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Abstract 

 

Bimodal and multivariate analysis linking 

FDG uptake to BOLD signal at rest:  

a simultaneous hybrid PET/MR study 

 
Eunkyung Kim 

Interdisciplinary Program in Cognitive Science 

The Graduate School 

Seoul National University 

 

Glucose consumption and hemodynamic response to neural activity at 

rest reflect intrinsic brain function in general. Investigating the 

relationship between them should be needed to better understand how 

the brain works. I applied the multivariate partial least squares for 

investigating the relationship between FDG uptake and BOLD signal at 

rest (n = 38, mean age 44 ± 13.9 years), as representative measurements 

for capturing those different aspects of brain function using a hybrid 

PET/MR scanner. This approach can consider the interdependency 

between voxels as well as the relationship between modalities. As a 
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result, the relationship which was reproducible by a split-half resampling, 

was found in brain areas in respect to their functional roles. For example, 

the FDG uptake and BOLD signal showed positive relationship within 

the brain regions such as (1) sensory system, and (2) default mode 

network system. The negative relationship was found between the above 

regions. 

The principal component analysis was also performed to 

investigate the interregional correlation patterns within modality. The 

first principal component image of FDG-PET was almost the same to the 

first singular image of FDG-PET. While, the first and second principal 

component images of fMRI were similar to the first singular image of 

fMRI. The first principal component image of fMRI represented the (1) 

visual system, and (2) default mode network system. The second 

principal component image of fMRI represented the (1) auditory and 

motor systems, and (2) default mode network system. The results proved 

that the interregional correlation patterns derived by the spontaneous 

ongoing neural activity were divided into the specialized independent 

systems compared to the interregional correlation patterns derived by the 

relatively stable FDG uptake. 

This present work showed that the relationship between FDG 

uptake and BOLD signal was changed by age. By applying the partial 

least squares to the younger adults (n = 19, mean age 32 ± 6.9 years) and 
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older adults groups (n = 19, mean age 56 ± 7.7 years) respectively, the 

different relationship between FDG uptake and BOLD signal was 

observed. The changes of brain function due to aging can be observed by 

the changes of the relationship between FDG uptake and BOLD signal. 

 

Keywords: FDG-PET, rsfMRI, partial least squares, multimodal, hybrid 

PET/MR, age 

 

Student Number: 2011-30865 
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1. Introduction 

 

1.1. Multimodal and multivariate analyses of human brain 

Technical advances provide a chance to investigate the human 

brain in vivo using various imaging modalities. Each imaging modality 

enable to measure the brain at different points of views, depending on 

different time scales and spatial resolutions, or different data 

characteristics (see review of Horwitz and Poeppel, 2002, and Huster et 

al., 2012). 

A lot of effort has been made to combine such multiple imaging 

modalities for better understanding of how the brain works. For example, 

enriched interpretations of human brain function in respect to the specific 

cognitive process are possible by combining functional magnetic 

resonance imaging (fMRI) and electroencephalography (EEG) 

(Iannaccone et al., 2015; Menon et al., 1997; Mulert et al., 2004). This 

kind of approach analyzes each modality independently and interprets 

the results together as a converging evidence. 

It brings into question the general assumption that the brain 

signals measured by each modality correspond to the same set of 

underlying neural activity (Horwitz and Poeppel, 2002). Is there a real 

correspondence between different imaging modalities? Multimodal 

fusion data analysis can answer the question by demonstrating the shared 
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information and relationship between different aspects of the brain. 

The representative multimodal fusion data analyses were listed 

in detail in the previous paper, including joint independent component 

analysis (jICA), multimodal canonical correlation analysis (mCCA), and 

partial least squares (PLS) (for a review, see Sui et al., 2012). The three 

multimodal fusion approaches have something in common. These are 

multivariate analyses in which interdependency between voxels is 

considered by assuming all brain voxels as a whole. Multivariate 

analyses have advantages over univariate analyses since the brain works 

as a system. In addition, these are data-driven analyses using blind source 

separation assuming linear mixtures of hidden sources. Different data 

sets can be combined together using a mathematical algorithm, and the 

hidden sources contributing to the relationship between different brain 

imaging data can be extracted successfully in the brain imaging studies. 

Besides the common characteristics, the differences of such 

multimodal fusion data analyses make the each approach unique to the 

specific circumstance. For example, the jICA, which is the variation of 

independent component analysis (ICA) (Calhoun et al., 2006), has been 

used to find the independent component shared by different imaging 

modalities (Franco et al., 2008; Moosmann et al., 2008). It cannot find 

out the corresponding eigenvalue explaining contribution of the 

identified independent component to the data. The CCA, in contrast, has 
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been used to find the relationship between different data sets by 

maximizing correlation between them (Correa et al., 2010). The 

observed components are orthogonal with each other, and have the 

corresponding eigenvalue. The PLS is similar to the CCA analysis. It 

maximizes covariance between different data sets and assumes the linear 

relationship between independent and dependent variables. 

 

 

1.2. The relationship between FDG uptake and BOLD signal of the 

brain 

Among multiple imaging modalities, [18F]fluorodeoxyglucose-

positron emission tomography (FDG-PET) and fMRI are popular to 

measure human brain function. Convergent opinions have suggested that 

both two modalities measure the brain function in different ways 

(Raichle, 1998; Raichle, 2009; Strelnikov, 2010). FDG-PET measures 

FDG uptake which is closely related to the glucose metabolism reflecting 

relatively long-term and steady state neural activity. Glucose is a product 

of interaction between astrocyte and neuron (Bélanger et al., 2011). It is 

a substrate of neural energy requirement and related to the synaptic 

activity (Hertz and Zielke, 2004). Thus basis of neural activity can be 

detected by measuring glucose metabolism, and roughly by measuring 

FDG uptake. While, fMRI measures blood oxygenation level-dependent 
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(BOLD) signal reflecting relatively short-term and ongoing fluctuation 

of neural activity. BOLD signal is a product of complex interactions 

between blood flow, blood volume, and blood oxygenation (Ogawa et al., 

1990; Ogawa et al., 1993). Thus indirect neural activity can be detected 

by measuring BOLD signal (Hyder et al., 2011). 

These different characteristics of FDG-PET and fMRI often lead 

to independent use of each modality for understanding how the brain 

works. Nevertheless, the similar changes of FDG uptake and BOLD 

signal have been demonstrated in their response to the fundamental 

sensory processing (Newberg et al., 2005), despite the difficulty to obtain 

repeated measurements using the FDG-PET due to the relatively long 

half-life of 18F (Raichle, 2009). The brain energy demands have been also 

suggested as an important indicator to interpret the fMRI results (Hyder 

et al., 2002; Shulman et al., 2002; Shulman et al., 2004). In addition, the 

cerebral metabolism was tightly coupled with the functional connectivity 

derived from the BOLD signal at rest (Riedl et al., 2014). It suggested a 

close relationship between FDG uptake and BOLD signal regardless of 

different characteristics. 

To understand the close relationship between FDG uptake and 

BOLD signal, recent studies have shown their spatial similarity using 

univariate analysis during resting state condition. The positive 

relationship between FDG uptake and BOLD signal was observed in 
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global brain in the 8 healthy adults (mean age 34 ± 10.6 years) and 9 

patients with temporal lobe epilepsy (Nugent et al., 2015). Regionally, 

the higher FDG uptake and higher BOLD signal were observed in the 

cerebellum, occipital, and parietal cortices, by the voxel-wise correlation 

analysis of 54 healthy adults (mean age 36 ± 12 years) (Tomasi et al., 

2013). The spatial similarity of brain activity was observed between the 

FDG uptake and BOLD signal fluctuation when the dorsal posterior 

cingulate cortex as a seed region in 8 healthy adults (mean age 53 ± 

10.5 years) (Passow et al., 2015). 

These univariate analyses, however, cannot consider the 

interdependency between voxels. In addition, independent analysis 

cannot find the linear mixture of neural activity covaried with the FDG 

uptake and BOLD signal at the same time. Therefore, to better 

understand the close relationship between FDG uptake and BOLD signal, 

multimodal fusion data analysis should be applied. Among the 

multivariate analyses as I described earlier, PLS can find linkage shared 

by two different data (independent and dependent variables), based on 

their linear relationship (Krishnan et al., 2011; McIntosh et al., 1996). 

Intuitive understanding of the maximal relationship between FDG 

uptake and BOLD signal can be also possible by visualizing the 

identified components on to the brain. 
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1.3. Investigating relationship between FDG uptake and BOLD 

signal by bimodal and multivariate PLS 

The aim of this present work was investigating relationship 

between FDG uptake and BOLD signal of the brain using bimodal and 

multivariate analysis. The PLS was applied to the resting state FDG-PET 

and fMRI data of 38 healthy adults (mean age 44 ± 13.9 years). The 

FDG-PET and fMRI data were acquired by a hybrid PET/MR scanner. It 

allows simultaneous acquisition of FDG-PET and functional MR images, 

providing complementary information for the functional brain changes 

(Heiss, 2009; Wehrl et al., 2014). 

Traditionally, the PLS has been used to find the brain areas 

related to the experimental contrast or behavioral outcome (McIntosh et 

al., 1996), and used to find the relationship between different brain 

imaging modalities (Burzynska et al., 2013; Chen et al., 2009). For 

example, the relationship between white matter integrity and BOLD 

signal during working memory task was investigated (Burzynska et al., 

2013). The relationship between FDG uptake and gray matter volume 

was also investigated by the PLS (Chen et al., 2009). 

In this present work, I focused on the relationship between FDG 

uptake and BOLD signal at rest, without any specific task. The advantage 

of resting state study is simplicity with reliable findings (Ferreira and 

Busatto, 2013), germane to the task-related brain activity (Hasson et al., 
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2009; Lewis et al., 2009). In fact, the energy consumption supporting 

brain activity at rest is remarkably large compared to the one associated 

with changes in brain activity (see review of Raichle, 2010). The reason 

why this large amount of energy at rest is needed is unclear, but 

acquisition and maintenance of information may be the possible causes 

(see review of Raichle, 2010). Therefore, investigation of functional 

brain imaging acquired during resting state condition provides 

invaluable information for the fundamental understanding of the brain, 

rather than understanding of brain activity in response to external stimuli. 

In this regard, investigation of the relationship between FDG uptake and 

BOLD signal at rest can reflect the balance of long-term and stable brain 

signal with the spontaneous brain activity to maintain the normal brain 

function. 

The linkage between FDG uptake and BOLD signal was 

extracted by applying the PLS to the resting state FDG-PET and fMRI 

data in healthy adults. A split-half resampling was performed to validate 

the findings. The relationship might be different to the previous studies 

reporting spatial similarity and positive association between them 

(Nugent et al., 2015; Passow et al., 2015; Tomasi et al., 2013). For 

example, the relationship between FDG uptake in one brain region and 

the BOLD signal in other brain areas where have different roles of 

functional processing, could be observed as a negative way. It was 
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reasonable according to the previous study reporting the negative 

relationship between different brain areas, processing externally and 

internally oriented stimuli using resting state fMRI data (Tian et al., 

2007). In addition, the FDG uptake and BOLD signal of similar brain 

areas might not show the spatial similarity or positive relationship, 

according to the previous study reporting their mismatched activity to 

the whisker-stimulation of rats (Wehrl et al., 2014). 

To better understand the relationship between FDG uptake and 

BOLD signal, I also obtained the principal component images of FDG-

PET and fMRI, respectively. The principal component images of each 

modality can explain the interregional correlation patterns of resting state 

FDG uptake and BOLD signal itself, rather than the interactions between 

modalities. In other words, the patterns of principal component images 

of each modality are independent to the patterns of singular images 

depicting the interrelationship between modalities, and represent the 

distributed brain systems in which high intercorrelations are observed 

(Friston et al., 1993). By comparing the principal component images and 

the singular images of each modality, the contribution of each modality 

to their relationship was revealed in this present work. 

In addition, I also divided the participants into younger adults (n 

= 19, mean age 32 ± 6.9 years) and older adults groups (n = 19, mean 

age 56 ± 7.7 years), and investigated the effect of age to the relationship 
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between FDG uptake and BOLD signal at rest. Since age affects to the 

brain function significantly, it is reasonable to infer that the relationship 

between FDG uptake and BOLD signal might be changed depending on 

age. According to the previous study, age was an important indicator to 

discriminate the relationship between different imaging modalities using 

the PLS (Chen et al., 2009). 
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2. Materials and Methods 

 

2.1. Participants 

Thirty eight healthy subjects (M/F: 19/19, mean age 44 ± 13.9 years) 

participated in this study. Neuropsychological screening was tested to all 

volunteers, and the participants were included in this study according to 

the objective rules: Korean version of Mini-Mental State Examination 

(K-MMSE) ≥ 27 scores, Mood Evaluation Scale (MES) < 18 scores, 

Beck Depression Inventory (BDI) ≤ 9 scores, and Beck Anxiety 

Inventory (BAI) ≤ 7 scores (Table 1). All participants were right-handed, 

and had no previous history of neurological or psychiatric disorder. The 

participants were divided into younger adults (M/F: 10/9, mean age 32 ± 

6.9 years) and older adults groups (M/F: 9/10, mean age 55.5 ± 7.7 years) 

(P <8.3E-012). There was no significant difference between all the 

screening tests scores of two groups (P > 0.05). This study was approved 

by the institutional review board (IRB) of the Seoul National University 

College of Medicine. They gave informed consent as provided by the 

Seoul National University Hospital. 
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Table 1. Demographic data of participants 

Group N(M/F) 
Age 

K-MMSE MES BDI BAI 
mean  range (min, max) 

Younger adults 19 (10/9) 32 years 22 ~ 42 years 29.5 ± 0.8 4.5 ± 4.2 2.4 ± 2.4 1.9 ± 1.7 

Older adults 19 (9/10) 56 years 46 ~ 71 years 29.1 ± 1.0 4.2 ± 2.5 3.6 ± 2.6 2.5 ± 2.0 
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2.2. Images scanning acquisition 

All FDG-PET and MR images were acquired simultaneously 

using a Siemens Biograph mMR 3T scanner (Siemens Healthcare Sector, 

Germany). The measurement schedule for simultaneous PET/MR 

acquisition was visualized in Figure 1. The FDG-PET and fMRI were 

started to scan at the same time. FDG-PET images were acquired by list-

mode acquisition, when 40 minutes after injection of FDG tracer ([18F] 

FDG 5-7 mCi). The actual acquisition of FDG-PET images was started 

when 50~60 minutes after FDG administration according to the 

measurement schedule. In the previous studies, the 60 minutes interval 

between FDG administration and scanning was recommended 

(Boellaard et al., 2010) in which plateau concentrations were achieved 

(see review of Schmidt et al., 1996). 

Scanning parameters of FDG-PET images, T2*-weighted echo-

planar images (EPI), and structural T1 images were as followings: FDG-

PET: 127 slices covering the whole brain with transverse acquisition 

(matrix size, 344×344; voxel size, 1.04 ×1.04×2.03); FOV=300mm; 

EPI: the number of total volume per one subject was 116 with mosaic 

image format; 35 slices covering the whole brain with interleaved 

acquisition (matrix size, 128 × 128; voxel size, 1.88 × 1.88 × 3.5); 

TR=3500ms; TE=30ms/angle, 90°; FOV=240mm; structural T1 images: 

spoiled grass gradient recalled (SPGR) 3D MRI sequence; 208 slices 
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covering the whole brain with sagittal acquisition (matrix size, 256×256; 

voxel size, 0.98×0.98×1); TR=1670ms; TE=1.89ms; FOV=250mm. All 

images were acquired in a resting state condition (dimmed light, closed 

eyes, and without any task). 
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Figure 1. PET/MRI imaging protocol and measurement schedule. After injection of 18F FDG, participants rested in a quiet room 

for about 40 minutes and were moved into the PET/MR scanner. Structural MR images were acquired first. FDG-PET and fMRI 

were started to scan at rest at the same time by following T2 and DTI scan.
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2.3. Images preprocessing 

 

2.3.1. FDG-PET images preprocessing 

FDG-PET images were preprocessed using the Statistical 

Parametric Mapping (SPM8, www.fil.ion.ucl.ac.uk/spm) and PVElab 

software (Quarantelli et al., 2004). The obtained PET images were 

rescaled to 256×256 matrix and coregistered to the T1 images. The 

coregistered PET images were corrected for partial volume effect, 

mainly due to low spatial resolution, using the modified version of 

Muller-Gartner approach (Muller-Gartner et al., 1992). To estimate the 

white matter value by the Rousset method (Rousset et al., 1998), the T1 

images were segmented and resliced. The corrected PET images were 

spatially normalized to the Montreal Neurological Institute (MNI) with 

voxel resolution of 2mm3, and smoothed with 12mm FWHM. The 

images were masked by the gray matter tissue prior map provided in 

SPM8, excluding cerebellum cortex, thresholded at probability > 0.3. 

The image intensity was rescaled by global normalization to 50. The 

images obtained during the processing steps were visually confirmed to 

avoid any potential biases. 

  

http://www.fil.ion.ucl.ac.uk/spm
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2.3.2. Functional MR images preprocessing 

Functional MR images were preprocessed using the AFNI (Cox, 

1996) and the FSL (Smith et al., 2004) by following procedures: 1) the 

first 4 volumes were discarded to eliminate the T1 relaxation effects and 

to enhance the BOLD signal stabilization; 2) despiking the signal from 

the time-series data to make the motion parameters were less variable 

and to suppress the signal due to the potential hardware instability (Jo et 

al., 2013); 3) head motion correction of fMRI volumes as the middle 

volume was the reference, using six degrees of freedom rigid body 

registration (Jenkinson et al., 2002); 4) slice timing correction for 

interleaved slice acquisition; 5) within run intensity normalization to a 

whole brain mode value of 1000 (Power et al., 2012); 6) spatial 

normalization of the functional MR images to the standard template with 

voxel resolution of 2mm3; 7) spatial smoothing with FWHM 6mm. Non-

brain voxels were removed by masking the brain using BET (part of pre-

stats procedures in FEAT toolbox) to obtain the within run intensity 

values of whole brain voxels. The spatial normalization and spatial 

smoothing were performed using the SPM8. The nuisance variables 

including the average values of cerebrospinal fluid, gray matter, white 

matter, and the six motion parameters were regressed out using the 

general linear model. After that, the functional MR images were 

bandpass filtered (0.01 < f < 0.1 Hz). The images were masked by the 
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gray matter tissue prior map provided in SPM8, excluding cerebellum 

cortex, thresholded at probability > 0.3. 

Recently, the effort to remove the motion effect to the BOLD 

signal has been increased, since head motion, which is not eliminated by 

using six motion parameters, can bias the BOLD signal (Power et al., 

2012). As one of the possible solutions for removing the motion effect, 

the framewise displacement (FD) and root mean square (RMS) variance 

of the temporal derivative (DVARS; the rate of changes of BOLD signal 

across the entire brain at each frame of data) were suggested in the 

previous study (Power et al., 2012). Generally, the criteria of FD and 

DVARS were suggested as follows: FD < 0.5 mm and DVARS < 0.5 % 

(Power et al., 2012). The FD was estimated after the slice timing 

correction. The DVARS was estimated using the final preprocessed 

functional MR images (after smoothing) to control the biased BOLD 

signal fluctuations. Once the volumes where signal was likely 

contaminated by motion or fluctuation were detected, the contaminated 

volumes and the surrounding volumes before 1 TR and after 2 TR were 

discarded, before performing analyses. This volume censoring technique 

was called ‘scrubbing’, and it was effective to identify and remove the 

motion effect, contaminating the BOLD signal. The FD and DVARS of 

the all participants were estimated. There was no participant above the 

criterion.  
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2.4. General approach and practical application of the partial least 

squares analysis 

In order to investigate the relationship between FDG uptake and 

BOLD signal, the PLS was applied to the resting state FDG-PET and 

fMRI data. The preprocessed images were used as input data. To avoid 

the computational burden due to the large variables (i.e., voxels in this 

case), singular value decomposition was performed by matrix 

transformation. The general approach of PLS and its practical application 

were described as follows. 

 

2.4.1. Partial least squares analysis – general approach 

2.4.1.1. Procedures of partial least squares analysis 

The basic and most important assumption underlying the PLS in 

this study was that FDG uptake and BOLD signal of the brain shared 

some common features induced by neural activity. To extract the features, 

maximizing the covariance between FDG uptake and BOLD signal was 

needed. For this, data matrix of the functional MR images (subjects × 

voxels × time series) should be reduced to have the same dimension of 

the FDG-PET images (subjects × voxels). Individual analyses (one-

sample t-tests) were performed for each subject of fMRI data using the 

preprocessed images. The null hypothesis of individual analyses was that 

the BOLD signal amplitude was zero across the times series. The 
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outcome t-maps of individual analyses were transformed to z-maps to 

normalize subject variance. 

After that, correlation between columns of X and Y could be 

estimated, where X indicated the concatenated matrix of FDG uptake of 

all brain regions over all individuals, and Y indicated the concatenated 

matrix of BOLD signal of all brain regions over all individuals. The X 

was independent variable and Y was dependent variable, according to 

the hypothesis of this study. The X and Y were rescaled as the mean of 

each column was zero and its sum of squares was one. 

 

R = Y𝑇X 

 

The correlation matrix R was then decomposed into three 

components, weighted matrix of BOLD signal (U), singular value matrix 

(S), and weighted matrix of FDG uptake (V), using singular value 

decomposition. The column vectors of U and V were also called as 

singular vectors. The singular vector of each modality corresponding 

with the first singular value represented the information explaining 

maximal relationship between FDG uptake and BOLD signal. 

Latent variables (LVs) were estimated by multiplying X and Y 

with corresponding singular vectors. The LVs of each dataset represented 

maximal relationship between FDG uptake and BOLD signal which 
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were projected on a new space. After that, singular images were 

reconstructed by multiplying the LVs with the X or Y. The singular 

images can be used to visualize the spatial pattern of the information on 

the brain space containing relationship between modalities. For example, 

the first singular image of each modality represented the information 

explaining maximal relationship between FDG uptake and BOLD signal. 

The schematic representation of PLS applied to the FDG-PET and fMRI 

data at rest was displayed in Figure 2. 

 

 

2.4.1.2. Significance test of singular images by a permutation method 

To prove that the relationship between FDG uptake and BOLD 

signal of the brain was not noise but meaningful phenomenon, the 

significance of each singular image (equal to the significance of LVs, and 

the significance of each singular value) was tested and visualized in the 

following steps using a permutation test (Figure 3). 

The pseudo X was generated by randomly reordered 

observations while Y was remained the same (Krishnan et al., 2011). 

Singular values were estimated by singular value decomposition after 

estimating the correlation matrix of the pseudo X and the Y. The above 

procedures repeated 1000 times and the estimated pseudo singular values 

were used for null distributions. If the observed singular value was larger 
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than the pseudo singular value (in this case, P < 0.005), the 

corresponding singular images could be considered as significance. 

Multiple comparison correction was not needed since statistical test was 

performed in a single analytic step. The significant relationship between 

modalities was visualized by reconstructing singular image of each 

modality. 

 

 

2.4.1.3. Cross-validation of singular images by a split-half resampling 

 The PLS can find linkage shared by different data sets, so the 

singular images observed in this work might not be reproducible if the 

data was changed. To test the reproducibility of singular images, the 

participants were random split: half of the participants were treated as 

training data set and the other half were treated as test data set (Figure 4). 

The PLS was applied to the training data set and test data set, respectively. 

The significance of each singular image was tested by a permutation 

method (1000 times). 

Once the significant singular images had been identified, 

reproducibility of the singular images was measured by Pearson’s 

correlation coefficient. The significant singular images obtained in the 

test data set were compared to the one in the training data set by 

Pearson’s correlation coefficient. If the Pearson’s correlation coefficient 
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was above the certain threshold, there was agreement between singular 

images of training and test data sets. Generally, the following 

interpretation was suggested: r < 0.3 indicated small correlation, 0.3 < r 

< 0.5 indicated moderate correlation, r > 0.5 indicated large correlation 

(Cohen, 1988). 

  



 

 23 



 

 24 

Figure 2. Schematic representation of partial least squares analysis applied to the FDG-PET and fMRI data.  (A) The 

correlation between columns of X and Y was estimated, where X indicated the concatenated matrix of FDG uptake of all brain 

regions over all individuals, and Y indicated the concatenated matrix of BOLD signal of all brain regions over all individuals. The 

X and Y were rescaled as the mean of each column was zero and its sum of squares was one. (B) By using singular value 

decomposition, the correlation matrix was decomposed into three components, weighted matrix of BOLD signal (U), singular value 

matrix (S), and weighted matrix of FDG uptake (V). (C) The latent variable (LV)s were estimated by multiplying X and Y with 

corresponding singular vectors. (D) The singular images were constructed by multiplying the X and Y with the corresponding LVs.  
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Figure 3. Schematic representation of significance testing on singular values using a permutation method. The significance of 

each vector of LVs containing information about the multivariate patterns of brain signal was tested using a permutation method. 

The X and Y represented FDG uptake and BOLD signal of all brain regions over all individuals. The permuted X was generated by 

randomly switching the order of individuals in the X. Then the correlation matrix was constructed by multiplying the Y with 

permuted X, and the singular value was estimated by singular value decomposition. This procedure was repeated 1000 times. The 

singular value from the permuted data was used as a null distribution. Probability that the observed singular value exceeded the 

permuted one was estimated. The significance was set at P < 0.005 in this study. 
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Figure 4. Schematic representation of cross-validation testing using a split-half resampling. The reproducibility of singular 

images was tested using a split-half resampling. (A) Half of the participants were randomly chosen as training data set and (B) the 

other half were treated as test data set. Singular images were estimated in each data set using the PLS. The reproducibility of a 

singular images was measured by the Pearson’s correlation coefficient between the singular images of training and test data sets. 
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2.4.2. Partial least squares analysis – practical approach 

The main disadvantage of PLS applied to this bimodal data was 

computational burden due to huge voxel size. For efficient processing, a 

computationally efficient method can be applied (Chen et al., 2009). 

According to the previous paper, eigenvector of XTYYTX is transposed 

to the ATA, by following equations. 

 

Ω =  XTYYTX =  XTZTZX =  (ZX)TZX =  ATA, 

 

where A = ZX. If the V1 is an eigenvector of huge matrix ATA with 

eigenvalue α, eigenvector of smaller matrix AAT  is AV1 , following 

equations. 

 

ATAV1 =  αV1 

AATAV1 =  αAV1 

 

Conversely, if the V2 is an eigenvector of smaller matrix AAT 

with eigenvalue  α , eigenvector of huge matrix ATA  is  ATV2 , by 

following equations. 

 

AATV2 =  αV2 

ATAATV2 =  αATV2 
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Therefore ATV1  is corresponded to the singular vectors for 

FDG-PET (X). The eigenvector of ATA  is called as  w1 . The latent 

variable of  X, which is called as t1 can be computed by multiplying X 

with w1. The singular vectors for fMRI (Y), which is called as c1 can be 

computed by multiplying YT  with t1  and divided by square root of 

eigenvalue. The latent variable of  Y , which is called as u1 , can be 

computed by multiplying Y with c1. 

 In practice, FDG-PET and fMRI data controlled gender effect 

by general linear model, were rescaled as the mean of each column was 

zero and its sum of squares was one. After that, the variable of w1 

(corresponding to the singular vectors of  X, in this case, FDG-PET), c1 

(corresponding to the singular vectors of   Y , in this case, fMRI), t1 

(corresponding to the latent variable of  X), u1 (corresponding to the 

latent variable of   Y ), and the singular values were estimated. 

Significance of each singular value was tested by random permutation 

(1000 times). All resampling data which may cause axis rotation or 

reflection was controlled by Procrustes rotation (McIntosh and Lobaugh, 

2004; Milan and Whittaker, 1995). 
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2.5. Estimating principal component images of FDG-PET and fMRI 

The principal component images of each modality represented 

the distributed brain system in which high interregional correlations were 

observed (Friston et al., 1993). In this framework, the interregional 

correlation patterns of FDG uptake or BOLD signal can be shown and 

compared to the singular images from the PLS, which showed the 

maximal relationship between modalities. 

The procedure of principal component analysis was almost the 

same to the PLS analysis. The correlation matrix of FDG-PET (i.e., PET-

to-PET) and fMRI (i.e., fMRI-to-fMRI) was estimated respectively, and 

decomposed by singular value decomposition (McIntosh et al., 1996; 

Worsley et al., 2005). 

Since the majority of FDG uptake and BOLD signal can be 

explained by only using a few components, the significance of each 

principal component was tested by a permutation method (1000 times). 

After that, the similarity between the significant principal component 

images and the significant singular images was measured by estimating 

the Pearson’s correlation coefficient. Generally, r < 0.3 indicated small 

correlation, 0.3 < r < 0.5 indicated moderate correlation, r > 0.5 indicated 

large correlation between the principal component images and singular 

images (Cohen, 1988). 
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2.6. Partial least squares analysis applied to the younger adults and 

older adults groups 

 

2.6.1. The effect of age to the significant latent variables 

The LVs such as t1 and u1, showed the maximal relationship 

between the modalities. The relationship can be accounted by age, 

because it leads to functional brain changes. The Pearson’s correlation 

coefficient between age and the significant LVs was estimated to 

examine the effect of age. In addition, the LVs of 38 individuals were 

divided into younger and older adults groups and compared by using a 

two-sample t-test. 

 

2.6.2. Partial least squares analysis 

The relationship between FDG uptake and BOLD signal of 

younger adults and older adults groups was estimated by the PLS, 

respectively. Significance of each singular value was tested by random 

permutation (1000 times). The significant singular images of each group 

were compared to find out the similarity between younger adults and 

older adults groups, by estimating the Pearson’s correlation coefficient.  
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3. Results 

 

3.1. The relationship between FDG uptake and BOLD signal 

The spatial covariance patterns which have significant maximal 

relationship between FDG uptake and BOLD signal were found in the 

first three components for the FDG-PET and fMRI, respectively (P < 

0.005, Figure 5). Each of the three pairs of singular images accounted for 

30.4%, 22.5%, and 8.4% of the correlation matrix (i.e., correlation 

between FDG uptake and BOLD signal). 
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Figure 5. The spatial covariance patterns between FDG uptake and BOLD signal. (A) Scree plot of singular images representing 

the spatial covariance patterns between FDG uptake and BOLD signal. The x-axis indicate the singular images and the y-axis indicate 

the percent contribution. The significance of singular images was symbolized by a star mark (*). (B) The 1st singular images, 2nd 

singular images, and 3rd singular images showed significant covariance patterns which were not noise, by random permutation test. 
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3.2. The reproducibility of the singular images 

Among the significant singular images, the 1st singular images 

between FDG uptake and BOLD signal were consistently observed using 

a split-half resampling. 

By using the training data set, the spatial covariance patterns 

which have significant maximal relationship between modalities were 

found in the first two components for the FDG-PET and fMRI, 

respectively (P < 0.005, Figure 6A). By using the test data set, the spatial 

covariance patterns which have significant maximal relationship 

between modalities were also found in the first two components for the 

FDG-PET and fMRI, respectively (P < 0.005, Figure 6B). Among them, 

the 1st singular images of test data set were similar to the 2nd singular 

images observed in the training data set (r = 0.48 for the singular image 

of FDG-PET, and r = 0.37 for the singular image of fMRI, Figure 7, 

Table 2).  
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Figure 6. The spatial covariance patterns between FDG uptake and BOLD signal using a split-half resampling. (A) The 1st 

and 2nd singular images which have maximal relationship between FDG uptake and BOLD signal were significant using the training 

data set, and (B) using the test data set. Significance was tested using a random permutation test (P < 0.005). Each of the singular 

images accounted for 40.5%, 6.5% of the correlation matrix generated by the training data set, and 34.6%, 13.7% of the correlation 

matrix generated by the test data set. The percent contribution of each singular image was visualized using scree plot in the middle 

panel. The significance of singular images was symbolized by a star mark (*). 
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Figure 7. The reproducibility of the singular images between FDG uptake and BOLD signal using a split-half resampling. 

(A) The 2nd singular images generated by the training data set were similar to the (B) 1st singular images generated by the test data 

set (r = 0.48 for the FDG-PET, and r = 0.37 for the fMRI). The similarity was measured by the Pearson’s correlation coefficient. 
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Table 2. Reproducibility of the singular images which have maximal relationship between FDG uptake and BOLD signal. 

The training data set consisted of half of the participants who were randomly chosen (n=19). The test data set consisted of the 

other participants (n=19). 

  

  TRAINING DATA SET TEST DATA SET 

  1st singular image 2nd singular image 1st singular image 2nd singular image 

  PET fMRI PET fMRI PET fMRI PET fMRI 

TRAINING 

DATA SET 

1st singular 

image 

PET                 

fMRI                 

2nd singular 

image 

PET                 

fMRI                 

TEST 

DATA SET 

1st singular 

image 

PET 0.42  0.48          

fMRI  -0.28  0.37         

2nd singular 

image 

PET 0.24  -0.13          

fMRI   0.14   -0.17         
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3.3. The principal component images of the FDG-PET and fMRI 

The majority of FDG uptake and BOLD signal can be explained 

by only using a few principal component images (Figure 8A, Figure 9A). 

Among them, the first three principal component images of FDG-PET 

significantly explained the FDG uptake at rest (Figure 8B). The first two 

principal component images of fMRI significantly explained the BOLD 

signal at rest (Figure 9B). 

The 1st principal component images of the FDG-PET and fMRI 

were similar to the 1st singular images of the FDG-PET and fMRI, 

respectively. The similarity between the principal component images and 

singular images was measured by the Pearson’s correlation coefficient (r 

= 0.99 for FDG-PET, see Figure 10A, and r = 0.43 for fMRI, see Figure 

11A). In addition, the 2nd principal component image of FDG-PET was 

similar to the 2nd singular image of FDG-PET (r = 0.88, Figure 10B), and 

the 2nd principal component image of fMRI was similar to the 1st singular 

image of fMRI (r = 0.56, Figure 11B). The 1st principal component image 

of fMRI was also similar to the 2nd singular image of fMRI (r = 0.96, 

Figure 11C).  
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Figure 8. The percent contribution and visualization of significant principal component images of FDG-PET. (A) Scree plot 

in which the percent contribution of the principal component images are ordered from largest to smallest. The x-axis indicate the 

principal component image index and the y-axis indicate the percent contribution. The significance of principal component images 

was symbolized by a star mark (*). (B) The significant principal component images of the FDG-PET.  
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Figure 9. The percent contribution and visualization of significant principal component images of fMRI. (A) Scree plot in 

which the percent contribution of the principal component images are ordered from largest to smallest. The x-axis indicate the 

principal component image index and the y-axis indicate the percent contribution. The significance of principal component images 

was symbolized by a star mark (*). (B) The significant principal component images of the fMRI. 
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Figure 10. The agreement between the significant singular images and principal component images of FDG-PET. (A) The 1st 

singular image of FDG-PET was significantly correlated with the 1st principal component image of FDG-PET. (B) The 2nd singular 

image of FDG-PET was significantly correlated with the 2nd principal component image of FDG-PET. In the scatter plot, the x-axis 

indicate the singular image of FDG-PET, and the y-axis indicate the principal component image of FDG-PET.
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Figure 11. The agreement between the significant singular images 

and principal component images of fMRI. (A) The 1st singular image 

of fMRI was significantly correlated with the 1st principal component 

image of fMRI, and (B) the 2nd principal component image of fMRI. (C) 

The 2nd singular image of fMRI was significantly correlated with the 1st 

principal component image of fMRI. In the scatter plot, the x-axis 

indicate the singular image of fMRI, and the y-axis indicate the principal 

component image of fMRI. 
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3.4. The effect of age to the significant latent variables 

The relationship between age and 1st LV of FDG-PET or 1st LV 

of fMRI was significantly positive (r = 0.81 for FDG-PET, and r = 0.69 

for fMRI, Figure 12A). The 1st LV was significantly different between 

the younger adults and older adults groups (P = 0.00 for FDG-PET, P = 

0.00 for fMRI, Figure 12B). 
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Figure 12. The relationship between age and FDG uptake or BOLD 

signal. (A) The 1st LV of FDG-PET and fMRI was positively correlated 

with age (r = 0.81 for FDG-PET, and r = 0.69 for fMRI). (B) The 1st LV 

was significantly different between the younger adults and older adults 

groups (P = 0.00 for FDG-PET, and P = 0.00 for fMRI).
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3.5. The relationship between FDG uptake and BOLD signal in the 

younger adults and older adults groups. 

In the younger adults group, the spatial covariance patterns 

which have significant maximal relationship between FDG uptake and 

BOLD signal were found in the first four components for the FDG-PET 

and fMRI, respectively (P < 0.005, Figure 13A). Each of the four 

singular images accounted for 33.7%, 17.7%, 11.6%, and 8.5% of the 

correlation matrix. 

In the older adults group, the spatial covariance patterns were 

found in the first two components (P < 0.005, Figure 13B). Each of the 

two singular images accounted for 29.5%, and 18.3% of the correlation 

matrix. 

The similarity between the significant singular images of FDG-

PET and fMRI were not above the 0.3 at the same time (Table 3), 

indicating dissimilar relationship between FDG uptake and BOLD signal 

in the younger adults and older adults groups.  
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Figure 13. The spatial covariance patterns between FDG uptake and 

BOLD signal in the younger adults and older adults groups. (A) In 

the younger adults group, the first four singular images showed 

significant covariance patterns which were not noise, by random 

permutation test. Each of the four singular images accounted for 33.7%, 

17.7%, 11.6%, and 8.5% of the correlation matrix. (B) In the older adults 

group, the first two singular images showed significant covariance 

patterns which were not noise, by random permutation test. Each of the 

two singular images accounted for 29.5%, and 18.3% of the correlation 

matrix. 
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Table 3. Similarity between the singular images of younger adults and older adults groups, which have maximal relationship 

between FDG uptake and BOLD signal measured by the Pearson's correlation coefficient. 

  

    Younger adults group 

  1st singular image 2nd singular image 3rd singular image 4th singular image 

    PET fMRI PET fMRI PET fMRI PET fMRI 

Older adults group 

1st  

singular image 

PET 0.13  0.04  -0.39  0.16  

fMRI  -0.35  -0.17  -0.01  -0.17 

2nd  

singular image 

PET 0.19  -0.10  0.08  -0.28  

fMRI   0.17   0.02   0.09   0.11 
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4. Discussion 

 

Advanced neuroimaging techniques allow investigating human 

brain in vivo using various imaging modalities. Combining various brain 

images can help understanding the relationship between brain systems. 

In this present study, the relationship between FDG uptake and BOLD 

signal was investigated by using the resting state FDG-PET and fMRI 

data. Both images were acquired simultaneously using a hybrid PET/MR 

scanner, although PET images reflected accumulated signal changes 

before scanning, while fMRI images reflected ongoing signal fluctuation 

during scanning. The “simultaneous” means that the data was acquired 

at the same time so they had close temporal proximity. Nevertheless, I 

can assume that FDG uptake and BOLD signal reflected brain signal at 

the same time at different points of view, since FDG uptake reflected 

steady state neural activity, and showed constant continuing level of 

uptake until the end of the scanning. 

 

 

4.1. Relationship between FDG uptake and BOLD signal at rest 

The spatial pattern of brain representing the significant 

relationship between resting state FDG uptake and BOLD signal, was 

found in the first three singular images accounted for 30.4%, 22.5%, and 
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8.4% of the correlation matrix. The three components described spatially 

overlapped brain regions. However each component indicated 

independent and orthogonal relationship between FDG uptake and 

BOLD signal, by the descending order of singular value. Among them, 

only the 1st singular images were reproducible by a split-half resampling. 

It indicated that the spatial patterns of brain depicting 2nd and 3rd singular 

images might be not found when using different samples. 

The spatial pattern was visualized as a pair of brain images in 

terms of FDG uptake and BOLD signal. The positive and negative 

weights observed in the pair of brain images represented the distributed 

network. Theoretically, the positive weight does not indicate higher brain 

signal. It can be switched to negative weight in different trials. Likewise, 

the negative weight does not indicate lower brain signal. It can be 

switched to positive weight in different trials. The important point is their 

relationship. The significant positive (i.e., showing positive and positive 

weights or negative and negative weights in the FDG uptake and BOLD 

signal) and negative relationships (i.e., showing positive and negative 

weights in the FDG uptake and BOLD signal, and vice versa) were found 

between FDG-PET and fMRI. The FDG uptake and BOLD signal were 

interacted with each other, as positive and negative ways at the same time. 

From the 1st singular images which showed the maximal 

relationship between FDG uptake and BOLD signal (30.4%), I found that 
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the FDG uptake of occipito-temporal areas, parietal areas, and lateral 

frontal areas was (1) positively associated with the BOLD signal of 

sensory areas including occipital, superior temporal, and pre/postcentral 

regions. In addition, it was (2) negatively associated with the BOLD 

signal of default mode network areas. At the same time, the FDG uptake 

of midline regions of cingulate and frontal areas, and limbic areas was 

(1) positively associated with the BOLD signal of default mode network 

areas and ventral temporal areas and (2) negatively associated with the 

BOLD signal of sensory and motor areas. 

The complex relationship indicated that the brain works by 

combination of different subsystems (Addis et al., 2009; Della-Maggiore 

et al., 2000). The positive relationship between FDG uptake and BOLD 

signal observed in the occipito-temporal areas extending to the parietal 

areas, and lateral frontal areas might be associated with the sensory 

system in the visual, auditory, and somatosensory regions. At the same 

time, the positive relationship between FDG uptake and BOLD signal 

was observed in the default mode network-like system. The FDG uptake 

observed in the midline regions of cingulate and frontal areas, and limbic 

areas, and BOLD signal observed in the default mode network areas. In 

the previous study, the cortical midline structures, integrating with the 

subcortical midline regions, were suggested as important areas where 

have a role of self-referential processing (Kjaer et al., 2002; Northoff et 



 

 54 

al., 2006). Specifically, the patients with autistic spectrum disorder who 

had lack of self-reference or self-awareness showed abnormal functional 

fluctuation in these areas (Lai et al., 2010). These midline cortical 

structures were closely related to the default-mode network system 

during resting state condition (D'Argembeau et al., 2005; Whitfield-

Gabrieli et al., 2011). The self-referential or self-awareness processing 

was also related to the default mode network areas (Gusnard et al., 2001; 

Raichle et al., 2001). 

Both two positive relationships described above, were the 

opposing systems against to each other. The negative relationship 

between FDG uptake and BOLD signal can be observed between those 

systems. For example, the FDG uptake of the sensory system was 

negatively associated with the BOLD signal of the default mode network 

system, and vice versa. This was a new finding observed between 

modalities. In the previous study, the negative relationship was observed 

between the sensory areas and default mode network areas, using resting 

state fMRI data (Tian et al., 2007). 

In line with the relationship observed between modalities, the 

relationship observed within modality also should be noted. Especially, 

in the FDG-PET, the posterior cingulate cortex and precuneus, the 

representative default mode network areas in the previous studies (Fox 

et al., 2005; Raichle et al., 2001) were negatively associated with the 
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midline cortical structures. To understand the reason why this 

contradiction happened, further investigation should be needed. 

Nevertheless, the dissociated self-referential network of the posterior 

cingulate cortex to the anterior one (Whitfield-Gabrieli et al., 2011), the 

integrative role of the precuneus (Cavanna and Trimble, 2006), and the 

active response to the sensory stimuli of the precuneus (Vogt et al., 1992) 

might support that the present result was not abnormal. In addition, the 

default mode network areas including the posterior cingulate cortex and 

precuneus were not identified by the independent component analysis 

using FDG-PET data while the midline cortical structures were identified 

in the same study (Di et al., 2012). 

In summary, the positive relationship observed between FDG-

PET and fMRI may imply the accommodative interaction of FDG uptake 

and BOLD signal in healthy adults. The FDG uptake and BOLD signal 

of the brain areas processing similar functions were related with each 

other. The negative relationship observed between modalities may also 

imply the competitive interaction of FDG uptake and BOLD signal. 

 

 

4.2. The association of the singular images with the principal 

component images of FDG-PET and fMRI 

The principal component images of FDG-PET and fMRI were 
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obtained to understand the effect of FDG uptake and BOLD signal to 

their relationship. In the case of FDG-PET, the 1st and 2nd principal 

component images explaining more than 80% of the variance of FDG 

uptake, were similar to the 1st and 2nd singular images of FDG-PET 

derived from the PLS (r = 0.99 and r = 0.88, respectively). These close 

associations indicated that the spatial patterns related to the 1st and 2nd 

principal component images of FDG-PET were tightly coupled with the 

resting state BOLD signal. The sensory system and default mode 

network-like system were observed in the principal component images 

of FDG-PET. 

In the case of fMRI, the 1st and 2nd principal component images 

explaining more than 70% of the variance of BOLD signal, were similar 

to the 1st singular image of fMRI derived from the PLS (r = 0.43 and r = 

0.56, respectively). The 1st principal component image represented the 

visual system and default mode network system while the 2nd principal 

component image represented the auditory/motor system, and default 

mode network system. The principal component images of fMRI 

represented the specialized brain systems separately, compared to the 

FDG-PET. 

The BOLD signal at rest reflected the spontaneous, ongoing 

neural activity. The temporal dynamics led to large variance between 

brain signals which were susceptible to construct brain networks. 
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Therefore the distinctive interregional correlation patterns were observed 

more by using the BOLD signal than using the FDG uptake. The two 

principal component images of fMRI contributing to the relationship of 

FDG uptake indicated the specialized brain systems, to balance the brain 

energy demands and transient neural activity. 

In summary, the 1st principal component image of FDG-PET 

was closely coupled with the 1st and 2nd principal component images of 

fMRI. The 2nd principal component image of FDG-PET was closely 

coupled with the 1st principal component image of fMRI. The close 

coupling was proved to be the best, which captures the maximal 

relationship between modalities by the PLS. In other words, the FDG 

uptake and BOLD signal represented by the principal component images 

were wired together to function complementarily to each other. 

 

 

4.3. The effect of age to the relationship between FDG uptake and 

BOLD signal 

The present results illustrated the relationship between FDG 

uptake and BOLD signal, but the physiological meaning of the results 

remained unknown. Interestingly, the 1st latent variables of FDG-PET 

and fMRI were correlated with age, and were different between younger 

adults and older adults groups (Figure 12). The results proved that the 
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relationship between FDG uptake and BOLD signal was changed by age. 

According to the results, I set up the analyses to investigate the effect of 

age to the relationship between the FDG uptake and BOLD signal. 

In the younger adults group, the significant relationship was 

found in the first four singular images. While in the older adults group, 

the significant relationship was found in the first two singular images. 

There was no agreement of singular images between the groups by the 

Pearson’s correlation coefficient (r < 0.3). It indicated that the 

relationship between FDG uptake and BOLD signal was dissimilar 

between groups. Since there was no statistical parameters to compare the 

changes of the relationship between groups, I described the results 

focusing on the 1st singular images, which best explained the relationship 

(33.7% correlation was explained in the younger adults group, and 29.5% 

correlation was explained in the older adults group). In the younger 

adults group, spatially similar areas showed positive relationship 

between FDG uptake and BOLD signal, like the result of whole group 

analysis. In the older adults group, however, spatially similar areas 

showed negative relationship between FDG uptake and BOLD signal. 

This shifted relationship observed between modalities suggested 

that the brain of older adults works differently, and age was the main 

factor inducing the shifted relationship. Considering the FDG uptake and 
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BOLD signal in an integrated perspective can help to shed light on how 

the brain works.  
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5. Conclusion and limitations 

 

This study proposed a new insight about the relationship 

between FDG uptake and BOLD signal at rest using bimodal and 

multivariate partial least squares analysis. The positive and negative 

relationships were observed different brain regions in respect to their 

functional processing and were changed by age. The FDG uptake and 

BOLD signal were wired together complementarily, which was revealed 

by the principal component images depicting the interregional 

correlation within modality and by the singular images depicting the 

relationship between modalities. 

In this study, the brain signal was measured simultaneously by 

using a hybrid PET/MR scanner, allowing acquisition of FDG-PET and 

functional MR images in identical person, under the close temporal 

proximity between different image modalities. Investigating FDG uptake 

and BOLD signal in identical person helps to avoid inter-individual and 

inter-scan variability. The another advantage of this study was no need 

for correcting multiple comparisons since no statistical test was 

performed to test the significance of singular images by the PLS method 

(McIntosh and Lobaugh, 2004). The significance of each singular image 

was tested by a permutation method. The statistical inference was not a 

voxel but the singular image corresponding to the singular value itself. 
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Also, the interdependency between voxels which may affect to the 

relationship between FDG uptake and BOLD signal was considered by 

the PLS. 

Unlike the previous studies, the relationship between FDG 

uptake and BOLD signal was not always positive but complex to 

interpret. I have carefully discussed some possible explanations leading 

to the relationship between modalities. However, some shortcomings 

also should be mentioned. The physiological meaning of the relationship 

was obscured although there was a close coupling between FDG uptake 

and BOLD signal. In addition, in this present work, the number of sample 

was too small compared to the large number of voxels, to obtain 

statistically meaningful results of the cross-validation tests. Also, the 

criteria of age was 45 for distinguishing the older adults group from the 

younger adults group. According to the previous studies, the changes of 

cerebellar volume with age showed inverted U-shape at the ages of 40s 

(Raz et al., 2005), and the turning point of dopamine transporter uptake 

across the lifespan occurred at the ages of late 30s and 40s (Mozley et 

al., 1999). However the participants of this study may not be 

representative of younger adults and older adults groups compared to the 

previous studies using extreme group contrast (20-30s for younger adults 

group, and 60-70s for older adults group) (Cabeza et al., 2002; Grady et 

al., 1994) to find evidence proving group differences. The trajectories of 
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lifespan changes on brain may be more understandable by including the 

‘middle age (40-50s) group’ for investigating age effect to the brain 

(Grady et al., 2006; Kennedy et al., 2015). The ‘emerging adults’ 

distinguishing the early younger adults group from the others (Bennett 

and Baird, 2006) also should be appropriate for future studies using a 

large number of samples. 

Nevertheless, the hypotheses about the relationship between 

FDG uptake and BOLD signal, and the effect of age were reasonable. 

The relationship between FDG uptake and BOLD signal might be 

essential in healthy adults to maintain normal brain function. Therefore, 

the people who showed impaired FDG uptake or abnormal BOLD 

fluctuation might have significantly altered relationship between FDG 

uptake and BOLD signal. Investigating Alzheimer’s patients and 

schizophrenia can help to support this interpretation. The effect of age to 

the relationship should have been discussed thoroughly using a large 

number of sample. In addition, representative measurement reflecting 

the relationship between FDG uptake and BOLD signal should be needed 

in future studies. 
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국문 초록 

 

 

휴지기 뇌 포도당 대사와  

BOLD 신호 관계에 관한  

다중모달리티 다변량 분석법: 

하이브리드 PET/MR 연구 

 

 

김은경 

협동과정 인지과학 전공 

서울대학교 대학원 

 

 

휴지기 뇌 포도당 소비량과 뇌 신경 활동에 따른 혈류의 반

응은 일반적으로 뇌의 내재적 기능을 반영한다. 뇌가 어떻게 기능하

는가를 더 잘 이해하기 위해서는 이들의 관계를 연구하는 것이 필

수적이다. 본 연구는 하이브리드 PET/MR 장비를 사용해서 뇌 기능

의 서로 다른 측면을 반영하는 포도당 대사와 BOLD 신호의 관계를 

알아보고자 다변량 통계분석법 중 하나인 partial least squares 방법을 

적용했다(총 38명, 평균 나이 44 ± 13.9세). 이 방법으로 뇌 복셀

(voxel) 간 상호의존성과 모달리티 간 관계를 함께 고려할 수 있다. 
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분석 결과, 서로 다른 기능을 하는 영역에서 뇌 포도당 대사와 

BOLD 신호의 관계를 관찰하였고 split-half resampling을 통해 다른 

집단에서도 이 관계가 관찰 가능함을 확인하였다. 예를 들어 (1) 감

각(sensory) 시스템과 (2) 디폴트 모드 시스템(default mode network-like) 

에서 포도당 대사와 BOLD 신호의 정적인 상관관계를 관찰하였다. 

또한 위의 감각 처리 관련 영역과 디폴트 모드 연결망 관련 영역에

서 뇌 포도당 대사와 BOLD 신호의 부적인 상관관계를 관찰하였다. 

 

또한 본 연구에서는 각 모달리티의 영역간 상관을 알아보기 

위해서 주성분 분석을 실시하였다. FDG-PET의 첫 번째 주성분 이미

지는 뇌 포도당 대사와 BOLD 신호의 관계에서 관찰된 FDG-PET의 

첫 번째 특이값 이미지(singular image)와 유사했다. 반면에 fMRI의 

첫 번째, 두 번째 주성분 이미지는 뇌 포도당 대사와 BOLD 신호의 

관계에서 관찰된 fMRI의 첫 번째 특이값 이미지와 유사했다. fMRI의 

첫 번째 주성분은 (1) 시각(visual) 시스템과 (2) 디폴트 모드 시스템

을 보여주고 있다. fMRI의 두 번째 주성분은 (1) 청각(auditory) 시스

템과 운동(motor) 시스템, 그리고 (2) 디폴트 모드 시스템을 보여주

고 있다. 이는 fMRI로 측정한 신경신호로부터 계산된 영역간 상관

이 PET과 달리 시각과 청각/운동 시스템을 기능적으로 독립된 시스

템으로 구분하고 있음을 의미한다. 

 

본 연구 결과 뇌 포도당 대사와 BOLD 신호의 관계는 나이

에 따라 변화하는 것으로 보인다. 젊은 성인(총 19명, 평균 나이 32 

± 6.9세)과 중년 성인(총 19명, 평균 나이 56 ± 7.7세) 집단으로 나누어 

partial least squares를 적용한 결과, 나이에 따라 뇌 포도당 대사와 

BOLD 신호의 관계가 달라짐을 관찰하였다. 노화에 따른 뇌기능의 

변화는 뇌 포도당 대사와 BOLD 신호 간 관계의 변화를 통해서도 
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관찰할 수 있다. 

 

주요어: FDG-PET, 휴지기 fMRI, partial least squares, 다중영상, 하이

브리드 PET/MR, 나이 
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