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In this thesis, we study extension of the Standard Model through var-
ious symmetries, mainly flavor dependent ones, motivated by problems in
particle physics which cannot be resolved within the Standard Model frame-
work. First, as a solution to the hierarchy problem, we observe supersym-
metry. The origin of the electroweak symmetry breaking scale can be un-
derstood in the context of next-to-minimal supersymmetric Standard Model
with the Peccei-Quinn symmetry. As a minimal setup for hierarchy problem,
effective supersymmetry, a model with the light third generation squarks,
can be considered. The spectrum in the effective supersymmetry can be re-
alized by introducing flavor dependent U(1)" gauge symmetry, under which
the third generation quarks and squarks are uncharged. Such kind of fla-
vor dependent symmetry plays a crucial role in investigating the origin of
fermion mass hierarchies and mixing patterns. Moreover, mixing pattern can
be understood from appropriate parameterization showing intrinsic proper-
ties, such as maximal CP violation. Mixing angles are predicted by flavor
dependent discrete symmetry. Structure based on Dy, group gives Cabibbo
angle 15°, solar angle 30°, and atmospheric angle 45°. These values should
be modified in accordance with the up-to-date neutrino observations, report-

ing sizable 013. In this way, flavor dependent symmetries are expected to be



good candidates for new physics beyond the Standard Model.

F 8 o] : Standard Model, Symmetry, Flavor dependent symmetry, Super-
symmetry, Higgs, Discrete symmetry, Mixing matrix

SHH : 2006-20333
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Introduction

Particle physics is a field studying the fundamental working mecha-
nism of Nature: looking for the fundamental ingredients of matter and their
interactions. Over the last 60 years, such investigations have been based on
quantum mechanics. In quantum mechanics, the physical objects we ob-
serve are described in terms of groups and their representations, the mathe-
matical languages for symmetry. As a result, particle physicists tend to ask
questions like “Why only specific interactions are allowed, or why some
nontrivial patterns appear” and explain them with models in which an ap-
propriate symmetry is imposed. The Standard Model of particle physics is
the most fruitful result of such investigations. It describes the fundamental
particles and their interactions we know today in terms of gauge symme-
tries and their spontaneous breaking. Passing numerous experimental tests,
the Standard Model is believed to be the most successful description of Na-
ture so far. However, there are a number of problems that particle physics
cannot answer yet with the Standard Model. These problems are partly due
to the lack of experimental evidences, and partly of theoretical unclearness.
Presently, Large Hadron Collider (LHC) experiments are expected to reveal
particle physics of very high energy with unprecedentedly high accuracy.

Moreover, rapid developments in observational cosmology give a good mo-



tivation for explaining the past and present of the Universe in the language
of particle physics. As clues for mysteries in particle physics are discovered
in experiments, the importance of model building based on new symmetry

principle is increasing.

1.1 Electroweak symmetry breaking

Even though the Standard Model explains known Nature successfully,
the Higgs boson, the key particle of this model, has not been found yet. As
fermions are put in terms of chiral representations under the electroweak
gauge group, a scalar particle transforming nontrivially under the group is
needed to break this gauge symmetry. It is called the Higgs doublet scalar.
After the Higgs doublet breaks gauge symmetry, there remains a scalar bo-
son which couples to all the Standard Model particles with the strength of
their masses. But the existence of a fundamental scalar gives rise to an-
other theoretically unsatisfactory problem. Electroweak symmetry is broken
around 100GeV. The highest scales we know are the Planck scale(10'8GeV)
where gravity effects become important or the grand unified theory(GUT)
scale(10'°GeV) where electroweak and strong gauge symmetries are uni-
fied. These scales are far above the electroweak scale. If there is no new
physics between them, one has to make an enormous fine-tuning to obtain
the fundamental scalar mass at the electroweak scale when the quantum cor-
rections are taken into account. Many solutions to this hierarchy problem
have been suggested. Among them, supersymmetry(SUSY) is a very plau-

sible candidate because it is the only way to extend the Poincaré group,
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the spacetime symmetry at the base of special relativity. Furthermore, it
may come from superstring theory, one of the prime candidates for quan-
tum gravity. If supersymmetry is broken below 1TeV, the Higgs mass can
be stabilized at the electroweak symmetry breaking scale. One of the prime
motivations of the LHC accelerator has been to search for the Higgs bo-
son and superpartners of quarks or leptons, predicted by SUSY. Recently, a
signal which may be interpreted as the Higgs boson was observed around
125GeV but the superpartners based on minimal setup of SUSY, the con-
strained Minimal Supersymmetric Standard Model (CMSSM), are excluded
to slightly above 1TeV.

On the other hand, the exclusion bounds of the superpartners of third
generation quarks are not so stringent as those of the first two generations,
about 400GeV. Moreover, these particles give the main contribution in sta-
bilizing Higgs mass due to their large Yukawa couplings with the Higgs.
Then, if SUSY is broken in such a way that only superpartners of third gen-
eration quarks are below 1TeV, it can still solve hierarchy problem but is
not excluded by the recent LHC results. This idea is called effective SUSY,
or natural SUSY. One way to realize this idea is assuming an extra U(1)
gauge group, U(1)" under which quarks, leptons and their superpartners ex-
cept those in the third generation are charged. SUSY is broken in hidden
sector which is also charged under U(1)'. Then SUSY breaking is trans-
ferred to the Standard Model particles and their superpartners though the
U(1) interaction. The point is that only the third generation particles are not
charged. For this reason, SUSY in the third generation is broken only though

highly suppressed quantum effects. From this flavor dependent U(1)’ medi-



ation for SUSY breaking, the mass spectrum of superpartners in effective
SUSY is naturally obtained. On the other hand, if the recent 125GeV bump
is the Higgs boson, the next to the MSSM (NMSSM) may be favored as
it can have a heavier Higgs mass than in the MSSM. Moreover, NMSSM
Higgs has a strong relation with the Peccei-Quinn symmetry, solving the

strong CP problem.

1.2 Flavor structures of quarks and leptons

The flavor dependent symmetry plays an important role in explaining
another problem of the Standard Model. The quark and lepton masses are
generated by the Yukawa couplings multiplied by the vacuum expectation
value of the Higgs doublet. So the mass hierarchies in the quark and lep-
ton sectors come from the different magnitudes of the Yukawa couplings.
However, the Standard Model does not give a reason why the couplings
should be as such determined experimentally. On the other hand, the flavor
violating processes are described by the mixing matrices, the CKM matrix
in the quark sector and the PMNS matrix in the lepton sector. These two
have very different patterns: the PMNS matrix shows a very strong mixing
whereas the CKM matrix shows a very small mixing. The origin of such
different patterns is not explained in the Standard Model. Furthermore, if
all three real mixing angles are nonzero, one complex phase cannot be re-
moved and then weak interaction violates CP symmetry. The experimental
discovery of the weak CP violation in quark sector proves that all three real

mixing angles are nonzero and the CP phase has been determined to ~ 90°.
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Such mixing matrices are related to the original patterns of Yukawa cou-
plings, which form 3x3 matrices before diagonalization to the mass eigen-
states. Therefore, to see the unexplained aspects of the flavor structure of the
Standard Model particles, the structure of the Yukawa couplings should be
investigated. The best approach might be considering the flavor dependent
symmetry extended also to the Standard Model singlet scalars. The role of
the singlets is to implement this symmetry structure in the full theory real-
ized at high energy, for example, at the GUT scale ot Planck scale. Then,
the Yukawa couplings of the Standard model can be explained by powers
of these vacuum expectation values suppressed by a higher scale such as
the Planck mass, as suggested by Froggatt and Nielsen. Unfortunately, we
do not have sufficient information at present to know these completely. For
example, the chiral nature of the Standard Model allows only left-handed
fermions to participate in the weak interaction so that the mixing matrices
contain the information on left handed fermions only. Thus, the flavor struc-
ture cannot be understood within the Standard Model framework. So even
though the basic strategy is apparent, each model faces uniqueness problem,
i.e. we cannot select a unique model among the various possibilities.
Therefore, at this stage, a serious consideration of hints from the var-
ious flavor structures is welcome. The fact that the mixing angle between
the second and the third families in the PMNS matrix is almost 45° en-
ables the model builders to consider several discrete symmetries. The most
cited example is the so-called tri-bi maximal mixing, which can be easily
explained by various discrete symmetries such as the permutation groups

S3,84 or their subgroups like A4. On the other hand, another consideration



can be made. For example, if the lepton sector has some type of a discrete
symmetry, the quark sector may be described by such a symmetry. More-
over, there is a numerical relation, the quark-lepton complementarity, which
states that the sum of the corresponding mixing angles in the CKM and the
PMNS matrices is about 45°. Simplifying the mixing angles between the
first two generations in the quark and lepton sectors as 15° and 30°, respec-
tively, a model based on the D, dihedral group can be constructed. It is
less close to the experimental values than the values obtained from tri-bi
maximal mixing. But the (13) element of the PMNS matrix, which is pre-
dicted to be zero in almost all discrete symmetry models including the tri-bi
maximal mixing and ours, seems to be nonzero . So, corrections to these
symmetry patterns are essential, and our model may have the advantage of
having room for corrections compared to the tri-bi maximal mixing. Tak-
ing the quark-lepton complementarity into account, such corrections may
be governed by A = sin 6, the expansion parameter of the CKM matrix.
The fact that A may be a good expansion parameter for both the quark
and lepton mixing angles provides a possibility of model building with the
Froggatt-Nielsen mechanism. In this case, A is given by singlet vacuum ex-
pectation values suppressed by the Planck mass scale. Moreover, the phase
in the mixing matrix can be explained by the vacuum expectation value of
singlet(s) containing the phase. So, the CP violation in the weak interaction
can be determined by this spontaneous symmetry breaking mechanism of
the flavor symmetry in a complete theory. But in the Standard Model frame-
work only, the phase can be moved here and there or even be separated. So

one may ask a question of which parametrization of the CKM matrix is best.



Interestingly, if the phase of the (31) element is moved to be combined with
that of the (13) element, this phase is 90°, the angle o which can be seen in
the Jarlskog’s triangle; in this sense the CP violation in the weak interaction

1s maximal.

The current issues in particle physics cannot be separated from each
other. If these issues are connected under the symmetry principle, one of the
most important wisdom of quantum mechanics, particle physics can have
more unified picture describing Nature. For a model in particle physics to
be the correct description of Nature, it should explain the microscopic world
that collider experiments can prove. But this is not enough. Also it should
explain the macroscopic world which is the subject of cosmology and as-
troparticle physics. For example, dark matter requires some special type of
discrete symmetry forbidding the decay of dark matter. Many new physics
models like supersymmetric extensions or extra dimensions contain such
symmetries. Therefore, any new physics model should not contradict to cos-
mological facts, for example, the dark matter relic density. Flavor structure
of the quarks and leptons are related to the baryon asymmetry in the Uni-
verse. High energy physics beyond the Standard Model could be used to
explain inflation, exponential expansion of the early Universe. Even though
cosmological issues are not treated in this thesis, it has great importance in
a view of new physics. At present, ground based experiment has not been
finding direct evidence of new physics, just confirming the Standard Model

even though indirect evidences such as muon g — 2 can be controversial. On



the other hand, dark matter and baryon asymmetry provide direct and strong

evidences for new physics beyond the Standard Model.

The thesis is organized as follows. First, we briefly review various as-
pects of the Standard Model in light of symmetries and their breaking. Then
we discuss unsolved problems in the Standard Model, mainly in a theoret-
ical point of view. Among these problems, we consider two issues: under-
standing electroweak symmetry breaking and flavor structure. Elctroweak
symmetry breaking will be considered based on supersymmetry. Especially,
for superpartner spectrums consistent with experiments, we introduce fla-
vor dependent gauge symmetry through which supersymmetry breaking is
transferred. For flavor problem, we investigate the structure of mixing matri-
ces and construct the model based on non-Abelian discrete symmetry. Then

we conclude.



Al 2 %

The Standard Model of particle
physics

2.1 Spontaneous breaking of electroweak gauge

symmetry

Particle physicists have made models to describe Nature in light of
symmetry principle[1]. Many models aim to show physics behind phenom-
ena with a simple setup. However, such simplifications are often consis-
tent with experimental results in very high accuracies. The Standard Model
(SM) of particle physics is one of such examples. It describes particles and
their interactions in terms of the SU(3). xSU(2), xU(1)y gauge group. The
theory of the strong interaction, Quantum Chromodynamics(QCD) is de-
scribed by the SU(3), gauge group[2]. Fermions charged under this so par-
ticipate in the strong interaction are called quarks and others are called lep-
tons. Since SU(3) gauge theory with quarks has asymptotic freedom[3], the
farther the quarks are separated, the stronger the strong interaction. On the
other hand, electromagnetic and weak interactions are described by spon-
taneous breaking of the SU(2);, xU(1)y gauge group[4]. One essential fea-
ture of this electroweak gauge theory is chirality of fermions, i.e. left- and

right- handed parts of fermionic matter are not equally charged under the

9



SU2),xU(1)y gauge group. Since Dirac mass of fermion can be interpreted
as a coupling between left- and right- handed components, it is impossible
to give the Dirac mass of chiral fermion in the theory of fermionic mat-
ters only. Therefore, gauge charged scalar should be introduced to make
(scalar)-(left handed fermion)-(right handed fermion coupling). In the SM,
the left handed fermions are doublets(fundamental representation) and the
right handed fermions are singlet under the SU(2),, as tabulated in Table
1. Therefore, as a simplest choice, SU(2); doublet scalar with appropri-
ate U(1)y charge can be chosen. This scalar is called the Higgs doublet[6].
When the Higgs doublet has vacuum expectation value(VEV), electroweak
gauge symmetry is spontaneously broken, and only electromagnetic interac-
tion U(1)em remains as a long range force. At the same time, fermions obtain
Dirac masses. Table 1 lists how quarks and leptons are charged under the
SM gauge group. Each fermion in the table has three copies: three u—type
quarks u,c,t, three d—type quarks d,s,b, three charged leptons e,u,T and
three neutrinos V.,V V¢. In this way, the SM fermions form three genera-
tions.

Higgs scalar H = (H,H") is SU(2); doublet and has U(1)y hyper-

charge 1/2, to make the gauge invariant Yukawa coupling,

— MG U + 0 dH + VT epH 2.1)

where A = ic,H". The quarks and leptons obtain masses with Higgs VEV
(0,v/V2).

Spontaneous breaking of gauge symmetry makes the gauge boson, spin-

10



Matters | SUB). SU@2), U(ly
q = (ur,dp) 3 2 %
Uy 3 1 —%
dg, 3 1 !
1= (vp,er) 1 2 —1
e 1 1 1
H 1 2 :

3% 1: The SUB3). xSU2). xU(1)y gauge group charges of the SM fermions

and Higgs doublet.

1 particle in the adjoint representation under the corresponding gauge group,
massive. Since the gauge boson carries the fundamental force described by
corresponding gauge group by being interchanged between matter currents,
the range of the force is getting shorter when the gauge boson get massive.
Kinetic term and gauge interaction of matter are simply written by gauge co-

variant derivative. When Higgs has VEV (0, %), covariant derivative term

of the Higgs

e S gz 7H

u

0 ’ 2

%




For leptons gauge covariant derivative is given by

[iDY'l + eriDyY'er
, T 1 VL
- ( v, e )l(a‘u—lgEAfu—lgl(—E)B‘u)'w
er

(2.3)

so gauge boson coupling to the lepton doublet / is written in a matrix form

£B, 5(Al—iA?
27H 2( M /Il'l) (2 4)
) - %AZ - %Bﬂ

Off diagonal terms represent the W bosons in the weak interaction, W+ =
% (A Fl, F iAZ), propagating between the charged currents with the coupling §. Since
neutrino is electromagnetically neutral, (11) element does not contain photon there-

fore it should be the Z boson. Defining weak mixing angle by

/

8

8 .
cosOy = ———, sinfy = —— 2.5)
/g2 +g/2 /g2+g/2
two neutral gauge bosons, photon A and weak Z bosons
Ay = cosBy B, +sinByA>

. (2.6)

Z, = —cos GWAf, +sinBy B,
have couplings e = ﬁ and ﬁ, respectively. Here, charges are given by

Qem = T3 + Y for electromagnetic interaction and Qz = 73 — Qe sin® 0w for Z bo-
son interaction. They give right charges to the quarks. The electromagnetic charges

are +2/3 for the u—type quark and —1/3 for the d—type quark.

12 -
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2.2 Gauge anomaly and cancelation in the Stan-
dard Model

The chiral nature of the SM fermions may give rise to serious problem. If the
gauge symmetry is explicitly broken, unphysical states with negative norm cannot
be eliminated. This contradicts to the quantum description based on unitarity. By
unitarity in quantum mechanics, we mean the norm of physical state, interpreted as
total probability, can be normalized to 1 before and after time evolution generated

by S-matrix S satisfying STS = I. More generally this condition can be written as

(Al11B) =) _(AlsTIC)(C|S|B) 2.7)
C
When A = B, the LHS is the norm before evolution, and the RHS is that after
evolution. Since RHS is always positive, negative norm state evolves into positive
norm state. So, the norm before and after the evolution are normalized to -1 and 1,
respectively, and it is impossible to normalize both sates equal to 1 simultaneously.
Then unitarity is violated.

In the gauge theory associated with the algebra [84,8p] = fgﬁ&{, decoupling
negative norm states from physical process was shown by Faddeev and Popov[5].
They interpreted the gauge symmetry as redundancy. Ordinary symmetry transfor-
mation just moves one state to another in the same Hilbert space. On the other
hand, gauge transformation moves a set of states in a Hilbert space into another set
of states in another Hilbert space which is equivalent to the previous one. To treat
one set of Hilbert space only, we fix the gauge by imposing appropriate conditions

FA(0;) = 0, where ¢; is gauge charged field and A is index for gauge conditions.

13



Then the path integral for the fixed Hilbert space is given by

Do

e 50~ / DOS(FA(0)) Db Dc%e S0+ baBaF)e?]
Veauee (2.8)

- / DODB Dby De 150 BAFA O+ ba BuF )]

where ¢* are the fermionic and B4 are the bosonic ghosts. The new action Sy +
i [ BAFA(0) + [ ba(8aF*)c® = Sp+ S is no longer gauge invariant but has a rem-

nant of gauge symmetry which was found by Becchi, Rouet, Stora, and Tyutin[7]:

5¢i = —iSCuS(x(]), by = —€By,
| 2.9)
3c* = —iESCBcafI?Y, 8B4 =0

where € is a Grassmann variable.
This BRST symmetry has an important property, 8 = 0, called nilpotency.
The fact 8(byF4) = ieS’ implies that for BRST being the symmetry of the the-

ory, the change of physical amplitude (y|y’) under the change of the gauge fixing

condition 8F4,

(wliedS'|y') = (WI[Q,b48F" ] |v) (2.10)

( Q is the BRST generator) should vanish. Therefore, physical state |phys) satisfies
O|phys) = 0. However, the state annihilated by Q (Q|y) = 0: such state is called
BRST closed.) in general has the form of |y) = |y') + Q|x), where |y) is arbitrary
state and |y') is the state annihilated by Q but not of the form of Q|y). Then, the
BRST closed states modulo Q|y) are indistinguishable as they have the same norm
(by nilpotency) and behave in the same way (by nilpotency and symmetry condition

[0,H] = 0 where H is the Hamiltonian). Therefore, the physical state should be
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ir(p) Jr(p)

Jr(=p—4q) A\ & Ji(-p—q) Ak

k+q

-p

i7.(q) Jz.(q)

219 1: The triangle diagram for gauge anomaly.

only one of such states, say,

QO|phys) =0, but |phys) # Q|x) (2.11)

(closed but not exact). Note also that [Q, H] = 0 or, equivalently, [Q,S] = 0 implies
that Q(S|phys)) = 0. Then S|phys) also can be written in the form of [y') + Q|x),
but Q|x) part, which has zero norm, eliminates unphysical intermediate states in

the scattering amplitude:

(A;phys|STS|B; phys) = Z (A;phys|ST|C)(C|S|B;phys)
¢ (2.12)
=) (A:phys|S|C; phys)(C: phys|S|B; phys)
C

Then with the subspace of Hilbert space containing physical states only, the theory
is unitary.

However, in the chiral gauge theory, gauge symmetry is broken in the quantum
level[8]. Consider the massless left handed fermion described by the Lagrangian
YD, ¥ P y. Then the triangle diagram shown in Fig. 1 has the term

i(k+p)uy!

tr(iwta)PLPLm = tr(iy”ta)PL

ikt p)at

(k+p)P—ie @13

15



where o be the gauge group generator. Note that one P;, comes from the vertex
and another P, comes from the propagator. They combine to make one P;. So,
the same diagram comes from anomalous theory with the Lagrangian yD,y'PLy +
Yo, ¥ Pry and it breaks the gauge symmetry as d,(Tj*;¥jP) ( j* is the current
couples to the gauge boson) has extra term absent in the Ward identity, the relation
between n—point functions representing gauge symmetry.

To obtain gauge anomaly, we may calculate the triangle diagram. On the other
hand, anomaly term can be defined by 4 = QI" where I is quantum action. if 4 =0,
quantum action is gauge invariant, so it is not anomalous. From nilpotency, we have

0A4 = 0. In the language of differential form,

QA= —dw—[Aw]., QF =[Fw], Qw=—w? dQ=-0d  (2.14)

where A is gauge field one-form, F = dA + A? is field strength two form and w is
the ghost, as defined in [8]. Defining characteristic class P, = trF", we have dP, =
ntr(dF)F"~! = ntr(FA—AF)F"~! =0 (since DF = (d+A)F = dA+AF —FA =0)
so P, = dQ»,—1 locally where

Qn-1(A,F) :n/oldttr[AF(tA)”l] :n/()ldtt"ltr[A(F+(t_ 1DA2)-1).

(2.15)

Moreover, since QP, = Q(dQzy—1) = —dQ(Q2m—-1) =0, 00sp—1 = a’QiW2 locally

where

042 (mAF)=n(n—1) /0 l dt(1—1)tr[vd(AF (tA)"2)] (2.16)

for arbitrary parameter v (originated from the gauge transformation). Then, anomaly

4 in 2r dimension is proportional to [ Q) as Q [ Q). = 0. This can be checked
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from 0 = Q(QQ0sr+1) = Q(dQ}) = —d(0Q},) so QQ} = dal_ | locally for arbi-
trary océr_l. (The superscript 1 implies that it is linear in v.) Explicitly, when we
express QI'[A] = = [w® ), the anomaly with the left-handed field
only is given by

1

i
Ak = e, (bl — L ABag.AlJ")D

o 2.17)

R
ofy
where DﬁBY = trigf(gty). For the right handed field, anomaly has the opposite sign.
So, if the theory is vector-like, i.e. left- and right- handed fermions are equally
charged under the gauge group, they are canceled with each other, gauge symmetry
is not anomalous. However, since the SM fermions are chiral under the SM gauge
group, we should check whether the SM is anomalous.

Consider anomaly of the SM within one generation. When the generators of
the group for some representation R, ¢X are equivalent to those in the complex

conjugate representation, in the sense that (ite)* = S(ite)S~!, DR

Ry =0.SUQ) is

the example of it, so triangle diagram with SU(2)-SU(2)-SU(2) vertices vanishes.
SU(3) is not such a case, but since the SM quarks are vector-like under the SU(3),,

SU(3)-SU(3)-SU(3) triangle diagram also vanishes. Other cases are given as fol-

lows:

SU(3)—SU(3)—~U(1): ZY:—%—é+§—1:0

SU(2)—SU(2)—U(1): ZY:3(—%)+%:O

Uu(l)-u ZW +3( ) 43(— 3) +2(;) +(=1*=0

graviton — graviton — U(1 ZY 6—7 )+3(3 )—1—3(—7)—5—2(;)4—(—1):0.
(2.18)

Therefore the SM is anomaly free with the help of choice of U(1)y charges of
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the quarks and the leptons. To look for other anomaly-free U(1) assignments [9],
suppose we assign U(1) charges a,b,c,d, and e to g,u%,dg, [, and e, respectively.

The conditions

SUB)-SUB)-U(1): Y Y =2a+b+c=0
33

SUQ2)-SU@2)-U(1): > Y=3a+d=0
2

U()-U()—U(1): Y ¥ =6a"+3b+3+2d°+¢ =0

(2.19)

graviton — graviton — U (1) : ZY =6a+3b+3c+2d+e=0

have two solutions b/a = —4,c/a= —2,d/a=—4,e/a=—6and b= —c,a=
d = e = 0. The former corresponds to the U(1)y in SM. Two U(1)s are not compat-
ible since they have U(1)-U(1)-U(1)’ and U(1Y-U(1)’-U(1) anomalies. Anomaly-
free extra U(1)’ compatible with the U(1)y requires more chiral fermions which are
not present in the SM. Suppose such fermions are not charged under the SM gauge

group. Then, for the SM particles, anomaly-free conditions are given by

SUB)=SUB)-U(1): Y Y =2a+b+c=0
33

SUQ2)-SU@2)-U(1): > Y =3a+d=0
2

U()=U()=U(1): > ¥ =6a+3(—4)b+3(2)%c+2(-3)*d +(6)’¢ =0
U()=U()=U(1) 1 > ¥Y?=6a"+3(—4)b> +3(2)c? +2(—3)d” + (6)¢* = 0.
(2.20)

The solution to these conditions is B—L,a=—b=—c=1/3,d = —e = —1. Of
course, we may assign U(1)’ to each generation differently. Then there can be more

possible anomaly free U(1)'s.
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2.3 Three-flavor model with mixing

The quarks and the leptons discovered so far form three generations[10]:

. ur, VeL
Ist generation : , UR, dg, ) €R
dr er
. CL V,uL
2nd generation : , CR, SR, , MR 2.21)
SL ML
) 1 VL
3rd generation : , IR, bR, » TR
bL TL

Each of the quarks and the leptons obtains mass from the electroweak symmetry
breaking, and each mass is proportional to the Yukawa coupling. The lepton masses

are easily defined by pole of the propagator:

m, = 0.511MeV, m, = 105.6MeV, m; = 1777TMeV (2.22)

On the other hand, the quarks do not propagate as isolated particles. They are con-
fined inside hadrons(mesons or baryons) due to the asymptotic freedom of the
strong interaction. One way to estimate the quark masses is dynamical breaking
of chiral symmetry. Suppose we have three massless quarks, u,d, and s only[11].
In this case, left- and right- handed quarks are decoupled since they couple only
through mass term. Gauge interaction is (left handed)-(left handed)-(gauge boson)
and (right handed)-(right handed)-(gauge boson) couplings. Therefore, the theory
is described by the Lagrangian g iD,¥'qr. + griD,¥'qgr Where g = (u,d,s) and it is

invariant under chiral rotation,

a a

~— A ~—A
qr—exp(i)_ =07)qr, qr — exp(iy  —-6R)gr, (2.23)

a a
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where A? are SU(3) generator for fundamental representation, Gell-Mann matrices.

This is equivalent to the invariance under

q— exp (i > %(96 + ef‘ws))q (2.24)

a

where 0y /4 = 07, 4-0g with the convention Py = %(1 +7s). By quark confinement,
SU(3)4 generated by (A?/2)ys is the broken and only SU(3)y generated by (A?/2)

remains [12]. To describe this in detail, we can parameterize the quark triplet g as

q(x) —eXp( leZé“ ) (2.25)

With (Gg§) = v and (§ysG) = 0, spontaneous symmetry breaking SU(3), x SU(3)g —+SU3)y
occurs and &(x)? accompanied with the eight broken symmetry generator are inter-
preted as the Goldstone bosons. For effective Lagrangian, we can use the fact that

it is always possible to find out &' such that [13]

exp(izg(‘(/+9§lﬂ5)exp< leZ & )
:exp(—iwza:);af;’“(x))exp(iza:7;9“).

(2.26)

Then, from

~ M, Mo Mo
exp(zza:ﬂ ) (—12 § ) :exp(—z;zﬁ (x))exp(zza:ze )
exp(iZ—G“) ( Z § ) exp(i;zﬂﬁ’“(x))exp(i; %9“)

a

(2.27)

we obtain unitary, unimodular matrix

x) = exp (i > g (x)%“) : (2.28)
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which transformations like

M M
U'(x) = exp(zz 79“R>U(x)exp(—12792) (2.29)
a a
when the Goldstone bosons transform &(x) — &' (x). Unitarity of U (x) implies that
the Goldstone bosons cannot have the mass term and only described by the deriva-
tive terms like —(1/4)F?Trd, Uo*U" where F is decay constant of the meson.

Therefore, Goldstone bosons are interpreted as light mesons,

Lno_;'_ﬁno n+ K+
ZE‘?()‘): Q o L0y 10 KO E\@E.
— 2 F v T En F

e RO _\/gno

(2.30)

However, the quark masses break SU(3); xSU(3)r explicitly and give the masses

to the light mesons as

m, O 0
aMaq=Ge VBIE L o, 0 e VENBIF (2.31)
0 0 my

then meson masses satisfy following relations,

4y

m72t+ = mio = ﬁ(mu"_md)

4y
m%ﬁ = ﬁ(mu—kms) "

5 4y (2.32)

mKO = ﬁ(md+ms)

4v 1
m1210 = ﬁg(mu+md—|—4ms).
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Comparing with the measured values of meson masses, F = 184MeV, and v =

255MeV, light quark masses can be obtained. The measured values are

my =2.5708(1.7-3.1)MeV my =5.0"57(4.1-5.7)MeV
(2.33)

ms =3.8709(3.0—4.8)MeV
Such quark masses are called current quark masses. They are distinguished from
constituent quark masses, in which the energy of ‘cloud’ from the gluons and the
virtual quarks are taken into account. On the other hand, masses for heavy quarks,
quarks heavier than confinement scale v, should be calculated taking perturbation
effects into account in addition to non-perturbation effects described above. Heavy
quark effective theory(HQET)[14] is representative theoretical tool. Measured val-
ues of the heavy quark masses are given by

me = 1.29700(1.18 — 1.34)GeV, my, = 4.191)eMeV

(2.34)
my =172.9£0.6£0.9GeV.

Such quark masses come from diagonalization of complex 3x3 Yukawa cou-
plings. Let 9 be Yukawa couplings for U = (u,c,t) and D = (d,s,b). Then they

are diagonalized as

LR, = 9", LyYR, =91 (2.35)

where L, 4,R,, 4 are 3 x 3 unitary matrices and 97 ud gre diagonalized matrices. Equiv-
alently, 92 is diagonalized as 92 = RYTYR" = Ly "L". In the case of neutral
currents, Up¥Ur, UrYUg, DY Dy, and DgY'Dg, unitary matrices L, 4, R, q does

not appear. However, for charged current in the weak interaction mediated by W
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boson, one combination of these matrices

Uv'D = Uy'L,L,D (2.36)

appears. Chiral nature of the weak interaction prevents R, from observables.
This combination of unitary matrices rotating left handed fermions is called the
Cabibbo-Kobayashi-Maskawa(CKM) matrix[15]: Vckm = LMLZ.

One important feature of the CKM matrix is that it has one unremovable
phase. This is the source of CP violation[16] in the weak interaction. Under parity

and charge conjugate operations,

Py(1,%) = Py, —3)
C:y(t,%) = V' (1,9), C=iPY,

(2.37)

then

CP - y(1,%) B Py, —%) SV (1,-3) = —i Py (1,—7) (2.38)
and

CP:V™H(1,X) = Wa (£, X)W (1.5) = =V, (1, =X) = = (t, —X)YuVa(t, —3)

AT, X) = W (1, X)W (1,X) = —A, (1, —X) = =W (1, —X)Yu¥sWa(t, —X).
(2.39)

Therefore the interaction

aV, (6, )V 7H(1,X) + bA; (1, X)AH(t,%) 4+ ¢V, (1, X)ATH(t,X) + c* A (1,X)V (1, %)
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transforms to

aV7H(t, =XV, (t,—X) +bA™H(t,—X)A; (1,—%)

+cVTH(t, —X)AS (1, —X) + AT (, =XV, (1, %)

under CP. Here, CP is violated unless c is complex. In fact, CP violating phase can-
not be removed when the number of generation is more than three. CKM matrix
in n generations is complex nxn matrix so it has 2n> real parameters. But unitar-
ity conditions reduces n*> parameters. 2n phases of u— and d—type quarks can be
absorbed by field redefinitions, but overall phase is irrelevant so 2n — 1 parame-
ters are reduced. Then the total number of real parameters in the CKM matrix is
(n—1)2. Among them, (1/2)n(n— 1) parameters are mixing angles. Remaining
(1/2)(n—1)(n —2) parameters are the unremovable phases. For three generations
(n = 3) only one CP phase remains. Three mixing angles are parameterized by Eu-

ler angles. The conventional parametrization comes from Chau-Keung-Maiani[17],

C12€13 S12€13 sp3e”1®
—§12€23 — €12523513€0  c1aco3 — s12523513€0 syzc13 | - (2.40)
i S
512823 — C12€23813€"°  —C12823 — §12€23513€"° €23C13
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Al 3 %

Problems in the Standard Model

3.1 Massive Neutrinos

In the SM, neutrinos[ 18] are massless. However, the neutrino oscillation, gen-
eration changing effect of the neutrinos, implies that they are massive, and mix-
ings in the lepton sector appear. The charged leptons are diagonalized as i; =
L;ym;R; whereas neutrinos are diagonalized as iy, = LymyRy for Dirac mass and
my = LVmVL\T for Majorana mass. Then the mixing matrix called Pontecorvo-Maki-
Nakagawa-Sakata(PMNS) matrix[19] is defined by Vpymns = Lllj,.

For simplicity, suppose L; = I and consider the propagation of the massive
neutrinos in the vacuum, neglecting the medium effect. The flavor basis |vq) is
the superposition of the mass eigenstates |v;) with the coefficients provided by the

PMNS matrix elements,
Vo) = > Vailvj) G.1)
J

where the subscript o indicates e, u,T, and j runs from 1 to 3. The probability am-
plitude of observing |v/) after the propagation in spacetime interval (7, L) of |vq)

is given by
A(Vo = Vo) = > VeV ie WETPiL) 3.2)
j
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and the probability P(Ve — Vi) is just |[A(Ve — Vo )|%,

P(Vg = Vo) 2 P(Ve, — Vo)
3.3)
Am? (
= 8oor — 2|Vas | (Baw — [Vars ) (1 e 21;1L>

which holds in the limit Am%3 dominates the neutrino oscillation. Therefore, the

survival of the electron type neutrino is given by
2 2 Am3,
P(Ve = V,) 21 =2|V|"(1 = |Ve3]") | 1 —cos TL (3.4)
p

which is used in the Double CHOOZ, Daya Bay and RENO experiments.A similar
expression can be written for P(v, — V), used in K2K and MINOS experiments.

On the other hand, the appearance is given by

~ 2 2 Amgl
P(Vy(e) = Ve(u)) = 2|Via|*|Ves|"(1 —cos FL)

|V |2 3.5)
u3 2v 2 2
=2 PV A

1— |Ve3|2 (| €3| ’ m3l)

where P?(|V,3|?,Am3,) indicates the probability of 2-neutrino transition, v, —
(SatmVyu + Cam V), used in MINOS experiment. Similar expression for P(v,, — Vz)
is used in OPERA.

When the neutrino source has a sizable dimension AL and the energy resolu-
tion of detector is AE, we integrate over the region of neutrino source and energy
resolution function. Then, a large phase AZLEIL in the argument of cos is averaged

over and the average probability is given by

P(Vo = Vor) = P(Vo = V) Z Ve 1 ‘Vaj‘z (3.6)
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Especially, for the case of o = o = e, the averaged probability is

P(ve = Vv,) =PV, —V,)
3.7)
> Vsl * + (1= [Vea ) 2PP (Ve — V)

where

P (Ve = V,) =PV, = V,)
3.8)

1 A 2 (
=1- 3 sin® 260501 (1 — cos %L),

which has been used in the KamLand experiment.

The solar neutrino angle 65, = 01, can be determined from the solar neutrino
flux observation, for example, in the SNO and the Super-Kamiokande experiments
or from the detection of V, neutrinos emitted from the nuclear power reactors in the
KamLand. The atmospheric neutrino angle 8,1, = 6,3 measurement can be made
by observing the atmospheric neutrino, the product of cosmic ray interaction in the
atmosphere, in the Super-Kamiokande, or product from accelerator experiment, for
example, in the K2K and MINOS experiments. Finally, the deviation from zero
of Vi3 is determined by observing P(V, — V.) in the CHOOZ experiment, and
P(v, —V,) in the K2K experiment.

As shown above, neutrino oscillation in vacuum shows mixing angles and

absolute values of mass square differences,

mlzj = |m3 — m?|. On the other hand,
when neutrinos propagate through matter, v, interacts with electrons in matters via
charged(W boson exchange) and neutral(Z boson exchange) currents, whereas v, ;
interact only via neutral current. Such matter effect[20] enables one to know sign
of m% — m% > 0. Therefore, what we know about the neutrino masses are Amg, =
m% - m% and Amgy, = \m% - mﬂ A > Amgg) but we do not know whether m3

is heavier(normal hierarchy) or lighter(inverted hierarchy) than m;.

The neutrino masses are known to be smaller than 2eV[21]. One may wonder
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why the neutrino masses are very small compare to the quark and lepton masses.
Simple modification of the SM just by adding neutrino Yukawa coupling 9V IvH
does not explain this satisfactory. On the other hand, we can obtain very small
mass using two preexisting scales. We already have the electroweak scale, typically
represented by Higgs VEV v = 246GeV. Another higher scale would be Planck
scale, where the gravity becomes important. However, lower scale can be chosen
by introducing heavy neutrinos N and imposing Dirac mass of vector-like fermion
MN; Ng + h.c or Majorana mass, MN¢N. They can be much larger than electroweak
scale. As the simplest case, suppose we consider the minimal number of degrees
of freedom and do not think of the gravity effect. Then SM singlet fermion with
the Majorana mass can be taken. With these two scales, say, high scale (Majorana
mass here) and intermediate scale(electroweak scale), much smaller scale can be
obtained from (intermediate scale)z/(high scale). This can be realized through see-

saw mechanism model[22],
_ - 1 _
(Y)isliNH + FM1N¢INy. (3.9

Note that the number of heavy neutrinos need not be the same as the number of the

lepton generations, 3. In this model, the mass term in the (v, N) basis is given by

03x3 mp
(3.10)

T
mp, M

where mp = v9"V. This mass matrix is diagonalized by (3+N) X (34 N) (N is the

number of heavy neutrinos N) unitary matrix

Bys — ympM~2m}) myM~!
(3.11)

~1,,T Lpg—1,T -1
—M~"my, Inxn — M~ mpmpM
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and the mass eigenvalues are given by

—mpM~'m} 0
(3.12)
0 M+ Y (M mbmp +mhmpM ")
The submatrix my, = —mpM ’lmlT) is of the form discussed above, so naturally ex-

plains tiny neutrino masses. Then, how two different scales can exist? Usually, one
of them is what already known: in the case of seesaw mechanism, electroweak scale
v corresponds to it. Another scale comes from symmetry breaking scale. The mass
in the nonrenormalizable form (intermediate scale)z/(high scale) implies that tree
level mass is forbidden by symmetry principle. The basic idea of the seesaw mech-
anism is that, abnormally small neutrino mass is tiny breaking effect of ‘accidental’
symmetry which holds in the renormalizable interactions. By making neutrino mass
Majorana, we can break lepton number conservation. Therefore, Majorana mass of
heavy neutrino N is the scale where global symmetry for lepton number conserva-
tion is broken.

If neutrinos are massless or degenerate, PMNS matrix is just the identity by

redefinition of the fields. However, the measured values are given by [23]

7.05 x 107%eV? < Am?, < 8.34 x 10 7eV?

0.25 < sin’0;, < 0.37

2.70 x 1073eV? < |Am3,| < 2.75 x 10 3eV? (3.13)
0.36 < sin’0y3 < 0.67

sin® 013 < 0.035(0.056) at 90% (99.73%) C.L.
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with the following BF values

(Am3,)pr = 7.65 x 10 e V2,

(sin012)pr = 0.304,
(3.14)
Am3,|)ar = 2.40 x 10 3eV?,
31

(sin®023)pr = 0.5.

Note that the neutrino mass in the seesaw mechanism is Majorana mass,
(my)i;jV$v ;. By integrating out heavy neutrinos N, it is effectively (1/M)(LH)(LH )
where M is typical mass scale of heavy neutrino Majorana mass, not (1/M)(LH)"(LH).
It is different from the Dirac mass which describes the quark and the charged lep-
ton masses, in the form of Hyy. If the field is defined with the phase, eisw, it
does not appear in the Dirac mass so physically irrelevant. On the other hand, such
phase cannot be removed in the Majorana mass term. In the case of the neutrino
mass, neutrinos can have the phase as (V,,e "*v,,e " ®v;) = P- (v,,Vv,,V:) where
P = diag.(1,e™®,¢~®). Then the phases P can be contained in the PMNS matrix

making the neutrino masses real as

c12€13 $12€13 sp3e” 10 1 0 O

is i
—S12€23 — C12523513€°  C12€23 — S12523513€" $23€13 0 e 0

5 5 .
512823 —C12€23813€°  —C12823 — §12023513€"° €23C13 0 0 P

3.2 Gauge Hierarchy Problem

Originally, gauge hierarchy problem[24] came out of the GUTconsiderations.
If the SM gauge group is obtained from breaking of larger gauge group[25], elec-

troweak and strong interactions are unified above this breaking scale. Such unifica-
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1% 2: Fermion(above) and boson(below) loop corrections to the funda-
mental scalar mass.

tion breaks baryon number conservation, accidental symmetry in the SM. so proton
can decay. Current proton lifetime bound, 2 x 10%° years[26] imposes that GUT
scale shoud be of order 10'°GeV. Then, one may ask why this scale is much larger
than electroweak scale. This is original version of gauge hierarchy problem.
Another version of gauge hierarchy problem visits the issue of stability of fun-
damental scalar mass in the electroweak scale under quantum correction. In the SM,
the Higgs scalar is introduced from chiral nature of the SM fermions in the weak
interaction. One SU(2)z, doublet Higgs as a fundamental scalar in the SM is just a
minimal setup: we can think of multi-Higgs doublets and even composite Higgs.
In any case, gauge symmetry should be broken spontaneously, not explicitly. Oth-
erwise the model is not unitary at least in the perturbative scheme. If we just begin
with massive gauge boson, scattering amplitudes of massive gauge bosons, such as
WTW~ — WHW™, violate unitarity at high energy[27], so such theory is just the
low energy effective theory. On the other hand, if the Higgs is fundamental scalar,
fine tuning problem arises. Since this fine tuning is originated from large hierarchy
between electroweak scale and cutoff scale, usually taken as GUT or Planck scale,

this is also hierarchy problem. To see this consider the quantum correction to the
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Higgs mass from top Yukawa coupling (y;/+/2)H 7tz in the regularization with

cutoff A,
d*k —iy, i =iyt
szzi—lN/ Tr !
i = i(=1)N; (2m)* {ﬂ ko —my /2 k,,’y“—mj (3.16)
WA 2 (N +m] .
— e (A= 3mn - 9]

The quadratic divergence A% makes the Higgs mass in the electroweak scale
fine-tuned. If the cutoff A is the Planck scale so that the SM is valid up to this scale,
it is interpreted as very large bare Higgs mass of order M3 /(87?) get quantum cor-
rection —M3%/(87%) to make 10! times smaller mass m, at the electroweak scale.
If there is a new physics between the electroweak scale and Mp, smaller cutoff
characterizing this new physics can be introduced and the fine tuning is lightened.
Supersymmetry[28], symmetry between the boson and fermion, is one of such ex-
amples. This is easily understood by noting that boson and fermion loop have op-

posite sign contributions. Introducing the scalar couples to the Higgs,

A
—§(H0)2(|¢L|2 +10r[%) — HO(ue |0 |* + ur|Or|*) — mi0F — mpdR, (3.17)

the quantum correction from this scalar interaction is given by

d*k i i
2_
oy = ;\N/ (2m)* [kz -m? + k2 fmIZJ

e [ Gl () + (i)
AN

(3.18)
24 2 24 2
= — [2A2—m%1n (A +mL) —m,zeln (A Jrsz)]

16m2 m; mp
N [, (N+m} 5 (N +my

~ fom i (o) +iin (S ) |
1672 ['UL 1 m2 FH I m

If N =N, A= |y?|, m, = mg = my, and @ = s = 2hm?, then the logarithmic as

well as quadratic divergences vanish. That means, if the scalar has the same mass
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and the same number of degrees of freedom as the quark, and its coupling to the
Higgs is related to the coupling between the quark and the Higgs, fine tuning from
the quadratic divergence vanishes. This is supersymmetry and the scalar ‘partner’
of the quark is called the squark. Such new type of symmetry avoiding fine tuning
is related to the naturalness. If the symmetry is enhanced when specific interaction
such as mass term is absent, it is natural that this term is small: Originally forbid-
den by symmetry so proportional to the small symmetry breaking effects[29]. For
example, gauge boson mass is naturally small since gauge symmetry is enhanced
in the massless limit. In the same way, the fact that massless fermion has chiral
rotation symmetry implies small fermion mass is natural. Since the scalar with the
same mass as the lepton or the quark does not exist, supersymmetry is broken, then
the breaking scale sets the cutoff scale A for new physics in which scalar partners
of SM fermions appear.

The interpretation of quantum correction in this way is ambiguous in dimen-
sional regularization since mass scale is not used. In dimensional regularization,
divergence is regulated in the 4 + € dimension, and it is given by M? /¢ for scalar
mass square correction where M is mass of particle in the loop. When the Higgs
interacts with heavy particles whose masses are GUT or Planck scale, it behaves as
quadratic divergence. So, dimensional regularization also has fine tuning problem
provided that the Higgs is regulated by high energy physics as well as electroweak
scale physics.

To see fine tuning more explicitly, it is more appropriate to investigate it in
the Wilsonian picture, in which the degrees of freedom in the scale higher than the

observation scale are integrated out[30]. The following arguments come from [31].
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19 3: Quantum corrections for m? and A from loop diagram.

Consider the scalar field described by

Adtp 1
s= [ o o)+ 0(p .

A4 d 4
+%/ };[1 (dZ,SZSd(;pm(pl)¢(pz)¢(p3)¢(p4)-

This is the simplification of the Higgs and the squark system showing quadratic
divergence in the absence of the quark. The Wilsonian renormalization undergoes

the following steps:
A

« Divide the scale by inner region [0, %] and outer region [4,A] where N =

1+e.

» Take the functional integral over the outer region.

* Rescale momentum p’ = Np and field ¢'(p') = N~L¢(p) where —D = —(1/2)(d +

2) is the dimension of ¢(p) so that the theory which is integrated out trans-
forms to the equivalent theory with the cutoff A. Then effective Lagrangian

of low energy degrees of freedom is obtained and couplings reflect the quan-

tum corrections where high scale degrees of freedoms are integrated out.
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Resulting parameters are given by

m'? = NP4 (m? + ¢\ A — com® ),
(3.20)
}\’/ _ N4D—3d (}\’ o 36‘27\.2)
N dependences come from rescaling. ¢; are calculated from diagrams shown in Fig.

3 and given by

1 / d*p 1 d-2 —(d-2
1 == — ~ A1 -NT ))
2 outer region (275)01 2

1 / a4 p /132 ia )
) = — ~ A 1 N .
2 outer region (275)’1 ( 2) ( )

Then ¢ corresponds to the quadratic divergence and ¢, corresponds to the logarith-

mic divergence. The renormalized parameters are given by

gl )

(3.22)
m? —m*(N) = NP~ (1 — cohym* —m2(\)
and after repeating integrate-out n times, we have
11 N—(4D73d)n( L i)
Ao A ho o A (3.23)

n

2= m () = NP2 S0 (1 — 2 (o).

c

Here A* = (N*P=34 —1) /3¢, and m2())

= —e1 /(1 —N3*P=4)) 50 quadratic diver-
gence appears in the fixed point of the mass only, and running to the low energy is
governed by logarithmic divergence only. The renormalization group flow for fun-
damental scalar is depicted in Fig.4. Note that A < 0 region is not valid because it
destabilizes the vacuum. If the bare mass is on the m. (), it runs down along the

critical line, m = m.(), to the zero mass with A = 0, the fixed point.(For d = 4,

A* = —1/3¢; — 0 as A — .) In this case, very small scalar mass is natural. How-
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19 4: Renomalization group running of m?> and A.

ever, if this mass is slightly deviated from the critical line, it flows down to the
large mass. Therefore, the fine tuning problem in the Wilsonian renormalization
can be interpreted as the question, why the mass at the high scale is very close
to the critical line, m = m.()). Since m? determining the critical line is quadratic
to the cutoff, it is the same as the interpretation in the regularization with cutoft:
Bare mass should be of order A%/(8n?), the same order as m> whose quadratic
divergence comes from the quantum correction cj.

If quantum correction to the field renormalization is large enough, it has a
large anomalous dimension so running dimension of ¢ is large. —D is no longer the
same as the dimension of ¢ and anomalous dimension 8 = —D—+ (d +2)/2 affects N
dependent scaling of m?: N ~28 factor is additionally multiplied to (m(% — m%) to get

m'? —m’?. So mass is getting closer to the critical line as running down to the lower

_d+2

7 0(p),

M2 = (N"")2m? and A, = (N~")*~9\. The bare values(n = 0) does not scale at all

scale. This can be seen easily by redefinitions 5, = N~"p, §(p,) = (N ")

and

2 200) — NPT e )
) (3.24)
— N, N (m% - mc2 (20))

This would be another solution to the fine-tuning problem. On the other hand, su-
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persymmetry eliminates both quadratic and logarithmic divergences. Since large
deviation from the critical line at low energy in renormalization group running is
regulated by logarithmic divergence, its vanishing implies that fine-tuning problem

vanishes. Choosing initial condition near the critical line has no unnaturalness.

3.3 Flavor Problem

By flavor, we mean quantum number determined by existence of the specific
quark. For example, strangeness +1 means § quark is contained in the physical
observable. If the observable does not have strange quark, strangeness is assigned
to be zero. However, frequently, this term is used in the meaning of generation.
So, when we say the SM gauge group is flavor universal, it means each generation
is equally charged under the SM gauge group. In a view of the SM gauge group,
generations are just copies of a set of the fields. The SM does not explain different
properties depending on the flavor. For example, even though the u quark and the ¢
quark, corresponding particles in the first and the third generations, have the same
properties under the electroweak interaction, their masses are quite different. This
makes many different phenomena such as life time. In the SM, different masses
come from different magnitudes of the Yukawa couplings. But they are just free
parameters determined by observations, and the SM does not explain how they
have values as measured.

Such problem also arises in the mixing matrix. Yukawa couplings in general
form 3x3 complex matrix(so we call it Yukawa matrix) and masses are eigenval-
ues of this matrix. When it is not diagonal from the beginning, unitary matrices
diagonalizing it should appear, and mixing matrix is one combination of such uni-
tary matrices. The CKM and PMNS matrices are such mixing matrices in the quark
and the lepton sector, respectively. The form of mixing matrices is important be-

cause unremovable phase is source of the CP violation in the weak interaction. If
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any of the mixing angles vanishes, this phase can be removed by field redefinitions.
Therefore, the smallest mixing angle is used to parameterize the CP violation of the
weak interaction. The CKM matrix is very close to identity. The mixing between
the first two generations, Cabibbo angle is the largest one, but it is just 13°. Other
two mixing angles are much smaller, but do not vanish, so the quark sector has
weak CP violation. On the other hand, the PMNS matrix has very large mixings.
The mixing between the second and the third generations,atmospheric mixing, are
maximal: the mixing angle is almost 45°. Mixing between the first and the second
generations, solar mixing is also sizable. However, the mixing between the first and
the third generations are small. If it is nonzero, weak CP phase appears when we

neglect the Majorana phases. It can be measured from the neutrino oscillation.

A% = P(Vg — Vo) — P(Vo — Vo)
Am? (3.25)
* * . ]k
:4§Im(Vw VaiVakVay) sin o L
J

Especially,

A=A =y
> 2 (3.26)

A Am3 A
= 4J(sin 321 4 sin 2L 4 gin 203 L)
2p 2p 2p

where J = Im(Vi,;Vy;VouVyy,) is the Jarlskog determinant of the PMNS matrix
which will be studied in detail later. Therefore, understanding the patterns of mixing
matrices is important but the SM does not explain the origin of these patterns.

If we know all unitary matrices diagonalizing the Yukawa matrices, it is pos-
sible to reconstruct the Yukawa couplings before diagonalization, and also possible
to study the origin of patterns of these original Yukawa matrices. If some elements
of the Yukawa matrix are very small compared to other elements, we can guess that

there may be some symmetry which suppresses them. In this sense, structures of
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the Yukawa matrices imply flavor dependent symmetry beyond the SM. However,
we do not know all these unitary matrices. First, the mixing matrix is combination
of unitary matrices rotating left handed fermions. We do not know how to sepa-
rate it into two unitary matrices, for example L, and L;. Second, the mixing matrix
appears in the charged current in the weak interaction, and by chiral nature of the
weak interaction, right handed fermions do not make the charged current. So, there
is no way to know unitary matrices rotating right handed fermions within the con-
text of the SM. Therefore, to know them, the hint from new physics beyond the SM
should be considered. At this stage, information from new physics is not enough, so
even though it is possible to construct the models consistent with the measured val-
ues, there is no way to select the unique description of real world. In this sense, for
plausible model construction, more experimental evidences as well as consistency

with the other model outside the flavor physics itself are required.

3.4 Strong CP Problem

Strong CP problem is another fine-tuning problem in the SM[32]. In the
path integral language, transition amplitude is the sum of all paths weighted by
exp(iS/h)[33]. In the limit of i — 0,(classical limit) strong interference between
exp(iS/h)s from different paths takes place, and only small portions around the ex-
tremum remain. This is why classical equation of motion makes action extremum.
Among such classical solutions, special types of solutions for vacuum of the system
called instanton solutions exist. They make action (for Minkowski spacetime) or en-
ergy (for Euclidean spacetime) finite. These solutions are sorted out by topological
number, for example winding number. To make energy finite, vacuum configura-
tions are assigned at infinite spacetime coordinates. When we have degenerate vac-
uums, there is a correspondence between vacuum configurations and coordinates

at infinity, and this can be interpreted as vacuums ‘wrap’ the spacetime. The wind-
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ing number counts how many times do the vacuums wrap spacetime. In light of
topology, objects characterized by different winding numbers cannot be deformed
from one to another smoothly, so the vacuum with the specific winding number
is stable with respect to that with different winding number. This story arises in
the non-Abelian gauge theory in the Euclidean spacetime. Consider the Euclidean
Lagrangian for the field strength F,, = 9,Ay — dvA, + [A,,Ay]. From the identity
[ d*xTr(Fw — Fy)? > 0 where Fyy = (1/2)€,5psFPC is dual field of F,y, we know

1 i
E d*xtrFyy Fpy > \ng / d*xtrFyy Fyy | (3.27)

T2
so energy is minimum for F,y = £F,. Since the term trFyy Fy = 8€,pstrdu[AvrAp +
(2/3)AvA)A,] is total derivative, it does not affect the perturbative Feynman rules.
But it is known that[34] instanton solutions make

8m2

1 N
— d4xtrFval, =-—n (3.28)
8

2g%
with n integer, interpreted as winding number. The instanton solution for n =1 is

given by

2

A,u = ﬁ(\)a‘uﬂ)il = —inwvacpﬁ,
re—+p , r+p (3.29)

. p
F/-lV = Zln,UVPGP m,

where @ = @, 6, = (I,—i6) and Mo, = —Mioj = 8, Nijk = €ijx- Therefore, each
instanton solutions corresponding to winding number 7 form equivalent, stable vac-
uum solutions. However, this is not the vacuum for the whole system. As shown in
5, the system with equivalent |n) vacuums has discrete translation symmetry i.e.
invariance under |n) — |n+ 1) so vacuum wave function should respect this sym-

metry either. This is so-called 8-vacuum, |8) = 3" ¢™®|n). The new quantity  is
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[n-1> |n> In+1> In+2>

19 5: Schematic figure for © vacuum. y axis corresponds to the energy
wall. Figure is adopted from J. E. Kim, Phys. Rep. 150 (1987), 1 in [32].

observable. Since (n|exp(—Ht)|m) = [[dA,|,—mexp(—S),

(@'l H19) = Z Zefi(n/efne) (' |eH! |n) = Zeﬂw(e/,e) Z /[dAy]qe*S*"qe
n n n q

(3.30)

and ) exp(—in'(6' —8)) = 3(8' — ). So the action has —iq in addition, and it is

equivalent to the additional Lagrangian

%F;\,F“’N. (3.31)
This term has two properties. First, it breaks CP. Since P : E — —E,B— B and
C:E— 71_5’,1_9’ — ,B” FF which is equivalent to E.Bis CP odd. Second, it is
related to the axial anomaly: quantum breaking of symmetry under chiral rotation,
v — exp(iotys /2)W[35]. Such anomaly is given by — ﬁF;‘VF 4V If the quark mass
matrix, or equivalently, Yukawa matrix has the phase, such phase can be moved to

FF term through anomaly. Then 0 is redefined by 6 = 6 — Arg.Det.M,. It is not ac-

cidental. Consider the Dirac operator iy, D, in Euclidean space. Let ¢ be the eigen-

vector of this Hermitian operator with eigenvalue A. Since ,D,Ys = —Y5Y.Dy,
i(YuDy) (Y50k) = —Y5i(YuDp) Ox = (=A) (¥5%), (3.32)
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so for nonzero A, we can make chirality pair ¢ + = (1/2)(1 £75)®x. On the other
hand, for Ay = 0, pairing is not essential so the number of ¢y need not be the same
as that of ¢4 . Under the chiral rotation U = y — exp(iotys/2)y, path integral

measure DYV is not invariant, but transforms to (Det ) =2 DyDY[36]. Then,
(Det‘(l) e 2l _ zfd“x%(xA(x) (3.33)

where A(x) represents the anomaly of the chiral rotation. Here,

trln U = /d4x<x\trln Ulx) = /c174)c5(4> (x—x)InU(x) = /d4x5(4) (O)ia(zx) trys.

(3.34)

Note that rotation parameter & is regarded as local even though the original chi-
ral rotation is global. It comes from deriving Noether current, the current associ-
ated with the symmetry. Pretending global symmetry local, the variation of action
with respect to local parameter 0,(x) is of the form &S = [ d*xa(x)Jo +9,0(x)J+ =
— [ d*xo(x)9,J*. Here, the variation of action under the global transformation Jo
vanishes. When equation of motion holds, &S should be zero so BMJ'“ = 0. This is
Noether’s theorem: symmetry is associated with the conserved current. When the
symmetry is anomalous, quantum effects modifies (d,J*) = 0 into (d,J* —A) = 0.
A is what we want to obtain.

Note that Eq. (3.34) is a product of infinity(8(*) (0)) and zero(trys). To regulate

this, we introduce gauge invariant regulator, trys f (D)% /A?), where f((D,¥*)?/A?)

is some function of (D,¥*)?/A? with £(0) = 1 and f(e0) — 0. Then

tf'st(( Zidk ) Z(q) s f(( ) Zf( ) (Oxc|vs )

= F(0)(0+10+) Zf (0-l0-) =ny —n_.

(3.35)
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Therefore, anomaly counts difference between zero modes in + and — chiralities.
So it affects the topological number. This is known as Atiya-Singer theorem[37].
If we take appropriate o, chiral rotation of quarks, ® can be made zero but
moved to the fermion mass term as gexp(i(a(8)/2)ys)Myexp(i(ct/2(8))ys)gq, so
it can be measured through CP violating process in the strong interaction such
as neutron electric dipole moment[38]. The measured value is very close to zero,
|8] < 0.7 x 10~'1[39]. Then one may ask why CP violation in the strong interaction
is so small. This is the strong CP problem. If one of the quark is massless, for
example, m, = 0, it is possible to assign arbitrary phase to this, so specific value
of 0 is meaningless. However, all quarks seem to be massive[40]. One attractive
explanation is dynamical one, suggested by Peccei and Quinn[41]. Suppose we
have the ‘axion’ field a with the symmetry under shift, a — a + ¢, and couples to

gluon FF term so we have

1 /- a
(6 E)F;VF“W. (3.36)

By shifting a — a — F,8, it is just (1/327?) (a/F,)Fi F* and it makes action min-
imum at a = 0 because

41 . i
effd x%—zFFﬂ%FF‘

i _| / DA, [ Det(D +m)
— (d* L FF—i&FF
< / Q)Ay’HDet(DyY“er,-)e g bF Fa”’:e—fd“xvm
(3.37)

so [d*xV[0] < [d*xV/[a]. Note that Det(D ¥ +m;) = [, (—iki +m;) is always
positive because chiral pairing guarantees that we have the same number of positive
(M > 0) and negative(—Ay) eigenvalues, so H;% (—idg +m;) =m} HM>0(7L,% + mlz)
where n = n 4+n_ is the number of zero modes. The field a with the shift symmetry

can come from Goldstone boson in the global symmetry breaking, i.e. 6 = [(F, +
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p)/v/2]exp(ia/F,). Since a accompanies with i, it is CP odd. So, CP is broken when
a is stabilized with the nonzero value, but since it favors zero, CP violation is very

small. The general interactions of CP odd Goldstone boson are of the form

a
32m2

clayaFiaqu’ysq—k (c]LqueiCZ% +hec)+c3 F&F“"V. (3.38)

Such global symmetry is called U(1) Peccei-Quinn(PQ) symmetry. When it
was firstly suggested, its breaking scale was thought of as the electroweak scale:
F, =v. Suppose we have two Higgs doublets, H, and H; responsible for the masses
of the up- and down- components of the SU(2) doublet, respectively. These two
Higgses have the same charge under the PQ symmetry, i.e. U(1) PQ transforms
the Higgses as H, — exp(ia)H, and Hy; — exp(iat)H,. The quarks are also PQ
charged to make Yukawa coupling PQ singlet. When electroweak symmetry is bro-
ken, H, g = [(Vua+ pu7d)/ﬁ]exp(iau7d/v) and one combination of a, and ay, say,
—cos PBay + sinPay is absorbed by Z boson to make it massive. Another combina-
tion sinPa, + cosPay is a physical field, but since global PQ symmetry is spon-
taneously broken, it is massless (Goldstone boson). Such type of axion, Peccei-
Quinn-Weinberg-Wilczek(PQWW) axion[42] is rule out experimentally since it
predicts the processes such as K™ — 7™ + a, which is not observed. To suppress
the probability of finding out axion, we need to raise F, to much higher scale. In
this ‘invisible’ axion, ¢ is no longer the CP odd Higgs and F; is much higher than
electroweak scale.

There are two models for invisible axion. First, 6 does not couple to the
SM particles. instead, vectorlike heavy quark exists, and have the mass from PQ
symmetry breaking via the coupling 6Q; Qg + h.c.. Such model is Kim-Shifman-
Vainstein-Zakharov(KSVZ) axion[43]. On the other hand, ¢ can couple to the
Higgs but does not couples to the SM quarks to avoid the experimental bound.

This is Dine-Fischler-Srednicki-Zhitniskii(DFSZ)[44] axion.
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3.5 Cosmological Problem

Even though this topic is important in exploring the new physics, it is beyond
the scope of discussion in this thesis. We briefly discuss some issues which can be
studied by extending materials treated here.

One of mysteries in cosmology is the baryon asymmetry, a strong imbal-
ance in baryon and antibaryon[45]. To explain this, CP violation as well as baryon
number violating interactions and out-of-equilibrium condition are required[46].
If CP violation responsible for the baryon asymmetry takes place in the decay
of some heavy particle into Standard Model particles, understanding flavor struc-
ture of quarks and leptons could give a good model for baryon asymmetry. Es-
pecially, leptogenesis[47] is interesting because the decaying heavy particle is the
right handed heavy neutrino. Introducing heavy neutrinos is a plausible extension
of the SM as it explains the very small masses of neutrinos through the seesaw
mechanism. Therefore, studies on leptogenesis essentially include construction of
a model for the flavor structure in the lepton sector. Then flavor dependent symme-
try plays very important role as it restricts possible form of flavor structure. In this
regards, leptogenesis is a good topic to extend studies on flavor dependent symme-
tries.

On the other hand, the total matter density of the Universe, Q = pp/pc ~
0.3 where p. = 3HZ /(87Gy) = 1.9 x 10726h3kgm 3 is the critical density for the
flat Universe, but known baryonic matter is just Q = pg/p. ~ 0.02. The existence
of the Dark matter[48], matter explaining such missing density, is confirmed in
the observations, but identity and its microscopic properties are not known yet.
Moreover, the expansion of the Universe is being accelerated by dark energy, which

occupies Qx ~ 0.7, but we do not know how to explain this.
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Al 4 7%

Supersymmetry as a solution of the

gauge hierarchy problem

4.1 Current Status of the study on the electroweak

symmetry breaking

There are two issues in physics of the electroweak symmetry breaking. One
is identification of the Higgs: is the Higgs fundamental scalar or composite of
fermions? how many Higgs does the Nature have? if there is a new physics be-
yond the SM, does the Higgs couple to it? if so, how does the new physics affect
the electroweak symmetry breaking? The other is stabilization of the Higgs mass at
the electroweak scale. Assuming the Higgs to be the elementary scalar, we need to
find new physics to solve the gauge hierarchy problem. Supersymmetry is the prime
example. The LHC experiments are expected to unveil the physics of electroweak
symmetry breaking by finding out Higgs or evidence of new physics. However, at

present, there is no solid evidence of them.

4.1.1 Higgs search at the LHC

The SM Higgs decay rates to various decay channels and their branching
ratios depend on the Higgs mass[49]. For the Higgs mass my < 140GeV, H —
bb is dominant. If the Higgs is heavier than 140GeV, it will mainly decay into
W*HW ™ or ZZ. If such Higgs decays are not observed, we expect much smaller cross

section for Higgs production. In this way, we can exclude the Higgs production
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Explanatory figure (not actual data)
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Figure A

1% 6: The example of the Higgs exclusion plot. Adopted from ALTAS
homepage, [50]

cross section and if the SM cross section is not excluded at some value of my, it
can be interpreted as discovery of the SM-like Higgs at this mass.

Fig. 6[50] shows the example of exclusion plot. The dotted line shows the
average expected exclusion in the absence of the Higgs. That means, with the SM
without the Higgs, cross section above the dotted line is expected to be excluded.
The solid line is the observed exclusion line with 95% Confidence level(C. L.). The
Higgs cross section above this line is excluded from observation. If the line dips
below 1.0(c = osm), the Higgs is not produced with the expected cross section Gsy
in the corresponding Higgs mass region so this Higgs mass is excluded in the 95%
certainty. In Fig. 6, the Higgs mass in the range (135,225)GeV and (290,490)GeV
is excluded. As the luminosity is integrated, dotted line would keep going down. If
the solid line does not dip below no longer but stops around ¢ = Gsp1, corresponding
mass is the SM Higgs mass.

When new physics is taken into account, other possibilities may be consid-

i Rk T

o



.
c L ATLAS 2011 '[Ldt~1.o4-4.9fb"
o =
= E Vs=7 TeV — Observed
E C s ---- Bkg. Expected
b A B+ 10
o
(6]
PR 1 . O T
0
o
10 (@ CL, Limits
110 150 200 300 400 500 600
m,, [GeV]
z [CMS Preliminary, \s = 7 TeV o Observed
< | Combined, L_=4.6-4.7 fb" F Expected t 10
N it weees Expected + 20
S 10 1 LEP excluded =
= N ) Tevatron excluded
E 3 [ CMS excluded
_ \ \
o Eewel -~ =,
§ J]“Jh\‘l : Y S
RS ey
N = b
| ./

1 NN ! NN N
0400 200 300 400 500 600
Higgs boson mass (GeV/c?)

1% 7: ATLAS and CMS reports on exclusion of the Higgs production
Ccross section.

ered. For example, Higgs production cross section can be different from that in the
SM. When the Higgs decays into non-SM particles, branching ratio of observing
channel can be much smaller and this can be the reason why the Higgs has not been
found yet.

The LHC at CERN has two detectors searching for the Higgs and new physics
beyond the SM: ATLAS and CMS. ATLAS searches for the Higgs decay chan-
nels H — vy, H — ZZ®) — 7171717, and H — WW® — [TVvI~¥ to exclude
(112.7,115.5)GeV, (131,237)GeV, and (251, 468)GeV at 95% confidence level(C.L.).
On the other hand, CMS excluded (127,600)GeV at 95% C. L. from five decay
modes, Y, bb, 7, WtW—, and ZZ. These are shown in Fig. 7. Interestingly, both
experiments show apparently unexcluded the SM Higgs cross section around the

similar mass region: 126GeV for ATLAS and 124GeV for CMS[51]. If these sig-
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nals are not mere fluctuations, we may already discovered the Higgs.

4.1.2 Supersymmetry searches in the LHC

Even though supersymmetry(SUSY) has a good theoretical motivation as a
solution to the gauge hierarchy problem, it should be broken because there is no ex-
perimental evidence of superpartners of the quarks and the leptons, called squarks
and sleptons, respectively. SUSY breaking scale can be parameterized by typical
mass scale of the superpartners. When SUSY is broken, the Higgs mass correction

from Mp to the scale y, say, electroweak scale is approximately given by

Sm%:—;);imtgln(ﬁgp) 4.1
Then 8m7 /m; can represent the degree of fine tuning. Let m; ~ 100 ~ 150GeV.
Allowing the fine tuning of the Higgs mass within factor 10, i.e. |dmy,| ~ 1TeV in
running from Mp to Mz, we require mlg ~ 1.2TeV so SUSY breaking scale is better
to be around or below 1TeV. This is why low energy SUSY characterized by sub
TeV squark mass is preferred as a solution of the hierarchy problem.
Supersymmetric extension of the SM simply adds SUSY to the flavor blind
SM gauge group representations. SUSY breaking effects in squark and slepton
masses are free parameters as long as we do not specify SUSY breaking mecha-
nism. Moreover, gauge bosons have their own supersymmetric partners, gauginos.
Their masses are also splitted from gauge boson masses as SUSY is broken. There-
fore, broken SUSY needs much more free parameters unless the exact SUSY break-
ing mechanism is verified. To work with the least number of free parameters, we
assume that squark masses, slepton masses, gaugino masses, and A-terms (the coef-
ficient of three scalar interaction with mass dimension one) are unified at GUT scale
respectively, and are splitted by renormalization group running effect. This scenario

is called Constrained Minimal Supersymmetric Standard Model(CMSSM). Exper-
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imental studies are made based on this simple model, but they can cover general

cases with two features:

¢ SUSY model with R-parity. As can be seen later, we can impose discrete R
parity under which the SM particles are even and their superpartners (spar-
ticles) are odd. It can prevent fast decay of proton and decay of the sparticle
into SM particles only. So, the Lightest Supersymmetric Particle (LSP) can-
not decay into the SM particles even it is heavier than the SM particles. In
cosmology, LSP can be a good candidate of Dark Matter. In collider, LSP
no longer decays and escapes out of detector so observing defects of en-
ergy, called missing energy is the evidence of such particle. SUSY searches
mainly focus on searching for missing energy and CMSSM is a good bench-

mark.

* SUSY breaking effect has a typical scale. Hadron collider is mainly sensi-
tive to the first two generation squarks since production of the third gener-
ation squarks is suppressed. When two protons are collide with each other,
squarks are produced via processes, such as giq; — G;G; and gg — Giq,.
To generate the third generation squark, the third generation quarks are re-
quired but they are much less contained in the proton compared to the first
two generation quarks. The first two generation quarks can produce the third
generation squarks through CKM mixing and squark mixing but in many
models mixing with the third generation is very small. So, the third gener-
ation sqaurks are mainly produced from gluon. e.g. gg¢ — Giq; or gg — §g
but they have velocity suppression. For example, consider the s—channel
process gg — g™ = Gi§ ;. Since the virtual gluon can have helicity +1 or
—1, for angular momentum conservation, both gg — g(*> annihilation and
g% = gig ; creation should have orbital angular momentum contribution.

That’s why (scalar)-(scalar)-(scalar) Feynman rules in scalar QED and gluon
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MSUGRA/CMSSM: tanp = 10, A = 0, ji>0 L™= 4.7 b, Vs=7 Tev
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% 8: (Left) Exclusion bound for squark and gluino based on
mSUGRA/CMSSM (tan3 = 10, Ag = 0, u > 0). (Right) Exclusion bound
for stop 7 in Gauge mediated SUSY with %° the next-to-lightest supersym-
metric particle.

self interaction have a velocity dependence. Since squark velocity is less
than 1, such processes have velocity suppression. t—channel process would
be suppressed unless ¢ is very close to the virtual squark or gluino masses.
In this way, the third generation squarks have very small chance to be pro-
duced in the LHC, so even they are not found, we cannot say they are too
massive. In principle, 7 and b are less bounded than the first two generation
squarks. In CMSSM, squarks have almost the similar scales. If the first two
generation squark masses are excluded, the third generation squarks around

the similar scale are also excluded.

The recent LHC experiments report squarks and gluino based on CMSSM
are excluded to about 1.4TeV as shown in the left of Fig. §[52]. That means, low
energy SUSY models with two features above are being excluded. Then there are

four alternative possibilities:
1. Low energy SUSY is excluded. Then SUSY does not solve the hierarchy
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problem. In this case, we have to seek for another solution consistent with

experiments or ask whether the hierarchy problem is well-defined problem.

2. R-parity is violated[53]. Then LSP can decay into the SM particles and miss-
ing energy may not be detected. In this case, we should select R-parity vio-
lating operator to make the proton live long enough. SUSY may not provide

the Dark matter candidate.

3. The first two generation squarks are above 1TeV but the third generation
squarks are sub-TeV[54]. In fact, dominant contribution to the Higgs mass
correction comes from the stop 7, superpartner of top quark since only it
has a large Yukawa coupling of order 1. The sbottom 5 may be in the sub-
TeV since superpartner of the left handed bottom quark constitutes SU(2),,
doublet together with the stop. So if the third generation quarks are still in
sub-TeV, hierarchy problem is still solved by SUSY. Actually, b and 7 mass

bounds are lower than 400GeV as shown in the right of Fig. 8 and Ref. [55].

4. Sparticle spectrums are degenerated compared to the quark masses. For ex-
ample, b mass can be measured by detecting missing energy of neutralino
o through decaying process b — b¥. If mass difference between b and §o
is so small that b quark does not have enough energy to be detected over
background or energy cut, b cannot be discovered. In this case, we do not

have sqaurk mass bound.

4.2 Minimal supersymmetric Standard Model

4.2.1 Model description

The Minimal Supersymmetric Standard Model (MSSM) is, literally, minimal
supersymmetric extension of the SM. It just adds superpartners to all the SM parti-

cles. One difference from the SM in matter contents is that the MSSM is two Higgs
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doublet model. There should be two Higgs doublets, H, and H;, responsible for
the masses of upper and lower components of the SU(2); doublets, respectively. It
has two reasons, First, supersymmetric Lagrangian comes from superpotential W
by L = [d*6W but W is holomorphic. That means, the term H'QU where H, Q,
and U are left chiral superfields of the Higgs, SU(2);, doublet and singlet quarks
respectively, is not allowed as H' is a right chiral superfield. Superpotential should
be the combination of either left chiral superfields only or right chiral superfields
only. So we have to introduce another left chiral superfield for H,. Second, as the
Higgs scalar has fermionic superpartner(higgsino), it gives rise to anomaly. To can-
cel it, we should have higgsino‘s’ in vector-like pair under the SM gauge group.
SU(2) doublets H, = (H;7,H?) and H; = (Hg,Hd_) have U(1)y quantum number
1/2 and —1/2, respectively so their superpartners(higgsinos) cancel anomalies of
SU(2),, and U(1)y.

Supersymmetric extension of the SM breaks some ‘accidental’ symmetries
of the SM. In the SM, taking renormalizable terms into account only, baryon and
lepton numbers are conserved. That means, we can assign quantum numbers for

global U(1) symmetries in such a way that

1. quarks have 1/3 and leptons have 0 (baryon number) and

2. quarks have 0 and leptons have 1 (Iepton number).

More precisely, the SM Lagrangian is written by hand in this way to describe the
Nature. Such symmetries are broken when nonrenormalizable terms are included.
For example, seesaw mechanism introduces (1/M)(IH,)T (IH,) and it breaks the
lepton number. On the other hand, MSSM breaks these two symmetries even in the

holomorphic renormalizable superpotential:

W D o QiLdf + BUFLLjel + YL H, + 8% df dSuf. (4.2)
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This can be dangerous as it predicts the proton decay, which has not been
observed yet. For example, from the s—channel process dgug — Eg‘) — Ilqr, the
proton can decay into e, uK, or v,n", v,K ", etc. One way to forbid this is impos-

ing R-parity, giving the SM particle even and sparticles odd under it.

4.2.2 Higgs sector

The superpotential for the MSSM is given by

W = —uH, -Hy — 9iHy - LEES — 9 Hy - ;D5 — 9}*H, - Q;U§ 4.3)

where A-B =¢,,AB?, a, b are indices for SU(2);, doublet. From this, F-term contri-
bution to the potential is given by Vp =, | —0W/ 8CI>}L | where ®; represents chiral
superfields in W. On the other hand, integrating out auxiliary D-terms for SU(2),,
and U(1)y gauge superfields, we obtain Dy =— nglT %Hi and D}; =— ngl.TYHi SO

the supersymmetric Higgs potential is given by
2 2 Lo o 2 22 8% fg 12 (4.4
Vi +Vp = |ul~(|Hu|” + [H4] )+§(8Y+82)(|Hu| — |Hal") +7|Hqu| (“44)

Finally, the soft SUSY breaking effects comes in as

Vot = m2|H, |> + m3|Hy|* — (BuH,, - Hy + h.c.) (4.5)
The Higgs VEVs,
1 0 1 Vd
H,)=— , (Hg) = — 4.6
(Hu) il (Ha) VAR (4.6)

where v, 4 are taken to be real numbers, breaks electroweak symmetry. To parame-

terize these Higgs VEVs, we use v = (v2+v3)!/? and tan B = v,,/v, as independent
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parameters. Note that v can replace the Higgs VEV in the SM with one Higgs dou-

blet. At the minimum of the Higgs potential,

1
gy +83) (v —vi)* + Smuve + ~mjvg — Buvvg 4.7)

1
Vinin = ) B

32 (
and conditions 0Viin/0vy, = 0Viin/dvg = 0 give conditions for the electroweak

symmetry breaking at the Higgs VEVs:

—2Bu= —(m2 —m?) tan2B + M2 sin2
1 (4.8)
(m?sin® B —m2 cos> B) — EM%

2 _
"= S3B

The charged Higgses, H,” and H, form 2 x 2 matrix,

mg — %(312/"‘3%)("3_"‘21)"'%5'%"3 B,u—&—%g%vuvd

Bu+1g3vava m2+ (g3 +83) (V2 —v2) + 1e3v3

2
_ ( Bl,l + 1 2) Vu VuVd
VuVd ‘%

4.9)

where the conditions (4.8) are used. One eigenvalue is zero, corresponding to the

Goldstone mode sin BH;- — cos BHdi and it is absorbed by W boson. Another eigen-

Bu
VuVd

value is given by ( +3 g%)v, corresponding to the charged Higgs mode H* =

cosBH;E +sinBHT
The neutral Higgses have real(CP even) and imaginary(CP odd) parts, Hg q=

(Reh0 dT zIth 4)- CP even scalar mass matrix is given by

7
( gY +82)( chz) Bu B tan 3 1

m2+ 3 (g3 +83)(va—v2) 1 cotp

56



One eigenvalue is zero for the Goldstone mode sin BImHl? — Cos BImHS which is
absorbed by Z boson. Another mode A = cos BImH? + sin BImHg has eigenvalue
m3 = 2B/ sin2B. Note that m, becomes zero for vanishing By. In fact, when u = 0
and Bu = 0, global U(1) symmetry under which H, and H; have the same charge is
recovered. As Higgses have VEVs, this global symmetry is spontaneously broken
so massless zero mode should appear. This is nothing more than PQWW axion but
it cannot be the QCD axion as it is ruled out experimentally. Its quantum correction
has very simplified form. Since the Goldstone mode should be massless even in the
presence of quantum correction, the basic structure of the matrix proportional to

1
tanf @.11)

1 cotB

is maintained. So, quantum correction just changes overall factor Bu to Bu+ A
and A is proportional to u and A’. Proportionality in u can be easily understood
because when y = Bu =0 PQWW type symmetry is enhanced so there should be
massless mode. Moreover, it does not have a top loop correction since the amplitude

is proportional to

Tr [vs(v-erm)vs(v- p+m)}

= Tr[(=y-p+m)(y- p+m)| = 0.
Stop correction comes from the (left squark)-(right squark) mixing and it is propor-
tional to —my, (A" + ucotP). So in the absence of such mixing, i.e. A" = u = 0, there

is no quantum correction for CP odd Higgs mass.

Finally, CP even Higgs mass matrix is given by
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m}— (g} +83)(va—3v3)  —Bu— (g} +83)vuva
—Bu—1(gb +g3)vuva  mi+4(gh +g3)(3v2—12)

(4.12)
m3 sin® B+ Mz cos’B  —(m3 +M3)sinBcosp
—(m% +M3)sinBcosB  m3 cos® B+ MZsin® B
The eigenvalues are
1
mpy = 3 [m3 4+ M2 =+ [(m3 + M2)? — 4M2m3 cos? 28]/ (4.13)
where
H = (ReH? —v,)sino+ (ReHY — vg) cosa

(4.14)

h = (ReHY —v,)cosa.— (ReH) —v,)sina,

tan20 = tan2B(m3 +M3)/(m5 — M3).

Consider the lightest CP even Higgs mass, my,. It is smaller than min(ma,Mz)| cos2B| <
min(mgu,Mz). In the decoupling limit, i.e. mgq — oo, heavy CP even Higgs H is also
decoupled from my > max(ms,Mz) > my and light CP even Higgs mass satisfies
my < Mz at the tree level. To raise my beyond the M, large quantum correction
should be required. It is known that

2
<0 4 g b () (5 a5 ()"
(4.15)

where M, = , /mj; my, is a typical stop mass scale. Taking M; = 1TeV, m;, < 132GeV.
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4.2.3 sparticle masses

For later discussions, we list here various sparticle masses. Squrak and slep-
ton mass matrices come from F- and D- term superpotential and the soft mass

Mq,M,;,]Wd'7 M[,Mg and My:

m2 . M,,M; +M§ +M%(% - %Sinz Oy ) cos 2B/ —My (A" + pcotB) (4 16)
T + . ) .
u — (AT 4 1 cot B)M}) MMy + M2+ M3 % sin By cos2B1
m2 _ MdM:ngM; +M§(7%+%sinzew)cos2]31 —Mg (A% + ptan B) (4 17)
d —(A9T 4 ¥ tan E)M; M;Mt/ +M§. - M% % sin” By cos 2B/ ’ ’
mz . M,M;+M’g +M§(f%+sinzew)coszﬁl —M;(A” + utanB) (4 18)
l —(A9T 4 p* tan B)M; M;MI +Mlg —M% sin2 Oy cos 2B/ ’ ’
2 M2 +M§ % cos2fl 0
m=( M " (4.19)

Here triple scalar coupling (A term) is defined by

Hy - (A iy + i Hu(“A")ijitg; + Ha - ILi (Y °A) e+ hee. (4.20)

Neutralino mass matrix, mass matrix for neutral gauginos(Photino and Zino)

and neutral Higgsinos in the basis of (Ay, 3,4, /,) is given by

M, 0 _MZC[SSW M2SBSW
0 Mz Mzc Cw szs cw

P P 421)

_MZCBSW MZCBCW 0 —u

MszSW _MZSBCW —H 0
Finally, chargino mass matrix in the basis of %(M — iAy,hT) (Wino and charged
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Higgsino basis),

M V2My sin
? wsinf (4.22)
vV2My sinf3 u
This is diagonalized as U*MV " where
U =0y,
V = 0, (when detM > 0), 630, (when detM < 0)
cos 9, sin®@,,
OV’M _ v, v,u
—sinOv,u  cosO,,
2/2M, i M.
tan20,, = V2Myy (usinf + My cos ) (4.23)

M3 — 12 F2M?%, cos2f

4.3 Higgs sector in the next minimal supersym-
metric Standard Model and Peccei-Quinn

symmetry

4.3.1 uterm from Peccei-Quinn symmetry

In the MSSM summarized in the previous section, u in the Higgs sector su-
perpotential can be problematic. It is the only mass scale in the superpotential.
All other dimensional parameters(soft masses, A term and Bu) come from SUSY
breaking so related to the SUSY breaking scale. u should be in the electroweak
scale for electroweak symmetry breaking but MSSM itself does not give natural
explanation why u is at this scale. This has been called the u problem[56].

In fact, this is early version of the gauge hierarchy problem. The natural Higgs

mass without fine tuning would be at the very high energy scale such as GUT or
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3£ 2: The PQ and R charges of H, 4,51 2Z12,X and X.

Planck scale. The Higgs mass is proportional to the Higgs VEV so with order one
quartic self coupling, the natural scale for electroweak symmetry breaking would
be such high scale, either[57]. Once typical scale of the Higgs characterized by u is
fixed at the electroweak scale, SUSY can explain how it is stabilized at this scale.
Quantum correction can be small enough, and SUSY breaking parameters adjusted
to be around electroweak scale would make the Higgs to break electroweak gauge
group at this scale. But SUSY does not explain why u should be at the electroweak
scale.

It may be wise to relate the SUSY breaking scale and u term since they are
the similar scales[58]. Another way might be generate this scale dynamically. It is
very similar to the seesaw mechanism. If we have two scales, say, intermediate and
high scale, low scale can be generated through (intermediate scale)zl(high scale),
which indicates symmetry breaking effect whose scale would be one of two scales.
High scale can be GUT or Planck scale. On the other hand, Peccei-Quinn symmetry
breaking can be taken as the intermediate scale, 10°GeV < F, < 10'>GeV. Then
electroweak scale about 100GeV can be easily obtained from, for example, u term
can be of order F2/Mp where F, = 10'°GeV and Mp ~ 10'GeV and interpreted as
breaking effect of the Peccei-Quinn symmetry. To see it from model[59], consider

the superpotential with the PQ symmetry and the U(1)g symmetry shown in Table
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W =— H,H X + —EH,H X' +mXX +m'X'X
(4.24)

—MXST+2Z1(S182 — F2) +Z2(S515, — F3).

Here, Fi » are of order of the PQ scale. PQ symmetry and SUSY may be bro-
ken by such a number of terms. One linear combination of S| and S, is a Goldstone
mode, the axion superfield A. In the nonlinear representation, axion superfield A is
defined by S; = e and S, = @e?. m,m’ = O(Mp) ~ O(Mgur). These two scales

combine to make electroweak scale. The potential is

V =Vr +Vp + Viort. (4.25)
The F-term potential is given by

2 _ _
Vi = ‘X+§X’ (|Hu|?> + |Hy|?) + | — H,Hy +mX > +| — EH,Hy +m'X |*

~ — 2
+ X =S+ |Z1 + Zo 2|81 > + | — 20X S1 + (Z) + 22)S, (4.26)

+ (8182 — F2|> + 818, — F} %,

where

X = cosaX +sinoX’,
X, = —sinoX +cosoX’, 4.27)
/
m m
costl= —, sinot=—, m=vVm>+m?.
m 7]

Note here that X and X have the mass of order m, m’ but X, can have the mass of
the order of electroweak scale. Therefore, X, can survive at the electroweak scale

and participate in the electroweak symmetry breaking.
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The D-term potential is given by
Lo 2 2 242 g% fr7 12 4.8
VD:§(8y+gz)(|Hu| = |Hal") +§|Hqu| +- (4.28)

and the soft term is

Viott = —mg|Hy|* + mj|Hy|* + M3 |Z, |* + M3 |2,
(4.29)
+mi X [P +m3|X P+ m3 | X|* + ]St + 13152

The important terms determining the vacuum expectation values of S1,5> and
X are

V' =818 — FZ|* + 818, — F2|* + |mX —S3 % (4.30)

They are stabilized at 512 = |S) 2| and ¥ = |X| satisfying

= 2
R L L 431
n’' s 2mx

where F? = F? + F}. Requiring 51 ~ s ~ F = F,, = O(TeV).
Below the scale m, m’ ,heavy fields X, X are integrated out, and the superpo-

tential becomes

S2
- M—‘HL,Hd — fuHyHyX,
P 4.32)

+2Z1(8182 — F) +Z5(818, — F7)

W:

where

Jfn = —sina+E&cosa. (4.33)
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As the PQ symmetry is broken we have the Higgs superpotential

Wey = —uH,Hy — frH,HiX, (4.34)

where u = s% /m. Therefore, there are two ways to generate u term. First, in the
similar way to the seesaw mechanism, PQ symmetry breaking scale F, can make

electroweak scale as Fa2 /Mp. Second, surviving field X, has a VEV around the elec-

troweak scale. The latter case is what frequently used in the Next to the MSSM(NMSSM)

model[60]. The field X, can have the VEV around the electroweak scale with the
help of soft term mg |X.|? and mixing with the Higgs. X, potential can be stabilized
when coefficient of quadratic term ( |X,|? ) from the soft term and supersymmetric
potential is positive. One may consider quartic term \Xe|4 for stabilization of neg-
ative quadratic term. To achieve this, NMSSM models usually impose S3 discrete

symmetry such that the superpotential is given by
1 3
—X.H, -H;+ gKXe . (4.35)

Then Vr O |0W /0X,|? has the quartic self coupling |k|?|X,|*. On the other hand,
in the presence of gauge U(1) symmetry where X, is charged under it, D-term
(82/2)|X)X,|* can be made. This quartic term should be treated carefully. When
the U(1)’ gauge symmetry is broken at high energy scale, e.g. GUT scale or PQ

scale, whole D term potential is of the form

Lo 8% v 2t vy 2
5D :7(Y6|Xe| +YIXP )
2
2
= S (KX + X Vour +puf* +-++) (4.36)

2
= & (WP + XYV e+ Y2 Vour |-

so it gives rise to large quadratic term for |X,| at the tree level, and fine tuning
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problem arises again. Therefore, such term should not appear at the electroweak
scale[61]. If U(1)’ for quartic term exists, it should be broken at the electroweak
scale[62] but it is not our case.

Therefore, we can consider the following potential for Higgs and X,:

V = |u+ fiXe?(|H* + |Ha|®) + 2 |H Hal?
—m2|H,|* +m3|Hy|> — (BuH,H, +h.c.)

(4.37)
+m?X,|* — (AX,H,H; +h.c.)

1 g2
+ g(gzz/ +23) (|Ha|* = |Ha|*)* + 32|H5Hd|2-

In the same way as MSSM, we can decompose neutral fields into real and complex
components, ¢ = %(q)’ +i¢') where ¢ = H?,HY,X,. At the vacuum, they take

VEVs v,,v4,x, respectively, and

: 1
vmin = Sl o i)+
fh 2.2 2 2

1
+ vt 3 (e ) (v —va)? (4.38)

S+

1
—XV, Vg + m2x2

/2 2

—Buvyvg —

From oV™" /9h, = oV™" /9h, = dV™" /dx = 0, we have three conditions:

7 A 1
o T = (O™ - 02 - g
L S RS 11 NI I ACROED
fi (2 A Ji oo o
x(5r ) (Vi +va) +m3) = ﬁvuvd— ﬁ:ub)u—"vd)

4.3.2 CP even Higgs mass

From m = (dV /99;00 ), we can obtain mass matrices. For CP even scalars,

in the basis of (h,, hy,X,), mass matrix is given by
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19 9: CP even Higgs masses.

m3cos? B 1 sin2B(f2v? m2sin B
) 9
+M%sin® B —m3 — M%) —m/?cosP
1o 2.2 2 in2 2
> sin2B(f;v mg sin” 3 mz cos 3
M= 2 (i 7 0 , ¢ (4.40)
—m3 — M%) +M3cos? B —m/?sinf
m2sinf m2cos B "2
) ) E
—m/? cos B —m?sin

where M2 = ﬁ(Avuvd —ufa(V2+v3), M3 = M2, m? = f,(N2u+ fux)v, m?* =
Av/\/2, and m3 = (v/2Ax+2Bu)/sin2p. Note that originally (11) element is (u+
i/ V22 =t (1/8) (g +83) (32 —v2) + (/2202 (22) elementis (u-+ (fir/ V2)x)2 +
m3+(1/8)(gy +83) (—vi +3v3) + (fi/2)v;; and (33) element is (1/2) f; (v, +v7) —
m? but equivalent to those shown in the matrix with the help of Eq. (4.39).

The smallest eigenvalue, which we will identify with the Higgs, is smaller

than the smallest eigenvalue of the top 2 x 2 submatrix[63]. Therefore,
2m)? < (md +M3) — [(m3 +M2)? — 4m3MZ cos® 2B + f22 (f2v* — 2md — 2M%) sin® 2] /2
(4.41)
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Taking quantum correction from top quark and A’ into account, the mass eigen-
values become larger. Fig. 9 shows the Higgs boson in the GeV units. We set

M; = 1TeV, A" = 800GeV, B = 500GeV, u = A/ f, = 200GeV. Left panel is for
tanp = 3, right panel is for tanf§ = 5.

Typically, for the large Higgs mass, we need large coupling |f;|. However,
too large | f;| makes perturbativity be broken down. The relevant renormalization

group equations of couplings are given by

2d8i2

167 = big?
dy? 16 13

160 =0 = V7L 637 — 583 — 383 — {281 (4.42)
df? 3

lom* = fiAfi +3y] 3¢5 — 541]

where g; are gauge couplings(g; = \/SWg/) so that by = 33/5,b, = 1,b3 = =3
and t = In(u? /M27). We see that for perturbativity up to GUT scale, say, fi(u=
Mgut) < 2w, low energy f, should satisfy f,(u = 100GeV) < 0.7. When f, ~ 2,
perturbativity bound is kept only below 10TeV[64]. In our case, low energy fields
and couplings come from physics of PQ symmetry breaking. Then we may require

that perturbativity holds up to PQ scale, 10° ~ 10'2GeV, and f,(u = 100GeV) <

100+

7 / \ \
b / \ 500 F \
/ \
/ L
[ / \
/ \

\
,// \\ .
\ 2000

38

[ \ —
20r | 100F

| | T

L
15

L L L L
0.5 15 0.5 10

17 10: The lightest eigenvalue versus 3. x axis extends from 6 = 0 to /2.
The unit of y axis is GeV. fj, is fixed by —0.6, x = 320GeV, M; = 1TeV,

A" =GeV, B =500GeV, u = A/ f, = 200GeV.
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0.8 ~ 0.9. Fig. 9 shows that the for given parameters, especially at tanf3 = 3 ~ 53,
the 125~130GeV Higgs is almostly on the perturbativity bound.

The 3 x 3 CP even scalar mass matrix has complicated dependence on various
parameters. tan B dependence on the tree level mass is shown in the left of Fig. 10.

However, quantum correction
3Gr i1 (M3)+(Al)2 21! (Al)z)} (4.43)
——— |m/In| — — ) m(l——(— .
\/ETC2 SiIl2 B ! th M; ! 12 M ’
where M = | /m; m;,, gives strong dependence on tanf at its small values. As
shown in Fig. 10, the quantum corrected Higgs mass grows as tan 3 decreases.

Now, consider f; and x dependence of the mass matrix. To begin with, con-

sider 2 x 2 matrix,

a b
(4.44)
b ¢
The smallest eigenvalue is given by
1[(a—i—c) — \/(a+c)2 —4(ac—b2)] (4.45)
2

Note that off diagonal element b reduces the eigenvalue. In the limit a,b < c,
eigenvalue is approximately a — (b*/c). This simple fact is useful to understand
the Higgs mass in the model.

The lightest mass of CP even mass matrix is, mainly the Higgs-like, not
X,—like. As an illustration, consider eigenvectors of the lightest CP even mass ma-

trix in the basis of (H,,Hy,X,) in the case of tan3 = 3 in Fig. 9 (Other parameters
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19 11: lightest squared mass eigenvaue(GeV2 unit) of 2 x 2 submatrix
composed of (11), (13), (31), (33) elements.

are the same as those for Fig. 9). For f;, = —0.6,

x =300GeV :
x =250GeV :
x =200GeV :
x = 150GeV :
x =100GeV :

(0.773,0.209,0.599)
(0.770,0.211,0.602)
(0.781,0.219,0.584)
(0.803,0.231,0.549)

(0.840,0.248,0.482)

x= 50GeV : (0.901,0.278,0.332)

x= 10GeV : (0.948,0.307,0.008)

(4.46)

From this, we notice that the lightest mass in the CP even mass matrix is

mostly H,—like. Moreover, since (33) element is proportional to 1/x, for large x

(33) element is smaller than (22) element. So, in this region, X, is more mixed than

H; in the lightest scalar, and (13) element plays crucial role in reducing values of

the lightest scalar.

Fig. 11 shows lightest squared mass eigenvaue(GeV? unit) of 2 x 2 submatrix

composed of (11), (13), (31), (33) elements. Such pattern can be explained as fol-
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1% 13: lightest squared mass eigenvaue(GeV? unit) of 2 x 2 submatrix
composed of (11), (12), (21), (22) elements.

lows. The left of Fig. 12 shows (11) element mass, [(v/2Ax +2Bu) cos? B/ sin2p +
M2 sin’ [3]1/ 2 in GeV unit. A is proportional to f;,. The right of Fig. 12 shows (13)
element in GeV? unit. Nonzero value of it reduces the lightest eigenvalue. In par-
ticular, increasing magnitude of (13) element for small x pulls isomass line to the
right where large (11) element is reduced by large (13) element.

On the other hand, for very small x < 80GeV, (33) element becomes very large
so decoupled from the Higgs. The lightest scalar mass is mainly determined by

mixing between H, and Hy, which is shown in Fig. 13. Therefore, main contribution
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to the lightest scalar mass eigenvalue comes from 2 x 2 submatrix composed of

(11), (12), (21), (22) elements, and the eigenvalue of this submatrix is given by

miMcos? 2B [P (fHv? —2m} —2M3) sin® 2

1( 2 2 2 2
B+ M2) — (R + M )[1_4
A (g +M3)? (mg+M3)?

(4.47)

For example, consider the case of x = 0.1GeV and f;, = —0.6. The second term in
[]is about 0.06 and the third term in [ ] is about 0.04. So, the lightest mass squared
value is approximately given by (1/40)(m} +M%). In our parameter choice, ng ~
577GeV. Then the lightest scalar mass is estimated by 92GeV. Including sublead-
ing effects, this can be changed, and numerical value of whole 3 x 3 mass matrix
gives 96GeV. Quantum correction from m; and A’ can increase the Higgs mass to
125GeV.

In the region where x very close to zero, X, does not provide VEV, but pro-
vides the Higgs quartic term f;,|H,H,|*. Effecitve u term, e = u -+ (fi/V/2)x

comes out of u = S% /Mp. This region allows sizable pes. (Fig. 14)

“ /lZ 60

S

0 a7 e
)

1% 14: 125GeV Higgs line compared to contours for ef.
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219 15: Lightest CP odd scalar ay mass.

4.3.3 CP odd Higgs mass

The CP odd scalar mass matrix is given by

(Gx+Bu)it,  (5x+Bu), v

2
Mp = (%x—&-B,u), (%x—i—B,u)z—;, %vu (4.48)
%Vda %Vu’ M%

Originally, (11) element is given by (u+ (fi/Vv2)x)? —m2 + (1/8)(g3 + &3)(v2 —
)+ (f2/202, (22) clement is (u-+ (fi/ V2 + 3+ (1/8)(g} + &3)(—12 +
v3)+ (f2/2)v2 and (33) element is (1/2) f7(v2 + v3) — m? but equivalent to what
is shown in the matrix with the help of Eq. (4.39). One eigenvalue in the direc-
tion of (—sinf,cosf,0) is zero, longitudinal component of Z boson. Among two

remaining eigenvalues, the smaller one is

(4.49)

ax =

4u11/2

) 22y — [ 2 22 }
m (mj+Mg) — | (my+Mp) sin2p
where M* = 2BM? — f,A(v2 +v7). Consider the lightest eigenvalue direction in
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19 16: The CP odd scalar ay squared mass versus [. x axis extends from
B =0 to 7t/2. The unit of y axis is GeV2.

large tan B limit. The mass matrix is of the form

xXa

X

ya

X ya
PR
y Z

(4.50)

where a = cot, and we can expand eigenvalue in terms of a. For large tanp, v, >

vg4 so electroweak symmetry is broken mainly in the direction of H, so Z boson

longitudinal component is mainly CP odd part of H, ((1,0,0) direction). Then, the

lightest eigenvalue direction is (0, ez, e3) where

€2
tany= —
€3

(14+a*)x® +2a%y* — x[az+ /(1 + a?)x2 — 2a(1 + a?)xz + a2 (4(1 +a?)y* + 72)]

y[(l +at)x+az— /(1 +a2)x® —2a(1 +a?)xz +a2(4(1+a?)y* +22)

for small a. In our case,

tany = —

\%V cos’
Z5x+Bu sinp
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2% 17: ax — vy decay through Higgsino loop.

which is very small for large tanf. Therefore, the lightest eigenvalue is X,-like,
not the Higgs like. Actually, if u = 0, the Lagrangian recovers PQWW-type PQ
symmetry (the remnant of the PQ symmetry for the QCD axion) so Goldstone
mode should appear when X, and the Higgses develop VEVs.

The lightest mass, say, mass of ay is shown in Fig. 15 This is for tanf = 3,
A = f, x200GeV, B = 500GeV, and u = 150,200GeV, respectively. The mass my,
has B dependence as shown in Fig. 16 which is drawn for x = 160GeV, f;, = —0.6
and other parameters except tan 3 is the same as before.

In the case of extreme X,—like ay, it decays into Yy through the triangle dia-
gram shown in Fig. 17. Fermion in internal loop is the Higgsinos. As low energy
PQWW-type PQ symmetry, which will be called ‘Higgsino symmetry’ is mainly
broken by X, VEV, we can simply estimate such coupling as

Loty = 2 Py P (4.53)
and similar decays into ZZ or WtW ™ can be considered either. In the LEP, in
may be produced through, for example, the s—channel process like e (p')e™ (p) —

Y (q) — Y(k)ax (k') whose amplitude is given by

. . —i (Oem\ 1 vio
M =3¢ (—ie¥u(p) 3 (S ) Emood Ko (4.54)
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ax

19 18: ax production from WW fusion.

and then the cross section is given by

3 2 2 4
_ %em l _ May _ May May (4.55)
o(5) = Jgar 2 (] 2s )(1 3s 12s2)'

To count how many this ay production events can take place, we can sum over
(integrated luminosity at s) X (cross section at s) with respect to s > my, . We assume
mq, = 125GeV and integrated luminosity in LEP II experiment is provided by [65].
Then the number of events are estimated as ~ 5 x 1073, In hadron collider, it may
be produced from electroweak gauge boson fusion with the Higgsino triangle(Fig.
18), which has much smaller probability than the CP even Higgs produced from
the gluon-gluon fusion, since electroweak coupling is smaller than the strong cou-
pling, so production rate is suppressed about ~ Oc‘z*/(xf ~0.0336%/0.118% ~ 10—+,
Actually, scalar production by the vector boson fusion accompanies dijets in for-
ward direction, so it can be distinguished from scalar production from gluon-gluon
fusion. As observed events at the LHC do not have forward dijets, 125GeV sig-
nal mainly come from gluon-gluon fusion. Therefore, pseudoscalar cannot explain
125GeV signal[61].

Of course, ay also contains the Higgs components, mainly from H; for large
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tan B, then it may decay into bb pair. The ratio of BRs to ax — Yy and to a, — bb

in our example is given by

2 3 2 2 2 2
aemmax 8Td‘dW _ (x’emmax MW

= = 4.56
6412x% 3C2mImqy 24mx? C?m?’ (4.56)

where C = gy tanPBsiny in a large tan limit, and % is multiplied for three colors
of b. R of Eq. (4.56) is about (m,, /67Cx)?. In a large tanf and a small u lim-
its, C &~ —gpvcosB/x which is very small. Therefore, ax almost decays into bb is
suppressed.

Moreover, the absence of quartic term, |X, \4 makes the X,-like neutral fermion,
say, X, very light. Then, tree level decay ax — X.X, would be a dominant decay
mode of ay. Since ay decay is mainly invisible, we do not have much chance to

detect it.

4.4 Effective supersymmetry from flavor non-

universal U(1) mediation

If the Higgs is a fundamental scalar, we encounter the gauge hierarchy prob-
lem. As described in Sec. 3.2, it arises from quadratic divergence in the Higgs mass
correction and such quadratic divergence comes from fermion loop. However, since
Yukawa couplings are very small except top quark Yukawa coupling, contributions
from all quarks and leptons but top quark arenegligibly small. For this reason, if
we want to construct minimal model for solving hierarchy problem, it would be
sufficient to search for top-like contribution whose coupling to the Higgs is com-
parable with that of top quark so that it can reduce quadratic divergence against the
top quark contribution. Then one may ask what makes only top-like contribution
resides in sub TeV region whereas other new physics are at very heavy scale. To

answer to this question, we have to introduce flavor dependent new physics.

76



In this section, we consider SUSY as a candidate of new physics as a solution
of hierarchy problem. As an application of flavor dependent symmetry to SUSY, we
consider the effective SUSY, in which all squarks but stop mass are heavy enough

so that they are out of reach of the LHC searches.

4.4.1 Supersymmetry breaking mediation mechanism

SUSY should be broken since sparticles with the same mass as quarks, lep-
tons, or gauge bosons have not been found yet. It can be broken spontaneously
when potential has nonzero vacuum value. SUSY algebra [Q4, 0]+ = ZGZ P Or,
equivalently, P, = (1/4)654(0x, 03]+ implies that H = Py = (1/4)[01,0;]+ +
(1/4)[Q2,05]+. Then, if (VAC|H|VAC) # 0, Q4|VAC) is in general nonzero so
vacuum is not invariant under the SUSY transformation: SUSY is spontaneously
broken. However, SUSY is not likely to be broken within the MSSM sector. To see
this consider the structure of the mass matrices of fermion and boson in the broken

SUSY. Gauge boson obtain the mass via the Higgs mechanism,

(b, = DD+ @3
For scalars, the potential is given by

1
V=FF + S DD

W (4.58)

Fr=——, D'=-1"-g0(T").

The scalar mass is given by (JV /0®;0®;) where ® = ¢,¢", so in the basis of
(9,0),

Wk Wy ; + DY D% + D% D WKW, + DD
: ;o N ‘ , (4.59)
WipW T + D¢ D4 WaW i + D¢D4 + D¢ D4
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On the other hand, fermion and gaugino masses come from

1
—V22a(TA) " Wi(0:) — SYivWij+h.c. (4.60)
Then, the mass matrix in the (A, ) basis is given by

Wij  —V2Df

(4.61)
VD 0

and the supertrace is given by

sTrm® = (1) (27 + 1)m]
J (4.62)
= Trm} — Tr(m}mp + mpm;) +3mi, = —2Tr(T“D?).

Let us consider the mass squared matrices for each electromagnetic charge
(2/3, —1/3, —1 and 0) separately. Since SU(3). and U(1)ey, should not be broken,
only color and electromagnetic neutral D terms may be contribute to the SUSY
breaking: Dy, D term for U(1)y and D3, that for 73 component of SU(2);. Then we

have

STI'MI2 = g2D3 — gyD()
sTng =—g2D3+gyDo

(4.63)
STI‘M‘% = —gzD3 —‘rgyD()

STrM; = g2D3 — gy Do

which implies that sTrM?2 + sTrM?2 = sTrM2 +sTrM> = 0 and there should be some
sfermions lighter than the fermion[66]. This is ruled out by experiment.
In this regard, SUSY breaking sector need to be secluded from the MSSM

sector. By secluded, we mean it should not affect the phenomenology of the SM (or
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MSSM) without SUSY breaking. So we call it ‘hidden sector’. Even hidden and
the MSSM (‘visible’) sector are completely separated, both are regulated by the
gravitational interaction, so SUSY breaking can be transferred to the visible sector.
This is gravity mediation. On the other hand, hidden sector can couple to the some
unknown fields charged under the SM gauge group. In this case, these fields play
the role of ‘messenger’ transferring the SUSY breaking in the hidden sector to
the visible sector. This scenario is called gauge mediation. Under the messenger
scale, at which messengers are integrated out, sparticle masses and their interaction
obtain soft SUSY breaking term. Soft terms come into the quantum correction to the
Higgs mass as M2 In(A/M), instead of A2. It replaces the quadratic divergence with
the more ‘soft’ logarithmic divergence, and it is why such terms are called ‘soft’
breaking term. The form of soft term therefore depends on the SUSY breaking

mechanism.

4.4.2 Effective Supersymmetry

Now, consider the current experimental status. The low energy SUSY models
with two features, 1. R-parity is conserved and 2. SUSY breaking is described by
the common scale, are almostly ruled out. To maintain the motivation of low energy
SUSY as a solution of the gauge hierarchy problem, we should consider either R-
parity violation constrained by proton stability or two different soft mass scales in
the SUSY breaking. Let us focus on the latter case[67].

As mentioned previously, the third generation squarks are less constrained
and those in sub-TeV are not ruled out in experiments. Moreover, the large Yukawa
coupling of the third generation gives decisive contribution to the Higgs mass cor-
rection. So even though other squark masses are beyond the reach of the current
LHC search, the third generation can be (sub-)TeV and it still solves the hierar-
chy problem. Such idea is called effective SUSY or natural SUSY[68]. In many

models, stops are lighter than other squarks. As can be seen in the squark mass ma-
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trix, left- and right- squark mixing is proportional to the quark mass, For example,
—M,, (A" 4 ucotP) for u—type squarks(i, ¢, 7). For the first two generations, these
terms are very small due to the small Yukawa couplings. On the other hand, the third
generation has sizable Yukawa couplings then such large off-diagonal term makes
the lightest mass eigenvalue lighter. Moreover, the squark soft masses run in the
form of dr/dInu = (1/87%)(9%(m2 +m§L +m§c) — g2M?) where my, is the Higgs
soft term, m,, or my. Then rough estimation gives &i? ~ (92 /87%)In(u/A) < 0 for
large Yukawa coupling. Therefore, the third generation squark can run to the lighter
mass scale. In this regard, light stop is favored.

More progressively, we can consider the model making the third generation
squark masses and other squark mass scales drastically different. In construction
of a model for it, flavor dependent U(1) gauge symmetry is useful. Suppose new
U(1) gauge symmetry, say, U(1)’, under which the quark superfields in the first two
generation are charged, but those in the third generation are uncharged. SUSY is
broken in the hidden sector and messenger is charged under U(1)’. Then SUSY
breaking can be transmitted to the visible sector through U(1)" gauge interaction.
What about lepton sector? If we prefer the simplest model, we can make sleptons
heavy enough likely to the first two generation squarks. Then we don’t need to con-
cern the lepton sector any more. However, there are some motivations of consid-
ering light((sub-)TeV) slepton(s). First, one may require anomaly-free U(1)’ from
appropriate assignments of U(1)’ charges to the quark and lepton superfields. Then,
some lepton superfields can be uncharged under it and corresponding sleptons can
have (sub-)TeV mass. Second, as the quarks and the leptons are charged under
flavor dependent U(1)’, the U(1)’ charges can affect the flavor structures. For ex-
ample, we can find the origin of mixing patterns appearing in the CKM or PMNS
matrices from such U(1). Then there may be (sub-)TeV sleptons determined by
U(1)" charge assignments. Third, there are some phenomena which may require

new physics at (sub-)TeV. For example, muon g — 2 = 2a,, still has deviation from
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the SM prediction[23],

Aay =a® — a3 = (255 +£63+49) x 107" (4.64)

Such deviation may be due to lack of understanding on the hadron physics then it
would be explained within the SM framework. However, it can also be interpreted
as a smoking gun of new physics, such as SUSY. MSSM contribution to muon g —2

is given by[69]

SUSY

u 1.5(@) (73OOGGV)2 (“MZ). (4.65)

X109 ~ 10 - m2

If we assume that new physics contribution entirely comes from SUSY, Aa, can
be used to estimate the scale of sneutrinos, and even can constrain upper bound
of slepton mass as sub-TeV[70]. Of course, even though they can be motivations
of considering light sleptons, it does not mean the sleptons have to be light. One
can assign non-anomalous U(1)’ charges consistent with mixing patterns, but also
make all the sleptons heavy enough. Muon g — 2 deviation can be attributed to the
QCD effects which may have not been noticed. Light sleptons are entirely optional.

However, in this thesis, we consider light sleptons(Fig. 19):

1. Many U(1)s may contribute in the mediation. Here we choose the simplest
possibility that only one U(1) with the superpartner Zprimino (Z’-ino) is

effective in the mediation.

2. The SUSY breaking source does not carry the weak hypercharge Y, or the
low energy SM does not result. The messenger sector at Mg carries the Z’

charge Y'.

3. The superpartners of the third family fermions, (¢,,7,V;) do not carry the

U(1) charge Y'. This item realizes the effSUSY.

81



Messenger

t, 67 T, Vr, Hua Hd

MSSM Hidden Sector

1% 19: SUSY breaking mediation through U(1)" under which the third
generation matter and the Higgses are uncharged

4. The Higgs doublets do not carry the U(1)’ charge Y'. The SUQR)y xU(1)y

breaking is naturally achieved by a running of Higgs boson masses.

Suppose SUSY is broken in the hidden sector with confining gauge group, for ex-
ample, SU(5)'. The messenger fields, carrying the hidden sector color such as the
SU(5) charge have the following (¥, Y’;SU(5))

f(07 1;5/)7 f_(()? _1;5/)' (466)

and the third family members do not carry the Y’ charges. In addition, Higgs

doublets also do not carry the Y’ charges. Then, a light Higgs boson and the light
3rd family members are obtained naturally.

We may take some variations. For the lepton sector, one of the first two gen-

erations, instead of the third generation may be uncharged under this U(1)’. We
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will see this example later to explain mixing in the lepton sector. To explain heavy,
nearly degenerate first two generation squarks, we may introduce SU(2)’ for them
and the third generation squark is singlet under it[71]. We do not consider this
case here for the following reason. Suppose we look for the origin of gauge sym-
metries from more high energy physics, for example, orbifold compactification of
superstring[72]. To eliminate tachyonic state, string theory has both bosonic and
fermionic degrees of freedom related by SUSY which is called superstring. For
unitarity, negative norm state is not allowed and this condition predicts the 10 di-
mensional spacetime. For anomaly cancelation, gauge group on superstring should
be SO(32) or Eg xEg[73]. In order to obtain realistic model, we need to compactify
extra 6 dimensions, and the SM gauge group and its chiral representation should be
obtained from such compactification. However, we usually obtain more than one
SUSY (A > 1) in such compactifications. With A’ > 1 SUSY, fermions in chiral
or complex representation cannot be obtained. Therefore for chiral representation,
we introduce discrete symmetry on extra dimensions. By identifying points related
by such discrete group transformation, we can mode out multiple SUSY. This is
called orbifold compactification. In this process, many U(1)s come out. For exam-
ple, Eg xEg can be broken down to SU(3).xSU(2), x U(1)y xU(1)3 xSU(5) xU(1)
where primed groups come from Eg[74]. Such U(1)s are in general flavor depen-
dent, and we may find combinations of U(1)s under which the third generation
quarks and the Higgses are not charged. For this reason, we prefer U(1)s for medi-
ator rather than other gauge groups. On the other hand, mediation of SUSY break-
ing may take place not only through U(1)’ but also through the flavor universal SM
gauge group. In this case, the third generation squark masses can be heavy enough
but still lighter than other squarks. To make third generation squark masses low

enough, SUSY breaking scale can be made lower. Consider the example where the
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1% 20: SUSY breaking mediation through U(1) under which the third
generation matter and the Higgses are uncharged and U(1)y.

messenger fields carry the Y charge,

f(1,1,5), f(=1,-1;5). (4.67)

Then SUSY breaking is transferred to the visible sector as follows:

1. Many U(1)s may contribute in the mediation. In addition, U(1)y of the SM
also can be effective as a SUSY breaking mediator. These gauge bosons are

7' and B, and their superpartners are called Zprimino Z’ and Bino.

2. The SUSY breaking source does not carry the weak hypercharge Y, or the
low energy SM does not result. The messenger sector carries both the weak

hypercharge Y and the Z’ charge Y’.

3. The superpartners of the third family fermions do not carry the Z’ charge Y'.
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q12 : 3 (t,b) 0
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e, 1 T 10

NS, 0 1 N§ 0 0

H, =0

H, 1o

3 3: The Y’ = B— L charges of the SM fermions, Higgs doublets and heavy
neutrinos.

This item realizes the effective SUSY .
4. Higgs doublets do not carry the Z’ charge Y'.

5. The SUR)w xU(1)y breaking is done by a fine-tuning between parameters

of the Higgs boson mass matrix.

4.4.3 Soft mass terms and sparticle spectrum from fla-

vor non-universal U(1)' mediation

In this section, we obtain soft terms from U(1) mediation[75]. To be specific,
we present minimal case here. For matter contents, MSSM matter fields(the quarks,
the leptons, the Higgs) and the heavy neutrinos in the seesaw mechanism are con-
sidered, and we do not introduce more SM charged matters under the messenger
scale. With these matters only, we can consider the anomaly-free U(1)’, for exam-
ple, Y/ = B — L for the first two generations and Y’ = 0 for the third generation as
listed in Table 3. Messengers form vector-like U(1)’ charged pair.

At the messenger scale M ess, the messengers obtain mass from the effective
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719 21: The mass diagram of Zprimino. The SUSY breaking insertion from
SUSY breaking in the hidden sector is x. The bulleted line is Z’. This soft
mass is added to the SUSY mass.

superpotential X f f with spurion X = Mess + 02 Fipess s

Mr%wss FmeSS (4.68)

Finess M2

mess

Nonzero Fiess makes scalar masses split and different from the fermionic super-
partners of f and f which have common mass Myyess. In this way, SUSY breaking
is transferred to the messenger sector. Then, Z’'—ino and the MSSM gauginos ac-

quire soft masses as(Fig. 21)

Nr/neSngzr (Mimess) Finess
16m2 M mess (4.69)

MZ' (Mmess) = -

Ma(Mmess) =0

where N/

L ess = >_; Y{? is the number of messengers. Since we consider f, f pair,

Nx/ness =2
Suppose U(1)’ is broken at scale M, lower than the messenger scale. At
My < u < Mpess, Z'-ino obtains mass M -+ M3 . In one-loop, gaugino soft term
runs in the same way as the gauge coupling, i.e.
dMy _ bz/g% d 1 by

- M, = 4.70
ding — 8m2 77 dlnu g2, 8n2 (4.70)
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219 22: The mass diagram of the SM gauginos. The SUSY breaking from
Zprimino sector is shown as x. The Z’ line is a bulleted line.

219 23: The first two family sfermion(qg 2, ] 1,2) mass diagrams. The SUSY
breaking from Zprimino sector is shown as X.

G, 1y, Hyg 3,13, Hya G, Iy, Hyg

719 24: The mass diagrams for the third family sfermion( g3, I3) and Higgs
bosons. The SUSY breaking from the SM gauginos are shown as x.

SO,

d (M _
dlnp<g§, )=o. “.71)
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Under My, both Z' gauge boson and Z'-ino are integrated out. (We assume

here that Mz >> M) Then Z'-ino running is summarized as

M5, 1 K
2Z (:u) _ _872Mmess , (4.72)
8y (,U) T mess

This also holds for the SM gauginos. But at one-loop level, SUSY breaking
effect does not appear. Including leading SUSY breaking effect(Fig. 22),

dM,  b,g> cag’ d 1 by
= M My, —— — = - 4.73
diny ~ 8m? “+(8n2)2gz 27 dlnu g, 8m2 (4.73)
SO
d Ma Cq dMZ/
—2) =4 . 474
dln,u(g%) 8m2by dlnu (4.74)

where ¢, are given by

1 ? 2 1 g 2 1 ? n 1 g n n
ol () ()
CZZZ [3Yé2+YL/2}, 4.75)

c3 = Z [ZYg +Y[l,2f +Yl;%].

In our case(Y' = B—L), cy = 92/27, ¢ = 8/3, and c3 = 8/9. For more accurate
and systematic analysis, refer to [76] in which extra gauge boson interaction broken
by Yukawa couplings mediates SUSY breaking.

At u < Mz, the U(1)’ vector multiplet is decoupled, so the MSSM gaugino

masses are determined by

dl‘iu (%) —0 (4.76)
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SO

M, 2 (My M,
) e ) by o (). @77
8a(u) (872) My
Note that
M M, M; :clg%:cQg%:Qg%:cl :2¢y 1 6c3 (4.78)

at low energy scale. The MSSM gauginos obtain soft masses as M, ~ 10’4Mz/.
On the other hand, the first two generation sfermions directly couple to U(1)

as (Fig. 23):

2 _y2 a2

G012 T Ta2h 220

4.79)

at the messenger scale. The low energy soft scalar masses are determined by

2 n
m. - Y
izl | Tqiphiz 2 M2 (4.80)

dng — om2 %7

because M, ~ 10~*M < M and the Yukawa couplings for the first two families
are negligibly small.

Finally, the third generation sfermions and the Higgs doublets are not charged
under U(1) so m;‘j}’ Ho (Mmess) = 0 but obtain soft masses through renormaliza-
tion group running(Fig.’24):

dm? 16 1
8T s =R (F3m3 +363M3 + gt}
amz. 16 16
g2 t‘:22P_<7 )02 —2M2>
T ding i b 3 &3M5+ 1381Mi
dm?, 16 4
gu2 b _ o 2P—(— 240 2M2)
T din Vbt b 3 83M3 + 581
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M 3 5.5
8n ” —yT <3g +5g1M )

dl
dm? 12
812 d’}" =P — < giM}
n2 (4.81)
3
8> dln = 3)2p, (3g§M§ +§g%M%)
2 12‘1d 2 2 2142 3 2142
81 ding 3ypPp+yiPr— (382M2 + gglMl)
where
P = m§~3 +m,% +m12_,u +A”
Py = m2, +m +mpy +AY (4.82)

P = m —&-mrc—l—de +A™

For A-term, A"?® = 0 at the messenger scale, but can be induced through
renormalization group running:

dA! 16 , 13
M2 o = GyPA! +y2Ab — ( 3 @AM+ 3g3Ms +

i)
dng 158171

2 dAb t T 16 , ’ 7,
S H_W‘ +6y3A" +y7A" — (§83M3+3g2M2+Eg,M,) (4.83)

9
81M1)

dAt 24b 24T
8m2 90 3,240 4 4247 — (3gM2+15

dlnu

In summary, the third generation and the Higgses do not couple to U(1)’ gauge
superfields directly, so it acquire soft masses indirectly. As the SM gauginos also
obtain SUSY breaking in a indirect way and Yukawa interaction gives correction
to the sparticle masses through fermion loop where soft masses are not come in,
the SUSY breaking effect in the third generation is two more loop suppressed com-
pared to those in the first two generations. More explicitly, taking gaugino-quark
loop into account, the first two generation squark soft term is approximately g)z,/M <
whereas the third generation squark soft term is approximately gagy, %,. So loop

suppression from gauge couplings makes mass hierarchy between squarks.

90 :



Moreover, too heavy the first two generation squarks can make stop mass
tachyonic through two loop contribution as dominant terms in renormalization
group (RG) equation of stop is given in the form

2 (4.84)

%mg =8 ac/ M +8] Y aelc] 4|t
i i
where le is the Casimir for stop and &; = 8[2 /16m%. K — K mixing determines
minimal value of ﬁﬁz and non-tachyonic condition determines the ratio of stop to
heavy squark mass less than 0.2. Then stop should be heavier than 4TeV[77].
Now, let us discuss the spectrum of our model. Since we considered the ef-
fective SUSY from broken U(1) gauge group, we need two scales: SUSY breaking
scale and gauge symmetry breaking scale. In the model, messenger scale where
SUSY breaking is transferred to flavor dependent U(1)’ gauge boson and its super-
partner is 10'*GeV, U(1)’ gauge boson mass is 103GeV,and soft mass for gaugino
is 10°GeV. U(1)" gaugino mass would be 10® + 10° ~ 103GeV. For scale between
103 ~ 10'*GeV, we have to consider RG running of MSSM and U(1)’ gauge bo-
son. Stop is massless at 10!*GeV but heavy squark and gaugino masses make stop
run to obtain mass. At 108GeV where U(1)' gauge boson and gaugino are inte-
grated out. stop is massive at this scale. For scale between 108 ~ 10°GeV, where
10°GeV is mass of the heavy squarks, MSSM renormalization group running is
applied. Stop mass at 108GeV is initial condition. Heavy squarks would affect two
loop RG running of stop mass within 103 ~ 10'*GeV. Large two loop runnning
within this wide range makes stop tachyonic. Threshold effect may alleviate tachy-
onic catastrophy[78] but it is not enough to make stop nontachyonic. Finally, below

heavy squark mass (103GeV), only stop RG running is taken into account.
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4.4.4 UQ) charge assignments reflecting flavor struc-

ture

We may consider another type of U(1) charge assignments. Previous model
considers U(1)p_; which cancels anomalies within each generation. But such a
type of anomaly cancelations is not a dogma, just simplification. We may cancel
anomalies within two or more generations.

In this section, we try to relate flavor structure with U(1)’ gauge group. From
this, it may be possible to construct the model which solves gauge hierarchy prob-
lem and flavor problem simultaneously and consistent with experiments. To solve
the flavor problem completely, we have to explain both mass hierarchies and mix-
ing matrices, but in this thesis, we mainly concentrate on the structure of mixing
matrices only. Actually, the flavor dependent symmetry in supersymmetric model
may provide interesting flavor structure. Flavor dependent symmetry can restrict
the form of Yukawa matrices before diagonalization. As both the SM matters and
their superpartners are U(1)’ charged in a flavor dependent way, mixings in the
quarks(leptons) have the similar pattern to that of squarks(sleptons). Such restric-
tion from symmetry is the basic reasoning for Minimal Flavor Violation(MFV)
hypothesis: “any flavor violation originates from Yukawa structure of the SM”[79].

Consider first the u quark sector. It has global SU(3),xSU(3), flavor symme-
try in the absence of quark masses and flavor dependent U(1)’ symmetry. As the
third generation is not charged under U(1), the global family symmetry is broken
and only SU(2),xSU(2), for the first two generations remains. Then the mixing be-
tween the first two generation is natural. The same holds in the d quark sector. Then
it could explain why mixing of the third generation with the first two generations is
much smaller than mixing between the first two generations.

The mixing in the lepton sector is more complicated, since PMNS matrix has

large mixing. We can throw this problem away by raising all the slepton masses
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heavy enough by assigning nonzero charges, but let us suppose that the deviation
of muon g — 2 from the SM value implies sub-TeV slepton mass, say, V,.. Then, the
second generation lepton doublet is uncharged under U(1)'. Anomalies are not can-
celed in each generation, but canceled in the whole matter contents. Also assume
that the second generation u¢ superfield is uncharged either. Then, naturally, O(1)

coupling can be attached as

Iy -Hge® + 1y -Hyt® + 1 - Hgu + 13 - Hge€ + I3 - Hyt© (4.85)

From this, the leading term of charged lepton mass matrix is given by

a 0 d
01 O (4.86)
a 0 a

1 1
Y
U = 0 1 0 4.87)
1 1
0 7
If PMNS matrix has the form of
1 1
i v 0
VPMNS = i i % (4.88)
1 1 1
2 2 2

(Solar mixing angle is about /4 and no 8;3), unitary matrix diagonalizing neutrino
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mass is given by

D —
_|_
[\e)
3
D —
+
-

_1
2
— 1 1 1
U, = 1 L 5 (4.89)
11 11 1
2 2v/2 2 V2 2

If neutrino masses have normal hierarchy, so that diagonalized to the form of

diag.(0,0, 1), the neutrino mass matrix in flavor basis is given by

11 1
a 22 )
my =v2yM T o _ﬁ 1 ﬁ (4.90)
1 1 1
i V2 4

Suppose heavy neutrinos have U(1)' charges for the second and the third genera-
tions, and zero charge for the first generation. Then Yukawa matrix 9 in the seesaw

mechanism is of the form

0 a a
7= 1 0 0 |- 4.91)
0 a a

Now, U(1)p_, is broken in the Majorana mass M. Introducing superfields ®; with
U(1)p— charge -2, &, with charge -1. To cancel the anomaly, there should be &
and ®§ with charges opposite to those of ®; and @, respectively. the VEVs of @ »
breaks U(1)g_;, and

M N{NS + @) (NSNS 4 NSNS + NSNS + NSNS)
(4.92)
+ D5 (NSNS + NSNS + NSNS + NSNS)
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give the Majorana mass matrix M,

1 ¢ ¢
M=Mi| ¢ b d |- 4.93)
c d b

with b ~ d. Redefining neutrinos (Nj,Na,N3) to(N1,N,,—N3)The neutrino mass

matrix is proportional to

2¢*  —2ac —2a*
1

my = D/M_lyT = m —2ac b+d 2ac . (4.94)

which is very similar to (4.90).

In this way, basic patterns of mixing matrices can be understood in the pres-
ence of flavor dependent U(1)’ symmetry. Subleading breaking effects would ex-
plain deviation of such basic patterns from observed values. Especially, when this
breaking is made of VEV with the phase, it will be the source of CP violation in

the weak interaction.

4.4.5 Flavor problem in the supersymmetry

In general, new physics can enhance some phenomena which should be sup-
pressed. Flavor changing neutral current(FCNC) and CP violation are such exam-
ples. If observations report sizable values of these effects, they may provide hints
for new physics. To understand this, calculating both new physics contribution and
the SM contribution in exact values are important. Especially, when taking hadron
process into account, more exact calculation of the QCD effect is important. Many
of such effects are loop suppressed. For CP violation from the phase, single dia-

gram does not tend to show it since overall phase can be absorbed by redefinition
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w

u,c,t A Y u,c,t

W

71 25: FCNC in the SM.

of external fields. Phase effect can be seen from interference with other diagrams
and in many cases, loop diagrams should be taken into account. For FCNC effects,
leading contribution comes from loop effect. One of the famous example is K — K
mixing. Tree level diagram like left of Fig. 25 is forbidden because mixing in the
neutral current does not appear even we move from the flavor basis to the mass ba-
sis S¥d — Zis‘V;;Y‘V,-dd = §Yd by unitarity of V. = P L; + PrR,. So, the leading
contribution is one-loop box diagram (right of Fig. 25). Aside from loop suppres-
sion, it has additional suppression come from unitarity of mixing matrix, known as

Glashow-Iliopoulos-Maiani(GIM) mechanism[80]. This diagram contains the fac-

tor

( > Vﬁiﬁ‘ﬁv)z (4.95)

i=u,c,t

where V is the CKM matrix. Let mg be the common mass scale of the virtual quarks.

We can express the mass of each quark as m; = mg + Am; then the factor above is
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19 26: FCNC in the SUSY.

written as
(i;tvizmkl V) = (Z Vot ).
{Z "’V’S(Yk o y.kl,moA’"iy.kimo)r (4.96)

i=u,c,t

:(Z dv”yk moA iy-k1—m0>2'

i= u,c,t

The leading contribution of order O((1/m)?)vanishes by unitarity of the CKM
matrix, and subleading order O((Am;/m})?) remains.
For scale lower than My, K — K mixing is described by the four-Fermi effec-

tive operator,

L5172 = OS2 (1 4 y5)sdf'(14+95)s + hec. (4.97)

and C1851=2 from the SM box diagram is given by

m2

Clasl=2 _ g2 Z)\‘*Q\.*F”( i,j ) (4.98)
W

Wl u,c

where A; = V;V. Note that 7 quark is integrated out as m; > My so we do not con-
sider it. Mixing parameter for K — K mixing is Amg = (3.483+0.006) x 10~ ?MeV
and the SM estimation explains roughly 80% of it [81]. New physics may introduce

sizable mixing effect. For example, extra U(1)’ may lead to the tree-level FCNC,
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with the diagram of the same type as left of Fig. 25. To suppress this, we should
impose either heavy Z’' gauge boson mass or very small coupling. SUSY also con-
tribute to FCNC process through one loop diagram shown in Fig. 26. We can con-

sider the super-GIM mechanism[82] where virtual squarks contribute,
1 2 1 2
* : _ kT A2
(2 Vi) = g | S0t asm)

Then FCNC from SUSY, Clgey is given by

[Z = UisAiii? } (4.100)

where 7 is the typical scale of the squarks and gluino. In the case of gauge me-
diation though the SM gauge group[83], soft mass is flavor universal. Then in the

quark mass basis, squark mass is of the form

m3 + M} 0 0 —mgA’ 0 0
0 m? + M} 0 0 —myA’ 0
0 0 m? + M; 0 0 —mpA’
—myA’ 0 0 m3+ Mg 0 0
0 —mA! 0 0 m? + Mg 0
0 0 —mpA’ 0 0 m3 -+ Mg
(4.101)
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and diagonalized by

C1 0

0 (&)

0 O
U =

51 0

0 52

0 O

which mixes left and right handed squarks but does not violate the flavor.

53

—s5]

0
—5;
0
0

(&)

0
0
—53
0
0

c3

(4.102)

In the case of the effective SUSY, soft term from U(1)’ mediation is not flavor

universal, so it can have flavor violating effect. However, the first two generation

squarks are heavy enough, we can consider the third generation effect only[84].

Moreover, as mixing is similar to that of quark, the first two generation quarks(ds

in K meson) do not mix with the third generation squark too much. So in this case,

we can be safe from FCNC problem. The same can hold for D — D mixing where

D = iic, composed of the first two generation quarks[85]. So, stringent bound may

come from B — B mixing.
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Flavor Problem in a view of flavor

dependent symmetry

In the SM, mass hierarchies and mixing pattern come from the structure of the
Yukawa couplings in a flavor basis, i.e. undiagonalized basis. But what we know
from observations are not sufficient to guess the original forms of the Yukawa cou-
plings in a matrix form. Moreover, the SM does not fix the form of Yukawa cou-
plings due to the flavor universal nature of the SM gauge group. To add new type
of flavor dependent symmetry determining flavor structure, we may get motivation
outside the flavor physics. One of such example could be flavor dependent U(1)',
mediator of SUSY breaking for effective SUSY spectrum. In this chapter, we in-
vestigate flavor problem within the realm of flavor physics. For this, we first study
the structure of mixing matrix in the quark sector, CKM matrix, focusing on the
CP violation in the weak sector and A = sin0¢ expansion. They can be interpreted
as violation effects from basic pattern provided by some kinds of flavor dependent
symmetry. We also consider the PMNS matrix in a parallel way. As an example
of such symmetry, we present the structure of the CKM and PMNS matrices from

non-Abelian discrete symmetry, Dy;.
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5.1 Structure of the CKM matrix

5.1.1 Parameterizations of the CKM matrix

If we do not assume the fourth or more generations, CKM matrix is 3x3

unitary matrix. Its moduli is measured as

Veal Vsl Vil 0.97428£0.00015  0.225340.0007 000347700001

Voal Vsl Vel = 0.22520.0007 0973451000015 ,0410+00011 (5.1
+0.00026 +0.0011 +0.000030

Vil Visl V| 0.008627 0020 0.0403%5 0007 09991527 gogus

It can be parameterized by three mixing angles, Euler angles and one unremovable
phase. When firstly suggested by Kobayashi and Maskawa[15], they parameterized

CKM matrix as

1 0 0 cit —s1 O 1 0 0
0 c2 —8 S1 C1 0 0 C3 S3
0 s o 0 0 0 s3 —c3
(5.2)
C1 —S51C3 —851853
i i&

= S1C2 C1C2C03 — $283¢€ C1C283 + s2c3€

i&' i&'
S182  C18203 +Ca83€ C18283 — CaC3¢€

On the other hand, the widely used parametrization comes from Chau-Keung,

and similarly, by Maiani[17],

1 0 0 Cc13 0 S13eii¢ Cc12 s;2 0
0 23 523 0 1 0 —S12 C12 0
0 —823 (€23 —S13e‘i¢ 0 C13 0 0 1
(5.3)
C12€13 $12€13 si3e” 9
= | —si2c3 —cias23513¢®  cra003 —s12823513€® s23¢13
512523 — c12e23813€¢® —c12523 — s12ca3s13€? eazens
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0,0) (1,0

219 27: Unitary triangle for the CKM matrix [23].

Both are just different parameterizations of the same matrix. Moreover, Such
parameterizations do not concern which angle is very large or which angle is negli-
gible. In 1983, Wolfenstein noticed that [V,;| ~ |V,s|>. Among three mixing angles,
Cabibbo angle 8¢, mixing between the first two generations, is the largest. From

them, he expanded CKM matrix in terms of A = sinO¢ = |V,;|[86]. Then,

1-2%/2 A ANV (p—im)
—A 1-22/2 AN +0(\Y) (5.4)
AM(1—p—in) —AA? 1

and these parameterizations correspond to

s1:s2:53=A:0.7502 1 0.31A%, 5121503513 = A: 0.81A%: 0.31A°. (5.5)

Further discussion on parametrization of the CKM matrix can be found in [87].

Measured values with the global fit is given by

A =0.2253+0.0007, A =0.8080022
(5.6)
p=0.13270922 " . =0.341+0.013.

where p=p(1—A%/2+---), 1 =n(1—A?/2+--) come from p+ifi = — (VuaV.5,)/ (Vea Vi ).

The barred parameters p,T show one special property of the CKM matrix. From
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unitarity of the CKM matrix, we have

ViaVies VeV +ViaVis = 0. (5.7)

Dividing both sides by V.4V, we obtain the closed triangle shown in Fig. 27 with
(p,T) being the complex vertex. Then the angle o = (89.0;54)° is very close

to 90°[23]. This is why we call the CP violation in the weak interaction maxi-

2.40)0

mal. In commonly used Chau-Keung-Maiani parametrization, ¢ = (67.19“:1_76

so maximal CP violation is not apparent. Within the SM framework, this does
not matter because the phase can be moved anywhere by phase redefinition of
the quarks without affecting phenomena. However, if there is a flavor dependent
symmetry so that the Yukawa matrix in the flavor basis is fixed, maximal CP viola-
tion can be regarded as an important feature of the Yukawa matrices. In this sense,

adopting the parametrization of the CKM matrix with 90° phase can be a good

parametrization[88].
Since
ViaVy
_ th
(X:Arg.(—v ) (5.8)
udVyp
parametrization
1 0 o 1 0 0 g s 0 1 0 0 1 0 0
0o 1 0 0 o % -1 e 0 0 o3 —efdgy 0 1 0
0 0 P 0 -5 o 0o o & 0 ey C3 0 0 e
c] s1¢3 —5153
= —S1C2 cieaces +52s3€’i5 —C1c283 + S2L‘3e’i5
e’sx] 5 7ei501 s2c3+¢283 3+ S2S3("5
(5.9)
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has 6 = oo = 89.0°. With this parametrization, three Euler angles are given by

0, =13.0° =0.227
0, =2.42° =0.0423 (5.10)

03 = 1.54° =0.0276

so angles have hierarchy 8; = O(A), and 8,3 = O(A?). Note that unphased part
of V;4V}} given by —cysis3s3 = O(A) is very small compared to the phased part,
—s1c282¢3 = O(A?). Therefore, to a good approximation, the separated phases of

Vi and V,; are moved and merged to make maximal mixing. This can be seen in

the expansion in terms of A = |V,|:

2 34 46 2
T A R W (144)
a2t
T2 ® 16 5 s
5 4 . A (Kb*K/e )
A+ B (2 -xd), —B @+ -2k ) p 5 (5.11)
26 s s s —?(ZK,e" +%p) . .
- (7Kb+1<, — 8Ky Kxpe" )
; 4 .
i 22 2 (kp — Kre®®) 1= 5 (2 +1 — 215 ,¢)
At (H 3) 2 &y W (a2 i
—% (2K + K1) % (2[K;+K,]*Kr'<b‘" )

Similar expansion making V,; and V;; simple was originally suggested by
[89]. If 6 = 0, there is no CP violation. Moreover, if either K;, or K; vanish, one or
more mixing angles vanish. Then, phase can be eliminated by phase redefinitions
of the quarks, so CP is not violated.

If we do not consider the phase, Euler angles are just what was used in
Kobayashi-Maskawa parametrization. But phase was put differently. In fact, in
Kobayashi-Maskawa parametrization, determinant is not unity but ¢ However,
the phase in determinant can be related to the phase of the quark mass matrix,
Arg.Det.M,. This can be rotated away with the help of the Peccei-Quinn sym-
metry redefining 6 term in GG as 6 = 0 + Arg.Det.M,. So one can start with
Arg.Det.M, = 0 and detVcgy = 1. In this case, one can see CP violation of the

CKM matrix easily. This is discussed in the next section.
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5.1.2 Jarlskog determinant

To parameterize CP violation of the mixing matrix, Jalskog suggested the

following quantity, Jarlskog determinant[90].

Det.C

S T T e e v e o e Y v S

where

C = —i[MM,MsM}). (5.13)

So, Jarlskog determinant can be one way of parameterizing CP violation in
the quark mass matrices independent of mass eigenvalues[91]. The result is given

by

J = [ImVg, Vi Vin Vi | = IV, Vit ViV, | (5.14)

The same quantity also comes from unitarity of the CKM matrix. For exam-

ple, the unitarity condition implies

VidVp, +VeaVi +ViaViy, =0
= VaaVarViaVio + VeaVaVeVis = = VigVio|*

(5.15)
— ImV,4V,, ViiVir = —ImVeqV,, Vi Vip

= [ImVigViyVigVi| = ImVeaVi, Vg Vi |

and this is nothing more than Jarlskog determinant J. The measured value is given

by J = (2.91f82}?) x 107 and it is parameterized in Chau-Keung-Maiani parametriza-

tionasJ = clzslzc%slgczgsm sind. Since 515 = O(A), 523 = O(A?), and 513 = O(A?),

J=0(\°).
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The Jarlskog determinant is the product of four matrix elements, But when
DetV is real i.e. equal to one, more simplification can be made. To see this, consider
the parametrization (5.9). The Jarlskog determinant is given by clczqs%szg sind,
and it is of order A® as 515 = O(X), s23 = O(A?), and 513 = O(A?). This is expected
because Jarlskog determinant is unique property of the CKM matrix, and it is in-
dependent of parameterizations. One important feature of our parameterizations is
that since 8 is almost 90° it does not have more suppression. In this sense, Jarlskog
determinant is maximal for a given A® order. Also, this parametrization has a unit
determinant. To make the determinant real, imaginary parts of the six elements of
determinant, product of three matrix elements, cancel with each other. Moreover,

each element has the same imaginary number, Jalskog determinant:

ViiVarVaz = c%c%c% + c%s%s% +2c1c2¢35253 cOS O
—C1 C2C3S%S2S3ei6

—V11Va3Va = C%C%sg + c%s%c% — 212035253 €08 O

+ C1C2C3S%S2S3€i8
(5.16)
Vi2VasV31 = S%S%C% — C]CzC3S%S2S3€i6
—VioVo1 Va3 = s%c%c% + ClCzC3S%S2S3€i8
ViaVo1 V3o = s%c%s% — 616263S%S2S3€i5
—Vi3Vr V31 = s%s%s% +ci C2€3S%8253 e
or
ViiVaaVas = chcels — crasineasacissize,
—V11Va3Vap = cfps35¢15 +612512€23S23C%3S13€i5,
ViaVasVa1 = s7,533¢13 — 6128126235236%3513€i6,
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and

—V12V21 V33 = S%ZC%3C%3 + 6125126235230%3S13€i8,
Vi3Va1Vaz = 1251223523513 €088 — 12512623523 13¢ 3513
+ 512033573 + C12523573, (.17
—Vi3VaaV31 — C12812€23523513 COS S+ C128512€23523€13C13813€™
+ CTaC338T3 + $1252357-
Therefore, Jarlskog determinant can be expressed as a product of three matrix el-
ements, and it can be just read off from the imaginary part of one of elements in
determinant, for example, ImV,,;,V.;V,4. To see this more explicitly[92], we denote

indices for matrix elements as numbers, not quark names, e.g. V, = Vj2. The unit,

real determinant condition is written as

1 =V11 V22 Va3 — Vi1 Va3 Vao + Vi Vas V3

(5.18)
—V12V21V33 +Vi3Va1 Vao — VizVao Vg
Multiplying V5V55 V5 on both sides,
V1*3 V2*2 V3*| = |V22 |2V] 1 V33V]*3 V3*l - Vl 1 V23V32V1*3 VS*I V2*2
=+ ‘V31 |2V]2V23V]*3V2*2 —ViaVai V33V1*3V3*] V2*2 (5.19)

+ Vi3 [P Var V3o V5, Vs — [ViaVaa Vi 2.

Consider the second term on the RHS, —Vi1V23V3V5V5, Vss. It contains a factor
V32V2*2, which is equal to —V31V2*1 — V33V2*3 by the unitarity of V. Then, —Vi1 Va3 V32V1*3 V3*1 V2*2 =
Vi 1V23Vl*3 Vz*l |V31 |2 +V11V33V1*3V3*1 |V23 |2. Especially, the second term V11V33V]*3V3*1 |V23 |2

combines with the first term of Eq. (5.19), V222 [Vi1V33V5 V5 tomake (1—|Vay I2)Vi1Vs3 VsVl

In the same way, for the fourth term on the RHS of Eq. (5.19), —V12V21 V33 V5V Vi,

containing the factor V33V3| = —Va3V5 ) —Vi3V[ |, can be rewritten as — V12 V21 V33 V55 Vi, =
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ViaVasVisVas [Var |2 4 ViaVai Vi Vs, [Vis|?. Here, the first term —VioVasVis Vi, [Var |
combines with the third term on the RHS of Eq. (5.19), |V5, |2V12V23 Vi5V5, to make
(1= Vi1 P)ViaVas Vi V.

In summary, Eq. (2) can be rewritten as

VisVa Vi = (1= Va1 P)Vii Vs Vi Vs
+ViVasVis Vo [Vai |* + (1 = Vil [F)ViaVasVis Vi
(5.20)
+ [Vis P (ViaVa1 Vi Vi + Va1 Vaa Vs Vi)

— [VisVaa Va1 .

Now, the unitarity plays an important role in simplifying this expression.
Let the imaginary part of Vi1 V33V 5V3| be J. From V|| Vi3 4 V5 Va3 4 V5 V33 = 0,
we know |V11|2|Vi3]? + ViiVas V5V + Vi1 Va3V 5 V5| = 0; so the imaginary part of
Vi1VasVi5V5) is —J. From Vi1 V3] + ViaVah + VisVas = 0, we have Vi Va3V V3| +
ViaVasVis Vi + [VisVas|? = 0. And, from V}53Vi3 + Vi Vas + V35 Va3 = 0, we have
ViaVssVi Vi 4 ViaVasViy Vi + [V Vis|? = 0. These two combine to show that the
imaginary part of Vi2V3V55V/5 is J. On the other hand, from V}|Viz + V5, Vas +
V3 V32 =0, we know Vo1 V3o V5 Vi + ViaVai Vi Vi, + |V Vas | = 0; so the imaginary
part of (V21V32V55 V5, 4+ ViaVai Vi V5, ) is zero. Then, the imaginary part of the RHS
of Eq. (5.20) is [(1 — |Va1]?) — [V31]2 + (1 — |V11|*)]J = J. Therefore, the imaginary
part of V{5V, V5 (the LHS of Eq. (5.20)) is J. Maximality of CP violation in the
weak interaction characterized by & = 90° can be visualized in the unitarity trian-
gle. Original definition of Jarlskog determinant is product of four matrix elements,
more precisely, two matrix elements and two complex conjugates of matrix ele-
ments. In unitarity condition V4V, + V.4V, +ViaV,;, = 0, if we do not divide both
sides by V.4V, each side of unitaity triangle is composed of one matrix element
and one complex conjugate of matrix element. Therefore, the twice of area of the

unitarity triangle, or area of the parallelogram is just the Jarlskog determinant. If
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i J = —Im Vi1 V75V Vg

N = (31(32635%5 S38in 0

8189C2C3—1

719 28: Rotated Jarlskog triangle showing maximal CP violation.

the magnitudes of two sides are fixed, the area is maximal when the angle between

them is 90°. This is shown in Fig. 28.

5.1.3 Interpretation of the Wolfenstein parametriza-
tion

The Wolfenstein’s idea that A = sinO¢ can be an expansion parameter for the
CKM matrix may have a physical interpretation. If we have flavor dependent sym-
metry, it can restrict the form of the Yukawa matrix. U(1)’ in the effective SUSY
may be one of examples. Suppose that the basic pattern of the CKM matrix de-
termined from certain symmetry principle is identity. Then expansion of the CKM
matrix in terms of A implies that Yukawa coupling constructed from the symmetry
principle has breaking effects parameterized by A. Suppose we have the scalar ¢
which is the SM singlet but charged under the flavor dependent symmetry. When it
has VEV, symmetry is broken and Yukawa matrix has powers of (¢) /M which can
be the A. For realization, one may assign flavor dependent symmetry charges such
that couplings gHu is not a singlet of such symmetry so that it has to be coupled to

0. So Yukawa coupling has the form of nonrenormalizable term ({¢)/M)"gHu to
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make singlet of flavor dependent symmetry. In this case, basic pattern is symmetry
breaking effect in the leading order, and it can have A expansion form. The sublead-
ing effects or small explicit breaking effects may be responsible for deviation from
the measured values. Moreover, when one of such ¢s has the VEV with the phase,
CP phase can be interpreted as a spontaneous breaking effect of flavor dependent
symmetry.

The flavor problem of the SM asks two questions: mixing pattern and mass

hierarchy. They all come from the Yukawa matrices. Then how can we relate these

two aspects of the flavor problem? Writing Yukawa couplings in the form of M)"gHu
p p g pling q

is originally come from Froggatt and Nielsen[93], to explain the mass hierarchy in
the quark sector by introducing flavor dependent U(1) symmetry. Expressing mass
ratios as some powers of A, mass hierarchies and mixing pattern can be related.
Weinberg pointed out the numerical similarity, A ~ \/W[%]. With this point
of view many efforts have been made to construct the original form of the Yukawa
couplings at the GUT scale, texture[95], which produces measured mixing angles
and mass hierarchies at the electroweak scale. Especially, it is favored that some
elements of the Yukawa coupling at high energy vanish, as forbidden by symmetry
principle.

On the other hand, recent observations show that the PMNS matrix, mixing
in the lepton sector has large mixing. This is different from mixing pattern of the
CKM matrix, very close to identity. To explain this, non-Abelian discrete sym-
metries have been used[96]. One representative example is tri-bi maximal mixing,

suggested by Harrison, Perkins, and Scott[97]:

0
1 1 1
./ ! _\/; (5.21)
11 \ﬂ
6 3 2

In fact, similar type of mixing was studied by Pakvasa and Sugawara[98] to

111



explain Cabibbo angle in the CKM matrix and widely used thereafter to explain

large mass hierarchy. Suppose the Yukawa matrix in ‘democratic form’,

I 1 1
! 1 11 (5.22)
3

1 11

This matrix is not democratic at all in the mass eigenbasis, as it is diagonalized to

diag.(0,0, 1). The unitary matrix diagonalizing it is

1 1 1
1
— | o o 1 5.23
7 (5.23)
o o 1

where 0 = exp(i27/3), the solution to the equation @? +®+ 1 = 0. Since eigenval-
ues in the first two generations are degenerated, we can rotate them freely. When it

is combined with maximal mixing, 45° rotation, it becomes

Suppose u—, d— quark sector and charged lepton sector have a such structure.
For CKM matrix, since L, = Ly = Vj, the CKM matrix is identity in the leading
order. Deviations from identity in the quark sector are parameterized by A, explain-
ing the first two generation mass hierarchy and A expansion in the Wolfenstein
parametrization. On the other hand, if neutrino sector is diagonalized with basis
changing matrix, PMNS matrix has a tri-bi maximal mixing.

However, tri-bi maximal mixing may be irrelevant for mass hierarchy. The
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unitary matrix (5.23) diagonalizes the mass matrix with the permutation structure

a b b*
b* a b (5.25)
b b" a

to diag.(a+ @b+ 0*b*,a+ wb* + 0*b,a+b+c). As this mass matrix has three in-
dependent real numbers, mass hierarchy may not be considered. Only permutation
pattern matters. Maximal mixing also irrelevant for the mass hierarchy. 45° mixing

diagonalizes the mass matrix of the form

a b 0
b a 0 |- (5.26)
0 0 1

Then the sameness of diagonal and that of off-diagonal do matter but mass
hierarchy may not be imposed. In fact, U(1)’ symmetry in effective SUSY does
not consider the mass hierarchy too much either. Many discrete symmetry model
buildings on the PMNS matrix mainly focuses on the permutation pattern of the
Yukawa matrices and mass hierarchy is not an important issue. We will see an

example in the next section.

5.2 Quark and Lepton Mixings from discrete

D1, symmetry

Whereas tri-bi maximal pattern mainly concerns the permutation structure of

the Yukawa matrix, our example here considers breaking of the discrete symmetry
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with phase. It predicts the basic structure of the PMNS matrix as

T N T
CoS¢ sing 0

Vi = _lLgan L en 1
PMNS 7 sing \/ECOS 3 7
_ 1 gn® Lg% L

\/§S1n6 \/50056 ﬂ

(5.27)

On the other hand, we try to explain one sizable angle in the CKM matrix,

Cabibbo angle. So, basic structure of the CKM matrix is given by

T A T
cosys  sings 0
Vekm = [ sinfs  cos{s 0 (5.28)

0 0 1

We set the Cabibbo angle by 15°, slightly different from measured value 13°. This

comes from hypothetical relation, so called quark-lepton complementarity

O501 + 08¢ ~ 45°. (5.29)

which states that the sum of the corresponding angles (the mixing between the first
and the second generations here) in the CKM and the PMNS matrix is 45°[99].
To obtain these patterns, we employ dihedral group Dj; as a flavor dependent

symmetry[100].

5.2.1 Properties of dihedral group D, and breaking

pattern

The dihedral group D,y represents the symmetry of a regular polygon of 2N

sides. Its properties are:

1. Ttis isomorphic to Zyy % Z, (cyclic rotation + reflection).
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2. Itis generated by two generators a and b,

a:(xi,x,,xon) — (XN, X1, , XoN—1)
(5.30)
b: ()C17)C2, e 7)621\/) — (xlax2N7 e 7x2)
which satisfies
aN=e, b>=e, bab=a"". (5.31)
3. Its irreducible representations are
Four singlets : 1,4, 1__, 14, 1_4
(5.32)
(N—1)—doublets : 24 (k=1,--- ,N—1)
For a (complex) 2; doublet basis, a and b are represented by
eZTlZik/ZN 0 0 1
a= , b= (5.33)
0 672m'k/2N 1 0

For a (complex) 1;; singlet basis, i is the eigenvalue of b and j is the eigen-

value of ab.

4. Tensor products satisfy the following.

* Singlet times singlet multiplication,

1s1s2 X 15/]5/2 = lslllslz/ (534)

where s{ = 515} and 55 = s25.
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 Singlet times doublet multiplication,

X wxj x|
(W) (L) ¥ ( > (2) = ( ) (26); (w)(1-—) x ( ) (26)
X3 wx X2

<w><1+7>x< " )(zn:( e )(zm(w)(lfw( " )(zu
X2 wxy X2

where the boldface symbols inside the brackets show the D,y repre-

( WXy )(2’().
—wx|

(5.36)

sentations.

e Doublet times doublet multiplication,

(@) Fork+k" # N and k— k' # 0,

< " )(mx( o )(2k/):( e )(2Hk,)+< 2 )(2H,). (5.37)
X2 2 0y 21

(b)Fork+kK =Nandk—k #0,

( " ><2k>x( " >(zk/>:<ml +x2y2)(1+—)+(1'1y1*Xzyz)(1—+)+( e )<2H/> (539)
X y2 X2)1

(c) For k+k # N and k — k' = 0, (which will be frequently used)

X1 n X191
< > (2) % ( ) (24) = (12 +x2y1) (L) + (x1y2 —x231) (1-— ) + ( ) (24 pr)- (539
x2 2 2¥2

( g )am( )<zk,>:<x1y2+xzy1><1++>+<x1y2—xzy1><1ﬁ>

+ (11 +x2y2) (14— ) + (xayr —x2y2) (1)
(5.40)
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When D,y charged field has VEV, it is spontaneously broken. For a Dy dou-

blet, suppose that the VEV is chosen as

—2mi
eV km

(H(2)) ~ . (5.41)

Note that (H(2;)) is the eigenvector of ba™ with eigenvalue 1, and hence it is still
invariant under the action of ba™. Therefore, by the VEV of Eq. (5.41) D,y is bro-
ken down to the smaller group generated by ba™. Since (ba™)? = 1, the remaining
group should have a subgroup Z; generated by ba™. The symmetry breaking pattern

for this vacuum choice is as follows:

* When j divides 2N (im=0,1,--- 27N — 1), Dy is broken down to
2; .
Doy 25 D; = (a®M7 ba™). (5.42)
Note that a®V// generates Z; since (a*V//)/ = 1. Therefore, the group gener-
ated by a®¥/J ba™ is ZixZy=Dj.
* When j does not divide 2N (m =0,1,--- ;2N — 1), D,y is broken down to
2; "
Dyy — 72, = (ba > (5.43)
* A successive application of doublet VEVs lead to (a) When k divides j with
mj = my,

2.
Doy~ D; 25 Dy (5.44)
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(b) When k does not divide j with m; = my,

2.
Doy —5D; 25 7. (5.45)

Of course, one can choose an arbitrary value for the VEV, and [101] lists all the

possible symmetry breaking patterns and the resulting subgroups.

5.2.2 Model for the CKM matrix

To obtain appropriate structure of the Yukawa matrices for observed the CKM
and the PMNS matrices, we have to assign D, charges to the quarks and the lep-
tons. Moreover, the Higgs may be charged, but in this case, too many Higgses in
the different representation of the D, group are required. Many neutral Higgses
give rise to FCNC problem[102], but FCNC from Yukawa coupling is very small
as long as the top quark is not taken into account. Instead, we may assume that the
Higgs doublet is not charged and introduce scalars in the Froggatt-Nielsen scheme.
They have VEVs suppressed by their mass scale explaining the Yukawa couplings.
Such scalars are called ‘flavons’.

In our case, we consider the multi-Higgs case. Higgses are charged under Dy,

as

. H{u H{/u
Hy:1.4, 121, 123 (5.46)
Héu Hé/u
H{?
Hg N 1++, Héd . 1++7 l . 22 (547)
HZ
l /1 H{l
Hy:1.(, Hy:1,., ; 1 2. (5.48)
H2
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For H's to couple to leptons but not to quarks and for Hg to couple to quarks but not
to leptons, we can introduce a leptonic Z3 discrete symmetry such that charged sin-
glet leptons, lepton doublets and H's carry Z3 quantum number 1 and all the other
fields, except the singlet neutrinos, carry Z3 quantum number 0. Moreover, H,, and
H, are distinguished by their different U(1)y quantum numbers. To avoid unwanted
H,, and H; mixing, we can assign U(1) PQ symmetry, as will be seen later. Note that
we have not introduces following Higgses which mix the D, doublet and singlet
fermions:

HY Hf H}

121, 121, 124, (5.49)

H; H H,
Even though we write some couplings with the fields of (5.49) below, we will even-
tually set those entries zero, either by not introducing the lowest order Dy, repre-
sentations as above or by assuming their vanishing VEVs.

For quark sector, we assign D1 charges as follows:

0}
121, O34y
(0))
MC c
12y, C 14y, (21, b1y (5.50)
CC SC

The tensor product of Q3(14.4) x (14 ) implies that it can couple to Hj (1),

leading to the coupling, viz. Eq. (5.39),

VHT (5.51)

where y{ is the Yukawa coupling constant.
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On the other hand, since 2, Higgs does not exist,

03(144) x ! (22)

cannot make D1, singlet, but

01 ,
(21) x1°(144)
0]
can couple to
Hy
(21).
Hy
So, we consider the coupling
3 (HYirtg + H{'CtR) (5.52)

where we used Eq. (5.39). Consideration of

<

01 ¢

(21) x (22)
0] c

allows its coupling, via Eq. (5.39), to

H/u H//u

Pol@pand [ | (29),

Héu Hé/u

i.e. the following Yukawa coupling
yﬁ (HIMIZLCR + HéquuR) + yg (Hﬁ’”aLuR + H{/MC_LCR) . (5.53)
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These couplings are summarized by the following up mass matrix

VSH," ViH[" Y3HY
M(”) — yZHéu ng{/u ngit (554)

0 0 yHY

One can construct a desirable mixing matrix by taking the zero VEV of
(H,HY)T, which represents (2; — 1;) quark mixing if not vanished. One may
also think of it as (H l”,Hé‘)T Higgs is forbidden by some kinds of symmetry. That
means, 1,4 and 2 quarks are completely separated.

The D1, symmetry is broken down to a smaller symmetry generated by b, by

assigning the VEVs as

HY I HY 1
(21):‘}“ ) (22):V )
HY 1 HY 1
A 1
Y4 (21) =Wy )
HY! 1 (5.55)
. H{/u 1
Ys (2’3) = Zu 5
Hé’“ 1
YIH) = xy.

Not introducing Eq. (5.49) is equivalent to setting v, = 0 and v/, = 0 in the
mass matrix, and we consider only 2, vacuum and D is then broken down to D,
generated by a® and ba®, where a and b are generators of D;, defined in Appendix.

Thus, the mass matrix becomes

wy z O
MW — 2w Wy O (5.56)
0 0 «x,
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which is diagonalized by the following unitary matrix,

1 1
i ooa 0
= LU
U, 5 7 0 (5.57)
0 0 1
Then, the mass eigenvalues appear as
2
(Wu —zu) 0 0 (5.58)
= 0 (wi+z)* 0
0 0 x2

which allow three independent mass values for the u,c, and ¢ quarks. Calculating

the down type quark Yukawa couplings in the same way, we obtain

YSHy! YiHg' ySH
d) __
MDY = | ydgid ydgd ydpd (5.59)

yoHS  ygH{ y{H

The D}, symmetry is broken down to a D, generated by ba and a®, by assign-

ing VEVs (for vy = 0) as

Hf’ e 0
(21) = V4 )
HY 1
A me o200 (5.60)
Y5 (22) =Wy 3
H}¢ 1

dyyd dyyrd
YiHy = x4, YoHy =24

where we choose ¢ = %‘, the smallest angle with the dodeca-symmetry. Not intro-
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ducing Eq. (5.49) is equivalent to setting v = 0 in the mass matrix, and we obtain

the following d quark mass matrix,

Wy 2d 0
MO = 2 wee 2 0 (5.61)
0 0 Xd

which is diagonalized by the unitary matrix

1 _ 1 it
7 N 0

U; = _%e—i‘b % o |. (5.62)
0 0 1

Then, the diagonalized mass matrix squared becomes

M2 — Ud(M(d)M(d)T)U;

242

w5 +25— 2wgzgcos @ 0 0 (5.63)
= 0 wf,—&-zfi—&-dezdcosq) 0
0 0 x2

Then, The CKM mixing matrix becomes

e_"q’/zcos% ieiq’/zsin% 0
Verm = U U = | g0/ 2sin% et/ 2003% 0 (5.64)
0 0 1

Note that the (11) element of Vg gives the Cabibbo angle 8¢ = % =15°
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vfrx mpq vfLs

Ng np ng Ny,

vy

vy

(M Ykp (MY

19 29: Double seesaw mechanism. Adopted from J. E. Kim and J. -C.
Park in [103].

5.2.3 Double seesaw mechanism model for the PMNS

matrix

To obtain the PMINS matrix, the seesaw mechanism should be used. Here, we
employ the special type, so called double seesaw mechanism. For this, we introduce
two kinds of heavy neutrinos, (n1,n3,n3) and (N1, N,,N3). In this double seesaw
mechanism, the Dirac flavor structure is screened in the neutrino mass matrix, and
hence the light-neutrino mass matrix becomes directly proportional to a heavy-
neutrino (n) mass matrix.

In the following renormalizable Yukawa couplings

fI(JIN)NIHvNLJ _|_f1(;\’n)NInJSnN _|_f1(1"”)n1njsn7 (5.65)
we require the condition fl(;N) o< ,(;V"). Such an (almost) exact proportionality could
arise in the context of GUT[103]. Suppose L; and n; belong to the same multiplet of
a larger gauge group, say, Fy, and H"Y and $™" belong to the same multiplet, say S.
Let F> be the multiplet to which N neutrinos belong. Then both f,(JlN)NI HYNL/ and

(Nn)

i N/ S™N come from the same interaction, SFiF>, with a common coupling

constant. If the see-saw scale is at the high energy scale so that the splitting of
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couplings are not so large, then fI(JZM is almost the same as fl(;vn). For example, in
the SU(6) GUT model[104], one of right handed neutrino (n in this case) and lepton
doublet belong to the same representation, say EM, another right handed neutrino
N is an SU(6) singlet and S belongs to 6° representation. Then, the first two terms
in Eq. (5.65) have the same origin, f(6N6%). When SU(6) is broken down to
SU(5)xU(1), splitting of the coupling f into f and f™" occurs, at the order of
%m(%). Supposing Myee s ~ 10'* GeV , Mgy ~ 10'° GeV, and f ~ O(1)
then the splitting effect is about 0.03, i.e. only 3 per cent. On the other hand, we
can also construct a term 15¥6M6" to form the Yukawa coupling. As splitting
6M — 5M 1 p occurs, we obtain various terms where 7 couples to the SM matter
as well as to the as-yet-unobserved massive particles. Since the Yukawa coupling
of the SM particles (in the SU(5) language, y(10”5¥5H)) should be present, it
might be hard to prevent all these terms toward the screening in the double see-
saw mechanism. But even in this case, the coupling y could be much smaller than
f since y < O(1072), and the screening effects in double see-saw mechanism is
a very good approximation. For example, the T lepton mass is about 1.8 GeV at
electroweak scale and therefore its Yukawa coupling is about 10~2. Since the RG
equation of each Yukawa coupling is proportional to the Yukawa coupling itself, we

2
expect that the correction from unified Yukawa coupling is small, ]g)?ln( Zf/lwé‘/’"r ) ~

0(1072 — 1073), which means that y is still much smaller than the O(1) coupling
f even at the GUT scale.

We give the following D, assignments for the SM leptons,

L
L] . 1++, . 21
Ls
(5.66)
e 1., H 124
,-CC
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For the heavy-neutrinos whose mass matrix is proportional to the light-neutrino
mass matrix, we assign

ny +ino
:22 ns: 1++ . (567)

ny—iny
Note that we combined two Majorana neutrinos to make a complex field required
for a doublet representation of D1;. We need not specify the representation content
of N; if it applies to the double see-saw mechanism.
For charged lepton masses, we use the Higgs doublets presented in Eq. (5.47).

Then, the mass matrix of charged leptons is given by

YiHy YoMy yoH|
1) _
MY = HL yLE! 3 HY (5.68)

YsH{ y4Hg  YSHY

The D1, symmetry is broken down to D5, generated by a® and ba®, by assign-

ing the VEVs as
H! —1 [ HY 1
(21)=w Vs (22) =wy ;
H) 1 H] 1 (5.69)

. Iyl
yiHy=x1, y4Hy =z

Note that we introduced H'’s which are different from H¢’s. Not introducing Eq.
(5.49) is equivalent to setting v = 0 in the mass matrix, and the 1, lepton and the

2/ leptons are not mixed,

X 0 0

MU= o w z |- (5.70)
0 z w
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The charged lepton mass squared, M;M T is diagonalized by

1 0 0

— 1 1
U=1] o0 5 7 (5.71)

o L L

V2o V2

In models with the screening of the Dirac flavor structure in the neutrino mass
matrix, the light neutrino mass matrix is assumed to be proportional to the heavy n
neutrino mass matrix, M) o< M") So the number of heavy Majorana neutrinos 7
is the same as that of the SM doublet neutrinos v. The SM singlet neutrinos n are
required to obtain masses by the VEVs of SM singlet Higgs fields S. So, the needed
SM singlet Higgs fields S is

A FEFRRLY.CFD W

. 21, . 24
st sy

To forbid S to couple to charged leptons or quarks, we need to assign Z3
quantum number as stated. Therefore, S and » neutrinos have Z3 quantum number
—1.

Now, the neutrino mass matrix can be written as

VIRSEAST S DR(SE S AST+S))
MU= Sy ST RSE (ST SE) (S5 S)
(S3+S)) (83 S7) it
(5.73)

We require that the D, symmetry is broken down to D, generated by @ and
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ba (for v, = 0)

St e /2
(21) =Vu .
Y e0/2
S ST e 0 (5.74)
s (24) =wy , ;
S/Zn el(])

/
yrlng = Xn, yZSOn =n

where ¢ = % x 2 . Also, taking v = 0, we obtain

2(zp + wycosh) —2w,sind 0
MWV = —2w,sind 2(zy —wycosd) 0 (5.75)
0 0 Xn

which is diagonalized by

cosy —siny 0
Uy=| sin? cosy 0 (5.76)
0 0 1
2(zn+wn) 0 0
m®Y =uMVU] = 0 2zm—wn) 0 |- (5.77)
0 0 Xn

The three independent neutrino masses can be fitted to the observed neutrino mass

ratios from the neutrino oscillation data.
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Therefore, the PMNS matrix is calculated as

Y AT
cosg sing 0

— T L inT 1 T
Vemns = UiUy —5sing  Jscosg —
Il T 1 T

7\72511’16 %COSE

(5.78)

S <

5.2.4 Vacuum stability in D, breaking

The vacuum choices for desired quark and lepton mixing angles must be con-
sistent with the Higgs potential. Couplings between Higgs and their complex con-
jugates are restricted by SU(2), x U(1)y x U(1)r x Z3 x Dy, where U(1)r is the
PQ symmetry and Zj3 is the leptonic one discussed below Eq. (5.48). For example,
by the U (1)y symmetry, H,H, and (H,H)(H; Hy) are allowed, whereas (H,H.,)>
is forbidden.

In Higgs potential, the most problematic terms are those containing D, dou-
blets H'?, §", and $™, which have non-trivial phases so that we have to verify
whether our phase choice is not spoiled. By imposing another symmetry such as
the PQ symmetry or a Z, symmetry, we can forbid the unwanted terms. We show
how this possibility is realized for D1, doublets. The potential containing Dj; sin-
glets can be treated in the same way.

Consider the tree level Higgs potential made of D, doublets. For the quartic
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tensor products, the following terms are allowed,

(H/uH/u) (H/dH'd), (H/uH/u) (H/“TH/“T)

(HH)(H'TH'), () ()

(HH) (HH"), (HH) ()
(H"H'"(H"TH"), (H"H")(H"""H'?) (5.79)
(HTH") (HTH'), (HH) (HH)

(H'“?H’“) (H'“TH’“), (H’dTH’d) (H"ﬁH'd)

(H/uTHlu) (H/cﬁH/d)

and their Hermitian conjugates. Suppose we introduce the PQ charge +1 to both
H'™ and H'?. H™ might be replaced by H"", but in this case the term such as
(H;TH;’)(H;H ")+ h.c. do not minimize our vacuum phase choice. For both H™
and H"™ not to appear in the same tree level quartic terms, we assign different PQ

charges to H™ and H"". Then, the following terms survive,

(HluH/u) (HluTHlmL )’ (H/dH/d) (HIdTH/dT)
(HluH/d) (H/uTH/dT) (H/dTHlu) (H/LﬁH/d)

(5.80)
(HIM?H/M)(H/MTH/L:)’ (H/dTH/d)(H/cﬁH/d)

(H/uTH/u) (H/zﬁH/d)

and terms with H"" replaced by H"". The Lagrangian contains the following terms,
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PP,

H P, |

H PSP

(P HY P2, (P = g )2

(P + H P, (P — | )2

(HHL) (R HLT) + (g ()

(H HY) (R HLT) + (Y H ()
(B ) (H H) - () () 580

(B Hi) (B BT - (B H (H )

(" ) () + (T H) (Hy T HL)

(HS™ g (Y ) + (L ) (1

(™ ) G ) Y (S L

(HS™ ) (S )+ (B ) (7

(7 + 3 ) 1 P+ 3 )

(7P H3 ) (B + 3 )

(B 4 (7
Our phase choice of VEVs must be consistent with the above potential. To inves-
tigate it in more detail, we pay attention to the last term. The other terms are not
introducing phases. Let 8; and &, be phases of H{" and Hj", respectively. For Her-

miticity and Dj; invariance, the coupling constant should be real. The last term

depends on phases through

cos(2(8; — &2)) (5.82)
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and our vacuum choice §; = §; = 0 minimize it provided the coupling constant is
negative. It is worth to note here that, if at least one of two D1, Higgs doublets
were in the same representation, it is very hard to minimize the potential toward
the desired vacuum property. For example, suppose that both H"* and H'? are in the

same representation. In this case, the following terms are allowed.

(H“H) (HYTH) + hec. (5.83)

For the invariance under the generator b of Di;, the overall coefficient must be
real. Let o, o4, of, od be the phases of Higgs VEV of H{*,H},H{?, and Hy! ,
respectively. So, this quartic term has the phase dependence cos (ot — oty — oc‘f + oc‘zi)
and our vacuum choice does not minimize it.

The quadratic terms allowed by gauge and PQ symmetries are, viz. Eq. (5.46),

H/uT H/u H//uT H//u H/d’r H/d (5.84)
and their Hermitian conjugates. D1, singlets are

|H“ |+ |H
|Hi/u‘2_~_ |H£/u|2 (585)

[HP o+ |H

These quadratic terms may introduce negative mass squared toward achieving the
VEVs of neutral members of the Higgs doublets.

The forbidden terms at tree level can appear integrating out heavy fields whose
VEVs possibly break the assumed symmetries. These could be used to explain the
vacuum choice of H'¢ and therefore explains how Dj> can be the flavor symme-

try. For example, consider the quartic terms made of D1, doublet Higgs without
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conjugate (or starred) fields. Then, we have

s (Y (), (i ) (556)

1, : (H"H{)* 4 (HyHY)? (5.87)
1., : (H"H{)? — (Hy'HY)? (5.88)

(gt
22 .
(H}HA Y
(5.89)
(H"H;")(H"H}“)
(Hy'Hi*) (Hy'Hy?)
H/uH/d H/uH/d
2 (Hy*H{")(H{"H{") (5.90)
(H{“Hy')(Hy'Hy')
Note that the term given in Eq. (5.86) is forbidden by the PQ symmetry assigning
+1to H* H and +2 to H"".
Let us introduce a D1, doublet 24 which is denoted as a SM singlet scalar &,
P,

®— $2, (5.91)
D,

Using P, the allowed quartic couplings are obtained. In addition, we note

* The dimension-5 D1, allowed couplings are

@] (H3 H) (H{“HI®) + © (H{“ Hy') (H Hy)] (5.92)
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* The dimension-6 D1, allowed couplings are

G| Py (Hy H') (H{"Hy') + L@ @3 (H{H{*) (Hy'Hy') 5.9%)
+ Ga[@F (Hy HY ) (H{HYY) + @7 (H}“Hy') (H3'HY')].

Here, 23 is shown to be equivalent to 24 by applying a Dy, transformation b of Eq.

(5.33)

(28) : 24 (5.94)

Operators with dimension more than 7 are highly suppressed and hence they can
be ignored. All effective quartic terms coupling to @ do not give the vacuum
we want to obtain. So, the unwanted terms must be forbidden by some symme-

try or at least highly suppressed. For example, if we choose the VEV of @ as

n
V2

choices given in Egs. (5.55) and (5.60). However, this vacuum choice is dangerous.

(exp(—i2n/3),1)T, only the dimension-5 operator is independent of the phase
With our discrete symmetry, a dimension-6 operator of the form

(@} + @3) (@] + @}) (5.95)

is not forbidden. Moreover, this term favors the direction which makes (®3) +
<<I>%> = 0. With this dimension 6 potential, our vacuum choice is not the minimum.
To forbid Eq. (5.92), we introduce a Z, symmetry: ® — —&.

Since dimension-5 operators are forbidden, we may choose an alternate direc-
tion P o< %(l,exp(fin/ 3))T. Then, our vacuum choice corresponds to the mini-

mum.
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5.3 Realistic parameterizations for the PMNS

matrix

As shown in the previous section, the basic pattern of the PMNS matrix can be
explained in terms of non-Abelian discrete symmetry and seesaw model. However,
observed values show deviation from the discrete symmetric pattern. One important
issue is nonzero (13) element of the PMNS matrix. Vanishing this element implies
that one of the mixing angle is zero. In this case, if we neglect the Majorana phase,
lepton sector does not have CP violation in the weak interaction. Only when three
mixing angles do not vanish, the unremovable phase in the PMNS matrix, the Dirac
phase appear. Most model based on the non-Abelian discrete symmetry predicts
that 013, or 63 vanishes. However, subleading breaking effects of such symmetry
can introduce nonzero value. Nonzero Dirac phase can appear as the breaking effect
of the discrete symmetry with the phase.

Recently, the T2K collaboration reported a large 013[105]. At the 90% confi-
dence limit, they report 0.03(0.04) < sin® 20,3 < 0.28(0.34) for sin® 20,3 = 1.0, |Am3;| =
2.4x1073eV?, § =0 and normal(inverted) hierarchy. The BF points are 0.11(0.14).
The MINOS group also reported that a vanishing 013 is disfavored[105]. Based on
the global neutrino data analysis shows a sizable 013, as well as a deviation of 8,3
from m/4. The best fit values in their analysis, which will be used in the estimation

here, are as follows[106]:

sin? 015 = 0.306(0.312), sin*0;3 = 0.021(0.025), sin®By3 =0.42.  (5.96)

Nonzero 0;3 is confirming in RENO, Daya Bay, and Double Choose[107]. Dou-

ble Chooz reports sin’20;3 = 0.086 + 0.041(stat) & 0.030(syst), or, at 90% CL,
0.017 < sin®2013 < 0.16, Daya Bay reports sin”> 203 = 0.092+0.016(stat) +0.005(syst).
and RENO reports sin®20;3 = 0.103 +0.013(szar) £0.011(sys)
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In this regard, we should put the correction to the discrete symmetry patterns.
Suppose the basic pattern provided by D1, symmetry[108]. With the traditional
Chau-Keung-Maiani parametrization, we obtain a parametrization where the mix-

ing of V53 and Va3 is maximal. Kept to O(PB), with the (13) element being of order

BB, we have
FVA-p- LB B0+ J1+5YB) 5
—5hs (14 V31 + BB s (va-asesemp L
. , L1+ (4 5P
~(A+} 4B )R ~V3@a+ 4 +Be D)) ? (5.97)
zlw(eiBJr\/g(eiS—B)B 7ﬁ(ﬁei57[ei5—3]ﬁ i(]_(M—ﬁ)ﬁz)
(- 31+ B A e amp) ’
With the BF values above (Eq. 5.96),
B=0.062, B=2.32, A=128 (5.98)

and the CP phase 6 = 0 as assumed in the measurement.
For the modified Kobayashi-Maskawa parametrization, giving O(B) correc-

tion to 6 3 gives

Lvi-p- 96 L (1+va-ta+m)R) TERVG

L (V3-[1+v34-2Be BB »
1 _ Z\fz( _eB (18 AR
2|ﬁ<l+(\/§ w (P (1+A24B2) V2 (1 2 (V38200

+

Iz %*"/MBZ) —A(1+2Be is))ﬁz) _%(A2+B2_ei6(‘/§A+l)B)Bz)

% (\/5, [1—+/3A+2Be BB
-1V3(1+42+B?)
+24(1 723e*"5)]|32)

Zej’i(w(\/ﬁA)B

Vi - & - 42

%(144?3@"5*14)3
7%[/‘2 +B% +¢PB(1 *\/gA)]BZ)

(5.99)
and
B=0.078, B=3.3, A=338. (5.100)
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Among the mixing angles obtained from the D, model, 8¢ = 15°, 655 = 30°
are deviated from measured values, 6¢ ~ 13°, 0, ~ 33°. Such deviations, as well
as nonzero mixing angles which were zero in the model can be expressed in some
powers of B = 050 — /6. Especially, 013 of the PMNS matrix can be parameterized
by 013 = Bf, where B ~ 2. It might be a modest modification from 8,3 = 0.

However, in terms of A = sinO¢, 013 ~ k/ﬂ i.e. of order of A. Since Dj;
model explains A in the CKM matrix, it would be a good challenge to obtain 63
in the context of Di,. In this case, either M ) or M) have rather complicated
form. More than two Higgs would be responsible for one of the Yukawa matrix
elements and their VEV with phase might be fine-tuned. For example, to explain a
certain Yukawa matrix element proportional to A, we have to express it in the form
of (Hy+ Hy> where x, y are representations of Dj, to which Hy , belong, and take
VEVs as (Hy) = vyexp(in/12) and (H,) = —v.exp(—in/12).

On the other hand, we may use the quark-lepton complementarity in other
way. We may set three mixing angles in the PMNS matrix by 0, = 023 = n/4,
013 = 0 and CKM matrix by identity at leading order. It would be implemented by
another discrete symmetry. Then, A parameterizes the subleading effect of discrete
symmetry breaking. We can make A expansion for PMNS matrix by setting solar
angle by 01, = /4 — A and expressing deviation of atmospheric angle 6,3 from
7/4 and that of 6,3 from zero by some powers of A.

When the nonzero 013 is confirmed, the next issue would be measuring the
Dirac phase 8, weak CP violation in the lepton sector. The Jalrskog determinant
can be measured from neutrino oscillation, as P(Vg — V) — P(Vo, — V) is pro-

portional to the Jarlskog determinant. At leading order,

3
J= %vn\sma. (5.101)
Before closing this section, we visit two more issues. We explain very small
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neutrino mass naturally using the seesaw mechanism. Seesaw mechanism predicts
the presence of Majorana mass term and in general, Majorana phase should appear.

Then the PMNS matrix should be modified by multiplying

1 0 0
0 &* 0 (5.102)
0 0 P

on the right side. Such phases can be measured through neutrinoless double beta
(OvBP)decay [109], (Z,A) — (Z+2,A) + 2T . The OvpP decay rate is proportional

to the squared effective neutrino mass,
(mpp)” = | Z | (5.103)
and in terms of exact form of PMNS matrix element, it is given by
|3m? + 52 c3e®m3 + sts3ePm3|? (5.104)
in the modified Kobayashi-Maskawa parametrization and
[ctactsmt + stactse®m) + size P Om3 (5.105)

in the Chau-Keung-Maiani parametrization.

On the other hand, in the early Universe, heavy neutrinos decay into the
leptons[47], and CP violation effect in decay can give rise to the lepton num-
ber asymmetry. This can transferred to the baryon number asymmetry through
sphaleron process. The SM extended to the seesaw mechanism preserves B — L.

At the quantum level, the SM fermions are chiral under the weak interaction so B
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219 30: Diagrams responsible for CP violating interference in the heavy
neutrino decay.

and L global symmetry is anomalous proportional to W,,W*". Then there are many
vacuums with different B 4 L winding numbers but even in this case, B — L is not
anomalous. If vacuum to vacuum transition takes place, The excess of lepton over
antilepton can transferred to that of baryon over antibaryon. In ordinary case, such
transition is made by tunneling so very suppressed. On the other hand, In the high
temperature, transition ‘over’(not tunneling) the potential barrier is possible, and
this is the sphaleron process[110]. Once baryon asymmetry is produced this should
be fixed as the Universe becomes the state of out-of-equilibrium. Such scenario is
leptogenesis. The CP violation in the lightest heavy neutrino decay from the inter-

ference between tree and loop effects depicted in Fig. 30 is given by [111]

Ny »HI) =T (N, — HI) 3 1 (YY) pay
€= XI:F(N“l — H)+T(Ny, — HI) 161 (YT )40, i Im[ M, }
(5.106)

where a; is the index for the lightest heavy neutrinos. When neutrino is diagonal-

ized from the seesaw mechanism,

iy = Ly(—My'9T)LT (5.107)
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where Ly is what appears in the PMNS matrix V = LlL'VI'. Then, Yukawa matrix 9"
is diagonalized in the form of & = L,%" Uy ! where Uy is unknown unitary ma-
trix. Then the combination 979 in € does not depend on Ly. That means, what we
know from ground observation can be irrelevant for the leptogenesis. Of course, €
is just the total decay rate, and if we consider decay to lepton in each flavor sepa-
rately, PMNS matrix parameter can appear in the leptogenesis. Even in this case,
by arbitrariness of the Uy, leptogenesis is very insensitive to the PMNS matrix
parameters[112]. To see this explicitly[113], note that unitary matrix can be writ-
ten in the form, U = exp(i0)PUgpn O, where P and Q are diagonal matrices in the
form of diag.(1,exp(i¢/),exp(i¢”),---) and Uy is the CKM matrix type unitary
matrix. With n generations, each of P and Q has (n — 1) independent phases and
Ukm has (1/2)(n—1)(n—2) independent phases. Hence, 7 X n unitary matrix has

(1/2)n(n+ 1) phases in total, and Yukawa matrix

Y =LyYUy = (™ PuLgnQv) Y (€™ PyUkn Q) (5.108)

seem to have n(n+ 1) degrees of freedom. However, as Py y, 9, and Qy y are
diagonal, so commute with each other. Then OvY Py can be written in the form
of P'Y. On the other hand, overall phases exp(idy ) and P, are absorbed by field
redefinitions. Therefore, 2+ (n — 1) + (n — 1) = 2n phases are eliminated, ¥ has
n(n—1) phases in total. Among them, (1/2)(n— 1)(n—2) phases in Ly is the Dirac
phase and n — 1 phases in P’ is the Majorana phases in the PMNS matrix. We have
more phases which affect the CP violation in the heavy neutrino decay.

Other ways to parameterizing extra degrees of freedom are possible. For ex-
ample, in the basis where My is diagonalized, ity = —Ly 9" 1\711;1 YTLL, we separate
My into My'"*My"/? and sy into iy *y/*. Then we can rewrite the diagonal-
ized neutrino mass as 1 = 00T where O = rh\l,/ 2LV y M,;l/ % is the complex unitary

matrix[114].
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Conclusion

In this thesis, we considered the two problems in the SM mainly in light of fla-
vor dependent symmetry. To make the electroweak gauge symmetry SU(2); xU(1)y
spontaneously broken, we need the scalar charged under this gauge symmetry, the
Higgs. But such fundamental scalar mass at electroweak scale requires large fine
tuning between electroweak scale and Planck scale. As a solution to this hierarchy
problem, we employ the supersymmetry(SUSY), symmetry between the bosons
and fermions. We firstly observed the SUSY model explaining the LHC results
which may be interpreted as evidence of the Higgs scalar. We investigate the CP
even and odd Higgs mass by combining SUSY with the Peccei-Quinn symme-
try, which is introduced to explain very small CP violation in the strong interac-
tion. However, direct evidence for SUSY has not been found yet. Exclusion of the
squarks in the sub TeV scale threatened the motivation of low energy SUSY as a
solution of the hierarchy problem. As a viable possibility of low energy SUSY, we
considered the effective SUSY, only the third generation squarks, responsible for
the stable the Higgs mass at electroweak scale, have the mass of the sub TeV. As
a model for it, we introduce extra U(1)’ gauge group under which the third gener-
ation quark and the Higgs superfields are not charged. As SUSY breaking in the
hidden sector come to the visible sector through U(1)’ interaction, effective SUSY
can be easily obtained. Moreover, it may be related to the flavor structure, the sec-
ond problem of the SM we considered. The mass hierarchy and structure of mixing
matrices, the CKM and the PMNS matrices cannot be understood in the context of

the SM only, as the SM gauge group is flavor universal. We observed that Cabibbo
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angle expansion or A = sin ¢ expansion of the CKM matrix can be a hint for flavor
dependent symmetry based on the Froggatt-Nielsen mechanism. Flavor structure
has many ambiguities, so we try to find the important feature of the CKM matrix.
Especially, focusing on the maximal CP violation, we suggest the parametrization
of the CKM matrix which shows it apparently. We interpret A expansion and CP
violating phase as breaking effects of basic pattern provided by flavor dependent
symmetry and consider the structure of the CKM and the PMNS matrix based on
the non-Abelian discrete symmetry D1;. We more discuss nonzero 013, which may
be observed in the present experiments.

Such studies require more analysis in detail, and the model can be changed
for consistency with future experiments. On the other hand, low energy models we
considered here give some questions. First, in many models concerning the physics
at high energy scale, intermediate scale between 10% ~ 10'2GeV appears. Seesaw
scale, Peccei-Quinn scale, and messenger scale in SUSY breaking are their exam-
ples. Some of them are used to explain very small scale in terms of intermediate
and high energy scale, so in this case, we put the problem at the electroweak scale
or below to the unobserved scales. But the fact that these scales are concentrated
in such ranges may imply that many problems in the SM are not separated with
each other but related. Building model for each phenomena, we have to introduce
many symmetries and exotic particles and in many cases, but it looks rather com-
plicated. As we consider the GUT for simpler gauge group than the SM gauge
group SU(3).xSU(2);, xU(1)y, we may ask of the existence of simpler, and unified
feature of physics beyond the SM. If flavor dependent symmetry is what Nature
really has, we should ask why such symmetries are broken at such intermediated
scale and whether it could be understood in a unified way with the symmetries in
the SM. In the regard, thinking of origin of such symmetries may have important
meaning.

We hope future experiments can give hints for such questions.
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