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Abstract

Pricing Barrier Options:
A Probabilistic Approach

Jeongho Roh
Department of Physics and Astronomy

The Graduate School

Seoul National University

We investigate the use of theoretical and computational methods from
physics in finance, particularly in the areas of contingent claim valuation.
We apply these methods to simplify the analysis of complicated barrier op-
tions.

The trivariate joint probability density function of Brownian motion
and its maximum and minimum can be expressed as an infinite series of
normal probability density functions. We show that the infinite series con-
verges uniformly, and use the uniform convergence to prove it satisfies the
Fokker-Planck equation. Also, we express the infinite series as a product
form using Jacobi’s triple product identity. Moreover, we present some er-
ror bounds of an approximation of the infinite series by a finite series.

However, practitioners and researchers who have handled financial mar-

ket data know that asset returns do not behave according to the Gaussian



or normal distribution. Indeed, the use of Gaussian models when the asset
return distributions are not normal could lead to the underestimation of ex-
treme losses or mispriced derivative products. Consequently, non-Gaussian
models are gaining popularity among financial market practitioners. We
tried to calculate value of the barrier options when the asset return distri-

butions are heavy-tailed GB2 distribution.

Keywords : barrier option, reflection principle, brownian motion, maxi-
mum, minimum, joint probability distribution, error bound, Jacobi’s triple
product identity, heavy-tailed distribution, GB2

Student Number : 2000-30170
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Chapter 1

Introduction



Since Black and Scholes’ (BS) option pricing model gained an al-
most immediate acceptance among the professional and academic commu-
nities, the trading of derivative securities suddenly increased by a very large
amount. Derivative securities are financial securities whose payoffs depends
on other underlying securities, and the BS model was the first universally
accepted modeling of these financial instruments.

However, in recent years, financial engineeers have created a variety of
complex options that are collectively called exotic options.

The payoffs on these options are considerably more diverse than the
payoffs on standard BS options or on other straightforward generalizations
of them.

Most of the mathematical methods involved in the analysis of financial
systems have been based, so far, on the simulation of stochastic processes by
diffusion equations coupled to stochastic sources, i.e. stochastic equations
of Langevin type. More recently, there has been an interest in the analysis
of various financial instruments using the path integral formulation.

Use of a path integral formulation has some advantages. First, it is in
close relation to the lagrangean description of diffusion processes, second,
it opens the way to the use of quantum mechanical methods.

In chapter 1, after a description of the path integral in the Black Sc-
holes model, we turn our attention to the analysis of barrier options. Barrier
options are studied here by an artificial quantum mechanical model in which
a potential V (x) is added to the Black Scholes lagrangean, as first suggested
in ref. [2]].

The trivariate joint probability density function of Brownian motion



and its maximum and minimum can be expressed as an infinite series of
normal probability density functions. In chapter 2, we show that the infinite
series converges uniformly, and we express the infinite series as a product
form using Jacobi’s triple product identity. Moreover, we present some error
bounds of an approximation of the infinite series by a finite series.

In chapter 3, we tried to calculate value of the barrier options when the

asset return distributions are heavy-tailed GB2 distribution.



1.1 Langevin Evolution

Baaquie, et al [1]] have introduced path integral method for the analysis
of barrier options. The rest of this chapter has been adapted from Baaquie,
et al [1].

In the description of theoretical finance, a security S(¢) follows a ran-
dom walk described by a Ito-Weiner process (or Langevin equation) as

ds(r)
S(t)

= ¢dt + 6R(t)dt, (1.1

where R(t) is a Gaussian white noise with zero mean and uncorrelated values
attime 7 and ¢’ (R(¢)R(¢')) = (¢ —¢'). ¢ is the drift term or expected return,
while ¢ is a constant factor multiplying the random source R(z), termed
volatility.

As a consequence of Ito calculus, differentials of functions of random
variables, say f(S,7), do not satisfy Leibnitz’s rule, and for a Ito-Weiner

process with drift (1.1) one easily obtains for the time derivative of f(S,¢)

df of |1 5,0f . of _of
=== E(;587524-<|)S£+GS%R. (1.2)

The Black-Scholes model is obtained by removing the randomness of the
stochastic process shown above by introducing a random process correlated
to (I.2). This operation, termed hedging, allows to remove the dependence

on the white noise function R(¢), by constructing a portfolio I, whose evo-



lution is given by the short-term risk free interest rate r

i

— =rIL 1.3
7R (1.3)

A possibility is to choose IT = f — S—J;S . This is a portfolio in which the in-
vestor holds an option f and short sells an amount of the underlying security
S proportional to %. A combination of 1b and (1.3) yields the Black-
Scholes equation

of

S =rf. (1.4)

of 1 5 0%f
S e T T

o 297 as

There are some assumptions underlying this result. We have assumed ab-
sence of arbitrage, constant spot rate r, continuous balance of the portfolio,
no transaction costs and infinite divisibility of the stock.

The quantum mechanical version of this equation is obtained by a

change of variable S = ¢*, with x a real variable. This yields

of
—=H 1.5
5 — Hbsf (1.5)
with an Hamiltonian Hgg given by
o’ 9 1, d
Hps=——=— ~6"—r) —+r 1.6
Bs 2 8x2+(20 r) x (16)

Notice that one can introduce a quantum mechanical formalism and interpret
the option price as a ket | f) in the basis of |x), the underlying security price.
Using Dirac notation, we can formally reinterpret f(x,7) = (x|f(¢)), as a

projection of an abstract quantum state |f(z)) on the chosen basis.



In this notation, the evolution of the option price can be formally writ-

ten as |f,t) = ¢'f| £,0), for an appropriate Hamiltonian H.

1.2 Options and Barrier Options

1.2.1 Generalities

Let the price at time 7 of a security be S(z). A specific good can be
traded at time ¢ at the price S(¢) between a buyer and a seller. The seller
(short position) agrees to sell the goods to the buyer (long position) at some
time 7 in the future at a price F(¢,T) (the contract price). Notice that con-
tract prices have a 2-time dependence (actual time t and maturity time 7).
Their difference T = T — ¢ is usually called time to maturity. Equivalently,
the actual price of the contract is determined by the prevailing actual prices
and interest rates and by the time to maturity.

Entering into a forward contract requires no money, and the value of
the contract for long position holders and short position holders at maturity
T will be

(~1)7 (S(T) ~ F(1,T)) (1.7)

where p = 0 for long positions and p = 1 for short positions. Futures Con-
tracts are similar, except that the after the contract is entered, any changes in
the market value of the contract are settled by the parties. Hence, the cash-
flows occur all the way to expiry unlike in the case of the forward where
only one cashflow occurs. They are also highly regulated and involve a third

party (a clearing house). Forward, futures contracts and, as we will see, op-



tions go under the name of derivative products, since their contract price
F(t,T) depend on the value of the underlying security S(7').

In the simplest option, such as a call option, we have seen that the
payoff function is defined to be the value of the option at maturity time
(t = 0). Therefore, the specific path followed by the underlying security is
not relevant in order to establish the price at maturity, except for its final
value.

Barrier options are, instead, path-dependent. This means that the payoff
is dependent on the realized asset path, and certain aspects of the contract
are triggered if the asset price, from start to end of the contract, becomes too
high or too low.

Barrier options are very popular for various reasons. An investor may
have very precise views about the behaviour of a security or he may use them
for hedging specific cashflows, to decide to purchase them. In the following,
when comparing path dependent options to the simplest options, such as
standard calls or puts, we will refer to the latter as to vanilla options, using

a common financial jargon.

1.2.2 Terminology and Definitions

There are some advantages -and natural limitations- in purchasing a
financial instrument such as a barrier option. If the purchaser wants the same
payoff typical of a vanilla option, but believes that the upward movement of
the underlying will not be likely, then he may decide to buy an up-and-out
call option. The cost of this contract will be cheaper than the purchase of

a corresponding plain vanilla option, but there will be severe limitations on

7



the upward movement of the option.

The physical picture of an up-and-out option is that of a brownian mo-
tion of the underlying asset (x) that is immediately killed as soon as the asset
hits (from below) the barrier B (x = B), which is specified in the contract.

Similarly, a down and out provision renders the option worthless as
soon as the asset price hits a barrier B from above. The payoffs in the two

cases are given by

guo(x,K) = max(St —K)0(B—x)

gpo(x,K) = max(St —K)0(x—B) (1.8)

for a up-and-out (UO) and a down-and-out (DO) option call respectively.
Here, 6() denotes the standard step function. A terminology used to describe
contracts with these features is knocked out options. In contracts of this type
it is agreed there will not be any payoff if the barrier B is hit.

Similarly, the market offers contract with additional limitations on the
allowed variation of the underlying asset. For instance, double knock out
options have restrictions on the asset variability delimited by two barriers
(B— < B4) both from above (B.) and from below (B_), and give zero payoff
if any of the two barriers is hit by the asset from inception time t to expiry
time T.

Knock in options are dual, in an obvious sense, to knock out options.
Knock in options, in fact, are contracts that pay off as long as the barrier B is

hit before expiry. If the barrier is hit, then the option is said to have knocked



in, otherwise their payoff is null.

Furtherly categorizing these latter types of options, the position of the
barrier respect to the initial value of the underlying allows to distinguish
between up-and-in options and down-and-in options. The payoffs of these

contracts are given by

gui(x,K) = max(St —K)0(x—B)

gpi(x,K) = max(St —K)6(B—x). (1.9)

For definiteness, in the analysis that follows up, we will focus our at-
tention to knocked out payoffs of the types described in eq. (I.8).

In knocked out options, single or double, killing of the brownian mo-
tion is, needless to say, instantaneous, and takes place as soon as the brow-
nian motion of the asset hits any of the barriers.

This aspect of the contract is an unpleasent feature since it introduces
a discontinuity in the dynamics, with attached risk management problems
both for option buyers and sellers. Such risks, for instance, are those due
to erroneous price movements, or to an instantaneous spiky behaviour of an
asset, moving upward or downward and penetrating a given barrier, which
can lead an investor to the loss of all his investment. In other unpleasent
situations, when large positions of options accumulate in the market and
are all characterized by the same barrier, trading can drive the asset to the
barrier, generating massive losses.

There are various ways by which more conservative and safer contracts



can be defined, while maintaining some of the features of knock out options.
This is achieved by introducing a finite knock out rate, thereby smoothing
out the effect of the barrier. Our goal is to show how it can be implemented
in a self-consistent path integral formulation and characterize the pricing of

these path dependent options.

1.3 Quantum Methods in Finance

To establish a path integral description of a stochastic process we need
a lagrangean and the corresponding action. This can be easily worked out
for the BS model, starting from the Hamiltonian given in eq. (I.6). We easily

gets

1 (dx 1,\°
Lgs=—~—+4r—=c6*] — 1.10
BS 262 <dt+r 26> " (1.10)

and the corresponding action, expressed in terms of time to maturity T

T
SBS:/ Lgs (t')dt’ (1.11)
0

which can be used to define a corresponding path integral for a fictitious
quantum mechanical process in the variable x, the logarithm of the underly-

ing asset

o0
<xf|e_THBS‘xi> = Ht,-<t<zf/ dX(l‘)es[x] (1.12)

with the boundary conditions x(#;) = x; and x(¢y) = xy. The variable x =
log(S) which identifies the quantum mechanical state of the system will be

refered to as to the stock price. The pricing kernel for the stock price is given

10



by the

pes(x, X', 1) = /DXBSeSBS
= (el )
(1.13)
with
/ DXps =T, | dx(t). (1.14)

1.3.1 Generalized Potential

For barrier options it is tempting [2] to introduce a potential V(x) in
order to set up a constraint on the stochastic process described by the stock
price x.

The corresponding generalized Hamiltonian now reads

(52 82 1 o) d
Hy =—7 =5+ (26 —V(x)) $+V(x). (1.15)

It can be shown [2]] that Hy obeys the martingale condition, and hence
can be used for studying processes in finance.
The non-Hermiticity of Hy is of a particularly simple nature, and it can

be shown [2]] that for arbitrary V, Hy is equivalent by a similarity transfor-

11



mation to a Hermetian Hamiltonian Hgg given by

HEff = e_sHVes (116)
where
2 32 2
c-9d° 1oV 1 , 1 c
H, = ——4+-—=—4+—V'+-V+— 1.17
Eff a2 2ax T202) T2 1R (1.17)
and
! ! /Xd V(y) (1.18)
§S = —Xx—— .
2 2 J, vy

Note that Hggr is Hermetian and hence its eigenfunctions form a complete
basis; from this it follows that the Hamiltonian Hy can also be diagonalized

using the eigenfunctions of Hgg. In particular

Hgge|0, > = E,|0, > (1.19)
= Hy|ly, > = E,|ly,> (1.20)
where
. > = €0, > (1.21)
<Vl = €7 <Ol A< (1.22)

For the Black-Scholes Hamiltonian Hpg we have V(x) = r and hence

Hps = e'Hgge’ (1.23)
= ew[—ojaa;+y]e_w‘ (1.24)
where
Y = (r+2(::2/2)2 ;o= szz_r (1.25)
12



1.4 Solving the double knock out barrier option

A double barrier option is an option whose value reduces to zero when-
ever the price of the underlying instrument hits the barriers which we denote
by ¢ and ¢’. Hence, the price of a double knock out barrier European call
option expiring at time 7" and with strike price K at time fy provided it has

not already been knocked out will be given by
e_r(T_IO)Ez[(ex(T) - K)+]1a<x(t’)<b,t0<t’<T (1-26)

where 1 stands for the indicator function. It is sufficient to solve for the
probability distribution of x(7') for those paths which do not go outside the
barriers (in other words, the pricing kernel).

Written as a path integral, the formula is
e~ (T=0) / DxO(x(t) —a)®(b — x(1)) SO (D) _ k), (1.27)
where Sgg is the Black-Scholes action
SBS:—% di(ir— ) (1.28)

While the step functions look complicated in the path integral, they
can be seen to be having the effect of an infinite potential barrier since they
effectively prohibit the path from entering the forbidden region outside the
barriers. Hence, the problem might be better solved using the Hamiltonian

and this is indeed the case.

13



In the Schrodinger formulation, the above problem is to find the pricing

kernel for a system with the Hamiltonian

H = Hps+V(x) (1.29)

where the Black-Scholes Hamiltonian is given by

2 2
. c- d c d
Hgs=———+ (= —1)=— 1.30
BS 28x2+(2 r)ax (1.30)
and the potential V (x) is given by
o x<a
Vx)=40 a<x<b (1.31)
o x>b

This is very similar to the well known problem of a particle in an infi-
nite potential well except that the Hamiltonian has an extra term involving
% which makes it non-Hermitian.

This problem can be solved by transforming the underlying wave func-
tions. By making the transformation (x | §) = e~ **~%) (x | y) and (¢ | x) =

¢4 (y | x), where |0) are the vectors in the new (Hilbert) space,

y) and

2
2—
Lzr_ In

(§| are the original vectors and their duals respectively and o =

this new space, the Black-Scholes Hamiltonian takes the simple Hermitian

> 9
form — 22

The problem is now identical to that of a quantum mechanical particle

of mass é (in units where /i = 1) in an infinite potential well. As is well

14



known in this case, the allowed momenta are p, = 7. The eigenfunctions

are hence given by

(x|w,) = M=) (x|, = je*—a) sinp,(x—a) (1.32)

(P | x) =e @ D(p, |x) =— ie” =9 sin p,,(x — a)1.33)

where (x| ¢,) are the eigenfunctions of the quantum mechanical particle in

an infinite potential well.

The eigenfunctions are orthonormal and form a complete basis since

oo

_ 2 ) R :
Z(x | W) (W | ) = me“( XI)Zsmp,,(x—a) sinp, (X' —a)

n=1 n=1

1 N ] ]
= 3w =) Zm (exp b”ina (x—x") —exp blrina (x+x' — 2a))

=T (s () s (g2

(1.34)

sincea <x<banda <x <b.

15



The pricing kernel is hence given by

8

oo

(xle™ TH|X ZZ (W) (Wnle™ TH|\|fn><\|fn ')

n=1n'=1

=D W) ([ e

n=1

:2(b1—a) exp <_r<522B (x—x'))

oo

2.2
Z exp (_Tozpn> (eip,,(x—x/) o eip,,(x+x/—2a))

n—=—oo

zz(bl_a)exp<—22l3+ocx X ) Z /dyﬁy n exp<

n—-—oo

iym(x—x iym(x+x'—2a
<epr(_a )—exp—( P )>

[ 1 162
= WGZCXp(_ ZB—i—(x(x—x'))

oo

8

y(;f w) )

= 21062 2162
(1.35)
where
B= (Gz/ijr)z (1.36)
and the identity
= Z e2miny (1.37)

n=—oo
has been used.

Hence, we see that the pricing kernel (apart from the drift terms) is
given by an infinite sum of Gaussians. To check its reasonableness, we check

the value in the limits b — o0 and @ — —oo. In the former case, only the n =0

16 -

—x +2n(b—a))? ' —2a—2n(b—
Z (exp—(x X' +2n(b—a)) exp_(x—l—x a—2n(b

a))2>



term contributs and in the latter, only the n = 0 and n = 1 terms contribute.
It is easy to see that, in both cases, the result reduces to the solution for the
single knockout barrier pricing kernel. When both limits are simultaneously
active, only the first term in the n = O term exists and it is easily seen that
gives rise to the well known Black-Scholes pricing kernel.

We can now evaluate the price of a double barrier European call option

using the pricing kernel from (1.35)). The result is seen to be

f= Z ( —2n0(b—a ( 2n(b7a)SN(dn1)_KefrtN(dn2)>

= Ny (1.38)

- SZa€72(x(n(b7a)fa) <62n(ba) %N(d,ﬁ) _ KerTN(dn4)> )

where

In(2)+2n(b—a) (r—i—%z)

d,y = vz (1.39)
In(3)+2n(b—a)+1(r—9

dp = —b 4 2)— M—GVT  (1.40)

o1

In(§z) +2n(b—a) T( +%2)

ds = — (1.41)
(%) +2n(b—a)+1(r— <

dy = —= — (-2 —dp—ovT  (142)
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Chapter 2

On the Trivariate Joint Distribution of
Brownian Motion and its Maximum

and Minimum

18



2.1 Introduction

Consider a standard Brownian motion {W;|t > 0} with Wy = 0. Denote

its maximum and minimum, respectively, by

I, = min Wy and u; = max W,. 2.1
0<s<t 0<s<t

It is known that the trivariate joint distribution of (W;,[;,u;) is expressed as

P(a<l <u <b,W, €dx)

= \/%kiw {exp <_21t {x—2k(b— a)}2>

—exp <—2lt {x—2b—2k(b— a)}zﬂ dx, (2.2)

where a < 0 < b. This equation and its variants are found in the literature
of probability such as Bachelier (1901), Lévy (1948, p. 213), Darling and
Siegert (1953), Cox and Miller (1965, p. 222), Freedman (1970, pp. 26-7),
Feller (1970, p. 341), Csédki (1978), Shorack and Wellner (1986, pp. 33-
36), Teunen and Goovaerts (1994), Revuz and Yor (1998, p. 111), Borodin
and Salminen (2002, p. 174), etc. The purposes of this chapter are to show
uniform convergence of the infinite series of Equation (2.2), to show that it
is a solution to the Fokker-Planck equation, to present some approximations
of the trivariate joint probability density function, and to analyze their error

bounds.

19 -



2.2 Uniform Convergence

For afixedt € (0, ), define two sequences of functions {g (x;7)|k = - --

and {re(x;t)[k =---,—1,0,1,---}, respectively, by

i) = ——exp (—;{x—zkw—anz), (a<x<b)  @3)

and

ri(xt) = \/%exp <—21t{x—2b—2k(b—a)}2> , (a<x<b). (24)

Clearly, gx(x;¢) and ry(x;¢) are positive for each k. Equation (2.2) becomes

Pla<l<u <bW €dx)= Z {qi(x;t) — ri(xs1) }dx. (2.5)
k=—c0

Equation (2.3) implies

walst) o <2<bt_a){x—b+a—2k(b—a)}> e

which can be written as

(Ik+1(x;l) = B(x)a’ka(X;t)v (k: 7_170717"')7 (27)

where

a:exp<_4@;")2) and B(x) = exp (f(b_a)(x—ma)). 2.8)

20 -
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It can be driven from Equation (2.7) that
Qk(X;I) = Bk(x)a(g)qO(X;t)a (k = 7_1707 17 o ')a (29)

where

1 1 k k(k—1
qo(x;t):mexp(—ztx2> and <2>: (2 ) (2.10)

Equations (2.7) and (2.8) imply

. qrr(x:t) - k
lim —————= =1 =0. 2.11
Mg AP =0 24D

The ratio test indicates that ), gx(x;¢) converges for any x € [a,b]. For
each k > 1, gx(x;7) is increasing on [a,b], and then, 0 < gx(x;1) < gk (b;1).
Since >, qk(b;t) is convergent, the series >, gx(x;7) converges uni-
formly on the compact set [a,b]. For details of this uniform convergence,

readers may refer to Rudin (1976, p.148). Equation (2.7) implies that

- 1
fim D o L g 2.12)
k——oo Qi1 (x:1)  k——eo P(x)0tk

The ratio test implies that 3", _ gx(x;7) is convergent for any x € [a, b]. For
each k < —1, gx(x;7) is decreasing on [a, b], and then, 0 < gi(x;1) < gx(ast).
Since Zk;lfm gr(a;t) is convergent, Zk;lfm gk (x;t) converges uniformly on

the compact set [a,b]. Therefore, the series >, __ gk(x;t) converges uni-
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formly on [a,b]. We know from Equation (2.9) that

oo

S alet) =qolnn) 3 Bl (2.13)

k=—o0 k=—oo

which can be represented by Jacobi’s triple product identity (see, e.g., Zwill-

inger [2003, p. 48]) as follows.

i qi(x;1) :qo(x;t)ﬁ{(l—ocj) <1+B(lx)ocj> (1+B(x)ocjl)}

k=—o0 j=1
(2.14)
Equation (2.4) implies
Frpp(x:t) 2(b—a)

—_— = —{x—-3b —2k(b— 2.15

S e (2O o spra--a)), i)
which can be written as

rkJrl(x : t) = Y(x>akrk(X;t)a (k = 7_1707 17 o ')7 (216)

where

v(x) = exp (f(b —a)(x—3b+ a)) = B(x)exp (—jb(b — a)) . (2.17)
It can be driven from Equation (2.16) that

k

n(ut) =¥ )o@ rbar), (k=--,—1,0,1,---),  (2.18)
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where

1 1
ro(x;t) = ﬁexp (—zt[x—Zb]2> : (2.19)

Applying the same method as before, we can show that the series >, rk(x;1)

converges uniformly on [a,b], and that its sum is

Z ri(x;t) = ro(xs1) Z Yk(x)a(g)a (2.20)

k=—o0 k=—c0
which can be expressed as
* - . 1 . .
Z re(x;t) = ro(x:t) H { (1—o/) (1 + ocf> (I+y(x)o/ ) } :
(2.21)
We now summarize uniform convergence of >, {qk(x;1) —ri(x;t)}

as follows.

[Theorem 1] For integers M and N satisfying M +N > 0, let

N
Soun(et) = Y {ak(nt) —r(x0)},
k=—M

where a <x<bandt > 0. Forafixed,as M — coand N — oo, S_ps n(x,1)

converges uniformly to S_c, .. (x,7) on the set {a < x < b}, which is equal to

S faen) —nny = 37 ol {go(un)Bt(x) — ro(xt (0}

k=—oo k=—oo
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The limit can be also expressed as

oo

qo(X;t)H{(l —af) <1+B(1x)0¢j> (1+[3(x)ocj‘1)}

j=1

s [T{0-) (1450} (v |

J=1

Consider the Fokker-Planck equation

of (x,1)  10*f(x,1)
o 2 o

(2.22)

It is known (see, e.g., Cox and Miller [1965, p. 222]) that S_c o(x,7) =
Yoo {ai(x;t) — ri(x;1) } satisfies the Fokker-Planck equation (2.22). To
prove it minutely, we need to show that the orders of infinite summation
and differential operators of > " _ {qx(x;t) —rr(x;1)} can be exchange-
able, i.e., the infinite series is differentiable term by term. However, as far as
the authors know, it has not been proven before. It can be shown as in Ap-
pendix that, for each integer k, gx(x;t) and ry(x;¢) satisfy the Fokker-Planck
equation (2.22), i.e.,

oqi(x;t) lazqk(x;t) and on(x;t) lazrk(x;t)
o 2 ox? o 2 ox?

(2.23)

Thus, gi(x;t) — ri(x;t) is also a solution to the Fokker-Planck equation

(2.22), and so is the linear superposition S_y y(x,#) for any integers M and
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N. As shown in Appendix using uniform convergence, we know that

132 | &
28)62{2611()61‘} at{quxt} (2.24)

k=—oc0

and

5 w0 w0
;aaxz{ Z rk(x;t)} = Bat{ Z rk(x;t)}- (2.25)

k=—oc0

Equations (2.24) and (2.25) imply

1028 wo(x,t) 107 | &
(5onte) 12T fue-nten]

k——oo
— E?t [Z {aq(x:1) —”k(x;l)}] = W (2.26)
k——oo

Also, it can be shown as in Appendix that, for any ¢ € (0, 0),

S weo(a,t) =0 and S e w(b,r) =0. (2.27)

[Theorem 2] The infinite series S_ww(X,7) = > 1 {qr(x;t) —ri(x;t)}

satisfies the following Fokker-Planck equationona <x < bandt >0

0 cow(X,0) 108 (1)
ot 2 ox? ’

and the boundary conditions are S_c «(a,1) =0 and S_. (b,7) = 0 for any

t>0. O

25 -



2.3 Approximation and Error Bound

It can be shown that

ri(x;t)
qi(x;1)

=exp (2:) {x—b—2k(b—a)}) . (2.28)
Equation (2.28) can be written as
re(xr) =n(0)&q(xnr), (k=-,-1,0,1,-), (2.29)

where

8 =exp <—4b(bt_“)> and 1(x) = exp <2tb(x—b)> . (230)

Equation (2.29) implies that, for each k(= ---,—1,0,1,---),
qe(x:1) —re(xr) = {1 -8} g(x:1) = {n(lx)s—k - l}rk(x;t) (2.31)
Equations (2.7) and (2.29) imply that, for each k(= ---,—1,0,1,---),
re(x3t) — qrar (1) = {M(x)8 = B(x) o } qu(x;1). (2.32)

It is clear that, for any x € [a, D],

0<a<d<l, 0<Bx) <nx) <1, 0<yx) <. (2.33)
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We know from Equations (2.31)-(2.33) that, for any x € [a, ],

> gqrxit) > nxct) > g () > e () > - =0, (k=1,2,--4),
(2.34)

and

2 (6) 2 g (60) 2 (0 2 qelin) 2 =0, (k=—1,-2,--
(2.35)

For any integers M and N satisfying M +N > 0, let
8,M7N(x,t) = S,w@(x,t) — SfMJv(X,I). (2.36)

The function €_y n(x,?) is the remainder of orders (—M,N) or the error

term for approximation of S_, .. (x,7) by S_p n(x,1). It is clear that

S,M,N(x,t) = SLN()C,Z‘) +So’0(x,l‘) +S,M7,1 (x,t). (2.37)
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Equations (2.9), (2.18), and (2.31) imply that

Soolet) = {1-1(x)} qol:r) = {n(l)— 1}ro<x;r>, (2.38)

N
Sivwn) =S {18} gn)
k=1

N
= qo(x:t) > {1-nx)8"} B x)al), (2.39)
k=1

-1
1
S_m—1(x,t) = ——— — 1 o ri(x;1)
v ZM{ank }"

k=—

-1
1 K
~ o) 1 lwal. (.40
’ ZM{n(x)B" }

k=—

When we calculate Sy y(x,7) and S_ps —1 (x,1), we would rather use Horner’s
method for computational efficiency.

For positive integers m and n, let

Ry o(x,1) = gn+1(x5t), (2.41)
N+n
Rya(xt) =gqnii(st)— > {nlst) —qea(nn}, (242)
k=N+1
Ropo(x,t) =r-p-1(x1), (2.43)
and
—M—1
R_p—m(x,t) =r_p—1(x3t) — Z {gr(x;t) =1 (xs0) . (2.44)
k=—M—m
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Equations (2.34) and (2.35) imply that, for any x € [a,b] and ¢ > 0,

Rno(x,1) > Ry 1 (x,t) > Ry2(x,t) > -+ > Ry o(x,1) >0 (2.45)

and

R_po(x,t) >R p—1(x,t) > R_p—2(x,2) > -+ > R_py—oo(x,) > 0. (2.46)

We know from the definition of g (x;7) and 1(x) that

qud(:t) - l{x_zk(b—a)}%(x;t), (2.47)
d

q;)g 4 i *{ —2k(b—a)}?| qr(x:t),  (248)
an(x)  2b
o~ e (2.49)

Equations (2.31), (2.47), and (2.49) imply that

9 farlen) —rlen)) = (g (xzr) + {1 )3ty LD

= — 8N () gr(x:t) — % {1-M(x)8"} {x—2k(b—a)} g(x:1)(2.50)

Let
di(x) = 2bm(x)&* + {1 —M(x)8} {x—2k(b—a)}, (2.51)

which is equal to

di(x) = {—x+2(k+ 1)b—2ka}n(x)& + {x—2k(b—a)}.  (2.52)
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Equation (2.50) can be written as

2 fanten) ) = -0 g @:53)

If k > Ky :max{%,%} and x € [a,b], then

di(x) < {=x+2(k+1)b—2ka} () + {x — 2k(b—a)}
= {—x+2(k+1)b—2ka} 8" + {x—2k(b—a)}
<A{—x+2(k+1)b—2ka} % +{x—2k(b—a)}

3
< Sb—kb+ka <0, (2.54)

where the first inequality holds because 1(x) is increasing on [a, b], the first
equality does by 1)(b) = 1, the second inequality does because 8 < 1/2, and
the last inequality does because k > 3b/{2(b —a)}. Equations (2.53) and
(2.54) show that gy (x;7) — ri(x;7) is increasing on [a, b]. Also, for any k > 0,
gr(x;t) is increasing on [a,b] for k > K. Thus, the following proposition

holds;

N>K;,n>0,anda<x<b = Ryu(a,t) <Ry,(x,t) <Ry(b,1).

(2.55)
Ifk<K = min{z‘@fé’) , —% — %} and x € [a,b], then
—di(x) > {x—2k(b—a) —2b}1(a)& — {x—2k(b—a)}
> [x—2k(b—a) — 26} (a) - n(za) (= 2%k(b—a)}
>a—4b—2k(b—a) >0, (2.56)
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where the first inequality holds because mM(x) is increasing on [a,b], the
second inequality does because 8 > 2/m(a), and the last inequality does
because k < (a —4b)/{2(b—a)}. Equations (2.53) and (2.56) show that
ri(x;t) — qi(x;t) is decreasing on [a,b] for k < K_. Also, for any k < 0,

rr(x;t) is decreasing on [a, b]. Thus, the following proposition holds;

M>—-K_ ,m>0,anda<x<b =R_py_n(b,t) <R_p—m(x,t) <R_p1_m(a,t).
(2.57)
We now summarize properties of the error bounds of S_j n(x,7) as

follows.

[Theorem 3] ForM > —K_,N >K.,m>0,n>0,x€ [a,b],and t > 0, the

following inequalities hold.

RN,n(aat) < RN,n(x7t) < RN,n(bvt)

R _p—m(b,t) <R_pp—m(x,t) <R _pr—m(a,t)
Ry n(a,t)—R_pr—m(a,t) <Ry n(x,0) —R_p1—m(x,t) <Rnu(b,t) —R_p1—m(b,1)
Ry oo(a@,t) —R_p1,—oo(a,t) < €_pn(x,1) < RNoo(b,1) —R_p1—oo(b,1)
O

Equations (2.45) and (2.46) and Theorem 3 imply that, for M > —K_,
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N>K;,m>0,n>0,andx € [a,b],

—R_p-m(a,t) < —R_po(a,t) <€ pyn(x,1) <Ryo(b,t) < Rya(b,t)
(2.58)

and

|8,M7N(x,t)\ < max {R,M7,m(a,t),RN:n (b,l)} . (259)

Jacobi’s triple product identity representation in Theorem 1 implies

that

S—eoeo(X,1) = J(x,2) + O () , (2.60)

where J1,(x,?) is defined by

qo(x;t)f[l{(l o) (1 n B(lx)ocj) (1+B(x>oa—1)}
—ro(x;1) f[l { (1—a) (1 + y(lx)aj> (I+y(x)a/™) } . (2.61)

Equation (2.60) means that the function Jy (x,#)(x) is an approximation of

S—coco(x, ) with the remainder O ().
(Example 1) We know that, for N > 0,

1 1
Ruo(but) = e (i) =BV (0)al (i) <o) = < o2

ﬁ
ﬁ

Hence, the following proposition holds.

1
b—a

t
N > _Eln (eVZm) = Ryo(b,t) <e

32
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Also, we know that, for M > 1,

Romo(a,t) =r_y1(a;t) =y ™! (a)a(iﬂgil)ro(aﬁ)

< (X3/2 M (M+2)73(M+1)/2 ) < (M_1)2/2 1
- ol 2 1) <o —_—,

=\ Y@ rola NG,

where the first inequality holds because

32

) =exp <?(b—a)a) <1

Hence, the following proposition holds.

M-1>

t
b—a —Eln(ex/Zm) = R_po(a,t)<e

Thus, Equation (2.59) implies the following proposition.

1 t
max {M —1,N} > =% _Eln (8\/275[) = le_un(xt)| <e
—da

As an example, leta=—1,b=2,t=2,x=05ande= 10713, then

1
b—a

—%m (e\/zm) —1.9228.

Thus, we may choose M = 3 and N = 2. The asymptotic values are as fol-

lows.
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(—M,N) S_mn(0.5,2) (—M,N) S_mn(0.5,2)
(0,00 | 0.071034228403985 | (-1,0) | 0.054355942725271
(-1,1) | 0.054397289152109 | (-2,1) | 0.054397288013575
(-2,2) | 0.054397288013575 | (-3,2) | 0.054397288013575
(-3,3) | 0.054397288013575 | (-4,3) | 0.054397288013575

We know from the above table that a pair of orders (—M,N) = (—2,1) is
good enough to obtain a finite series approximate value with absolute error
less than 10715,

Let L =Ino/In€. Then, L = 1.9188. The asymptotic values J;(0.5,2)

of Jacob’s triple product identity representation are as followes.

! 7,(0.5,2) ! 7,(0.5,2)

0 | 0.071034228403985 0.054397289405489
2 | 0.054397288013575 0.054397288013575
4 | 0.054397288013575 0.054397288013575

We know from the above table that an order L = 2 is good enough to obtain
an approximate value of Jacob’s triple product identity representation with

absolute error less than 1013,

2.4 Conclusion

In this chapter, it is shown that the infinite series of the trivariate joint
probability density function of Brownian motion and its maximum and min-
imum converges uniformly, and that it satisfies the Fokker-Planck equation.

Also, the joint density function is represented through Jacobi’s triple prod-
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uct identity. Moreover, some properties of error bounds to approximate the

infinite series by a finite series are presented.
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Chapter 3

Fitting the Risk-Neutral Density
Function: The Generalized Beta

Approach
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3.1 Introduction

In this chapter we introduce a generalized distribution for describing
security returns. McDonald, et al [23] have introduced generalized beta dis-
tribution for security returns. Many part of this introduction of this chapter
has been adapted from McDonald, et al and Rebonato, et al [24]]. The dis-
tribution has the feature of being extremely flexible, and it includes a large
number of well-known distributions, such as the log-normal, log-t, and log-
Cauchy distributions, as special or limiting cases. Distributions with large,
even infinite higher moments can be specified by the choice of parameters.
This flexibility allows a direct representation of different degrees of fat tails
in the distribution. The generalized distribution also has a natural relation to
much of the literature on mixed distributions since a wide range of mixed
distributions can be described as special cases of this distribution.

There are two common approaches to the study of the distribution of
security returns in the finance literature. The first begins by describing the
process that gives rise to the returns, and the second begins by seeking to
represent in a usable form a distribution function that empirically fits the
observed return distribution. Much of the literature that relies on mixed dis-
tributions takes the first approach as its starting point and in doing so empha-
sizes the market process and the relation between various market variables,
such as price variability and trading volume. A number of these papers lead
to well-defined distributions. Others, which examine the trading process in
greater detail, such as those of Epps and Epps (1976) [25], Oldfield, Ro-
galski, and Jarrow (1977) [26], and Tauchen and Pitts (1983) [27], lead to
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distributions that cannot be represented in explicit form or are difficult to
specify and use in application.

The second approach serves as the starting point for a line of research
that has its roots in the work of Fama (1963, 1965) [28]] [29] and Mandel-
brot (1963) [30]. This work begins with the empirical observation that stock
returns are more peaked and have thicker tails than the log-normal and then
finds a distribution function that fits this observation. One such set of dis-
tributions is characterized by a set of symmetric-stable distributions with
characteristic exponents between one and two. For the details of these dis-
tributions, refer to Appendix B. These distributions are chosen both because
of their fit to the observed distributions and because they have the attractive
property of closure under multiplication. That is, the product of security re-
turns will retain the same distributional form as for individual returns. There
appears to have been little if any work to link this set of distributions to the
actual mechanism of security trading. In this respect, these distributions re-
main only an empirical description of the fitted distributions.

The generalized distribution we present in this chapter has the advan-
tage of being easily interpreted as a mixed distribution and has an easily
expressible density function that makes it amenable to both empirical and
theoretical work in which the density must be expressed explicitly.

A new approach is proposed in this chapter, by means of which an eq-
uity price or an interest or FX rate is modeled in such a way that its terminal
distribution is assumed to have a particular four-parameter functional form
that encompasses the log-normal distribution as a special case. For each ex-

piry, the best combination of parameters that gives rise to an optimal (in a
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sense to be described) match to market call and put prices can be found us-
ing a very efficient and rapid procedure. The approach can prove useful in
the marking-to-model of out-of-the-money options and in the creation of the
smooth strike/expiry smile volatility surface needed as input for all process-
driven pricing models. Further desirable features of the method stem from
the fact that closed-form solutions are presented, not only for call and put
prices consistent with this distribution but also for the cumulative distribu-
tion arising from the chosen density. Thanks to these analytic solutions, the
search procedure needed to calibrate the model to market prices can be ren-
dered extremely fast.

The advantages of the approach presented in this chapter should be
important:

e To begin with, since the distribution function is directly modeled,
the resulting density is ensured by construction to assume a well-behaved
and “plausible” shape. Since, as noted above, very small changes in input
prices can correspond to very different distributions, it conversely follows
that an approach starting directly from the distribution can fit a great variety
of market prices with little loss of precision.

e Wildly fluctuating local volatilities (a common by-product of spot-
based tree implementations) are no longer encountered.

e We express the closed-form solutions for calls, puts, and their deriva-
tives in terms of the integrals of a family of functions to which the log-
normal distribution belongs as a special case; in addition, the functional
form of these closed-form solutions is such that they have an easily rec-

ognizable Black-like appearance, making their use easy and straightforward
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for practitioners accustomed to pricing using the market-standard Black for-
mula. The existence of a smiley volatility quote simply stems from the fa-
miliarity of the market participants with the Black conceptual and computa-
tional framework.

Alternative techniques have been proposed in order to fit the market
implied volatility surface: the mixture of two log-normals, the Edgeworth
expansion, or even a spline-fitting to the smile curve. We believe that the ap-
proach we recommend in this chapter displays noticeable advantages over
these techniques. Spline-fitting is notoriously unstable; being based on a
series of polynomials, asymptotically it produces answers that bear no sim-
ilarity to the function to be fitted (an implied volatility surface); it does not
allow closed-form pricing formulas. Most importantly, spline-fitting to the
volatility surface generates an implied density via the second derivative of
the call prices with respect to the strike. Since splines are not linked in any
fundamental way to the underlying density, there is in general no guaran-
tee that double differentiation will give rise to an admissible density. The
approach described in this chapter guarantees that this will not happen be-
cause the density itself is the starting point, rather than the by-product of a
double differentiation.

As for the other approaches mentioned above, the Generalized Beta
2 (GB2 in the following) method can be implemented so as to be signifi-
cantly more parsimonious: after the first moment is matched by enforcing
the correct pricing of the forward rate/price, and the equivalent volatility de-
termined from the market data, there remain only two free parameters per

maturity. Nonetheless, in all the tests we have run, the fit has always proved

40



to be excellent, plausibly indicating that the deviations from the log-normal
density are well captured by just two moments above the second. Further-
more, the similarity of the pricing equations with the familiar Black formula
is only encountered with the GB2 approach and should constitute a powerful
incentive for its adoption by the financial community.

Stephen J. Taylor, et al [32] have introduced theoretical risk-neutral
densities. The rest of this introduction of this chapter has been adapted from
Stephen J. Taylor, et al [32]]. Breeden and Litzenberger (1978) [31] show
that a unique risk-neutral density g for a subsequent asset price St can be
inferred from European call prices C(K) when contracts are priced for all
strikes K and there are no arbitrage opportunities. The riskneutral density

(RND) is then

7 0°C
g(K) =" =5 3.1
and
C(K)y=e"T / m(x—K)g(x)dx (3.2)
K

with r the risk-free rate and T the time remaining until all options expire.
The forward price F, for time 7, is the risk-neutral expectation of Sy ; it is
also a futures price, assuming non-stochastic interest rates and dividend pay-
ments. These relationships between the RND and derivative prices are the
basis for empirical derivations of implied RNDs, despite the impossibility

of obtaining option data for a continuum of strikes.
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Parametric families of RNDs are estimated in this chapter. a parameter
vector O is estimated by minimizing the average squared difference between

observed market prices and theoretical option prices, namely
N

> (Cunarker (Ki) — C(Ki[0))?, (3.3)

i=1

1
N
with
C(Ki|o) =e'T / (x—K;)g(x|0)dx,1 <i<N. (3.4)
K;

In these equations, N is the number of prices obtained from option quotes
or trades during a particular day and g(x|0) is a parametric density function
that produces the theoretical option pricing formula C(K|6) given by equa-
tion(3.2). We choose specific parametric densities for the RNDs because

they enable us to obtain closed-form real-world densities.

3.2 The relation of the GB2 to log-normal dis-

tribution

The GB2 includes the generalized gamma (GG) as a limiting case:

_ 1
GG(x;a.B,p) = lim gom(x:a,Bq?, p.q) (3.5
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Further limits applied to the GG lead to the log-normal density(LN) as a

special limiting case of the GB2:

LN(x:,6) = lim GGlx:a,p = (6%a®)e,p = (au+1)/BY (3.6)
L +1
agr(l)qg{logcm(x,a, (6%a’q)e,p =~ 54)

3.3 Risk-neutral condition of generalized beta

distribution of the second kind

For general distribution ng (S7), we choose generalized beta distribu-
tion of the second kind (GB2). Refer to McDonald(1987) [23]] for details of

GB2 distribution. The GB2 probability density function is defined as follows

) |a|x*~! 0
8o b 4) = ppr, i ey e G

The density is risk-neutral if

(x) = / x-gom(x;a,b, p,q)dx (3.8)
0
1 1
B(p,q)
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On the other hand, if we set x = Spe”, then we can describe risk-neutral

condition as follows

O = / y-86B2(So€”;a,b, p,q)Soe’dy (3.9)

< x
:/ lnf'gGBZ(X;a7bap7Q)dx
0 So

TR 2 20D N(C)
=1 So+a(F(P) I'(q)

)=1rT

If we take logarithm at equation(3.8), then we can see that

| 1
InSo+rT =Inb+InL(P+ ~) —In[(P) +InT(g+~) —In[(q) (3.10)
a a

And If take the 1st order Taylor expansion of logarithm of gamma function
in equation(3.10), then we can find that equation(3.10) have the same result

as equation(3.9)

b 1,dlnT'(P) dInI(q)

T>~In_—-+-
" nSO+a( dp dqg

) (3.11)

3.4 GB2 Option Pricing

The theoretical option pricing formula depends on the cumulative dis-
tribution function of GB2 density, denoted Ggpz. And Ggp; is a function

of cumulative distribution function of the beta distribution, denoted I, and
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called the incomplete beta function:

Geop(x;a,b,p,q) = Gepa((x/b)*;1,1,p,q) = L.(p,q) (3.12)

with z(x,a,b) = (x/b)*/(1+ (x/b)?). If the density is risk-neutral, so that

the constraint in equation(3.8)) applies, then European call option prices are

given by
C(K;9) :erT/ (x—K)gap2(x;a,b, p, q)dx (3.13)
K
1 1 _,
= So |:1 _GGBZ(K;a7b7p+ qu_ Cl):| —Ke T[l _GGBZ(K;aub)ILQ)}

=50 [1 —L(p+ é,q— ;)} —Ke " [1-L(p,q)].

And, put option prices are given by

K
P(K;6) = e’T/O (K —x)ggpa(xsa,b, p,q)dx (3.14)

_ 1 1
=Ke " Ggpo(K;a,b, p,q) — SoGara (Ksa,b, p+ 24~ ;)

_ 11
=Ke " I,(p,q) — SoL(p+ —q— ).

We can see that Equation(3.13) and (3.14) satisfy Put-Call Parity condition.

So+P(K;0) =Ke T +C(K;0) (3.15)
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3.5 GB2 Single Barrier Option Pricing

Using the Reflection Principle of Geometric Brownian Motion(GBM),

we can find the payoff function of Up-and-Out call option, as follows;

YO =[Sy —K]|1(St > K) — [St — K]1(S > Sp) (3.16)

— oYy — K|1(Yy > K) + oYy — K]1(Y7 > Sy)

where

o= {SU} - (3.17)

Therefore, an Up-and-Out call option for a general distribution can be priced

as follows;

ci?=eT [[Sr—K|I(Sr > K)f2(Sr)dSr (3.18)

—e T / [Sr — KJI(St > Su) f£(Sr)dSt
—e T / a[Yr — KJI(Yr > K) f2(Yr)dYr

+e ' [ alYr — K|I(Yr > Sy) f2(Yr)dYr,

Where ng (S7) is a probability density function(PDF) under risk-neutral

measure Q.
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That is to say, path dependent barrier options can be calculated with payoff

condition of equation(3.16).

B,
CVO =T / [x — K] gepa(x:a,b, p,q)dx (3.19)
K

By B2
e [ [t
K

2

where o(x) = [Bi:| 2 _ [Bir‘

X

1o 1o
cv0 =5, [Iz2(p+,q—)—lz.(l?+aq—)] (3.20)
a a a a

— Ke_rT [IZ2 (p? Q) - IZl (pa Q)]

B PB(p— 2l g4 Mhye T

a

bM1B(p,q)

A+1 A+1 A+1 A+1
o2 g ) - M g M)

KBYB. (p—2,g+2)e T A Ao A

— a a ) -z YT _z =

PB(p.q) [23(19 4T )~ 1z(p a,q+a)]
N P LI Y R
=0 [{z,\P a,C] 4 z\P 4 4

—Ke " [I1,(p,q) — 1z, (p.q)]

A1
B A+1 A+1 A+1 A+1
<+> ] |:IZ3(p_ a g+ a )_Izz(p_ a g+ a ):|

B.e'TE
+B, 5

—Ke 'TE

A
B, A A A A
<ST> ] [lza(p—a,q+a)—lzz(p—a,q+a)
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plete beta function.

where Z; = and Iz(p,q) is a incom-

3.6 GB2 double barrier option

3.6.1 Log-normal distribution Case

Up and Out Down and Out Call Option can be priced according to
equation(I.38))

By
CERPPe T = / (S — K]LN9(S7)dSr (3.21)
K
By

+i(—1)”/ ﬁoci[Yn—K]LNQ(Yn)dYn

n=1 K 1

+Z(—1)"/ +Ho‘ci[Yn—K]LNQ(Yn)dY‘,,
n=1 1

B
K

where

B2 (B, \*™"
Yomi1 = —g <+> (3.22)
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where

ln%+<r+%2)T
oVT

lng—i+<r+%)T JF

dy = . dy=d;—oVT,

: oVT 1T
lnf—z}(—i—(r—i-%z)T

ds = — , do=ds—oVT,

ovT

ln%+<r+%2>T ST
d; = , dg=d7;—oVT
7 oT 8§ =day

d = , dr=d,—oVT, (3.24)

(S

fori=1,2,3,4

2nIn 2=
B

oVT

dpi = di + (3.25)

fori=5,6,7,8

2nln %

dpi=d; — .
oVT

(3.26)
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3.6.2 Generalized Beta distribution Case

With the help of the payoff function of double barrier option, we can
integrate and find the closed form solution of double barrier option. For the

case of GB2 distribution, the formula can be calculated as following.

erTCUODO (327)

s ) [k
Sl [y (e

gGBZ(x;a7b7P7Q)dx

gGBZ(X;aub7p7q)dx

> bB(p+l,q—l) <B> (“”[ 1 1 11
= o Iz,(p+ .4~ Iz, (p+—.q——
,,Zw B(p,q) B, 2 P )
oo B n\
Y k(5) et
- i B’sz(p x+1 q+x+1) Bj n(A+2)
ft b“lB(pﬂ) B_
A+ 1 A+ 1 A+1 A+1
X [Iznz(p—a,q+a)—lzn3(p—a,q+)]

+n_zoo be(p’q) |:(B_ B+ Ian(p_;7q+a)—lzn3(p—;7q+f)
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n——oo

where

B n(A+2) 1 1
I —g——-)—
B+ ) |: Zn2 (p + ) q a )

a

A1 B, n(A+2)
b B_

A+1 A+1

- I _I -
’q+ a ) Zn3(p a )q+

1
(p+;,q—;)

(3.28)

n A
B A A A
) ;:| > |:IZn2<P_a79+a)_IZn3(P—a,q+a):|

-K B. 24
Z(EJ
Zn = :
' 1+[K<B+>2”r
b \ B_
B+(B+)2n:|a
b \ B_
Iy =— 5. (5. Ta"
1+[b<3> ]
i)
b B_
Zn3_ B2+ 5. ]’
1+[b<8) ]
2r
x=8§_1
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and where I7(p,q) is a incomplete beta function. The equation (3.28)) holds

because

() b"B(p+5,9—1%)
B(p,q)

bB(p+1,q-1)
B(p,q)

(3.30)

S()erT —

With these equations, we can plot various option graphs.
Figure. 1 shows various call option prices including up-and-out down-

and-out GB2, and Black-scholes option prices.

Call Option Price

L 1 L L L |
1 7

155
Current Stock Price S

Figure. 1: Call Option Prices (strike price: 150, interest rate: 0.04, up barrier:
160, down barrier: 145)

We made the 3D plots with the axis of current stock price, time to
maturity and option price. Figure.2 and 3 compares Black-sholes and GB2

Call option prices.
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Figure. 2: Black-scholes Call Option (strike price: 150, interest rate: 0.04)
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Figure. 3: GB2 Call Option (strike price: 150, interest rate: 0.04)
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Figure.4 and 5 compares Black-sholes and GB2 Up-and-Out Down-

and-Out call option prices.

Time to Maturity T (years) Current Stock Price S

Figure. 4: Up-and-Out Down-and-Out Black-Scholes Call Option (strike
price: 150, interest rate: 0.04, up barrier: 160, down barrier: 145)
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Chapter 4

Conclusions
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4.1 Conclusion

It is shown that the infinite series of the trivariate joint probability
density function of Brownian motion and its maximum and minimum con-
verges uniformly, and that it satisfies the Fokker-Planck equation. Also, the
joint density function is represented through Jacobi’s triple product identity.
Moreover, some properties of error bounds to approximate the infinite series
by a finite series are presented.

Using the method developed in log-normal distribution(reflection prin-
ciple), we made the pay-off conditions of the barrier options. With the pay-
off conditions and risk-neutral condition of generalized beta distribution of
second kind, we calculated closed form solution of single and double barrier

option prices.
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Chapter A

Appendix A - Proof of Equations

A.1 Proof of Equation in Chapter 2

[Proof of Equation (2.23)]

For a real number m, let

1 1

fm(xﬁ):\/?mexp (Zt(xm)2>' (A.1.1)
We can show that

0fm —(x—m)?

% = _wfm(x7t)v (A12)

Py (x—m)*—6t(x—m)? + 31>

a[z - 4t4 fm(xat)7 (A13)

0fm —

71; = Qfm(xvt), (A.1.4)

82 m - - 2

a,{z = (xtz ") In(x,1), (A.1.5)

83 m - 3 - - 2

a;; _ (a—m){ tt3 (x —m) }fm(x,t). AL6)

Equations (A.1.2) and (A.1.5) imply that f(x,7) satisfies the following Fokker-

Planck equation
of 10*f

g—i@. (A.1.7)

Thus, g (x;¢) and r(x;¢) satisfy the Fokker-Planck equation.
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[Proof of Equations (2.24) and (2.25)]

Let ¢t be a positive constant. If k > 2(*\F) then Equation (A.1.6) implies

that m is positive on [a, b], and that i ‘g@‘ *) is increasing on [a, b]. Thus,

we know that, for any x € [a,b],

Pqr(xt)  Pqu(bit)  t—{b—2k(b— a)}?
0< o e 12

a(bit),  (A.18)

where the first inequality and the equality hold by Equation (A.1.5). Equa-

tion (2.11) implies

2
) —ti{biz(k;n(bw)} qk+1(bst)
lim

2
k—>o0 _t*{bfztkz(bfu)} qk(b,t)

= 0. (A.1.9)

2 .
The ratio test in Equation (A.1.9) implies that > " , J qakx(zb ) converges. Thus,

Equation (A.1.8) implies that > ;" , > qu( 1) converges uniformly on the com-

an( 1)

pact set [a,b]. Similarly, we can show that 5,

converges uni-

ox?
formly on the compact set [a,b], and so does ) ., %. Therefore,

02 - . B =L qi(x:t)
7 {k_z:qu(x,t)} = k_zwaxz. (A.1.10)

(e} 2 . .
It can be shown using the same method that ) ,” J g(x(;\c ) converges uni-

formly on the compact set [a,b], and that

az *° e 82 .
axz{ 3y rk(x;t)} =3 g‘)(cz“). (A.1.11)

k=—oc0

—=—00

Let x € (a,b) be fixed. For m > 0, Equation (A.1.3) implies that the
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equation 32-’;”;(2"”) =O0holds atr =1, = (1 + \/g> (x—m)?andt =1y, =

(1 - \/% (x —m)?. Therefore, i)
points {0,71,,,°0}. Equations (A.1.1) and (A.1.2) imply that

o has its supremum at one of the

. afm T ‘t_(x_m>2‘ _

] e R (112

. afm RT ‘t_ (x_m)Z‘ _

g i (119

afm(xvtl,m) tl,m_(x_m)z

‘ ot N 27, f(xstim)

= 2/3 exp B —1@51 14)

- 5/2 _ T
2\/2n(1+\/2/3)/ 2(1+\/2/3) b=l

and

am sv2,m m = - 2
e e
2,m
2/3 —1 1
= exp| — 4§A.1.15)
2\/ﬁ(1—w/2/3)5/2 2(1-y273) ) k=m

Equations (A.1.12)-(A.1.15) imply that there exists a constant ¢ € (0,o0)

satisfying
0 fm(x,1) 1
| < . A.1.16
s I v P (4.1.16)
The integral test indicates
=~ 1
d <o (A.1.17)
m=1 ‘x - m|3

Equations (A.1.16) and (A.1.17) imply that >~ _, af;"a(f”) converges uni-
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formly on the set {0 < ¢ < oo}. For this uniform convergence property, read-

ers may refer to Rudin (1976, p. 152). Similarly, it can be proved that
-1 O fom (x,1)

m=—oco  of

0fm(x,1)

m=—c ot

converges uniformly on the set {0 <t < e}. Sodoes >~

This uniform convergence implies that

Z af" {Z fele,t } (A.1.18)
k

k=—o0

Equation (A.1.18) implies that

Z aq" { 3 aulnt } (A.1.19)

k=—o0 k=—o0

and

Z E)rkgtc;f) :;{ Z rk(x;t)}. (A.1.20)

k:7°0 k:—oo
Equations (2.23), (A.1.10), and (A.1.19) implies Equation (2.24), and Equa-
tions (2.23), (A.1.11), and (A.1.20) does Equation (2.25).

[Proof of Equation (2.27)]

Equations (2.8) and (2.17) imply that

B(b)Y(b) = exp <?[b—a][2a—2b]> =a. (A.1.21)
Thus,
L 1 _ ol o L o
Bb) o/ +B(b)a’ y(b)od T + y(b)a . (A.1.22)
61 .




It is clear from Equations (2.10) and (2.19) that
q0 (b;t) =70 (b;l‘). (A.1.23)

Equations (A.1.22) and (A.1.23) and Theorem 1 yield

qo<b;f>jfll{(l — o) <1+B(1b)ocj> (1+B(b)ocfl)}
= Vo(b;f)f[{(l —a) (1 + Y(lb)ocj) (1+y(b)o/ ™) }(A-1-24)

which implies S_ o (b,1) = 0.

Equations (2.8) and (2.17) imply that
B(a)y(a) = exp (f b—dllda— 4b]> — o2, (A.1.25)

Equations (2.8), (2.10), and (2.19) imply that
ro (@) B(a) = o (a:1) . (A.1.26)

It can be shown that

oo

Z ri(ast) (as1) Z ¥ (a) =ro(a;t) Z P!

k=—co k=—oo k=—oo
=ro(a;t) Z Blfk(a) 2k=1) g olast) Z Bk
k=—o0 k=—o0
=qo(@) Y Ba)al) = 3 gilan), (A.1.27)
k=—co k= —oo
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where the first equality holds by Equation (2.18), the third does by Equa-
tion (A.1.25), and the fourth does by Equation (A.1.26). Equation (A.1.27)

implies S_o o(a,t) = 0.
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Chapter B

Appendix B - Lévy Diffusion and

Fractional Fokker—Planck Equation

B.1 Generalized Langevin equation

This Appendix B has been adapted from A.V. Tour, et al [33]].

We start with the Langevin—like equation for a stochastic quantity X (¢):

=Y(r) (B.1.1)

In the classical theory of a Brownian motion, X (¢) is the location of
Brownian particle under the influence of stochastic pulses Y (¢). The statis-
tical properties of this stochastic forcing will be specified below. We first

need to derive an equation for the distribution function

plxt) = @x =X (1)]) (B.1.2)

where the brackets (...) denote statistical averaging over stochastic force
realisations. Due to the fact that the Dirac function is the Fourier transform

of the unity, we have:
Sx—X(t)] = /°° —exp{—ik[x—X(1)]} (B.1.3)
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When averaged, Eq yields merely that the probability is the in-

verse Fourier transform of the characteristic function Zx (k,1):

Zy (k,1) = (exp(ikX (1)])) (B.1.4)

p(x,t) = F ' [Zx (k,1)] (B.1.5)

where F and F~! denote respectively the Fourier—transform and its inverse:

5]

Flf]=f(k) = / dx exp(ikx)f(x) (B.1.6)

—o0

FUA= s = [ 5 el-ikn (o

oo

On the other hand, Eq can be integrated into:

X(t) =X(0) +/0t dtY () (B.1.7)

Since we can assume F_-I without loss of generality that X (0) = 0, we obtain

the following equation:

a; = Fl[aaz <exp [ik/ot dTY(’r)] >] (B.1.8)

Now, to make a further step, it is necessary to specify the statistical
properties of the stochastic source. We consider the particular example [56]]
when the source is represented as a sum of independent stochastic “pulses”

acting at equally spaced times 7;:

!Indeed, we are considering only the *forward” Fokker-Planck equation.
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Z AAS(1—1)) . (B.1.9)

where 10 = 0,¢;,1 —t; =A (j=0,1,2,....) and the pulses Y; o are indepen-
dent stochastic variables having stable Lévy distribution P{Y;a} for all j

and which has the following characteristic function [34]]

. : ok
Zy, (k) = (exp(ikY;a)) = epr{zYk—D[lda [1 - ZBWOJ(IQOC)} }
(B.1.10)
where a,f3,7,D are real constants (0 < < 2,—1 <B < 1,D > 0) and

o(k,0) is defined as:

VAR w(k,(x):tan?; a=1: w(k,(x):glog\k] (B.1.11)

o and B classify the type of the stable distributions up to translations and
dilatations: with given o and B, Y and D can vary without changing the
type of a stable distribution. The parameter o characterizes the asymptotic

behaviour of the stable distribution:

p(x) ~x 1% x 5 oo (B.1.12)

hence, corresponds to the critical order of moments for their divergence:

p> o () = oo, (B.1.13)
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For (additive) walks «. is also related to the fractal dimension of the trail
[41]], whereas for the generator of the (multiplicative) universal multifrac-
tals it measures their multifractality [50]. The parameter B characterizes the
degree of asymmetry of distribution function. Indeed, if B = 0, then nega-
tive and positive values of Y; o occur with equal probabilities, while if § = 1
or B = —1 (maximally asymmetric distributions) then, for 0 < o < 1 and
Y=0 P{Y; A} vanishes outside from [0, 4-co] or respectively from [—co,0]
We already mentioned that maximal asymmetry is required for generators
of universal multifractals; let us add that in this case the Laplace transform
is more convenient than the Fourier transform. The nonzero value of f im-
plies the existence of a primary direction of the stochastic pulses (that is, the
direction to plus or minus infinity), and thus the existence of a drift for par-
ticles in this direction. For more details concerning the properties of stable
laws see, e.g. [S7]. The meaning of y and D will be discussed and clarified
below.

Now, using Eq/B.1.9]and the independence condition of the stochastic

pulses Y; o we get:

<exp [ik/otdty(’t)] > = <exp ikjiOYJ-’A > (B.1.14)

= H(exp(iij,A>> = (exp(ikY;a))"
=0

where n is a number of pulses corresponding to the present time ¢ = nA.

2For ot > 1, P{Y;j A} decays faster than an exponential on the corresponding half axis.
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Therefore , with the help of the equation of the characteristic function of the

pulses (EqiB.1.10), we obtain the characteristic function Zx (k,z) (Eq/B.1.4)

of the stable process:

Ze (k) = <exp [ik /0 tth(‘c)} > (B.1.15)

- {, [iyk_pykp <1 - iB;w(k, a))] }

The fact that this process has stationary independent increments [S8]]
(i.e. pulses Y; 5) gives the possibility to get directly Eq@] without using
any discretisation of Y (¢) as previously done (Eq.

Now inserting this expression of Zy (k,t) into Eq one obtains:

0 ~ dk
% / < ik = DIk|* + 1BDw(k, )kl 2 (k. ) exp —ik)

(B.1.16)
For the sake of the simplicity of notations, we will consider in the fol-

lowing only the case ot # 1, or B = 0. Therefore, Eq/B.1.11{reduces to:

o(k,0) = o(a) = tan—- (B.1.17)
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B.2 An expression of the Fractional Fokker—Planck

Equation

One can see that in Eq the following type of integrals appears
F~1(|k|*Zx], which in fact correspond to fractional differentiations. Indeed,
one may use Laplacian power for the Riesz’s definition of a fractional dif-

ferentiation since for any function f(x):

—Af(x) =F~ (k[ (k) (B.2.1)

yields a rather straightforward extension:

(=AY F(x) = F~ (1K1 f (k) (B.2.2)
Then, Eq[B.T.16 yields:
9 P _ a/2 9 (a-1)/2
ar T¥ar =D | (A p+Bo(a)3(=4) p (B.2.3)

which for symmetric laws § = 0 is a straightforward generalization of the

classical Fokker—Planck equation, by:

A— —(—A)*? (B.2.4)

This also points out that the scale parameter D of the Lévy distribu-
tion corresponds to the diffusion coefficient of the Fractional Fokker Planck

equation. On the other hand, the second term in the left hand side of Eq
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has an obvious physical meaning. Independently on the value of «, it de-
scribes the convection of particles by the (constant) velocity y. For o > 1, 7y
corresponds furthermore to the mean value of the source (Y (7)), whereas it
is no more the case for o < 1 since the latter is no longer finite. In the latter
case, the diffusion term has a a derivation order smaller or equal to the con-
vection term. This confirms that the case o = 1 is indeed critical between
two rather distinct regimes and it is more involved than other cases. Besides,
it is worthwhile to note the role of the term (on the r.h.s.) related to asymme-
try (B # 0). On the one hand, this term can be interpreted as an additional
contribution to the convection due to existence of the preferred direction of
the pulses related to (§ # 0). On the other hand, such a flow is not propor-
tional to p (as the convective flow does) but rather to (—A)®~1/2p, which
is rather typical for the diffusion flow. In some sense, due to this term the
division of flows into convective and diffusion ones (as done in the stan-
dard Fokker—Planck equation) becomes rather questionable and presumably
no longer relevant for the Fractional Fokker—Planck equation. One may note
that a somewhat similar weakening of this distinction occurs also in the clas-
sical Fokker-Plank for nonlinear systems [[59]. On the other hand, it is easy
to check that the Fractional Fokker—Planck equation is Galilean invariant, as

is should be: the velocity of the moving framework just add to .
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B.3 The non uniqueness of the expression of the

Fractional Fokker-Planck Equation

One cannot expect to obtain a unique expression for the Fractional the
Fokker-Planck equation, since there is not a unique generalization of the
differentiation to a fractional order. Indeed, there exist various definitions of
the fractional differentiation (see, e.g. [60] and references therein) which are
not equivalent. This will be illustrated by two examples in the next section.
The first one is related to the fact that there are ’signed’ (fractional) differ-
entiation and respectively unsigned’ (fractional) differentiations, i.e. differ-
entiations which are not invariant and respectively invariant with the mirror
symmetry x — —x. In the case of standard differentiation, the question of
signs is fixed: ’signed’ and ’unsigned’ differentiations correspond merely
to odd and respectively even orders of differentiation (hence the unique ex-
pression of the classical Fokker—Planck equation, which is of second order).
This is no longer the case for fractional differentiations.

The second example corresponds to the fact that fractional differenti-
ations are in fact defined by integration, and therefore can depend on the
bounds of integration.

Nevertheless, we are convinced that the expression corresponding to
Eq[B.2.3]is at the same time the simplest one to derive and the one whose
physical significance is the most straightforward. On the other hand, let
us emphasize that the existence of distinct expressions for the Fractional
Fokker-Planck equation does not question the uniqueness of its solution. In-

deed, these distinct expressions are equivalent because their solution should
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correspond to the unique probability density function corresponding to a
given Langevin-like equation (Eq[B.1.1).

The non uniqueness could be rather understood in the following way:
corresponding to the distinct fractional differentiations (and their correspond-
ing fractional integrations), there should be distinct ways of solving the

Fractional Fokker-Planck equation in order to obtain its unique solution.

B.4 'Two alternative expressions of the Fractional
Fokker-Planck Equation

Contrary to the unsigned fractional power of a Laplacian Eq[B.2.2] let

us consider for instance the following ’signed’ fractional differentiation:

a()t

0x*

(x) = F ' [(—ik)* f (k)]. (B.4.1)

With the help of (i) the identity (6(k) being the Heaviside function):

|k|* = k*[0(k) 4+ (—1)*0(—k)] (B.4.2)

and of (ii) the inverse Fourier transform of the Heaviside function:

F0(k) = 28(x) + =— (B.4.3)

as well as of (iii) the property that a Fourier transform of a product cor-
responds to the convolution of the Fourier transforms, one derives from

Eq an another form of the Fractional Fokker—Planck equation.
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dp dp o mwo\ 0%p
§+Y$ —D(c0s7+[3sz 7tan—> Fy (B.4.4)

. o 9% dx' p(¥' ;1)

— D =P)sin 2 ox “/Nn x—x

Indeed, with the help of the following determination (—i)%=e 7, (—1)*

e~ Eq yields:

on ;O

k|* = (—ik)*[8(k)e' 2> +0(—k)e 2] (B.4.5)

and with the help of Eqs[B.4.TIB.4.3|B.4.5] it is rather straightforward to
derive Eq[B.4.4]

However, Eq is already rather involved in the case f = 0, whereas

this case is obvious for the equivalent Eq[B.2.3}

o o « / /
ap_ ap o 0% p Dsin o 0 / dx' p(x',t) (BA6)

- _ — Dcos——L£ _
o ox ”Szaa "Tae ) moxx

the last term of the r.h.s. of Eq[B.4.6]is rather complex, whereas indispens-
able. Indeed, there is a need of signed second term to counterbalance the
first signed term of Eq. in order that the r.h.s. of Eq[B.4.6] will corre-
spond to an unsigned differentiation (the fractional power of the Laplacian
in Eq[B-2.3)). Both terms correspond to the signed fractional differentiation

of order o but whereas it is applied to p in the former term, it is applied to

30ne may note that the existence of other determinations confirms the non uniqueness of
the fractional derivative defined in eq[B-4.2} Furthermore, taking another determination will
merely modify some prefactors in r.h.s. of Eq@
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an integration of a zero order of p in the latter term. This zero order inte-
gration corresponds to the effective interaction of particles having a scaling
law inversely proportional to the distance between them. An analogy with
the interaction between dislocation lines [61]] can be mentioned. It is plau-
sible that the collective effect corresponding to this the effective interaction
of particles could be responsible of the large jumps which are so important
in Lévy motions.

An other expression of the Fractional Fokker—Planck equation can be
also obtained with the help of the Riemann—Liouville derivatives. The u-th

order Riemann—Liouville derivatives on the real axis are defined as

(Dif)(X)zr(lly);; /_ idx/ (xf(’i /)),, (B.4.7)
u _ 1L d [, fl&)
D0 =i ) Wy

where D | D/, are respectively the left-side and the right-side derivatives of
fractional order u (0 < u < 1) and I is the Euler’s gamma-function. An other

expression of the Fractional Fokker—Planck equation can be:

P 42 — DDy Dho(a) SDEPDE ) Bas)
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