
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


이학박사학위논문

Pricing Barrier Options:
A Probabilistic Approach

확률론적으로접근한베리어옵션의가치평가

2013년 8월

서울대학교대학원

물리·천문학부

노정호



Pricing Barrier Options:
A Probabilistic Approach

확률론적으로접근한베리어옵션의가치평가

지도교수강병남

이논문을이학박사학위논문으로제출함

2013년 5월

서울대학교대학원

물리·천문학부

노정호

노정호의박사학위논문을인준함

2013년 6월

위 원 장 (인)

부위원장 (인)

위 원 (인)

위 원 (인)

위 원 (인)



Abstract

Pricing Barrier Options:
A Probabilistic Approach

Jeongho Roh

Department of Physics and Astronomy

The Graduate School

Seoul National University

We investigate the use of theoretical and computational methods from

physics in finance, particularly in the areas of contingent claim valuation.

We apply these methods to simplify the analysis of complicated barrier op-

tions.

The trivariate joint probability density function of Brownian motion

and its maximum and minimum can be expressed as an infinite series of

normal probability density functions. We show that the infinite series con-

verges uniformly, and use the uniform convergence to prove it satisfies the

Fokker-Planck equation. Also, we express the infinite series as a product

form using Jacobi’s triple product identity. Moreover, we present some er-

ror bounds of an approximation of the infinite series by a finite series.

However, practitioners and researchers who have handled financial mar-

ket data know that asset returns do not behave according to the Gaussian
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or normal distribution. Indeed, the use of Gaussian models when the asset

return distributions are not normal could lead to the underestimation of ex-

treme losses or mispriced derivative products. Consequently, non-Gaussian

models are gaining popularity among financial market practitioners. We

tried to calculate value of the barrier options when the asset return distri-

butions are heavy-tailed GB2 distribution.

Keywords : barrier option, reflection principle, brownian motion, maxi-

mum, minimum, joint probability distribution, error bound, Jacobi’s triple

product identity, heavy-tailed distribution, GB2

Student Number : 2000-30170
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Chapter 1

Introduction
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Since Black and Scholes’ (BS) option pricing model gained an al-

most immediate acceptance among the professional and academic commu-

nities, the trading of derivative securities suddenly increased by a very large

amount. Derivative securities are financial securities whose payoffs depends

on other underlying securities, and the BS model was the first universally

accepted modeling of these financial instruments.

However, in recent years, financial engineeers have created a variety of

complex options that are collectively called exotic options.

The payoffs on these options are considerably more diverse than the

payoffs on standard BS options or on other straightforward generalizations

of them.

Most of the mathematical methods involved in the analysis of financial

systems have been based, so far, on the simulation of stochastic processes by

diffusion equations coupled to stochastic sources, i.e. stochastic equations

of Langevin type. More recently, there has been an interest in the analysis

of various financial instruments using the path integral formulation.

Use of a path integral formulation has some advantages. First, it is in

close relation to the lagrangean description of diffusion processes, second,

it opens the way to the use of quantum mechanical methods.

In chapter 1, after a description of the path integral in the Black Sc-

holes model, we turn our attention to the analysis of barrier options. Barrier

options are studied here by an artificial quantum mechanical model in which

a potential V (x) is added to the Black Scholes lagrangean, as first suggested

in ref. [2].

The trivariate joint probability density function of Brownian motion
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and its maximum and minimum can be expressed as an infinite series of

normal probability density functions. In chapter 2, we show that the infinite

series converges uniformly, and we express the infinite series as a product

form using Jacobi’s triple product identity. Moreover, we present some error

bounds of an approximation of the infinite series by a finite series.

In chapter 3, we tried to calculate value of the barrier options when the

asset return distributions are heavy-tailed GB2 distribution.
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1.1 Langevin Evolution

Baaquie, et al [1] have introduced path integral method for the analysis

of barrier options. The rest of this chapter has been adapted from Baaquie,

et al [1].

In the description of theoretical finance, a security S(t) follows a ran-

dom walk described by a Ito-Weiner process (or Langevin equation) as

d S(t)
S(t)

= φdt +σR(t)dt, (1.1)

where R(t) is a Gaussian white noise with zero mean and uncorrelated values

at time t and t ′ ⟨R(t)R(t ′)⟩= δ(t − t ′). φ is the drift term or expected return,

while σ is a constant factor multiplying the random source R(t), termed

volatility.

As a consequence of Ito calculus, differentials of functions of random

variables, say f (S, t), do not satisfy Leibnitz’s rule, and for a Ito-Weiner

process with drift (1.1) one easily obtains for the time derivative of f (S, t)

d f
dt

=
∂ f
∂t

+
1
2

σ
2S2 ∂2 f

∂S2 +φS
∂ f
∂S

+σS
∂ f
∂S

R. (1.2)

The Black-Scholes model is obtained by removing the randomness of the

stochastic process shown above by introducing a random process correlated

to (1.2). This operation, termed hedging, allows to remove the dependence

on the white noise function R(t), by constructing a portfolio Π, whose evo-
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lution is given by the short-term risk free interest rate r

dΠ

dt
= rΠ. (1.3)

A possibility is to choose Π = f − ∂ f
∂S S. This is a portfolio in which the in-

vestor holds an option f and short sells an amount of the underlying security

S proportional to ∂ f
∂S . A combination of (1.2) and (1.3) yields the Black-

Scholes equation
∂ f
∂t

+
1
2

σ
2S2 ∂2 f

∂S2 + rS
∂ f
∂S

= r f . (1.4)

There are some assumptions underlying this result. We have assumed ab-

sence of arbitrage, constant spot rate r, continuous balance of the portfolio,

no transaction costs and infinite divisibility of the stock.

The quantum mechanical version of this equation is obtained by a

change of variable S = ex, with x a real variable. This yields

∂ f
∂t

= HBS f (1.5)

with an Hamiltonian HBS given by

HBS =−σ2

2
∂2

∂x2 +

(
1
2

σ
2 − r

)
∂

∂x
+ r. (1.6)

Notice that one can introduce a quantum mechanical formalism and interpret

the option price as a ket | f ⟩ in the basis of |x⟩, the underlying security price.

Using Dirac notation, we can formally reinterpret f (x, t) = ⟨x| f (t)⟩, as a

projection of an abstract quantum state | f (t)⟩ on the chosen basis.
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In this notation, the evolution of the option price can be formally writ-

ten as | f , t⟩= etH | f ,0⟩, for an appropriate Hamiltonian H.

1.2 Options and Barrier Options

1.2.1 Generalities

Let the price at time t of a security be S(t). A specific good can be

traded at time t at the price S(t) between a buyer and a seller. The seller

(short position) agrees to sell the goods to the buyer (long position) at some

time T in the future at a price F(t,T ) (the contract price). Notice that con-

tract prices have a 2-time dependence (actual time t and maturity time T ).

Their difference τ = T − t is usually called time to maturity. Equivalently,

the actual price of the contract is determined by the prevailing actual prices

and interest rates and by the time to maturity.

Entering into a forward contract requires no money, and the value of

the contract for long position holders and short position holders at maturity

T will be

(−1)p (S(T )−F(t,T )) (1.7)

where p = 0 for long positions and p = 1 for short positions. Futures Con-

tracts are similar, except that the after the contract is entered, any changes in

the market value of the contract are settled by the parties. Hence, the cash-

flows occur all the way to expiry unlike in the case of the forward where

only one cashflow occurs. They are also highly regulated and involve a third

party (a clearing house). Forward, futures contracts and, as we will see, op-
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tions go under the name of derivative products, since their contract price

F(t,T ) depend on the value of the underlying security S(T ).

In the simplest option, such as a call option, we have seen that the

payoff function is defined to be the value of the option at maturity time

(τ = 0). Therefore, the specific path followed by the underlying security is

not relevant in order to establish the price at maturity, except for its final

value.

Barrier options are, instead, path-dependent. This means that the payoff

is dependent on the realized asset path, and certain aspects of the contract

are triggered if the asset price, from start to end of the contract, becomes too

high or too low.

Barrier options are very popular for various reasons. An investor may

have very precise views about the behaviour of a security or he may use them

for hedging specific cashflows, to decide to purchase them. In the following,

when comparing path dependent options to the simplest options, such as

standard calls or puts, we will refer to the latter as to vanilla options, using

a common financial jargon.

1.2.2 Terminology and Definitions

There are some advantages -and natural limitations- in purchasing a

financial instrument such as a barrier option. If the purchaser wants the same

payoff typical of a vanilla option, but believes that the upward movement of

the underlying will not be likely, then he may decide to buy an up-and-out

call option. The cost of this contract will be cheaper than the purchase of

a corresponding plain vanilla option, but there will be severe limitations on

7



the upward movement of the option.

The physical picture of an up-and-out option is that of a brownian mo-

tion of the underlying asset (x) that is immediately killed as soon as the asset

hits (from below) the barrier B (x = B), which is specified in the contract.

Similarly, a down and out provision renders the option worthless as

soon as the asset price hits a barrier B from above. The payoffs in the two

cases are given by

gUO(x,K) = max(ST −K)θ(B− x)

gDO(x,K) = max(ST −K)θ(x−B) (1.8)

for a up-and-out (UO) and a down-and-out (DO) option call respectively.

Here, θ() denotes the standard step function. A terminology used to describe

contracts with these features is knocked out options. In contracts of this type

it is agreed there will not be any payoff if the barrier B is hit.

Similarly, the market offers contract with additional limitations on the

allowed variation of the underlying asset. For instance, double knock out

options have restrictions on the asset variability delimited by two barriers

(B− < B+) both from above (B+) and from below (B−), and give zero payoff

if any of the two barriers is hit by the asset from inception time t to expiry

time T.

Knock in options are dual, in an obvious sense, to knock out options.

Knock in options, in fact, are contracts that pay off as long as the barrier B is

hit before expiry. If the barrier is hit, then the option is said to have knocked

8



in, otherwise their payoff is null.

Furtherly categorizing these latter types of options, the position of the

barrier respect to the initial value of the underlying allows to distinguish

between up-and-in options and down-and-in options. The payoffs of these

contracts are given by

gUI(x,K) = max(ST −K)θ(x−B)

gDI(x,K) = max(ST −K)θ(B− x). (1.9)

For definiteness, in the analysis that follows up, we will focus our at-

tention to knocked out payoffs of the types described in eq. (1.8).

In knocked out options, single or double, killing of the brownian mo-

tion is, needless to say, instantaneous, and takes place as soon as the brow-

nian motion of the asset hits any of the barriers.

This aspect of the contract is an unpleasent feature since it introduces

a discontinuity in the dynamics, with attached risk management problems

both for option buyers and sellers. Such risks, for instance, are those due

to erroneous price movements, or to an instantaneous spiky behaviour of an

asset, moving upward or downward and penetrating a given barrier, which

can lead an investor to the loss of all his investment. In other unpleasent

situations, when large positions of options accumulate in the market and

are all characterized by the same barrier, trading can drive the asset to the

barrier, generating massive losses.

There are various ways by which more conservative and safer contracts
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can be defined, while maintaining some of the features of knock out options.

This is achieved by introducing a finite knock out rate, thereby smoothing

out the effect of the barrier. Our goal is to show how it can be implemented

in a self-consistent path integral formulation and characterize the pricing of

these path dependent options.

1.3 Quantum Methods in Finance

To establish a path integral description of a stochastic process we need

a lagrangean and the corresponding action. This can be easily worked out

for the BS model, starting from the Hamiltonian given in eq. (1.6). We easily

gets

LBS =− 1
2σ2

(
dx
dt

+ r− 1
2

σ
2
)2

− r (1.10)

and the corresponding action, expressed in terms of time to maturity τ

SBS =

∫
τ

0
LBS (t ′)d t ′ (1.11)

which can be used to define a corresponding path integral for a fictitious

quantum mechanical process in the variable x, the logarithm of the underly-

ing asset

⟨x f |e−τHBS |xi⟩= Πti<t<t f

∫
−∞

+∞

d x(t)eS[x] (1.12)

with the boundary conditions x(ti) = xi and x(t f ) = x f . The variable x =

log(S) which identifies the quantum mechanical state of the system will be

refered to as to the stock price. The pricing kernel for the stock price is given

10



by the

pBS(x,x′,τ) =

∫
DXBSeSBS

= ⟨x|e−τHBS |x′⟩

(1.13)

with ∫
DXBS = Π

τ
t=0

∫
∞

−∞

dx(t). (1.14)

1.3.1 Generalized Potential

For barrier options it is tempting [2] to introduce a potential V (x) in

order to set up a constraint on the stochastic process described by the stock

price x.

The corresponding generalized Hamiltonian now reads

HV =−σ2

2
∂2

∂x2 +

(
1
2

σ
2 −V (x)

)
∂

∂x
+V (x). (1.15)

It can be shown [2] that HV obeys the martingale condition, and hence

can be used for studying processes in finance.

The non-Hermiticity of HV is of a particularly simple nature, and it can

be shown [2] that for arbitrary V,HV is equivalent by a similarity transfor-
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mation to a Hermetian Hamiltonian HEff given by

HEff = e−sHV es (1.16)

where

HEff = −σ2

2
∂2

∂x2 +
1
2

∂V
∂x

+
1

2σ2V 2 +
1
2

V +
σ2

8
(1.17)

and

s =
1
2

x− 1
σ2

∫ x

0
dyV (y) (1.18)

Note that HEff is Hermetian and hence its eigenfunctions form a complete

basis; from this it follows that the Hamiltonian HV can also be diagonalized

using the eigenfunctions of HEff. In particular

HEff|φn > = En|φn > (1.19)

⇒ HV |ψn > = En|ψn > (1.20)

where

|ψn > = es|φn > (1.21)

< ψ̃n| = e−s < φn| ̸=< ψn| (1.22)

For the Black-Scholes Hamiltonian HBS we have V (x) = r and hence

HBS = esHEffe−s (1.23)

= eαx[− σ2

2
∂2

∂x2 + γ
]
e−αx (1.24)

where

γ =
(r+σ2/2)2

2σ2 ; α =
σ2/2− r

σ2 (1.25)
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1.4 Solving the double knock out barrier option

A double barrier option is an option whose value reduces to zero when-

ever the price of the underlying instrument hits the barriers which we denote

by ea and eb. Hence, the price of a double knock out barrier European call

option expiring at time T and with strike price K at time t0 provided it has

not already been knocked out will be given by

e−r(T−t0)Et [(ex(T )−K)+]1a<x(t ′)<b,t0<t ′<T (1.26)

where 1 stands for the indicator function. It is sufficient to solve for the

probability distribution of x(T ) for those paths which do not go outside the

barriers (in other words, the pricing kernel).

Written as a path integral, the formula is

e−r(T−t0)
∫

DxΘ(x(t)−a)Θ(b− x(t))eSBS(x(t))(ex(T )−K)+ (1.27)

where SBS is the Black-Scholes action

SBS =− 1
2σ2

∫
dt(ẋ+ r− σ2

2
)2 (1.28)

While the step functions look complicated in the path integral, they

can be seen to be having the effect of an infinite potential barrier since they

effectively prohibit the path from entering the forbidden region outside the

barriers. Hence, the problem might be better solved using the Hamiltonian

and this is indeed the case.
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In the Schrödinger formulation, the above problem is to find the pricing

kernel for a system with the Hamiltonian

Ĥ = ĤBS +V (x) (1.29)

where the Black-Scholes Hamiltonian is given by

ĤBS =−σ2

2
∂

∂x2 +(
σ2

2
− r)

∂

∂x
(1.30)

and the potential V (x) is given by

V (x) =


∞ x < a

0 a < x < b

∞ x > b

(1.31)

This is very similar to the well known problem of a particle in an infi-

nite potential well except that the Hamiltonian has an extra term involving

∂

∂x which makes it non-Hermitian.

This problem can be solved by transforming the underlying wave func-

tions. By making the transformation ⟨x | φ⟩ = e−α(x−a)⟨x | ψ⟩ and ⟨φ | x⟩ =

eα(x−a)⟨ψ | x⟩, where |φ⟩ are the vectors in the new (Hilbert) space, |ψ⟩ and

⟨ψ̃| are the original vectors and their duals respectively and α = σ2/2−r
σ2 . In

this new space, the Black-Scholes Hamiltonian takes the simple Hermitian

form −σ2

2
∂2

∂x2 .

The problem is now identical to that of a quantum mechanical particle

of mass 1
σ2 (in units where h̄ = 1) in an infinite potential well. As is well
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known in this case, the allowed momenta are pn =
nπ

b−a . The eigenfunctions

are hence given by

⟨x | ψn⟩ = eα(x−a)⟨x | φn⟩ =

√
2

b−a
ieα(x−a) sin pn(x−a) (1.32)

⟨ψ̃n | x⟩ = e−α(x−a)⟨φn | x⟩ =−
√

2
b−a

ie−α(x−a) sin pn(x−a)(1.33)

where ⟨x | φn⟩ are the eigenfunctions of the quantum mechanical particle in

an infinite potential well.

The eigenfunctions are orthonormal and form a complete basis since

∞∑
n=1

⟨x | ψn⟩⟨ψ̃n | x′⟩= 2
b−a

eα(x−x′)
∞∑

n=1

sin pn(x−a)sin pn(x′−a)

=
1

2(b−a)
eα(x−x′)

∞∑
n=−∞

(
exp

inπ

b−a
(x− x′)− exp

inπ

b−a
(x+ x′−2a)

)
=

π

b−a
eα(x−x′)

(
δ

(
π(x− x′)

b−a

)
−δ

(
π(x+ x′−2a)

b−a

))
= δ(x− x′)

(1.34)

since a < x < b and a < x′ < b.
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The pricing kernel is hence given by

⟨x|e−τĤ |x′⟩=
∞∑

n=1

∞∑
n′=1

⟨x|ψn⟩⟨ψ̃n|e−τĤ |ψn′⟩⟨ψ̃n′ |x′⟩

=
∞∑

n=1

⟨x | ψn⟩⟨ψ̃n | x′⟩e−τEn

=
1

2(b−a)
exp
(
−τσ2β

2
+α(x− x′)

)
∞∑

n=−∞

exp
(
−τσ2 p2

n

2

)
(eipn(x−x′)− eipn(x+x′−2a))

=
1

2(b−a)
exp
(
−τσ2β

2
+α(x− x′)

) ∞∑
n=−∞

∫
dyδ(y−n)exp

(
− y2π2τσ2

2(b−a)2

)
(

exp
iyπ(x− x′)

b−a
− exp

iyπ(x+ x′−2a)
b−a

)
=

√
1

2πτσ2 exp
(
−τσ2β

2
+α(x− x′)

)
∞∑

n=−∞

(
exp−(x− x′+2n(b−a))2

2τσ2 − exp−(x+ x′−2a−2n(b−a))2

2τσ2

)
(1.35)

where

β =
(σ2/2+ r)2

σ4 (1.36)

and the identity

δ(y−n) =
∞∑

n=−∞

e2πiny (1.37)

has been used.

Hence, we see that the pricing kernel (apart from the drift terms) is

given by an infinite sum of Gaussians. To check its reasonableness, we check

the value in the limits b→∞ and a→−∞. In the former case, only the n= 0
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term contributs and in the latter, only the n = 0 and n = 1 terms contribute.

It is easy to see that, in both cases, the result reduces to the solution for the

single knockout barrier pricing kernel. When both limits are simultaneously

active, only the first term in the n = 0 term exists and it is easily seen that

gives rise to the well known Black-Scholes pricing kernel.

We can now evaluate the price of a double barrier European call option

using the pricing kernel from (1.35). The result is seen to be

f =
∞∑

n=−∞

(
e−2nα(b−a)

(
e2n(b−a)SN(dn1)−Ke−rτN(dn2)

)
− S2αe−2α(n(b−a)−a)

(
e2n(b−a) e2a

S
N(dn3)−Ke−rτN(dn4)

)) (1.38)

where

dn1 =
ln( S

K )+2n(b−a)+ τ

(
r+ σ2

2

)
σ
√

τ
(1.39)

dn2 =
ln( S

K )+2n(b−a)+ τ

(
r− σ2

2

)
σ
√

τ
= dn1 −σ

√
τ (1.40)

dn3 =
ln( e2a

SK )+2n(b−a)+ τ

(
r+ σ2

2

)
σ
√

τ
(1.41)

dn4 =
ln( e2a

SK )+2n(b−a)+ τ

(
r− σ2

2

)
σ
√

τ
= dn3 −σ

√
τ (1.42)
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Chapter 2

On the Trivariate Joint Distribution of
Brownian Motion and its Maximum
and Minimum
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2.1 Introduction

Consider a standard Brownian motion {Wt |t ≥ 0} with W0 = 0. Denote

its maximum and minimum, respectively, by

lt = min
0≤s≤t

Ws and ut = max
0≤s≤t

Ws. (2.1)

It is known that the trivariate joint distribution of (Wt , lt ,ut) is expressed as

P(a ≤ lt ≤ ut ≤ b,Wt ∈ dx)

=
1√
2πt

∞∑
k=−∞

[
exp
(
− 1

2t
{x−2k(b−a)}2

)
−exp

(
− 1

2t
{x−2b−2k(b−a)}2

)]
dx, (2.2)

where a ≤ 0 ≤ b. This equation and its variants are found in the literature

of probability such as Bachelier (1901), Lévy (1948, p. 213), Darling and

Siegert (1953), Cox and Miller (1965, p. 222), Freedman (1970, pp. 26-7),

Feller (1970, p. 341), Csáki (1978), Shorack and Wellner (1986, pp. 33-

36), Teunen and Goovaerts (1994), Revuz and Yor (1998, p. 111), Borodin

and Salminen (2002, p. 174), etc. The purposes of this chapter are to show

uniform convergence of the infinite series of Equation (2.2), to show that it

is a solution to the Fokker-Planck equation, to present some approximations

of the trivariate joint probability density function, and to analyze their error

bounds.
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2.2 Uniform Convergence

For a fixed t ∈ (0,∞), define two sequences of functions {qk(x; t)|k = · · · ,−1,0,1, · · ·}

and {rk(x; t)|k = · · · ,−1,0,1, · · ·}, respectively, by

qk(x; t) =
1√
2πt

exp
(
− 1

2t
{x−2k(b−a)}2

)
, (a ≤ x ≤ b) (2.3)

and

rk(x; t) =
1√
2πt

exp
(
− 1

2t
{x−2b−2k(b−a)}2

)
, (a ≤ x ≤ b). (2.4)

Clearly, qk(x; t) and rk(x; t) are positive for each k. Equation (2.2) becomes

P(a ≤ lt ≤ ut ≤ b,Wt ∈ dx) =
∞∑

k=−∞

{qk(x; t)− rk(x; t)}dx. (2.5)

Equation (2.3) implies

qk+1(x; t)
qk(x; t)

= exp
(

2(b−a)
t

{x−b+a−2k(b−a)}
)
, (2.6)

which can be written as

qk+1(x; t) = β(x)αkqk(x; t), (k = · · · ,−1,0,1, · · ·), (2.7)

where

α = exp
(
−4(b−a)2

t

)
and β(x) = exp

(
2
t
(b−a)(x−b+a)

)
. (2.8)
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It can be driven from Equation (2.7) that

qk(x; t) = β
k(x)α(

k
2)q0(x; t), (k = · · · ,−1,0,1, · · ·), (2.9)

where

q0(x; t) =
1√
2πt

exp
(
− 1

2t
x2
)

and
(

k
2

)
=

k(k−1)
2

. (2.10)

Equations (2.7) and (2.8) imply

lim
k→∞

qk+1(x : t)
qk(x; t)

= lim
k→∞

β(x)αk = 0. (2.11)

The ratio test indicates that
∑

∞

k=1 qk(x; t) converges for any x ∈ [a,b]. For

each k ≥ 1, qk(x; t) is increasing on [a,b], and then, 0 < qk(x; t) ≤ qk(b; t).

Since
∑

∞

k=1 qk(b; t) is convergent, the series
∑

∞

k=1 qk(x; t) converges uni-

formly on the compact set [a,b]. For details of this uniform convergence,

readers may refer to Rudin (1976, p.148). Equation (2.7) implies that

lim
k→−∞

qk(x; t)
qk+1(x : t)

= lim
k→−∞

1
β(x)αk = 0. (2.12)

The ratio test implies that
∑−1

k=−∞
qk(x; t) is convergent for any x∈ [a,b]. For

each k ≤−1, qk(x; t) is decreasing on [a,b], and then, 0 < qk(x; t)≤ qk(a; t).

Since
∑−1

k=−∞
qk(a; t) is convergent,

∑−1
k=−∞

qk(x; t) converges uniformly on

the compact set [a,b]. Therefore, the series
∑

∞

k=−∞
qk(x; t) converges uni-
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formly on [a,b]. We know from Equation (2.9) that

∞∑
k=−∞

qk(x; t) = q0(x; t)
∞∑

k=−∞

β
k(x)α(

k
2), (2.13)

which can be represented by Jacobi’s triple product identity (see, e.g., Zwill-

inger [2003, p. 48]) as follows.

∞∑
k=−∞

qk(x; t) = q0(x; t)
∞∏

j=1

{(
1−α

j)(1+
1

β(x)
α

j
)(

1+β(x)α j−1)}
(2.14)

Equation (2.4) implies

rk+1(x : t)
rk(x; t)

= exp
(

2(b−a)
t

{x−3b+a−2k(b−a)}
)
, (2.15)

which can be written as

rk+1(x : t) = γ(x)αkrk(x; t), (k = · · · ,−1,0,1, · · ·), (2.16)

where

γ(x) = exp
(

2
t
(b−a)(x−3b+a)

)
= β(x)exp

(
−4

t
b(b−a)

)
. (2.17)

It can be driven from Equation (2.16) that

rk(x; t) = γ
k(x)α(

k
2)r0(x; t), (k = · · · ,−1,0,1, · · ·), (2.18)
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where

r0(x; t) =
1√
2πt

exp
(
− 1

2t
[x−2b]2

)
. (2.19)

Applying the same method as before, we can show that the series
∑

∞

k=−∞
rk(x; t)

converges uniformly on [a,b], and that its sum is

∞∑
k=−∞

rk(x; t) = r0(x; t)
∞∑

k=−∞

γ
k(x)α(

k
2), (2.20)

which can be expressed as

∞∑
k=−∞

rk(x; t) = r0(x; t)
∞∏

j=1

{(
1−α

j)(1+
1

γ(x)
α

j
)(

1+ γ(x)α j−1)} .

(2.21)

We now summarize uniform convergence of
∑

∞

k=−∞
{qk(x; t)− rk(x; t)}

as follows.

[Theorem 1] For integers M and N satisfying M+N ≥ 0, let

S−M,N(x, t) =
N∑

k=−M

{qk(x; t)− rk(x; t)} ,

where a ≤ x ≤ b and t > 0. For a fixed t, as M → ∞ and N → ∞, S−M,N(x, t)

converges uniformly to S−∞,∞(x, t) on the set {a ≤ x ≤ b}, which is equal to

∞∑
k=−∞

{qk(x; t)− rk(x; t)}=
∞∑

k=−∞

α(
k
2)
{

q0(x; t)βk(x)− r0(x; t)γk(x)
}
.
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The limit can be also expressed as

q0(x; t)
∞∏

j=1

{(
1−α

j)(1+
1

β(x)
α

j
)(

1+β(x)α j−1)}

−r0(x; t)
∞∏

j=1

{(
1−α

j)(1+
1

γ(x)
α

j
)(

1+ γ(x)α j−1)} . □

Consider the Fokker-Planck equation

∂ f (x, t)
∂t

=
1
2

∂2 f (x, t)
∂x2 . (2.22)

It is known (see, e.g., Cox and Miller [1965, p. 222]) that S−∞,∞(x, t) =∑
∞

k=−∞
{qk(x; t)− rk(x; t)} satisfies the Fokker-Planck equation (2.22). To

prove it minutely, we need to show that the orders of infinite summation

and differential operators of
∑

∞

k=−∞
{qk(x; t)− rk(x; t)} can be exchange-

able, i.e., the infinite series is differentiable term by term. However, as far as

the authors know, it has not been proven before. It can be shown as in Ap-

pendix that, for each integer k, qk(x; t) and rk(x; t) satisfy the Fokker-Planck

equation (2.22), i.e.,

∂qk(x; t)
∂t

=
1
2

∂2qk(x; t)
∂x2 and

∂rk(x; t)
∂t

=
1
2

∂2rk(x; t)
∂x2 . (2.23)

Thus, qk(x; t)− rk(x; t) is also a solution to the Fokker-Planck equation

(2.22), and so is the linear superposition S−M,N(x, t) for any integers M and
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N. As shown in Appendix using uniform convergence, we know that

1
2

∂2

∂x2

{
∞∑

k=−∞

qk(x; t)

}
=

∂

∂t

{
∞∑

k=−∞

qk(x; t)

}
, (2.24)

and
1
2

∂2

∂x2

{
∞∑

k=−∞

rk(x; t)

}
=

∂

∂t

{
∞∑

k=−∞

rk(x; t)

}
. (2.25)

Equations (2.24) and (2.25) imply

1
2

∂2S−∞,∞(x, t)
∂x2 =

1
2

∂2

∂x2

[
∞∑

k=−∞

{qk(x; t)− rk(x; t)}

]

=
∂

∂t

[
∞∑

k=−∞

{qk(x; t)− rk(x; t)}

]
=

∂S−∞,∞(x, t)
∂t

. (2.26)

Also, it can be shown as in Appendix that, for any t ∈ (0,∞),

S−∞,∞(a, t) = 0 and S−∞,∞(b, t) = 0. (2.27)

[Theorem 2] The infinite series S−∞,∞(x, t) =
∑

∞

k=−∞
{qk(x; t)− rk(x; t)}

satisfies the following Fokker-Planck equation on a < x < b and t > 0

∂S−∞,∞(x, t)
∂t

=
1
2

∂2S−∞,∞(x, t)
∂x2 ,

and the boundary conditions are S−∞,∞(a, t) = 0 and S−∞,∞(b, t) = 0 for any

t > 0. □
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2.3 Approximation and Error Bound

It can be shown that

rk(x; t)
qk(x; t)

= exp
(

2b
t
{x−b−2k(b−a)}

)
. (2.28)

Equation (2.28) can be written as

rk(x; t) = η(x)δkqk(x; t), (k = · · · ,−1,0,1, · · ·), (2.29)

where

δ = exp
(
−4b(b−a)

t

)
and η(x) = exp

(
2b
t
(x−b)

)
. (2.30)

Equation (2.29) implies that, for each k(= · · · ,−1,0,1, · · ·),

qk(x; t)− rk(x; t) =
{

1−η(x)δk}qk(x; t) =
{

1
η(x)

δ
−k −1

}
rk(x; t) (2.31)

Equations (2.7) and (2.29) imply that, for each k(= · · · ,−1,0,1, · · ·),

rk(x; t)−qk+1(x; t) =
{

η(x)δk −β(x)αk}qk(x; t). (2.32)

It is clear that, for any x ∈ [a,b],

0 < α < δ < 1, 0 < β(x)< η(x)≤ 1, 0 < γ(x)< 1. (2.33)
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We know from Equations (2.31)-(2.33) that, for any x ∈ [a,b],

· · · ≥ qk(x : t)≥ rk(x : t)≥ qk+1(x; t)≥ rk+1(x; t)≥ ·· · → 0, (k = 1,2, · · ·),

(2.34)

and

· · · ≥ rk+1(x; t)≥ qk+1(x; t)≥ rk(x : t)≥ qk(x : t)≥ ·· ·→ 0, (k=−1,−2, · · ·).

(2.35)

For any integers M and N satisfying M+N ≥ 0, let

ε−M,N(x, t) = S−∞,∞(x, t)−S−M,N(x, t). (2.36)

The function ε−M,N(x, t) is the remainder of orders (−M,N) or the error

term for approximation of S−∞,∞(x, t) by S−M,N(x, t). It is clear that

S−M,N(x, t) = S1,N(x, t)+S0,0(x, t)+S−M,−1(x, t). (2.37)
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Equations (2.9), (2.18), and (2.31) imply that

S0,0(x, t) = {1−η(x)}q0(x; t) =
{

1
η(x)

−1
}

r0(x; t), (2.38)

S1,N(x, t) =

N∑
k=1

{
1−η(x)δk}qk(x; t)

= q0(x; t)
N∑

k=1

{
1−η(x)δk}

β
k(x)α(

k
2), (2.39)

S−M,−1(x, t) =
−1∑

k=−M

{
1

η(x)δk −1
}

rk(x; t)

= r0(x; t)
−1∑

k=−M

{
1

η(x)δk −1
}

γ
k(x)α(

k
2). (2.40)

When we calculate S1,N(x, t) and S−M,−1(x, t), we would rather use Horner’s

method for computational efficiency.

For positive integers m and n, let

RN,0(x, t) = qN+1(x; t), (2.41)

RN,n(x, t) = qN+1(x; t)−
N+n∑

k=N+1

{rk(x; t)−qk+1(x; t)} , (2.42)

R−M,0(x, t) = r−M−1(x; t), (2.43)

and

R−M,−m(x, t) = r−M−1(x; t)−
−M−1∑

k=−M−m

{qk(x; t)− rk−1(x; t)} . (2.44)
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Equations (2.34) and (2.35) imply that, for any x ∈ [a,b] and t > 0,

RN,0(x, t)≥ RN,1(x, t)≥ RN,2(x, t)≥ ·· · ≥ RN,∞(x, t)> 0 (2.45)

and

R−M,0(x, t)≥R−M,−1(x, t)≥R−M,−2(x, t)≥ ·· · ≥R−M,−∞(x, t)> 0. (2.46)

We know from the definition of qk(x; t) and η(x) that

dqk(x; t)
dx

=
1
t
{x−2k(b−a)}qk(x; t), (2.47)

d2qk(x; t)
dx2 =

1
t

[
1− 1

t
{x−2k(b−a)}2

]
qk(x; t), (2.48)

dη(x)
dx

=
2b
t

η(x). (2.49)

Equations (2.31), (2.47), and (2.49) imply that

∂

∂x
{qk(x; t)− rk(x; t)}=−η

′(x)δkqk(x; t)+
{

1−η(x)δk} ∂qk(x; t)
∂x

=−2b
t

δ
k
η(x)qk(x; t)− 1

t

{
1−η(x)δk}{x−2k(b−a)}qk(x; t).(2.50)

Let

dk(x) = 2bη(x)δk +
{

1−η(x)δk}{x−2k(b−a)} , (2.51)

which is equal to

dk(x) = {−x+2(k+1)b−2ka}η(x)δk +{x−2k(b−a)} . (2.52)
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Equation (2.50) can be written as

∂

∂x
{qk(x; t)− rk(x; t)}=−qk(x; t)

t
dk(x). (2.53)

If k > K+ = max
{

3b
2(b−a) ,

t ln2
4b(b−a)

}
and x ∈ [a,b], then

dk(x)≤ {−x+2(k+1)b−2ka}η(b)δk +{x−2k(b−a)}

= {−x+2(k+1)b−2ka}δ
k +{x−2k(b−a)}

< {−x+2(k+1)b−2ka} 1
2
+{x−2k(b−a)}

≤ 3
2

b− kb+ ka < 0, (2.54)

where the first inequality holds because η(x) is increasing on [a,b], the first

equality does by η(b) = 1, the second inequality does because δk < 1/2, and

the last inequality does because k > 3b/{2(b−a)}. Equations (2.53) and

(2.54) show that qk(x; t)− rk(x; t) is increasing on [a,b]. Also, for any k > 0,

qk(x; t) is increasing on [a,b] for k > K+. Thus, the following proposition

holds;

N > K+,n ≥ 0, and a ≤ x ≤ b ⇒ RN,n(a, t)≤ RN,n(x, t)≤ RN,n(b, t).

(2.55)

If k < K− = min
{

a−4b
2(b−a) ,−

t ln2
4b(b−a) −

1
2

}
and x ∈ [a,b], then

−dk(x)≥ {x−2k(b−a)−2b}η(a)δk −{x−2k(b−a)}

> {x−2k(b−a)−2b}η(a) · 2
η(a)

−{x−2k(b−a)}

≥ a−4b−2k(b−a)> 0, (2.56)
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where the first inequality holds because η(x) is increasing on [a,b], the

second inequality does because δk > 2/η(a), and the last inequality does

because k < (a− 4b)/{2(b−a)}. Equations (2.53) and (2.56) show that

rk(x; t)− qk(x; t) is decreasing on [a,b] for k < K−. Also, for any k < 0,

rk(x; t) is decreasing on [a,b]. Thus, the following proposition holds;

M >−K−, m≥ 0, and a≤ x≤ b ⇒R−M,−m(b, t)≤R−M,−m(x, t)≤R−M,−m(a, t).

(2.57)

We now summarize properties of the error bounds of S−M,N(x, t) as

follows.

[Theorem 3] For M >−K−, N > K+, m ≥ 0, n ≥ 0, x ∈ [a,b], and t > 0, the

following inequalities hold.

RN,n(a, t)≤ RN,n(x, t)≤ RN,n(b, t)

R−M,−m(b, t)≤ R−M,−m(x, t)≤ R−M,−m(a, t)

RN,n(a, t)−R−M,−m(a, t)≤RN,n(x, t)−R−M,−m(x, t)≤RN,n(b, t)−R−M,−m(b, t)

RN,∞(a, t)−R−M,−∞(a, t)≤ ε−M,N(x, t)≤ RN,∞(b, t)−R−M,−∞(b, t)

□

Equations (2.45) and (2.46) and Theorem 3 imply that, for M >−K−,
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N > K+, m ≥ 0, n ≥ 0, and x ∈ [a,b],

−R−M,−m(a, t)≤−R−M,∞(a, t)≤ ε−M,N(x, t)≤ RN,∞(b, t)≤ RN,n(b, t)

(2.58)

and

|ε−M,N(x, t)| ≤ max{R−M,−m(a, t),RN,n(b, t)} . (2.59)

Jacobi’s triple product identity representation in Theorem 1 implies

that

S−∞,∞(x, t) = JL(x, t)+O
(
α

L) , (2.60)

where JL(x, t) is defined by

q0(x; t)
L∏

j=1

{(
1−α

j)(1+
1

β(x)
α

j
)(

1+β(x)α j−1)}

−r0(x; t)
L∏

j=1

{(
1−α

j)(1+
1

γ(x)
α

j
)(

1+ γ(x)α j−1)} . (2.61)

Equation (2.60) means that the function JL(x, t)(x) is an approximation of

S−∞,∞(x, t) with the remainder O
(
αL
)
.

(Example 1) We know that, for N ≥ 0,

RN,0(b, t)= qN+1(b; t)= β
N+1(b)α(

N+1
2 )q0(b; t)≤α(

N+1
2 ) 1√

2πt
≤α

N2/2 1√
2πt

.

Hence, the following proposition holds.

N >
1

b−a

√
− t

2
ln
(

ε
√

2πt
)

⇒ RN,0(b, t)< ε
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Also, we know that, for M ≥ 1,

R−M,0(a, t) = r−M−1(a; t) = γ
−M−1(a)α(

−M−1
2 )r0(a; t)

≤

(
α3/2

γ(a)

)M+1

α(
M+2

2 )−3(M+1)/2r0(a; t)≤ α
(M−1)2/2 1√

2πt
,

where the first inequality holds because

α3/2

γM+1(a)
= exp

(
2
t
(b−a)a

)
< 1.

Hence, the following proposition holds.

M−1 >
1

b−a

√
− t

2
ln
(

ε
√

2πt
)

⇒ R−M,0(a, t)< ε

Thus, Equation (2.59) implies the following proposition.

max{M−1,N}> 1
b−a

√
− t

2
ln
(

ε
√

2πt
)

⇒ |ε−M,N(x, t)|< ε

As an example, let a =−1, b = 2, t = 2, x = 0.5 and ε = 10−15, then

1
b−a

√
− t

2
ln
(

ε
√

2πt
)
= 1.9228.

Thus, we may choose M = 3 and N = 2. The asymptotic values are as fol-

lows.
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(−M,N) S−M,N(0.5,2) (−M,N) S−M,N(0.5,2)

(0,0) 0.071034228403985 (-1,0) 0.054355942725271

(-1,1) 0.054397289152109 (-2,1) 0.054397288013575

(-2,2) 0.054397288013575 (-3,2) 0.054397288013575

(-3,3) 0.054397288013575 (-4,3) 0.054397288013575

We know from the above table that a pair of orders (−M,N) = (−2,1) is

good enough to obtain a finite series approximate value with absolute error

less than 10−15.

Let L = lnα/ lnε. Then, L = 1.9188. The asymptotic values Jl(0.5,2)

of Jacob’s triple product identity representation are as followes.

l Jl(0.5,2) l Jl(0.5,2)

0 0.071034228403985 1 0.054397289405489

2 0.054397288013575 3 0.054397288013575

4 0.054397288013575 5 0.054397288013575

□

We know from the above table that an order L = 2 is good enough to obtain

an approximate value of Jacob’s triple product identity representation with

absolute error less than 10−15.

2.4 Conclusion

In this chapter, it is shown that the infinite series of the trivariate joint

probability density function of Brownian motion and its maximum and min-

imum converges uniformly, and that it satisfies the Fokker-Planck equation.

Also, the joint density function is represented through Jacobi’s triple prod-
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uct identity. Moreover, some properties of error bounds to approximate the

infinite series by a finite series are presented.
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Chapter 3

Fitting the Risk-Neutral Density
Function: The Generalized Beta
Approach
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3.1 Introduction

In this chapter we introduce a generalized distribution for describing

security returns. McDonald, et al [23] have introduced generalized beta dis-

tribution for security returns. Many part of this introduction of this chapter

has been adapted from McDonald, et al and Rebonato, et al [24]. The dis-

tribution has the feature of being extremely flexible, and it includes a large

number of well-known distributions, such as the log-normal, log-t, and log-

Cauchy distributions, as special or limiting cases. Distributions with large,

even infinite higher moments can be specified by the choice of parameters.

This flexibility allows a direct representation of different degrees of fat tails

in the distribution. The generalized distribution also has a natural relation to

much of the literature on mixed distributions since a wide range of mixed

distributions can be described as special cases of this distribution.

There are two common approaches to the study of the distribution of

security returns in the finance literature. The first begins by describing the

process that gives rise to the returns, and the second begins by seeking to

represent in a usable form a distribution function that empirically fits the

observed return distribution. Much of the literature that relies on mixed dis-

tributions takes the first approach as its starting point and in doing so empha-

sizes the market process and the relation between various market variables,

such as price variability and trading volume. A number of these papers lead

to well-defined distributions. Others, which examine the trading process in

greater detail, such as those of Epps and Epps (1976) [25], Oldfield, Ro-

galski, and Jarrow (1977) [26], and Tauchen and Pitts (1983) [27], lead to
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distributions that cannot be represented in explicit form or are difficult to

specify and use in application.

The second approach serves as the starting point for a line of research

that has its roots in the work of Fama (1963, 1965) [28] [29] and Mandel-

brot (1963) [30]. This work begins with the empirical observation that stock

returns are more peaked and have thicker tails than the log-normal and then

finds a distribution function that fits this observation. One such set of dis-

tributions is characterized by a set of symmetric-stable distributions with

characteristic exponents between one and two. For the details of these dis-

tributions, refer to Appendix B. These distributions are chosen both because

of their fit to the observed distributions and because they have the attractive

property of closure under multiplication. That is, the product of security re-

turns will retain the same distributional form as for individual returns. There

appears to have been little if any work to link this set of distributions to the

actual mechanism of security trading. In this respect, these distributions re-

main only an empirical description of the fitted distributions.

The generalized distribution we present in this chapter has the advan-

tage of being easily interpreted as a mixed distribution and has an easily

expressible density function that makes it amenable to both empirical and

theoretical work in which the density must be expressed explicitly.

A new approach is proposed in this chapter, by means of which an eq-

uity price or an interest or FX rate is modeled in such a way that its terminal

distribution is assumed to have a particular four-parameter functional form

that encompasses the log-normal distribution as a special case. For each ex-

piry, the best combination of parameters that gives rise to an optimal (in a
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sense to be described) match to market call and put prices can be found us-

ing a very efficient and rapid procedure. The approach can prove useful in

the marking-to-model of out-of-the-money options and in the creation of the

smooth strike/expiry smile volatility surface needed as input for all process-

driven pricing models. Further desirable features of the method stem from

the fact that closed-form solutions are presented, not only for call and put

prices consistent with this distribution but also for the cumulative distribu-

tion arising from the chosen density. Thanks to these analytic solutions, the

search procedure needed to calibrate the model to market prices can be ren-

dered extremely fast.

The advantages of the approach presented in this chapter should be

important:

• To begin with, since the distribution function is directly modeled,

the resulting density is ensured by construction to assume a well-behaved

and “plausible” shape. Since, as noted above, very small changes in input

prices can correspond to very different distributions, it conversely follows

that an approach starting directly from the distribution can fit a great variety

of market prices with little loss of precision.

• Wildly fluctuating local volatilities (a common by-product of spot-

based tree implementations) are no longer encountered.

• We express the closed-form solutions for calls, puts, and their deriva-

tives in terms of the integrals of a family of functions to which the log-

normal distribution belongs as a special case; in addition, the functional

form of these closed-form solutions is such that they have an easily rec-

ognizable Black-like appearance, making their use easy and straightforward
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for practitioners accustomed to pricing using the market-standard Black for-

mula. The existence of a smiley volatility quote simply stems from the fa-

miliarity of the market participants with the Black conceptual and computa-

tional framework.

Alternative techniques have been proposed in order to fit the market

implied volatility surface: the mixture of two log-normals, the Edgeworth

expansion, or even a spline-fitting to the smile curve. We believe that the ap-

proach we recommend in this chapter displays noticeable advantages over

these techniques. Spline-fitting is notoriously unstable; being based on a

series of polynomials, asymptotically it produces answers that bear no sim-

ilarity to the function to be fitted (an implied volatility surface); it does not

allow closed-form pricing formulas. Most importantly, spline-fitting to the

volatility surface generates an implied density via the second derivative of

the call prices with respect to the strike. Since splines are not linked in any

fundamental way to the underlying density, there is in general no guaran-

tee that double differentiation will give rise to an admissible density. The

approach described in this chapter guarantees that this will not happen be-

cause the density itself is the starting point, rather than the by-product of a

double differentiation.

As for the other approaches mentioned above, the Generalized Beta

2 (GB2 in the following) method can be implemented so as to be signifi-

cantly more parsimonious: after the first moment is matched by enforcing

the correct pricing of the forward rate/price, and the equivalent volatility de-

termined from the market data, there remain only two free parameters per

maturity. Nonetheless, in all the tests we have run, the fit has always proved
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to be excellent, plausibly indicating that the deviations from the log-normal

density are well captured by just two moments above the second. Further-

more, the similarity of the pricing equations with the familiar Black formula

is only encountered with the GB2 approach and should constitute a powerful

incentive for its adoption by the financial community.

Stephen J. Taylor, et al [32] have introduced theoretical risk-neutral

densities. The rest of this introduction of this chapter has been adapted from

Stephen J. Taylor, et al [32]. Breeden and Litzenberger (1978) [31] show

that a unique risk-neutral density g for a subsequent asset price ST can be

inferred from European call prices C(K) when contracts are priced for all

strikes K and there are no arbitrage opportunities. The riskneutral density

(RND) is then

g(K) = erT ∂2C
∂K2 (3.1)

and

C(K) = e−rT
∫

∞

K
(x−K)g(x)dx (3.2)

with r the risk-free rate and T the time remaining until all options expire.

The forward price F , for time T , is the risk-neutral expectation of ST ; it is

also a futures price, assuming non-stochastic interest rates and dividend pay-

ments. These relationships between the RND and derivative prices are the

basis for empirical derivations of implied RNDs, despite the impossibility

of obtaining option data for a continuum of strikes.
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Parametric families of RNDs are estimated in this chapter. a parameter

vector θ is estimated by minimizing the average squared difference between

observed market prices and theoretical option prices, namely

1
N

N∑
i=1

(Cmarket(Ki)−C(Ki|θ))2, (3.3)

with

C(Ki|θ) = e−rT
∫

∞

Ki

(x−Ki)g(x|θ)dx,1 ≤ i ≤ N. (3.4)

In these equations, N is the number of prices obtained from option quotes

or trades during a particular day and g(x|θ) is a parametric density function

that produces the theoretical option pricing formula C(K|θ) given by equa-

tion(3.2). We choose specific parametric densities for the RNDs because

they enable us to obtain closed-form real-world densities.

3.2 The relation of the GB2 to log-normal dis-
tribution

The GB2 includes the generalized gamma (GG) as a limiting case:

GG(x;a,β, p) = lim
q→∞

gGB2(x;a,βq
1
a , p,q) (3.5)
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Further limits applied to the GG lead to the log-normal density(LN) as a

special limiting case of the GB2:

LN(x;µ,σ) = lim
a→0

GG[x;a,β = (σ2a2)
1
a , p = (aµ+1)/β

a] (3.6)

= lim
a→0

lim
q→∞

gGB2(x;a,b = (σ2a2q)
1
a , p =

aµ+1
σ2a2 ,q)

3.3 Risk-neutral condition of generalized beta
distribution of the second kind

For general distribution f Q
g (ST ), we choose generalized beta distribu-

tion of the second kind (GB2). Refer to McDonald(1987) [23] for details of

GB2 distribution. The GB2 probability density function is defined as follows

gGB2(x;a,b, p,q) =
|a|xap−1

bapB(p,q)[1+(x/b)a]p+q = f Q
g (x). (3.7)

The density is risk-neutral if

⟨x⟩=
∫

∞

0
x ·gGB2(x;a,b, p,q)dx (3.8)

=
bB(p+ 1

a ,q−
1
a)

B(p,q)
= S0erT
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On the other hand, if we set x = S0ey, then we can describe risk-neutral

condition as follows

⟨y⟩=
∫

∞

−∞

y ·gGB2(S0ey;a,b, p,q)S0eydy (3.9)

=

∫
∞

0
ln

x
S0

·gGB2(x;a,b, p,q)dx

= ln
b
S0

+
1
a
(
Γ′(p)
Γ(p)

− Γ′(q)
Γ(q)

) = rT

If we take logarithm at equation(3.8), then we can see that

lnS0 + rT = lnb+ lnΓ(P+
1
a
)− lnΓ(P)+ lnΓ(q+

1
a
)− lnΓ(q) (3.10)

And If take the 1st order Taylor expansion of logarithm of gamma function

in equation(3.10), then we can find that equation(3.10) have the same result

as equation(3.9)

rT ≃ ln
b
S0

+
1
a
(
d lnΓ(P)

d p
− d lnΓ(q)

dq
) (3.11)

3.4 GB2 Option Pricing

The theoretical option pricing formula depends on the cumulative dis-

tribution function of GB2 density, denoted GGB2. And GGB2 is a function

of cumulative distribution function of the beta distribution, denoted Iz and
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called the incomplete beta function:

GGB2(x;a,b, p,q) = GGB2((x/b)a;1,1, p,q) = Iz(p,q) (3.12)

with z(x,a,b) = (x/b)a/(1+(x/b)a). If the density is risk-neutral, so that

the constraint in equation(3.8) applies, then European call option prices are

given by

C(K;θ) = e−rT
∫

∞

K
(x−K)gGB2(x;a,b, p,q)dx (3.13)

= S0

[
1−GGB2(K;a,b, p+

1
a
,q− 1

a
)

]
−Ke−rT [1−GGB2(K;a,b, p,q)]

= S0

[
1− Iz(p+

1
a
,q− 1

a
)

]
−Ke−rT [1− Iz(p,q)] .

And, put option prices are given by

P(K;θ) = e−rT
∫ K

0
(K − x)gGB2(x;a,b, p,q)dx (3.14)

= Ke−rT GGB2(K;a,b, p,q)−S0GGB2(K;a,b, p+
1
a
,q− 1

a
)

= Ke−rT Iz(p,q)−S0Iz(p+
1
a
,q− 1

a
).

We can see that Equation(3.13) and (3.14) satisfy Put-Call Parity condition.

S0 +P(K;θ) = Ke−rT +C(K;θ) (3.15)
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3.5 GB2 Single Barrier Option Pricing

Using the Reflection Principle of Geometric Brownian Motion(GBM),

we can find the payoff function of Up-and-Out call option, as follows;

CUO
T =[ST −K]1(ST > K)− [ST −K]1(ST > SU) (3.16)

−α[YT −K]1(YT > K)+α[YT −K]1(YT > SU)

where

α =

[
SU

S0

] 2r
σ2 −1

(3.17)

Therefore, an Up-and-Out call option for a general distribution can be priced

as follows;

CUO
0 = e−rT

∫
[ST −K]I(ST > K) f Q

g (ST )dST (3.18)

− e−rT
∫
[ST −K]I(ST > SU) f Q

g (ST )dST

− e−rT
∫

α[YT −K]I(YT > K) f Q
g (YT )dYT

+ e−rT
∫

α[YT −K]I(YT > SU) f Q
g (YT )dYT ,

Where f Q
g (ST ) is a probability density function(PDF) under risk-neutral

measure Q.
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That is to say, path dependent barrier options can be calculated with payoff

condition of equation(3.16).

CUO = e−rT
∫ B+

K
[x−K]gGB2(x;a,b, p,q)dx (3.19)

− e−rT
∫ B+

K
α(x)

[
B2
+

x
−K

]
gGB2(x;a,b, p,q)dx

where α(x) =
[

B+

x

] 2r
σ2 −1

=
[

B+

x

]λ

CUO =S0

[
IZ2(p+

1
a
,q− 1

a
)− IZ1(p+

1
a
,q− 1

a
)

]
(3.20)

−Ke−rT [IZ2(p,q)− IZ1(p,q)]

+
Bλ+2
+ B(p− λ+1

a ,q+ λ+1
a )e−rT

bλ+1B(p,q)

×
[

IZ3(p− λ+1
a

,q+
λ+1

a
)− IZ2(p− λ+1

a
,q+

λ+1
a

)

]
−

KBλ
+B+(p− λ

a ,q+
λ

a )e
−rT

bλB(p,q)

[
IZ3(p− λ

a
,q+

λ

a
)− IZ2(p− λ

a
,q+

λ

a
)

]
=S0

[
IZ2(p+

1
a
,q− 1

a
)− IZ1(p+

1
a
,q− 1

a
)

]
−Ke−rT [IZ2(p,q)− IZ1(p,q)]

+B+e−rT E

[(
B+

ST

)λ+1
][

IZ3(p− λ+1
a

,q+
λ+1

a
)− IZ2(p− λ+1

a
,q+

λ+1
a

)

]

−Ke−rT E

[(
B+

ST

)λ
][

IZ3(p− λ

a
,q+

λ

a
)− IZ2(p− λ

a
,q+

λ

a
)

]
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where Z1 =
(K

b )
a

1+(K
b )

a ,Z2 =

(
B+
b

)a

1+
(

B+
b

)a ,Z3 =

(
B2
+

bK

)a

1+
(

B2
+

bK

)a and IZ(p,q) is a incom-

plete beta function.

3.6 GB2 double barrier option

3.6.1 Log-normal distribution Case

Up and Out Down and Out Call Option can be priced according to

equation(1.38)

CUODO
LN erT =

∫ B+

K
[ST −K]LNQ(ST )dST (3.21)

+

∞∑
n=1

(−1)n
∫ B+

K

n∏
1

αi[Yn −K]LNQ(Yn)dYn

+

∞∑
n=1

(−1)n
∫ B+

K

n∏
1

ᾱi[Ȳn −K]LNQ(Ȳn)dȲn

where

Y2m+1 =
B2
+

S0

(
B+

B−

)2m

(3.22)

Y2m = S0

(
B−
B+

)2m

α2m+1 =

(
Y2m+1

B+

) 2r
σ2 −1

α2m =

(
Y2m

B−

) 2r
σ2 −1
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CUODO
LN (3.23)

=

∞∑
−∞

[(
B−
B+

)n]λ
{(

B−
B+

)2n

S0[N(dn1)−N(dn3)]−Ke−rT [N(dn2)−N(dn4)]

}

+

∞∑
−∞

[(
B+

B−

)n B+

S0

]λ
{(

B+

B−

)2n B2
+

S0
[N(dn5)−N(dn7)]−Ke−rT [N(dn6)−N(dn8)]

}

where

d1 =
ln S0

K +
(

r+ σ2

2

)
T

σ
√

T
, d2 = d1 −σ

√
T , (3.24)

d3 =
ln S0

B+
+
(

r+ σ2

2

)
T

σ
√

T
, d4 = d3 −σ

√
T ,

d5 =
ln B2

+

S0K +
(

r+ σ2

2

)
T

σ
√

T
, d6 = d5 −σ

√
T ,

d7 =
ln B+

S0
+
(

r+ σ2

2

)
T

σ
√

T
, d8 = d7 −σ

√
T

for i = 1,2,3,4

dni = di +
2n ln B−

B+

σ
√

T
(3.25)

for i = 5,6,7,8

dni = di −
2n ln B−

B+

σ
√

T
. (3.26)

49



3.6.2 Generalized Beta distribution Case

With the help of the payoff function of double barrier option, we can

integrate and find the closed form solution of double barrier option. For the

case of GB2 distribution, the formula can be calculated as following.

erTCUODO (3.27)

=
∞∑

n=−∞

∫ B+

(
B+
B−

)2n

K
(

B+
B−

)2n

(
B−
B+

)nλ
[(

B−
B+

)2n

x−K

]
gGB2(x;a,b, p,q)dx

−
∞∑

n=−∞

∫ B+

(
B+
B−

)2n

B2
+
K

(
B+
B−

)2n

[(
B−
B+

)n B+

x

]λ
[(

B+

B−

)2n B2
+

x
−K

]
gGB2(x;a,b, p,q)dx

=
∞∑

n=−∞

bB(p+ 1
a ,q−

1
a)

B(p,q)

(
B−
B+

)n(λ+2)[
IZn2(p+

1
a
,q− 1

a
)− IZn1(p+

1
a
,q− 1

a
)

]

−
∞∑

n=−∞

K
(

B−
B+

)nλ

[IZn2(p,q)− IZn1(p,q)]

−
∞∑

n=−∞

Bλ+2
+ B(p− λ+1

a ,q+ λ+1
a )

bλ+1B(p,q)

(
B+

B−

)n(λ+2)

×
[

IZn2(p− λ+1
a

,q+
λ+1

a
)− IZn3(p− λ+1

a
,q+

λ+1
a

)

]
+

∞∑
n=−∞

KB(p− λ

a ,q+
λ

a )

bλB(p,q)

[(
B+

B−

)n

B+

]λ[
IZn2(p− λ

a
,q+

λ

a
)− IZn3(p− λ

a
,q+

λ

a
)

]
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=
∞∑

n=−∞

S0erT
(

B−
B+

)n(λ+2)[
IZn2(p+

1
a
,q− 1

a
)− IZn1(p+

1
a
,q− 1

a
)

]
(3.28)

−
∞∑

n=−∞

K
(

B−
B+

)nλ

[IZn2(p,q)− IZn1(p,q)]

−
∞∑

n=−∞

B+

〈(
B+

x

)λ+1
〉(

B+

B−

)n(λ+2)

×
[

IZn2(p− λ+1
a

,q+
λ+1

a
)− IZn3(p− λ+1

a
,q+

λ+1
a

)

]
+

∞∑
n=−∞

K

〈[(
B+

B−

)n B+

x

]λ
〉[

IZn2(p− λ

a
,q+

λ

a
)− IZn3(p− λ

a
,q+

λ

a
)

]

where

Zn1 =

[
K
b

(
B+

B−

)2n
]a

1+
[

K
b

(
B+

B−

)2n
]a , (3.29)

Zn2 =

[
B+

b

(
B+

B−

)2n
]a

1+
[

B+

b

(
B+

B−

)2n
]a ,

Zn3 =

[
B2
+

bK

(
B+

B−

)2n
]a

1+
[

B2
+

bK

(
B+

B−

)2n
]a ,

λ =
2r
σ2 −1
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and where IZ(p,q) is a incomplete beta function. The equation (3.28) holds

because

⟨xn⟩=
bnB(p+ n

a ,q−
n
a)

B(p,q)
(3.30)

S0erT =
bB(p+ 1

a ,q−
1
a)

B(p,q)
.

With these equations, we can plot various option graphs.

Figure. 1 shows various call option prices including up-and-out down-

and-out GB2, and Black-scholes option prices.
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Figure. 1: Call Option Prices (strike price: 150, interest rate: 0.04, up barrier:
160, down barrier: 145)

We made the 3D plots with the axis of current stock price, time to

maturity and option price. Figure.2 and 3 compares Black-sholes and GB2

Call option prices.
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Figure. 2: Black-scholes Call Option (strike price: 150, interest rate: 0.04)
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Figure. 3: GB2 Call Option (strike price: 150, interest rate: 0.04)
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Figure.4 and 5 compares Black-sholes and GB2 Up-and-Out Down-

and-Out call option prices.
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Figure. 4: Up-and-Out Down-and-Out Black-Scholes Call Option (strike
price: 150, interest rate: 0.04, up barrier: 160, down barrier: 145)
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Figure. 5: Up-and-Out Down-and-Out GB2 Call Option(strike price: 150,
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Chapter 4

Conclusions
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4.1 Conclusion

It is shown that the infinite series of the trivariate joint probability

density function of Brownian motion and its maximum and minimum con-

verges uniformly, and that it satisfies the Fokker-Planck equation. Also, the

joint density function is represented through Jacobi’s triple product identity.

Moreover, some properties of error bounds to approximate the infinite series

by a finite series are presented.

Using the method developed in log-normal distribution(reflection prin-

ciple), we made the pay-off conditions of the barrier options. With the pay-

off conditions and risk-neutral condition of generalized beta distribution of

second kind, we calculated closed form solution of single and double barrier

option prices.
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Chapter A

Appendix A - Proof of Equations

A.1 Proof of Equation in Chapter 2

[Proof of Equation (2.23)]

For a real number m, let

fm(x, t) =
1√
2πt

exp
(
− 1

2t
(x−m)2

)
. (A.1.1)

We can show that

∂ fm

∂t
=− t − (x−m)2

2t2 fm(x, t), (A.1.2)

∂2 fm

∂t2 =
(x−m)4 −6t(x−m)2 +3t2

4t4 fm(x, t), (A.1.3)

∂ fm

∂x
=

m− x
t

fm(x, t), (A.1.4)

∂2 fm

∂x2 =− t − (x−m)2

t2 fm(x, t), (A.1.5)

∂3 fm

∂x3 =
(x−m)

{
3t − (x−m)2

}
t3 fm(x, t). (A.1.6)

Equations (A.1.2) and (A.1.5) imply that f (x, t) satisfies the following Fokker-

Planck equation
∂ f
∂t

=
1
2

∂2 f
∂x2 . (A.1.7)

Thus, qk(x; t) and rk(x; t) satisfy the Fokker-Planck equation.
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[Proof of Equations (2.24) and (2.25)]

Let t be a positive constant. If k > b+
√

3t
2(b−a) , then Equation (A.1.6) implies

that ∂3qk(x;t)
∂x3 is positive on [a,b], and that ∂2qk(x;t)

∂x2 is increasing on [a,b]. Thus,

we know that, for any x ∈ [a,b],

0 <
∂2qk(x; t)

∂x2 <
∂2qk(b; t)

∂x2 =− t −{b−2k(b−a)}2

t2 qk(b; t), (A.1.8)

where the first inequality and the equality hold by Equation (A.1.5). Equa-

tion (2.11) implies

lim
k→∞

− t−{b−2(k+1)(b−a)}2

t2 qk+1(b; t)

− t−{b−2k(b−a)}2

t2 qk(b; t)
= 0. (A.1.9)

The ratio test in Equation (A.1.9) implies that
∑

∞

k=1
∂2qk(b;t)

∂x2 converges. Thus,

Equation (A.1.8) implies that
∑

∞

k=1
∂2qk(x;t)

∂x2 converges uniformly on the com-

pact set [a,b]. Similarly, we can show that
∑−1

k=−∞

∂2qk(x;t)
∂x2 converges uni-

formly on the compact set [a,b], and so does
∑

∞

k=−∞

∂2qk(x;t)
∂x2 . Therefore,

∂2

∂x2

{
∞∑

k=−∞

qk(x; t)

}
=

∞∑
k=−∞

∂2qk(x; t)
∂x2 . (A.1.10)

It can be shown using the same method that
∑

∞

k=−∞

∂2rk(x;t)
∂x2 converges uni-

formly on the compact set [a,b], and that

∂2

∂x2

{
∞∑

k=−∞

rk(x; t)

}
=

∞∑
k=−∞

∂2rk(x; t)
∂x2 . (A.1.11)

Let x ∈ (a,b) be fixed. For m > 0, Equation (A.1.3) implies that the
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equation ∂2 fm(x,t)
∂t2 = 0 holds at t = t1,m =

(
1+
√

2
3

)
(x−m)2 and t = t2,m =(

1−
√

2
3

)
(x − m)2. Therefore,

∣∣∣ ∂ fm(x,t)
∂t

∣∣∣ has its supremum at one of the

points {0, t1, t2,∞}. Equations (A.1.1) and (A.1.2) imply that

lim
t→0

∣∣∣∣∂ fm

∂t

∣∣∣∣= lim
t→0

∣∣t − (x−m)2
∣∣

2t2 f (x, t) = 0, (A.1.12)

lim
t→∞

∣∣∣∣∂ fm

∂t

∣∣∣∣= lim
t→∞

∣∣t − (x−m)2
∣∣

2t2 f (x, t) = 0, (A.1.13)∣∣∣∣∂ fm (x, t1,m)
∂t

∣∣∣∣=
∣∣∣∣∣ t1,m − (x−m)2

2t2
1,m

f (x, t1,m)

∣∣∣∣∣
=

√
2/3

2
√

2π

(
1+
√

2/3
)5/2 exp

 −1

2
(

1+
√

2/3
)
 1

|x−m|3
,(A.1.14)

and

∣∣∣∣∂ fm (x, t2,m)
∂t

∣∣∣∣=
∣∣∣∣∣ t2,m − (x−m)2

2t2
2,m

f (x, t2,m)

∣∣∣∣∣
=

√
2/3

2
√

2π

(
1−
√

2/3
)5/2 exp

 −1

2
(

1−
√

2/3
)
 1

|x−m|3
.(A.1.15)

Equations (A.1.12)-(A.1.15) imply that there exists a constant c ∈ (0,∞)

satisfying

max
0<t<∞

∣∣∣∣∂ fm(x, t)
∂t

∣∣∣∣≤ c
1

|x−m|3
. (A.1.16)

The integral test indicates

∞∑
m=1

1
|x−m|3

< ∞ (A.1.17)

Equations (A.1.16) and (A.1.17) imply that
∑

∞

m=1
∂ fm(x,t)

∂t converges uni-
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formly on the set {0 < t < ∞}. For this uniform convergence property, read-

ers may refer to Rudin (1976, p. 152). Similarly, it can be proved that∑−1
m=−∞

∂ fm(x,t)
∂t converges uniformly on the set {0 < t < ∞}. So does

∑
∞

m=−∞

∂ fm(x,t)
∂t .

This uniform convergence implies that

∞∑
k=−∞

∂ fk(x, t)
∂t

=
∂

∂t

{
∞∑

k=−∞

fk(x, t)

}
. (A.1.18)

Equation (A.1.18) implies that

∞∑
k=−∞

∂qk(x; t)
∂t

=
∂

∂t

{
∞∑

k=−∞

qk(x; t)

}
(A.1.19)

and
∞∑

k=−∞

∂rk(x; t)
∂t

=
∂

∂t

{
∞∑

k=−∞

rk(x; t)

}
. (A.1.20)

Equations (2.23), (A.1.10), and (A.1.19) implies Equation (2.24), and Equa-

tions (2.23), (A.1.11), and (A.1.20) does Equation (2.25).

[Proof of Equation (2.27)]

Equations (2.8) and (2.17) imply that

β(b)γ(b) = exp
(

2
t
[b−a][2a−2b]

)
= α. (A.1.21)

Thus,
1

β(b)
α

j +β(b)α j−1 = γ(b)α j−1 +
1

γ(b)
α

j. (A.1.22)
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It is clear from Equations (2.10) and (2.19) that

q0 (b; t) = r0 (b; t) . (A.1.23)

Equations (A.1.22) and (A.1.23) and Theorem 1 yield

q0(b; t)
∞∏

j=1

{(
1−α

j)(1+
1

β(b)
α

j
)(

1+β(b)α j−1)}

= r0(b; t)
∞∏

j=1

{(
1−α

j)(1+
1

γ(b)
α

j
)(

1+ γ(b)α j−1)} ,(A.1.24)

which implies S−∞,∞(b, t) = 0.

Equations (2.8) and (2.17) imply that

β(a)γ(a) = exp
(

2
t
[b−a][4a−4b]

)
= α

2. (A.1.25)

Equations (2.8), (2.10), and (2.19) imply that

r0 (a; t)β(a) = q0 (a; t)α. (A.1.26)

It can be shown that

∞∑
k=−∞

rk(a; t) = r0(a; t)
∞∑

k=−∞

γ
k(a)α(

k
2) = r0(a; t)

∞∑
k=−∞

γ
k−1(a)α(

k−1
2 )

= r0(a; t)
∞∑

k=−∞

β
1−k(a)α2(k−1)

α(
k−1

2 ) = q0(a; t)
∞∑

k=−∞

β
−k(a)α(

−k
2 )

= q0(a; t)
∞∑

k=−∞

β
k(a)α(

k
2) =

∞∑
k=−∞

qk(a; t), (A.1.27)
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where the first equality holds by Equation (2.18), the third does by Equa-

tion (A.1.25), and the fourth does by Equation (A.1.26). Equation (A.1.27)

implies S−∞,∞(a, t) = 0.
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Chapter B

Appendix B - Lévy Diffusion and
Fractional Fokker–Planck Equation

B.1 Generalized Langevin equation

This Appendix B has been adapted from A.V. Tour, et al [33].

We start with the Langevin–like equation for a stochastic quantity X(t):

dX(t)
dt

= Y (t) (B.1.1)

In the classical theory of a Brownian motion, X(t) is the location of

Brownian particle under the influence of stochastic pulses Y (t). The statis-

tical properties of this stochastic forcing will be specified below. We first

need to derive an equation for the distribution function

p(x, t) = ⟨δ[x−X(t)]⟩ (B.1.2)

where the brackets ⟨...⟩ denote statistical averaging over stochastic force

realisations. Due to the fact that the Dirac function is the Fourier transform

of the unity, we have:

δ[x−X(t)] =
∫

∞

−∞

dk
2π

exp{−ik[x−X(t)]} (B.1.3)

64



When averaged, Eq.B.1.3 yields merely that the probability is the in-

verse Fourier transform of the characteristic function ZX(k, t):

ZX(k, t) = ⟨exp(ikX(t)])⟩ (B.1.4)

p(x, t) = F−1[ZX(k, t)] (B.1.5)

where F and F−1 denote respectively the Fourier–transform and its inverse:

F [ f ] = f̂ (k) =
∫

∞

−∞

dx exp(ikx) f (x) (B.1.6)

F−1[ f̂ ] = f (x) =
∫

∞

−∞

dk
2π

exp(−ikx) f̂ (k)

On the other hand, Eq.B.1.1 can be integrated into:

X(t) = X(0)+
∫ t

0
dτY (τ) (B.1.7)

Since we can assume 1 without loss of generality that X(0) = 0, we obtain

the following equation:

∂p
∂t

= F−1[
∂

∂t

〈
exp
[

ik
∫ t

0
dτY (τ)

]〉
] (B.1.8)

Now, to make a further step, it is necessary to specify the statistical

properties of the stochastic source. We consider the particular example [56]

when the source is represented as a sum of independent stochastic ”pulses”

acting at equally spaced times t j:

1Indeed, we are considering only the ’forward’ Fokker-Planck equation.
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Y (t) =
∞∑

j=0

Yj,∆∆δ(t − t j) . (B.1.9)

where t0 = 0, t j+1 − t j = ∆ ( j = 0,1,2, ....) and the pulses Yj,∆ are indepen-

dent stochastic variables having stable Lévy distribution P{Yj,∆} for all j

and which has the following characteristic function [34]

ZYj,∆(k) = ⟨exp(ikYj,∆)⟩= exp∆

{
iγk−D|k|α

[
1− iβ

k
|k|

ω(k,α)
]}
(B.1.10)

where α,β,γ,D are real constants (0 < α ≤ 2,−1 ≤ β ≤ 1,D ≥ 0) and

ω(k,α) is defined as:

α ̸= 1 : ω(k,α) = tan
πα

2
; α = 1 : ω(k,α) =

π

2
log|k| (B.1.11)

α and β classify the type of the stable distributions up to translations and

dilatations: with given α and β, γ and D can vary without changing the

type of a stable distribution. The parameter α characterizes the asymptotic

behaviour of the stable distribution:

p(x)∼ x−1−α,x → ∞ (B.1.12)

hence, corresponds to the critical order of moments for their divergence:

µ ≥ α : ⟨xµ⟩= ∞, (B.1.13)
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For (additive) walks α is also related to the fractal dimension of the trail

[41], whereas for the generator of the (multiplicative) universal multifrac-

tals it measures their multifractality [50]. The parameter β characterizes the

degree of asymmetry of distribution function. Indeed, if β = 0, then nega-

tive and positive values of Yj,∆ occur with equal probabilities, while if β = 1

or β = −1 (maximally asymmetric distributions) then, for 0 < α < 1 and

γ = 0 P{Yj,∆} vanishes outside from [0,+∞] or respectively from [−∞,0] 2.

We already mentioned that maximal asymmetry is required for generators

of universal multifractals; let us add that in this case the Laplace transform

is more convenient than the Fourier transform. The nonzero value of β im-

plies the existence of a primary direction of the stochastic pulses (that is, the

direction to plus or minus infinity), and thus the existence of a drift for par-

ticles in this direction. For more details concerning the properties of stable

laws see, e.g. [57]. The meaning of γ and D will be discussed and clarified

below.

Now, using Eq.B.1.9 and the independence condition of the stochastic

pulses Yj,∆ we get:

〈
exp
[

ik
∫ t

0
dτy(τ)

]〉
=

〈
exp

ik
n∑

j=0

Yj,∆

〉 (B.1.14)

=
n∏

j=0

⟨exp⟨ikYj,∆⟩⟩= ⟨exp(ikYj,∆)⟩n

where n is a number of pulses corresponding to the present time t = n∆.

2For α > 1, P{Y j,∆} decays faster than an exponential on the corresponding half axis.
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Therefore , with the help of the equation of the characteristic function of the

pulses (Eq.B.1.10), we obtain the characteristic function ZX(k, t) ( Eq.B.1.4)

of the stable process:

ZX(k, t) =
〈

exp
[

ik
∫ t

0
dτY (τ)

]〉
(B.1.15)

= exp
{

t
[

iγk−D|k|α
(

1− iβ
k
|k|

ω(k,α)
)]}

The fact that this process has stationary independent increments [58]

(i.e. pulses Yj,∆) gives the possibility to get directly Eq.B.1.15 without using

any discretisation of Y (t) as previously done (Eq.B.1.9).

Now inserting this expression of ZX(k, t) into Eq.B.1.8, one obtains:

∂p
∂t

=

∫
∞

−∞

dk
2π

[iγk−D|k|α + iβDω(k,α)k|k|α−1]ZX(k, t)exp(−ikx)

(B.1.16)

For the sake of the simplicity of notations, we will consider in the fol-

lowing only the case α ̸= 1, or β = 0. Therefore, Eq.B.1.11 reduces to:

ω(k,α)≡ ω(α) = tan
πα

2
(B.1.17)
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B.2 An expression of the Fractional Fokker–Planck
Equation

One can see that in Eq.B.1.16 the following type of integrals appears

F−1(|k|αZX ], which in fact correspond to fractional differentiations. Indeed,

one may use Laplacian power for the Riesz’s definition of a fractional dif-

ferentiation since for any function f (x):

−∆ f (x) = F−1(|k|2 f̂ (k)) (B.2.1)

yields a rather straightforward extension:

(−∆)α/2 f (x) = F−1(|k|α f̂ (k)) (B.2.2)

Then, Eq.B.1.16 yields:

∂p
∂t

+ γ
∂p
∂x

=−D
[
(−∆)α/2 p+βω(α)

∂

∂x
(−∆)(α−1)/2 p

]
(B.2.3)

which for symmetric laws β = 0 is a straightforward generalization of the

classical Fokker–Planck equation, by:

∆ →−(−∆)α/2 (B.2.4)

This also points out that the scale parameter D of the Lévy distribu-

tion corresponds to the diffusion coefficient of the Fractional Fokker Planck

equation. On the other hand, the second term in the left hand side of Eq.B.2.3
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has an obvious physical meaning. Independently on the value of α, it de-

scribes the convection of particles by the (constant) velocity γ. For α > 1, γ

corresponds furthermore to the mean value of the source ⟨Y (t)⟩, whereas it

is no more the case for α ≤ 1 since the latter is no longer finite. In the latter

case, the diffusion term has a a derivation order smaller or equal to the con-

vection term. This confirms that the case α = 1 is indeed critical between

two rather distinct regimes and it is more involved than other cases. Besides,

it is worthwhile to note the role of the term (on the r.h.s.) related to asymme-

try (β ̸= 0). On the one hand, this term can be interpreted as an additional

contribution to the convection due to existence of the preferred direction of

the pulses related to (β ̸= 0). On the other hand, such a flow is not propor-

tional to p (as the convective flow does) but rather to (−∆)(α−1)/2 p, which

is rather typical for the diffusion flow. In some sense, due to this term the

division of flows into convective and diffusion ones (as done in the stan-

dard Fokker–Planck equation) becomes rather questionable and presumably

no longer relevant for the Fractional Fokker–Planck equation. One may note

that a somewhat similar weakening of this distinction occurs also in the clas-

sical Fokker-Plank for nonlinear systems [59]. On the other hand, it is easy

to check that the Fractional Fokker–Planck equation is Galilean invariant, as

is should be: the velocity of the moving framework just add to γ.
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B.3 The non uniqueness of the expression of the
Fractional Fokker-Planck Equation

One cannot expect to obtain a unique expression for the Fractional the

Fokker-Planck equation, since there is not a unique generalization of the

differentiation to a fractional order. Indeed, there exist various definitions of

the fractional differentiation (see, e.g. [60] and references therein) which are

not equivalent. This will be illustrated by two examples in the next section.

The first one is related to the fact that there are ’signed’ (fractional) differ-

entiation and respectively ’unsigned’ (fractional) differentiations, i.e. differ-

entiations which are not invariant and respectively invariant with the mirror

symmetry x → −x. In the case of standard differentiation, the question of

signs is fixed: ’signed’ and ’unsigned’ differentiations correspond merely

to odd and respectively even orders of differentiation (hence the unique ex-

pression of the classical Fokker–Planck equation, which is of second order).

This is no longer the case for fractional differentiations.

The second example corresponds to the fact that fractional differenti-

ations are in fact defined by integration, and therefore can depend on the

bounds of integration.

Nevertheless, we are convinced that the expression corresponding to

Eq.B.2.3 is at the same time the simplest one to derive and the one whose

physical significance is the most straightforward. On the other hand, let

us emphasize that the existence of distinct expressions for the Fractional

Fokker-Planck equation does not question the uniqueness of its solution. In-

deed, these distinct expressions are equivalent because their solution should
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correspond to the unique probability density function corresponding to a

given Langevin–like equation (Eq.B.1.1).

The non uniqueness could be rather understood in the following way:

corresponding to the distinct fractional differentiations (and their correspond-

ing fractional integrations), there should be distinct ways of solving the

Fractional Fokker-Planck equation in order to obtain its unique solution.

B.4 Two alternative expressions of the Fractional
Fokker-Planck Equation

Contrary to the unsigned fractional power of a Laplacian Eq.B.2.2, let

us consider for instance the following ’signed’ fractional differentiation:

∂α

∂xα
f (x) = F−1[(−ik)α f̂ (k)]. (B.4.1)

With the help of (i) the identity (θ(k) being the Heaviside function):

|k|α = kα[θ(k)+(−1)α
θ(−k)] (B.4.2)

and of (ii) the inverse Fourier transform of the Heaviside function:

F−1[θ(k)] =
1
2

δ(x)+
1

2πix
(B.4.3)

as well as of (iii) the property that a Fourier transform of a product cor-

responds to the convolution of the Fourier transforms, one derives from

Eq.B.1.16 an another form of the Fractional Fokker–Planck equation.
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∂p
∂t

+ γ
∂p
∂x

=−D
(

cos
πα

2
+βsin

πα

2
tan

πα

2

)
∂α p
∂xα

(B.4.4)

−D(1−β)sin
πα

2
∂α

∂xα

∫ ∞

−∞

dx′

π

p(x′, t)
x− x′

Indeed, with the help of the following determinations3 (−i)α = e−i απ

2 ,(−1)α =

e−iαπ, Eq.B.4.2 yields:

|k|α = (−ik)α[θ(k)ei απ

2 +θ(−k)e−i απ

2 ] (B.4.5)

and with the help of Eqs.B.4.1,B.4.3,B.4.5, it is rather straightforward to

derive Eq.B.4.4.

However, Eq.B.4.4 is already rather involved in the case β= 0, whereas

this case is obvious for the equivalent Eq.B.2.3:

∂p
∂t

=−γ
∂p
∂x

−Dcos
πα

2
∂α p
∂xα

−Dsin
πα

2
∂α

∂xα

∫ ∞

−∞

dx′

π

p(x′, t)
x− x′

(B.4.6)

the last term of the r.h.s. of Eq.B.4.6 is rather complex, whereas indispens-

able. Indeed, there is a need of signed second term to counterbalance the

first signed term of Eq. B.4.6, in order that the r.h.s. of Eq.B.4.6 will corre-

spond to an unsigned differentiation (the fractional power of the Laplacian

in Eq.B.2.3). Both terms correspond to the signed fractional differentiation

of order α but whereas it is applied to p in the former term, it is applied to

3One may note that the existence of other determinations confirms the non uniqueness of
the fractional derivative defined in eq.B.4.2. Furthermore, taking another determination will
merely modify some prefactors in r.h.s. of Eq.B.4.4
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an integration of a zero order of p in the latter term. This zero order inte-

gration corresponds to the effective interaction of particles having a scaling

law inversely proportional to the distance between them. An analogy with

the interaction between dislocation lines [61] can be mentioned. It is plau-

sible that the collective effect corresponding to this the effective interaction

of particles could be responsible of the large jumps which are so important

in Lévy motions.

An other expression of the Fractional Fokker–Planck equation can be

also obtained with the help of the Riemann–Liouville derivatives. The µ-th

order Riemann–Liouville derivatives on the real axis are defined as

(Dµ
+ f )(x) =

1
Γ(1−µ)

d
dx

∫ x

−∞

dx′
f (x′)

(x− x′)µ (B.4.7)

(Dµ
− f )(x) =− 1

Γ(1−µ)
d
dx

∫ ∞

x
dx′

f (x′)
(t − x′)µ

where Dµ
−,D

µ
+ are respectively the left-side and the right-side derivatives of

fractional order µ (0< µ< 1) and Γ is the Euler’s gamma-function. An other

expression of the Fractional Fokker–Planck equation can be:

∂p
∂t

+ γ
∂p
∂x

=−DDα/2
+ Dα/2

− p−Dβω(α)
∂

∂x
D(α−1)/2
+ D(α−1)/2

− p (B.4.8)
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[11] Csáki, E., 1978. On the lower limits of maxima and minima of Wiener

process and partial sums. Z. Wahrscheinlichkeitstheorie verw. Gebiete,

43, 205-221.

[12] Cox, D. R., Miller, H. D., 1965. The Theory of Stochastic Processes,

Chapman and Hall Ltd, London.

[13] Darling, D. A., Siegert, A.J.F., 1953. The first passage problem for a

continuous Markov process, Ann. Math. Stat. 24, 624-639.

[14] Feller, W., 1971. An Introduction to Probability Theory and Its Appli-

cations, second ed. John Wiley & Sons, Inc.

[15] Freedman, D., 1971. Brownian Motion and Diffusion, Holden-Day,

San Francisco.

[16] Geman, H., Yor, M., 1996. Pricing and hedging double-barrier options:

a probabilistic approach. Mathematical Finance, 6, 365-378.
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초록

통계물리학적인 방법론을 경제시스템에 적용하여 그에 따라 나

타나는금융상품의가치평가에대한연구를진행하였다.원자산이추

계 확률 과정(stochastic process)을 따를 때, 그에 따라 금융 상품의 가

치는 일반적으로 어느 주어진 시점에서의 확률분포의 기대값으로 구

해지게 되어 원자산의 값이 시간에 따라 변해온 경로와는 무관(path

independent)하게된다.그러나원자산의값이정해진상한이나하한을

넘는지여부를관찰하는경로의존적인(path dependent)금융상품의경

우,그가치를평가하기가어려운데,물리학에서의반사원리(reflection

principle)와 경로적분(path integral)을 활용하여 복잡한 금융상품의 가

치평가를수행하였다.우선,원자산의수익률이정규분포를따르고원

자산의상한과하한이동시에존재하는금융상품(double barrier option)

의 가치가 여러 기대값들의 무한 합으로 구해질 때, 그것이 수렴함을

보였고,수치적으로몇개항의합만으로도정확성을유지할수있다는

것을보였다.또한,원자산의수익률이정규분포를따르지않고두터운

꼬리(heavy-tailed distribution)를 가지는 모형 하에서의 경로 의존적인

금융상품의가치평가도수행을하여해석적인해를얻었다.

주요어 : 베리어옵션,반사원리,브라운운동,최대값,최소값,결합확

률분포,오차범위,자코비삼중곱,꼬리가두꺼운분포, GB2

학번 : 2000-30170
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