated variation, also referred to as the predictive variation, can also be derived from the normalized PLS regression vectors followed by a procedure called 'target rotation'. Class discrimination models were built until the cross-validated predictability value does not meaningfully increase to avoid over-fitting of the statistical model. The statistical model was validated by prediction of the unknown samples using leave-oneout analysis. An a priori cut-off value of 0.5 was used to evaluate the prediction results ⁶. Signals contributing to the class differentiation were identified by S-plot and the corresponding metabolites were identified using Chenomx (Spectral database; Edmonton, Alberta, Canada) software and an in-house built database.

Immunohistochemistry

After HR MAS analysis, each core needle biopsy specimen was fixed in ice-cold acetone for histopathology. Tissues were sectioned at a thickness of 5 μ m and

hematoxylin and eosin (H & E) staining for microscopic examination were performed. Another section was stained immuno-histochemically for ER, PR, and HER-2/neu using anti-human ER (ab7825, abcam, USA), PR (sc52358, santa cruz, USA) and HER-2/neu (sc71667, santa cruz, USA) and Dako REAL EnVision Peroxidase/3,3' diamino benzidine (DAB)+ in a Dako Autostainer Plus.

RESULTS

HR-MAS MR spectra of core needle biopsy samples

The 31 breast tissue samples (13 cancer, 9 benign and 9 normal) obtained by core needle biopsy were examined, and the representative MR spectra of cancer and non-cancer samples are shown in Fig. 2. As has been the case with spectra previously reported for samples obtained through surgery, our MR spectra featured large peaks at 0.91 and 1.31 ppm due to the aliphatic fatty acid sidechains of lipids. These peaks were by far the most intense, even with the CPMG T2 filter and regardless of the cancer status, indicating that it is not easy to avoid inclusion of adipose tissues in core biopsy samples. The intensity variations of those signals were so large as to dwarf those of any others. Therefore, we excluded them from the subsequent analysis. Still, there were readily observable and reasonably resolved signals in the 2.2, 4.2 ppm region. In addition, the S/N ratios were adequate for identification of a number of metabolites that have been reported in surgically obtained samples (Fig. 2).

Multivariate analysis of MR spectral data

As it was difficult to isolate differences between the patient groups by simple

visual inspection due to the large intra-group variation, we performed a multivariate statistical analysis for a more holistic view of the data. We used the 0.99~5.59 ppm region, but excluded water and aliphatic fatty acid sidechains signals, as stated above. Initially, we wanted to see if the approach could discriminate among the three groups (cancer, benign tumor, and normal), but found that it was not possible to distinguish differences within the non-cancerous samples (benign tumor vs. normal) (Fig. S1). Therefore, we tried to build a model that can address the difference between cancer and non-cancer groups using the OPLS-DA approach, by which structured noise can be dealt with efficiently ^{8,22,27}. The resultant OPLS-DA model, for all of the 31 samples, separated the two major groups, cancer (n =13) and non-cancer (n =18), without overlap using one predictive and two orthogonal components (Fig. 3). Overall, though each sample within a group showed considerable variation, our model could discriminate them very effectively.

Although a perfect separation was achieved (see the Fig. 3: score plot), it was yet possible that the distinction was due to model over-fitting. Therefore, we performed a predictive test by leaving out one patient sample at a time and constructing the OPLS-DA prediction model with the rest of the data. The cancer or non-cancer status of the left-out sample was then predicted based on the new model. This step amounts, then, to a blind test for an unknown sample, and as

such can serve as a cross-validation for the distinction model. The prediction approach was taken with the same number of predictive and orthogonal components as in the original OPLS-DA model. The class membership of the left-out sample was predicted using an a priori cut-off value of 0.5. The prediction results showed that the model correctly predicted 26 samples out of the total 31 (Fig. 4). Among the incorrectly predicted samples were four cancer samples predicted as non-cancer samples, and one non-cancer sample predicted as a cancer sample. Thus, the sensitivity, specificity, and accuracy were 69% (9/13), 94% (17/18), and 84% (26/31), respectively, in the prediction of the cancer status.

Analysis of group-relevant signals

After the establishment of the model, we tried to identify the variables responsible for the differentiation of the cancer and non-cancer groups. We built an S-plot that shows the modeled correlation $(p(\text{corr})_p)$ and covariation (p_p) in a single figure, enabling easy selection of significant markers among noisy signals. The $p(\text{corr})_p$ values of the signals suggest that multiple signals account for group differentiation (Fig. 5) 6,8 . Still, we could pick up 3.43 and 2.77 ppm signals as the most reliable contributors for the cancer and non-cancer groups, respectively, as they had large values for both correlation and covariation. Based on the above

signal assignments, the signals were identified as coming from taurine (3.43 and 3.26 ppm) and aspartate (2.77 ppm). The assignment of aspartate was tentative, though, as its signal was broad and possibly overlapped with those from other metabolites. The signals from choline-containing compounds (3.22~3.24 ppm), particularly phosphor-choline centered at 3.230 ppm, were also correlated with the cancer group. To test the statistical validity of the signals found by this multivariate analysis, we carried out a Mann-Whitney U-test (Fig. 6) ²⁸. In addition, we obtained the average spectra of each group after normalization and alignment (Fig. 7). Both of these analyses showed that taurine and aspartate had a biased distribution in the cancer and non-cancer groups, respectively.

Correlation with prognostic markers

Based on the cancer/non-cancer correlation with the MR spectral data, we tested if PR status, an important prognostic marker, can also be correlated. We divided the cancer patient group into two according to the PR status (positive or negative), and obtained an OPLS-DA separation model of the MR data of each group (Fig. 7A). Although we observed cross-over of some samples along the p_p line of the model, we could see general clustering of the samples into their respective regions. We also tested the predictability of the model on blind samples

using the same method used for cancer/non-cancer status. Out of the total of 13 cancer samples, 10 were predicted correctly and 3 were mis-predicted, with 1 PR-positive and 2 PR-negative samples among the latter. Other important prognostic markers, ER status and HER-2/neu, could not be evaluated, due to the small number of patients with ER negative (n= 2) and HER-2/neu negative (n= 1) in our cancer patient group (See Table 2).

We also evaluated the correlation of MR spectral data with the axillary lymph node metastasis status. Inclusion of all of the cancer patients (metastasis = 4, non-metastasis = 9) did not yield a reliable discrimination model. Exclusion of two possible outliers (both from the non-metastasis group) based on a PCA and subsequent OPLS-DA modeling resulted in a reasonable distinction between the two groups (Fig. 7B). Three of the four samples in the axillary lymph node metastatic group could be separated from seven samples in the non-metastatic group.

DISCUSSION

We evaluated the relevance of HR-MAS MR metabolomics to core needle biopsy samples in breast cancer diagnostics. Although there have been studies using similar spectroscopic techniques on surgically obtained breast cancer samples, there have been none, to our knowledge, that have utilized intact breast tissue obtained by core needle biopsy. As percutaneous image-guided biopsy is a standard procedure for inspecting suspicious breast lesions in most hospitals, the results can be directly translated into real clinical situation. Compared with open surgical biopsies, image-guided core needle biopsy has added advantage of avoiding an incision on the breast that may be difficult to incorporate into a mastectomy incision or may compromise the cosmetic outcome of immediate breast reconstruction. It has advantages over needle localization biopsy in the diagnosis of non-palpable breast cancer. The goal of breast cancer screening programs is to detect cancers when they are small and can be most successfully treated. Image-guided biopsy also offers an option for the grading and typing of tumors and assessment of ER, PR status and HER-2/neu by immunocytochemistry, thereby making diagnostic information more available for treatment options. Another important advantage of our approach is that HR-MAS MR spectroscopy is non-destructive, enabling re-use of samples for later histopathological examinations 16, 21. We did not find any degradation of the tissue samples after

HR-MAS MR spectroscopy and successfully performed H&E staining and immunohistochemistry analysis (Fig. S2). One possible caveat regarding the core biopsy approach is the small amount of the obtained sample and uncertainties associated with the actual sampling positions for small tumors. Still, it seems that the metabolomics approach might be more suited to analyzing core-biopsy samples than other-omics approaches. This is due to the fact that the small molecules analyzed by MR-based metabolomics are more diffusible than proteins or DNA molecules, and, therefore, can reflect the status of neighboring tissues better than much larger macromolecules. Again, the non-destructive nature of the technique is in contrast with proteomics and genomics, which entail sample destruction. The current study used non-cancer samples for comparison with cancer samples, unlike previous studies, which used non-involved tissues from cancer patients 19-21, 29. In addition, these earlier studies included relatively advanced-cancer patients undergoing surgery, which fact might have facilitated the tissue distinction. Therefore, our patient group might be more variable even though the sample size is much smaller than some of the previous ones.

Mountford *et al.* reported the diagnostic utility of ex vivo HR-MR spectroscopy combined with linear-discriminant analysis (LDA) for FNAB samples from breast cancer patients. They tried the same approach for core needle biopsy samples, but were unsuccessful due to the high fat content masking

diagnostic signals 20. The successful discrimination of cancer status with core needle biopsy samples in our present study was owed to several methodological differences. First, we used HR-MAS, which can significantly narrow the line width of signals from semi-solid tissue samples. This line-narrowing is directly translated into increased signal intensities. Second, we also employed CPMG pulse sequence, which can selectively suppress signals with short relaxation times, most notably, lipid signals. This increases the relative contributions of other regions that carry diagnostic information. Third, despite the use of the above spectroscopic techniques, saturated fatty acid signals were the most intense peaks. Therefore, we removed those regions from the spectra and normalized the data with the total integral of the remaining regions. This step proved to be particularly important, as a variety of other normalizations failed to produce acceptable results. In addition to the above measures to obtain or process the spectral data, the use of OPLS-DA multivariate analysis ^{22, 23} also contributed to our results. OPLS-DA is different from PLS-DA in that it rotates the score matrix so that the classorthogonal variation can be separated from the class-predictive one. Therefore, it can provide easier interpretation of the factors contributing to class difference in the presence of large intra-group variation, such as that seen in the current case. HR-MAS MR spectroscopy with CPMG pulse sequence has been applied to tissue samples obtained during surgical procedures ^{16, 18, 19, 29}. However, adipose tissues

could be physically avoided in those cases ¹⁶, whereas, in core needle biopsy, their contents cannot be controlled, and the resulting samples may be difficult to analyze with more conventional approaches. OPLS-DA has been also used successfully to analyze other demanding metabolomic cases ^{8, 24, 30}, including the one concerning data obtained from genetically homogenous animals ³¹.

In addition to the above stated merits, OPLS-DA provided easily interpretable data (S-plot, see Fig. 5) concerning metabolites relevant to discrimination of cancer and non-cancer groups. Our data showed that taurine and choline-containing compounds, especially phosphocholine, were elevated in the cancer samples compared with the non-cancer ones. Choline-containing compounds have been found to be elevated in breast cancer ³²⁻³⁴, as well as in other cancers ³⁵. In addition, phosphocholine level was higher in breast cancers or cancer cell lines than normal counterparts ³⁶⁻³⁸. Choline is used for the synthesis of phosphatidylcholine, the principle phospholipid in cell membranes. Choline and phosphocholine are intermediates in the synthesis of the phospholipid lecithin. Phosphocholine levels can increase through an increase in transport, phosphorylation, or phospholipase activity. This strongly suggests that the presence of high phosphocholine in proliferating breast cancer cells reflects the up-regulation of specific choline transporters and choline kinase genes and may serve as a biomarker of breast malignant transformation. Taurine levels have also

been known to be higher in prostate ³⁹ and breast cancers ⁴⁰. Taurine is one of the most abundant amino acids in tissues. Taurine synthesis occurs in the pancreas via the cysteine sulfinic acid pathway. Taurine increases glucose uptake uses to build protein blocks and enhances glycogenesis, glycolysis, and glucose oxidation. This consistency supports the relevance of our approach using minimally invasive HR-MAS MR spectroscopy with core needle biopsy in metabolite analysis of cancer tissues. There have been several studies on the diagnostic performance of MR spectroscopic techniques with biopsy-obtained breast cancer samples. In one such report, HR-MR spectroscopic data on intraoperative FNAB samples analyzed by multivariate analysis showed 94% sensitivity and 98% specificity in discriminating cancer and non-cancer tissues ²⁰. Another study using HR-MAS MR spectroscopy on surgically obtained tissue samples reported 82% sensitivity and 100% specificity based on the intensities of choline-containing compounds ¹⁷. It should be noted that the values of the former study were obtained with only a training set, and those of the latter were from an intensity comparison of choline that is not applicable to multivariate blind tests. If we apply the same criterion, that is, diagnostic performance on a training set without a blind test, to the OPLS-DA classification model, we obtain 100% for both sensitivity and specificity based on the predictive component. However, these approaches tend to yield overoptimistic values, and more relevant estimation should be obtained with blind tests using samples that were not used to build the classification model ¹⁸. It is notable that blind sample prediction was done to evaluate the performance of prognostic markers from surgical samples in later studies ^{18, 21}. A blind test on our data set, excluding one sample at a time until all of them had been left out showed 69% sensitivity, 94% specificity and 84% accuracy. Another intriguing feature of our results is the correct blind-test prediction of ductal carcinoma in situ, a very early stage cancer. Although the number of cases was small (n = 2), this could be an interesting point to focus on in a larger study.

Our approach did not yield a reliable discrimination model for ER status (data not shown), whereas it did provide a reasonable distinction for PR status. Recently, Giskeodegard et al. presented a good prediction for the two prognostic markers based on HR-MAS studies with surgically obtained tissue samples ¹⁸. In their case, most patients had a similar ER/PR status whereas the two factors were hardly correlated in our patient groups. Therefore, it is not surprising that there are differences between the results for their and our patient groups. Another important prognostic marker is axillary lymph node status. We could obtain a reasonable classification only after the exclusion of two non-metastatic samples based on a PCA analysis. At this point, it is not clear what properties of these two samples made them closer to the metastatic ones, which issue might be elucidated with a larger-sample-size study. Still, the difficulty in lymph node status prediction is not

surprising in that a recent study also reported an unsatisfactory result ¹⁸. As noted in that study, earlier high-accuracy results ²⁰ could not be directly compared, due to the lack of a blind test.

Because of the small number of cancer samples we cannot be a further evaluation of breast subtype or degree of cancer molecular markers in metabolomics. In future, we will try to find such closely related with the prognosis and treatment of cancer molecular markers. It is impossible, because HR-MAS MR spectroscopy more sensitive than traditional *in vivo* MRS. It can detect up to dozens of cancer metabolomics.

In conclusion, the HR-MAS MR metabolomics approach was shown to be feasible with intact breast tissues obtained by core needle biopsy. Specifically, our results show that this approach has the potential to discriminate cancer and non-cancer and to classify breast cancers according to their metabolite profiles. If validated in a larger study, the approach may be used as a complement to the current diagnostic and prognostic measures for the management of women with breast cancers.

Table 1. Clinical and histological data of 31 samples from 22 patients.

Characteristics	Summary (n)
Age (years)	
Median	50
Mean (range)	49 (16-68)
Pathologic Diagnosis	
Infiltrating Duct Carcinoma (IDC)	11
Duct Carcinoma In Situ (DCIS)	2
Fibroadenoma	6
Fibrocystic change	2
Adenosis	1
Normal*	9

^{*}Normal samples (n = 9) were obtained from the patient with benign tumors.

Table 2. Tumor characteristics of the 13 patients with breast cancer.

Characteristics	Summary (n)
Tumor size	
Mean (SD*)	$1.4 \pm 1.6 \text{ (cm3)}$
Range	0.5 - 3.5 cm
Histologic grade	
I	2
II	8
III	3
Lymph node status	
N0	9
N1	3
N2	1
N3	0
Receptor status(ER, PR and HER-2/neu)	
ER+ PR+ HER-2/neu+	6
ER+ PR - HER-2/neu+	4
ER+ PR - HER-2/neu -	1
ER - PR - HER-2/neu+	2

^{*}SD: Standard deviation.

Figure 1. Schematic illustration of HR-MAS MR spectra study.

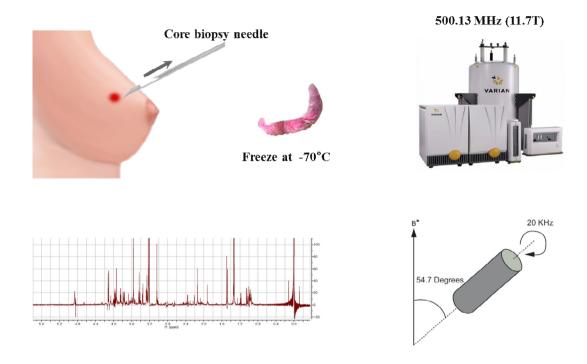
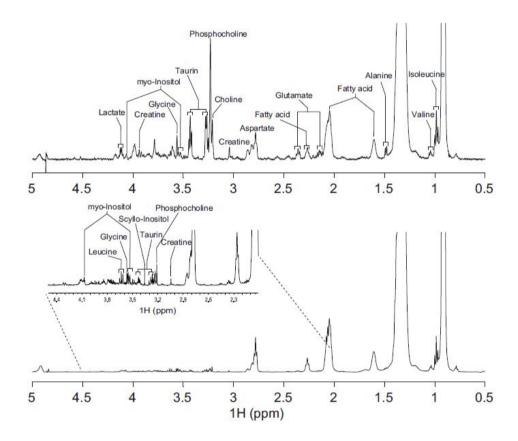
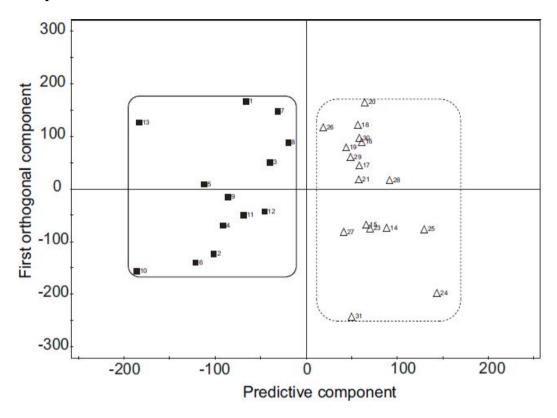


Figure 2. HR-MAS MR spectra of breast tissue samples obtained by core needle biopsy.



Representative 500 MHz HR-MAS MR spectra of breast samples from a cancer patient (upper) and a non-cancer patient (lower). The spectra were taken for an average of 12.2 mg of core needle biopsy samples in D2O and 0.01% TSP with CPMG pulse sequence and 2 KHz spinning. Individual choline species were identified according to previous reports^{17, 41} and comparison with an authentic choline sample.

Figure 3. Multivariate discrimination model for cancer and non-cancer samples.



Orthogonal Projections to Latent Structure-Discriminant Analysis (OPLS-DA) score plot for cancer and non-cancer samples. The model was obtained using one predictive and two orthogonal components. Filled box and solid line: cancer samples; open triangle and dotted line: non-caner samples.

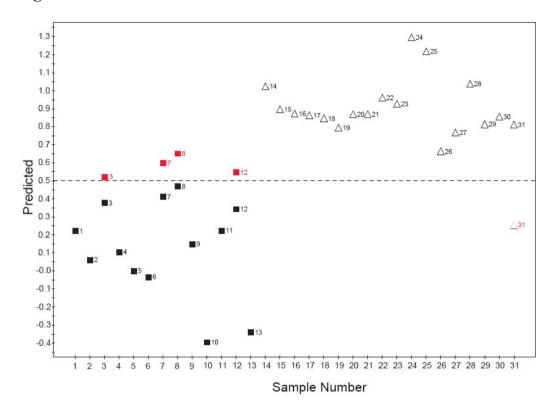


Figure 4. Prediction result for cancer status based on OPLS-DA model.

One patient sample was left out at a time, and a new OPLS-DA prediction model was constructed with the rest of the data. The class membership of the left-out samples was predicted using an a priori cutoff value of 0.5(dashed line). Filled box: cancer samples, filled triangle: non-cancer samples. The Y values of the filled symbols are from the analysis using the entire dataset. In the case of misclassified samples, the predicted Y values are also shown as open boxes (cancer samples) and open triangles (non-cancer samples).

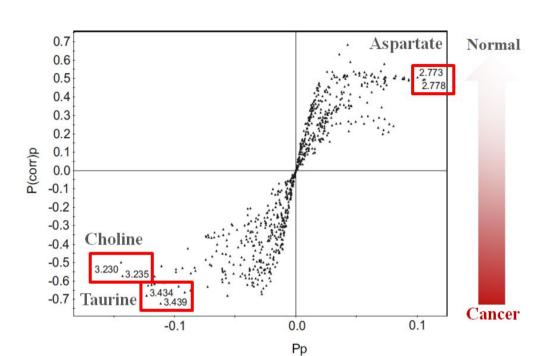


Figure 5. Signals contributing to differentiation.

Signals contributing to the differentiation of cancer and non-cancer samples are plotted based on their $p(\text{corr})_p$ and p_p values. These values represent modeled correlation and modeled covariation, respectively. The most relevant chemical shift values are shown next to the symbols representing the signals. 3.43(Taurine) and 2.77(Aspartate) ppm signals were the most reliable contributors for the differentiation of cancer and non-cancer groups.

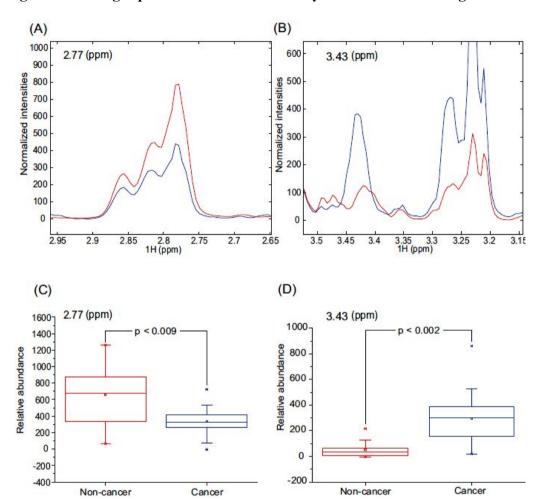
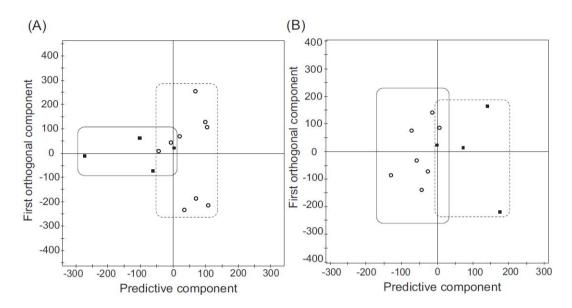


Figure 6. Average spectra and Mann-Whitney U test for marker signals.

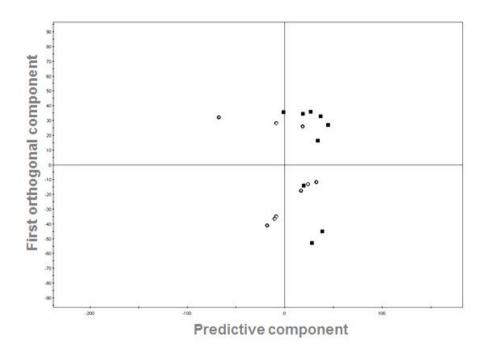
The levels of the makers identified by the multivariate analysis were assessed by average spectral plot and Mann-Whitney U-test. A and B: Normalized and averaged intensities of the indicated marker signals from the cancer and non-cancer samples. C and D: Box plots of the Mann-Whitney U test results with the resulting p values. In all of the plots, red represents the non-cancer samples and blue the cancer samples.

Figure 7. Discrimination based on prognostic markers: PR and lymph node metastases.



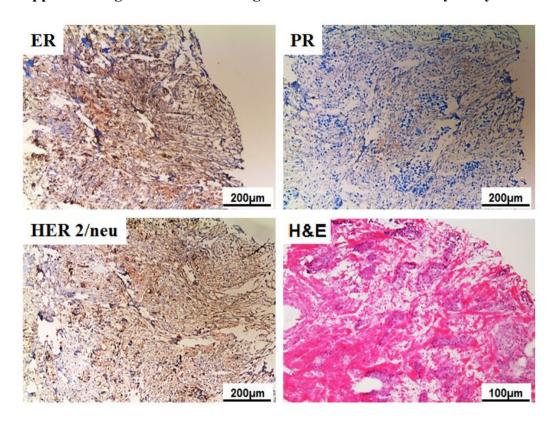
OPLS-DA score plots based on the statuses of progesterone receptor (A) and lymph node metastasis (B). All of the models were obtained using one predictive and two orthogonal components. Two samples were excluded based on the PCA analysis for (B). Filled box: positive samples; open circle: negative samples.

Supplement Figure 1. Multivariate discrimination model for normal and benign tumors samples.



OPLS-DA score plot for normal and benign tumors samples. The model was obtained using one predictive and two orthogonal components. Filled box: normal samples; open circle: benign tumors samples.

Supplement Figure 2. H&E staining and immunohistochemistry analysis.



Histological sections obtained from the breast cancer samples after HR-MAS MR spectroscopy. A representative ER+PR-HER2/neu+ tumor was shown. Scale bar = 200 μ m. The sample in H&E (Lower right) was not found degradation of the tissue. Scale bar = 100 μ m.

REFERENSES

- 1. Warner E. Clinical practice. Breast-cancer screening. N Engl J Med. 2011 Sep;365:1025-32.
- 2. Zhao L, Freimanis R, Bergman S, et al. Biopsy needle technique and the accuracy of diagnosis of atypical ductal hyperplasia for mammographic abnormalities. Am Surg. 2003 Sep; 69: 757-62.
- 3. Dillon MF, Hill AD, Quinn CM, et al. The accuracy of ultrasound, stereotactic, and clinical core biopsies in the diagnosis of breast cancer, with an analysis of false-negative cases. Ann Surg. 2005 Nov; 242: 701-7.
- 4. Houssami N, Ciatto S, Ellis I, et al. Underestimation of malignancy of breast core-needle biopsy: concepts and precise overall and category-specific estimates. Cancer. 2007 Feb; 109: 487-95.
- 5. Liberman L. Percutaneous image-guided core breast biopsy. Radiol Clin North Am. 2002 May; 40: 483-500.
- 6. Brindle JT, Antti H, Holmes E, et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med. 2002 Dec; 8: 1439-44.
- 7. Clayton TA, Lindon JC, Cloarec O, et al. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature. 2006 Apr; 440: 1073-7.
- 8. Wen H, Yoo SS, Kang J, et al. A new NMR-based metabolomics approach for the diagnosis of biliary tract cancer. J Hepatol. 2010 Feb; 52: 228-33.
- 9. Beckonert O, Coen M, Keun HC, et al. Highresolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc. 2010 Jun; 5: 1019-32.
- 10. Burns MA, He W, Wu CL, et al. Quantitative pathology in tissue MR

- spectroscopy based human prostate metabolomics. Technol Cancer Res Treat. 2004 Dec; 3: 591-8.
- 11. Chan EC, Koh PK, Mal M, et al. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J Proteome Res. 2009 Jan; 8: 352-61.
- 12. Bathen TF, Sitter B, Sjøbakk TE, et al. Magnetic resonance metabolomics of intact tissue: a biotechnological tool in cancer diagnostics and treatment evaluation. Cancer Res. 2010 Sep; 70: 6692-6.
- 13. DeFeo EM, Cheng LL. Characterizing human cancer metabolomics with ex vivo 1H HRMAS MRS. Technol Cancer Res Treat. 2010 Aug; 9: 381-91.
- 14. Rocha CM, Barros AS, Gil AM, et al. Metabolic profiling of human lung cancer tissue by 1H high resolution magic angle spinning (HRMAS) NMR spectroscopy. J Proteome Res. 2010 Jan; 9: 319-32.
- Martinez-Granados B, Morales JM, Rodrigo JM, et al. Metabolic profile of chronic liver disease by NMR spectroscopy of human biopsies. Int J Mol Med. 2011 Jan; 27: 111-7.
- Cheng LL, Chang IW, Smith BL, et al. Evaluating human breast ductal carcinomas with high-resolution magic-angle spinning proton magnetic resonance spectroscopy. J Magn Reson. 1998 Nov; 135: 194-202.
- 17. Sitter B, Lundgren S, Bathen TF, et al. Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters. NMR Biomed. 2006 Feb; 19: 30-40.
- 18. Giskeodegard GF, Grinde MT, Sitter B, et al. Multivariate modeling and prediction of breast cancer prognostic factors using MR metabolomics. J Proteome Res. 2010 Feb; 9: 972-9.
- 19. Sitter B, Bathen TF, Singstad TE, et al. Quantification of metabolites in

- breast cancer patients with different clinical prognosis using HR MAS MR spectroscopy. NMR Biomed. 2010 May; 23: 424-31.
- Mountford CE, Somorjai RL, Malycha P, et al. Diagnosis and prognosis of breast cancer by magnetic resonance spectroscopy of fine-needle aspirates analysed using a statistical classification strategy. British J Surg. 2001 Sep; 88: 1234-40.
- 21. Bathen TF, Jensen LR, Sitter B, et al. MR-determined metabolic phenotype of breast cancer in prediction of lymphatic spread, grade, and hormone status. Breast Cancer Res Treat. 2007 Aug; 104: 181-9.
- 22. Bylesjo M, Rantalainen M, Cloarec O, et al. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Chemom. 2006 Aug; 20: 341-51.
- 23. Wiklund S, Johansson E, Sjostrom L, et al. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal chem. 2008 Jan; 80: 115-22.
- 24. Holmes E, Cloarec O, Nicholson JK. Probing latent biomarker signatures and in vivo pathway activity in experimental disease states via statistical total correlation spectroscopy (STOCSY) of biofluids: application to HgCl2 toxicity. J Proteome Res. 2006 Jun; 5: 1313-20.
- 25. Sands CJ, Coen M, Maher AD, et al. Statistical total correlation spectroscopy editing of 1H NMR spectra of biofluids: application to drug metabolite profile identification and enhanced information recovery. Anal chem. 2009 Aug; 81: 6458-66.
- Larsen TO, Smedsgaard J, Nielsen KF, et al. Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Nat Prod Rep. 2005 Dec; 22: 672-95.
- 27. Kang J, Choi MY, Kang S, et al. Application of a 1H nuclear magnetic

- resonance (NMR) metabolomics approach combined with orthogonal projections to latent structure-discriminant analysis as an efficient tool for discriminating between Korean and Chinese herbal medicines. J Agric Food Chem. 2008 Dec; 56: 11589-95.
- 28. Clayton TA, Baker D, Lindon JC, et al. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Nat Acad Sci U S A. 2009 Aug; 106: 14728-33.
- 29. Sitter B, Sonnewald U, Spraul M, et al. High-resolution magic angle spinning MRS of breast cancer tissue. NMR Biomed. 2002 Aug; 15: 327-37.
- 30. Li M, Wang B, Zhang M, et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc Nat Acad Sci U S A. 2008 Feb; 105: 2117-22.
- 31. Kwon HN, Kim M, Wen H, et al. Predicting idiopathic toxicity of cisplatin by a pharmacometabonomic approach. Kidney Int. 2011 Mar; 79: 529-37.
- 32. Roebuck JR, Cecil KM, Schnall MD, et al. Human breast lesions: characterization with proton MR spectroscopy. Radiology. 1998 Oct; 209: 269-75.
- 33. Gribbestad IS, Sitter B, Lundgren S, et al. Metabolite composition in breast tumors examined by proton nuclear magnetic resonance spectroscopy. Anticancer Res. 1999 May-Jun; 19: 1737-46.
- 34. Cecil KM, Schnall MD, Siegelman ES, et al. The evaluation of human breast lesions with magnetic resonance imaging and proton magnetic resonance spectroscopy. Breast Cancer Res Treat. 2001 Jul; 68: 45-54.
- 35. Negendank W. Studies of human tumors by MRS: a review. NMR Biomed. 1992 Sep-Oct; 5: 303-24.
- 36. Singer S, Souza K, Thilly WG. Pyruvate utilization, phosphocholine and adenosine triphosphate (ATP) are markers of human breast tumor

- progression: a 31P- and 13C-nuclear magnetic resonance (NMR) spectroscopy study. Cancer Res. 1995 Nov; 55: 5140-45.
- 37. Ting YL, Sherr D, Degani H. Variations in energy and phospholipid metabolism in normal and cancer human mammary epithelial cells. Anticancer Res. 1996 May-Jun; 16: 1381-8.
- 38. Katz-Brull R, Seger D, Rivenson-Segal D, et al. Metabolic markers of breast cancer: enhanced choline metabolism and reduced choline-ether-phospholipid synthesis. Cancer Res. 2002 Apr; 62: 1966-1970.
- 39. Swanson MG, Vigneron DB, Tabatabai ZL, et al. Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues. Magn Reson Med. 2003 Nov; 50: 944-54.
- 40. Beckonert O, Monnerjahn J, Bonk U, et al. Visualizing metabolic changes in breast-cancer tissue using 1H-NMR spectroscopy and self-organizing maps. NMR Biomed. 2003 Feb; 16: 1-11.
- 41. Thomas MA, Lipnick S, Velan SS, et al. Investigation of breast cancer using two-dimensional MRS. NMR Biomed. 2009 Jan; 22: 77-91.

국문초록

서론: 많은 연구들에서는 새로운 유방암진단법을 개발하는데 초점을 두고 있다. 고해상도 매직앵글스핀 핵 자기공명 분광기술이 그 중하나이다. 이런 연구결과들은 수술 후 얻은 환자의 조직샘플에서 대사체를 분석했기에 제한된 임상적 실용가치를 가지고 있다.

실험방법 및 결과: 초음파 유도하 침생검법을 이용하여 얻은 31개의 사람유방조직(13개 암 조직 및 18개 정상조직)에서 고해상도 매직앵글스핀 핵자기공명분광기술로 CPMG 펄스 시퀀스를 이용해 선택적으로 지방신호를 감소시킨 대사체 스펙트럼을 얻었고 다변량통계분석(OPLS-DA)을 통해 유방암 조직과 정상조직의 대사체를 비교분석하였다. 기존의 조직병리 검사와 비교했을 때 OPLS-DA방법을이용해 69%의 민감도와 94%의 특이도로 유방암을 정확하게 진단할수 있었으며 프로게스테론 수용체(progesterone receptor)암과 림프절전이암을 예측할 수 있었다. 정상조직에 비해 유방암 조직에서 타우린 (3.43 ppm)과 콜린 (3.23 ppm) 대사체 함량이 높게 관찰되었다.

결론: 고해상도 매직앵글스핀 핵 자기공명 분광기술을 이용하여 유방 침생검법으로 얻은 조직에서 대사체 분석은 유방암 조기진단의 가능성 을 제시하며 효과적인 치료법 개발에 이용될 수 있을 것으로 사료된다.

* 본 내용은 PLoS ONE (Li M, Song Y, Cho N, Chang JM, Koo HR, Yi A, Kim H, Park S, Moon WK. An HR-MAS MR Metabolomics Study on Breast Tissues Obtained with Core Needle Biopsy. PLoS ONE. 2011 Oct; 6(10): e25563.)에 출판 완료된 내용임.

주요어: 고해상도 매직앵글스핀, 대사체, 유방암, 침 생검법.

학 번: 2009-30778

간지(빈페이지)

뒤표지