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Abstract

Sol Lim

Department of Brain and Cognitive Sciences

College of Natural Sciences

Seoul National University

A brain can be represented as a graph (network) comprised of sets of nodes and

edges called connectome, which is a natural representation of a brain;neurons

form synapses with dendrites and axons to transfer neural signals and regions

of grey matter are interconnected to each other through axon bundles in white

matter. Moreover, by representing a brain as a network, we can study brains

from other species in the same framework using this graph-theoretical approach.

A brain, however, is also constrained by other factors such as its embedding

space and metabolic cost. Therefore, spatial characteristics as well as topo-

logical traits are important. These topological and spatial characteristics of

a brain change during development. In this work, I investigated how brain

network develops over age in micro and macro scales to find organising and

re-organising principles during development; microscopic scale refers to the

synaptic connectivity between neurons and macroscopic scale refers to whole

brain fibre tract connectivity between brain regions constructed from diffusion

tensor imaging technique. Furthermore, I propose two-stage connectome matu-

ration hypothesis by connecting both scales, which would elucidate principles

of healthy and pathological brain development.
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Introduction
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0.1. Thesis structure

• Part I gives a brief introduction to network analysis and Diffusion Tensor

Imaging (DTI).

• Part II presents synaptic level brain connectivity; how developmental time

windows would affect topological and spatial characteristics in simulated

neuronal networks.

• Part III examines how brain network develops over age based on DTI

providing an organizing principle, in particular, regarding preferential

detachment of specific types of connections.

• Part IV provides a new insight to look at normal and pathological brain

network development by suggesting a two-stage connectome maturation

hypothesis.

• Part V presents summary of the main findings, discusses possible im-

provement of the studies in methodological perspective and provides an

outlook for future studies and applications.

In the following chapter, I provide methodological background used in later

chapters. Network analysis (Section 1.1) is used throughout my studies and

Diffusion Tensor Imaging (Section1.2) is used in chapter 3. More detailed

information, however, can be found in references 5.3.
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1. Methodological background

1.1. Network analysis

1.1.1. Topological properties

1.1.1.1. Graph theoretical approach

A graph G = (N,E) consists of a pair of a set of nodes N(or vertices) and a

set of edges E. Edges connect nodes, showing topological relationship among

nodes. When E is an ordered set of nodes, we call the graph G a directed graph

otherwise G is an undirected graph. A loop is an edge which connects a node

to itself. Here we only consider simple undirected and directed graphs without

loops. Two vertices are said to be adjacent if they are joined by an edge, thus

we can summarise the graph with an n by n adjacency matrix AG = aij where

V = {v1, v2, ...vn}, wij is a weight of an edge between nodes vi and vj and the

following adjacency matrices represent a binary graph and a weighted graph,

respectively (See for example, Figure 2.13). For instance, nodes can be neurons

when edges are the synapses between neurons or brain regions can be nodes

and axon bundles connecting those regions can be represented as edges.

aij =


1 if {vi, vj} ∈ E

0 otherwise
aij =


wij if {vi, vj} ∈ E

0 otherwise

5



CHAPTER 1. METHODOLOGICAL BACKGROUND

1.1.1.2. Edge density

The edge density represents the proportion of non-zero connections to the

number of potential connections. Because our network is undirected, we used

d = 2E/N(N − 1), where E is the number of edges and N is the number of

nodes. Note that the weights of individual edges might change but edge density

will remain the same as long as the total number of edges is unchanged.

1.1.1.3. Global and local efficiency

Global efficiency represents how well any two nodes of a network are connected,

whereas local efficiency shows how well neighbours of a node are connected

(Latora & Marchiori, 2001; Achard & Bullmore, 2007).

Eglobal(G) =
1

N(N − 1)

∑
i 6=j

1

li,j
(1.1)

Elocal(G) =
1

N

∑
i

Eglobal(Gi) (1.2)

where Li,j : the length of the shortest path between nodes i and j, N : the

number of nodes, G: a graph, Gi: the subgraph that consists of neighbours of i

without i itself.

Efficiency is greatly affected by the sparsity of the network (Kaiser, 2011);

when there are fewer edges and also even fewer streamlines, efficiency decreases.

Thus we normalized efficiency with values obtained by 100 randomly rewired

networks where randomly selected edges were swapped while preserving both

degree and strength of each node (Rubinov & Sporns, 2011). Whereas the

6



CHAPTER 1. METHODOLOGICAL BACKGROUND

number of connected edges of a node forms its degree, the strength of a node is

the sum of weights of all its edges (here: total number of streamlines of that

node) (Barrat et al., 2004). Such a network is called a small-world network

(Watts & Strogatz, 1998; Latora & Marchiori, 2001) when the local efficiency is

much higher than in a comparable random network, but the global efficiency

remains about the same.

1.1.1.4. Modularity

We computed modularity Q, and estimated the modular membership, maxi-

mizing modularity (Newman, 2006), which may identify functional building

blocks (Kaiser, 2011). Modularity measures the difference between the number

of edges that lie within a community in the actual network (the first term) and

a random network of the same degree sequence (the second term) for a certain

membership assignment (Leicht & Newman, 2008):

Q =
1

m

∑
i,j

[aij −
kini k

out
j

m
]δei,ej (1.3)

where m: total number of streamlines in the network (note that bidirectional

links are counted twice); aij : number of streamlines (weight) between node i

and node j; kini : sum of streamlines in incoming edges of node i; koutj : sum

of streamlines in outgoing edges of node j; δcicj : Kronecker delta (only one if

nodes i and j are in the same module and zero otherwise); cn: label of module

to which node n belongs to.

7



CHAPTER 1. METHODOLOGICAL BACKGROUND

1.1.1.5. Within-module strength and Participation coefficient

We computed within-module strength and participation coefficient (Guimera

& Amaral, 2005) to examine nodal changes in modular structure. The within-

module strength represents how well the node is connected to the others in

the same module; high within-module strength implies that the node is more

connected in the module where it belongs than the average connectivity of the

other nodes in the module.

zi =
κi − κci
σci

(1.4)

where κi: within-module strength of node i, ci: assigned modular membership,

κci and σci : average and standard deviation of within module strength of nodes

in module ci.

Participation coefficient indicates how well the node is connected to all other

modules. High participation coefficients index that the connections of a node

are distributed to multiple modules. In the extreme case, when the participation

coefficient of a node is one, the node is connected to all the modules uniformly;

and when it is zero, the node is solely connected to the nodes in its own

module.

Pi = 1−
Nm∑
c=1

(κic
κi

)2
(1.5)

where κi: degree (strength) of node i, κic: number (sum of weights) of edges

from node i to module c, Nm is the number of modules.

For more extensive review of graph measures and graph theory see (Harary,

2008; Costa et al., 2007; Kaiser, 2011; Rubinov & Sporns, 2010).

8



CHAPTER 1. METHODOLOGICAL BACKGROUND

1.1.2. Spatial properties

Unlike a graph, a brain is embedded in 3-dimensional space, thus the distance

between nodes matters. Minimising the total wiring length of a brain can be

beneficial to an organism due to higher metabolic cost and a limited space.

A brain network, however, does not minimise the connection lengths (Kaiser

& Hilgetag, 2006), rather it seems to balance between minimising the total

connection length and facilitation of global information transfer (Vértes et al.,

2012; Nicosia et al., 2013). The distance between cortical areas can be estimated

by calculating Euclidean distance between regions, which is not the actual

length of an axon bundle but previous studies found that Euclidean distance

could well-approximate the wiring length between brain regions (Kaiser &

Hilgetag, 2006). Another way of measuring connection length is that using

reconstructed fibres from tractography using diffusion MRI (see Section1.2).

1.2. Diffusion Magnetic Resonance Imaging

(Diffusion MRI)

1.2.1. Diffusion Tensor Imaging(DTI)

Diffusion weighted imaging (DWI) (Le Bihan et al., 1985; Merboldt et al.,

1985; Taylor & Bushell, 1985) is one of the MR techniques that uses diffusion

rates of water molecules in the biological tissues. Diffusion can be thought

of the phenomenon after introducing a drop of ink in a jar filled with water.

Depending on the structure of the container and the medium, for instance

whether it was olive oil instead of water in the jar, the displacement of molecules

9



CHAPTER 1. METHODOLOGICAL BACKGROUND

given time and the shape of the diffusion of ink would be very different. Likewise,

water molecules in the brain diffuse differently depending on the architecture

and integrity of the tissue; they diffuse more easily parallel to the axon and

relatively restricted perpendicular to the axon, resulting in anisotropic diffusion

(Beaulieu & Allen, 1994); in contrast, water diffusion in the grey matter (GM)

and cerebrospinal fluid (CSF) is relatively isotropic compared to white matter

(WM). Diffusion tensor imaging (DTI) (Basser et al., 1994) uses this anisotropic

water diffusion to model macroscopic axonal organization in the WM by tensors

or eillipsoid (Mori & Zhang, 2006; Soares et al., 2013). Stejskal and Tanner

(Stejskal & Tanner, 1965) introduced pulsed gradients into the basic spin echo

sequence and the Stejskal-Tanner formula (Eq.(1.7)) providing a solution to

the Bloch-Torrey partial differential equations (Torrey, 1956) for a symmetric

pair of pulsed gradients (Hrabe et al., 2007; Mori & Zhang, 2006; Kingsley,

2006b). The MR signal attenuation due to diffusion can be calculated as the

following if we assume simple isotropic Gaussian diffusion. The assumption of

monoexponential decay breaks down when b-value is higher than 1500 s/mm2

(See Section 5.2.2.2).

S = PD(1− e− TR/T1)e
− TE/T2e−bD (1.6)

where PD: proton density representing water concentration, T1 and T2: re-

laxation times, b: b-value or b-factor (s/mm2) and D: (apparent) diffusion

coefficient (ADC), which can be rewritten as

S = S0e
−bD (1.7)

10
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where PD(1−e− TR/T1)e− TE/T2 was replaced by S0 representing signal intensity

without diffusion-sensitizing gradients

b = γ2G2δ2
(
τ − 1

3
δ
)

(1.8)

This can be simplified as the following when δ � τ .

b = γ2G2δ2τ (1.9)

where γ: gyromagnetic ratio (Hz/T), G: diffusion-sensitizing gradients strength

(mT/m), τ : time between the two pulses (ms) and δ: duration of the pulses

(ms).

S1 = S0e
−b1D

S2 = S0e
−b2D

S2
S1

= e(−b1−b2)D

D =
ln(S2/S1)

b1 − b2
(1.10)

where b1, b2 are the b-values, S1 and S2 are the attenuated intensity of the

signals, from which we can calculate diffusion coefficient D, assuming that PD,

TR (ms), TE (ms) are fixed.

Detailed derivation can be found here (Basser & Jones, 2002; Hrabe et al.,

2007). The above formula is for 1-dimensional (1D) case, which is a 1D

diffusion along the diffusion gradient vector. Thus, we obtain a map of diffusion

coefficients, called Apparent Diffusion Coefficient (ADC) map. However, in

order to determine the principal direction precisely in each voxel to reconstruct

11
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axonal bundles in the WM, we need diffusion tensor to describe diffusion

because diffusion cannot be represented by a scalar coefficient in the presence of

anisotropy; at least six independent 1D diffusion measurements are required to

fully assess the six independent components of the 3 by 3 symmetric diffusion

tensor D as the following equation.

Si = S0e
−bgi

TDgi (1.11)

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 (1.12)

where Si is the attenuated signal, gi is the unit vector along the gradient

direction, or normalized wave vector (Seunarine & Alexander, 2009) and D is a

3 by 3 covariance matrix describing the covariance of diffusion displacements in

3D. This diffusion tensor can be thought of as an ellipsoid. The principal axes

of the ellipsoid are the eigenvectors and the three eigenvalues correspond to

the three diffusivities along the axons of the diffusion ellipsoid.

After estimating a tensor in each voxel (Jones, 2009), by using eigenvalues, we

obtain mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RA)

and fractional anisotropy (FA) as the following.

MD =
λ1 + λ2 + λ3

3
(1.13)

AD = λ1 (1.14)

RD = λ2 + λ3 (1.15)

FA =

√
1

2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

λ1
2 + λ2

2 + λ3
2

(1.16)
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where λ1, λ2 and λ3 are eigenvalues and v1, v2 and v1 are eigenvectors.

Here, I covered the diffusion tensor model that assumes only a single dominant

diffusion orientation in each voxel; however, more complex local description are

necessary to account for crossing fibres in the brain see section 5.2.2 (Tournier

et al., 2011; Seunarine & Alexander, 2009). More complex local description

models may need longer acquisition time and a larger number of diffusion

directions.

Figure 1.1.: First column: from left, B0 image, FA, MD; Second column, the
principal direction map with color coding scheme (coronal view). Red: left-
right(right-left); Blue:Superior-inferior(top-bottom); Green:anterior-posterior

13
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Figure 1.2.: Coronal view an example of the deterministic tractography from
public DTI-database provided by the Nathan Kline Institute (NKI)(Nooner
et al., 2012) using TrackVis (Wang et al., 2007). See Section 3.2.1 for more
information .

1.2.2. White Matter Tractography

Above diffusivity measures have been used for clinical purposes detecting

acute ischemia (Moseley et al., 1990), multiple sclerosis, localising structural

abnormalities in epileptic patients, classifying Alzheimer’s dementia and non-

Alzheimer forms of dementia and identifying subtypes of brain tumors (Bodini

& Ciccarelliy, 2013). In addition to information from microstructural changes

in WM, we can also reconstruct underlying wiring patterns in the WM to

investigate which GM regions are inter-connected by using the technique called

Tractography (Mori & van Zijl, 2002; Tournier et al., 2011). When many axons

14
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are align in the same direction preferably densely packed or with thick myelin

sheath, water molecules diffusion would be much hindered perpendicular to the

major direction of the axonal bundles or to the myelin sheath and they would

diffuse much more along the axonal direction. Following the principal direction

of each voxel, we can track pathways in the WM, which enables us to probe

neuroanatomy noninvasively. Before tractography based on DTI was developed,

researchers injected dyes into a brain region. The dye taken up by dendrites

and cell bodies travels within a neuron either in an anterograde (from soma to

synapse) or a retrograde (from synapse to soma) direction. After some time up

to several weeks for the large human brain, the neural tissue can be sliced up

and dyes can indicate the origin and target of cortical fibre tracts. Whereas

this approach yields high-resolution information about structural connectivity

it is an invasive technique usually unsuitable for human subjects except for

post-mortem studies.

Tractography can be done globally or locally, deterministic or probabilistic,

model-based or model free and model simple or complex representations of

diffusion in WM (Seunarine & Alexander, 2009) for more information, see

Section 5.2.2. The most common and intuitive tractography algorithm is

deterministic streamline tractography. From a seed point or a mask, WM

pathway can be reconstructed by using local fibre orientation information as

streamlines. A streamline or fibre trajectory can be represented mathematically

as a 3D space-curve by the following equation (Basser et al., 2000; Behrens &

Jbabdi, 2009). For alternative methods, see Section 5.2.2.

dr(s)

ds
= ε1(r(s)) (1.17)
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where r(s) is the location that is distance s along the streamline and ε1 is the

first eigenvector of the diffusion tensor.

Although Eq.(1.17) is defined in continuous space, the measurements we obtain

are from an imaging grid. Therefore, we need to interpolate the discrete

measurements into continuous space. There are several integration approaches

such as fibre assignment by continuous tracking (FACT) (Mori & Barker, 1999),

Euler and Runge-Kutta etc.; some methods are better than others to reduce

the propagation errors for tractography (Lazar & Alexander, 2003). Streamline

tractography errors can be caused from imaging noise, modelling error and

integration errors (Behrens & Jbabdi, 2009); larger errors are in cerebrospinal

fluid (CSF), GM, fibres near cortex or at junctions where fibres cross, while

major pathways have smaller errors. In general, heuristics such as FA threshold

and a curvature threshold are used to stop streamline tractography where errors

are likely.

1.2.3. Network construction

To represent a brain as a graph, we divide GM into smaller areas called region

of interest (ROI) that would be our nodes in the graph, called Parcellation and

registering tractography result with parcellation, we obtain a brain network.

Parcellation depends on brain atlases such as Automated Anatomical Labeling

(AAL), Harvard-Oxford atlas, Desikan-Killiany atlas etc. based on predefined

structural information. On the other hand, connectivity-based parcellation is

also used (Klein et al., 2007; Jbabdi et al., 2009; Cloutman & Lambon Ralph,

2012). Depending on the number of ROIs and brain atlases, reconstructed

networks can be quite different, which inevitably introduces different results
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on network measures (Zalesky et al., 2010; Van Wijk et al., 2010). Using

tractography, edges can be defined when two regions are connected. Both

binary and weighted networks can be used; binary networks concerns only

whether two regions are connected or not, whereas weighted networks can

represent different connection ‘strengths’ using weights. The definitions of

weights in an adjacency matrix can be also diverse; the number of streamlines

from deterministic tractography or probabilities from probabilistic tractography

often accompanied by corrections for length of the trajectory, surface, or volume

of ROIs, and sometimes multiplied by fractional anisotropy (Betzel et al., 2014;

Fornito et al., 2012) can be used as weights. As studies use different definitions

of weights for further topological analysis of brain networks, direct comparisons

are often quite difficult (See Section 5.2).

1.2.4. Correction for artefacts of DW images

Diffusion MRI is very sensitive to motion and has low Signal-to-Noise ratio

(SNR); moreover, it also suffers from possible artefacts inherited from acquisition

methods (Tournier et al., 2011; Jones, 2010; Jones et al., 2013; Soares et al.,

2013). Therefore, before estimating diffusion tensors and tractography, we need

to correct possible artefacts during the preprocessing step. The geometrical

and intensity distortions from DWI data from spin-echo echo-planar images

(EPI) are mainly caused by field inhomogeneities (Smith et al., 2004; Holland

et al., 2010; Andersson & Skare, 2002; Andersson et al., 2003). There are

several approaches to correct these susceptibility-derived distortions (Holland

et al., 2010; Andersson et al., 2003). Eddy currents also cause geometric and

gradient distortions (Andersson & Skare, 2002) and head motion should also

be corrected. Although we can correct motion-related movement, to use some
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comfortable pads for the head is the best option to prevent distortions from

head motion. Other artefacts can be caused by Johnson RF Noise and Cardiac

Pulsation (Jones, 2009; Jones & Pierpaoli, 2005). Pulsation artefacts can be

detected when using multiple b0 images by taking standard deviations across

b0 images (Tournier et al., 2011). Visual inspection of the raw data is also very

important and examining the residuals of the tensor fitting even when one does

not make use of tensor models to detect artefacts (Jones et al., 2013; Tournier

et al., 2011; Jones & Leemans, 2011).

There are many freely available software packages to do the DWI data processing

and there are studies comparing different software and methods see (Soares et al.,

2013). A typical pipeline of DTI involves (see Section 3.1), preprocessing of

DWI to correct possible distortions, estimation of tensors, registration between

structural (separate structural processing is necessary see Section 1.2) and

diffusion spaces or also with standard space (e.g., MNI) and finally constructing

a connectivity matrix by using tractography and one’s choice of a brain atlas

(for more information about brain templates and atlases see (Evans et al.,

2012)).

In this chapter, I provided methodological background essential to understand

the following studies. In the next chapter, I will look at how microscopic

neuronal network develops, in particular, how developmental time windows of

axon growth affect topological (Section 1.1.1) and spatial properties (Section

1.1.2) in the neuronal network development.
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Part II.

Microscopic neuronal network
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2. Developmental time windows for

axon growth influence neuronal

network topology

Early brain connectivity development consists of multiple stages: birth of

neurons, their migration and the subsequent growth of axons and dendrites.

Each stage occurs within a certain period of time, or a developmental time

window, depending on types of neurons and cortical layers. In this chapter, I

show the influence of developmental time windows for axon growth on early

neuronal network development. Forming synapses between neurons either by

growing axons starting at similar times for all neurons (much-overlapped time

windows) or at different time points (less-overlapped) may affect the topological

and spatial properties of neuronal networks. Here, I explore the extreme cases

of axon formation, particularly concerning short-distance connectivity during

early development, either starting at the same time for all neurons (parallel, i.e.,

completely-overlapped time windows) or occurring for each neuron separately

one neuron after another (serial, i.e., no overlaps in time windows). In addition,

I tested simulated results with Caenorhabditis elegans connectivity data. This

chapter is based on (Lim & Kaiser, 2015).
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2.1. Introduction

The formation of synapses between neurons is influenced by genetic, activity-

dependent, molecular and mechanical cues in combination and also in different

temporal and spatial scales (Sperry, 1963; Yamamoto et al., 2002; Yu et al.,

2012; Franze, 2013; Scheiffele et al., 2000; Dickson, 2002). To avoid abnormal

functionality, finding specific target neurons is important. Many guidance

mechanisms ensure the correct specification between neurons to successfully

establish appropriate synapses. One of the important mechanisms for global

synaptic connectivity is chemotaxis. Diffusible and membrane-bound chemical

cues guide axons to find their targets (van Ooyen, 2011; Dickson, 2002; Gotz

et al., 1992). Electrical activity also affects synaptogenesis and its reorganization

(Butz et al., 2014; Butz & van Ooyen, 2013). These guidance cues, however,

cannot fully explain certain features of synaptic connectivity. In C. elegans,

for example, around 40% of connection patterns cannot be accounted for by

differences in gene expression patterns (Kaufman et al., 2006; Baruch et al.,

2008). Activity-dependent mechanisms are crucial for the refinement of neuronal

circuits (Van Ooyen et al., 1995; Butz et al., 2009), but activity seems to have

a lower influence on the early connectivity in neural systems. For example,

several patterns of connectivity are preserved in knockout studies with no

neurotransmitter release (Verhage et al., 2000). Short-range connectivity within

less than 700 µm, or interneuron connectivity (Packer et al., 2013; Packer

& Yuste, 2011; Price et al., 2011) is difficult to explain by chemical affinity

guidance cues unlike long-range connectivity at s the global level (Kaiser et al.,

2009). Peters’ rule (Braitenberg & Schüz, 1998) suggests that synapse formation

in brain circuitry mainly depends on the overlap of geometrical locations of

specific axons and dendrites in the absence of guidance cues (Binzegger et al.,

22



CHAPTER 2. TIME WINDOWS FOR AXON GROWTH

2004; van Pelt & van Ooyen, 2013; McAssey et al., 2014; van Ooyen et al., 2014).

In particular, the specificity of early synapse formation to develop functional

neural circuits was predicted by simple factors from the overlap of axons and

dendrites in hatchling frog tadpole (Li et al., 2007) and also in neocortical

microcircuits (Hill et al., 2012; Packer & Yuste, 2011).

Another crucial factor is the developmental time window of a neuron. Brain

development occurs at different time periods depending on regions, cell types

and types of development (Andersen, 2003; Rakic, 2002; Shaw et al., 2008). Cells

are born, migrate to certain regions of the brain, differentiate and form synaptic

connections influenced by the aforementioned factors. Initial overproductions of

neurons and synapses are reduced after 1 year from birth, suggesting particular

time periods for neurogenesis, programmed apoptosis, early synaptic pruning

and synaptogenesis (Rakic et al., 1986; Purves & Lichtman, 1980; Kelsch

et al., 2010; Huttenlocher, 1984). Time windows of development for connections

between brain regions influence the topology of cortical connectivity. Kaiser and

Hilgetag (Kaiser et al., 2007) and Nisbach and Kaiser (Nisbach & Kaiser, 2007)

showed that overlapping time windows of development could generate clusters in

brain networks by having more connections between neurons with overlapping

time windows of network development. Whereas these time windows operate

on the population level, Varier and Kaiser (Varier & Kaiser, 2011) found that

neurons having similar birth times were more likely to be connected in C.elegans,

indicating preferential synaptic connections between neurons with overlapping

time windows for axon growth. Some studies have also reported preferential

electrical coupling between neurons sharing genetic lineage that are likely to

have similar developmental time windows in mice neocortex (Yu et al., 2009;

Yu et al., 2012). Furthermore, non-overlapping time windows among neurons

in CA3 resulted in selective synaptic connectivity forming sub-modules in the
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hippocampus (Deguchi et al., 2011; Druckmann et al., 2014).

To investigate neuronal innervations, computational models (van Ooyen, 2003;

van Ooyen, 2011) have been developed ranging from abstract models with few

assumptions (Kaiser et al., 2009; Willshaw & von der Malsburg, 1976; Perin

et al., 2013) to more complex models simulating neurogenesis and synaptogenesis

with realistic neuronal morphologies forming layers and large-scale neuronal

networks in the brain (Koene et al., 2009; Godfrey et al., 2009; Hennig et al.,

2009; Zubler & Douglas, 2009). In previous models, however, while time

windows for neural migration and synapse formation were included it was not

systematically studied how different time windows of axon growth would affect

the characteristics of the brain network organization.

Here, we investigated how different time windows of axon growth would affect

morphological, topological and spatial properties of short-range brain connec-

tivity during early development. Whereas previous studies dealt with time

windows that operate on the population level, our current study observes the

effect of the timing of axon growth for individual neurons within a neural

population. We compared two scenarios of non-overlapping (serial growth)

and completely overlapping time windows (parallel growth). To study the

role of time windows for axon growth in short-range connectivity, we used the

approach of random axon outgrowth, randomly picking a direction, growing

in a straight line and establishing a synapse when a target neuron is within

certain proximity along the growth direction.
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Figure 2.1.: Simulation setting: serial vs. parallel growth. Serial growth:
neurons take turns to grow axons. Parallel growth: all neurons start to grow
axons simultaneously. Continuous search mode: neurons examine all possible
target neurons to establish synapses by finding whether the growth cone could
find connectible neurons within a certain proximity, or whether the connectible
space of growth cone intersects with the neuron sphere. Blue circles: solid
circles denote neurons that finished axon growth and empty circles represent
neurons that are active. Numbers in the circles represent the sequence of growth.
Black triangles: synapses, Black solid line: axons, Black dashed lines: future
axon growth path.
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2.2. Methods and materials

2.2.1. Simulation

Most of the assumptions of the model were endowed from the previous study

(Kaiser et al., 2009).

Placement of neurons. Neurons were placed randomly in 3D space of 34 by

34 by 34 units except a neuron located at the centre, which was about 4 times

as many as for 2D in order to have a comparable chance for establishing a cell

position without cell overlap (Kaiser et al., 2009)). The number of neurons

varied in the given space: 1000, 1400 and 1800. The total volume of neurons

occupied the embedding space from 1% to 14% depending on the cell size and

the number of neurons in the simulation.

Sizes of neurons. A neuron was simplified as a sphere where the soma and

dendrites were included. The radius of a neuron varied from 0.5 to 0.9 (0.500,

0.604, 0.735, 0.900) to make the volume of the sphere increase 1, 2, 4 and 8

times in each condition. There is an upper limit for the number of incom-

ing connections for a neuron due to space around (Stepanyants et al., 2002)

or on the dendrite (Kaiser et al., 2009) as well as due to other factors (van

Ooyen, 2001; van Ooyen et al., 2001) (See Competition section below). The

maximum values of incoming connections were also varied 1, 2, 4 and 8 times

according to volume of a neuron because the coverage of dendritic ramifications

would expand as the size of our neuron sphere increased. The radius and the

number of maximum incoming connections were fixed in each condition. The

radius and the number of maximum incoming connection were fixed in each

condition. We assumed that the dendrites of a neuron did not grow as the

size of a neuron sphere was fixed during simulations. However, we could also
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confirm that dendritic outgrowth, changing the size of our neurons (including

soma and dendritic tree size) during development, did not affect our conclusions

(Figure 2.9); dendrites were assumed to grow radially away from the soma based

on the somatofugal growth of neurites (Samsonovich & Ascoli, 2003).

Growth direction. The direction of axonal outgrowth was randomly chosen

uniformly in the 3D space, and an axon grew in a straight line toward the given

direction as growth direction of axons has a propensity to grow in approximately

straight lines unless axons encounter obstructions or guidance cues (Sperry,

1963; Easter et al., 1985; Yamamoto et al., 2002).

Proximity rule for establishing synapses. A synapse was established

when the growing axon encountered another neuron within the connectible

range (less than or equal to 1 unit length). The distance between a growth

cone and a neuron was computed considering the radius of a neuron, or the

shortest Euclidean distance between a growth cone and the surface of a neuron

(the boundary of dendrites); thus, larger neurons increased their chances of

establishing a synapse. We assumed that only the growth cone can establish a

synapse.

Competition. Competition between neurons for synapse establishment was

realized by limiting the number of incoming connections. A synapse was formed

only when the neuron within vicinity could accommodate another synapse. All

neurons keep growing their axons until they hit the border of the embedding

space, as the maximum number of outgoing connections for a neuron was not

limited assuming short-range connectivity within less than 700 µm.

Speed. Speed of outgrowth was fixed for all neurons; the axon lengthened by

one unit for each time step.

Discrete and continuous growth. Discrete and continuous search mode

were compared. For discrete search mode, the growth cone of a neuron proceeded
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along its given direction by one unit Euclidean distance per each iteration time.

For continuous search mode, neurons were assumed to have the same average

speed as for discrete search mode (or one unit distance per unit time) but were

allowed to establish synapses at real number distance, hence continuous search

mode. Connectible neurons were found along a virtual direction of axon growth

by computing the distance between neurons and the axonal growth line. In

other words, check the whole axonal direction at once, to see if it ever comes

close to dendrites, or encountering a neuron sphere.

Serial and parallel growth. For serial growth, each neuron takes turns

to grow its axon, which represented no overlap in the time windows for axon

growth; the first neuron grows out completely and forms all possible connections

and finishes its growth, and only then the second neuron starts growing and

makes synapses along the way.

Developmental time windows. Different areas in the brain have shown dis-

similar growth trajectories over time having partially overlapping time windows

(Rakic, 2002; Shaw et al., 2008; Sur & Leamey, 2001). For instance, cortical

neurons in Brodmann area (BA) 24 migrate to upper layers faster than neurons

in BA11, BA46 and BA17; neurons in BA17 take the longest time to reach

their final position in the macaque monkey (Rakic, 2002). Moreover, previous

studies have shown that neurons are inclined to establish synapses with other

neurons whose time windows of growth overlapped (Kaiser & Hilgetag, 2007;

Nisbach & Kaiser, 2007; Deguchi et al., 2011; Druckmann et al., 2014; Yu

et al., 2009; Yu et al., 2012). Therefore, by comparing network features between

serial and parallel growth, we could observe the influence of time windows for

neuronal network development. Additionally, we tested partially overlapping

time windows with a small partial overlap and a large partial overlap; serial

growth is the extreme case of small overlap, i.e., zero overlap and parallel
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growth is the opposite end where time windows of axon growth are maximally

overlapped (Section 2.3.4).

Data set. Positions of neurons and growth directions were generated con-

structing a total of 50 data sets to compare serial and parallel growth using

equivalent positions of neurons and growth directions.

In summary, four growth scenarios with serial or parallel growth using discrete

or continuous search mode (Figure 2.1) were compared with varying numbers

of neurons (1000, 1400, 1800) and cell sizes (0.500, 0.604, 0.735, 0.900).

2.2.2. Comparison of growth scenarios

Serial growth and parallel growth were compared in terms of morphological,

topological and spatial features. Morphological features included the number of

established synapses, the number of potential synapses and the ratio between

the two, or filling fraction (Stepanyants et al., 2002). In biological neuronal

networks, not all potential synaptic locations are realized due to competition

between neurons (Kaiser et al., 2009; van Ooyen, 2001; van Ooyen et al., 2001),

plasticity of connectivity, or limitations in volume (Stepanyants et al., 2002).

Next, topological properties such as out-degree, local efficiency, and the propor-

tion of bidirectional connections were investigated (Newman, 2003; Brandes &

Erlebach, 2005; Costa et al., 2007). Out-degree of a neuron is the total number

of outgoing connections from the neuron, or the total number of outgoing

synapses. Out-degrees of neurons were averaged over 50 trials for each neuron

and ordered according to the sequence of serial growth. Then, this distribution

was fitted with exponential or polynomial curves to assess the difference in

out-degree as a function of the sequence of start. This shows whether earlier

starters would have an advantage over later starters in establishing outgoing
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synapses. The maximum number of incoming connections was limited and

increased according to the volume of a neuron. As a result, in-degree was con-

strained by the maximum number of incoming connections. Global efficiency

is the inverse of the harmonic mean of the shortest path length between each

pair of nodes Eq.(1.1) and local efficiency for a node is calculated in the same

way as global efficiency in the subgraph of the node comprised of its immediate

neighbours Eq.(1.2) (Latora & Marchiori, 2001; Latora & Marchiori, 2003).

Finally, we observed spatial properties of the grown neural connectivity. Con-

nection probability between two neurons as a function of distance was calculated

by dividing the number of connected edges by the number of possible connec-

tions given a distance between two neurons, where the distance between a pair

of neurons was the Euclidean distance between the centers of the somata of

neurons. Similarly, bidirectional connection probability as a function of distance

was calculated by dividing the existing number of bidirectional connections

by the number of all possible connections given a distance. The proportion of

bidirectional connection was the ratio of bidirectional connections to all existing

connections, and it was compared with that in the rewired networks to examine

whether the proportion of bidirectional connections was higher in our random

outgrowth model than that for random networks. We used rewired networks for

benchmark random networks by randomizing or rewiring the original networks

while preserving degree distributions (Maslov & Sneppen, 2002; Rubinov &

Sporns, 2010). The connection length between two connected neurons was the

Euclidean distance between the centers of neurons assuming that the distance

between the growth cone and the target neuron was negligible. If a neuron made

multiple synapses until it hit the boundary of the given space, the locations

where the intermediate synapses were established were considered as synaptic

boutons and consequently the axon length for the neuron was defined as the
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distance between the neuron and the neuron where the last synapse was formed.

Brain Connectivity Toolbox (Rubinov & Sporns, 2010) was used to calculate

network measures: in and out-degree, local efficiency and the generation of

random networks by rewiring our directed networks while preserving degree

distributions.

2.2.3. Validation of our model prediction with C. elegans

connectivity

We used data and information from previous studies based on the Worm

Atlas (Chen et al., 2006; Varshney et al., 2011; Hall & Altun, 2008) as we

could make use of birth times of neuron in C.elegans as a proxy for develop-

ment al time windows (http://www.wormatlas.org/neuronalwiring.html#

NeuronalconnectivityII). Unfortunately, there is no data from higher or-

ganisms since birth times or developmental time windows for axon growth

and synaptogenesis are currently not available to the best of our knowledge.

Chemical synapses were considered while electrical and neuromuscular junctions

were excluded in the connectivity matrix. Spatial locations of neurons were

obtained from a previous study (Choe et al., 2004). Based on birth times of

neurons, we grouped neurons into 3 groups using k-means clustering algorithm:

neurons in group 1 and group 2 have similar birth times and were born early,

whereas neurons in group 3 were born much later compared to group 1 and

2 (Figure 2.5A). As each time k-means clustering provides slightly different

clusters, we perform 50 trials and classified neurons with the most stable or

frequent grouping. We assumed all neurons start to grow axons and dendrites

approximately similar latency period; birth time +α is the starting point of time

window of axon outgrowth. Thus, birth time can be directly associated with
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the start of the growth without losing generality since α is assumed to be about

the same for all neurons. Groups are compared in terms of degrees, connection

lengths and reciprocal connections. We tested the three most pronounced

differences between serial and parallel growth: (1) whether earlier-born neurons

acquired higher degrees than later-born neurons (group 1 vs. 2 and group 1 &

2 vs. 3), (2) whether earlier-born neurons established longer connections and

(3) whether reciprocal connections are more numerous in neurons in group 1

and 2 than neurons in 1 and 3 or 2 and 3. Long-range connections were defined

as connections where the length was at least one standard deviation above the

mean of all connection lengths. Additionally, we examined local efficiency and

connection probability as a function of distance (Section 2.6.3).

2.2.4. Statistical analysis

Topological and spatial properties between serial and parallel growth such

as out-degree, local efficiency, connection probability and bidirectional con-

nectivity were averaged over 50 trials for each neuron then fitted with ex-

ponential or polynomial curves. When curves followed close to a power-law

(connection probability and bidirectional connectivity), double-logarithmic

axes were used and fitted with linear models. Higher proportion of bidi-

rectional connectivity for parallel growth than serial growth was tested by

paired t-test and Wilcoxon signed rank test, two-tailed with an α level 0.05

and corrected by Bonferroni for multiple comparisons. To group neurons

based on their birth times, we used k-means clustering using Euclidean dis-

tance. Degrees and long-range connection length were tested with Kruskal-

Wallis test and post-hoc multiple comparisons were performed using Mann-

Whitney test and corrected by Bonferroni. Calculations and statistical tests
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were performed with Matlab R2012b (Mathworks Inc., Natick, MA). Algo-

rithms are available online at http://www.dynamical-connectome.org/ and

https://github.com/springdance/BICYcodes.

2.3. Results

2.3.1. Topological and spatial properties

Serial vs. parallel growth Serial and parallel growth scenarios assumed

non-overlapping and completely overlapping time widows of axon growth, re-

spectively. As there was no qualitative difference between the results using

discrete and continuous search mode (for quantitative differences from a mod-

elling perspective see Section 2.3.2.1), we show results with continuous search

mode without losing generality.

2.3.1.1. Out-degree distribution

For serial growth, neurons that started growing their axons earlier took pri-

ority in establishing synapses over late starters, hence a decreasing trend of

out-degrees as the indices of order in development increased. By contrast, for

parallel growth where every neuron started growing their axons simultaneously

out-degrees were independent of indices of neurons as the indices merely had

nominal values in this case (Figure 2.2A). The contrasting distributions of

out-degrees for serial and parallel growth applied to all conditions independent

of the number of neurons and the maximum number of incoming connections.
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However, the decreasing rate of out-degree for serial growth slowed down when

allowing more incoming connections (less severe competition). Note that the

less contrasting patterns between serial and parallel growth when larger num-

bers of incoming connections were allowed (e.g., the fourth column of Figure

2.14) should be attributed to milder competition among neurons rather than

to higher neuronal density.

2.3.1.2. Local efficiency

Neurons that started axon growth early on were also characterized by higher

local efficiency compared to neurons that developed later for serial growth

whereas there was no difference among neurons for parallel growth. The effect

was not as pronounced as the decreasing trend for the out-degree distribution

for serial growth; the decrease in local efficiency was observed mostly in later

starting neurons for serial growth. Similar to the out-degree distribution, the

disparate distributions of local efficiency for serial and parallel growth applied

to all conditions with different numbers of neurons and maximum numbers of

incoming connections, thus we show a representative example (Figure 2.2B).

The decreasing rate of local efficiency for serial growth slowed down when

allowing more incoming connections (Figure 2.15).

2.3.1.3. Connection probability

Connection probability given a distance between two neurons decreased rapidly

as the distance increased following power-law tail behaviour (Figure 2.3A). The

rate of decreasing connection probability when competition was imposed was
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Figure 2.2.: Topological properties for Serial vs. Parallel growth. X-axis
represents indices of neurons. For serial growth, the indices of neurons indicate
the order of starting to grow axons, whereas for parallel growth the indices
just represent nominal values. Red: serial growth, Blue: parallel growth (A)
Out-degree (y-axis), (B) Local efficiency (y-axis). For a complete overview of
all conditions see Figure 2.14 & 2.15.

almost similar to that without competition (Figure 2.3A inset). The connection

probability decreased faster for parallel growth than for serial growth with

distance between neurons, while the number of established synapses was the

same between serial and parallel growth scenarios (Figure 2.3B). The discrepancy

of slopes for serial and parallel growth in the doubly logarithmic plot became

reduced as the maximum number of incoming connections increased (Figure

2.16).

Figure 2.4B shows a schematic view of the relationship between the distance

between neurons and the connection probability of the two neurons. When

neurons are located farther apart from each other, the connection probability

decreases since the range of growth directions towards which it can successfully

establish a synapse is more limited. In other words, the connection probability

between a pair of neurons located a distance d apart is proportional to the range

of growth angles a neuron can take, that is the connection probability given
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Figure 2.3.: Connection probability decreased with distance and decreased
more rapidly for parallel growth than for serial growth. (A) Magenta: no
competition, Yellow: competition. (Inset) Log-log plot of connection probability.
(B) Log-log plot of connection probability for serial and parallel growth. Red:
serial growth, Blue: parallel growth. For a complete overview of all conditions
see Figure 2.16.

a distance d , P (d) ∝ θ. The growth angle θ from the straight line between

the centres of neurons can be calculated using the inverse sine as from our

assumptions a neuron grows onwards we can only consider −π
2 < θ < π

2 ,

P (d) ∝ arcsin
1 + r

d
(2.1)

arcsin
1 + r

d
≈ 1 + r

d
(2.2)

P (d) ≈ 1

d
(2.3)

where r represents the size or the radius of a neuron and d stands for the distance

between the centres of neurons and inverse of sine can be approximated by

its Maclaurin series when 1 + r < d. Thus, Eq.(2.1) can be approximated as

Eq.(2.2) taking only the first term of the series. The log-log plot of distance

and angle also showed straight lines since the connection probability is inversely
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proportional to the distance d (Eq.(2.3), Figure 2.4).

Figure 2.4.: Theoretically generated connection probability and the schematic
relationship between the range of angle for a pre-synaptic neuron can take and
the distance between two neurons. (A) Red: overall connection probability,
black: bidirectional connection probability. Inset. Bidirectional connection
probability decreased more rapidly with distance between neurons than overall
connection probability. (B) Circles: neurons, d1 and d2: the distances between
neurons, θ1 and θ2: the maximum direction angles a pre-synaptic neuron can
have to establish synapses with a target neuron. As the distance becomes longer,
the range of angles becomes narrower; if d1 < d2, then θ1 > θ2. Therefore, if
a target neuron is far from the pre-synaptic neuron, it is less likely to form a
connection, leading to lower connection probability.

2.3.1.4. Bidirectional connections

Two neurons located close to each other are more likely to form synapses (Figure

2.4) in general and consequently there would be more reciprocal connections

between two neurons close to each other (Figure 2.4A). However, this higher

connection probability for bidirectional connections for nearby neurons assumes

that relevant neurons are available for incoming connections. Synapses would

not be formed when the target neurons have reached its maximum incoming
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limit even if neurons reside closely to each other and the growth directions

are narrow enough to form synapses. For serial growth even if both of them

are within proximity of the other neuron’s growth direction, one of them is

more likely to be occupied and no longer available for making another synapse.

Since they started at different time points thus one neuron took much longer

to reach the other neuron unlike for parallel growth. Therefore, bidirectional

connections would be more numerous for parallel growth than for serial growth.

As we expected, more frequent reciprocal connections were observed for parallel

growth than for the serial growth scenario (Figure 2.5B). For example, 1000

neurons with one incoming connection per neuron allowed, neurons formed

about six times as many bidirectional connections for parallel growth as for

serial growth (Wilcoxon signed rank test, p < 10−7 corrected by Bonferroni,

Figure 2.5B). The difference between serial and parallel growth disappeared

as neurons were allowed to have more incoming connections (Figure 2.17).

The simulated bidirectional connection probability using inverse sine (Eq.(2.1))

was calculated by squaring the connection probability assuming independence

among neurons for synapse establishment (Figure 2.4A, black).

We also investigated whether the bidirectional connectivity was higher than

expected in random networks. Random networks were constructed by random-

izing or rewiring the original networks while preserving degree distributions

(Maslov & Sneppen, 2002; Rubinov & Sporns, 2010). For smaller neuron sizes

such as radii 0.5 and 0.604 concomitant with 1 and 2 maximum incoming con-

nections allowed, respectively, rewired networks did not have any bidirectional

connectivity even when considering larger numbers of neurons up to 1800, or

higher neuronal density. For larger neuron sizes, thus having a larger reach

and more incoming connections allowed, originally generated networks with

random outgrowth showed 10 to 17 times larger bidirectional connection pro-
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portions for serial growth and from 11 to about 40 times larger proportions for

parallel growth depending on conditions. In summary, both serial and parallel

growth resulted in higher bidirectionality than that of the benchmark random

network, indicating random outgrowth model with geometrical constraints can

also reproduce higher synaptic clusters.

Serial growth
Parallel growth

Figure 2.5.: Connection probability for bidirectional connections. (A) Con-
nection probability of reciprocal connections for serial and parallel growth
depending on the distance between neurons. (Inset) Log-log plot, more bidi-
rectional connections and steeper of connection probability with distance for
parallel growth, Red: serial growth, Blue: parallel growth. (B) The number of
reciprocal connections for serial and parallel growth. For a complete overview
of all conditions see Figure 2.17.

2.3.1.5. Connection length distribution and Axon length

Serial and parallel growth generated different connection length distributions

where connection length was defined as the Euclidean distance between con-

nected neurons. Note that the total number of connections (synapses) was

the same both for serial and parallel growth scenarios. The connection length

distribution for parallel growth was characterized by an exponential decrease
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C. local connectionlength

Figure 2.6.: Connection length frequency and axon length.(A) Connection
length frequency. For parallel growth, Euclidean connection lengths between
connected neurons were more concentrated around short lengths and decreased
exponentially with distance while for serial growth the frequency decreased
more linearly with distance and obtained longer connections in overall. (B)
Axon length. Neurons that started axon growth earlier acquired longer axon
lengths than later starters. X-axis for serial growth: the order of starting
growth and x-axis for parallel growth: nominal indices of neurons, y-axis: axon
length. For a complete overview of all conditions see Figure A2.18.

in the frequency, having a higher proportion of shorter connections while the

connection length distribution for serial growth demonstrated almost linear and

slower decrease in the frequency having a larger number of longer connections

than for parallel growth (Figure 2.6A). The difference between serial and paral-

lel growth became less obvious as more incoming connections were allowed for

a neuron (Figure 2.18).

The axon length for the neuron was defined as the connection length between

the neuron and the neuron to which the last synapse was formed assuming the

intermediate synapses were synaptic boutons along the axon. Earlier starters

demonstrated longer axon lengths than later starting neurons for serial growth

whereas no difference was observed in axon length for parallel growth (Figure

2.6B).
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2.3.1.6. Comparison of our model predictions with C. elegans

connectivity

To validate our model predictions, we made use of C. elegans data (Chen et al.,

2006; Varshney et al., 2011; Hall & Altun, 2008; Choe et al., 2004). Using

only chemical synapses, we tested our three major predictions from our model

concerning degree, connection lengths and bidirectional connectivity. Group

1, 2 and 3 represent three groups of neurons clustered based on their birth

times (Figure 2.7A). While birth times in groups 1 and 2 were, on average,

114.78 minutes apart, the time difference between groups 2 and 3 was more

than 1255.70 minutes. As birth times of group 1 and group 2 do not differ

much, we can assume that group 1 and group 2 represent large overlapping

time windows case (or parallel growth), while group 1 and group 3 or group 2

and group3 indicate small overlapping time windows case (or serial growth).

Here birth time is used as an equivalent of the starting point of the time

window for axon (and dendrite) outgrowth. Time windows for neurogenesis and

synaptogenesis should be treated differently, however; here we assumed time

windows for synaptogenesis in C. elegans started after equivalent time passes for

all neurons for simplicity. We tested whether group 1 and 2, with neurons born

early during development, achieved higher out-degrees than group 3. We found

that neurons in group 1 and 2 indeed obtained larger numbers of connections

(higher degrees) compared to neurons in group 3 (Kruskal-Wallis test, p < 10−6

and post-hoc multiple comparison Mann-Whitney two-tailed: between group

1 and 3, p < 10−4 ; between group 2 and 3, p < 10−4 , p-values are corrected

by Bonferroni, Figure 2.7B). Neurons in group 1 and 2 established longer

connections compared to neurons in group 3 (Kruskal-Wallis test, p < 10−4;

Mann-Whitney two-tailed: between group 1 and 3, p < 0.0057; between group 2
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and 3, p < 0.0002 , p-values are corrected by Bonferroni, Figure 2.7C) and larger

number of bidirectional connections (Figure 2.7D). As expected for parallel

growth case, group 1 vs. group 2 did not display significantly higher degree,

long-range connection lengths or bidirectional connectivity differences. Local

efficiency and connection probability, however, were not consistent with the

model predictions indicating that there are factors excluded in the model which

influence these features (See Discussion and 2.6.3).

2.3.2. Morphological properties

2.3.2.1. Potential synapses and established synapses

Neuron might miss a connectible neuron in discrete search mode because it

establishes synapses only at discrete time steps along the direction (neglected

space, Figure 2.8B). At the same time, it is also possible to find the same

spot multiple times because the same neuron is likely to be within proximity

again after one unit step away (multiple detection space Figure 2.8C). As we

did not allow neurons to make multiple synapses with the same neuron in

the simulated networks, the total number of potential synaptic places was

always larger in continuous search mode than in discrete search mode (Table

2.1, Figure 2.8A), which also applied to the number of established synapses

(Table 2.1). In contrast to the topological and spatial properties (Section 2.3.1),

there was no difference in the number of potential synapses between serial and

parallel growth since the placement of neurons and the growth directions were

the same and they were independent of serial and parallel growth scenarios.
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Figure 2.7.: Model predictions vs. neuronal connectivity in C .elegans. (A)
Group 1, 2 and 3 using k-means clustering based on the birth times of neurons
in C .elegans. Green: group 1, Red: group 2, Blue: group 3. X-axis: birth time
(minutes), Y-axis: group membership. (B) Distributions of out-degree for group
1, 2 and 3 using kernel density estimation. X-axis: out-degree, Y-axis: density,
vertical dashed lines: medians of distributions, (inset) Birth time and degree.
Boxplot. X-axis: birth time group, Y-axis: degree of neurons. (C) Density plot
of long-range connection lengths, x-axis: connection lengths, y-axis: density
of distribution, vertical dashed lines: medians of connection lengths, (inset)
Birth time and long-range connection lengths. Boxplot superimposed with data
points. X-axis: birth time group, Y-axis: length, approximated by Euclidean
distance between centres of connected neurons, of long-range connections (mm).
(D) Birth time group and the number of bidirectional connections. X-axis:
birth time groups Y-axis: the number of connections (black: bidirectional
connections; white: the total number of connections between relevant groups).
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Figure 2.8.: Neglected space and multiple detection when using discrete time
steps. (A) Neglected space using discrete time steps growing at times t and
t+ 1, thick black solid line: growing axon, dashed circles: if a neuron happens
to be inside the dashed circle, a synapse can be formed with the neuron. The
shaded areas represent neglected space due to discrete time steps. Depending
on the ratio between the proximity criterion and the spatial distance covered
in one time step, the neglected area can be enlarged and shrunk. (B) Multiple
detection of the same neuron using a discrete time step. If a neuron happens to
be inside the shaded area, the growth cone can detect the neuron multiple times.
Again depending on the ratio between the proximity rule and the magnitude of
a time step, the space can be expanded or narrowed.

2.3.3. Simulation results with dendritic development.

We have also explored the condition when neurons increase their sizes from a

point to a sphere of radius 0.5 as a representative case to check the effect of

outgrowing dendrites and its concomitant increase of the dendritic arborization

area. Dendrites were assumed to grow radially away from the soma based on

the somatofugal growth of neurites (Samsonovich & Ascoli, 2003). We could

confirm that dendritic growth, changing the size of our neurons (including soma

and dendritic tree size) during development, did not change our main results;

neurons started earlier achieved higher out-degrees and longer axon lengths

for serial growth, higher bidirectionality for parallel growth due to overlapping
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Table 2.1.: Row (left) Column (right) where is among = , < and >.
For example parallel continuous > serial discrete, which reads the number of
potential synapses for parallel growth using continuous search mode is larger
than that of serial growth using discrete time steps.

Serial
Parallel Continuous Discrete

Continuous = >
Discrete < =

time windows and connection probability decreases faster with distance for

parallel growth than serial growth (Figure 2.9).

2.3.4. Partially overlapping time windows

We additionally examined partially overlapping time windows for axon growth

with groups of neuron growing together. We tested a small partial overlap and

a large partial overlap; neurons were grouped into 2, 3 and 4 groups and were

assigned to start growing axons after neurons in earlier starting group have

elongated five (larger overlap) and ten (smaller overlap) unit length, in other

words, neurons in other groups wait for 5 or 10 unit time. For instance, we

divide neurons into two groups randomly and after neurons in the group start

growing axons for 5 unit length, neurons in the other group start developing

their axons. Serial growth is the extreme case of small overlap i.e. zero overlap

and parallel growth is the opposite end where time windows of axon growth

for neurons are maximally overlapped. Likewise, if we divide neurons into

many groups, say into the same number of neurons, we would expected the

smooth decrease in degrees and connection lengths, which was observed in

main figures (Figure 2.2A and Figure 2.6B, respectively) where single neuron

is actively growing its axon rather than multiple neurons in our main results.
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Figure 2.9.: Simulation results with dendritic development. A. Out-degree,
red: serial growth, blue: parallel growth, x-axis: for serial growth- the order
of growth, for parallel growth- indices of neurons. B. Connection length
distribution with distance between neurons. Red: serial growth, blue: parallel
growth, C. Bidirectional connection ratio. Left: serial growth, right: parallel
growth. The results were consistent with our previous results. D. Axon length.
red: serial growth, blue: parallel growth, x-axis: for serial growth the order of
growth, for parallel growth- indices of neurons.

Earlier starting groups achieved higher out-degrees (Figure 2.10) indicating

better chances of becoming hub nodes in the networks and also achieved longer

axon lengths (Figure 2.11); larger overlap of time windows produced more

reciprocal connections between neurons (Figure 2.12). In summary, the results

were consistent with the previous findings.
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Figure 2.10.: 1st row: a large overlap in time windows for axon growth; 2nd

row: a small overlap in time windows; column shows the number of groups in
which neurons were divided. X-axis: neurons are orderly grouped according to
their group time windows; Y-axis: out-degree. The discrepancy of out-degrees
between groups is smaller with a large overlap than a small overlap case and
earlier starting groups acquired higher out-degrees.

2.4. Discussion

In this study, we demonstrated that different time windows for axon growth

could lead to distinct topological and spatial characteristics by exploring two

extreme cases of time windows representing serial (heterogeneous) and parallel

(homogeneous) growth. We also tested our model predictions with C. elegans

connectivity data. Overlapping and non-overlapping time windows for axon

growth resulted in different topological and spatial properties of neuronal

networks, although morphological properties such as the number of potential

synapses and established synapses were not different (Figure 2.13). For serial

growth, neurons that started axon growth early on achieved higher out-degrees,

higher local efficiency and longer axon lengths than later starting neurons, while

no difference was observed for parallel growth. Bidirectional connections were
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Figure 2.11.: 1st row: a large overlap in time windows for axon growth; 2nd

row: a small overlap in time windows; column shows the number of groups in
which neurons were divided. X-axis: neurons are orderly grouped according
to their group time windows;Y-axis: Axon length. The discrepancy of axon
length between groups is smaller with a large overlap than a small overlap case
and earlier starting groups acquired longer axon lengths.

more numerous for parallel growth. Finally, axon lengths for serial growth were

longer. Together, time windows for axon growth seem to have a major influence

on network organization during neural development.

Non-overlapping vs. overlapping time windows for axon growth

Brain development shows region-specific time windows of growth that partially

overlap (Rakic, 2002; Shaw et al., 2008; Sur & Leamey, 2001). Previous

computational studies (Kaiser & Hilgetag, 2007; Nisbach & Kaiser, 2007) as

well as the analysis of the C. elegans cell lineage (Varier & Kaiser, 2011) strongly

suggest that neurons are inclined to establish synapses with other neurons whose

developmental time windows overlap (Varier & Kaiser, 2011; Deguchi et al., 2011;
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Figure 2.12.: X-axis: (left) a large overlap (right) a small overlap; Y-axis:
the number of bidirectional connections. The bidirectional connections in
neurons having large-overlapping time windows were more frequent than those
of neurons with small-overlapping time windows; with more heterogeneous
neurons i.e. larger number of groups, the number of bidirectional connection
decreased (from left to right column).

Druckmann et al., 2014). We investigated how developmental time windows

for axon outgrowth affect network connectivity by analyzing non-overlapping

(serial growth) and maximally overlapping (parallel growth) time windows for

axon growth. For serial growth, a neuron is able to start growing its axon only

after the previous neuron finishes developing its axon. Thus time windows of

axonal growth do not overlap whereas for parallel growth, all neurons have

the same time window onset, starting to grow axons simultaneously. Note,

however, that the end point of the time window —the time when a neuron left

the embedding space—could differ between neurons. Biologically, neurons with

highly overlapping time windows of development can be interpreted as neurons

whose birth times, lineage and cell types are homogeneous such as cortical

neurons in the same layer or clone sister neurons sharing genetic resemblance,

both of which were characterized with a higher propensity to establish synapses

between them (Yu et al., 2009; Deguchi et al., 2011).
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For serial growth, earlier development for axon growth facilitated more numerous

synapse establishments resulting in higher out-degrees, higher local efficiency

and longer axon lengths, suggesting a possible mechanism for network hub

formation. These results are in line with experimental findings analysing the

neuronal network of C. elegans (Varier & Kaiser, 2011) and even with findings

for the network of fibre tracts between cortical regions in the macaque (Kaiser,

2011). As we expected, earlier born neurons in C. elegans established more

connections than later born neurons. This might allow us to predict the history

of neural development based on cell lineage and adult degree distribution. Local

efficiency shows that how efficiently neighbour neurons of a neuron would

communicate when the neuron is removed being linked to the fault tolerance

of the network (Latora & Marchiori, 2001; Latora & Marchiori, 2003). Here,

higher local efficiency of early starter neurons indicates that the local network

comprised of the neuron’s immediate neighbour neurons have more efficient

communication among neighbour neurons and also more resilience against the

removal of the early starter neuron. In line with these findings, an earlier study

in C. elegans (Varier & Kaiser, 2011) found that most connected neurons were

born at similar time points and that the majority of long-distance connections

appeared early on. This suggests that overlapping developmental time windows

could contribute to increase the connection probability and early establishment

of long-distance connectivity, which could secure specifically targeted long-

range connections. Starting early on is a mechanism for individual neurons

to establish long-distance connections. However, serial growth also affected

the neural population as a whole. In our simulations, the sequential serial

growth generated significantly more long-distance connections than the more

homogeneous parallel growth; neurons that started axon growth later often

found that post-synaptic neurons were already occupied whereas earlier starters
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successfully established synapses to the same target neurons even if they were

distantly located.

The connection probability between a pair of neurons decreased as the distance

between them increased in line with anatomical studies (Hellwig, 2000; Schüz

et al., 2006; Kaiser et al., 2009). The rate of decrease was steeper for parallel

growth indicating that neurons with the same time window of axonal growth

tend to prefer short-distance connections rather than long-distance connections.

In contrast, for serial growth, the distance was not the only factor to establish

connections since late starter neurons may not be able to form certain synapses

due to the limited number of incoming connections, thus having a slower

decrease of connection probability with distance.

Bidirectional connections were more numerous for parallel growth than for serial

growth, which we confirmed with C. elegans connectivity data; the discrepancy

between neurons (or neuron groups) was negatively correlated to the degree of

overlap in the developmental time windows. In other words, larger overlap of

developmental time windows (group 1 and 2) reduced differences in degrees and

connection length. More frequent reciprocal connections for parallel growth

provide additional converging evidence that overlapping time windows during

development would produce more reciprocal connections between neurons

(Kaiser & Hilgetag, 2007; Nisbach & Kaiser, 2007; Varier & Kaiser, 2011). The

bidirectional connection probability decreased more rapidly than the overall

connection probability, which is consistent with previous studies using thick-

tufted layer 5 pyramidal neurons in neonatal Wistar rats (Perin et al., 2011;

Perin et al., 2013). Previous studies have shown over-represented reciprocal

connections in the rat relative to random networks claiming that the synaptic

connectivity is preferential rather than random (Kelsch et al., 2010; Markram
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et al., 1997). However, in this study we observed a higher proportion of

bidirectional connections while still using a random outgrowth mechanism for

both serial and parallel growth scenarios.

Earlier-born neurons in C. elegans acquired higher out-degree, longer axon

lengths and higher reciprocal connectivity, which were consistent with the

model predictions. However, local efficiency and connection probability as a

function of distance between neurons showed discrepancy from what the model

predicted (Section 2.6.3, Figure 2.19). We believe that the model predictions

and the actual results from C. elegans were different because i) differences in

local efficiency between serial and parallel growth were less apparent for all

conditions and ii) connection probability in our model depends mainly on the

geometrical arrangement of dendrites (neuron spheres) and axons, whereas the

connectivity of C. elegans has additional constraints such as its elongated body

shape and a higher prevalence of long-distance connections (Kaiser & Hilgetag,

2006).

Discrete vs. continuous search mode and neglected vs. multiple de-

tection

While the previous results addressed the biological role of axon growth time

windows, we also looked at the influence of the model used for computer sim-

ulations of axon growth. As modelling each growth step (numerical discrete

simulation) is computationally expensive, using an analytical approach (con-

tinuous simulation) saves computational resources. Using continuous search

mode increased the total number of potential synapses that neurons found and

also increased the number of established synapses. This is due to the better

coverage of the growth cone pathway: for discrete steps, neurons may miss

possible synaptic places since they can only search for target neurons at specific
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time steps. The volume of neglected space for discrete search mode depends

on the ratio of unit time step to the length of proximity rule. If the proximity

defining ‘close enough to form a synapse’ is smaller than the size of unit time

step, the neglected space expands and if the vicinity covers larger space than

the unit time step the neglected space shrinks (Figure 2.8B). On the other hand,

if the proximity reaches farther than the half of the unit step, the overlapping

space of proximity between previous time step and the next step increased

the possibility of detecting the same neuron multiple times (Figure 2.8C). The

length of time step is usually determined considering trade-off accuracy of the

computation and processing time but here we also need to consider the ratio of

time step to proximity criterion, or another trade-off between neglected space

and multiple detection space. By adopting continuous search mode, we could

reduce processing time, however, it can be only applied to piecewise straight

lines when assuming that branching of axons or turning of growth direction

does not occur often.

Limitations and future studies

This general study of axon growth uses simplifications both for axon growth

and neuron morphology. The size of the neuron and the proximity rule can

only be an estimate of the average behaviour of axons growing close to existing

neurons. For models of specific tissue, the morphology of the dendritic tree and

the number of spines would need to be taken into account. Such parameters,

for many types of neurons and many different species are available in the

NeuroMorpho database (Samsonovich & Ascoli, 2003; Ropireddy & Ascoli,

2011; Zawadzki et al., 2012). Another simplification is the axon growth in a

straight line. Even though growing in a straight line is the default behavior,

axons can branch or their growth directions can be influenced by attractive or

repulsive signalling cues in the external environment (Yamamoto et al., 2002;
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Krottje & Van Ooyen, 2007; Sakai & Kaprielian, 2012). Finally the embedding

space of neurons for axon growth and synaptogenesis of our model was fixed

during development, while internal volume changes through neurite growth

and external mechanical factors could change the location of neurons and

influence their synapse formation probabilities. For uniform expansion along

all directions, this would increase connection lengths but differences between

serial and parallel growth would remain (See Section 2.6.4 for detailed analysis

and discussion).

2.5. Conclusion

In the current study, we showed that for serial growth of axons neurons with an

early start of axonal growth acquired higher out-degrees, higher local efficiency

and longer axon lengths while overlapping time windows for parallel growth

contributed to higher reciprocal connection and faster decrease in overall

connection probability and connection length distribution with an increased

distance between neurons. These predictions were confirmed when comparing

our findings with the organization and development of the neuronal network

of C. elegans. In summary, we demonstrated that axon growth time windows

—like time windows for synaptogenesis and neuronal migration—modulate the

topological and spatial properties of neuronal networks. We hope that these

findings elucidate the origins of normal and pathological network development.

In next chapter, I examine the macroscopic brain network maturation using

Diffusion Tensor Imaging (Section 1.2).
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2.6. Appendix

2.6.1. Different connection patterns between serial and

parallel growth

As the positions of neurons are fixed in the simulation, there are fixed number

of possible synapses. Although, the topology of the connectivity among neurons

is very different for serial growth and for parallel growth, neurons for serial

growth can make as many synapses as neurons for parallel growth. I explained

this in a very simple case with 4 neurons in the following Figure 2.13.

2.6.2. Results for all conditions

Out-degree, local efficiency, connection probability, percentage of bidirectional

connections and connection length distribution for all conditions are shown

below (Figure 2.14-2.18).

2.6.3. Comparisons of local efficiency and connection

probability from C. elegans data with the model

predictions.

We calculated local efficiency and connection probability for C. elegans data.

Unlike out-degree, bidirectional connections and axon length results in the

main text, showed discrepancy from what the model predicted In particular,

local efficiency results showed the opposite pattern from the model prediction;

later-born neurons showed higher local efficiency than earlier-born neurons

(Kruskal-Wallis test and post-hoc multiple comparisons were performed using
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Figure 2.13.: Solid circles are neurons A, B, C and D. Dashed lines with
arrows at the end of the lines represent directions for axon growth. Light
coloured triangles show potential synaptic spots between neurons and red
triangles indicate established synapses. I: all 4 possible synapses, II: Serial
growth and III: parallel growth. All were accompanied by their adjacency
matrices. Numbers under the neurons in II and III represent the orders of
growing axons; neuron A starts growing its axon first and then after neuron A
finishes neuron B starts and neuron C and neuron D in order for serial growth
and neuron A, B, C and D start axon growth simultaneously. Here, neurons
are assumed to make only one synapse, which is an equivalent setting when the
radius of a neuron is 0.5 in the main text.
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Mann-Whitney test and corrected by Bonferroni , see methods in the main

text) and connection probability as a function of distance did not show a simple

exponential decrease (Figure 2.19). We believe that the model predictions and

the actual results from C. elegans were different because i) differences in local

efficiency between serial and parallel growth were less apparent and consistent

as other measures in all conditions Figure 2.15 and ii) connection probability in

our model depends mainly on the geometrical arrangement of dendrites (neuron

spheres) and axons, whereas the connectivity of C. elegans has additional

constraints such as its elongated body shape and the higher prevalence for

long-distance connections at the expense of having sub-optimal wiring cost

to facilitate efficient information transfer in the network (Kaiser & Hilgetag,

2006). Additional analysis of participation coefficient and within-module degree

(Guimera & Amaral, 2005) suggests that the higher local efficiency of late-born

neurons were attributable to their lower within-module degrees and participation

coefficients, which means late-born neurons were more connected within their

modules resulting in higher local efficiency than earlier-born neurons (Figure

2.19C). Within-module degree and participation coefficient show nodal or local

changes in modular organisation. Within-module degree indicates how well

a node is connected to other nodes in the same module (Guimera & Amaral,

2005); high within-module degree implies that the node is more connected to

nodes within the module in which it participates than the average connectivity

of the other nodes in the module. The participation coefficient indicates how

well the node is connected to all other modules with higher values if many

connections of the node are distributed to other modules.
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2.6.4. The effect on connection lengths when neurons change

their position during development.

The embedding space of neurons for axon growth and synaptogenesis of our

model was fixed during development, while internal volume changes through

neurite growth and external mechanical factors could change the location

of neurons and influence their synapse formation probabilities. To consider

the effect on connection lengths when neurons change their positions during

development, we need to consider the relative speed of axon and the movement

(or migration) of neurons during development, what direction each neuron

would choose to move or be forced to move during development due to the

growth of the whole body for instance, whether neurons would still move their

positions after they establish synapses with other neurons since it would affect

the connection length between neurons, whether the growth direction of axons

would change according to the position changes or not and so on. Thus, we

start with the simplest condition for thought experiments and generalise to

draw a conclusion.

For simplicity, let us assume that neurons can move their position in only

one direction, e.g., x-axis of the reference frame and assume that the axon

growth direction does not change. If the speed of axon growth is far faster

than the movement of neurons, we do not need to worry about the effect on

connection length because the changes of neurons’ positions would be negligible.

So the following scenarios assume that the speed of movement of neurons is

not negligible compared to that of axon growth. Let neuron A grow its axons

in the direction in the figure (Figure 2.20). Let the position of neuron A at

time t1 : X(t1) = (x1, x2, x3), the position of neuron A at time t2 : X(t2) =

(x1 + d1t, x2, x3) , the position of neuron B at time t1 : Y (t1) = (y1, y2, y3) and
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the position of neuron B at time t2 : Y (t2) = (y1 + d2t, y2, y3) , where t is the

time passed (t = t2 − t1) and d1 and d2 are the speeds in the x-axis direction

of neuron A and B, respectively.

i) When d1 = d2, that is when all neurons have the same speed in the same

direction (or the same velocity) to move their positions. As both of the neurons

moved along the x-axis with the same amount of displacement, the changes

of positions of neurons do not affect the synaptogenesis; if neuron A were to

establish a synapse with neuron B due to the close proximity between the

growth cone and the neuron B, then A would make a synapse with neuron

B if neuron B is available. The connection length between neuron A and B

that are connected is defined by the Euclidean distance between the centres of

neurons (Methods 2.2). The connection length is the same as before because

the distance between the two neurons is the square root of the sum of the

position differences, which is equivalent with the connection length before they

move to new positions. If those two neurons were not meant to be connected in

the first place, which means that the axon growth cone would not find neuron

B, then they would not be connected after both of them move their position in

the same direction with the same amount of displacement for both neurons.

Connection length (distance between the two neurons’ centres: ||X(t1) −

Y (t1)|| = ||X(t2)− Y (t2)|| when d1 = d2 and length are the same, therefore

is the same before they change their position, which means that if the growth

cone of A is meant to find neuron B it will find it after both of them move

laterally if B is available to accommodate another synapse.

ii) When d1 < d2 (assuming neuron A and B moves in the same direction), If

the growth cone could find neuron B in the vicinity (connectible range) in their
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original positions, after moving their positions the growth cone of neuron A

may not find neuron B because both the distance between neuron A and B ( l

) and the sinθ increased, it is more likely for neuron B to be away from the

connectible range.

iii) when d1 < d2, both and sin θ are decreased, if l sin θ is less than the

connectible range, neuron A can establish a synapse with neuron B when

neuron B is available. Now if neuron B does not move toward the same

direction as neuron A, everything depends on the neuron B; regardless of the

trajectory of neuron B’s movement, when the position of neuron B at time

t2 : Y (t2) falls within the connectible range of growth cone of neuron A, neuron

A can make a synapse with neuron B, otherwise there will be no synapse from

neuron A to neuron B.

In summary, depending on the position of the connectible neuron’s position

relative to the position of the axon growth cone, either neurons can establish

synapses or cannot make synapses. It will definitely change the results of the

simulation; however, it will not change the qualitative differences between serial

and parallel scenarios. If we assume that the neurons move their positions

further apart from each other, the average connection lengths would be longer

than that for the condition not assuming the expansion, nonetheless, the

intrinsic nature of the characteristics of serial and parallel growth scenarios

would remain the same.

2.6.5. Simulation parameters

Four growth scenario (Figure 2.1) are implemented as in the following four files.

All routines can be download from http://www.dynamical-connectome.org/

65

http://www.dynamical-connectome.org/


CHAPTER 2. TIME WINDOWS FOR AXON GROWTH

and other additional files including simulation dataset used in the paper (Lim &

Kaiser, 2015) and codes for additional conditions such as considering dendritic

growth of neurons and partially overlapping time windows for axon growth can

be found here https://github.com/springdance/BICYcodes.

devolution3d_ng_ray_parallel.m

devolution3d_ng_ray_serial.m

devoluton3d_ng_discrete_parallel.m

devolution3d_ng_discrete_serial.m

2.6.5.1. Input parameters

n: the total number of neurons in the embedding space.

limit : the side length of the regular hexahedron.

flagtaken: when it is set to 1, the number of maximum incoming connections

is limited. or competition among neurons is assumed.

cellradius: the radius of a neuron sphere.

flagsize: When set to 1, the radii of neurons are randomly assigned between 0

and the cellradius, otherwise all neurons have the same radius.

flagdistance: When set to 1, the distance between the growth cone and the

connectible neuron is calculated considering the radius of the connectible neu-

ron, otherwise the distance is calculated without considering the radius of the

connectible neuron.

mplace: the maximum number of incoming connections.

range: the proximity criterion, a synapse is established when some neurons

are within the range from the growing growth cone.
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2.6.5.2. Output variables

matrix: the adjacency matrix

positions: the x,y,z coordinates of the centres of neurons

connectible: indices of connectible neurons

connection: indices of connected neurons

fc_abs: the total number of potential connectible synaptic places.

w: the lengths of connections

fc: filling fraction, which is the ratio of the number of established synapses to

the total number of potential synaptic spots ((Stepanyants et al., 2002)).
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Figure 2.19.: A. Density distribution of local efficiency. Dashed line represents
the median of the distribution, B. Boxplot of three birth time group and local
efficiency, color scheme follows the main text. C. Participation coefficient and
within-module degree Z, D. Connection probability as a function of distance.
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Figure 2.20.: Solid circles are neurons A, B, C and D. Dashed lines with
arrows at the end of the lines represent directions for axon growth. Light
coloured triangles show potential synaptic spots between neurons and red
triangles indicate established synapses. I: all 4 possible synapses, II: Serial
growth and III: parallel growth. All were accompanied by their adjacency
matrices. Numbers under the neurons in II and III represent the orders of
growing axons; neuron A starts growing its axon first and then after neuron A
finishes neuron B starts and neuron C and neuron D in order for serial growth
and neuron A, B, C and D start axon growth simultaneously. Here, neurons
are assumed to make only one synapse, which is an equivalent setting when the
radius of a neuron is 0.5 in the main text.
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Macroscopic brain network
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3. Preferential detachment during

human brain development: Age-

and sex-specific structural

connectivity in Diffusion Tensor

Imaging (DTI)-data

In the previous chapter, I investigated the role of developmental time windows

for axon growth on the neuronal network, which is a microscopic scale of the

brain network. In this chapter, I examine the re-organising principles of the

human brain network using DTI in the macroscopic perspective. Unlike the

previous chapter, the brain connectivity in this chapter discuss how areas in

the brain, not at a single neuron level, are interconnected by white matter

axon bundles. As human brain maturation is characterised by the prolonged

development that extends into adulthood, I focus mainly on which features

change and which remain stable over time and what could be the possible

underlying driving principle to achieve the patterns that I observe. Here, I

examined structural connectivity based on DTI in 121 participants between 4 to

40 years of age. In summary, findings suggest that core properties of structural

brain connectivity, such as the small-world and modular organisation, remain

stable during brain maturation by focusing streamline loss to specific types of

fibre tracts, which I call preferential detachment. This chapter is based on (Lim

et al., 2013).
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3.1. Introduction

Human brain development is characterised by a protracted trajectory that

extends into adulthood (Benes et al., 1994; Sowell et al., 1999; Lebel & Beaulieu,

2011). Evidence from magnetic resonance imaging (MRI) has indicated a

reduction in grey matter (GM) volume and thickness across large areas of

the cortex and changes in subcortical structures, which may be attributed

to synaptic pruning and ingrowth of white matter (WM) into the peripheral

neuropil (Sowell et al., 1999; Sowell et al., 2001; Sowell, 2004; Giedd, 2008;

Giedd & Rapoport, 2010). In contrast, WM-volume increases with age (Giedd

et al., 1997; Giedd et al., 1999b; Paus et al., 1999; Bartzokis et al., 2001; Sowell,

2004; Lenroot et al., 2007) which could reflect increased myelination of axonal

connections (Sowell et al., 2001; Sowell, 2004).

In addition to volume changes, connectivity changes of axonal fibre bundles

have been investigated using Diffusion Tensor Imaging (DTI). DTI allows

the measurement of fibre integrity through estimates of fractional anisotropy

(FA) and mean diffusivity (MD), which presumably relate to changes in axonal

diameter, density and myelination (Jones, 2010; Jbabdi & Johansen-Berg, 2011).

Several studies reported increased FA and decreased MD-values from childhood

into adulthood in several major fibre tracts and brain regions (Faria et al., 2010;

Tamnes et al., 2010; Westlye et al., 2009; Lebel & Beaulieu, 2011).

Brain maturation is also accompanied by changes in the topology of structural

and functional networks (Fair et al., 2009; Gong et al., 2009; Hagmann et al.,

2010; Yap et al., 2011a; Dennis et al., 2013). Topological features of neural

networks that are now being linked to cognitive performance (Bullmore &

Sporns, 2009) concern their small-world and modular organisation. For small-
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world network with brain regions or ROIs as nodes and fibre tracts as edges,

there are many connections between regions mostly located nearby. At the same

time, it is also easy to reach other brain regions far apart in the network due to

the existence of long-range connections or short-cuts (Watts & Strogatz, 1998).

Therefore, small-world network shows high efficiency in facilitating information

flow at both the local and the global scale (Latora & Marchiori, 2001; Latora

& Marchiori, 2003). For example, functional connectivity with high global and

local efficiency correlates with higher intelligence (Li et al., 2009; van den Heuvel

et al., 2009), while disrupted small-world topology is associated with impaired

cognition (Stam et al., 2007; Nir et al., 2012). For a modular organisation, large

groups of brain regions can be considered as network modules (or clusters) if

there are relatively more connections within that group than to the rest of the

network (Hilgetag et al., 2000; Meunier et al., 2010). The higher connectivity

within modules can segregate different types of neural information processing

while fewer connections between modules allow for information integration.

This community structure of the brain network incorporating and balancing

both segregation and integration of neural processing has been shown to be

disrupted in schizophrenic, autistic and Alzheimer’s brains (Alexander-Bloch

et al., 2010; de Haan et al., 2012; Shi et al., 2013).

Small-world and modular organisation heavily rely on long-distance connectivity:

long fibre tracts are more likely to provide short-cuts for reaching other nodes

in the network and are also more likely to link different network modules

(Kaiser & Hilgetag, 2006). For example, connections between hemispheres

or between the visual and fronto-limbic network module are long-distance.

By providing short-cuts, long-distance connections reduce transmission delays

and errors, consequently enabling synchronous and more precise information

processing. Conversely, a reduction in long-distance connectivity is well known
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to impair cognitive ability by adversely affecting efficiency and modularity of

a network (Kaiser & Hilgetag, 2004). For instance, patients with Alzheimer’s

diseases were shown to lose long-distance projections leading to an increase

in functional path length (Stam et al., 2007). In addition to long-distance

connections, inter-module connections, or fibre tracts linking different modules

are also important to keep the community structure of brain networks and these

also provide short-cuts for communicating with other functional or structural

modules. Reduced between-module connectivity was strongly associated with

cognitive impairment in Alzheimer’s patients (de Haan et al., 2012).

Emerging data suggest that small-world topology and modular organisation in

brain networks are already present during early development (Fan et al., 2011;

Yap et al., 2011a). Despite of appreciable anatomical changes during brain

maturation, these core topological features have shown to be spared (Bassett

et al., 2008; Fair et al., 2009; Gong et al., 2009; Supekar et al., 2009; Hagmann

et al., 2010). Thus, we hypothesised that certain types of fibre tracts might have

been preferentially affected during development to retain important topological

features during development. These potentially spared fibre tract types are

likely to include long-distance connections but also fibre tracts composed of

fewer streamlines and inter-module fibre tracts. Fibre tracts of the latter two

types are often, but not necessarily, also long-distance connections (Discussion

3.4 and Figure 3.10). Therefore we analysed all three types of fibre tracts in

relation to topological changes.

To test our hypothesis, we obtained DTI-data from a large cohort of subjects

between 4 to 40 years and constructed streamlines from deterministic tractog-

raphy to identify fibre tracts in cortical and subcortical networks. Our results

show that the number of streamlines overall decreased with age while small-

76



CHAPTER 3. PREFERENTIAL DETACHMENT

world and modular parameters did not change. Specifically, our results showed

that streamline loss occurred mostly for fibre tracts composed of more than

average number of streamlines, short and within-module/within-hemisphere

fibre tracts. This focus on certain types of fibre tracts goes beyond what would

be expected by a type’s prevalence within network suggesting a preferential

detachment of streamlines. In addition to modifications in cortical fibre tracts,

pronounced changes were observed in subcortical structures in basal ganglia

and in anterior cingulate cortex. Finally, streamline-reductions occurred at

an earlier age in females than in males, suggesting sex-specific maturation of

connectivity patterns during human brain maturation.

3.2. Methods and materials

3.2.1. DTI-Data

We made use of a public DTI-database (http://fcon_1000.projects.nitrc.

org/indi/pro/nki.html) provided by the Nathan Kline Institute (NKI) (Nooner

et al., 2012). DTI-data were obtained with a 3 Tesla scanner (Siemens MAG-

NETOM TrioTim syngo, Erlangen, Germany). T1 weighted MRI data were

obtained with 1 mm isovoxel, FoV = 256 mm, TR = 2500 ms, and TE = 3.5

ms. DTI data were recorded with 2 mm isovoxel, FoV = 256 mm, TR = 100000

ms, TE = 91 ms, and 64 diffusion directions with b-factor of 1000 s/mm2 and

12 b0 images. We included 121 participants between 4 and 40 years.
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3.2.2. Data pre-processing and network construction

We used Freesurfer to obtain surface meshes of the boundary between GM

and WM from T1 anatomical brain images (http://surfer.nmr.mgh.harvard.

edu) (Figure 3.1). After registering surface meshes into the DTI space, we

generated volume regions of interest (ROIs) based on GM-voxels. Freesurfer

provides parcellation of 34 anatomical regions of cortices based on the Deskian

atlas (Fischl et al., 2004; Desikan et al., 2006) and 7 subcortical regions

(Nucleus accumbens, Amygdala, Caudate, Hippocampus, Pallidum, Putamen,

and Thalamus) (Fischl et al., 2002; Fischl et al., 2004) for each hemisphere,

thus leading to 82 ROIs in total (See Table 3.7 for full and abbreviated names

of ROIs).

To obtain streamline tractography from eddy-current corrected diffusion tensor

images (FSL, http://www.fmrib.ox.ac.uk/fsl/), we used the Fibre Assign-

ment by Continuous Tracking (FACT) algorithm (Mori & Barker, 1999; Mori

& van Zijl, 2002) with 35 degrees of angle threshold through Diffusion toolkit

along with TrackVis (Wang et al., 2007) (Figure 3.1). This program generated

the tractography from the centre of all voxels (seed voxels) in GM/WM except

ventricles; from each voxel’s centre coordinates started a single streamline. Thus,

the number of total streamlines never exceeds the number of seed voxels.

In addition, we performed tractography with the following parameters: 1) 45

degrees of angle threshold with a single seed point and 2) 10 random tracking

per voxel for both and 35 and 45 degrees of angular thresholds, in total 3 more

cases. These additional analyses were performed to assure that the results

were consistent despite varied tracking parameters (Figure 3.12). For network

reconstruction, we used the UCLA Multimodal Connectivity Package (UMCP,
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http://ccn.ucla.edu/wiki/index.php) to obtain connectivity matrices from

the defined and registered ROIs and tractography, counting the number of

streamlines between all pairs of defined ROIs. The resulting matrix contains

the streamline count between all pairs of ROIs as its weight. We also computed

the average connection lengths between ROIs (if there is no connection between

a pair, the length was set to zero). The connection length of a streamline was

based on its three-dimensional trajectory.

d

Figure 3.1.: From T1-weighted images, we generated 82 regions of interests
(ROIs, 34 cortical areas and 7 subcortical areas per hemisphere, on the left).
From diffusion tensor images (DTI), we reconstructed streamlines using de-
terministic tracking (on the right). Combining two pre-processing steps, we
constructed weighted networks, where the number of streamlines between any
pair of ROIs formed the weight of an edge (fibre tract).
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3.2.3. Network analysis

Short explanations of network measures are provided here (for details, see

Section 1.1). Edge density represents the proportion of existing connections

out of the total number of potential connections (Kaiser, 2011). Note that the

weights of individual edges (streamline count) might change but edge density

will remain the same as long as the total number of edges (fibre tracts) is

unchanged. Small-world topology can be characterised by high global and

local efficiency (Latora & Marchiori, 2001; Latora & Marchiori, 2003). Global

efficiency represents how efficiently neural activity or information is transferred

between any brain regions on average and local efficiency indicates how well

neighbours of a region, or nodes that are directly connected to that region, are

interconnected. Efficiency is greatly affected by the sparsity of the network

(Kaiser, 2011); when there are fewer edges and also even fewer streamlines,

efficiency decreases. Thus, we normalised efficiency with values obtained by 100

randomly rewired networks where randomly selected edges were exchanged while

preserving both degree and strength of each node (Rubinov & Sporns, 2011).

Modularity Q represents how modular the network is; higher values of Q indicate

that modules are more segregated with fewer connections between modules.

In contrast, lower Q-values indicate more connections between modules and

thus represent a more distributed connection distribution (Newman, 2006).

We also compared the modular membership assignment using the normalized

mutual information (NMI) (Alexander-Bloch et al., 2012). Within-module

strength and participation coefficient show nodal or local changes in modular

organisation. Within-module strength indicates the degree to which a node

is connected to others nodes in the same module (Guimera & Amaral, 2005);

high within-module strength implies that the node is more connected to nodes
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within the module in which it participates than the average connectivity of the

other nodes in the module. The participation coefficient indicates how well the

node is connected to all other modules with higher values if many connections

of the node are distributed to other modules. We used Matlab routines from

the Brain Connectivity Toolbox (Rubinov & Sporns, 2010).

3.2.3.1. Modular membership assignment

In addition to general linear model analysis across the entire age-range, we also

grouped participants into five age-categories for modular membership analysis

(Table 3.1). We tested the modular organization across age by matching

module assignments of each participant to a representative participant whose

average Normalized Mutual Information (NMI) is the closest to that of all other

participants in an age group (Alexander-Bloch et al., 2012). NMI quantifies how

similar two modular structures are using information theory. We performed

this procedure for each group and compared them by an omnibus test and also

comparisons of consecutive groups.

NMI(A,B) =
−2
∑CA

i=1

∑CB
j=1Nij log

(
NijN
NiNj

)
∑CA

i=1Nilog
(
Ni
N

)
+
∑CB

j=1Nj log
(
Nj

N

) (3.1)

where N is the number of nodes, CA is the number of modules in structure

A, CB is the number of modules in structure B, Ni is the number of nodes in

the ith module of structure A, Nj is the number of nodes in the jth modules of

structure B, and Nij is the number of nodes which are intersection of the ith

module of structure A and the jth module of structure B.

We performed this procedure for each group (Table 3.1). Matching algo-
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rithm maximized the overlap between modular structures. After matching the

participants to the representative participants, we estimated most-frequently

assignment for each node and compute the certainty as the ratio of the partic-

ipants whose modular membership is the most-frequently-assignment to the

number of total participants in the group.

In contrast to the previous methods (Duarte-Carvajalino et al., 2011): averaging

of connectivity matrices of individuals before estimating modular structure;

(Fair et al., 2009), averaging registered MRI scans before extracting networks),

this method would 1) prevent the possibility that a spurious connectivity,

which only exists in part of participants, may affect the modular structure and

2) provide how consistent modular membership were assigned to each node,

showing inter-participant variability of modular membership assignment.

Alexander Bloch et al. (Alexander-Bloch et al., 2012) also statistically tested

regional differences in the modular membership between two groups, using the

permutation test. For each node, they computed Pearson correlation coefficient

of modular membership of the node between two participants, constructing sim-

ilarity matrix of modular membership of the node. If there is a between-group

Table 3.1.: Subject statistics of five age groups. For the membership assignment
comparison, we grouped our subjects into five age groups. The ratios between
males and females were not significantly different between groups (χ2 test,
χ2(df = 4) = 2.539, p = 0.638).

Age range [years] Number of subjects Male/Female Age Mean(SD)
4-11 13 6/7 8.31 (2.18)
12-15 20 13/7 13.60 ( 0.99)
16-19 14 7/7 17.43 (1.16)
20-28 48 30/18 23.19 (2.46)
29-40 26 13/13 34.19 (3.77)
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difference, then the average within-group correlation would be higher than the

between-group correlation. Using the permutation test (with 10,000 permu-

tations), they sampled the distribution of average within-group correlations

over permutations, and check where the true average within-group correlations

was located to estimate p-value that the node’s membership assignment differs

between groups.

In this study, with the Pearson correlation coefficient for modular membership

of each node, we followed Kropf et al. (Kropf et al., 2004) to compare modular

structure of multiple groups, because Alexander Bloch et al. (Alexander-Bloch

et al., 2012)’s permutation test only works for two groups. Instead of estimating

the distribution of average within-group correlation, Kropf et al. (Kropf et al.,

2004) pursued the distribution of distances between average within-group

correlation and average between-group correlation.

3.2.4. Edge group analysis

We grouped fibre tracts into categories in terms of (a) the number of streamlines

(thin vs. thick), (b) the length of the streamline trajectory (short vs. long)

and (c) whether they were within modules (intra-module) or between modules

(inter-module) and counted the streamlines in each group. Then we examined

with general linear model (GLM) if the number of streamlines in each category

changed over age (see Section 3.2.6).

As the spatial (b) and topological (c) properties often overlap but do not

always coincide (Figure 3.10), we investigated all three cases (Costa et al.,

2007; Meunier et al., 2010). In general, more streamlines existed in ‘thick’ (by

definition), short-length and intra-module edges. Therefore, larger changes in
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those edges would occur for random selection. Accordingly, we used χ2 tests

to verify any preferential detachment that goes beyond the streamline loss

that would be expected based on the number of fibre tracts of each type. We

standardised weights and lengths for each individual and categorised edge into

two groups by the mean of each participant to account for differences in brain

volume and size. For instance, an edge or a fibre tract for a participant is

classified as ‘thin’ when the weight of the fibre tract is less than the average

weight of the participant. Likewise, a fibre tract is considered ‘thick’ when

the weight is above the average of the participant. The same procedure was

performed to differentiate short and long fibre tracts. Therefore, types of fibre

tracts were distinguished using a subject-specific threshold.

3.2.5. Individual edge analysis

In addition to analysing types of fibre tracts differences, we also examined

changes for individual edges that included the subset of total fibre tracts that

all participants had in common (128 edges, approximately 32.3% of the total

number of edges 396 ± 20). Note that the total number of edges was around

400, which is 12% of the total number (n = 3321) of possible connections. This

proportion is consistent with previous evidence suggesting that the human

brain has a sparse connectivity ranging between 10 to 15% (Kaiser, 2011).

To analyse individual edges, each edge with significant age-related changes

was mapped to the corresponding lobe according to Freesurfer Lobe Mapping

(http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation).
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3.2.6. Statistical analysis

To assess how theoretical graph measures changed during development, we

used linear model approach (see Eq.(3.2), Eq.(3.3), and Eq.(3.4)). Linear

and quadratic effects of age and the interaction between age and gender were

investigated. The quadratic term of age, gender factor and the interaction term

between age and gender were dropped and refitted when the effects were not

significant following an F test as all tested models were nested. AIC (Akaike

Information Criterion) and BIC (Bayesian Information Criterion) were also

used for model comparison and selecting variables when the F test alone did not

provide a strong preference for a model. As AIC tends to prefer more complex

models with a larger number of variables compared to BIC (Kadane & Lazar,

2004), AIC and the F test provided consistent results in general. When the

results of the three tests conflicted, we chose the most conservative model with

a smaller number of variables. Two-tailed tests were used for all analyses and

tests were regarded as significant with an α level of 0.05. Quadratic age effect

was found to be significant in a few fibre tracts but occurred less frequently

than linear cases. We therefore chose to report age effects of the numbers of

streamlines where decrease and increase could follow a linear or, less often, a

non-linear pattern.

y = β0 + β1 × age+ β2 × sex+ ε (3.2)

y = β0 + β1 × age+ β2 × sex+ β3 × age× sex+ ε (3.3)

y = β0 + β1 × age+ β2 × sex+ ε (3.4)

where y: measurement, β0: intercept (bias), β1: slope over age, β2: coefficient

for sex difference, β3: coefficient for interaction effect of age (years) and sex
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(binary) or quadratic age effect, ε: errors (noise), which are independent and

identically distributed, having a Gaussian (i.e., normal) distribution with mean

zero and variance σ2.

Through the group analysis of edges (Section 3.2.4), we identified which types

of edges were undergoing developmental changes. Using repeated measures

GLM, we tested whether two groups had different slopes and χ2 tests were

used for verifying the slope difference of GLM considering the proportion of

each group with each individual network. For individual edge analysis, χ2

tests, and nodal properties such as within-module strength and participation

coefficients, False Discovery Rate (FDR) procedure was used with a q level

of 0.05, adjusting significance level and confidence intervals (Benjamini &

Hochberg, 1995; Benjamini et al., 2005; Jung et al., 2011). All statistical tests

were calculated in Matlab R2012b (Mathworks Inc., Natick, MA) and R (R

Core Team, 2014) with R packages (Lemon, 2006; Bengtsson, 2007; Sarkar,

2008; Suter, 2011; Weisberg & Fox, 2011).

3.3. Results

We performed a combined analysis of fibre tracts with network parameters

to examine on-going changes in fibre tracts in terms of small-world topology

and modularity, which may account for a relationship between topological

changes and modifications in fibre tracts. We compared developmental changes

examining the following features: (1) overall connectedness: total number of

streamlines, edge density, and thin vs. thick connectivity, (2) small-world

organisation: efficiency and short vs. long-distance connectivity, (3) modular

organisation: modularity and within vs. between module connectivity, and (4)
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local organisation: individual edge analysis.

3.3.1. Age effect for both genders

3.3.1.1. Connectedness

3.3.1.1.1. Streamline count vs. Edge density

The total number of streamlines decreased (β1 = −68.87, t(118) = −5.796,

p < 0.001, Figure 3.2A) with age; however, edge density remained stable

(t(118) = 0.757, p = 0.451, Figure 3.2B).

3.3.1.1.2. Thick vs. Thin

Edge density or the number of fibre tracts could be maintained either through

new fibre tracts that make up for lost fibre tracts due to streamline reduction

or through sparing thin edges and therefore retaining existing fibre tracts while

changing only weights for fibre tracts. To test the latter hypothesis, we tested

whether there were differences in developmental patterns of thick or thin edges

(See Section 3.2.4).

Streamlines in both thick and thin edges decreased with age (thick edges:

β1 = −60.184, t(118) = −6.195, p < 0.001, Figure 3.2C; thin edges: β1 = −8.685,

t(118) = −3.27, p = 0.001). However, the slopes between thick and thin

edges were significantly different (repeated measures GLM, F(1,119) = 40.196,

p < 10−8, Figure 3.2C) with the slope of thick edges showing an approximately

eight times steeper slope than thin edges. This preferential reduction of
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streamlines within thick edges could not be explained by the frequencies of thin

and thick fibre tracts (χ2 test, p < 10−20).

3.3.1.2. Small-world topology and long-distance connectivity

3.3.1.2.1. Efficiency and small-world topology

Global and local efficiency decreased during development (Global: β1 = −0.001,

t(118) = −2.496, p = 0.014, Figure 3.2D, Local: β1 = −0.019, t(118) = −4.435,

p < 0.001, Figure 3.2E). Although global and local efficiency may have been

slightly compromised by the loss of streamlines, small-world features were

maintained; global efficiency paralleled that of the rewired network (0.88 ±

0.036 approximately 0.9) while local efficiency was much higher (4.06 ± 0.446

approximately four-fold) than that of the random networks.

3.3.1.2.2. Short vs. long-distance connectivity

As topological and spatial organisations are often linked (Kaiser & Hilgetag,

2006; Costa et al., 2007; Meunier et al., 2010), we tested whether the pattern

of changes in short- and long-distance connectivity corresponded to changes in

efficiency. From the preserved small-world topology, we would expect long fibre

tracts were likely to be conserved. Decreasing slopes of the streamline count

between short and long edges were significantly different (F(1,119) = 44.965,

p < 10−9) with short-distance connections showing a pronounced reduction

(Short: β1 = −61.515, t(118) = −6.773, p < 10−9, Figure 3.2 F), which was

not solely explained by a higher proportion of short-distance edges (χ2 test,

p < 10−6).
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Figure 3.2.: Topological and spatial network properties. Fitted lines were
drawn when there was a significant age effect (Red: female, Blue: male). When
multiple lines were drawn, the lines are parallel unless otherwise noted. Black
line represents significant age affect without a sex difference. A. Total number
of streamlines B. Edge density C. Streamline count in thick vs. thin edges E.
Global efficiency F. Local efficiency, and G. Streamline count in short vs. long
streamlines

3.3.2. Modular organisation

3.3.2.1. Modularity and module membership assignment

Modularity did not change with age (t(118) = −1.335, p < 0.184, Figure 3.4A)

and community structure remained stable during development (Figure 3.3).

Overall modular organisation based on the normalized mutual information

(Eq.3.1) did not differ across age (p = 0.355) and there were no significant

nodal changes in membership assignment after multiple comparison correction
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using FDR with a q level of 0.05.
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Figure 3.3.: Modular structure over four age groups (shown table 3.1): 4-11
y/o (A & E), 12-15 y/o (B & F), 16-19 y/o (C & G), and 20-28 y/o (D &
H). For each group, we selected the representative participant which showed
the smallest average normalized mutual information (NMI), and matched all
the other participants to the representative participant, maximizing overlaps
between modular memberships. Then we counted the most frequently occurred
community membership over each group (upper row, A, B, C, and D) and
showed the ratio of the most-frequently occurred community membership to the
number of participants in each group as a certainty of averaging (within-group
certainty, bottom row, E, F, G, and H). In the upper row, the community
structure is largely unchanged with left anterior (purple), left posterior (white),
right anterior (red), and right posterior (green) modules. . The left anterior
module (white) was located on the frontal lobe and extended to the parietal
lobe and temporal lobe, while left posterior module (purple) resided in the
left occipital and parietal lobes. Right anterior module (red) in the frontal
lobe and extended to the right temporal lobe occasionally, while right posterior
(green) resides mostly in the occipital lobe and extended to the parietal and
temporal lobes. The left central module (blue) was very small in the youngest
age group (two nodes). In the bottom row, the whiter circles represent more
certain modular membership assignment, where red circle showed the nodes
whose average certainty is below 50%. In the modular organization of the
youngest group, there were only two nodes in the green module but it does not
mean that there were only two nodes in the particular module. The number of
nodes in the green module varied from 0 to 13; there were very high variability
thus having very low certainty; consistent results were only for two nodes but
the module is much larger for each individual member of that age group.
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3.3.2.2. Within-module strength and Participation coefficient

Twenty out of 82 ROIs (24.4%) showed significant changes in within-module

strengths and participation coefficients (FDR corrected). Overall changes were

asymmetric between hemispheres, affecting homologous ROIs either in the left

or right hemisphere. Ten of the 24 ROIs (42%) characterized by age effects were

areas in subcortical regions, such as the basal ganglia, thalamus and nucleus

accumbens (Table 3.2). Specifically within-module strengths decreased while

participation coefficients increased, indicating that with development connec-

tions involving basal ganglia decreased within its module while connections to

the surrounding modules/regions decreased. In contrast, eight ROIs within the

anterior cingulate cortex and the paralimbic division (Mesulam, 2000) were

mainly characterized by increased within-module connectivity with age.

Table 3.2.: ROIs with age effect in within-module strength (WMS) and
participation coefficient (PC)

Increased Decreased Sex-specific

WMS

lh.caudalanteriorcingulate (F) lh.thalamus lh.putamen
lh.entorhinal (T) lh.accumbens m: decreased
lh.parahippocampal (T) rh.putamen (f >m) rh.paracentral (F)
rh.caudalanteriorcingulate (F) rh.pallidum m:Increased
rh.rostralanteriorcingulate (F)

PC

lh.putamen rh.caudalanteriorcingulate (F) lh.medialorbitofrontal (F)
lh.pallidum rh.paracentral (F) m: increased
rh.caudate rh.posteriorcingulate (P) rh.insula (m >f)
rh.putamen (m >f)
rh.pallidum (m >f)

Note: Basal ganglia showing a more distributed network and anterior cingulate
cortex showed a more focused connectivity within its module (Blue: cingulate
cortex, Black(bold): subcortical areas, F: frontal lobe, P: parietal lobe, T:
temporal lobe, O: occipital lobe, lh: left hemisphere, rh: right hemisphere, f:
female, m: male, FDR corrected, with a q level of 0.05).
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3.3.2.3. Within vs. between module analysis

Modular membership and modularity Q stayed relatively stable during develop-

ment although there were some ROIs that showed significant changes in terms

of inter- vs. intra-modules connectivity (Section 3.3.2.2, Table 3.2). This can

be realized when changes occurred mainly within modules. The decreasing

slopes of streamline count for intra- and inter-module edges differed (repeated

measures GLM, F(1,119) = 33.186, p < 10−7). The reduction of streamlines

occurred within modules (β1 = −61.25, t(118) = −6.321, p < 10−8, Figure 3.4B)

but not between modules (t(118) = −1.831, p = 0.0696, Figure 3.4B). This

preference was not fully explained by the higher proportion of intra-module

edges (χ2 test, p < 10−6).

3.3.2.4. Individual edge analysis

To identify edge-specific age effects, we investigated 128 edges found in all

participants (total number of edges: 396 ± 20), of which 64 edges showed

significant age-related changes. The findings were consistent across different

tractography parameters (Figure 3.12). First, 57 edges (89%) showed develop-

mental changes: Fifty-five edges (86%) showed a reduced number of streamlines

while only 2 (3%) had an increased streamline count (Figure 3.4C & 3.6A,

Table 3.4). Reduction of streamlines was most pronounced in the frontal lobe;

increased number of streamlines only occurred for two connections (3%) of

cingulate cortex. These changes for both genders mainly occurred in the frontal

and parietal lobe.
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Figure 3.4.: Modular organisation. A. modularity Q, B. Streamline count
in within vs. between module edges, and C individual edge analysis (Grey:
intra-module edges and Light grey: inter-module edges, both without changes
over age; Red: edges with a decreased streamline count, Blue: edges with an
increased streamline count and Yellow: edges with sex-specific changes). When
multiple lines were drawn, the lines are parallel unless otherwise noted. A list
of all changes is provided in Table 3.3 for sex-specific changes and Table 3.4 for
age effect.

3.3.2.5. Sex-specific age-related changes

Unlike developmental changes for both males and females, only several network

properties showed sex-specific developmental changes. While both male and

females lost short streamlines, only female participants were characterized by a

decrease in long streamlines. However, this decrease was less pronounced than

the reduction in short streamlines (β1 = −21.229, t(50) = −3.372, p = 0.001,

Figure 3.2F). While global modular organisation did not show sex differences,

three regions out of 20 showed sex-specific developmental changes in within-
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CBA

FED

Female

Male

Figure 3.5.: Sex-specific developmental changes in individual edge analysis
for male (A, B, and C) and for female subjects (D, E, and F), where red edges
represent significant decrease, blue edges indicate significant increases over
development, grey edges illustrate the tested edges that all subjects shared
in common and the sex-specific changes were emphasised by the thick edges.
A &C: sagittal views of the left hemisphere, B & D: transverse view, and
C & F: sagittal views of the right hemisphere, of male and female brains,
respectively. A. Two edges showed age-related changes; one in the temporal
lobe lost streamlines and the other edge in the occipital lobe gained streamlines.
C. An edge in the parietal lobe lost streamlines. D. Two edges in the temporal
and the occipital lobes lost streamlines. F. Two edges in the frontal and parietal
lobes lost streamlines.

module strength and participation coefficients (Table 3.2). In the individual

fibre tract analysis, changes that only affected one gender occurred in seven

fibre tracts (11%) (Figure 3.4C, 3.5 and 3.7B, Table 3.3). There were four edges

with age-effect only in females, and three edges only in males, mostly involving

occipital and parietal regions.
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Table 3.3.: Edges with sex-specific age-related changes

ROI (node) Lobe ROI (node) Lobe Sex Slope FDR adjusted P
lh.cuneus O lh.pericalcarine O Male 1.035 0.0002
lh.fusiform T lh.lateraloccipital O Female -0.9 0.041
lh.lingual O lh.pericalcarine O Female -0.535 0.041
lh.transversetemporal T lh.insula Male -0.908 0.0002
rh.postcentral P rh.insula Male -0.747 0.001
rh.medialorbitofrontal F rh.rostralanteriorcingulate P Female -0.769 0.0003
rh.precuneus P rh.superiorparietal P Female -1.351 0.023
F:1 P:4 T:2 O:5

3.3.2.6. Differences independent of age

Males had approximately 800 more streamlines than females across age (t(118) =

−3.949, p < 0.001, Figure 3.2A) mainly due to larger brain size. In particular,

males had larger number of streamlines for within-module edges (Figure 3.9).

Although males showed a substantially larger number of streamlines, male and

female participants demonstrated comparable edge density (t(118) = −0.880,

p = 0.381, Figure 3.2B) as well as global efficiency (Global: t(118) = 1.598, p =

0.113, Figure 3.2D). However, females showed higher local efficiency than males

(Local: t(118) = 2.891, p = 0.005, Figure 3.2E). Modularity (t(118) = −0.409,

p = 0.684, Figure 3.4A) and overall modular organisation based on NMI also

did not differ between genders (p = 0.177). Most ROIs did not show gender

differences in within-module strength and participation coefficient except 4

ROIs (Table 3.2).

3.4. Discussion

In this study, we investigated changes in structural connectivity between ages

of 4 and 40 years from DTI data in cortical and subcortical regions. Previous
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Figure 3.6.: Sex-specific developmental changes. A-G: scatter plots of stream-
line count with relevant fitted lines. Red: Female, Blue: Male. Upper panel:
The four fibre tracts demonstrating age effects only for females Lower panel: the
three fibre tracts displaying age effects only for males. Lh: left hemisphere, rh:
right hemisphere. A. The fibre tract between lh.fusiform and lh.lateraloccipital
showing a reduction of streamline counts only for females. B. The fibre tract be-
tween lh.lingual and lh.pericalcarine with a decreased number of streamlines for
females, C. rh.medialorbitofrontal - rh.rostralanteriorcingulate, D. rh.precuneus
- rh.superiorparietal, E. The fibre tract between lh.transversetemporal and
lh.insula with a reduced number of streamlines over age only for males, F.
rh.postcentral - rh.insula, G. lh.cuneus - lh.pericalcarine. The rate of change
per year and corresponding p value is included in the figure and FDR-adjusted
p-values can be found in Table 3.3.

studies had shown that the human brain undergoes vast structural changes

involving alterations in the topology of structural and functional connectivity.

Yet, core properties such as small-world topology and modular organisation

were retained throughout development (Fair et al., 2009; Gong et al., 2009;
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Figure 3.7.: Individual edge slopes representing age effect per year with FDR
adjusted confidence intervals. A. Individual edge age effect for both genders.
x-axis: indices of edges, y-axis: coefficients for age effect per year with FDR
adjusted confidence intervals. The last two edges with positive slopes and
confidence interval ranges are the edges with an increased streamline count
and the others are the fibre tracts characterised by a decreased number of
streamlines. B. Age-related sex effect. x-axis: indices of edges, First four edges
show decreasing rate of streamline count for females and the rest three edges
display age effect for males, y-axis: coefficients for age effect per year with FDR
adjusted confidence intervals.

Supekar et al., 2009; Hagmann et al., 2010; Dennis et al., 2013). Therefore, we

examined if specific types of fibre tracts were preferentially affected, which might

be conducive to conserving major topological features. Our results show that

small-world features, the number of fibre tracts, and the modular organisation

remained largely stable over age despite a significant reduction of streamlines

in fibre tracts. This reduction preferentially affected fibre tracts that were

relatively short, consisted of more streamlines and were within topological

modules (Figure 3.8 A & B). Finally, streamline loss occurred at an earlier age

in females than in males.
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Figure 3.8.: A & B The schematic summary of the preferential reduction of
thick, short and within-module streamlines over age. A. Location of change: Two
ellipses represent left and right hemispheres and small circles inside hemispheres
indicate ROIs. Lines connecting ROIs illustrate fibre tracts between ROIs.
Red lines are where the reduction of streamlines occurred; thick, short or
intra-module edges were mostly affected. B. Magnitude of change: Short, thick,
or intra-module edges lost more streamlines than long, thin, or inter-module
edges. X-axis: either long, thin, or inter-module streamline count (SC), y-axis:
either short, thick, or intra-module SC. C & D: Hypothetical developmental
curves for males (blue) and females (red). C. For the total streamline count
based on the observation of our data (Figure 3.2A): a longer-lasting and higher
peaked increase and a delayed decrease in males. D For individual edges: we
observed sex-specific development (Figure 3.5C), which can be explained by
three representative cases: if the two curves strongly overlap they show similar
decreasing patterns (case 1), if one of the curves peaks later, one curve shows a
decreasing pattern while the other curve is still increasing (case 3) or simply
not decreasing yet (case 2). Therefore, depending on the time scale of the
developmental trajectory, males and females may show different patterns.
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Stable small-world and modular organisation with preferential stream-

line loss within short-distance, thick, and intra-modular fibre tracts

We found that fewer long-distance, thin, and inter-modular fibre tracts showed

streamline loss than would be expected given how often such fibre tracts could

have been affected by chance. This preferential streamline loss has several

implications for the stable topological features that we observed. First, we found

that small-world features were retained over age despite the overall reduction

in the number of streamlines. A significant decrease in many long-distance

streamlines would remove short-cuts and result in larger path lengths and

reduced global efficiency while fewer connections between neighbours would

decrease local clustering and local efficiency, disrupting small-world features of a

brain network. However, global efficiency stayed comparable to that of rewired

networks, local efficiency was much higher than in rewired networks across age,

conserving small-world topology (Latora & Marchiori, 2001; Latora & Marchiori,

2003). We would therefore expect changes mainly in short-distance connectivity.

Indeed, short streamlines were mostly affected and long-distance connectivity

was rather preserved. Relatively conserved streamlines in long-distance fibre

tracts could be achieved by strengthening long-range pathways in the brain

network and a reduced number of streamlines in short fibre tracts could be due

to weakening of short connections, which is consistent with previous findings

from rs-fMRI and DTI-data (Fair et al., 2009; Supekar et al., 2009; Dosenbach

et al., 2010; Hagmann et al., 2010).

Second, in line with previous rs-fMRI and DTI studies (Fair et al., 2009; Hag-

mann et al., 2010), modularity Q remained stable over age. We found that the

global modular organisation and module membership of ROIs were unchanged

with local changes especially in the basal ganglia. Therefore, local networks

re-organized their relationships with other community members while keeping

99



CHAPTER 3. PREFERENTIAL DETACHMENT

the global community structure stable. This retained modular organisation

(Kaiser & Hilgetag, 2010; Meunier et al., 2010) might be crucial in keeping

the balance between information integration and the segregation of separate

processing streams (Sporns, 2011). Too many connections between modules

would interfere with different processing demands, e.g., leading to interference

between visual and auditory processing. In addition, more inter-module connec-

tions would also facilitate activity spreading potentially leading to large-scale

activation as observed during epileptic seizures (Kaiser et al., 2007; Kaiser &

Hilgetag, 2010). However, because of the reduction of streamlines in intra-

module edges, proportionally inter-module connections increased, indicating

that brain network became a more distributed network rather than modular

with age as observed in previous studies, which was associated with development

of advanced cognitive abilities by enhancing integration of neural processing

(Fair et al., 2009; Supekar et al., 2009; Hagmann et al., 2010).

In summary, we find that long-distance and inter-modular connectivity is

largely spared from the ongoing streamline losses during development, which

is potentially beneficial for the observed stability of small-world and modular

connectome features. Note that as connections between modules are not nec-

essarily long-distance (Kaiser & Hilgetag, 2006), we found that only 47% of

inter-modular fibre tracts also belong to the class of long-distance connections.

Retaining long-distance and inter-modular fibres indicate that small-world

features, such as the number of processing steps but also the balance between

information integration and large-scale brain activity, are kept within a critical

range during development (Kaiser & Hilgetag, 2006). Preserving this balance

is crucial as changes in long-distance connectivity are a hallmark of neurode-

generative and neurodevelopmental disorders ranging from Alzheimer’s disease

(Ponten et al., 2007; Stam et al., 2007) to schizophrenia (Alexander-Bloch et al.,
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2012). Therefore, stable topological network features might help to prevent

cognitive deficits in pathological brains.

Another important implication of the reduced number of streamlines is the

relationship to the number of edges within a network. Changes in streamline

count can lead to a reduction of connections within a network if an edge

comprised of few streamlines loses all its streamlines, thus reducing edge

density. However, edge density did not significantly change during brain

maturation. Therefore, several mechanisms are conceivable how the number of

edges is maintained during development. One option is that newly emerging

edges cancel out disappearing edges ("equilibrium-state"), which is biologically

costly by removing already established connections and unlikely because new

connections are established mostly early in the development. Alternatively,

only the weight of an edge changes ("stable-state"). For the latter case, a

reduction of streamlines in thin edges, which could result in the loss of the

whole edge, needs to be prohibited. Indeed, we found that thick edges were

mostly affected from the decreased streamlines, thus preserving the structure

of the network. This is beneficial, as reducing thin fibres would necessitate

an increase in synaptic weights or number of synapses to transmit the same

amount of information. Reducing streamlines for thick fibres, on the other hand,

has only a small effect on activity flow due to the large number of remaining

streamlines.

Preferential streamline loss for frontal and subcortical regions

Changes in individual edges were most pronounced in the frontal lobe, a brain

region that is characterized by protracted development until the 3rd and 4th

decade of life as indicated by ongoing synaptic pruning and myelination (Benes

et al., 1994; Sowell et al., 1999; Shaw et al., 2008; Petanjek et al., 2011). In addi-
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tion, the fibre tract between putamen and pallidum in the basal ganglia for the

left hemisphere was characterized by a reduced number of streamlines. Previous

studies which examined GM volume (Sowell et al., 1999) also found changes

GM density in putamen and pallidum in post-adolescent brain development,

which are involved in learning and neurodevelopment diseases (DeLong et al.,

1984; Alexander & Crutcher, 1990; Hokama et al., 1995; Teicher et al., 2000; Ell

et al., 2006; DeLong Mr, 2007; de Jong et al., 2008; Farid & Mahadun, 2009).

Furthermore, basal ganglia were characterized by decreased within-module

strengths and increased participation coefficients over age. This suggests that

connectivity to within these areas decreased relative to connections to outside

of the basal ganglia, which is consistent with data from Supekar and colleagues

(Supekar et al., 2009) who demonstrated that subcortical functional connectivity

in children had higher degree and efficiency than in adults.

This reorganisation of cortico-subcortical connectivity could be involved in the

ongoing changes of cognition and behaviour during development. The basal

ganglia involve regions that are crucially involved in neural circuits relevant for

response-inhibition and reward modulation. Previous studies have shown that

response inhibition improves significantly with age (Williams et al., 1999) as

well as reward modulation (Gardner & Steinberg, 2005). Unlike for the basal

ganglia, the anterior cingulate cortex (ACC) was characterized by an increased

connectivity within its module with age. This observation is consistent with

functional connectivity of ACC that develops a more focal organisation with age

(Kelly et al., 2009). ACC has also shown to mature late through error-related

ERPs (Santesso & Segalowitz, 2008).

Delayed streamline loss for males

Individual edge analysis revealed sex-specific age effects in the occipital and
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parietal lobe but to a much lesser extent in the frontal lobe. This is consistent

with a previous WM study where mainly the occipital lobe development varied

with sex while the growth trajectory in the frontal lobe was similar for both

genders (Baron-Cohen et al., 2005; Lenroot et al., 2007; Giedd, 2008; Perrin

et al., 2009). These results can be explained if we assume that the same

mechanism of preferential streamline loss operates at different time-scales in

males and females. Provided that males had a similar developmental curve

but with a shifted peak (Figure 3.8C & D), we can explain the sex-specific

changes. As expected from the shifted peak hypothesis (Figure 3.8 C & D), the

total number of streamlines for males, but not females, remained stable at an

earlier age range (4-28 years, not shown) while both genders showed streamline

reductions in the age range 4 to 40 years old. This delayed developmental

growth curve in streamline count can be related to later volume growth peaks

for grey and white matter in males (Giedd et al., 1997; Giedd & Rapoport,

2010) and earlier myelination for females (Benes et al., 1994).

We only observed circumscribed sex-differences independent of age. Local

efficiency was higher for females than males consistent to Gong and colleagues’

finding (Gong et al., 2009) and some ROIs showing higher within-module

strength and lower participation coefficient for females can be related to higher

local efficiency in females. Interestingly, absolute difference in the number of

streamlines between genders was not uniformly distributed; males exhibited

more streamlines for intra-module edges. This is consistent with the finding that

males and females do not differ in the WM volume growth trajectory in corpus

callosum (Giedd, 2008). However, this means proportionally females have more

connections across hemispheres and between modules (DeLacoste-Utamsing &

Holloway, 1982; Davatzikos & Resnick, 2002; Allen et al., 2003).
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Figure 3.9.: Sex difference in the individual edges. Gender differences were
observed mostly within modules and only within hemispheres. (Gray: edges
connecting ROIs within modules and Light gray: edges between modules,
both with no significant change over age; Red: edges with a larger number of
streamlines for males than females; Blue: edges with a larger streamline count
for females than males).
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Structural correlates of streamline loss

The observed reduction in the total number of streamlines could be related to

rs-fMRI developmental ‘system-level pruning’ (Supekar et al., 2009), considering

tight coupling between structural connectivity (SC) and functional connectivity

(Honey et al., 2009a; Honey et al., 2010). As Supekar and colleagues suggested

for functional connectivity (Supekar et al., 2009), the decreased number of

streamlines for short and intra-module connections in this study could be

due to weakening of local connections through synaptic pruning and neuronal

rewiring. These local processes prolong until adulthood and are major factors

for anatomical developmental changes (Benes et al., 1994; Petanjek et al., 2011).

The reduction of synapses and corresponding axons or axon collaterals could

potentially also lead to a decreased number of streamlines within fibre tracts.

Due to technical limitations of DTI, pruning of dendrites and intra-cortical

connections cannot be detected. However, synaptic pruning in the prefrontal

cortex for intra-cortical connections (Petanjek et al., 2011) was mainly limited

to children at younger ages than in our study (Petanjek et al., 2011). In

contrast, the pruning of long-distance connection, observable in DTI, occurs

in developing rhesus monkeys, both at earlier and later stages of development

(LaMantia & Rakic, 1990; LaMantia & Rakic, 1994; Luo & O’Leary, 2005).

Considering both limitations of DTI (Jones & Leemans, 2011) and previous

studies (Fair et al., 2009; Supekar et al., 2009; Dosenbach et al., 2010), changes

in cortico-cortical and subcortico-cortical projections might underlie our results

but further investigations are needed to determine the contributions of these

potential biological correlates.

Studies have shown that volume for WM fibre tracts increased with age (Faria

et al., 2010; Lebel & Beaulieu, 2011) and continued myelination also leads

to an increase in WM volume, which could explain an increase in total WM
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volume while undergoing a possible reduction of fibre tracts. Even though

streamlines were reduced in our study, an increased myelination might still have

taken place but might have been over-shadowed by axonal changes and vice

versa. Greater amounts of myelination would generate higher FA values (Mädler

et al., 2008; Faria et al., 2010), leading to an increase in the number of detected

streamlines. For example, even if the number of axonal projections were reduced

the remaining fibres with an increased myelination could be detected easily by

tractography and compensate the lost fibre tracts, leading to no changes in

the number of streamlines. Thus, the balance between myelination and axonal

pruning may have contributed to our final results. The reduction in streamlines

with age cannot be attributable to ongoing changes in the number of seed voxels

used for tractography as this number was unaffected by age.

Other factors affecting tractography include axon diameter distributions (See

detailed discussion (Jones, 2010; Jones et al., 2013) and fibre curvature changes.

If many fibre tracts became more curved over age, as DTI normally does

not track highly curved trajectories, the number of streamlines of the fibre

tract could decrease. However, most of the fibre tracts (edges) that we tested

did not change their curvature over age (83%, 106 out of 128) only 22 edges

(17%) showed changed curvature over development. Out of these 22, only half

showed curvature increase. For a single edge do we find streamline decrease

while curvature increased ruling out curvature as a confounding factor of our

results.

Possible scenarios to explain the reduction in the streamline count

We suggested our observation of a reduced number of streamlines might be

explained by prolonged synaptic pruning concomitant with myelination increase

(i). However, there are other possible explanations (ii-v). (i) Decrease in the
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actual axonal projections from synaptic pruning or cell death; (ii) An edge (fibre

tract) became more curved so could not be detected by our tractography algo-

rithm (this is a well-known problem for DTI network reconstruction) ; (iii) Less

homogeneity of fibre directions would result in lower Fractional anisotropy,

preventing fibre tracts from reconstructed by tractography ; (iv) Myelination

reduction would lower fractional anisotropy or (v) Enlarged axonal diameter

would also lower fractional anisotropy, which make axon bundles less likely to

be detectable .

Regarding (ii), we cannot resolve the issue of limitation in finding highly curved

fibres using DTI but we did test the role of the angular threshold for fibre

tract reconstruction. The comparison between the original 35- degree and the

more relaxed 45-degree criterion showed similar results confirming our earlier

conclusions. While highly-curved fibres might still go undetected even with

the relaxed criterion, we can test for the impact of curvature on our results by

investigating whether edges characterised by a decreasing number of streamlines

became more curved or not. If so, higher curvature streamlines that cannot

be detected at old age might explain part of the loss of streamlines during

development. On the other hand, if we do not find any changes in curvature

of edges over age, we can conclude that the reduction in the streamline count

cannot be explained by stronger curvature. Edges we tested did not show

any systematic or consistent relationship between their curvatures and the age

effects. Curvature of a fibre tract was estimated by dividing the trajectory

length of fibre tract by the Euclidean distance between the centres of mass

between a pair of nodes. Out of 128 edges, 21 edges showed significant curvature

changes over age using GLM. Eleven edges were characterised by increased

curvatures and 10 showed decreased curvatures. One edge with an increased

curvature lost streamline count over age, with which we need to interpret the
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result with caution because it would be difficult to tell whether the decreased

streamline count was from the higher curvature or from the loss of axonal

projections. Interestingly, six fibre tracts with decreased curvature were also

the edges that lost streamlines over age. These edges became straighter but

lost streamline count over age, which can be stronger evidence showing the

reduction in the number of streamlines was not from the changes in curvatures.

For (iii): Less homogeneity of fibre directions, which means a smaller number

(or a proportion) of streamlines with similar directions, or more crossing fibres.

It is a possibility if we assume that axonal projections decrease over age

because the reduction in the streamline count could change the proportions

of fibre directions within voxels. However, the formation of maps between

cortical areas, an on-going event during brain development, would increase the

homogeneity of fibres (von der Malsburg, 1973). Homogeneity is also expected

from anatomical findings of fibre lengths between two maps that are as short

as possible (Chklovskii & Koulakov, 2004) (iv): Previous studies reported that

myelination increases so we can exclude this possibility. (v): Dilation of axon

diameters is in principal possible. As the brain size enlarges, axonal fibres

might lengthen and to obtain the same conduction velocity axons may need

to widen their diameters or increase myelination or both. In our study, we

did not observe any significant lengthening of fibre tracts; rather, the lengths

of fibre tracts remained relatively stable for those older than 10 years of age

(Spearman’s ρ = 0.1704, p = 0.0617). Therefore, this scenario is less likely to

explain the overall reduction in the streamline count.

The relationship between the length of a fibre tract and its weight

(streamline count)

The brain is connected in a way that the total wiring length is optimally short

with a few long-distance connections, which benefits efficient communications
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between brain regions while spending a lesser amount of resources (Kaiser &

Hilgetag, 2006; Bullmore & Sporns, 2012). Likewise, to shorten total connection

length, long fibre tracts may consist of fewer streamlines than short-range ones.

However, this tendency was not a simple negative correlation; short edges

showed a wide spectrum of different weights and ‘thick’ fibre tracts with many

streamlines could be long too (Figure 3.10). Thus long fibre tracts are not

always ‘thinner’ edges. In addition, there were more thicker and shorter edges

within modules than between modules but they showed much overlapping

areas in the scatterplot (Figure 3.10) indicating within module edges are not

always short and between module fibre tracts can be also short. Within-module

fibre tracts were comprised of more short edges than between-module edges in

general (Figure 3.10 inset) but not necessarily short. We found that only 47% of

inter-modular fibre tracts also belongs to the class of long-distance connections

and 43% of thin fibre tracts were also long distance-connections. Therefore,

we analysed all three types of fibre tracts independently and connected with

small-world topology, modular organization and edge density, respectively in

the main text.

Limitations

Even though the current study comprises a large dataset, there are several

inherent limitations. First, the subjects were unequally distributed across

ages. Having subjects at ages between 4 and 40 years may not be optimal for

detecting major changes as small-world and modular features are established

during the first two years (Fan et al., 2011; Yap et al., 2011a). Our focus,

however, was not the major structural changes but the continuous development

while keep the network economic (Vértes et al., 2012) and stable. Second,

studies with network approaches use different definitions for weight and different

normalization schemes complicating the comparison between studies. We used
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Figure 3.10.: The relationship among between the average length of an edge
and its weight (streamline count) A. Scatterplot. Darker areas have more data
points. Short fibre tracts tend to have larger number of streamlines and the
fibre tract with many streamlines (‘thick’) is more likely to be short-range.
However, the tendency was not a simple negative correlation. B. Scatterplot
differentiating intra- and inter-module fibre tracts. Inset: the probability density
estimate for fibre tracts according to lengths using kernel smoothing density.
Within module fibre tracts were comprised of more short edges than between
module edges. Each line represents a participant. Red: edges within modules,
Blue: edges between modules.

absolute number of streamlines as weights; however, our results are consistent

with previous studies with slightly different weight definitions (Gong et al., 2009;

Hagmann et al., 2010). Third, our DTI approach will not resolve crossing fibres

(See discussion in Section 5.2.2). However, the shorter recording time of this data

are an advantage when measuring connectivity in children. Modelling through

probabilistic tracking with crossing fibres (Behrens et al., 2007; Jbabdi &

Johansen-Berg, 2011) would therefore be a future research direction. Although

streamlines do not directly correspond to axonal projections (Jones, 2010; Jones

et al., 2013), we found our results were consistent with previous anatomical

studies (Benes et al., 1994; Sowell et al., 1999; Gong et al., 2009; Perrin et al.,

2009). Finally, our particular linear model approach may be vulnerable to

changes in the age range (Fjell et al., 2010; Reiss et al., 2014), more flexible
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models such as penalized spline models have been suggested (Reiss et al., 2014;

Alexander-Bloch et al., 2014; Wood, 2006; Green & Silverman, 1993; Faraway,

2005); nonetheless, our polynomial model was good enough to answer our

hypotheses.

3.5. Conclusion

The human brain undergoes vast structural changes during development.

Nonetheless brain networks develop in a way that preserves its topological

(small-world/modular) and spatial (long-distance connectivity) organisation to

secure its capability of integration of information and individual processing of

modules. This present study showed how brain connectivity changed during de-

velopment in terms of fibre tracts as well as global network features. We showed

preferential decreases in the number of streamlines for thick, short-distance,

and within-module/within-hemisphere fibre tracts. These changes may not

necessarily occur at the same time for males and females; males seem to show a

delayed start in the prolonged development of white and grey matter. However,

although with different time courses between genders, the global topological

features ensuring healthy brain development apply to both genders. Therefore,

brain networks maintain their topological stability during brain development

by preferentially modifying structural connectivity.

In this chapter, I found that the brain network may ensure the normative

trajectory of connectivity development by selectively changing fibre tracts

over age. In the following chapter, combining microscopic and macroscopic

brain network development, I provide a connectome maturation hypothesis, in

particular, concerning short/long-distance connectivity.
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Table 3.4.: Fibre tracts with age-related changes for both genders.

ROI (node) Lobe ROI (node) Lobe Slope FDR adjusted P

lh.bankssts T lh.middletemporal T -0.941 0.001

lh.caudalanteriorcingulate F rh.caudalanteriorcingulate F -0.487 0.017 Inter-hemispheric

lh.caudalanteriorcingulate F lh.superiorfrontal F -1.542 0.024 Symmetric

lh.caudalmiddlefrontal F lh.precentral F -1.458 0.016

lh.caudalmiddlefrontal F lh.superiorfrontal F -1.26 <10 -4 Symmetric

lh.cuneus O lh.precuneus P -1.488 0.002 Symmetric

lh.fusiform T lh.inferiortemporal T -0.356 0.043 Symmetric

lh.isthmuscingulate P lh.precuneus P -0.726 0.016

lh.lateralorbitofrontal F lh.insula -2.008 0.001 Symmetric

lh.medialorbitofrontal F rh.medialorbitofrontal F -1.03 0.0003 Inter-hemispheric

lh.middletemporal T lh.superiortemporal T -0.513 0.016 Symmetric

lh.paracentral F lh.precuneus P -2.213 <10 -5 Symmetric

lh.paracentral F lh.posteriorcingulate P -0.671 0.016 Symmetric

lh.parsopercularis F lh.parstriangularis F -0.343 0.014 Symmetric

lh.parsopercularis F lh.precentral F -2.269 <10 -5 Symmetric

lh.parsopercularis F lh.rostralmiddlefrontal F -0.455 0.004 Symmetric

lh.parsorbitalis F lh.parstriangularis F -1.077 0.016

lh.postcentral P lh.supramarginal P -0.381 0.041

lh.posteriorcingulate P lh.superiorfrontal F -1.285 0.01

lh.posteriorcingulate P rh.posteriorcingulate P -1.303 0.003 Inter-hemispheric

lh.precuneus P rh.precuneus P -0.599 0.002 Inter-hemispheric

lh.precuneus P lh.superiorparietal P -0.504 0.012

lh.putamen lh.pallidum -1.02 0.009 Subcortical

lh.rostralanteriorcingulate F lh.superiorfrontal F -1.63 0.012 Symmetric

lh.rostralmiddlefrontal F lh.superiorfrontal F -1.275 0.0003 Symmetric

lh.superiortemporal T lh.supramarginal P -1.725 0.004 Symmetric

rh.bankssts T rh.superiortemporal T -0.688 0.001

rh.caudalanteriorcingulate F rh.superiorfrontal F -1.081 0.0004 Symmetric

rh.caudalmiddlefrontal F rh.superiorfrontal F -0.422 0.024 Symmetric

rh.cuneus O rh.precuneus P -0.426 0.021 Symmetric
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ROI (node) Lobe ROI (node) Lobe Slope FDR adjusted P

rh.fusiform T rh.inferiortemporal T -0.725 0.004 Symmetric

rh.fusiform T rh.lateraloccipital O -0.161 0.045

rh.fusiform T rh.parahippocampal T -2.39 0.002

rh.inferiorparietal P rh.lateraloccipital O -1.131 0.001

rh.lateraloccipital O rh.superiorparietal P -0.657 0.007

rh.lateralorbitofrontal F rh.parsorbitalis F -0.794 0.001

rh.lateralorbitofrontal F rh.insula -0.616 0.016 Symmetric

rh.medialorbitofrontal F rh.superiorfrontal F -0.879 0.01

rh.middletemporal T rh.superiortemporal T -0.54 0.001 Symmetric

rh.paracentral F rh.posteriorcingulate P -0.481 0.017 Symmetric

rh.paracentral F rh.precuneus P -0.873 0.001 Symmetric

rh.parsopercularis F rh.parstriangularis F -1.05 0.0003 Symmetric

rh.parsopercularis F rh.precentral F -0.313 0.04 Symmetric

rh.parsopercularis F rh.insula -0.321 0.016

rh.parstriangularis F rh.rostralmiddlefrontal F -2.066 <10 -5 Symmetric

rh.postcentral P rh.superiorparietal P -0.613 0.0002

rh.postcentral P rh.supramarginal P -0.88 0.002 Symmetric

rh.posteriorcingulate P rh.superiorfrontal F -0.497 0.017

rh.precentral F rh.insula -2.379 < 10−5

rh.rostralanteriorcingulate F rh.superiorfrontal F -0.232 0.016 Symmetric

rh.rostralmiddlefrontal F rh.superiorfrontal F -0.793 0.016 Symmetric

rh.superiortemporal T rh.supramarginal P -0.56 0.046 Symmetric

rh.supramarginal P rh.transversetemporal T -1.279 0.0004

rh.temporalpole T rh.insula -0.254 0.007

rh.transversetemporal T rh.insula -2.329 < 10−5

F:50 P:27 T:20 O:5

lh.caudalanteriorcingulate F lh.posteriorcingulate P 0.377 0.012

rh.isthmuscingulate P rh.posteriorcingulate P 0.456 0.034

F:1 P:3 T:0 O:0
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Note: Decreased connections: Interhemispheric connections and a subcortical

fiber tract showing a decreased number of streamlines are bolded. Increased

connections (the penultimate two rows): The last row of each section gives an

overview of how often different lobes participate in these changes. (F: Frontal

lobe, P: Parietal lobe, T: Temporal lobe, O: Occipital lobe). p-values were

adjusted by FDR with a q level 0.05 (Benjamini & Hochberg, 1995; Benjamini

et al., 2005; Jung et al., 2011)

3.6. Appendix

3.6.1. Overall anatomical changes in brain volumes

The overall anatomical changes in volume would inevitably affect topological

and spatial features in the structural connectivity. Thus, before examining

topological and spatial features of the structural connectivity in human devel-

oping brain, we explored volume changes. White matter volume (WMV), gray

matter volume (GMV, cortical + subcortical) and intracranial volume (ICV)

were tested with a general linear model (Eq.(3.2) - Eq.(3.4) , Table 3.5). All

showed a significant gender difference (p < 0.001). On average, males had larger

brain volumes than females. WMV increased over age but the increasing rate

slowed down after age 10 (p = 0.001), whereas GMV decreased significantly

with increasing age (β1 = −4171.981mm3/year, p < 0.001), while ICV did not

show any age effect (p = 0.069). In all cases, no significant gender and age

interaction effect were observed so all models are fitted without the interaction

term.
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Table 3.5.: Linear model analysis on white matter volume (WMV), gray
matter volume (GMV) and intracranial volume (ICV): t-values with degrees of
freedom (df) and p-values (two-sided, α = 0.05) are provided in the table.

Gender t (df = 118) p Age t (df = 118) p

WMV -5.457 < 0.001 2.777 0.006
GMV -5.975 < 0.001 -6.249 < 0.001
ICV -6.776 < 0.001 -0.418 0.677
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Figure 3.11.: Streamline count range. A. Streamline count ranges for individ-
ual edges (Male) B. Streamline count ranges for individual edges (Female), 128
tested edges shared by all participants with box plots. Red cross: outliers.
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Figure 3.12.: Individual edge analysis with 35 and 45 degrees of angular
threshold and single and ten random seeds tracking. First row: 35 degrees of
angular threshold, Second row: 45 degrees of angular threshold. Left column:
a single seed at the centre per voxel, Right column: ten random seeds tracking
per voxel.
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Figure 3.13.: Slopes with FDR adjusted confidence intervals for the edges with
age effects for both genders with four different tracking parameters. First row:
35 degrees of angular threshold, Second row: 45 degrees of angular threshold.
Left column: a single seed at the centre per voxel, Right column: ten random
seeds tracking per voxel. Slopes are represented as sorted and different tracking
parameters resulted in different number of testable edges that all participants
shared, leading to slightly different results. The result with 10 random seeds
tracking demonstrated approximately 10-fold slopes than the resulting slopes
with the original parameters (35 degrees with a single tracking per voxel).
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Table 3.7.: Abbreviation of ROI names

Abbreviated name Full name
BSTS banks of the superior temporal sulcus
CAC caudal anterior cingulate
CMF caudal middle frontal
CUN cuneus
ENT entorhinal
FUS fusiform
IP inferior parietal
IT inferior temporal
ISTC isthmus of the cingulate
LOCC lateral occipital
LOF lateral orbitofrontal
LING lingual
MOF medial orbitofrontal
MT middle temporal
PARH parahippocampal
PARC paracentral
POPE pars opercularis
PORB pars orbitalis
PTRI pars triangularis
PCAL peri-calcarine
PSTC postcentral
PC posterior cingulate
PREC precentral
PCUN - precuneus
RAC rostral anterior cingulate
RMF rostral middle frontal
SF superior frontal
SP superior parietal
ST superior temporal
SMAR supra-marginal
FP frontal pole
TP temporal pole
TT transverse temporal
INS insula
THAL thalamus
CAUD caudate
PUTA putamen
PAL pallidum
AMYG amygdala
HIPP hippocampus
ACC accumbens
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4. Two-stage connectome maturation:

Establishment and refinement of

functional modules

In this chapter, I will propose a hypothesis encompassing both microscopic and

macroscopic features of brain network development. First, I introduce that

during development quantities of neurons, synapses and axons first increases

followed by a selective reduction of features later on to mature towards its

final stage. This selective removal is also found in macroscopic scale brain

networks estimated from neuroimaging technique such as fMRI and DTI. I

connect these two different ‘pruning’ processes and propose that there are two

stages of this process. In addition, I claim that this two-stage connectome

maturation may explain certain features of neurodevelopmental disorders such

as Autistic Spectrum Disorder (ASD), schizophrenia or epilepsy.

4.1. Introduction

While the removal of neurons and connections during developmental pruning is

well studied at the local cellular level, recent results also indicate the reduction

of global connectivity between brain regions. These results on the human

developing connectome are based on observing brain connectivity over the life

span ranging from in utero recordings and newborns to children and adults

(Lim et al., 2013; Betzel et al., 2014; Bassett et al., 2008; Fair et al., 2009; Gong
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et al., 2009; Supekar et al., 2009; Hagmann et al., 2010; Tymofiyeva et al., 2013;

Fan et al., 2011; Yap et al., 2011a; van den Heuvel et al., 2014). In part IV, I

propose that there are two stages of human connectome maturation: first, an

early stage from birth during childhood where highly inter-connected sets of

brain areas, or modules are formed by mainly removing connections, or which

are often long-distance, between modules and, second, a later stage starting

in the teenager years where the connectome is further refined by removing

connections, mostly short-distance, within modules. First, I discuss the role

of ‘pruning’ from a network perspective. Selective elimination of connections

helps the nervous system to re-organize its network from a transient and

redundant structure to an efficient and economic network. Eliminating over-

or ill-produced connections, structural and functional modules arise during

early development that allow specialization, e.g., processing vision or sound. In

later development, functions and connections are refined; for example, enabling

better cognitive control and self-regulation for the adult brain. Second, we

discuss the two stages of connectome maturation in terms of short- versus

long-distance connections. Early establishment of the brain network forms

structural and functional modules by removing long-distance connections while

during a second stage connection within modules are refined. In part III,

structural connectivity changes in late childhood through adulthood (Lim

et al., 2013) showed that connections between modules, most of which are

long-distance and many of which run between hemispheres, remain largely

unchanged preserving the modular organization that arises early on. On the

other hand, short-distance connections, that are mostly within modules and

hemispheres, get refined during this stage. Therefore, successful removal or

preservation of connections at the right stage is crucial for healthy development.

Finally, I argue that alterations during each stage might lead to different
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cognitive deficits. Over- or under-pruning during the first and/or the second

stage would lead to fewer or more short- and/or long-distance connections,

resulting in pronounced changes in modular organization. Given the two stages,

any pathological changes to long-distance connectivity would predominantly

occur during the first stage. Indeed, a poorly developed corpus callosum has

been associated with childhood-onset schizophrenia and epilepsy while autism

spectrum disorders, that arise early, have decreased long-range connectivity.

Loss of refinement in the second stage, on the other hand, may hinder memory

and skill formation. It may also cause adult-onset epilepsy due to excessive

excitatory synapses leading to an imbalance between excitation and inhibition.

At the same stage, failure to maintain long-distance connections may lead to

adult-onset schizophrenia.

4.2. Less is more?

Initial exuberance of production followed by selective elimination is one of the

major developmental characteristics in the vertebrate nervous system (Cowan

et al., 1984; Huttenlocher, 1979; Innocenti & Price, 2005). Neuronal density is

highest around birth about double that of an adult brain (Cowan et al., 1984);

Synaptic density is at its highest around 1-2 year old and decreases throughout

maturation (Huttenlocher, 1979; Huttenlocher, 1990; LaMantia & Rakic, 1990;

LaMantia & Rakic, 1994; Luo & O’Leary, 2005); grey matter volume and

thickness peaks around 10 years old and decreases through adulthood and

the reduction of cortical thickness and volume over age has been positively

correlated with better cognitive performance (Giedd et al., 1999b; Gogtay et al.,

2004). Gyrification of cortex peaks around five and six postnatal months and
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gradually decreases throughout adulthood (Armstrong et al., 1995; Klein et al.,

2014a; Raznahan et al., 2011; Su et al., 2013). These phenomena cannot be

explained independently and in particular, pruning of synapse, dendrites and

axons is suspected to be the major underlying driving force for developmental

anatomical changes in the brain (Gogtay et al., 2004; Sowell, 2004; White et al.,

2010).

4.3. Pruning and protracted remodelling throughout

development

Selective elimination of connections, or pruning helps the nervous system to

re-organize its network from a transient and redundant structure to an efficient

and economic network, which provides neural plasticity for learning and memory

and for repairing damaged circuits (Low & Cheng, 2006; Luo & O’Leary, 2005)

(4.1). Computational models have also demonstrated that brain networks

become more efficient by selectively eliminating synapses (Chechik et al., 1998;

Chechik et al., 1999). Previously, it was believed that this pruning process

only continues until puberty (Huttenlocher, 1979). Recent findings, however,

demonstrated that synaptic pruning prolongs into third decade of a lifetime

especially in prefrontal areas (Petanjek et al., 2011).
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Figure 4.1.: By day 90 the origin of the projection has become focused by two
regions, whereas the first postnatal week the whole of area 17 and other visual
areas were involved, Reprinted by permission from Macmillan Publishers Ltd:
Nature Reviews Neuroscience (Innocenti & Price, 2005), copyright (2005).
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4.4. Abnormal pruning and imbalance between

excitation and inhibition

Pruning in various levels from dendritic spines to long-range axon fibres is

generally considered as part of normal development and time course of this

process varies depending on brain areas (Huttenlocher & Dabholkar, 1997;

Innocenti & Price, 2005; LaMantia & Rakic, 1990). Various neurodevelopmental

and neurodegenerative disorders have been related to abnormal pruning of neural

tissues, synapses (4.2). Here we mainly focus on selective elimination process

during maturation. The hyper-pruning hypothesis regarding schizophrenia has

been held for a long time (Boksa, 2012; Keshavan et al., 1994). Failure to prune

away weak synapses has been shown to impede the construction of synaptic

multiplicity, which results in weakening of long-range functional connectivity

correlated with autism-associated behaviour in knockout mice (Paolicelli et al.,

2011; Zhan et al., 2014). Failure of pruning excitatory synapses during postnatal

development causes hyper-excitability (Bozzi et al., 2012; Caleo, 2009; Chu

et al., 2010; Galvan et al., 2000; Zhou et al., 2009) resulting from the imbalance

between excitatory and inhibitory synapses in autism (Rubenstein & Merzenich,

2003), social dysfunction (Yizhar et al., 2011) and epilepsy (Stief et al., 2007).

4.5. Macroscopic scale of pruning

Interestingly, large-scale brain connectivity studies have also observed ‘macro-

scopic pruning’, which can be viewed as indirect evidence of pruning of synapses,

axons or dendrites influencing large-scale brain connectivity. Previous studies

using graph-theoretical measures found that there seems to be over-connectivity
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Figure 4.2.: Abnormal pruning and failure of developing long-range functional
connectivity; Adapted by permission from Macmillan Publishers Ltd: Nature
neuroscience ((Caleo, 2009)), copyright (2014)

in the early developmental stage and ‘pruning’ of connectivity follows during

development (Lim et al., 2013; Menon, 2013; Supekar et al., 2009); brain under-

goes selective remodelling by weakening or eliminating short-range connectivity

while strengthening and maintaining long-range connections leading to a more

efficient and integrated network (Fair et al., 2009; Hagmann et al., 2010; Huang

et al., 2013; Supekar et al., 2009). In particular, this selective refinement of a

brain network appears to focus on specific type of fibre tracts such as short,

intra-module and interhemispheric fibre tracts similar to selective synaptic

pruning, which allows brain network to maintain it core topological properties

such as small-worldness and modular organization (Lim et al., 2013). Neonates

also have small-world topology with a hierarchical and modular structure if

not perfect yet (Fan et al., 2011; Yap et al., 2011a). Interestingly, the changes

before or around birth seem to be the opposite of those observed from childhood
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to adulthood (Smyser et al., 2010; Tymofiyeva et al., 2013; van den Heuvel

et al., 2014). Baby connectome studies showed that modularity and cluster-

ing coefficient increase from preterm to term babies (Tymofiyeva et al., 2013;

van den Heuvel et al., 2014), whereas modularity and clustering coefficient

decrease during adolescence and adulthood leading to a more distributed and

integrated network (Fair et al., 2009; Hagmann et al., 2010), which may result

from eliminating diffusive and less accurate connections. Increased connectivity

in congenital blind people can be related to deficient synaptic pruning resulting

from absence of visual experiences (Wang et al., 2014). Another example of

long-distance connection elimination in early development is that children show

stronger inter-hemisperic co-activation between homotopic areas than adults

do indicating homotopic long-range connections between hemispheres become

weaker during maturation.

4.6. Abnormal macroscopic pruning

Neurodevelopmental diseases and brain connectivity

Analogous to abnormal synaptic pruning, brain connectome studies both in

structural and functional connectivity reported aberrant connectivity possibly

caused from imperfect maturation of a brain network in neurodevelopmental

diseases such as schizophrenia, autistic spectrum and epilepsy (Belmonte, 2004;

Boksa, 2012; Keshavan et al., 1994; Paolicelli et al., 2011; Zhou et al., 2009).

Schizophrenia has been thought of as a neurodevelopmental disease caused

by disconnectivity (Boksa, 2012) especially in the frontal and temporal lobes

(Pettersson-Yeo et al., 2011); connectome studies have found both increased

and decreased connectivity in schizophrenic patients (Fornito et al., 2012),
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however; decreased connectivity has been reported consistently across all stages

of schizophrenia and in various modalities (Pettersson-Yeo et al., 2011); child-

onset schizophrenia patients showed less short-range functional connections

than healthy controls (Alexander-Bloch et al., 2012) leading to decreased

modularity and clustering coefficients in patients (Alexander-Bloch et al., 2010)

whereas late-onset patients displayed lack of long-distance connections (Bollobás,

1998). People with autistic spectrum disorder (ASD) showed decreased long-

distance connectivity between frontal and posterior and increased connectivity

in short-distance connectivity (Anagnostou & Taylor, 2011; Belmonte, 2004;

Williams & Minshew, 2007) and also agenesis of corpus callosum (Lau et

al., 2013, Paul, 2011). ASD and schizophrenic patients have shown to have

a decreased functional interhemispheric connectivity (Barttfeld et al., 2011;

Guo et al., 2014; Hoptman et al., 2012), indicating there might have been

hyper-pruning of commissural connections. Epilepsy is also associated with

deceased long-distance connectivity and increased short-distance connectivity

(Bernhardt et al., 2011; Bonilha et al., 2012; DeSalvo et al., 2013), although not

as consistent as previous two disorders and also idiopathic epileptic patients

suffer from under-developed white matter (Hermann et al., 2006; Hutchinson

et al., 2010) impeding long-range connectivity development.

4.7. Two-stage Connectome Maturation

Here we propose a two-stage hypothesis for macroscopic refinement of connec-

tivity during development (Figure 4.3 1). First stage of ‘pruning’ from around

1-2 years after exuberance of new formation of synapses eliminates mainly

long-range connections that are also very likely to be inter-module connections,
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which accentuate modular structure from a more random-like network, which

can be related to massive long-range axon elimination during early development

resulting from genetic pre-programmed cues and also external sensory input

(LaMantia & Rakic, 1990; O’Leary, 1992; O’Leary & Koester, 1993). After

establishing the modular structure by eliminating over-abundant transient long

connections, the brain network focuses on delineating a detailed configuration by

removing unnecessary short-range connections within modules over a prolonged

period from childhood to young adulthood and maintaining/strengthening long-

distance connections (Fair et al., 2009; Hagmann et al., 2010; Lim et al., 2013;

Supekar et al., 2009). This refinement can be influenced by experiences and

education and also by genetic propensity, which results in better performance

in complex cognitive tasks with a more efficient brain network.

Here, we discuss mainly about macroscopic refinement during development;

however, it cannot be thought of as a stand-alone analogous process independent

of synaptic pruning, rather this macroscopic pruning is attributable to synaptic

pruning. The two stages both involve synaptic pruning and strengthening of

axons by increased myelination, however the first stage may be dominated

by synaptic pruning of long connections and the second stage may be mainly

dependent on strengthening and maintaining of long-range connections and

calibrating local (short) connections. During development, new synapses and

axons can be also established by learning and memory. The net process, however,

is governed by refinement of connectivity by reducing connections. This two-

stage hypothesis can be thought as an analogous process of the retaining

small-scale axon elimination ability after critical period of long-range axon

pruning in retinal ganglion cells’ axons to the dorsal lateral geniculate nucleus

(Muir-Robinson et al., 2002; Ruthazer et al., 2003). Aberrant developmental

trajectories of schizophrenia, ASD and epilepsy can be explained in terms of
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short and long-distance connectivity during two-stage maturation (Figure 4.4

2). Although it may seem to over-simplify them as each disorder involves

various etiologies, similar features of the trajectories can explain phenotypical

similarities of the disorders. ASD and schizophrenia affect overlapping areas of

the brain, so some researchers argue that child-onset schizophrenia may be a

subtype of ASD. Moreover, ASD and epilepsy have comorbidity around 30%

(Canitano, 2007; Mannion & Leader, 2014). For example, over-connectivity

both in short and long-range connections in ASD and epilepsy in the second

stage of maturation can be associated with ASD children who also become

epileptic later on.

4.8. Conclusion

Analogous to synaptic remodelling during development, we can also consider

connectivity pruning at the global level, which is not random but rather se-

lective, focusing specific type of fibre tracts. Furthermore, we can divide this

systematic refinement of a brain network into two stages: first stage mainly

focuses on long-range connection removal and the second stage refines local

networks by removing/weakening short-distance connections while maintain-

ing/strengthening long-distance connections. Using two-stage connectome

hypothesis, we summarise aberrant structural connectivity development in

three neurodevelopmental disorders: schizophrenia, ASD and epilepsy. We

suggest that considering two stages of connectome maturation elucidate con-

nectome development both in healthy and unhealthy brain networks. Together,

I provide a new framework for the cognitive development in health and disease

linked to changes in connectome organization. This is timely as connectome
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data related to development is only recently becoming available through the

Developing Connectome project, twin studies within the Human Connectome

Project, and ongoing longitudinal studies. This framework is unique and novel

in linking local pruning with network re-organization, explaining how spatial

and topological features change over time, and establishing two stages of con-

nectome maturation. It also proposes a link between the developmental stage

at which alternations occur, the changes in connectome organization at that

stage, and the cognitive deficits that result.
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Figure 4.3.: Two-stage connectome maturation. Note that changes in stage 1
are dominated by long-distance (or inter-modular) connectivity and changes
in stage 2 occur mainly for short-distance connectivity. black solid line: short-
distance (intra-modular) connectivity;red solid line: long-distance connectivity;
white dashed vertical line: approximate boundary between stage 1 and stage 2
around 10 years, although it may change depending on gender and brain area
differences; x-axis: age (years), y-axis: structural connectivity. Black circles:
Brain areas or neurons (nodes), solid lines: connections between nodes, dashed
lines: connections that would be pruned away.
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A. Schizophrenia

Birth ~10 ~20 Age (years)

Stage 1 Stage 2

Short

Long

B. Autistic Spectrum Disorder

Birth ~10 ~20 Age (years)

Stage 1 Stage 2

Short

Long

C. Epilepsy

Birth ~10 ~20 Age (years)

Stage 1 Stage 2

Short

Long

Figure 4.4.: A. Schizophrenia;B. Autistic Spectrum Disorder;C. Epilepsy.
black solid line: Healthy connectome maturation;red solid line: hypothetical
pathological connectome maturation; white dashed vertical line: approximate
boundary between stage 1 and stage 2 around 10 years, although it may change
depending on gender and brain area differences; x-axis: age (years), y-axis:
structural connectivity.
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5. Discussion and outlook

In this chapter, I will summarise main findings of the thesis and I will discuss

advantages and limitations of the methods that I used as well as introducing

alternatives. Finally, I will discuss the implication of my studies and outlook.

5.1. Summary and context

In this work, I investigated how structural connectivity of the human brain

develops in both microscopic and macroscopic scales and based on the findings

I suggest an hypothesis providing testable predictions for future studies as well

as new insights for neurodevelopmental disorders.

In part II for the microscopic neuronal network development, I explored how

neuronal network develops in particular with the constraints on developmental

time windows of axon growth. I demonstrated that different time windows

for axon growth could lead to distinct topological and spatial characteristics,

which was validated using C. elegans connectivity data. Previous studies have

focused on guidance cues (Sperry, 1963; Yamamoto et al., 2002; Yu et al., 2012;

Franze, 2013; Scheiffele et al., 2000; Dickson, 2002) to explain the mechanism

of synaptogenesis. Although crucial (van Ooyen, 2011; Dickson, 2002; Gotz

et al., 1992; Butz et al., 2014; Butz & van Ooyen, 2013; Van Ooyen et al.,

1995; Butz et al., 2009), they cannot fully explain certain features of synaptic

connectivity in particular for short-range connectivity during early development

(Kaufman et al., 2006; Baruch et al., 2008; Verhage et al., 2000; Packer et al.,
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2013; Packer & Yuste, 2011; Price et al., 2011; Kaiser et al., 2009). Peters’ rule

(Braitenberg & Schüz, 1998) suggests that synapse formation in brain circuitry

mainly depends on the overlap of geometrical locations of specific axons and

dendrites in the absence of guidance cues (Binzegger et al., 2004; van Pelt

& van Ooyen, 2013; McAssey et al., 2014; van Ooyen et al., 2014; Hill et al.,

2012; Packer & Yuste, 2011). Time windows of development for connections

between brain regions influence the topology of cortical connectivity (Kaiser

et al., 2007; Nisbach & Kaiser, 2007; Varier & Kaiser, 2011; Yu et al., 2009;

Yu et al., 2012; Deguchi et al., 2011; Druckmann et al., 2014). Computational

models (van Ooyen, 2003; van Ooyen, 2011) have been developed (Kaiser et al.,

2009; Willshaw & von der Malsburg, 1976; Perin et al., 2013; Koene et al., 2009;

Godfrey et al., 2009; Hennig et al., 2009; Zubler & Douglas, 2009). In previous

models; however, how different time windows of axon growth would affect

the characteristics of the brain network organization was not systematically

studied. Whereas previous studies dealt with time windows that operate on

the population level, my study observes the effect of the timing of axon growth

for individual neurons within a neural population. In summary, the findings

show that the relative timing of connection formation within sub-graphs can

already shape topological and spatial network properties. With timing for axon

growth and synapse formation, this study introduces a mechanism that for

early network formation before later refinement through activity-dependent

factors. Together, this indicates that time windows for axon growth influence the

topological and spatial properties of neuronal networks opening the possibility to

a posteriori estimate of developmental mechanisms based on network properties

of a developed network.

In part III for the macroscopic level of the whole brain network development,

I investigated changes in whole brain connectivity with age. In this study, I
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investigated changes in structural connectivity between ages of 4 to 40 years

from DTI data in cortical and subcortical regions. Previous studies had

shown that the human brain undergoes vast structural changes involving

alterations in the topology of structural and functional connectivity, while

core properties such as small-world topology and modular organisation were

retained throughout development (Fair et al., 2009; Gong et al., 2009; Supekar

et al., 2009; Hagmann et al., 2010; Dennis et al., 2013). I demonstrated that

the stability of the brain network may be realised by preferential detachment,

that is, specific types of fibre tracts were preferentially affected. This approach

differs from previous work in that, first, I investigated which type of fibre

tracts showed changes during development as well as the resulting impact

on network topology. Second, regions of interest (ROIs) included subcortical

areas unlike previous studies of brain network development. Finally I provided

evidence to explain sex differences during maturation, which is consistent with

previous studies from a network perspective. In summary, we find that long-

distance and inter-modular connectivity is largely spared from the ongoing

streamline losses during development, which is potentially beneficial for the

observed stability of small-world and modular connectome features. Retaining

long-distance and inter-modular fibres indicate that small-world features, such

as the number of processing steps but also the balance between information

integration and large-scale brain activity, are kept within a critical range during

development (Kaiser & Hilgetag, 2006). Preserving this balance is crucial

as changes in long-distance connectivity are a hallmark of neurodegenerative

and neurodevelopmental disorders ranging from Alzheimer’s disease (Ponten

et al., 2007; Stam et al., 2007) to schizophrenia (Alexander-Bloch et al., 2012).

Therefore, stable topological network features might help to prevent cognitive

deficits in pathological brains.
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Finally in part IV I discuss macroscopic refinement during development, propos-

ing two-stage connectome maturation hypothesis. The two stages both involve

synaptic pruning and strengthening of axons by increased myelination;the first

stage may be dominated by synaptic pruning of long connections and the second

stage may be mainly dependent on strengthening and maintaining of long-range

connections and calibrating local (short) connections. I explained that aberrant

developmental trajectories of neurodevelopmental disorders can be explained in

terms of short and long-distance connectivity during two-stage maturation, sug-

gesting similar features of the trajectories can explain phenotypical similarities

of the disorders.

In the following sections, I will discuss the methodological issues of my studies

and provide alternatives and their advantages and disadvantages.

5.2. Methodological consideration

5.2.1. Constructing networks from DWI

5.2.1.1. Definition of nodes and edges

Depending which parcellation schemes or atlases (Evans et al., 2012) one

chooses to use to define nodes and edges, the sizes of the networks change.

This inevitably influences the graph measures (Section 1.1.1) that we calculate;

they are dependent on the number of nodes and the average of degree of

the network (Van Wijk et al., 2010; Zalesky et al., 2010). Therefore, when

we compare networks using graph measures, we need to check whether the

differences between networks are from different sizes of networks, in other
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words, we need to correct the results considering the dependencies. Some

studies examine graph measures as a function of threshold (Gong et al., 2009;

Achard & Bullmore, 2007) and others including this thesis (Kim et al., 2014;

Lim et al., 2013) use surrogate rewired networks with the same number of

nodes and degree distribution/strength distribution (Maslov & Sneppen, 2002;

Rubinov & Sporns, 2011) or cost integration (Ginestet et al., 2011). Future

studies have yet to devise a better approach as each method has advantages

and disadvantages.

5.2.1.2. Definition of weights

A weighted network can provide much richer information about the network

that we investigate compared to binary networks because the same binary

networks can be very different when the weights of the networks are different.

While using a weighted network can provide us with more information, dealing

with them is not an easy job. First of all, we need to decide how to define

the weight of an edge. In part III, the streamline count was used to represent

the connection strength between two nodes. However, the way we obtain

streamline counts is confounded by individual brain volume differences, which

was discussed in Section 3.4. Depending on the tractography methods, we

may get streamline counts or probabilities and each method may be better

suited to a certain normalization regarding brain volume or surface. These

individual differences can be also accounted in the subsequent statistical models

e.g., including covariates. Sometimes normalization based on brain volume or

surface (Honey et al., 2009a) may remove actual differences between patients

and healthy controls, for instance, grey matter atrophy is one of the common

phenomenon in neurological disorders and if we eliminate the volume differences
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we may also remove the real difference between groups. Another example

can be found in a recent study (Taylor et al., 2015); the study showed that

reduced surface areas of epileptic patients contributed more to the differences

between groups. In which case, if we normalise the number of fibre tracts by

the surface area, we might lose an important feature of the patient group. For

probabilistic tractography, the connection probability from region A to B is not

necessarily be the same as the connection probability from region B to A, the

adjacency matrix is asymmetrical. The asymmetry of the graph, in other words,

a directed graph has more information than an undirected graph; however,

many studies use the average of the two probabilities (from A to B and from B

to A) (Gong et al., 2009) as DTI itself cannot provide directional information

of fibre tracts. Since many studies use their own definitions of weights and

weight normalization method, it is quite difficult to directly compare studies.

For more discussion see (Sporns, 2014b; Fornito et al., 2012).

5.2.2. Diffusion MRI: DTI and beyond

We would like to estimate the fibre orientation in the WM through DTI to

investigate brain connectivity; however, DWI can be achieved in mm scale,

while diameters of axons are in µm scale. Fitting a single tensor in each voxel

further exacerbates this issue because using a single tensor can only represent

one principal direction of fibres when in fact there can be multiple major fibre

orientations. The following short discussion covers this issue and alternatives.
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5.2.2.1. Other methods for fibre orientation estimation

More than 90% of WM voxels have multiple fibre orientation (Jeurissen et al.,

2010; Tournier et al., 2011). The diffusion tensor model, however, cannot

correctly resolve multiple fibre orientation issues in a single voxel. Therefore,

there are other approaches such as multi-tensor model, Diffusion Spectrum

Imaging and Q-Ball Imaging estimating diffusion orientation distribution func-

tion (dODF) and spherical deconvolution models estimating fibre orientation

distribution (fODF). fODF is a probability distribution on the sphere, repre-

senting the proportion of fibres in the direction (each point on the sphere).

However, fODF cannot be measured directly from our measurements since they

are based on the diffusion of water molecules. dODF describes the probability

distribution of diffusion of water molecules in each voxel.After we estimate the

fibre orientations via tensor-based models, dODF or fODF, we ‘connect’ the

local information into fibre tracts using tractography (1.2.2). As deterministic

tractography approaches cannot provide confidence of the resulted pathways

from the tractography, probabilistic tractography can be an alternative (Behrens

et al., 2003). For probabilistic tractography, the uncertainty of the fibre orienta-

tion, or orientation distribution function (ODF) needs to be estimated. uODF

estimates the uncertainty of the fibre orientations from dMRI; the uncertainty

representing our confidence that the true parameter lies within any particular

area on the surface of the sphere, whereas fODF and dODF are more directly

related to physical properties of the system. So far the tractography methods

use local diffusivity information to find the path from a region to another region.

We can ask another question to find the pathway: what is the path of least

hindrance to diffusion that connects two regions? The maximum diffusivity of

the path between two regions does not need to coincide with the local maximum
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diffusivity, which means now the problem is global. This global tractography is

robust against local effects (errors) from noise or modelling errors, for review

(Mangin et al., 2013).

5.2.2.2. Optimal parameter values and models

Another important topic is optimal parameters for DWI acquisition in particular

b-value (Eq.(1.8), Eq.(1.9)) and subsequent models (or model-free methods).

Higher b-value provides better angular contrast of DWI images (Descoteaux

et al., 2009; Jones et al., 2013), thus beneficial for tractography; however, it

reduces signal-to-noise ratio. Therefore, using multiple b-values (high b -values

for better contrasts and low b -values for good signal-to-noise ratios) are used

to resolve the issue. Unfortunately, mono-exponential decay assumption (see

Section 1.2) breaks down when b -values higher than 1500 s/mm2 (Clark &

Le Bihan, 2000; Mulkern et al., 1999; Beaulieu & Allen, 1994). This non-

monoexponential diffusion decay poses an overfitting problem in the fibre

orientation distribution and consequently would give false positive fibre tracts

for tractography (Jbabdi et al., 2012). Jbabdi and colleagues proposed a model

using continuous gamma distribution diffusivities (Jbabdi et al., 2012). For

summary of models accounting for non-monoexponential diffusion decay, see

(Jbabdi et al., 2012; Mulkern et al., 2009). Optimal b -value also changes

depending on the methods for estimating fibre orientation distributions. For

instance, So far most studies have used a b -value of 1000 s/mm2, but more

studies use multiple b-values to benefit both angular contrasts and SNR, we need

to consider other models for future analysis (see also http://fsl.fmrib.ox.ac.

uk/fsl/fslwiki/EDDY). For more information regarding other parameters such

as the number of gradient directions and spatial resolution for DWI acquisition
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can be well summarised here (Jones et al., 2013).

In summary, investigating brain connectivity using DWI is quite promising

to investigate WM structure noninvasively as long as we keep its limitations

in mind and do not over-interpret the results than the methods can provide

(Jones et al., 2013; Thomas et al., 2014).

5.3. Future outlook

In this section, I will briefly discuss future outlook of my studies.

• From Part II, future computational models for neuronal network develop-

ment can benefit by incorporating developmental time window information

as they play an important role to configure brain connectivity, although

biological correlates or counterparts may be difficult to obtain for now.

Developmental time windows may have hierarchical structure of differ-

ent structures, for instance, the developmental time window of axon

growth for a neuron as in my study may be influenced by its kind and

its location of the brain. Future studies may investigate the structure of

developmental time windows in more detail.

• From Part III and IV, one can continue to find an underlying mechanism

to explain the preferential detachment of fibre tracts to find organising and

re-organising principles (not necessarily the same) for a healthy mature

connectome; is there a global objective function that our brain needs to

optimize? Or is there only local adaptation to endogenous/exogenous

factors? If somehow usual brain development encounters obstructions

due to malnutrition, head injuries, or stressful environment, would brain
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development principles help overcome some unexpected changes or would

they exacerbate the problems? Would recovery be governed by global

optimizations or local adaptation rules? Global principles and local

rules may act on brain development together; however, depending on the

weights of each forces, we may need to use different methods to intervene

brain disorders.

• Investigating structural connectivity alone cannot address the organising

and reorganising principles during brain development because structure

and function influence each other, thus develop interactively. Previous

studies developed models to infer structural connectivity from functional

connectivity (Greicius et al., 2009) and vice versa (Honey et al., 2009b).

However, the relationship between structural and functional connectivity is

more complex than it seems (Uddin, 2013). Therefore, rather than simply

predicting one from the other at a certain time point, one needs to have

some starting testable hypotheses/principles regarding the interaction

between structure and function. I believe that part III and IV can provide

a good starting ground to achieve our goal.

• Finally, by unravelling principles of the brain connectivity development,

we may be able to find possible causes to neurodevelopmental diseases

and eventually be able to find optimal solutions to them.
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Abbreviations

AAL Automated Anatomical Labeling
ACC Anterior Cingulate Cortex
AD Axial Diffusivity
ADC Apparent Diffusion Coefficient
AIC Akaike Information Criterion
ASD Autistic Spectrum Disorder
BA Brodmann Area
BIC Bayesian Information Criterion
dODF Diffusion Orientation Distribution Function
DTI Diffusion Tensor Imaging
DWI Diffusion Weighted Imaging
EPI Echo Planar Image
ERP Event-Related Potential
F Frontal Lobe
FA Fractional Anisotropy
FACT Fibre Assignment by Continuous Tracking
FDR False Discovery Rate
fODF Fibre Orientation Distribution Function
FoV Field of View
GLM General Linear Model
GM Gray Matter
GMV Gray Matter Volume
ICV IntraCranial Volume
lh Left hemisphere
MD Mean Diffusivity
MNI Montreal Neurological Institute
MR Magnetic Resonance
MRI Magnetic Resonance Imaging
NKI Nathan Kline Institute
NMI Normalized Mutual Information
O Occipital Lobe
ODF Orientation Distribution Function
P Parietal Lobe
PC Participation Coefficient
RD Radial Diffusivity
rh Right hemisphere
ROI Region Of Interest
rs-fMRI Resting-State Functional MRI
SC Structural Connectivity
SNR Signal-to-Noise Ratio
T Temporal Lobe
TE Echo Time
TR Repetition Time
uODF Uncertainty Orientation Distribution Function
WM White Matter
WMS Within-Module Strength
WMV White Matter Volume
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