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ABSTRACT

The spleen tyrosine kinase (SYK) has predominantly been
studied in hematopoietic cells in which it is involved in
immunoreceptor-mediated signaling. However, SYK expression
is evidenced in numerous nonhematopoietic cells and its down-
regulation has been shown to be involved in tumor formation and
progression. Our team has reported that SYK promoter
methylation identifies a subset of hepatocellular carcinoma (HCC)
with poor prognosis but little is known regarding a biological role
of SYK in HCC. We found that SYK promoter methylation is a
common event in HCC and is closely associated with its
expression. We established stable HCC cell lines that contain
SYK gene in inducible expression vector and then compared
RNA expression profiles of HCC cell lines with or without
induction of SYK. Gene ontology analysis revealed that the SYK-
regulated genes are enriched among genes involved in cell
adhesion and cell growth. Indeed, we found that SYK increased
cell adhesion to fibronectin and decreased cell proliferation.
Induced expression of SYK decreased cell migration and
invasion by coordination with adhesion molecules as well as

suppression of Rho-family GTPases. Our findings suggest that
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SYK loss is implicated in cell proliferation, migration, and

invasion of HCC cells.

Keywords: Spleen tyrosine kinase, DNA mehtylation,

Hepatocellular carcinoma, Tumor suppressor gene

Student number; 2008-21970
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INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most frequent
malignancies worldwide. In men, it ranks the fifth most common cancer
worldwide and the second leading cause of cancer death, with an
estimate of more than 520,000 new cases each year (1). The major
risk factors associated with the incidence of HCC are well established,
such as infection by hepatitis B and hepatitis C viruses, chronic
alcoholism and aflatoxin exposure (2). However, the molecular
carcinogenesis pathways involving the development and progression
of HCC remain largely unclear. Like most solid tumors, it has been
believed that the progression of HCC occurs as a consequence of a
series of genetic and epigenetic alterations (2). Therefore, it is
important to know the genetic/epigenetic changes for understanding
the underlying mechanisms that cause the initiation and development
of HCC.

CpG islands are DNA sequences (approximately 1 kb) that contain a
high density of CpG dinucleotides, and approximately 60% of human
genes are known to harbor CpG islands in their promoter sequences
(3, 4). DNA methylation is the well-characterized epigenetic alteration
and also essential for normal development, X chromosome inactivation
and gene imprinting (5). Methylation of CpG islands on promoter
regions is related to transcriptional silencing and function as an
important tool to inactivate tumor suppressor or tumor-related genes in

3]
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cancer cells (6, 7). Hypermethylation of gene promoters has been
known to occur in early stage during multistep hepatocellular
carcinogenesis (8). In addition to gene inactivation, promoter CpG
island hypermethylation has received attention for its potential utility as
a biomarker for tumor detection or prediction of prognosis or response
of tumor cells to chemotherapeutic agents (9).

The spleen tyrosine kinase (SYK) is a 72 kDa-sized nonreceptor
tyrosine kinase that is widely expressed in hematopoietic cells. In
these cells, SYK is involved in the signaling, downstream of activated
immunoreceptors, that mediates diverse cellular responses including
cell proliferation, differenriation, survival and phagocytosis (10, 11).
Recently, SYK expression has been evidenced in numerous
nonhematopoietic cells and its down-regulation has been shown to be
involved in tumor formation and progression (12-15). It has been
demonstrated that transfection of SYK into a SYK-negative cancer cell
line dramatically inhibited its cell growth, migration and invasion (12-
15). Conversely, knockdown of SYK in SYK-positive breast cancer
cells dramatically increased proliferation and invasion (16). Several
researchers have reported that the loss of SYK expression correlates
with poor survival and tumor metastasis in the patients with breast (17),
bladder (18), liver (19), pancreatic (14), or gastrointestinal tract tumor
(20). Epigenetic silencing through hypermethylation of critical CpG
islands was proposed to be involved in the loss of SYK gene

expression in these tumors (12-15). Although SYK was shown to affect



cell proliferation, motility and invasion in several types of cancers, its
tumor suppressive activity and its molecular mechanism remain to be
clarified in HCC.

In hematopoeitic cells, SYK is generally activated by its recruitment
on the phosphorylated immunoreceptor tyrosine-based activation
motifs (ITAMs) in the cytoplasmic domain of transmembrane
immunoreceptors (TCR, BCR, Fcy and Fce). However, expression of
these receptors is absent in non-hematopoetic cells such as
hepatocytes and breast epithelial cells (10). Recently, B1 integrin-
mediated activation of SYK has been demonstrated in epithelial cells.
Activation of B1 integrin receptors by fibronectin or antibody cross-
linking leads to redistribution of SYK from the cytoplasm to the plasma
membrane and induction of SYK phosphorylation on tyrosine (21, 22).
Furthermore, SYK phosphorylation was prominently increased by
activating B1 integrin after plating on a collagen type | matrix in HB2
mammary epithelial and MCF7 breast cancer cell lines (23). These
results suggest that integrin receptors and their extracellular matrix
ligands might be responsible for SYK activation and signaling in non-
immune cells. They also indicate that SYK might be associated with
cell adhesion and migration, both critical events for tumor invasion and
metastasis.

Aberrant decrease of adhesion to the extracellular matrix is an
important characteristic of transformed cells. Focal adhesion of the cell

to the matrix is constituted by transmembrane integrins and an



intracellular adhesion molecules such as talin, paxillin, and vinculin
(24). In breast cancer cells, SYK inhibits cell motility while promoting
the cell adhesion molecules such as vinculin (22), E-cadherin (25) and
tensin-2 (26). Focal adhesions are obviously important for regulating
the assembly and disassembly of the attached actin polymerization to
the plasma membrane (24). Rho family of small GTPases including
Rho, Rac and Cdc42 also regulate the assembly of focal adhesion and
actin polymerization and transmit the molecular signaling that supports
directed cell motility (27, 28). Indeed, several Rho GTPases are up-
regulated in many types of human cancer and especially, Rho A shows
its high signaling activity as well as high protein level in HCC (29).
Furthermore, an inverse correlation was found between stress fibers
formed by Rho A signaling pathway and movement (24). Although
studies have shown a requirement for SYK in ITAM-dependent actin
assembly and SYK’s association with actin cytoskeleton or focal
adhesion kinase (FAK) in hematopoietic cells (30, 31), the relation
between SYK and focal adhesion molecules or Rho GTPases has
been poorly understood in non-heamatopoietic cells.

Under a hypothesis that SYK functions as a tumor suppressor in HCC
cells, we aimed to investigate the tumor suppressor function of SYK in
HCC cells. We found that SYK promoter methylation is closely
associated with its down-regulation, and that SYK functions as a tumor

suppressor to decrease tumor cell proliferation, invasion and migration.



MATERIALS AND METHODS

Cell lines and 5-Aza-dC treatment

Seven different human HCC cell lines (SNU-739, SNU-761, SNU-878,
SNU-886, HepG2, Hep3B and Huh7) were obtained from the Korea
Cell Line Bank (KCLB, Seoul, Korea). The cell lines were seeded at
3x10° cells/mL in their respective culture media and were treated with
5 uM 5-aza-2-deoxycytidine (5-Aza-dC, Sigma- Aldrich, St. Louis, MO)
for 96 h; media and drugs were replaced every 24 h. As a control, cell
lines were mock-treated in parallel with the addition of an equal volume

of phosphate buffered saline (PBS) without the drug.

Tet-on inducible expression system

The inducible gene expression system was established using the Tet-
on inducible gene expression system (Clontech, Palo Alto, CA)
according to the manufacturer’s protocols. Target cells (Hep3B and
Huh7) were first transfected with pTet-on advanced vector to create a
stable cell line. Once a suitable Tet-on advanced cell line is established,
the cell lines are then stably transfected with TRE-based vector
containing SYK gene. Target cells were cultured in DMEM containing
10% tetracycline-free fetal bovine serum, 100 units/mL penicillin, and
100 ug/mL streptomycin. For induction of gene expression, Tet-on

inducible cell lines were treated with 1 ug/mL Doxycycline (Dox) for 4



days.

GFP-tagged SYK expression vector and transfection

A GFP-tagged, full-length open reading frame clone of human SYK
and its control vector (pCMV6-AC-GFP) were purchased from Origene
(Rockville, MD). Transfections were performed using Lipofectamine

2000 (Invitrogen, Carlsbad, CA).

Expression microarray

We conducted expression microarray analysis on the Illlumina
HumanHT-12 v4 Expression BeadChip (lllumina Inc., San Diego, CA)
containing 47,231probes according to the manufacturer’s protocol.
Samples were purified using the RNeasy kit (Qiagen, Valencia, CA).
cDNA synthesis and in vitro transcription amplification were followed
by hybridization. For the lllumina Total Prep RNA Amplification Kit
(Ambion, Austin, TX), 0.55 pg of total RNA and one round of
amplification are required for each sample. Scanning was performed
on the lllumina BeadArray Reader. After image scanning, the
GenomeStudio software, which is a tool for analyzing gene expression
data from scanned microarrays, was utilized to generate data for the
genes represented on the array. The gene analysis tool generated
output files containing statistics for gene/probe signals and quality

control information.

Sodium bisulfite modification and methylation analysis



Sodium bisulfite modification of genomic DNA was performed using the
EZ DNA Methylation Kit (Zymo Research Co., Irvine, CA). For bisulfite
genomic sequencing (BGS), The CpG island DNA methylation status
was determined by PCR analysis after bisulfited modification and
followed by BGS. PCR product was cloned into pGEM-T easy vector
(Promega, Medison, WI) and at least 10 individual clones were
sequenced. Primer sequences and PCR conditions are shown in Table

1.

RT-PCR

Total RNA was prepared using an RNeasy kit (Qiagen) according to
the manufacturer’s protocols. A total of 5 ug of RNA was reverse
transcribed using oligo-dT and SuperScript Il Reverse Transcriptase
(Invitrogen). Quantitative RT-PCR (RT-gPCR) amplification reactions
were performed using SYBR Green PCR master mix (Life
Technologiese Applied Biosystems, Foster City, CA). Expression levels
of the genes were normalized to expression of GAPDH. Primer

sequences and PCR conditions are shown in Table 1.

Western blot
Whole cell lysates were separated by 10% SDS-PAGE and transferred

to polyvinylidene difluoride membranes. The blots were incubated with

anti-SYK (4D10), anti-y tubulin (TU-30), anti-B-actin (C4) (Santa Cruz

Biotechnology, Santa Cruz, CA), anti-CHK1 (NB100-464) (Novus
5 1 g ] s
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biological, Littleton, CO), anti-vinculin (V9131), anti-tensin2
(SAB4200269) (Sigma-Aldrich) and anti-RhoA (2117), B (2098), C

(3430) (Cell Signaling Technology Inc., Beverly, MA) at 4°C overnight.

After antibody washing, the blots were reacted with their respective
secondary antibodies and were detected using ECL plus reagents (GE

Healthcare, Waukesha, WI).

Colony formation assay

Tet-on inducible Huh7 cells were seeded into 60 mm dishes and grown
in culture medium containing both geneticin (G418; Sigma-Aldrich) and
puromycin (Sigma-Aldrich) for 4 weeks. Antibiotics-resistant colonies

were fixed with methanol and stained with a crystal violet solution.

Cell proliferation assay
Cells were seeded at an initial density of 2 x 10° cells per well in 96
wells plate, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide (MTT) assay was used to measure cell number.

Cell migration and invasion assay

Cell migration assay and invasion assay were performed using the
transwell membrane (Corning, Corning, NY, USA) and matrigel-
biocoated invasion chamber (BD biosciences, Bedford, MA, USA),
respectively. Cells were trypsinized and resuspended in DMEM at a

density of 5x10* cells/ml. The cell suspension was added into the

8 2



upper chamber consisted of inserts containing 8 um pore-size

membrane. DMEM containg 20% FBS was placed in the lower

chamber. After a 48 h incubation at 37°C, cells remained in the upper

chamber was removed carefully by cotton swab and the membrane
was fixed and stained with 100% methanol and 0.1% crystal violet,

respectively.

Immunofluorescence

Cells cultured on glass cover slips were treated sequentially as follows:
3.7% formaldehyde for 10 min at room temperature (fix), 0.1% Triton
X-100 in PBS for 10 min at room temperature (permeabilization), 0.1%
bovine serum albumin (BSA) in PBS for 30min at room temperature
(blocking). Cells were stained with antibodies against F-actin (R415)
(Rhodamine-Palloidin, Invitrogen), vinculin, tensin2 (Sigma-Aldrich).
Bound primary antibodies were detected using a Texas red-conjugated
goat anti-rabbit antibody and a Alexa flour 594-conjugated goat anti-
mouse antibody (Invitrogen). Nuclei were counterstained with DAPI.
Images were observed and captured using an Olympus confocal

microscope.

Cell adhesion assay
96 wells plates were coated with 20 pg/ml fibronectin at room
temperature for 1 h. Plates were incubated with 1% BSA in PBS to

block nonspecific cell adhesion for 30 min. Thereafter, 5x10° cells were
] O
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added to each well for 10, 20, 60 min. Subsequently, non-adherent
cells were washed off, the remaining adherent cells were fixed with 96%
ethanol and stained with 0.1% crystal violet. Wells were washed
extensively with distilled water to remove excess stain and dissolved

cells with SDS solution and read absorbance at 570 nm.

Coimmunoprecipitation
Cells were lysed in lysis buffer (150 mM NacCl, 1.0% TritonX-100, 50
mM Tris-Cl (pH 8.0), protease inhibitor and phosphatase inhibitor

cocktail). Incubate 300 ug lysate with anti-SYK (Santa Cruz) antibody

for a fixed at 4°C for overnight. Add 20 pl of protein A agarose beads to

each lysate and incubate the lysate beads mixture at 4°C under rotary
agitation for 6 h. Samples were washed five times with lysis buffer and
bound proteins were analyzed by Western blotting with anti- SYK, anti-

beta-actin, anti-vinculin, anti-tensin2.

Statistical Analysis
Data are expressed as means + SD. The Student’s t test was used to
compare the effects of SYK expression on cell proliferation and cell

adhesion.



gel 65 N GLLINGIGLIRN GG DOVOLLYILLIDDDIVOLYYD HAdVD  ¥dd-LYM
ez 6% YOLYDODLIIIIVIIVYYLY LOVOYLODIDOLDIDOVYOLYL IMHO  dDd-LYd
805 65 91 1YYLOYLOVYLYDILOIYIOYD OYLYILYOYYOYYLYOOVYILOL MAS  dDd-LY
1z 1§  OYYILLIYYIWOVOLIVLILIVIVIDOOYDD LOVOYYOOVOLYYYYLLLIOLLOYYOD MAS £-s08
[K:74 14 DOLLOVVOVYYYLLLLIYOLOOLLOLOY OLLIOLLILILILIVIIIIDVLIO0D MAS z-s949
¥99 0S OLLIVVIVOVOLLVLILIVIVIOOYD OLYLYYOOOYLLLIVIVIVOYYLLYD MAS 1-so9g
¥0l 9¢ HDILYLLIDIVYYYYDIVLIOYLD 290L199YDIDDOHILD MAS dSsiN

(dq) azie (D) wp (,£-.g) @s1anay (,£-.g) psenuog auan Iawug

lanpold

YOd-LY PUE SO ‘dSIN 404 stawld '} 3|qeL

11



RESULTS

Correlation of SYK expression with methylation status

To determine whether aberrant promoter hypermethylation of SYK was
correlated with suppression of SYK expression in HCC cells, we
performed bisulfate sequencing and methylation-specific PCR. We
found that SYK was methylated in SNU-761, HepG2, Hep3B and Huh7,
which had no detectable SYK expression. On the other hand,
unmethylated alleles were detected in SNU-739, SNU-878 and SNU-
886, all of which had endogenous SYK expression (Figure 1A, B).
Furthermore, we observed an increase of SYK gene expression after
5-Aza-dC treatment in SNU761 and Huh7 cells (Figure 1C). Therefore,
SYK promoter hypermethylation is tightly associated with its

transcriptional silencing in HCC cell lines.
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Figure 1. SYK promoter methylation and expression in HCC cells

(A) Bisulfite sequencing of SYK promoter region in 5 HCC cell lines.
Vertical lines indicate individual CpG sites. Cloned PCR products were
sequenced and each clone is shown as an individual row, representing
a single allele of the promoter region. White and black circles denote
unmethylated and methylated CpG sites, respectively. (B) Analyses of
SYK promoter hypermethylation by MSP and SYK expression by RT-
PCR (GAPDH mRNA levels were used as a control) and Western
blotting (y-Tubulin protein levels were used as a control) in 7 HCC cell
lines. (C) RT-PCR results of SYK gene expression in methylated HCC
cell lines SNU-761 and Huh7 following the addition of 5-Aza-dC is
shown. Cells were either mock-treated or treated with 5-Aza-dC (5 uM)

for 96 h as indicated.
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Gene expression profiling

We employed gene expression profiling strategy to identify pathways
regulated by SYK-dependent genes in HCC cells. We generated
Hep3B and Huh7 cell lines carrying the Tet-on inducible gene
expression system in which the expression of SYK could be induced
by incubation with Dox. We confirmed that SYK expression level was
dose-dependently induced by treatment with Dox. Also, we confirmed
that SYK expression level was reduced after Dox was removed (Figure
2). The expression profiles were then analyzed with an Illumina
HumanHT-12 v4 Expression BeadChip. Among the 47,231 probes
analyzed, 1,673 (3.54%) were found to be significantly regulated (>2-
fold) by SYK induction while 175 (0.37%) were found to significantly
regulated (>2-fold) by SYK reduction in at least 1 of the two cell lines
(Figure 3A and B). Table 2 and 3 summarizes the functions of the
genes that were changed in their expression level with SYK induction

and reduction in both cell lines, respectively.
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Figure 2. Establishment of Tet-on inducible gene expression
system

SYK-inducible Hep3B and Huh7 cell lines were generated using a Tet-
on inducible gene expression system. The Western blotting results
show that the expression level of SYK was dose-dependently induced
by treatment with Dox (0-1 pg/ml) for 4 days. Also, we confirmed that
expression level of SYK was reduced after Dox was removed for 4
days (R). V indicates empty vector-transfected cells and SYK indicates

SYK expression vector- transfected cells.
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Figure 3. Gene expression profiling

(A) Genes showing greater than 2-fold up-regulation with SYK
induction are illustrated in Venn diagram overlapping between Hep3B
and Huh7 cells. (B) Genes showing greater than 2-fold down-
regulation with SYK reduction are illustrated in Venn diagram

overlapping between Hep3B and Huh7 cells.
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Gene Ontology Analysis of SYK-dependent genes in HCC cells

To understand the roles of SYK loss during cancer progression in HCC
cells, we performed gene ontology analysis of the SYK-dependent
genes. Induction of SYK expression in Hep3B and Huh7 cells were
significantly associated with enrichment of gene set concepts such as
cell adhesion, blood vessel development, cell growth and apoptosis.
Importantly, when SYK expression was tapered in Hep3B and Huh7
cells, many of these gene set concepts were significantly classified

(Figure 4A-D).
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Figure 4. Gene ontology classifications

Gene ontology categories overrepresented in SYK-regulated genes of
which expression was increased (black) and decreased (patterned)
over 2- fold after Dox treatment in Hep3B (A), Huh7 (B) and over 2-
fold after Dox removal in Hep3B (C) and Huh7 (D). The GO term is on
the y axis, and the P value indicating significance of enrichment on the

X axis.
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Expression of SYK suppresses cell growth

To investigate the effects of SYK expression on cell growth in HCC
cells, SYK was induced by Dox treatment in Huh7 cells in which SYK
was silenced. The suppressive effect on cancer cell growth was
demonstrated by a colony formation assay (Figure 5A). An MTT assay
confirmed that cell proliferation was significantly reduced in SYK-
induced clones, compared with the non-induced control (Figure 5B).
Also, SYK inhibited cellular proliferation in transiently transfected
HepG2 cell line, compared with the vector control (Figure 5C).
Recently, a report has revealed that checkpoint kinase 1 (CHK1)
phosphorylates SYK at Ser295 and promotes its subsequent
proteasomal degradation, which negatively regulates SYK function,
including suppression of proliferation, suppression of migration, or
suppression of invasion (32). We found that CHK1 was expressed in
both Hep3B and Huh7 cells (Figure 6A). To determine the effects of the
CHKZ1 inhibitor GO6976, two individual colnes of SYK-inducible Huh7
cells were treated with GO6976 and assessed for cell proliferation by
MTT assay (Figure 6B). The cells with SYK expression and GO6976
treatment displayed lower cell proliferation rate than that of the cells

with SYK expression alone or treatment of GO6976 alone.
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Figure 5. Suppressive effect of SYK on tumor cell growth.

(A) A colony formation assay demonstrates a reduction in the number
of colonies in SYK-induced Huh7 cells compared with those of control
cells. (B) Huh7 cells were stably transfected with the indicated plasmid
and induction of SYK was controlled by treatment with Dox. The cell
proliferative capacity of these cells was measured by MTT assay at the
indicated days. Cell growth is expressed as absorbance at a
wavelength of 570 nm. Experiments were performed in triplicate, and
values indicate means + s.d. Student’s t test was performed to
compare means, revealing significant differences (**P<0.001). (C)
HepG2 cells were transiently transfected with SYK or empty vector. In
an MTT assay, cell growth is expressed as absorbance at a
wavelength of 570 nm. Experiments were performed in triplicate, and

values indicate means * s.d.
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Figure 6. CHK1 inhibitor suppresses cell proliferation through
increasing stability of SYK in Huh7 cells.

(A) Analyses of CHK1 expression by RT-PCR (GAPDH mRNA levels
were used as a control) and Western blotting (y-Tubulin protein levels
were used as a control). (B) Two individual clones of Tet-on Huh7 cells
were treated with GO6976 (100 nM) or DMSO (control) as indicated for
days and were subjected to an MTT assay. Cell growth is expressed
as absorbance at a wavelength of 570 nm. Experiments were
performed in triplicate, and values indicate means + s.d. (Student’s t

test, *P<0.05).
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Effect of SYK on cell adhesion, migration and invasion

To confirm the role of SYK in cell attachment, migration and invasion,
cell attachment, migration and invasion assays were performed. The
cells with SYK induction displayed suppression of cell migration
(Figure 7A) and invasion (Figure 7B) compared with the cells with no
SYK induction. To investigate the effect of SYK in cell adhesion, cell
attachment assays were conducted in 96 wells flat bottom microtiter
plates coated or uncoated with fibronectin. HCC cells cultured on
fibronectin-uncoated plates showed no attachment regardless of SYK
expression status, whereas HCC cells on coated plates exhibited
attachment to the plate and increased attachment with induction of
SYK expression (Figure 8A). Also, we found that SYK-induced cells
increased cell-to-matrix and cell-to-cell adhesion on fibronectin-coated
coverslips (Figure 8B). Together, the data indicate that altered capacity
of cell-to-matrix and cell-to-cell adhesion is mediated by SYK induction
and that SYK might contribute to inhibition of cell migration and

invastion.
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Figure 7. Effect of SYK on cell migration and invasion

(A) Cell migration and (B) invasion assay were performed in SYK-

inducible Huh? cells. Expression of SYK decreases cell migration and

invasion. -, no treatment of Dox; +, treatment of Dox; R, after removal

of Dox.
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Figure 8. Effect of SYK on adhesion to fibronectin in HCC cells.

(A) SYK-inducible Hep3B cells were tested for adhesion as indicated
times to 96 wells plate coated with fibronectin or not. Experiments
were performed in triplicate, and values indicate means + s.d.. **,
P<0.001; *, P<0.05 by Student’s t-test. (B) In vitro morphology of SYK-
induced cells following adhesion to fibronectin. Cells were plated on
uncoated coverslips (FN-) or fibronectin-coated coverslips (FN+) for 30
min. Subsequently, non-adherent cells were washed off, the remaining
adherent cells were fixed with 96% ethanol and stained with 0.1%
crystal violet. SYK-induced Huh7 cells showed increased cell-to-matrix

adhesion and cell-to-cell adhesion on fibronectin-coated coverslips.
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Cellular redistribution of SYK following adhesion to fibronectin

SYK-dependent signaling pathways in epithelial cells were initially
activated by participation of Bl-integrin receptors. Stimulation of B1-
integrin receptors by fibronectin or antibody cross-liinking has been
demonstrated to promote the redistribution of SYK from cytoplasm to
plasma membrane localization (21). To identify whether the localization
of SYK is changed by stimulating B1-integrin receptors in HCC cells,
SYK-tGFP transfected-Hep3B and Huh7 cells were plated on
fibronectin-coated surfaces, followed by analysis using confocal
microscopy. One hour adhesion to fibronectin induced visible
spreading of both Hep3B and Huh7 cells on coverslips. Cells plated on
non-coated coverslips (1h) were smaller and more rounded (Figure 9).
SYK was distributed in both cytoplasmic and nuclear areas. After
adhesion to fibronectin, SYK was redistributed with some localization
along the plasma membrane in both cell lines with a difference in
nuclear localization: SYK was retained in the nucleus in Huh7 cells but
not in Hep3B cells. In contrast, in cells plated on non-coated coverslips
kept overnight, SYK was distributed in the cytoplasm without
localization along the plasma membrane or to the nucleus (Figure 9).
These results indicate that redistribution of SYK was induced by

engagement of B1-integrins by fibronectin.
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Figure 9. Adhesion to fibronectin mediates cellular redistribution

of SYK in HCC cells.

Huh7 and Hep3B cells were transiently transfected with tGFP tagged-
SYK. Cells were plated on fibronectin- or non- coated glass coverslips
for 1h or overnight (O/N), fixed, and counterstained with DAPI nucleic

acid stain. Original magnification, x600.
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SYK associates with cytoskeleton and adhesion molecules

Focal adhesions are formed at ECM—integrin interactions that bring
together cytoskeletal and signaling molecules during the processes of
cell adhesion, spreading and migration (28). To explore first a possible
association between SYK and microfilaments, we examined the
localization of SYK and actin. When expressed in HCC cells, tGFP-
tagged SYK appeared co-localized with F-actin stained with
fluorescent phalloidin within plasma membrane (Figure 10A). Also, we
found a similar distribution of endogenous adhesion molecules, tensin2
and vinculin, stained with their specific antibodies (Figure 10B and C).
To look for a physical interaction between SYK and adhesion
molecules or F-actin, SYK was immunoprecipitated from lysates of
SYK-inducible Hep3B and Huh7 cells and the resulting immune
complexes were examined by Western blotting. Both cells showed the
interaction between SYK and B-actin or vinculin, but not tensin2
(Figure 10D). To confirm this interaction, SYK also was
immunoprecipitated from lysates of SNU-739 cells expressing
endogenous SYK and these immune complexes again revealed the
interaction with B-actin and vinculin Figure 10D). These data suggest
that SYK could localize to focal adhesions with adhesion molecules

and affect actin cytoskeletal network in HCC cells.
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Figure 10. Association of SYK with cytoskeleton and adhesion

molecules.

Hep3B and Huh7 cells transiently expressing SYK-tGFP were attached
on fibronectin-coated coverslip for 1h, fixed, permeabilized and stained
with Rhodamine Phalloidin (A), anti-tensin2 (B) and anti-vinculin (C).
Original magnification, x600. (D) Lysates (Input), anti-lgG (IP: IgG) or
anti-SYK immune complexes (IP: SYK) prepared from Dox-treated
Hep3B, Huh7 (induced-SYK) and SNU-739 (endogenous SYK) cells
were analyzed by Western blotting using anti-SYK, anti-beta-actin,

anti-vinculin, anti-tensin2 antibodies.

43 . H kl r]



Expression of SYK causes a suppression of Rho-Family GTPases
and stress fiber formation

Rho-family GTPases regulate the formation and disassembly of actin
cytoskeleton (stress fibers, lamelliopdia and filopodia) and transmit the
molecular signaling that supports directed cell motility (28). To
investigate the effects of SYK expression on the levels of Rho-family
GTPases including RhoA and RhoB, SYK was transiently trasfected in
Huh7 cells and compared the levels of Rho-family GTPases with
empty vector control. Western blot analysis indicated that expression
of SYK resulted in a decrease in the level of RhoA and RhoB (Figure
11A) and stress fiber formation (Figure 11B). These data may imply
SYK expression in SYK-silenced HCC cell lines decrease their
migration and invasion by suppression of Rho-family GTPases and

stress fiber formation.
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Figure 11. Expression of SYK causes a suppression of Rho-family
GTPases and stress fiber formation.

(A) SYK-transfected Huh7 or empty vector-transfected Huh7 cells were
analyzed by Western blotting using anti-SYK, anti-RhoA, anti-RhoB,
anti-RhoC antibodies. y-Tubulin protein levels were used as a control.
V indicates empty vector-transfected cells and S indicates SYK
expression vector-transfected cells. (B) Huh7 cells untreated (-) or
treated (+) with Doxycycline (Dox) to induce expression of SYK. Cells
attached on fibronectin-coated coverslip for 1h, fixed, permeabilized

and stained with rhodamine phalloidin.

46



DISCUSSION

SYK is a putative tumor- and metastasis-suppressor gene recently
found to be inactivated through promoter CpG island hypermethylation
in several types of cancer (17-20). In the current study, we analyzed
the methylation state of SYK promoter CpG island locus and its
MRNA/protein expression in HCC cell lines, which showed an inverse
correlation between promoter CpG island hypermethylation and SYK
expression. Treatment of methylated HCC cell lines with a
demethylating agent exhibited restored SYK expression. Although SYK
is actively transcribed in hepatocytes, development of aberrant
hypermethylation in promoter CpG island loci in association with
tumorigenesis leads to transcription silencing of SYK. In consideration
of previous studies indicating that hypermethylation of SYK promoter
CpG island locus is closely associated with worse prognosis of HCC
patients (19, 33), it could be hypothesized that reduced expression of
SYK by promoter CpG island hypermethylation may be related to
biological aggressiveness of HCC.

In the present study, SYK showed suppression of Huh7 and HepG2
cell growth but not Hep3B cells. The anti-growth activity of SYK was
augmented by the treatment of GO6976, an inhibitor of CHK1, which
stabilizes SYK. Combined effect of SYK induction and CHK1 inhibition
was remarkable in terms of suppression of tumor-cell growth

compared with SYK induction alone or CHKZ1 inhibition alone.

3]
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Considering that induced SYK shows differential anti-growth activity
depending on cell types, it can be speculated that anti-growth activity
of SYK operates in a specific context. To identify the mechanisms
underlying the anti-growth effect of SYK in Huh7 cells, we performed
cell cycle analysis in Huh7 cells with and without induction of SYK
expression. However, we did not find a difference in the fraction of cell
cycle phases and in specifically sub-G1 fraction (data not shown). This
situation is similar to that of Coopman et al's study in which SYK
blocked breast tumor cell growth in vitro but no differences in cell
proliferation and apoptosis were found between breast cancer cells
with and without SYK (12). However, abnormal mitoses with multipolar
spindles were found to be significantly increased with SYK expression
(12, 34, 35), which suggests involvement of SYK in the regulation of
cell proliferation by controlling mechanisms of mitosis and cytokinesis
(34). Another mechanism lies in SYK’s abilities regulating expression
of genes that are involved in cell cycle progression (12). SYK down-
regulates the transcription of cell cycle progressive genes such as
CCND1, CCNA1, AKT1 and FOSL1 (14, 15, 36). On the other hand,
reexpression of SYK induces a TP53-dependent accumulation of
CDKN1A and a senescence-like growth arrest in melanoma cells (15).
However, we did not find significant differences in mRNA levels of
CCND1 and CDKN1A between Huh7 cells with and without SYK
induction. Our present data show that SYK regulates various genes

that are involved in cell proliferation and reexpression of SYK
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suppresses cell growth. However, it now remains to identify the exact
mechanism for effect of SYK on cell growth in HCC cells.

In contrast with differential anti-growth activity of SYK, increased cell
to matrix attachment and decreased cell migration and invasion were
shared findings in both Huh7 and Hep3B cells with SYK expression.
Induction of SYK expression led to cytoplasmic spreading, while
addition of fibronectin exposure prompted cytoplasmic spreading and
localization of SYK along cytoplasmic border. SYK was co-localized
with actin, vinculin and tensin-2 in cytoplasmic border although
immuno-precipitation assay did not prove interaction between SYK and
tensin-2. Furthermore, SYK expression led to an increase in CDH1
expression which strengthens cell to cell adhesion (data not shown).
Decreased cell motility in association with SYK expression appears to
be attributed to increased cell to matrix and cell to cell attachment.
Clinical studies have demonstrated that SYK expression is
predominantly decreased in invasive and metastatic breast tumors and
that decreased expression of SYK is related to an increased risk for
distant metastasis (17, 23). In the present study, SYK methylation was
closely associated with shortened survival time in HCC patients, which
is consistent with results of previous studies demonstrating shortened
survival time in HCCs with SYK methylation.

Tumor invasion and metastasis are complicated procedures requiring
the ability of cancer cells to interact with endothelial cells and

extracellular matrix. Integrins are the major cell surface receptors that
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mediated these interactions. Especially, Bl-integrins are highly
expressed in HCC cell lines including Hep3B and Huh7 cells. Activity
and expression of B1-integrins are associated with the invasive ability
of HCC cells (37). Several reports have shown that SYK is
phosphorylated and activated through B1 integrins signaling in airway
epithelial cells and breast cancer cells (21, 22). Our results
demonstrated that redistribution of SYK from cytoplasm to plasma
membrane induced by stimulation of Bl-integrins by fibronectin. Also,
the adhesion and spreading of HCC cells occurred rapidly and widely
on fibronectin-coated galss coverslips compared to un-coated.
Although, more studies will be necessary to fully understand the
effects of SYK on cell motility and invasion, we suggest that the ability
of SYK to enhance integrin-mediated adhesion and to decrease cell
motility may underlie its functions as a metastasis suppressor in HCC.
Cytoskeletal organization is one of the most important mechanisms
for cell adhesion and motility. SYK is also involved in the organization
of the actin cytoskeleton and associates actin-binding proteins. In
platelets, thrombin exposure renders SYK relocated to the actin
filament network and associated with FAK (31). Our data show that the
expression of SYK results in its co-localization with cytoskeletal actin
or adhesion molecules such as vinculin and tensin2 at adhesion site.
Tensin2 is also known to interact with deleted-in-liver-cancerl (DLC1),
a tumor suppressor and negative regulator of Rho-family GTPases (38,

39). Inhibition of RhoA signaling in HCC cells causes a significant loss
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of their in vitro motility and reduces intrahepatic metastasis in injected
nude mice (40). Similarly, overexpression of RhoC has a strong
correlation with invasion and metastasis of HCC (41). In our results,
expression of SYK leads to a reduction of motility and decreases the
level of RhoA and RhoB. Because the total level of RhoA and RhoB
decreases, it suggests that GTP-bound active Rho also decline.
Therefore, SYK may participate in both focal adhesion signaling and
Rho-dependent signaling.

In conclusion, SYK promoter methylation is closely associated with its
down-regulation in HCC cells. Findings of the present study support
the hypothesis that SYK functions as a tumor suppressor in HCC by
demonstrating SYK’s anti-proliferative activity and pro-adhesive activity.
Restoring SYK expression in SYK-silenced HCC cell lines decreased
cell growth while increased cell adhesion. Furthermore, expression of
SYK decreased cell migration and invasion by coordination with
adhesion molecules as well as suppression of Rho-family GTPases.
Our findings suggest that SYK loss is implicated in cell proliferation,
migration, and invasion of HCC cells. Further studies are required to
define the exact mechanism how SYK regulates cell proliferation of

HCC cells.
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