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ABSTRACT

I develop a fully general relativistic hydrodynamic code that is designed
to study a self-gravitating system of spherically symmetric perfect fluid
numerically. It is based on 3+1 Arnowitt-Deser-Misner formalism and isotropic
spatial coordinates. For spacetime geometry set of constraint equations are
solved with maximal slicing gauge condition. For hydrodynamic fluid matter
high resolution shock capturing schemes with approximated Riemann solvers
are used in the Eulerian viewpoint. The convergence and the accuracy of
my code are verified by performing several test problems. These include a
relativistic blast wave, relativistic spherical accretion of matter onto a black
hole, Tolman-Oppenheimer-Volkoff stars and Oppenheimer-Snyder (OS) dust
collapses. In particular, a dynamical code test is done for the OS collapse by
explicitly performing numerical coordinate transformations between coordinate
system used in my code and the one used for the analytic solution. Finally,
polytropic equilibrium star solutions are surveyed and the formation of
singularity during a matter collapse to a black hole is investigated for the
Eddington-inspired Born-Infeld gravity theory.

Keywords: General relativistic hydrodynamics, Spherically symmetric numer-
ical code, Eddington-inspired gravity
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1. INTRODUCTION

Highly energetic astronomical observations such as supernovae and gamma-ray
bursts, are believed to involve high-density matter and its dynamics. The
dynamics for unstable cores of very massive stars (above tens of the solar
mass) during their last stages and neutron star-neutron star or neutron
star-black hole binaries in the last phases of coalescence reveals strong
self-gravitation and highly-relativistic motions. Those phenomena are beyond
the Newtonian gravity limit, so general relativity should be considered to
understand them. However, the Einstein equations comprise ten coupled
non-linear partial differential equations. Thus, in general, it is almost
impossible to solve them analytically. Moreover, if matter appears, one
should solve the equations of motion for matter in conjunction with a
spacetime metric. A feasible way to do this is to solve the Einstein equations
numerically.

May and White [1] took the first step towards a numerical study of gen-
eral relativistic hydrodynamics. There have been many works and developments
since this pioneering work; see Refs. [2, 3, 4, 5] for reviews. I have developed
a fully general relativistic hydrodynamic (GRHydro) code that can be used to
simulate a system of spherically symmetric perfect fluid. Currently, finite differ-
ence schemes, smoothed particle hydrodynamics and spectral methods compete
with each other. Here, I choose finite difference schemes which are widely used
in hydrodynamic codes. There are two view points in fluid dynamics, namely,
the Lagrangian and the Eulerian approaches. Because the Eulerian approach
can be extended to multi-dimensions easily, I adopt this approach. In non-linear
hydrodynamics, discontinuities are often occur, so one should handle them prop-
erly. The artificial viscosity approach and the high resolution shock capturing
(HRSC) scheme are most widely used for that purpose. Here, I choose the
HRSC scheme with approximated Riemann solvers.

In order to solve the Einstein equations and GRHydro equations fully but in
a simple way I restricted spacetime and matter distribution to spherical sym-
metry. However, I followed the conventional formulations of 3+1 decompositions
of the Einstein and the hydrodynamic equations with isotropic spatial coordi-
nates in order to compare the simulation result with the one of other multi-
dimensional codes easily. Since a spherically symmetric spacetime has no dy-
namical degree of freedom, i.e., it is a fully constrained system, here, the Ein-
stein equations can be solved with constraint equations only.

To check whether my GRHydro code works properly and accurately, I con-
sidered several test problems. These include a relativistic blast wave, relativis-
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2 1. INTRODUCTION

tic spherical accretion of matter onto a black hole, Tolman-Oppenheimer-Volkoff
(TOV) stars and Oppenheimer-Snyder (OS) dust collapses. The hydrodynamic
part of my code was tested by addressing the relativistic blast wave problem,
which is a sort of a shock tube test with spherical symmetry. Here, the met-
ric is fixed as the flat Minkowski spacetime during its evolution. The relativis-
tic spherical accretion problem is another hydrodynamic test, but on a curved
spacetime. It addresses how well my code solves the steady-state spherical ac-
cretion of matter onto a fixed black hole spacetime metric. The TOV star is
a static equilibrium solution of a self-gravitating fluid matter. The TOV star
test checks both the spacetime metric and the hydrodynamic parts of my code
together. I also analyze the oscillation modes of the TOV star under small per-
turbations. The mode frequencies are compared with the results of linearized
perturbation calculations of radial pulsations. Finally, I perform a dynamical
full code test by using the Oppenheimer-Snyder dust (pressureless) collapse so-
lution. To compare simulation results of my code with the known analytic time-
dependent solution [6], I explicitly performed numerical coordinate transforma-
tions between coordinate system used in my code and the one used for the an-
alytic solution.

The Eddington-inspired Born-Infeld (EiBI) gravity theory is an alternative
theory of gravity that was suggested very recently [7]. This theory differs from
the Einstein general relativity in matter part only. Since the EiBI gravity is
known to have not only the usual attractive nature, but also a repulsive effect
on compact stars [8], studying TOV star solutions in this theory and seeing how
they differ from those in general relativity are of interest.

My GRHydro code was developed by using Rapid Numerical Prototyping
Language (RNPL), which was produced by Choptuik’s Numerical Relativity
Group at the University of British Columbia [9]. The RNPL program is
needed to compile the GRHydro code. My code is posted on the web page
http://www.ksc.re.kr/kcnr/research.htm.

The outline of the thesis is as follows. In Chapter 2, I review formulations of
fully general relativistic hydrodynamics in the presence of spherical symmetry
and present the equations to be solved numerically. In Chapter 3, the numerical
methods used to solve these equations are explained. In Chapter 4, my GRHy-
dro code is verified for several test problems such as the relativistic blast wave
problem, relativistic spherical accretion of matter onto a black hole, Tolman-
Oppenheimer-Volkoff star evolution, and Oppenheimer-Snyder dust collapse. In
Chapter 5, some TOV star solutions in the Eddington-inspired Born-Infeld grav-
ity theory are reported. Finally, I conclude with possible applications and fur-
ther developments of my code.

Throughout this thesis, I use the geometrized units where the gravitational
constant G, and the speed of light c, are set to be G = c = 1, except for the
EiBI gravity theory in which I use 8πG = 1 unit. The metric signature used is
“−+++”. Greek indices run from 0 to 3 whereas Latin indices (e.g., i, j, k, · · · )
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2. FORMULATIONS

The equations to solve are the Einstein equations and the conservation equa-
tions of the baryon rest-mass and the energy-momentum tensor. However, those
equations are written in covariant tensor form, independent of the coordinate
system one may choose. Because there is no direct tensor calculation in numer-
ics, one should choose a coordinate system and rewrite the equations in order
to make them a well-defined Cauchy problem. In this chapter, 3+1 decomposi-
tions of the Einstein and the hydrodynamic equations are presented.

2.1. 3+1 Decomposition of Einstein Equations

There are many good references for the formulations of 3+1 decomposition
of Einstein equations. Here, I refer [10, 11, 12, 13, 14].

2.1.1. Spacetime foliation

If a spacetime manifold (M, gµν) is globally hyperbolic, then one can choose a
global time function, t, such that each surface of constant t is a Cauchy surface.
Thus the spacetime manifold M can be foliated by Cauchy surfaces, {Σt∈R} and
the topology of M is R × Σ.

Let nµ be the timelike unit vector which is normal to the spacelike hypersur-
faces, Σ. Then one can define the orthogonal projection operator onto Σ.

2.1.1.1. Metric decomposition

For each slice Σ one can choose three vector fields (e1)
a, (e2)

a, (e3)
a, such that

they are linearly independent at each point of Σ. Then the symmetric spacetime
metric gab satisfies the following,

gabn
anb ≡ nana = −1 , (2.1)

gab(ei)
anb = 0 (i = 1, 2, 3) , (2.2)

gab(ei)
a(ej)

b = γij (i, j = 1, 2, 3) . (2.3)

The first and second equation tell us na is a unit vector and is orthogonal to
Σ respectively. The last one, Eq. (2.3)) is the definition of 3-metric γij and it
is a positive definite metric inside Σ.

5



6 2. FORMULATIONS

Figure 2.1: Two slices of the foliation of spacetime. ∂t is the tangent vec-
tor field to the curves threading the foliation and n is the hy-
persurface orthogonal vector field. The relation between these
vectors is defined by the lapse function α and the shift vector
βi. [Figure from Gourgoulhon (gr-qc/0703035)]

For a given foliation of spacetime, it is free to choose the timelike basis vector
(∂t)

a. This is the coordinate or gauge freedom of general relativity and it is
represented by the lapse function α and the shift vector βi (see Fig. 2.1)

(∂t)
a = αna + βi(ei)

a . (2.4)

Therefore the metric components gµν become

gtt = gab(∂t)
a(∂t)

b = −α2 + γijβ
iβj , (2.5)

gti = gab(∂t)
a(ei)

b = γijβ
j ≡ βi , (2.6)

gij = γij . (2.7)

Then, the infinitesimal squared distance ds2 can be represented by

ds2 = (−α2 + βiβ
i)dt2 + 2βidtdx

i + γijdx
idxj . (2.8)

Or one can calculate ds2 considering vector sum of αdt and βidt+ dxi from
Fig. 2.1 as

ds2 = α2dt2 + γij(dx
i + βidt)(dxj + βjdt) . (2.9)

2.1.1.2. Projection tensor

Consider a vector field va. The parallel part of va to na is (nbvb)na. Therefore
the orthogonal part of va to na, in other words va’s orthogonal projection onto
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Σ is
va + (nbvb)n

a . (2.10)

One may wonder that the ’+’ sign is wrong because one should subtract the
parallel part of va to na from va. But if we substitute na for va, then we obtain
the correct answer,

na + (nbnb)n
a = 0 . (2.11)

So, using the correct sign projection formula, Eq. (2.10) one can define the pro-
jection tensor γab by

γabv
b ≡ va + (nbvb)n

a = (δab + nanb)v
b . (2.12)

Let us consider γab = gacγ
c
b.

1

γab = gab + nanb (2.13)

Before specifying the components of γab, γµν , we need to know the compo-
nents of na and na.

nµ =
1

α

(
(∂t)

µ − βi(ei)
µ
)

(2.14)

nt =
1

α

(
(∂t)

t − βi(ei)
t
)
=

1

α
(2.15)

ni =
1

α

(
(∂t)

i − βj(ej)
i
)
= −β

i

α
(2.16)

nµ = gµνn
ν =

1

α

(
gµν(∂t)

ν − βigµν(ei)
ν
)

(2.17)

nt =
1

α

(
gtt(∂t)

t − βigtj(ei)
j
)
=

1

α

(
−α2 + βiβi − βiβi

)
= −α (2.18)

ni =
1

α

(
git(∂t)

t − βigij(ei)
j
)
=

1

α
(βi − βi) = 0 (2.19)

∴ nµ =

(
1

α
,−β

i

α

)
, nµ = (−α, 0, 0, 0) (2.20)

Now we can specify γµν .

γµν = gµν + nµnν (2.21)

γtt = gtt + ntnt = −α2 + βiβi + α2 = βiβi (2.22)

γti = gti + ntni = βi (2.23)

1Note that 4 dimensional tensor indices are raised or lowered with the spacetime metric gab

or gab.
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And γij = gij +ninj = gij , the 3-metric! This is the reason why we use the
same character γ to define the projection tensor, Eq.(2.12). The 3-metric γij is
related to (0, 2) tensor γab = gab + nanb in this way.

Note that γab = gab + nanb is not inverse of γab.

γabγbc = (gab + nanb)(gbc + nbnc)

= δac + nanc = γac (2.24)

But we want γij = gij+ninj to be inverse of γij . To impose this, we should
specify gµν as follows.

δρµ = gµνg
νρ = gµtg

tρ + gµjg
jρ (2.25)

gij satisfies gij = γij −ninj and we impose γij is inverse of γij . To obtain gµν

we only need to know gtt and gti from Eq. (2.25). Substitute µ = i and ρ = k.

gitg
tk + γijg

jk = δk i (2.26)

gitg
tk + γij(γ

jk − njnk) = δk i (2.27)

βig
tk − γij

βjβk

α2
= 0 (2.28)

∴ gti =
βi

α2
(2.29)

And substitute µ = t and ρ = t.

gttg
tt + gtig

it = 1 (2.30)

gtt =
1− gtig

it

gtt
=

1

α2

(α2 − βiβ
i)

(−α2 + βiβi)
= − 1

α2
(2.31)

∴ gµν =

(
− 1
α2

βj

α2

βi

α2 γij − βiβj

α2

)
(2.32)

Let us use the projection operator ⊥ from York [11] . For a dual vector
Va, a vector V a and a tensor Tab, these projections are defined by

⊥ Va ≡ γb aVb = (δb a + nan
b)Vb ,

⊥ V a ≡ γabV
b = (δab + nanb)V

b , (2.33)

⊥ Tab ≡ γc aγ
d
bTcd . (2.34)

Therefore to obtain a projected tensor of any type we contract all indices of
it with γab’s,

⊥ T ab···cd··· ≡ γapγ
b
q · · · γr cγs d · · ·T pq···rs··· . (2.35)
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Any projected tensor is orthogonal to na or na, because

γabn
b = na − na = 0 , (2.36)

γabna = nb − nb = 0 . (2.37)

So we could call projected tensors are spatial.

2.1.2. Normal vector

The gradient of the time function t, ∇at = (dt)a
2 is normal to Σ.

⊥ ∇µt = ∇µt+ nµn
ν∇νt = 0 (2.38)

Because the direction which is normal to Σ is unique, na should be proportional
to ∇at.

One could start to define a normal vector from the fact that for every vector
field va tangent to Σ a closed 1-form (dt)a satisfies (dt)a(v

a) = 0. Therefore
gab(dt)b = gab∇bt is a normal vector field to Σ, and choosing appropriate sign
for direction of future and coefficient, we can define the unit normal vector na.

Anyway, na is related to ∇at,

na = −α∇at (2.39)

Using this we obtain a useful property of na,

n[a∇bnc] = α(∇[at)∇b(α∇c]t)

= α(∇[at)(∇bα)∇c]t+ α2(∇[at)∇b∇c]t = 0 . (2.40)

The last equality holds because a, c and b, c are symmetric inside the totally
antisymmetric bracket.

2.1.3. Spatial covariant derivative

The spatial covariant derivative is defined by the projection of covariant
derivative. Using the spatial covariant derivative operator, Da, the spatial co-
variant derivative of a scalar φ and a dual spatial vector Xa, i.e., naXa = 0,
are

Daφ ≡⊥ ∇aφ = (δb a + nan
b)∇bφ = ∇aφ+ nan

b∇bφ (2.41)

DaXb ≡⊥ ∇aXb = (δc a + nan
c)(δdb + nbn

d)∇cXd

= ∇aXb + nan
c∇cXb − nb(X

d∇and + nan
cXd∇cnd)

= ∇aXb + nan
c∇cXb +KacX

cnb (2.42)

2(∂t)
a∇at = 1 = (∂t)

a(dt)a
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where we use the fact, nd∇cXd = −Xd∇cnd and Kab is the extrinsic curvature

Kab = −∇anb − nan
c∇cnb = − ⊥ ∇anb . (2.43)

The spatial covariant derivative of any dual vector field, Va = Xa − nan
bVb,

where Xa =⊥ Va = (δb a + nan
b)Vb, is then

DaVb =⊥ ∇aVb = (δc a + nan
c)(δdb + nbn

d)∇cVd

= ∇aVb + nan
c∇cVb + nbn

d∇aVd + nanbn
cnd∇cVd

= ∇aVb + nan
c∇cVb + nb∇a(n

dVd)− nbV
d∇and + nanbn

c∇c(n
dVd)− nanbn

cV d∇cnd

= ∇aVb + nb∇a(n
dVd) + nbV

d(−∇and − nan
c∇cnd) + nan

c(∇cVb + nb∇c(n
dVd))

= ∇aXb − (∇anb)n
dVd + nbV

dKad + nan
c(∇cXb − (∇cnb)n

dVd)

= ∇aXb + nan
c∇cXb +KacX

cnb + Kabn
cVc (2.44)

where we use the facts

∇aVb + nb∇a(n
cVc) = ∇a(Xb − nbn

cVc) + nb∇a(n
cVc)

= ∇aXb − (∇anb)n
cVc (2.45)

between 4th and 5th line and

KacV
cnb = KacX

cnb ∵ ncKac = 0 (2.46)

between 5th and last line.
For a given metric there exists a unique compatible derivative operator. The

compatible metric of Da is γab,

Daγbc =⊥ ∇a(nbnc) =⊥ (nb∇a nc + nc∇a nb) = 0 . (2.47)

We already assume the metric gab is compatible with ∇a, ∇agbc = 0.

2.1.4. Extrinsic curvature

The extrinsic curvature tensor, Kab is defined by the Lie derivative of 3-
metric along the unit normal vector field na,

Kab = −1

2
Lnγab . (2.48)

We can interpret the extrinsic curvature tensor as a “velocity” of the spatial 3-
metric with respect to na.

The extrinsic curvature also can be defined as the spatial derivative of na.
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Lnγab can be written as

Lnγab = nc∇cγab + γac∇bn
c + γbc∇an

c

= nc∇c(nanb) + (gac + nanc)∇bn
c + (gbc + nbnc)∇an

c

= 2(∇(anb) + n(an
c∇|c|nb)) . (2.49)

However the symmetric brackets aren’t needed because ⊥ ∇[anb] = 0. Let’s
investigate this in detail.

The spatial derivative of na is

Danb ≡⊥ ∇anb = ∇anb + nan
c∇cnb . (2.50)

Therefore
⊥ ∇[anb] = ∇[anb] + n[an

c∇|c|nb] . (2.51)

Using na∇bna = 0,

2ncn[a∇|c|nb] = nc(na∇cnb − nb∇cna)

= nc(na∇cnb + nc∇bna + nb∇anc − nb∇cna − na∇bnc − nb∇cna)

+∇bna −∇anb

= 6ncn[a∇cnb] − 2∇[anb] . (2.52)

Using the property Eq. (2.40) we conclude as follows,

∇[anb] = −n[anc∇|c|nb] ⇒ ⊥ ∇[anb] = 0 . (2.53)

Therefore
Danb ≡⊥ ∇anb =⊥ ∇(anb) =

1

2
Lnγab , (2.54)

and

Kab = −1

2
Lnγab

= − ⊥ ∇(anb) = − ⊥ ∇anb = −∇anb − nan
c∇cnb . (2.55)

The trace of Kab is
K ≡ gabKab = ∇an

a . (2.56)

2.1.5. Einstein tensor decomposition

The Einstein equation in tensor form is,

Gµν = 8πTµν . (2.57)
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Gµν is the Einstein tensor which is composed of Ricci tensor and Ricci scalar
and contains first and second derivatives of the spacetime metric gµν . The quan-
tity Tµν is called the energy-momentum tensor which describes matter.

2.1.5.1. Gauss-Codazzi relations and Ricci equations

The projected 4-dimensional Riemann tensor is related to the 3-dimensional
Riemann tensor and the extrinsic curvature as following relations.

The Gauss relation

⊥ Rabcd = (3)Rabcd +KacKbd −KadKbc , (2.58)

the Codazzi-Mainardi relation

⊥ Rabcd n
d = DbKac −DaKbc , (2.59)

and the Ricci equation

⊥ Rabcd n
bnd = LnKac +KabK

b
c +

1

α
DaDbα . (2.60)

2.1.5.2. Ricci tensor decomposition

Contract the projected 4-dimensional Riemann tensor, we can decompose the
projected Ricci tensor as

gcd ⊥ Racbd =⊥ Rab+ ⊥ Racbd n
cnd (2.61)

⇒ ⊥ Rab = −LnKab − 2KacK
c
b −

1

α
DaDbα+(3) Rab +KabK , (2.62)

and the Ricci scalar as

⊥ Rabcd n
bnd = Rabcd n

bnd (2.63)

gab ⊥ Rab = R+Rab n
anb

= gabgcd ⊥ Racbd − gabRacbd n
cnd (2.64)

⇒ R = gabgcd ⊥ Racbd − 2Rab n
anb (2.65)

Therefore, one can decompose Ricci tensor components as follows,

Rµν n
µnν =

1

2

(
(3)R+K2 −KρσK

ρσ −R
)

(2.66)

⊥ Rµν n
ν = DµK −DνKµν (2.67)
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⊥ Rµν = −LnKµν − 2KµρK
ρ
ν −

1

α
DµDνα+(3) Rµν +KµνK (2.68)

2.1.5.3. Einstein tensor decomposition

The Einstein tensor is decomposed as

•Gab nanb =
1

2
gabgcd ⊥ Racbd =

1

2

(
(3)R+K2 −KcdK

cd
)
, (2.69)

• ⊥ Gab n
b =⊥ Rab n

b = γcd ⊥ Rcadb n
b = DaK −DbKab , (2.70)

• ⊥ Gab =⊥ Rab −
1

2
γabR

= −LnKab − 2KacK
c
b −

1

α
DaDbα+(3) Rab +KabK[

−1

2
γab

(
(3)R+K2 −KcdK

cd
)
+ γab

(
γcdLnKcd +KcdK

cd +
1

α
DcD

cα

)]
.

2.1.6. Energy-momentum tensor and hydrodynamic variables

We are going to describe matter as a perfect fluid. Its energy-momentum
tensor is

Tµν = ρ0hu
µuν + Pgµν . (2.71)

where ρ0 is the baryon rest-mass density, P is the pressure, uµ is the fluid 4-
velocity and h is the specific enthalpy,

h = 1 + ϵ+
P

ρ0
, (2.72)

with the specific internal energy ϵ.
Here ρ0, P and ϵ are related to the quantities measured by an observer who

is following the fluid.3 However, because we treat spacetime as a foliation of 3-
dimensional spacelike hypersurfaces and calculate geometric and hydrodynamic
variables at each slice, we need to consider the viewpoint of the observer whose
4-velocity is normal to the 3-dimensional hypersurface, i.e., nµ. This observer
is called the Eulerian observer.

The fluid 4-velocity uµ can be decomposed into tangential and normal to the
3-dimensional spacelike hypersurfaces. Doing this there is an important scalar

3That observer is also called the comoving or Lagrangian observer. In the Lagrangian scheme
those hydrodynamic variables are used in formulas directly.
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quantity, namely the generalized Lorentz factor4,

W = −nµuµ . (2.73)

Then uµ can be decomposed by

uµ ≡ W (nµ + vµ) (2.74)

where vµ is the projected spatial velocity (satisfying nµv
µ = 0).

Now, we are ready to consider the projected quantities of the energy momen-
tum tensor, i.e.,

E ≡ Tµνn
µnν , (2.75)

Sµ ≡ − ⊥ Tµνn
ν , (2.76)

and
Sµν ≡⊥ Tµν . (2.77)

These quantities can be expressed in terms of ρ0, P , ϵ 5 (hence h) and the
Lorentz factor W .

E = ρ0hW
2 − P (2.78)

Si = ρ0hW
2vi (2.79)

Sij = ρ0hW
2vivj + γijP (2.80)

Let’s consider the trace of the stress tensor, Sµν ,

S ≡ gµνSµν = gµν ⊥ Tµν =⊥ γµνTµν = γµν ⊥ Tµν = γµνSµν (2.81)

where γµν ≡ gµν + nµnν is the projection tensor and we used the following
property,

γµν =⊥ gµν . (2.82)

Because −1 = nµnµ = n0n0 and nµ = gµνnν = gµ0n0,

γµ0 = gµ0 + nµn0 = 0 . (2.83)

Therefore
S = gµνSµν = γµνSµν = γijSij . (2.84)

4In special relativity, a 4-velocity uµ in a reference frame is

uµ = (γ, γv) ,

where γ is the Lorentz factor,

γ =
1√

1− |v|2
.

5Let’s call these variables are primitive variables, because we are going to consider hydro-
dynamic variables which are transformed from these variables.
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2.1.7. Einstein equation decomposition

2.1.7.1. Constraint equations

• The Hamiltonian constraint:

Gab n
anb = 8πTab n

anb (2.85)

With the projected Einstein tensor

Gab n
anb =

1

2
gabgcd ⊥ Racbd =

1

2

(
(3)R+K2 −KcdK

cd
)

(2.86)

and the matter energy density

Tab n
anb ≡ E (2.87)

→ (3)R+K2 −KcdK
cd = 16πE . (2.88)

• The momentum constraints:

⊥ Gab n
b = 8π ⊥ Tab n

b (2.89)

With the projected Einstein tensor

⊥ Gab n
b =⊥ Rab n

b = γcd ⊥ Rcadb n
b = DaK −DbKab (2.90)

and the matter momentum density

− ⊥ Tab n
b ≡ pa (2.91)

→ DaK −DbKab = −8πpa . (2.92)

2.1.7.2. Evolution equations

⊥ Gab = 8π ⊥ Tab (2.93)

With the projected Einstein tensor

⊥ Gab =⊥ Rab −
1

2
γabR

= −LnKab − 2KacK
c
b −

1

α
DaDbα+(3) Rab +KabK[

−1

2
γab

(
(3)R+K2 −KcdK

cd
)
+ γab

(
γcdLnKcd +KcdK

cd +
1

α
DcD

cα

)]
and the matter stress tensor

⊥ Tab ≡ Sab (2.94)
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T ≡ gabTab = gab ⊥ Tab − Tab n
anb = (S − E) (2.95)

where 4D Einstein theory,

Rab = Gab −
1

2
gabG (2.96)

−R = G = 8πT (2.97)

Then the evolution equations of the extrinsic curvature is

∂tKij = LβKij −DiDjα

+ α

{
(3)Rij − 2KikK

k
j +KijK − 8π

[
Sij −

1

2
γij(S − E)

]}
.

And the evolution equations of the 3-metric is (the definition of extrinsic cur-
vature)

∂tγij = Lβγij − 2αKij . (2.98)

2.1.8. 3+1 decomposition of spherically symmetric metric

Using 3+1 decomposition scheme and assuming spherical symmetry, gµν can
be described in the form of the infinitesimal squared distance by

ds2 = −
(
α2 − ψ4β2

)
dt2 + 2ψ4βdtdr + ψ4

[
dr2 + r2(dθ2 + sin2 θdφ2)

]
(2.99)

where α(t, r), β(t, r) and ψ(t, r) are the lapse, shift and conformal factor respec-
tively. Here we adopt conformal decomposition of 3-metric. It seems we have 3
independent degrees of freedom while there should be no degree of freedom in
spherical symmetry. Later two of them will be fixed by the constraint equations
of decomposed Einstein equations. Only one of them is left as a gauge freedom.

The general form of the spherically symmetric metric line element is

ds2 = −Adt2 + 2Bdtdµ+ Cdµ2 +R2(dθ2 + sin2 θdφ2) (2.100)

where the metric components A, B, C and R are functions of µ and t. Without
breaking spherical symmetry, one have freedom to choose the coordinates, i.e.,
the metric conserve its spherical symmetry under following gauge transforma-
tions,

t→ T (t, µ) , µ→ Υ(t, µ) . (2.101)

Let’s consider the µ coordinate transformation only,

µ→ r(t, µ) , (2.102)

and choose the coordinate function r such that the coefficient of dr2 becomes
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R′2, where R2 = r2R′2. Then the metric form will be changed to

ds2 = −A′dt2 + 2B′dtdr +R′2dr2 +R′2r2(dθ2 + sin2 θdφ2) . (2.103)

Therefore one can write down a spherically symmetric, isotropic 3 + 1 form
metric6 is

ds2 = −
(
α2 − ψ4β2

)
dt2 + 2ψ4βdtdr + ψ4

[
dr2 + r2(dθ2 + sin2 θdφ2)

]
, (2.104)

or
ds2 = −α2dt2 + ψ4

[
(dr + βdt)2 + r2(dθ2 + sin2 θdφ2)

]
, (2.105)

where α(t, r), β(t, r) and ψ(t, r) are the lapse, shift and conformal factor respec-
tively and in order to preserve spherical symmetry, all of these are function of
r and t. We also the metric gµν in matrix form on these {t, r, θ, φ} coordinates
basis,

gµν =


−(α2 − ψ4β2) ψ4β 0 0

ψ4β ψ4 0 0
0 0 ψ4r2 0
0 0 0 ψ4r2 sin2 θ

 . (2.106)

Its inverse, gµν , can be calculated from the definition, gµρgρν = δµν .

gµν =


− 1
α2

β
α2 0 0

β
α2

1
ψ4 − β2

α2 0 0

0 0 1
ψ4r2

0

0 0 0 1
ψ4r2 sin2 θ

 (2.107)

Here the 3-metric γij = gij is conformally flat, i.e., γij = ψ4fij where fij is a 3
dimensional flat metric.

The determinant of gµν is

g ≡ det gµν = −(α2 − ψ4β2)ψ12r4 sin2 θ − ψ4βψ12βr4 sin2 θ

= −α2ψ12r4 sin2 θ , (2.108)

and the determinant of γij is γ ≡ det γij = ψ12r4 sin2 θ. Therefore,
√
−g = α

√
γ = αψ6r2 sin θ . (2.109)

6cf. The isotropic Schwarzschild metric is

ds2 = −
(
1− M

2r

)2(
1 + M

2r

)2 dt2 + (
1 +

M

2r

)4 [
dr2 + r2(dθ2 + sin2 θdφ2)

]
.
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Because we have already expressed the spacetime metric in 3+1 form, we can
write down the unit normal vector nµ which is normal to the spacelike slices in
terms of the lapse and shift.
nµ is proportional to the gradient of the time t, ∇µt which is normal to the

3-dimensional hypersurface. We set the proportionality is the lapse, α, i.e.,

nµ = −α∇µt . (2.110)

Because (∂t)
µ∇µt = (∂t)

µ(dt)µ = 1 and the orthonormality of coordinate basis
vectors and its dual, nµ has only the time t component,

nµ(∂t)
µ = −α . (2.111)

Therefore one can obtain the unit normal vector nµ using the (inverse) metric,
gµν

nµ = gµνnν = −αgµ0 (2.112)

The normal vector nµ is therefore

nµ =

(
1

α
,−β

α
, 0, 0

)
nµ = (−α, 0, 0, 0) (2.113)

and nµnµ = −1.
In addition, I’d like to comment on the index of the shift. Dealing with a flat

metric one does not need to distinguish upper and lower indices. So I do not
write index of the shift in the metric. However the 3-metric has the conformal
factor, is not completely flat, we should be careful in calculating any tensorial
quantities related to the shift. If one restores index of the shift, then

βr = β βr = ψ4β . (2.114)

2.1.9. Extrinsic curvature and slicing condition

In order to avoid singularity during the numerical calculation, we are going
to impose maximal slicing condition, K = 0, which is one of the singularity
avoiding gauge conditions.

K ≡ tr(Kij) = Kr
r +Kθ

θ +Kφ
φ = Kr

r + 2Kθ
θ = 0 . (2.115)

To fix the gauge, we choose the maximal slicing condition, for which the trace
of the extrinsic curvature vanishes (K = 0) during evolution (∂tK = 0). The
non-zero components of the extrinsic curvature in spherical symmetry are Kr

r,
Kθ

θ and Kφ
φ with

Kθ
θ = Kφ

φ , Kr
r −Kθ

θ =
r

α

(
β

r

)′
, (2.116)
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Figure 2.2: Penrose diagram of the maximal slicing [Figure from Ohme
(SFB Video Seminar, 2008)]

where ′ denotes ∂
∂r . The maximal slicing condition, K = Kr

r+K
θ
θ+K

φ
φ = 0,

therefore, gives

Kr
r =

2

3

r

α

(
β

r

)′
. (2.117)

This equation fixes one of degrees of freedom with the definition of the extrinsic
curvature.

2.1.10. Einstein equation decomposition in spherical symmetry

Let us define the rest-mass density D ≡ −ρ0uµnµ, the momentum density
Si, and τ ≡ E −D, where E is the total energy density. With the generalized
Lorentz factor W = −nµuµ,

D = ρ0W , (2.118)

Si = ρ0hW
2vi , (2.119)

E = ρ0hW
2 − P . (2.120)

Then the spatial 3-velocity vr is

vr =
vr
ψ4

=
1

ψ4

Sr
ρ0hW 2

=
1

ψ4

Sr
τ +D + P

. (2.121)
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The trace of the stress Sij is

S = gµνSµν = γijSij = ρ0hW
2vrvr + 3P =

1

ψ4

S2
r

τ +D + P
+ 3P . (2.122)

The Hamiltonian constraint becomes

ψ′′ +
2

r
ψ′ +

ψ5

12

[
1

α

(
β′ − β

r

)]2
+ 2πψ5 (τ +D) = 0 , (2.123)

and the momentum constraint is given by

β′′ +

(
6
ψ′

ψ
− α′

α
+

2

r

)(
β′ − β

r

)
− 12παSr = 0 . (2.124)

Due to the gauge condition, Kij∂tγ
ij = 0 . Therefore

0 = ∂tK = ∂
(
γijKij

)
= γij∂tKij . (2.125)

The trace of the evolution equations of the extrinsic curvature gives rise to an
equation for α:

α′′ + 2α′
(
ψ′

ψ
+

1

r

)
− 2

3

ψ4

α

(
β′ − β

r

)2

= 4πα

[
ψ4(τ +D + 3P ) +

S2
r

τ +D + P

]
.

(2.126)
The definition of the extrinsic curvature with the maximal slicing condition
gives a redundant hyperbolic evolution equation for ψ:

ψ̇ − β

(
ψ

3r
+ ψ′

)
− ψβ′

6
= 0 . (2.127)

At r = 0, we impose the regularity conditions

ψ′(t, 0) = 0 ,

α′(t, 0) = 0 ,

β(t, 0) = 0 , (2.128)

and at the outer numerical grid, at some finite radius, we impose the Robin
boundary conditions:

ψ′ + (ψ − 1)/r = 0 ,

α′ + (α− 1)/r = 0 ,

β′ + β/r = 0 . (2.129)
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2.2. Hydrodynamic Equations in Conservative Form

2.2.1. Decomposition of hydrodynamic equations

The perfect fluids are characterized by an isotropic pressure, an energy den-
sity and an equation of state. These specific form of the energy-momentum ten-
sor Tab is practically useful to treat the energy-momentum conservation equa-
tions which are implied by Einstein equation.

∇aT
a
b = 0 (2.130)

2.2.1.1. Thermodynamic quantities

The energy-momentum tensor Tab of a perfect fluid can be written as

Tab = (ρ+ P )uaub + Pgab (2.131)

where ua is 4-velocity of the fluid and ρ and P are the proper energy density
and the proper pressure respectively measured by comoving observer with the
fluid. [15]

uau
a = −1 (2.132)

T abu
b = −ρua (2.133)

which tells us a eigenvalue relation, ua is the timelike eigenvector of T ab and ρ
is the corresponding eigenvalue.

In “Taub’s viewpoint”,
ρ = ρ0(1 + ε) (2.134)

where ρ0 is the proper material density or the rest-mass energy density , and
ε is the proper specific internal energy . The word, specific means a quantity
divided by ρ0. ε = ε(ρ0, P ) depend on the internal structure of the fluid.

Let us introduce the specific enthalpy ,

h ≡ 1 + ε+
P

ρ0
. (2.135)

Recall the thermodynamic enthalpy is defined as H ≡ E + PV .

ρ0h = ρ+ P (2.136)

The definition of the proper temperature T of the fluid and its specific
proper entropy S,

TdS ≡ dε+ Pd

(
1

ρ0

)
(2.137)
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Using h,

TdS = dh− dP

ρ0
(2.138)

2.2.1.2. Energy-momentum conservation equations

The energy-momentum conservation equation,

∇aT
a
b = 0 , (2.139)

can be written for a perfect fluid model as

∇a[(ρ+ P )uaub] +∇a(Pg
a
b) = 0 (2.140)

↪→ uaub∇a(ρ+ P ) + (ρ+ P )ub∇au
a + (ρ+ P )ua∇aub +∇bP = 0 (2.141)

2.2.1.3. Decomposition with ua

1. ua parallel part of the energy-momentum conservation equation:

nb∇aT
a
b = 0 (2.142)

↪→ −ua∇a(ρ+ P )− (ρ+ P )∇au
a + ub∇bP = 0 (2.143)

↪→ ∇a[(ρ+ P )ua] = ua∇aP : energy equation (2.144)

2. The rest part of the energy-momentum conservation equation:
Substitute above result into Eq. (2.141), we get

(ρ+ P )ub∇bu
a + (gab + uaub)∇bP = 0 : Euler’s equations (2.145)

• Energy equation:
∇a(ρ0hu

a) = ua∇aP (2.146)

↪→ ρ0u
a∇ah+ h∇a(ρ0u

a) = ua∇aP (2.147)

↪→ h∇a(ρ0u
a) = −ρ0ua

(
∇ah− ∇aP

ρ0

)
= −ρ0Tua∇aS (2.148)

where we use the relation
TdS = dh− dP

ρ0
(2.149)

↪→ h∇a(ρ0u
a) + ρ0Tu

a∇aS = 0 (2.150)

Because h, ρ0 and T are all positive,

∇a(ρ0u
a) = 0 ⇔ ua∇aS = 0 . (2.151)

That is, for a perfect fluid the material density is conserved(left) if and only if
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the fluid is locally adiabatic(right).
• Euler’s equations:

hub∇bu
a = −(gab + uaub)

∇bP

ρ0
(2.152)

↪→ hub∇bu
a = −(gab + uaub) (∇bh− T∇bS) (2.153)

↪→ ub∇bu
a = −(gab + uaub)

(
∇bh

h
− T

h
∇bS

)
(2.154)

For an isentropic fluid, i.e., dS = 0,

ub∇bu
a + (gab + uaub)

∇bh

h
= 0 . (2.155)

2.2.1.4. Decomposition with na

There could be another decomposition of the energy-momentum conservation
equation. Using na instead of ua, Shibata [16] decomposed the equation as fol-
lows.

• γνρ∇µT
µ
ν = 0

γνρ∇µT
µ
ν = ∂µ

(√
−gTµρ

)
− 1

2

√
−gTµν∂ρgµν

+ nρ

{
nν∂µ

(√
−gTµν

)
− 1

2

√
−gTµσnν∂νgµσ

}
= 0 (2.156)

• nν∇µT
µ
ν = 0

√
−gnν∇µT

µ
ν = ∂µ

(√
−gTµνnν

)
−
√
−gTµν∇µnν = 0 (2.157)

However,

∂µ
(√

−gTµνnν
)
−
√
−gTµν∇µnν = nν∂µ

(√
−gTµν

)
− 1

2

√
−gTµσnν∂νgµσ

(2.158)
and

√
−g∇µT

µ
ν = ∂µ

(√
−gTµν

)
− 1

2

√
−gTµρ∂νgµρ . (2.159)

So γνρ∇µT
µ
ν = 0 is reduced to

∂µ
(√

−gTµρ
)
− 1

2

√
−gTµν∂ρgµν = 0 , (2.160)

This is nothing but the original conservation equation,
√
−g∇µT

µ
ρ = 0.
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2.2.2. Hydrodynamic equations in spherical symmetry

As for the evolution equations, we use the baryonic rest-mass density and
the energy-momentum conservation equations for the hydrodynamic variables.
In order to use the HRSC scheme, one should recast those equations into con-
servative form. If the conservative variables defined above are used, the rest-
mass density conservation equation ∇µ(ρ0u

µ) = 0 becomes

∂t

(
r2D̃

)
+ ∂r

[
αr2D̃

(
vr − β

α

)]
= 0 , (2.161)

and the energy-momentum conservation equation ∇µT
µν = 0 can be decom-

posed into
nν(∇µT

µ
ν) = 0

⇒ ∂t
(
r2τ̃
)
+ ∂r

[
αr2

{
τ̃

(
vr − β

α

)
+ P̃ vr

}]

= αr2

{
−α

′

α

S̃r
ψ4

+
2

3

r

α

(
β

r

)′ S̃r
2

ψ4(τ̃ + D̃ + P̃ )

}
, (2.162)

γνr(∇µT
µ
ν) = 0

⇒ ∂t

(
r2S̃r

)
+ ∂r

[
αr2

{
S̃r

(
vr − β

α

)
+ P̃

}]

= αr2

{
2
ψ′

ψ

(
S̃r

2

ψ4(τ̃ + D̃ + P̃ )
+ 3P̃

)
+
β′

α
S̃r −

α′

α
(τ̃ + D̃) +

2

r
P̃

}
, (2.163)

where τ̃ = ψ6τ , D̃ = ψ6D, S̃r = ψ6Sr, and P̃ = ψ6P .
The above equations can be written in the following conservative form:

∂t(r
2q) + ∂r(αr

2F) = αr2S , (2.164)

with the dynamical variables

q =

 D̃

S̃r
τ̃

 , (2.165)

fluxes

F =


D̃
(
vr − β

α

)
S̃r

(
vr − β

α

)
+ P̃

τ̃
(
vr − β

α

)
+ P̃ vr

 , (2.166)
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and sources

S =


0

2ψ
′

ψ

(
S̃r

2

ψ4(τ̃+D̃+P̃ )
+ 3P̃

)
+ β′

α S̃r −
α′

α (τ̃ + D̃) + 2
r P̃

−α′

α
S̃r
ψ4 + 2

3
r
α

(
β
r

)′
S̃r

2

ψ4(τ̃+D̃+P̃ )

 . (2.167)

At r = 0, we impose regularity conditions as the geometry part:

D̃ ′(t, 0) = 0 ,

S̃r(t, 0) = 0 ,

τ̃ ′(t, 0) = 0 . (2.168)

Also at the outer numerical grid, we impose the outflow boundary condition by
using ghost cells, as explained in Chapter 3.
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3. NUMERICAL METHODS

First we solve the geometry part equations (2.123), (2.124) and (2.126) with the
boundary conditions (2.128) and (2.129) for an assumed matter profile. Then,
we solve the matter part equations (2.161), (2.162) and (2.163) with the bound-
ary conditions, assuming the spacetime to be fixed. Repeatedly doing this, we
can calculate the whole spacetime structure and the matter profile.

3.1. Geometry Part

Using the Newton-Raphson method for ODEs, we solve the non-linear cou-
pled second-order ODEs. We will describe the method briefly. Consider an ODE

ψ′′ +
2

r
ψ ′ +

2π

ψ

(
τ̃ + D̃

)
= 0 (3.1)

with boundary conditions ψ ′(0) = 0 and ψ ′(R) + (ψ(R) − 1)/R = 0. Its finite
difference equations are

fi(ψj) =
ψi+1 − 2ψi + ψi−1

∆r2
+

2

ri

ψi+1 − ψi−1

2∆r
+

2π

ψi

(
τ̃i + D̃i

)
= 0 , (3.2)

− 3ψ1 − 4ψ2 + ψ3

2∆r
= 0 , (3.3)

3ψNr − 4ψNr−1 + ψNr−2

2∆r
+
ψNr − 1

rNr
= 0 . (3.4)

Then, the solution can be written as

ψi = ψtriali + δψi , (3.5)

where ψtriali is a trial solution of the equation and δψi is the solution of the
matrix equation

Jijδψj = −fi(ψk) . (3.6)

Jij is the Jacobian matrix

Jij ≡ ∂fi
∂ψj

. (3.7)

The routine is iterated until all the metric variables converge at a certain level.

27
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3.2. Hydrodynamic Part: HRSC

We adopt the finite-volume approach to the integral form of the conservative
equations, ∫

∂t(r
2q)dtdr +

∫
∂r(αr

2F)dtdr =

∫
αr2Sdtdr , (3.8)

as with the averaged quantities (upwind scheme)

q̄n+1
i = q̄ni −

∆t

∆r

1

r2i

(
α
n+ 1

2

i+ 1
2

r2
i+ 1

2

F̂
n+ 1

2

i+ 1
2

− α
n+ 1

2

i− 1
2

r2
i− 1

2

F̂
n+ 1

2

i− 1
2

)
+∆tα

n+ 1
2

i S̄
n+ 1

2
i . (3.9)

The problem is how to calculate the time-averaged flux F̂ without knowing the
evolved variables q̄n+1

i .
At each cell (spacetime grid), we should solve a Riemann problem. However,

approximated Riemann solvers are preferred over an exact Riemann solver be-
cause of less complexity and better numerical efficiency without loss of signifi-
cant accuracy. In this paper, we implement HRSC schemes with approximated
Riemann solvers using Roe’s [17] and Harten et al.’s (HLLE) methods [18, 19].

3.2.1. Characteristic structure and approximated Roe flux

To calculate the approximated Roe numerical flux, we should know the char-
acteristic structure of the conservative hydrodynamic equations. With the Ja-
cobian J ≡ α∂F/∂q, the eigenvalue equation

Jrα = λαrα (3.10)

can be diagonalized with the characteristic variables w. Then, the approximated
flux is

F̂ =
1

2

[
F(p̃R) + F(p̃L)− Σ|λα|(wRα − wLα)rα

]
, (3.11)

where
λ0 = αvr − β , (3.12)

λ± =
α

1− v2c2s

{
vr(1− c2s)± cs

√
(1− vr)

[
1

ψ4
(1− v2c2s)− vrvr(1− c2s)

]}
− β , (3.13)

with c2s ≡
(
∂P
∂ρ

)
s
= 1

h

(
χ+ P

ρ20
κ
)
, χ ≡

(
∂P
∂ρ0

)
ϵ
, κ ≡

(
∂P
∂ϵ

)
ρ0

,

r0 =

 K
hW
vr

1− K
hW

 , (3.14)
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r± =

 1
hWCr±

hW Ãr
± − 1

 , (3.15)

with

K =

κ
ρ0

κ
ρ0

− c2s
, (3.16)

Cr± = vr − Vr± , (3.17)

Vr± =
vr − Λr±
1
ψ4 − vrΛr±

, (3.18)

Λr± =
λ±
α

+
β

α
, (3.19)

Ãr
± =

1
ψ4 − vrvr

1
ψ4 − vrΛr±

. (3.20)

3.2.2. HLLE flux

The Harten Lax van Leer Einfeld (HLLE) flux can be obtained more easily
with information on only the eigenvalues:

F̂i+ 1
2
=

b+
i+ 1

2

F(p̃L)− b−
i+ 1

2

F(p̃R)

b+
i+ 1

2

− b−
i+ 1

2

+
b+
i+ 1

2

b−
i+ 1

2

b+
i+ 1

2

− b−
i+ 1

2

(p̃R − p̃L) (3.21)

where b+
i+ 1

2

= max(0,max{λi+ 1
2
}) and b−

i+ 1
2

= min(0,min{λi+ 1
2
}).

3.2.3. Calculating the primitive variables

When we solve the Riemann problem at each cell, the variables are recon-
structed at the cell boundary by using a monotonized central-difference (MC)
limiter. In order to increase numerical stability, it is common to reconstruct
the primitive variables ρ0, vr and ϵ rather than the conservative variables. In
Eqs. (3.11) and (3.21), p̃L and p̃R stand for the reconstructed primitive vari-
ables.

With the calculated numerical flux, we can update the conservative variables
by using Eq. (3.9). After that, we need to calculate the primitive variables from
the updated conservative variables in order to calculate the flux for the next
time step. Unlike the calculation of the conservative variables from primitive
variables, the reverse is a non-trivial task.

For the equation of state, we consider the ideal fluid

P = P (ρ0, ϵ) = (Γ− 1)ρ0ϵ , (3.22)



30 3. NUMERICAL METHODS

where Γ is the adiabatic index. Which variable is calculated first from the con-
servative variables is not unique. If the P variable is considered first, the equa-
tion for the pressure is

f(P ) ≡ W

(
D +

PW

Γ− 1

)
+ P (W 2 − 1)−D − τ = 0 , (3.23)

where

W 2 =
(τ +D + P )2

(τ +D + P )2 − SrSr
. (3.24)

Four roots of the pressure exist. One can obtain the physical root of the
pressure by using a polynomial-root-finding method. However, the numerical
Newton-Raphson method is more practical because the explicit form of the
root is complicated. With the derivative of f with respect to P ,

df

dP
=

W 2

Γ− 1

[
PΓ

τ +D + P
(1−W 2) + 1

]
= 0 , (3.25)

we can obtain the solution for P . Then, the primitive variables are

vr =
1

ψ4

Sr
τ +D + P

, (3.26)

ρ0 = D
√

1− ψ4vrvr , (3.27)

h =
ρ0
D2

(τ +D + P ) , (3.28)

ϵ = h− 1− P

ρ0
. (3.29)

3.2.4. Time stepping scheme

As mentioned before, we evolve the conservative variables with Eq. (3.9). In
the space grid, we adopt second-order discretization for the metric as well as
the flux. It, therefore, shows second-order accuracy in space in smooth regions,
and no more than first-order accuracy in space in discrete regions. However,
in the time direction, Eq. (3.9) shows only first-order discretization in time. To
obtain more than second-order accuracy in spacetime, we need higher-order time
stepping scheme.

We choose a second-order time-stepping scheme such as{
q̄
n+ 1

2
i = q̄ni +

∆t
2 G

n
i

q̄n+1
i = q̄ni +∆tG

n+ 1
2

i ,
(3.30)
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where

G
n+ 1

2
i = − 1

∆r

1

r2i

(
α
n+ 1

2

i+ 1
2

r2
i+ 1

2

F̂
n+ 1

2

i+ 1
2

− α
n+ 1

2

i− 1
2

r2
i− 1

2

F̂
n+ 1

2

i− 1
2

)
+ α

n+ 1
2

i S̄
n+ 1

2
i . (3.31)

We also try a fourth-order Runge-Kutta time-stepping scheme
q̄n+k2i = q̄ni +

∆t
2 G

n
i

q̄n+k3i = q̄ni +
∆t
2 G

n+k2
i

q̄n+k4i = q̄ni +∆tG n+k3
i

q̄n+1
i = q̄ni +

∆t
6

{
G n
i +G n+k4

i + 2(G n+k2 +G n+k3)
}
.

(3.32)

3.2.5. Atmosphere

In HRSC schemes, we cannot treat pressureless regions or vacuum regions in
which we cannot calculate the approximated flux. One solution is to use a very
tenuous stationary fluid, “atmosphere,” when the density becomes lower than a
certain small value. In practice, we follow the Whisky code prescription [20].
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4. CODE TESTS

4.1. Relativistic Blast Wave Problem

We solve the spherical relativistic blast wave problem to test the hydrody-
namic part of the code. Two chambers are separated by a spherical shell and
are filled with gases that have different densities and pressures and are at rest
initially. After the shell is removed, shock, contact discontinuity and rarefac-
tion waves develop and propagate due to the initial differences in the densi-
ties and pressures. The spacetime metric is fixed on a flat Minkowski space-
time. Because this problem has no exact solution, we compared the results
with those in Ref. [21] in which two cases, weak and strong blast wave, are
treated. The domain of the simulation is r ∈ [0, 1], and the initial discontinuity
is located at r = 0.5. The fluid obeys the ideal equation of state (EoS) with
Γ = 1.4 and is initially at rest. The parameters are for the weak blast wave
case, (ρ0L = 1.0, PL = 1.0), (ρ0R = 0.125, PR = 0.1) and for the strong blast
wave case, (ρ0L = 10.0, PL = 133.33), (ρ0R = 1.0, PR = 0.125). The spatial
resolution used is ∆r = 2× 10−4, and the courant factor is ∆t/∆r = 0.25.

Figures 4.1 and 4.2 show the results obtained from our code. In order to com-
pare with Ref. [21] we plot the evolved hydrodynamic variables at t = 0.4. Our
results are in good agreement with those in Ref. 15. We also perform conver-
gence tests. Although we use a second-order spatial finite-difference scheme, for
the discontinuous part of a solution like the one to this test problem, the HRSC
scheme shows first-order convergence. Figure 4.3 shows the difference of ρ0 for
different levels of resolutions. The resolutions of level 0 is ∆r = 2.5×10−4, level
1 is ∆r/2, level 2 is ∆r/4, and level 3 is ∆r/8; i.e., we increase the resolution
by factors of two. For nth-order convergence, the differences (level 0 - level 1)
and 2n× (level 1 - level 2) coincide. In Figure 4.3, we plot the three differences
of four different resolution levels. The Figure shows first-order convergence.

4.2. Relativistic Spherical Accretion

The solution for spherical, stationary, adiabatic accretion is wellknown, so
we can use the solution as a code test. The general relativistic version of the
Bondi [22] equation is shown by Michel [23], and in the appendix of Ref. [24]
one can find a good explanation of relativistic spherical accretion. Papadopoulos
and Font [25] obtained the same solution with the horizon-adapted coordinate
system and reported the resolution benefits obtained by using that coordinate

33
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Figure 4.1: Evolution data at t = 0.4 for the weak blast wave case.
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Figure 4.2: Evolution data at t = 0.4 for the strong blast wave case.
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Figure 4.3: Convergence test of ρ0 at t = 0.125. It shows the first order
convergence.
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Figure 4.4: Exact solutions of spherical accretion of an ideal fluid with
Γ = 4

3 in horizon-adapted coordinates. The top panel shows
the rest-mass density, and the bottom shows the physical ve-
locity defined by √

γrrv
r. The vertical dotted line indicates the

event horizon of the black-hole.

system due to elimination of the divergence in the Lorentz factor at the horizon.
Here, we adopt a conformal version of horizon-adapted coordinates.

The solution procedure is explained in Ref. [25] With the value of the critical
radius rc = 400M and the rest-mass density at the critical point (ρ0)c = 0.01,
we can obtain the integration constants C1 and C2 of the spherically-symmetric,
stationary hydrodynamic equations:

r2ρ0u
r = C1 , (4.1)

r2(ρ+ P )urut = C2 . (4.2)

Assuming the adiabatic, ideal EoS, one can rewrite Eqs. (4.1) and (4.2) to a
non-linear algebraic equation for ur. The equation is hard to solve algebraically,
so we find the solution numerically by using the Newton-Raphson method. Fig-
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Figure 4.5: Metric components of the black hole in conformal horizon-
adapted coordinates.

ure 4.4 shows the numerically-obtained solutions. In order to compare the re-
sults with those in Ref. [25] we use the same values of the parameters, and the
results are seen to be in good agreement. Then, we transform the solution to
the conformal metric coordinates as in Eq. (2.99). The black-hole metric in the
horizon-adapted coordinate system is

ds2 = −
(
1− 2M

r̄

)
dt2+

4M

r̄
dtdr̄+

(
1 +

2M

r̄

)
dr̄2+ r̄2(dθ2+sin2 θdφ2) . (4.3)

The transformation of r to r̄ is

r̄ = ψ2r , (4.4)

dψ

dr
= − ψ

2r

1− ψ√
ψ2 + 2M

r

 . (4.5)

Figure 4.5 shows the metric components of the black-hole in terms of the
conformal horizon-adapted coordinates. We use those metric components in the
code, and as initial data for the hydrodynamic variables ρ0 and vr, we use a
homogeneous ρ0 with the value of the exact solution at the numerical bound-
ary and vr = 0 everywhere. The initial data evolved well and approached the
coordinate transformed exact solution (Figure 4.6).
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Figure 4.6: Rest-mass density profile in conformal horizon-adapted coordi-
nates. The evolved data approach the red line which represents
the exact solution.

4.3. TOV Star Evolution

4.3.1. TOV equations

Tolman-Oppenheimer-Volkoff(TOV) equations are

d

dr
P (r) = −

(ρ(r) + P (r))
(
M(r) + 4πP (r)r3

)
r2
(
1− 2M(r)

r

)
d

dr
M(r) = 4πρ(r)r2 (4.6)

4.3.2. TOV test

ds2 = −α2dt2 + ψ4
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
(4.7)

where the lapse and conformal factor are functions of the radial coordinate r
only, i.e., α = α(r) and ψ = ψ(r).

√
−g = αψ6 r2 sin θ (4.8)

where g = det(gµν).
It is convenient to find the differential equation for the pressure P .

∇µT
µ
ν = 0 (4.9)
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where Tµν = (ρ+ P )uµuν + Pgµν and the fluid 4-velocity uµ is

uµ =

(
1

α
, 0, 0, 0

)
uµ = (−α, 0, 0, 0) (4.10)

↪→ P ′ +
α ′

α
(ρ+ P ) = 0 (4.11)

where ′ = d
dr .

The Einstein equations Gµν = 8πTµν give rise to three independent ODEs.

• Gtt = 8πTtt

↪→ ψ′′ +
2

r
ψ′ + 2πψ5ρ = 0 (4.12)

: the Hamiltonian constraint equation

• Grr = 8πTrr

↪→ α′

α

(
2ψ′ +

ψ

r

)
ψ + 2ψ′

(
ψ′ +

ψ

r

)
= 4πPψ6 (4.13)

Rewrite

2ψ′2 + 2

(
α′

α
+

1

r

)
ψψ′ +

α′

α

ψ2

r
= 4πPψ6 (4.14)

• Gθθ = 8πTθθ

↪→ ψ2

r

α′

α
− 2ψ′2 + 2

ψ′

r
ψ + 2ψψ′′ +

α′′

α
ψ2 = 8πPψ6 (4.15)

Grr +Gθθ gives

↪→ α′′ + 2α′
(
ψ′

ψ
+

1

r

)
= 4παψ4(ρ+ 3P ) (4.16)

(
2ψ′ +

ψ

r

)
ψ

(
α′

α

)2

+

(
2ψ′2 + 8

ψ′

r
ψ + 3

ψ2

r2

)
α′

α
+ 6

ψ′

r

(
ψ′ +

ψ

r

)
= −4πψ6

(
P ′ − 3P

r
+
α′

α
ρ

)
= 4πψ6

(
α′

α
+

3

r

)
P (4.17)
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Nothing but(
α′

α
+

3

r

)[
α′

α

(
2ψ′ +

ψ

r

)
ψ + 2ψ′

(
ψ′ +

ψ

r

)
= 4πPψ6

]
(4.18)

Grr −Gθθ gives merely the same equation,

3

[
α′

α

(
2ψ′ +

ψ

r

)
ψ + 2ψ′

(
ψ′ +

ψ

r

)
= 4πPψ6

]
(4.19)

4.3.3. Isotropic vs. Schwarzschild coordinates

ds2Schw = −
(
1− 2M

r

)
dt2 +

1(
1− 2M

r

)dr2 + r2(dθ2 + sin2 θdφ2) (4.20)

where M = m(R) is

m(R) = 4π

∫ R

0
ρ(r)r2dr (4.21)

and P (r = R) = 0.

ds2Iso = −
(
1− M

2r̄

)2(
1 + M

2r̄

)2dt2 + (1 + M

2r̄

)4 [
dr̄2 + r̄2(dθ2 + sin2 θdφ2)

]
(4.22)

R = R̄

(
1 +

M

2R̄

)2

(4.23)

↪→ R̄ =
1

2

[
R−M ±

√
R(R− 2M)

]
(4.24)

4.3.4. Boundary conditions for metric components

At the origin (r̄ = 0), the lapse α and the conformal metric factor ψ satisfy
the regularity condition for scalar, i.e.,

α′ = 0
∣∣
r̄=0

(4.25)

ψ′ = 0
∣∣
r̄=0

(4.26)

At the outer boundary (r̄ = r̄max), the conformal metric factor ψ satisfies

ψ = 1 +
M

2r̄

∣∣∣
r̄≥R̄

(4.27)
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Figure 4.7: Evolved TOV star solution. We choose (ρ0)c = 0.001, κ = 100
and Γ = 2.

ψ′ = − M
2r̄2

then the boundary condition becomes

ψ′ =
(1− ψ)

r̄

∣∣∣
r̄=r̄max

(4.28)

The lapse α should satisfy

α =
1− M

2r̄

1 + M
2r̄

∣∣∣
r̄≥R̄

(4.29)

α′ = M
r̄2

(
1 + M

r̄2

)−2 then the boundary condition becomes

α′ =
(1− α)2

M

∣∣∣
r̄=r̄max

(4.30)

However, this boundary condition contains the value of M which could be
obtained after numerical simulation. Using Eq. (4.29) we can replace M to other
quantities,

M = 2r̄
1− α

1 + α
(4.31)

Then the boundary condition becomes

α′ =
1− α2

2r̄

∣∣∣
r̄=r̄max

(4.32)
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Figure 4.8: Central density pulsation during TOV evolution

4.3.5. TOV star code test

The TOV star solution is a self-gravitating GR solution for a stationary per-
fect fluid. We assume a polytropic fluid, P = κρΓ0 . Solving the TOV equation
and transforming to the conformal coordinate system, we can obtain the static
rest-mass density profile. Using that profile as initial data, we evolve it using
our code. The test is whether the profile remains unchanged during evolution
or not. Figure 4.7 shows the result of the evolution. As we expected, the pro-
file is almost fixed during evolution. However, it oscillates slightly because we
cannot avoid small numerical errors. (See Fig. 4.8) To investigate the oscilla-
tion modes, we perform a Fourier transformation analysis and obtain the power
spectral density (PSD) of the central density. We then compare the oscillation
mode frequencies with those from a linear perturbation analysis of the radial
pulsation. The linear perturbation mode frequencies of radial pulsation can be
obtained by solving the linear perturbation GR equation of the Lagrangian dis-
placement function. In Chap. 26 in Ref. [26] the linear perturbation theory of
the radial pulsation of general relativistic stellar models is well described. Also,
one can find a solution procedure to obtain the mode frequencies in Refs. [27]
and [28].

From the trial value of the oscillation frequency ω of a renormalized displace-
ment function ζ = ζ(r)e−iωt, we integrate the linear perturbation equation by
using a Runge-Kutta method. Then, examining ζ ′(r) at the star’s surface, we
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Figure 4.9: Radial pulsation frequencies from the linear perturbation anal-
ysis

Table 4.1: Radial pulsation frequencies from the numerical linear pertur-
bation analysis, the data of Font et al., the PSD of the evolved
TOV obtained using our GRHydro code, and the relative differ-
ence between the linear perturbation analysis and the evolved
TOV of our code.

Mode Linear Pert. Ref. Evolved Difference
(kHz) (kHz) (kHz) (%)

F 1.442 1.442 1.442 0.00
H1 3.953 3.955 3.952 0.03
H2 5.914 5.916 5.901 0.22
H3 7.772 7.776 7.724 0.62
H4 9.586
H5 11.38
H6 13.15
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can determine the proper value of ω. (See Fig. 4.9) In Table 4.1, we present
the radial pulsation mode frequencies using linear perturbation analysis. Also
the frequency values are compared with other data from Ref. [29]. To test the
evolution of TOV obtained from the GRHydro code, we compare the pulsation
mode frequencies with those from linear perturbation theory. Figure 4.10 shows
the PSD of the change of the central density during evolution.

4.4. Oppenheimer-Snyder Dust Collapse

Assuming spherical symmetry and pressureless matter (dust), one can solve
the Einstein equations exactly [6].

4.4.1. The exact solution

The solution of the Einstein equations for this homogeneous dust star consists
of two parts. Inside the star, the metric is the closed Friedmann

ds2 = −dτ2 + a2
(
dχ2 + sin2 χdΩ2

)
. (4.33)

where a(τ) can be written in terms of the conformal time η as

a = a0(1 + cos η) , (4.34)

and
τ = a0(η + sin η) . (4.35)
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The conformal metric of the closed Friedmann is

ds2 = −a2
(
dη2 + dχ2 + sin2 χdΩ2

)
. (4.36)

Outside the star, the metric is Schwarzschild

ds2 = −
(
1− 2M

R

)
dt̄2 +

dR2(
1− 2M

R

) +R2dΩ2 , (4.37)

where M is the mass of the dust star.

a0 is related to both M and initial areal radius Rmax. First, two metrics
should be matched at the star surface, χ = χs,

R = a sinχs (4.38)

and
adχ =

dR√
1− 2M

R

=
a cosχsdχ√

1− 2M
R

. (4.39)

Then
a sin3 χs = 2M (4.40)

at the star surface. Second, at the beginning of collapse (η = 0, a = 2a0) the
star has maximum areal radius Rmax

Rmax = 2a0 sinχs . (4.41)

Then we get

a0 =

√
R3

max

8M
. (4.42)

The comoving rest-mass density is given by

ρ0 =
1

8π

6a0
a3

(4.43)

η runs from 0 to π, a runs from 2a0 to 0 (complete collapse) and τ runs from
0 to πa0

A kind of a Lagrangian radial coordinate χ has range [0,χs]

χs = arcsin

√
2M

Rmax
(4.44)
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4.4.2. Coordinate transformations

From the closed Friedmann metric

ds2 = −dτ2 + a2
(
dχ2 + sin2 χdΩ2

)
(4.45)

and the Schwarzschild metric

ds2 = −
(
1− 2M

R

)
dt̄2 +

dR2(
1− 2M

R

) +R2dΩ2 (4.46)

we are going to transform the metric to the 3+1 ADM metric

ds2 = −
(
α2 −A2β2

)
dt2 + 2A2βdtdr +A2dr2 +A2r2dΩ2 (4.47)

The inner part equations are,

∂T

∂χ


t

= − (1− T 2)
[
3 cot

η

2
+ 2T cotχ

]
(4.48)

∂η

∂χ


t

= T (4.49)

∂r

∂χ


t

=
r

sinχ

√
1− T 2 (4.50)

∂

∂χ

(
∂r

∂t


χ

)
t

=

√
1− T 2

sinχ

∂r

∂t


χ
− r

sinχ

T√
1− T 2

∂T

∂t


χ

(4.51)

∂

∂χ

(
∂T

∂t


χ

)
t

=
[
6T cot

η

2
+ 2 cotχ(3T 2 − 1)

] ∂T
∂t


χ

+
3

2

1− T 2

sin2 η2

∂η

∂t


χ

(4.52)

∂

∂χ

(
∂η

∂t


χ

)
t

=
∂T

∂t


χ

(4.53)

The boundary conditions,

T → −χ cot
η

2
as χ→ 0 (4.54)

ηc
η = ηc at χ = 0 (4.55)

r → χ
a

A
as χ→ 0 (4.56)
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∂T

∂t


χ

→ χ

2 sin2 η2

∂η

∂t


χ

=
αc
a0

χ

sin2 η
as χ→ 0 (4.57)

αc and Ac
∂η

∂t


χ

=
αc

a0(1 + cos ηc)
=
αc
a

at χ = 0 (4.58)

∂r

∂t


χ

→ −χαc
Ac

tan
η

2
as χ→ 0 (4.59)

The relations of variables are
lapse

α =
1√

1− T 2

∂τ

∂t


χ

=
a√

1− T 2

∂η

∂t


χ

(4.60)

conformal factor
A =

√
1− T 2

a
∂r
∂χ


t

(4.61)

shift
β = −∂r

∂t


χ

− Tα

A
(4.62)

where
τ = a0(η + sin η) (4.63)

a = a0(1 + cos η) (4.64)

a0 =

√
R3

max

8M
(4.65)

The equations of outer part are

t̄ = t−
∫ 1

R

0
du

B

(1− 2Mu)
√
1− 2Mu+B2u4

(4.66)

ln r = lnR+

∫ 1
R

0

du

u

(
1− 1√

1− 2Mu+B2u4

)
(4.67)

lnA = lnR− ln r =

∫ 1
R

0

du

u

(
1√

1− 2Mu+B2u4
− 1

)
(4.68)

α =

√
1− 2M

R
+
B2

R4

{
1− dB

dt

∫ 1
R

0

du

(1− 2Mu+B2u4)
3
2

}
(4.69)

β = − B

AR2

{
1 +

dB

dt

∫ 1
R

0
du

R3u3 − 1

(1− 2Mu+B2u4)
3
2

}
(4.70)
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B = R2 cosχs
T − tanχs tan

η
2√

1− T 2
(4.71)

dB

dt
=− ∂η

∂t


χs

[
2B tan

η

2
+R2 1

2 cos2 η2

sinχs√
1− T 2

]
+
∂T

∂t


χs
R2 cosχs

1− T tanχs tan
η
2

(1− T 2)
3
2

(4.72)

R = 2M
cos2 η2
sin2 χs

(4.73)

Parameterize solutions by αc and Ac

dt̃ = αcdt , r̃ = Acr (4.74)

Then

∂T

∂t
= αc

∂T

∂t̃
(4.75)

∂r

∂t
=
αc
Ac

∂r̃

∂t̃
− r̃αc
A2
c

∂Ac

∂t̃
(4.76)

Define α̃, Ã and β̃ as

α̃ =
a√

1− T 2

∂η

∂t̃


χ

(4.77)

Ã =
a sinχ

r̃
(4.78)

β̃ = −∂r̃
∂t̃


χ

− T α̃

Ã
(4.79)

Then α = αcα̃, A = AcÃ and β = αc
Ac
β̃ + r̃αc

Ac

∂
∂t̃

lnAc

χ
.

Compare the value of α of inner part with the outer part.

αc =
1

α̃√
1− 2M

R
+B2

R4

+ dB
dt̃

∫ 1
R
0

du

(1−2Mu+B2u4)
3
2

(4.80)

Compare the value of A of inner part with the outer part.

Ac =
Ar̃

R
(4.81)
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where

A = exp

∫ 1
R
0

du
u

(
1√

1−2Mu+B2u4
−1

)
(4.82)

∂
∂t̃

lnAc

χ

At the surface Ac = Ar̃
R , and

∂

∂t̃
lnAc


χ
=

∂

∂t̃
lnA


χ
+
∂

∂t̃
ln r̃

χ
− ∂

∂t̃
lnR


χ

(4.83)

Therefore

∂

∂t̃
lnAc


χ
=

tan η
2√

1− 2M
R + B2

R4

∂η

∂t̃


χ

−B
dB

dt̃

∫ 1
R

0
du

u3

(1− 2Mu+B2u4)
3
2

+
∂

∂t̃
ln r̃

χ

(4.84)

4.4.3. Code test

Using this exact solution, researchers have tested their codes [30, 31]. How-
ever, in order to perform such a code test, we need to treat the pressureless
limit and coordinate transformations.

Using the HRSC scheme requires special treatment in order to handle a pres-
sureless fluid. The characteristic structure is changed, so the code needs to be
modified to the Oppenheimer-Snyder(OS) collapse test. One may circumvent
this problem by using a polytropic fluid with a very small value of the poly-
tropic constant κ. Romero et al. [30] and O’Connor and Ott [31] did the OS
test in this way.

The OS solution has a simple form when we use the Friedmann metric inside
and the Schwarzschild metric outside. However, one usually fixes the coordi-
nate system when one develops a general relativistic hydrodynamic code, so co-
ordinate transformations are necessary before comparing the results. Petrich et
al. [32] already did the coordinate transformation between the Friedmann and
Schwarzschild metric and the 3+1 conformal metric (isotropic coordinates) with
the maximal slicing condition, so we follow their approach. The transformation
procedure is quite complex, and one may refer to Ref. [32].

Fig. 4.11 shows the result for the OS test. Initially, we use the OS solu-
tion as initial data. Then, we evolve the system fully, not only the matter part
but also the metric part. After that, we compare the evolved data with the
coordinate-transformed exact OS solution. As can be seen in Fig. 4.11, our nu-
merical evolution results are in good agreement with those analytic ones except
in the vicinities of the origin and the star’s surface. This is probably due to
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Figure 4.11: Oppenheimer-Snyder dynamical code test results.

the small, but non-zero, pressure effect we assumed around the origin and to
the discrete boundary effect at the surface, which is also argued in Ref. [31].
Fig. 4.12 shows that the disagreement between our numerical results and the
exact analytic solution is less than 0.45% in the designated region.
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5. EiBI GRAVITY THEORY

5.1. EiBI Gravity

Very recently, Eddington-inspired Born-Infeld (EiBI) gravity theory was sug-
gested as an alternative theory of gravity [7]. The action of the EiBI gravity
can be written as

S =
2

κ

∫
d4x

(√
|gab + κRab| − λ

√
−g
)
+ SM [gab,ΨM ] (5.1)

where |Mab| means the determinant of Mab, g ≡ |gab|, Rab are constructed from
the connection Γabc which are independent of gab. κ is the only additional theory
parameter to the gravitational constant (we set 8πG = 1). λ is a dimensionless
parameter which is related with the cosmological constant by Λ = (λ − 1)/κ.
(λ = 1 corresponds to the zero cosmological constant.) The Ricci tensor Rµν(Γ)
is evaluated solely by the connection, and the matter filed Ψ is coupled only to
the gravitational field gµν . The theory reduces to the theory of general relativity
(GR) in vacuum, while it deviates from GR in the presence of matter. The
equations of motion can be written as follows

qab = gab + κRab (5.2)
√
−qqab = λ

√
−ggab − κ

√
−gT ab (5.3)

where qab is the auxiliary metric by which the connection Γabc is defined.
In Refs. [7, 33], it was investigated in EiBI gravity that the Universe driven

by barotropic fluid with w ≡ P/ρ > 0 is free from the initial singularity; there
exists a state of minimum size for which one takes infinite time to reach from
the present for κ > 0. More interestingly, the initial state of the Universe driven
by pressureless dust (w = 0) approaches the de Sitter state of which effective
cosmological constant is given by Λeff = 8/κ.[33]

In Refs. [8, 34], the authors investigated compact stars composed of pressure-
less dust and polytropic fluid. Studying the Poisson equation in EiBI gravity,
they obtained singularity-free solutions. For pressureless dust, they could even
find the static star solution in the Newtonian limit. In the Newtonian limit of
EiBI gravity, the Poisson equation becomes

∇2Φ = 4πGρ+
1

4
κ∇2ρ, (5.4)

53
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where Φ is the Newtonian potential. The second term in the right-hand side
which is the EiBI correction, provides the repulsive nature of gravity.

More subjects in EiBI gravity have been studied such as the cosmological
and astrophysical constraints on the EiBI theory [35, 36], the constraint on the
value of κ by using the solar model [37], the tensor perturbation [38], bouncing
cosmology [39], the five dimensional brane model [40], the effective stress tensor
and energy conditions [41], cosmology with scalar fields [42], the instability of
compact stars [43], the surface singularity of the compact star [44], etc.

5.2. Research Motivation

In GR, the singularity theorem states that a singularity must be formed in
matter collapses provided that the strong-energy condition is satisfied. As all
matter collapses towards a center, the matter density at the center will diverge
finally, resulting in the appearance of a curvature singularity mostly enclosed by
an event horizon, e.g., a black hole solution. Such a formation of singularities
simply means the breakdown of Einstein gravity in extremely high density, and
it has been believed that some quantum nature of gravity may play a role to
resolve such a problem.

EiBI gravity theory has some aspect of quantum gravity as mentioned above.
It is already shown that the initial singularity is absent This is probably due to
the repulsive nature appearing when the gravity in EiBI theory interacts with
matter. As pointed out in Ref. [34], therefore, it will be very interesting to
see whether curvature singularities are still formed during matter collapses in
EiBI gravity, or the repulsive nature becomes strong enough in extremely dense
matter to prevent their formation.

If the repulsive gravity in EiBI gravity is strong enough to prevent the for-
mation of singularity during its final stage of matter collapse, the final state of
matter collapse will be static at the center without a curvature singularity. Such
star solutions would be expected to be enclosed by an event horizon. Thus, we
numerically obtain spherically symmetric static (TOV) star solutions for various
polytropic matters, and check if there exists any solution whose size is smaller
than its Schwarzschild radius (i.e., R < 2M). We found no such solution in
EiBI gravity, implying that there exists no singularity-free black hole solution
in EiBI gravity theory as a final state of polytropic type matter collapse.

5.3. Static Case

Assuming static and spherically symmetric spacetime, the spacetime metric
gab and the auxiliary metric qab which are compatible with Γabc are
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gab =


−F (r) 0 0 0

0 B(r) 0 0
0 0 A(r)r2 0
0 0 0 A(r)r2 sin2 θ

 (5.5)

qab =


−s(r) 0 0 0

0 h(r) 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 (5.6)

From (5.2), the differential equations of s(r) and h(r) are

F (r) = s(r)− κ [s′(r) {rs(r)h′(r) + h(r)(−4s(r) + rs′(r))} − 2rh(r)s(r)s′′(r)]

4rh2(r)s(r)
(5.7)

B(r) = F (r)
h(r)

s(r)
− κ

r

(
s′(r)

s(r)
+
h′(r)

h(r)

)
(5.8)

A(r) = 1 +
κ

r2

(
1

h(r)
− 1

)
+

κ

2rh(r)

(
s′(r)

s(r)
− h′(r)

h(r)

)
(5.9)

And from (5.3), the components of the spacetime metric and the auxiliary
metric are related as

F (r) = s(r)A(r)
λ+ κρ(r)

λ− κP (r)
(5.10)

B(r) = h(r)A(r) (5.11)

A(r) =
1√

(λ− κP (r))(λ+ κρ(r))
(5.12)

Rearranging the equations (5.8) and (5.9) as

h′(r)

h(r)
=

r

2κ

[
F (r)

h(r)

s(r)
−B(r)− 2h(r)(A(r)− 1)

]
− 1

r
(h(r)− 1) (5.13)

s′(r)

s(r)
=

r

2κ

[
F (r)

h(r)

s(r)
−B(r) + 2h(r)(A(r)− 1)

]
+

1

r
(h(r)− 1) (5.14)

The conservation of the stress-energy tensor, ∇aT
ab = 0 gives rise to

2F (r)P ′(r) + F ′(r) [ρ(r) + P (r)] = 0 (5.15)
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5.4. P = 0 Static Case

For dust case, P = 0, we can get the equation of ρ = ρ0 by putting K = 0
in (5.23)

ρ′0(r) = −
(λ+ κρ0(r))

(
s(r)

(
2
(
h(r)

(
r2A(r) + κ− r2

)
− κ
)
− r2B(r)

)
+ r2F (r)h(r)

)
κ2rs(r)

= −2 (λ+ κρ0(r))

κ

s′(r)

s(r)
(5.16)

or from (5.24)

F ′(r)

F (r)
=

s′(r)

s(r)
+
a′(r)

a(r)
=

s′

s
+

κ

2a2
ρ′0 = 0 (5.17)

where a =
√
λ+ κρ0.

5.5. Numerical Integrations for the Polytropic Stars

5.5.1. Integration of the equations for the EiBI static case

In order to close the set of equations to solve, we need one more equation,
i.e., the equation of state (EoS).

Considering the polytropic EoS case,

P = KρΓ0 (5.18)

where ρ = ρ0(1 + ϵ) and for an isentropic case (s = 0)

ρ0ϵ =
P

Γ− 1
(5.19)

ρ = ρ0 +
P

Γ− 1
= ρ0 +

KρΓ0
Γ− 1

(5.20)

Therefore, ρ and P are related as

P = K

(
ρ− P

Γ− 1

)Γ

(5.21)

Actually we impose ρ0 satisfies the conservation equation,

∇µ(ρ0u
µ) = 0 (5.22)

However, for the static case, this equation becomes trivial.
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Using (5.18), the equation (5.15) can be written as

dρ0(r)

dr
= ρ0(r)

(
ΓKρ0(r)

Γ + (Γ− 1)ρ0(r)
) (
κKρ0(r)

Γ − λ
)

(
(Γ− 1)λ+ κKρ0(r)

Γ + (Γ− 1)κρ0(r)
)(

s(r)
(
2
(
h(r)

(
r2A(r) + κ− r2

)
− κ
)
− r2B(r)

)
+ r2F (r)h(r)

)
/

κrs(r)(−2(Γ− 2)Γκ2K3ρ0(r)
3Γ − Γ

(
Γ2 − 6Γ + 5

)
κ2K2ρ0(r)

2Γ+1

− Γ
(
Γ2 − 10Γ + 8

)
κλK2ρ0(r)

2Γ + Γ
(
7Γ2 − 12Γ + 5

)
κλKρ0(r)

Γ+1

+ (Γ− 1)2(3Γ− 1)κ2Kρ0(r)
Γ+2

+ 4(Γ− 1)2Γλ2Kρ0(r)
Γ + (Γ− 1)2κλρ0(r)

2) (5.23)

Let us write down the equation (5.23) in a neat form. From the equation
(5.15),

2P ′(r)

[ρ(r) + P (r)]
+
F ′(r)

F (r)
= 0 (5.24)

F ′(r)
F (r) can be written using a ≡

√
λ+ κρ and b ≡

√
λ− κP as

F (r) =
sa

b3

F ′(r)

F (r)
=

s′(r)

s(r)
+
a′(r)

a(r)
− 3

b′(r)

b(r)
(5.25)

a′(r) and b′(r) are

a′(r) =
κρ′(r)

2a(r)
, b′(r) = −κP

′(r)

2b(r)
(5.26)

Introducing the sound speed cs

c2s ≡
(
∂P

∂ρ

)
s

(5.27)

For the isentropic process and the polytropic EoS case,

c2s =
P ′(r)

ρ′(r)
=

ΓP

ρ+ P
(5.28)

where
P ′(r) =

ΓP

ρ0
ρ′0 , ρ′(r) =

ρ+ P

ρ0
ρ′0 (5.29)
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Then the equation (5.24) becomes[
2

ρ(r) + P (r)
+
κ

2

(
3

b2
+

1

a2c2s

)]
P ′(r) +

s′(r)

s(r)
= 0 (5.30)

We can remove the theory parameter κ by rescaling ρ, P and r

ρ̃ = κρ , P̃ = κP (5.31)

r̃ =
r√
κ
,

∂

∂r̃
=

√
κ
∂

∂r
(5.32)

Then (5.13), (5.14) and (5.15) become

h′(r̃)

h(r̃)
=

r̃

2

[
F (r̃)

h(r̃)

s(r̃)
−B(r̃)− 2h(r̃)(A(r̃)− 1)

]
− 1

r̃
(h(r̃)− 1) (5.33)

s′(r̃)

s(r̃)
=

r̃

2

[
F (r̃)

h(r̃)

s(r̃)
−B(r̃) + 2h(r̃)(A(r̃)− 1)

]
+

1

r̃
(h(r̃)− 1) (5.34)

2F (r̃)P̃ ′(r̃) + F ′(r̃)
[
ρ̃(r̃) + P̃ (r̃)

]
= 0 (5.35)

λ is related to the cosmological constant Λ

Λ =
(λ− 1)

κ
(5.36)

In order to integrate (5.13), (5.14) and (5.23) we need to know the value of h,
s and ρ0 at a certain starting point. To obtain the values we impose regularity
conditions at the center, r = 0. Then one can expand h, s and ρ0 as

s(r) = s0 + s1r + s2r
2 + s3r

3 + · · ·
h(r) = h0 + h1r + h2r

2 + h3r
2 + · · ·

ρ0(r) = ρC + ρ1r + ρ2r
2 + ρ3r

3 + · · · (5.37)

We also need to expand P at the center because ρ0 and P are not related
by integer power.

P (r) = P0 + P1r + P2r
2 + P3r

2 + · · · (5.38)
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5.5.2. Boundary conditions and numerical method

The components of the equations of motion of 2nd kind in Eq. (5.2) are given
by

(t, t) : s− F + κ
s

h

[
1

2

s′′

s
− 1

4

(
s′

s

)2

− 1

4

s′h′

sh
+
s′

sr

]
= 0, (5.39)

(r, r) : h−B + κ

[
1

2

s′′

s
− 1

4

(
s′

s

)2

− 1

4

s′h′

sh
− h′

hr

]
= 0, (5.40)

(θi, θi) : 1−A+
κ

hr

[
1

2

s′

s
− 1

2

h′

h
− h− 1

r

]
= 0. (5.41)

From conservation of the energy-momentum tensor, ∇g
µTµν = 0, we have

F ′(ρ+ P ) + 2FP ′ = 0. (5.42)

Using Eqs. (5.39)-(5.41), we can eliminate s′′ and obtain first-order differen-
tial equations for s(r) and h(r). From Eq. (5.42) with the polytropic equation
of state Eq. (5.18), we can get a first-order differential equation for ρ0(r). We
impose regularity conditions at the center as follows:

s(r) ∼ s0 + s2r
2 , h(r) ∼ 1 + h2r

2 , ρ0(r) ∼ ρc0 + ρ02r
2 . (5.43)

We tune the value of F (r = 0) in order to set s0 = 1 by a time reparametriza-
tion.

The set of first-order differential equations for s(r), h(r) and ρ0(r) with the
boundary conditions at the origin is solved numerically by using the fourth-
order Runge-Kutta method.

5.6. Survey of EiBI Static Star

The solution is completely determined once the density at the center (ρc0 = ρ0
at r = 0) is given, and some of the solutions obtained for the case of κ =
1 and λ = 1 are shown in Figs. 5.1, 5.2, and 5.3. For matter of α = 1 and
β = 2, Figs. 5.1 and 5.2 show how the size (R) and the mass (M) of the star
vary as the central density ρc0 increases. They behave similarly as in the case of
Einstein gravity, but are larger than those in the Einstein gravity. For instance,
the maximum mass at ρc0 = 0.32, beyond which the solutions are presumably
unstable under small perturbations, is about 6.3 times larger. Note, however,
that the size of the star in the EiBI gravity theory decreases more rapidly and
that there exists a maximum central density, ρc0max = (λ/(κα))1/β , as given
by Eqs. (5.12) and (5.18). We also point out that the star in the EiBI gravity
theory becomes bulky: e.g., REiBI ∼ 5.3RGR for the case of ρc0 = 0.1, which
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Figure 5.1: Comparison between EiBI and GR TOV solution.
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Figure 5.4: Thorough parameter survey of polytropic static star solutions.

is probably due to the repulsive nature in the EiBI theory of gravity. Fig. 5.3
shows how the masses and the sizes of the star solutions distribute as the EOS
for matter varies.

We perform thorough parameter survey of EiBI polytropic static stars.
Fig. 5.4 shows the results. For different κ, one can obtain solutions not
by solving the equations of motion but by using the scaling behavior,
Eqs. (5.31), (5.32), and

ρ̃0 = κρ0 , α̃ = κ1−βα . (5.44)

We summarize our survey as follows:

• As α grows, the curves go right up, but far from the horizon.

• As β grows, the curves approach the horizon, but do not touch.

• It seems there is no static configuration inside the horizon.

• Very large star configuration seems to exist in EiBI theory.

It seems there are diverging configurations of polytropic static stars in EiBI
theory. (See Fig. 5.5)
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Figure 5.10: Varying α where mass-radius trajectory crosses the GR
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Figure 5.11: Mass-radius trajectories (κ = 1, α = 10−4 and β = 4/3)

Patterns with varying α (Figs. 5.6 and 5.10), β (Fig. 5.7), and κ (Figs. 5.8
and 5.9).

Figure 5.12 shows the profile of metric functions.
Figure 5.13 shows the “tail” of mass-radius trajectory of EiBI theory. It is

similar to GR.
When the trajectory crosses the causal boundary, Figs. 5.14, 5.15, and 5.16

show the sound velocity limit.
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Figure 5.12: Metric functions F (r), A(r) and B(r) at the point “O" in Fig-
ure (5.11). (κ = 1, α = 10−4 and β = 4/3)
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Figure 5.13: Mass-radius trajectory. (κρCNS = 0.4, α = 2.789 × 10−3 and
β = 2.34)
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6. CONCLUSION

In this thesis, we described the formulations and the numerical methods used to
implement a fully general relativistic code that can be used to simulate a system
of spherically symmetric perfect fluid matter. The accuracy and the convergence
of my numerical code are verified by performing several test problems such as
the relativistic blast wave problem, relativistic spherical accretion of matter onto
a black hole, a TOV star and an OS dust collapse. Spherical blast wave test
shows hydrodynamic part of my code handles discontinuous solution well. From
the relativistic spherical accretion simulation, my code evolve to the stationary
state well and the results and exact solutions are in good agreement. The code
evolve static TOV solution stably for a long time, and the radial pulsation mode
frequencies are in excellent agreement. From the Oppenheimer-Snyder dust col-
lapse, my code is fully tested. The evolution results match the exact solution
well except around the origin and near the dust boundary. It may be due to
the non-zero pressure and boundary effect. We surveyed large parameter space
for TOV stars in EiBI gravity theory. So far there is no static star configura-
tion inside the event horizon, i.e., collapsing star to a black hole can not avoid
r = 0 singularity.

Although my developed code passed all four main tests well, we give sev-
eral comments for further improvement of the code. For the slicing condition,
we considered the maximal slicing only. Polar slicing and other slicing condi-
tions are possible. After some investigations with the choice of coordinate sys-
tems, one can clarify the advantages and disadvantages of the gauge choices.
For the coordinate system choice, I chose 3+1 conformal coordinates with fu-
ture tests and comparisons of multidimensional simulation codes in mind. The
coordinate-transformation skill implemented numerically here will be useful for
testing multidimensional simulation codes. For the flux calculations, I concen-
trated on a couple of successful implementations, namely, Roe and HLLE meth-
ods with an MC limiter. However, I found not much difference in the results
between them. I did not consider many other choices of numerical flux calcu-
lations and limiters. Implementation using other methods is of interest, and I
leave it for the future work.

In the TOV test, I observed the numerical results for the radial pulsation
mode frequencies in excellent agreement with the known ones. However, I also
observe additional small peaks, as can be seen in Fig. 4.10. These peaks are
thought to be caused by the use of a finite-time series in the Fourier transfor-
mation. In OS collapse test, there are deviations from the exact solution at the
center and on the star boundary. The discrepancy also reported in[31], they
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guessed the reason is due to diverging terms near the origin. Finally, I mention
that extension of our code to 3D and incorporating various micro-physics for
matter are necessary to simulate more realistic astrophysical phenomena.



Appendix A. PARTIAL DERIVATIVES

A.1. Determinant of Partial Derivatives

Let us define the determinant of partial derivatives,1

D(A,B)

D(C,D)
≡

∣∣∣∣∣∣
∂A
∂C

∣∣∣
D

∂B
∂C

∣∣∣
D

∂A
∂D

∣∣∣
C

∂B
∂D

∣∣∣
C

∣∣∣∣∣∣ . (A.1)

This determinant (A.1) has following properties,

Property 1

D(A,B)

D(C,D)
= −D(A,B)

D(D,C)
=

D(B,A)

D(D,C)
(A.2)

= −D(B,A)

D(C,D)

Property 2
D(A,B)

D(C,B)
=

∂A

∂C

∣∣∣∣
B

(A.3)

Property 3
D(A,B)

D(C,D)
=

D(A,B)

D(P,Q)

D(P,Q)

D(C,D)
(A.4)

where (C,D) and (P,Q) are complete basis.
Property 3 can be proved using the chain rule of partial derivatives,

∂A

∂C

∣∣∣∣
D

=
∂A

∂P

∣∣∣∣
Q

∂P

∂C

∣∣∣∣
D

+
∂A

∂Q

∣∣∣∣
P

∂Q

∂C

∣∣∣∣
D

,

∂B

∂D

∣∣∣∣
C

=
∂B

∂P

∣∣∣∣
Q

∂P

∂D

∣∣∣∣
C

+
∂B

∂Q

∣∣∣∣
P

∂Q

∂D

∣∣∣∣
C

,

∂B

∂C

∣∣∣∣
D

=
∂B

∂P

∣∣∣∣
Q

∂P

∂C

∣∣∣∣
D

+
∂B

∂Q

∣∣∣∣
P

∂Q

∂C

∣∣∣∣
D

,

1I am grateful to Prof. Shoichi Yamada for helping me to manipulate the partial derivatives
with different complete basis using this definition.
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∂A

∂D

∣∣∣∣
C

=
∂A

∂P

∣∣∣∣
Q

∂P

∂D

∣∣∣∣
C

+
∂A

∂Q

∣∣∣∣
P

∂Q

∂D

∣∣∣∣
C

.

Then the left-hand side of (A.4) is

D(A,B)

D(C,D)
=

∂A

∂C

∣∣∣∣
D

∂B

∂D

∣∣∣∣
C

− ∂B

∂C

∣∣∣∣
D

∂A

∂D

∣∣∣∣
C

and the right-hand side of (A.4) is

D(A,B)

D(P,Q)

D(P,Q)

D(C,D)
=

(
∂A

∂P

∣∣∣∣
Q

∂B

∂Q

∣∣∣∣
P

− ∂B

∂P

∣∣∣∣
Q

∂A

∂Q

∣∣∣∣
P

)(
∂P

∂C

∣∣∣∣
D

∂Q

∂D

∣∣∣∣
C

− ∂Q

∂C

∣∣∣∣
D

∂P

∂D

∣∣∣∣
C

)
=

∂A

∂C

∣∣∣∣
D

∂B

∂D

∣∣∣∣
C

− ∂B

∂C

∣∣∣∣
D

∂A

∂D

∣∣∣∣
C

.

�

A.2. Partial Derivative with Different Complete Basis

Consider two coordinate basis (τ, χ) and (t, r). We can write down the rela-
tion between the two coordinates as

τ = τ(t, r) , χ = χ(t, r) . (A.5)

Then, the infinitesimal change dτ and dχ can be written

dτ =
∂τ

∂t

∣∣∣∣
r

dt+
∂τ

∂r

∣∣∣∣
t

dr , (A.6)

dχ =
∂χ

∂t

∣∣∣∣
r

dt+
∂χ

∂r

∣∣∣∣
t

dr . (A.7)

Now, let us change the coordinate basis to (t, χ). τ and r can be written in
terms of (t, χ) as

τ = τ(t, χ) , r = r(t, χ) , (A.8)

and
dτ =

∂τ

∂t

∣∣∣∣
χ

dt+
∂τ

∂χ

∣∣∣∣
t

dχ , (A.9)

dr =
∂r

∂t

∣∣∣∣
χ

dt+
∂r

∂χ

∣∣∣∣
t

dχ . (A.10)

From (A.6), (A.7), (A.9), and (A.10), we can obtain following relations of par-
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tial derivatives,

∂τ

∂t

∣∣∣∣
r

=
∂τ

∂t

∣∣∣∣
χ

−
∂r
∂t

∣∣∣
χ

∂r
∂χ

∣∣∣
t

∂τ

∂χ

∣∣∣∣
t

, (A.11)

∂τ

∂r

∣∣∣∣
t

=

∂τ
∂χ

∣∣∣
t

∂r
∂χ

∣∣∣
t

, (A.12)

∂χ

∂t

∣∣∣∣
r

= −
∂r
∂t

∣∣∣
χ

∂r
∂χ

∣∣∣
t

, (A.13)

∂χ

∂r

∣∣∣∣
t

=
1

∂r
∂χ

∣∣∣
t

. (A.14)

One can obtain the relations (A.11), (A.12), (A.13), and (A.14) more system-
atically using the determinant introduced in Section A.1.

∂τ

∂t

∣∣∣∣
r

=
D(τ, r)

D(t, r)
=

D(τ, r)

D(t, χ)

D(t, χ)

D(t, r)

=

∣∣∣∣∣∣
∂τ
∂t

∣∣∣
χ

∂r
∂t

∣∣∣
χ

∂τ
∂χ

∣∣∣
t

∂r
∂χ

∣∣∣
t

∣∣∣∣∣∣ 1
D(r,t)
D(χ,t)

=
∂τ

∂t

∣∣∣∣
χ

−
∂r
∂t

∣∣∣
χ

∂r
∂χ

∣∣∣
t

∂τ

∂χ

∣∣∣∣
t

.

∂τ

∂r

∣∣∣∣
t

=
D(τ, t)

D(r, t)
=

D(τ, t)

D(t, χ)

D(t, χ)

D(r, t)

=
D(τ, t)

D(χ, t)

1
D(r,t)
D(χ,t)

=

∂τ
∂χ

∣∣∣
t

∂r
∂χ

∣∣∣
t

.

∂χ

∂t

∣∣∣∣
r

=
D(χ, r)

D(t, r)
=

D(χ, r)

D(t, χ)

D(t, χ)

D(t, r)

= −D(r, χ)

D(t, χ)

1
D(r,t)
D(χ,t)

= −
∂r
∂t

∣∣∣
χ

∂r
∂χ

∣∣∣
t

.
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∂χ

∂r
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t

=
D(χ, t)

D(r, t)
=

1
D(r,t)
D(χ,t)

=
1

∂r
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∣∣∣
t

.
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국문초록

Development of a General Relativistic Hydrodynamic Code in
Spherical Symmetry

구대칭 일반상대론적 유체역학 코드의 개발

자체의 중력 효과를 고려하는 구대칭 완전 유체 전산모사 연구를 위해 일반

상대론적 유체역학 코드를 이 분야 연구자들을 위한 공개용으로 개발하였다. 이
코드는 3+1 ADM (Arnowitt-Deser-Misner) 공식과 등방 공간 좌표를 사용하였
다. 시공간 기하를 구하기 위해 극한값 썰기 (maximal slicing) 조건과 함께 세
개의 제한 방정식을 풀었고, 시공간을 채우는 물질인 유체는 근사 리만 해법을
사용한 HRSC (high resolution shock capturing) 기법으로 오일러 관찰자 시점에
서 풀었다. 이 코드의 수렴성과 정확성을 검증하기 위해 상대론적인 구대칭 충
격파 비교 분석, 블랙홀로 빨려 들어가는 상대론적 구대칭 강착, TOV (Tolman-
Oppenheimer-Volkoff) 별 및 OS (Oppenheimer-Snyder) 붕괴 코드 테스트를 수
행하였다. 특히, 이 코드의 동적 진화 테스트인 OS 붕괴의 경우 해석적인 해

와 결과를 비교하기 위하여 좌표변환을 수치 계산으로 수행하였다. 아인슈타인
의 일반상대성 이론을 넘어서는 변형된 중력이론 중 하나로 최근 제시된 EiBI
(Eddington-inspired Born-Infeld) 이론에서 TOV 별의 해가 일반상대성 이론과
어떠한 차이를 보이는지 살펴 보았고, 그 이론에서도 물질이 붕괴하여 블랙홀을
만드는 경우 특이점이 형성되는지 고찰해 보았다.

주요어 : 일반상대론적 유체역학, 구대칭 수치코드, EiBI 중력 이론

학번 : 2003-30091
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대전에 내려와 있을 때, 아니 그 이전 그 이후에도, 물심양면으로 저를 도와 준

누나에게 그리고 자형, 똑똑한 성빈이, 마음씨 고운 유림이 그리고 귀여운 성호
에게 깊은 고마움을 표하고 싶습니다. 그리고, 형 대신 든든한 직장에서 일하는
내 동생 한석이, 대견하다.
부족한 사위이지만 응원해 주시고, 잘 챙겨주시고, 살갑게 대해 주시는 장모님,

장인어른 감사합니다. 앞으로 더 잘 되는 모습으로 보답하도록 노력하겠습니다.
제가 이 논문에서 코드를 개발했다고 했지만, 컴퓨터의 “컴”자도 제대로 아는

지 아직 모르겠습니다. 하지만 주위에 동료들이 있었기에 여기까지 올 수 있었
습니다. 내 코드를 직접 봐주고 도와줬던 진호에게 진심으로 고맙다는 말 하고
싶다. Jakob, you are my mentor like no other. I’m very grateful for your help!
컴퓨터로 헤멜 때 물으러 가면 척척 도와주는 배태길씨에게도 고마운 마음을 전

합니다.
수치상대론 연구모임을 이끌고 KISTI에 자리를 마련해 주신 강궁원 박사님께

다시 한 번 감사의 말씀을 전합니다. 워킹그룹을 이끌어 오시는 김희일 박사님
멤버인 수일이형, Mew-Bing, 찬에게도 고맙습니다.
서울대를 떠나 온 후 같은 연구실에서 연구하며 지내던 동료들은, KISTI로 내

려오고 오랜 시간이 지나면서 아련한 추억으로만 남았습니다. 하지만 미국에서
열심히 적응하시고 계신 주호형, 연락 주시고 격려해 주셔서 고마웠습니다.
박사과정 동안 제가 제일 잘 한 일이 있다면, 아마 제 인생의 동반자 영이를

만난 것이라 확신합니다. 나와 함께 하는 마음 고맙고, 사랑한다.

입춘에 관악에서
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