
 

 

저작자표시-비영리-동일조건변경허락 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

l 이차적 저작물을 작성할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

동일조건변경허락. 귀하가 이 저작물을 개작, 변형 또는 가공했을 경우
에는, 이 저작물과 동일한 이용허락조건하에서만 배포할 수 있습니다. 

http://creativecommons.org/licenses/by-nc-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-sa/2.0/kr/


이학박사학위논문

Studies on flavor dependent
symmetry

입자의종류마다다른대칭성에관한연구

2012년 8월

서울대학교대학원
물리천문학부

서민석





Studies on flavor dependent
symmetry

입자의종류마다다른대칭성에관한연구

김형도

이논문을이학박사학위논문으로제출함

2012년 8월

서울대학교대학원
물리천문학부

서민석

서민석의박사학위논문을인준함

2012년 8월

위 원 장 이수종 (인)

부위원장 김형도 (인)

위 원 김수봉 (인)

위 원 이원종 (인)

위 원 최기운 (인)





학위논문원문서비스에대한동의서

본인의 학위논문에 대하여 서울대학교가 아래와 같이 학위논문 저작
물을제공하는것에동의합니다.

1. 동의사항

1⃝ 본인의 논문을 보존이나 인터넷 등을 통한 온라인 서비스

목적으로 복제할 경우 저작물의 내용을 변경하지 않는 범

위내에서의복제를허용합니다.
2⃝ 본인의논문을디지털화하여인터넷등정보통신망을통한

논문의일부또는전부의복제배포및전송시무료로제공

하는것에동의합니다.

2. 개인(저작자)의의무

본논문의저작권을타인에게양도하거나또는출판을허락하는
등동의내용을변경하고자할때는소속대학(원)에공개의유보
또는해지를즉시통보하겠습니다.

3. 서울대학교의의무

1⃝ 서울대학교는 본 논문을 외부에 제공할 경우 저작권 보호
장치(DRM)를사용하여야합니다.

2⃝ 서울대학교는 본 논문에 대한 공개의 유보나 해지 신청 시
즉시처리해야합니다.

논문제목 : Studies on flavor dependent symmetry

학위구분 :박사

학 과 :물리천문학부
학 번 : 2006-20333

연 락 처 : minseokseo57@gmail.com
저 작 자 :서민석 (인)

제출일 : 2012년 8월 1일

서울대학교총장귀하





초록

In this thesis, we study extension of the Standard Model through var-

ious symmetries, mainly flavor dependent ones, motivated by problems in

particle physics which cannot be resolved within the Standard Model frame-

work. First, as a solution to the hierarchy problem, we observe supersym-

metry. The origin of the electroweak symmetry breaking scale can be un-

derstood in the context of next-to-minimal supersymmetric Standard Model

with the Peccei-Quinn symmetry. As a minimal setup for hierarchy problem,

effective supersymmetry, a model with the light third generation squarks,

can be considered. The spectrum in the effective supersymmetry can be re-

alized by introducing flavor dependent U(1)′ gauge symmetry, under which

the third generation quarks and squarks are uncharged. Such kind of fla-

vor dependent symmetry plays a crucial role in investigating the origin of

fermion mass hierarchies and mixing patterns. Moreover, mixing pattern can

be understood from appropriate parameterization showing intrinsic proper-

ties, such as maximal CP violation. Mixing angles are predicted by flavor

dependent discrete symmetry. Structure based on D12 group gives Cabibbo

angle 15o, solar angle 30o, and atmospheric angle 45o. These values should

be modified in accordance with the up-to-date neutrino observations, report-

ing sizable θ13. In this way, flavor dependent symmetries are expected to be
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good candidates for new physics beyond the Standard Model.

주요어 : Standard Model, Symmetry, Flavor dependent symmetry, Super-

symmetry, Higgs, Discrete symmetry, Mixing matrix

학번 : 2006-20333

ii



목차

목차 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

그림목차 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

표목차 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Electroweak symmetry breaking . . . . . . . . . . . . . . . 2

1.2 Flavor structures of quarks and leptons . . . . . . . . . . . . 4

II. The Standard Model of particle physics . . . . . . . . . . . . 9

2.1 Spontaneous breaking of electroweak gauge symmetry . . . 9

2.2 Gauge anomaly and cancelation in the Standard Model . . . 13

2.3 Three-flavor model with mixing . . . . . . . . . . . . . . . 19

III. Problems in the Standard Model . . . . . . . . . . . . . . . . 25

3.1 Massive Neutrinos . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Gauge Hierarchy Problem . . . . . . . . . . . . . . . . . . 30

3.3 Flavor Problem . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Strong CP Problem . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Cosmological Problem . . . . . . . . . . . . . . . . . . . . 45

IV. Supersymmetry as a solution of the gauge hierarchy problem 47

4.1 Current Status of the study on the EWSB . . . . . . . . . . 47

iii



4.1.1 Higgs search at the LHC . . . . . . . . . . . . . . . 47

4.1.2 Supersymmetry searches in the LHC . . . . . . . . . 50

4.2 Minimal supersymmetric Standard Model . . . . . . . . . . 53

4.2.1 Model description . . . . . . . . . . . . . . . . . . 53

4.2.2 Higgs sector . . . . . . . . . . . . . . . . . . . . . 55

4.2.3 sparticle masses . . . . . . . . . . . . . . . . . . . . 59

4.3 Higgs sector in the NMSSM and PQ symmetry . . . . . . . 60

4.3.1 µ term from Peccei-Quinn symmetry . . . . . . . . . 60

4.3.2 CP even Higgs mass . . . . . . . . . . . . . . . . . 65

4.3.3 CP odd Higgs mass . . . . . . . . . . . . . . . . . . 72

4.4 Effective SUSY from flavor non-universal U(1)′ mediation . 76

4.4.1 Supersymmetry breaking mediation mechanism . . . 77

4.4.2 Effective Supersymmetry . . . . . . . . . . . . . . . 79

4.4.3 Soft mass terms and sparticle spectrum . . . . . . . 85

4.4.4 U(1)′ charge assignments reflecting flavor structure . 92

4.4.5 Flavor problem in the supersymmetry . . . . . . . . 95

V. Flavor Problem in a view of flavor dependent symmetry . . . 101

5.1 Structure of the CKM matrix . . . . . . . . . . . . . . . . . 102

5.1.1 Parameterizations of the CKM matrix . . . . . . . . 102

5.1.2 Jarlskog determinant . . . . . . . . . . . . . . . . . 106

5.1.3 Interpretation of the Wolfenstein parametrization . . 110

5.2 Quark and Lepton Mixings from discrete D12 symmetry . . . 113

5.2.1 Properties of dihedral group D12 and breaking pattern 114

5.2.2 Model for the CKM matrix . . . . . . . . . . . . . . 118

iv



5.2.3 Double seesaw mechanism model for the PMNS matrix124

5.2.4 Vacuum stability in D12 breaking . . . . . . . . . . 129

5.3 Realistic parameterizations for the PMNS matrix . . . . . . 135

VI. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

참고문헌 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

v



vi



그림목차

그림 1. The triangle diagram for gauge anomaly. . . . . . . . 15

그림 2. loop corrections to the scalar mass. . . . . . . . . . . . 31

그림 3. Quantum corrections for m2 and λ from loop diagram. 34

그림 4. Renomalization group running of m2 and λ. . . . . . . 36

그림 5. Schematic figure for θ vacuum. . . . . . . . . . . . . . 41

그림 6. The example of the Higgs exclusion plot. . . . . . . . 48

그림 7. Exclusion of the Higgs production cross section. . . . . 49

그림 8. Exclusion bound for squarks. . . . . . . . . . . . . . . 52

그림 9. CP even Higgs masses. . . . . . . . . . . . . . . . . . 66

그림 10. The lightest eigenvalue versus β. . . . . . . . . . . . . 67

그림 11. fh vs the square rooted lightest eigenvalue of submatrix (1). 69

그림 12. Reduction of the Higgs mass . . . . . . . . . . . . . . 70

그림 13. fh vs the square rooted lightest eigenvalue of submatrix (2). 70

그림 14. µeff constraint . . . . . . . . . . . . . . . . . . . . . . 71

그림 15. Lightest CP odd scalar aX mass. . . . . . . . . . . . . 72

그림 16. The CP odd scalar aX squared mass versus β. . . . . . 73

그림 17. aX → γγ decay through Higgsino loop. . . . . . . . . 74

그림 18. aX production from WW fusion. . . . . . . . . . . . . 75

그림 19. SUSY breaking mediation through U(1)′. . . . . . . . 82

그림 20. SUSY breaking mediation through U(1)′ and U(1)Y . . 84

그림 21. The mass diagram of Zprimino. . . . . . . . . . . . . 86

그림 22. The mass diagram of the SM gauginos. . . . . . . . . 87

vii



그림 23. q̃1,2, l̃1,2 mass diagrams. . . . . . . . . . . . . . . . . . 87

그림 24. The mass diagrams for q̃3, l̃3 and Higgs bosons. . . . . 87

그림 25. FCNC in the SM. . . . . . . . . . . . . . . . . . . . . 96

그림 26. FCNC in the SUSY. . . . . . . . . . . . . . . . . . . 97

그림 27. Unitary triangle for the CKM matrix. . . . . . . . . . . 103

그림 28. Jarlskog triangle showing maximal CP violation. . . . 110

그림 29. Double seesaw mechanism. . . . . . . . . . . . . . . . 124

그림 30. Leptogenesis diagrams. . . . . . . . . . . . . . . . . . 139

viii



표목차

표 1. The SM gauge group representations. . . . . . . . . . . . 11

표 2. The PQ and R charges of Hu,d ,S1,2Z1,2,X and X . . . . . 61

표 3. X ′ = B−L representations. . . . . . . . . . . . . . . . . 85

ix



x



제 1장

Introduction

Particle physics is a field studying the fundamental working mecha-

nism of Nature: looking for the fundamental ingredients of matter and their

interactions. Over the last 60 years, such investigations have been based on

quantum mechanics. In quantum mechanics, the physical objects we ob-

serve are described in terms of groups and their representations, the mathe-

matical languages for symmetry. As a result, particle physicists tend to ask

questions like “Why only specific interactions are allowed, or why some

nontrivial patterns appear” and explain them with models in which an ap-

propriate symmetry is imposed. The Standard Model of particle physics is

the most fruitful result of such investigations. It describes the fundamental

particles and their interactions we know today in terms of gauge symme-

tries and their spontaneous breaking. Passing numerous experimental tests,

the Standard Model is believed to be the most successful description of Na-

ture so far. However, there are a number of problems that particle physics

cannot answer yet with the Standard Model. These problems are partly due

to the lack of experimental evidences, and partly of theoretical unclearness.

Presently, Large Hadron Collider (LHC) experiments are expected to reveal

particle physics of very high energy with unprecedentedly high accuracy.

Moreover, rapid developments in observational cosmology give a good mo-
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tivation for explaining the past and present of the Universe in the language

of particle physics. As clues for mysteries in particle physics are discovered

in experiments, the importance of model building based on new symmetry

principle is increasing.

1.1 Electroweak symmetry breaking

Even though the Standard Model explains known Nature successfully,

the Higgs boson, the key particle of this model, has not been found yet. As

fermions are put in terms of chiral representations under the electroweak

gauge group, a scalar particle transforming nontrivially under the group is

needed to break this gauge symmetry. It is called the Higgs doublet scalar.

After the Higgs doublet breaks gauge symmetry, there remains a scalar bo-

son which couples to all the Standard Model particles with the strength of

their masses. But the existence of a fundamental scalar gives rise to an-

other theoretically unsatisfactory problem. Electroweak symmetry is broken

around 100GeV. The highest scales we know are the Planck scale(1018GeV)

where gravity effects become important or the grand unified theory(GUT)

scale(1016GeV) where electroweak and strong gauge symmetries are uni-

fied. These scales are far above the electroweak scale. If there is no new

physics between them, one has to make an enormous fine-tuning to obtain

the fundamental scalar mass at the electroweak scale when the quantum cor-

rections are taken into account. Many solutions to this hierarchy problem

have been suggested. Among them, supersymmetry(SUSY) is a very plau-

sible candidate because it is the only way to extend the Poincaré group,
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the spacetime symmetry at the base of special relativity. Furthermore, it

may come from superstring theory, one of the prime candidates for quan-

tum gravity. If supersymmetry is broken below 1TeV, the Higgs mass can

be stabilized at the electroweak symmetry breaking scale. One of the prime

motivations of the LHC accelerator has been to search for the Higgs bo-

son and superpartners of quarks or leptons, predicted by SUSY. Recently, a

signal which may be interpreted as the Higgs boson was observed around

125GeV but the superpartners based on minimal setup of SUSY, the con-

strained Minimal Supersymmetric Standard Model (CMSSM), are excluded

to slightly above 1TeV.

On the other hand, the exclusion bounds of the superpartners of third

generation quarks are not so stringent as those of the first two generations,

about 400GeV. Moreover, these particles give the main contribution in sta-

bilizing Higgs mass due to their large Yukawa couplings with the Higgs.

Then, if SUSY is broken in such a way that only superpartners of third gen-

eration quarks are below 1TeV, it can still solve hierarchy problem but is

not excluded by the recent LHC results. This idea is called effective SUSY,

or natural SUSY. One way to realize this idea is assuming an extra U(1)

gauge group, U(1)′ under which quarks, leptons and their superpartners ex-

cept those in the third generation are charged. SUSY is broken in hidden

sector which is also charged under U(1)′. Then SUSY breaking is trans-

ferred to the Standard Model particles and their superpartners though the

U(1)′ interaction. The point is that only the third generation particles are not

charged. For this reason, SUSY in the third generation is broken only though

highly suppressed quantum effects. From this flavor dependent U(1)′ medi-
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ation for SUSY breaking, the mass spectrum of superpartners in effective

SUSY is naturally obtained. On the other hand, if the recent 125GeV bump

is the Higgs boson, the next to the MSSM (NMSSM) may be favored as

it can have a heavier Higgs mass than in the MSSM. Moreover, NMSSM

Higgs has a strong relation with the Peccei-Quinn symmetry, solving the

strong CP problem.

1.2 Flavor structures of quarks and leptons

The flavor dependent symmetry plays an important role in explaining

another problem of the Standard Model. The quark and lepton masses are

generated by the Yukawa couplings multiplied by the vacuum expectation

value of the Higgs doublet. So the mass hierarchies in the quark and lep-

ton sectors come from the different magnitudes of the Yukawa couplings.

However, the Standard Model does not give a reason why the couplings

should be as such determined experimentally. On the other hand, the flavor

violating processes are described by the mixing matrices, the CKM matrix

in the quark sector and the PMNS matrix in the lepton sector. These two

have very different patterns: the PMNS matrix shows a very strong mixing

whereas the CKM matrix shows a very small mixing. The origin of such

different patterns is not explained in the Standard Model. Furthermore, if

all three real mixing angles are nonzero, one complex phase cannot be re-

moved and then weak interaction violates CP symmetry. The experimental

discovery of the weak CP violation in quark sector proves that all three real

mixing angles are nonzero and the CP phase has been determined to ≃ 90o.

4



Such mixing matrices are related to the original patterns of Yukawa cou-

plings, which form 3×3 matrices before diagonalization to the mass eigen-

states. Therefore, to see the unexplained aspects of the flavor structure of the

Standard Model particles, the structure of the Yukawa couplings should be

investigated. The best approach might be considering the flavor dependent

symmetry extended also to the Standard Model singlet scalars. The role of

the singlets is to implement this symmetry structure in the full theory real-

ized at high energy, for example, at the GUT scale ot Planck scale. Then,

the Yukawa couplings of the Standard model can be explained by powers

of these vacuum expectation values suppressed by a higher scale such as

the Planck mass, as suggested by Froggatt and Nielsen. Unfortunately, we

do not have sufficient information at present to know these completely. For

example, the chiral nature of the Standard Model allows only left-handed

fermions to participate in the weak interaction so that the mixing matrices

contain the information on left handed fermions only. Thus, the flavor struc-

ture cannot be understood within the Standard Model framework. So even

though the basic strategy is apparent, each model faces uniqueness problem,

i.e. we cannot select a unique model among the various possibilities.

Therefore, at this stage, a serious consideration of hints from the var-

ious flavor structures is welcome. The fact that the mixing angle between

the second and the third families in the PMNS matrix is almost 45o en-

ables the model builders to consider several discrete symmetries. The most

cited example is the so-called tri-bi maximal mixing, which can be easily

explained by various discrete symmetries such as the permutation groups

S3,S4 or their subgroups like A4. On the other hand, another consideration
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can be made. For example, if the lepton sector has some type of a discrete

symmetry, the quark sector may be described by such a symmetry. More-

over, there is a numerical relation, the quark-lepton complementarity, which

states that the sum of the corresponding mixing angles in the CKM and the

PMNS matrices is about 45o. Simplifying the mixing angles between the

first two generations in the quark and lepton sectors as 15o and 30o, respec-

tively, a model based on the D12 dihedral group can be constructed. It is

less close to the experimental values than the values obtained from tri-bi

maximal mixing. But the (13) element of the PMNS matrix, which is pre-

dicted to be zero in almost all discrete symmetry models including the tri-bi

maximal mixing and ours, seems to be nonzero . So, corrections to these

symmetry patterns are essential, and our model may have the advantage of

having room for corrections compared to the tri-bi maximal mixing. Tak-

ing the quark-lepton complementarity into account, such corrections may

be governed by λ = sinθC, the expansion parameter of the CKM matrix.

The fact that λ may be a good expansion parameter for both the quark

and lepton mixing angles provides a possibility of model building with the

Froggatt-Nielsen mechanism. In this case, λ is given by singlet vacuum ex-

pectation values suppressed by the Planck mass scale. Moreover, the phase

in the mixing matrix can be explained by the vacuum expectation value of

singlet(s) containing the phase. So, the CP violation in the weak interaction

can be determined by this spontaneous symmetry breaking mechanism of

the flavor symmetry in a complete theory. But in the Standard Model frame-

work only, the phase can be moved here and there or even be separated. So

one may ask a question of which parametrization of the CKM matrix is best.
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Interestingly, if the phase of the (31) element is moved to be combined with

that of the (13) element, this phase is 90o, the angle α which can be seen in

the Jarlskog’s triangle; in this sense the CP violation in the weak interaction

is maximal.

The current issues in particle physics cannot be separated from each

other. If these issues are connected under the symmetry principle, one of the

most important wisdom of quantum mechanics, particle physics can have

more unified picture describing Nature. For a model in particle physics to

be the correct description of Nature, it should explain the microscopic world

that collider experiments can prove. But this is not enough. Also it should

explain the macroscopic world which is the subject of cosmology and as-

troparticle physics. For example, dark matter requires some special type of

discrete symmetry forbidding the decay of dark matter. Many new physics

models like supersymmetric extensions or extra dimensions contain such

symmetries. Therefore, any new physics model should not contradict to cos-

mological facts, for example, the dark matter relic density. Flavor structure

of the quarks and leptons are related to the baryon asymmetry in the Uni-

verse. High energy physics beyond the Standard Model could be used to

explain inflation, exponential expansion of the early Universe. Even though

cosmological issues are not treated in this thesis, it has great importance in

a view of new physics. At present, ground based experiment has not been

finding direct evidence of new physics, just confirming the Standard Model

even though indirect evidences such as muon g−2 can be controversial. On
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the other hand, dark matter and baryon asymmetry provide direct and strong

evidences for new physics beyond the Standard Model.

The thesis is organized as follows. First, we briefly review various as-

pects of the Standard Model in light of symmetries and their breaking. Then

we discuss unsolved problems in the Standard Model, mainly in a theoret-

ical point of view. Among these problems, we consider two issues: under-

standing electroweak symmetry breaking and flavor structure. Elctroweak

symmetry breaking will be considered based on supersymmetry. Especially,

for superpartner spectrums consistent with experiments, we introduce fla-

vor dependent gauge symmetry through which supersymmetry breaking is

transferred. For flavor problem, we investigate the structure of mixing matri-

ces and construct the model based on non-Abelian discrete symmetry. Then

we conclude.
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제 2장

The Standard Model of particle
physics

2.1 Spontaneous breaking of electroweak gauge
symmetry

Particle physicists have made models to describe Nature in light of

symmetry principle[1]. Many models aim to show physics behind phenom-

ena with a simple setup. However, such simplifications are often consis-

tent with experimental results in very high accuracies. The Standard Model

(SM) of particle physics is one of such examples. It describes particles and

their interactions in terms of the SU(3)c×SU(2)L×U(1)Y gauge group. The

theory of the strong interaction, Quantum Chromodynamics(QCD) is de-

scribed by the SU(3)c gauge group[2]. Fermions charged under this so par-

ticipate in the strong interaction are called quarks and others are called lep-

tons. Since SU(3) gauge theory with quarks has asymptotic freedom[3], the

farther the quarks are separated, the stronger the strong interaction. On the

other hand, electromagnetic and weak interactions are described by spon-

taneous breaking of the SU(2)L×U(1)Y gauge group[4]. One essential fea-

ture of this electroweak gauge theory is chirality of fermions, i.e. left- and

right- handed parts of fermionic matter are not equally charged under the
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SU(2)L×U(1)Y gauge group. Since Dirac mass of fermion can be interpreted

as a coupling between left- and right- handed components, it is impossible

to give the Dirac mass of chiral fermion in the theory of fermionic mat-

ters only. Therefore, gauge charged scalar should be introduced to make

(scalar)-(left handed fermion)-(right handed fermion coupling). In the SM,

the left handed fermions are doublets(fundamental representation) and the

right handed fermions are singlet under the SU(2)L, as tabulated in Table

1. Therefore, as a simplest choice, SU(2)L doublet scalar with appropri-

ate U(1)Y charge can be chosen. This scalar is called the Higgs doublet[6].

When the Higgs doublet has vacuum expectation value(VEV), electroweak

gauge symmetry is spontaneously broken, and only electromagnetic interac-

tion U(1)em remains as a long range force. At the same time, fermions obtain

Dirac masses. Table 1 lists how quarks and leptons are charged under the

SM gauge group. Each fermion in the table has three copies: three u−type

quarks u,c, t, three d−type quarks d,s,b, three charged leptons e,µ,τ and

three neutrinos νe,νµ,ντ. In this way, the SM fermions form three genera-

tions.

Higgs scalar H = (H+,H0) is SU(2)L doublet and has U(1)Y hyper-

charge 1/2, to make the gauge invariant Yukawa coupling,

−Y u
i j q̄

iu j
RH̃ +Y d

i j q̄id j
RH +Y u

i j l̄
ie j

RH (2.1)

where H̃ = iσ2H†. The quarks and leptons obtain masses with Higgs VEV

(0,v/
√

2).

Spontaneous breaking of gauge symmetry makes the gauge boson, spin-

10



Matters SU(3)c SU(2)L U(1)Y

q = (uL,dL) 3 2 1
6

uc
R 3 1 −2

3

dc
R 3 1 1

3

l = (νL,eL) 1 2 −1
2

ec
R 1 1 1

H 1 2 1
2

표 1: The SU(3)c×SU(2)L×U(1)Y gauge group charges of the SM fermions
and Higgs doublet.

1 particle in the adjoint representation under the corresponding gauge group,

massive. Since the gauge boson carries the fundamental force described by

corresponding gauge group by being interchanged between matter currents,

the range of the force is getting shorter when the gauge boson get massive.

Kinetic term and gauge interaction of matter are simply written by gauge co-

variant derivative. When Higgs has VEV (0, v√
2
), covariant derivative term

of the Higgs

∣∣∣
 g

2 A3
µ +

g′
2 Bµ

g
2(A

1
µ − iA2

µ)

g
2(A

1
µ + iA2

µ) −g
2 A3

µ +
g′
2 Bµ


 0

v√
2

∣∣∣2
=

g2v2

4
W−

µ W+µ +
g2 +g′2

8
v2ZµZµ

(2.2)

gives gauge boson mass, MW = 1
2 gv and MZ = 1

2

√
g2 +g′2v.
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For leptons gauge covariant derivative is given by

l̄iDµγµl + ēRiDµγµeR

=
(

ν̄L ēL

)
i
(
∂µ − ig

τi

2
Ai

µ − ig′(−1
2
)Bµ

)
γµ

 νL

eL

+ ēRi
(
∂µ − ig′(−1)Bµ

)
γµeR

(2.3)

so gauge boson coupling to the lepton doublet l is written in a matrix form

 g
2 A3

µ −
g′
2 Bµ

g
2 (A

1
µ − iA2

µ)

g
2 (A

1
µ + iA2

µ) − g
2 A3

µ −
g′
2 Bµ

 . (2.4)

Off diagonal terms represent the W bosons in the weak interaction, W± =

1√
2
(A1

µ∓ iA2
µ), propagating between the charged currents with the coupling g

2 . Since

neutrino is electromagnetically neutral, (11) element does not contain photon there-

fore it should be the Z boson. Defining weak mixing angle by

cosθW =
g√

g2 +g′2
, sinθW =

g′√
g2 +g′2

(2.5)

two neutral gauge bosons, photon A and weak Z bosons

Aµ = cosθW Bµ + sinθW A3
µ

Zµ =−cosθW A3
µ + sinθW Bµ

(2.6)

have couplings e = gg′

g2+g′2 and g
cosθW

, respectively. Here, charges are given by

Qem = T3 +Y for electromagnetic interaction and QZ = T3 −Qem sin2 θW for Z bo-

son interaction. They give right charges to the quarks. The electromagnetic charges

are +2/3 for the u−type quark and −1/3 for the d−type quark.
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2.2 Gauge anomaly and cancelation in the Stan-
dard Model

The chiral nature of the SM fermions may give rise to serious problem. If the

gauge symmetry is explicitly broken, unphysical states with negative norm cannot

be eliminated. This contradicts to the quantum description based on unitarity. By

unitarity in quantum mechanics, we mean the norm of physical state, interpreted as

total probability, can be normalized to 1 before and after time evolution generated

by S-matrix S satisfying S†S = I. More generally this condition can be written as

⟨A|I|B⟩=
∑

C

⟨A|S†|C⟩⟨C|S|B⟩ (2.7)

When A = B, the LHS is the norm before evolution, and the RHS is that after

evolution. Since RHS is always positive, negative norm state evolves into positive

norm state. So, the norm before and after the evolution are normalized to -1 and 1,

respectively, and it is impossible to normalize both sates equal to 1 simultaneously.

Then unitarity is violated.

In the gauge theory associated with the algebra [δα,δβ] = f γ
αβδγ, decoupling

negative norm states from physical process was shown by Faddeev and Popov[5].

They interpreted the gauge symmetry as redundancy. Ordinary symmetry transfor-

mation just moves one state to another in the same Hilbert space. On the other

hand, gauge transformation moves a set of states in a Hilbert space into another set

of states in another Hilbert space which is equivalent to the previous one. To treat

one set of Hilbert space only, we fix the gauge by imposing appropriate conditions

FA(ϕi) = 0, where ϕi is gauge charged field and A is index for gauge conditions.

13



Then the path integral for the fixed Hilbert space is given by

∫
Dϕi

Vgauge
e−S0 ∼

∫
Dϕδ(FA(ϕ))DbADcαe−[S0+

∫
bA(δαFA)cα]

∼
∫

DϕDBADbADcαe−[S0+i
∫

BAFA(ϕ)+
∫

bA(δαFA)cα],

(2.8)

where cα are the fermionic and BA are the bosonic ghosts. The new action S0 +

i
∫

BAFA(ϕ)+
∫

bA(δαFA)cα ≡ S0 +S′ is no longer gauge invariant but has a rem-

nant of gauge symmetry which was found by Becchi, Rouet, Stora, and Tyutin[7]:

δϕi =−iεcαδαϕ, δbA =−εBA,

δcα =−i
1
2

εcβcα f α
βγ, δBA = 0

(2.9)

where ε is a Grassmann variable.

This BRST symmetry has an important property, δ2 = 0, called nilpotency.

The fact δ(bAFA) = iεS′ implies that for BRST being the symmetry of the the-

ory, the change of physical amplitude ⟨ψ|ψ′⟩ under the change of the gauge fixing

condition δFA,

⟨ψ|iεδS′|ψ′⟩= ⟨ψ|[Q,bAδFA]+|ψ′⟩ (2.10)

( Q is the BRST generator) should vanish. Therefore, physical state |phys⟩ satisfies

Q|phys⟩ = 0. However, the state annihilated by Q (Q|ψ⟩ = 0: such state is called

BRST closed.) in general has the form of |ψ⟩= |ψ′⟩+Q|χ⟩, where |χ⟩ is arbitrary

state and |ψ′⟩ is the state annihilated by Q but not of the form of Q|χ⟩. Then, the

BRST closed states modulo Q|χ⟩ are indistinguishable as they have the same norm

(by nilpotency) and behave in the same way (by nilpotency and symmetry condition

[Q,H] = 0 where H is the Hamiltonian). Therefore, the physical state should be

14



k

k + p

k − q

jν
L(p)

j
ρ
L(q)

j
µ
L(−p− q) k

k − p

k + q

jν
L(p)

j
ρ
L(q)

j
µ
L(−p− q)

그림 1: The triangle diagram for gauge anomaly.

only one of such states, say,

Q|phys⟩= 0, but |phys⟩ ̸= Q|χ⟩ (2.11)

(closed but not exact). Note also that [Q,H] = 0 or, equivalently, [Q,S] = 0 implies

that Q(S|phys⟩) = 0. Then S|phys⟩ also can be written in the form of |ψ′⟩+Q|χ⟩,

but Q|χ⟩ part, which has zero norm, eliminates unphysical intermediate states in

the scattering amplitude:

⟨A;phys|S†S|B;phys⟩=
∑

C

⟨A;phys|S†|C⟩⟨C|S|B;phys⟩

=
∑

C

⟨A;phys|S†|C;phys⟩⟨C;phys|S|B;phys⟩
(2.12)

Then with the subspace of Hilbert space containing physical states only, the theory

is unitary.

However, in the chiral gauge theory, gauge symmetry is broken in the quantum

level[8]. Consider the massless left handed fermion described by the Lagrangian

ψ̄DµγµPLψ. Then the triangle diagram shown in Fig. 1 has the term

tr(iγµtα)PLPL
i(k+ p)µγµ

(k+ p)2 − iε
· · ·= tr(iγµtα)PL

i(k+ p)µγµ

(k+ p)2 − iε
· · · (2.13)
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where tα be the gauge group generator. Note that one PL comes from the vertex

and another PL comes from the propagator. They combine to make one PL. So,

the same diagram comes from anomalous theory with the Lagrangian ψ̄DµγµPLψ+

ψ̄∂µγµPRψ and it breaks the gauge symmetry as ∂µ⟨T jµ jν jρ⟩ ( jµ is the current

couples to the gauge boson) has extra term absent in the Ward identity, the relation

between n−point functions representing gauge symmetry.

To obtain gauge anomaly, we may calculate the triangle diagram. On the other

hand, anomaly term can be defined by A =QΓ where Γ is quantum action. if A = 0,

quantum action is gauge invariant, so it is not anomalous. From nilpotency, we have

QA = 0. In the language of differential form,

QA =−dw− [A,w]+, QF = [F,w], Qw =−w2, dQ =−Qd (2.14)

where A is gauge field one-form, F = dA+A2 is field strength two form and w is

the ghost, as defined in [8]. Defining characteristic class Pn = trFn, we have dPn =

ntr(dF)Fn−1 = ntr(FA−AF)Fn−1 = 0 (since DF = (d+A)F = dA+AF−FA= 0)

so Pn = dQ2n−1 locally where

Q2n−1(A,F) = n
∫ 1

0
dttr[AF(tA)n−1] = n

∫ 1

0
dttn−1tr[A(F +(t −1)A2)n−1].

(2.15)

Moreover, since QPn = Q(dQ2n−1) =−dQ(Q2n−1) = 0, QQ2n−1 = dQ1
2n−2 locally

where

Q1
2n−2(v,A,F) = n(n−1)

∫ 1

0
dt(1− t)tr[vd(AF(tA)n−2)] (2.16)

for arbitrary parameter v (originated from the gauge transformation). Then, anomaly

A in 2r dimension is proportional to
∫

Q1
2r as Q

∫
Q1

2r = 0. This can be checked
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from 0 = Q(QQ2r+1) = Q(dQ1
2r) =−d(QQ1

2r) so QQ1
2r = dα1

2r−1 locally for arbi-

trary α1
2r−1. (The superscript 1 implies that it is linear in v.) Explicitly, when we

express QΓ[A] ≡ A [w,A] =
∫

wα(x)Aα(x), the anomaly with the left-handed field

only is given by

AL
α =− 1

24π2 εµνρσ∂µ

(
Aβ

ν∂ρAγ
σ −

i
4

Aβ
ν[Aρ,Aσ]

γ
)

DR
αβγ (2.17)

where DR
αβγ = trtαt(βtγ). For the right handed field, anomaly has the opposite sign.

So, if the theory is vector-like, i.e. left- and right- handed fermions are equally

charged under the gauge group, they are canceled with each other, gauge symmetry

is not anomalous. However, since the SM fermions are chiral under the SM gauge

group, we should check whether the SM is anomalous.

Consider anomaly of the SM within one generation. When the generators of

the group for some representation R, tR
α are equivalent to those in the complex

conjugate representation, in the sense that (itα)∗ = S(itα)S−1, DR
αβγ = 0. SU(2) is

the example of it, so triangle diagram with SU(2)-SU(2)-SU(2) vertices vanishes.

SU(3) is not such a case, but since the SM quarks are vector-like under the SU(3)c,

SU(3)-SU(3)-SU(3) triangle diagram also vanishes. Other cases are given as fol-

lows:

SU(3)−SU(3)−U(1) :
∑
3,3̄

Y =−1
6
− 1

6
+

2
3
− 1

3
= 0

SU(2)−SU(2)−U(1) :
∑

2

Y = 3(−1
6
)+

1
2
= 0

U(1)−U(1)−U(1) :
∑

Y 3 = 6(−1
6
)3 +3(

2
3
)3 +3(−1

3
)3 +2(

1
2
)3 +(−1)3 = 0

graviton−graviton−U(1) :
∑

Y = 6(−1
6
)+3(

2
3
)+3(−1

3
)+2(

1
2
)+(−1) = 0.

(2.18)

Therefore the SM is anomaly free with the help of choice of U(1)Y charges of
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the quarks and the leptons. To look for other anomaly-free U(1) assignments [9],

suppose we assign U(1) charges a,b,c,d, and e to q,uc
R,d

c
R, l, and ec

R, respectively.

The conditions

SU(3)−SU(3)−U(1) :
∑
3,3̄

Y = 2a+b+ c = 0

SU(2)−SU(2)−U(1) :
∑

2

Y = 3a+d = 0

U(1)−U(1)−U(1) :
∑

Y 3 = 6a3 +3b3 +3c3 +2d3 + e3 = 0

graviton−graviton−U(1) :
∑

Y = 6a+3b+3c+2d + e = 0

(2.19)

have two solutions b/a=−4,c/a=−2,d/a=−4,e/a=−6 and b=−c,a=

d = e = 0. The former corresponds to the U(1)Y in SM. Two U(1)s are not compat-

ible since they have U(1)-U(1)-U(1)′ and U(1)′-U(1)′-U(1) anomalies. Anomaly-

free extra U(1)′ compatible with the U(1)Y requires more chiral fermions which are

not present in the SM. Suppose such fermions are not charged under the SM gauge

group. Then, for the SM particles, anomaly-free conditions are given by

SU(3)−SU(3)−U(1)′ :
∑
3,3̄

Y ′ = 2a+b+ c = 0

SU(2)−SU(2)−U(1)′ :
∑

2

Y ′ = 3a+d = 0

U(1)−U(1)−U(1)′ :
∑

Y 2Y ′ = 6a+3(−4)2b+3(2)2c+2(−3)2d +(6)2e = 0

U(1)−U(1)−U(1)′ :
∑

YY ′2 = 6a2 +3(−4)b2 +3(2)c2 +2(−3)d2 +(6)e2 = 0.

(2.20)

The solution to these conditions is B−L, a = −b = −c = 1/3,d = −e = −1. Of

course, we may assign U(1)′ to each generation differently. Then there can be more

possible anomaly free U(1)′s.
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2.3 Three-flavor model with mixing

The quarks and the leptons discovered so far form three generations[10]:

1st generation :

 uL

dL

 , uR, dR,

 νeL

eL

 , eR

2nd generation :

 cL

sL

 , cR, sR,

 νµL

µL

 , µR

3rd generation :

 tL

bL

 , tR, bR,

 ντL

τL

 , τR

(2.21)

Each of the quarks and the leptons obtains mass from the electroweak symmetry

breaking, and each mass is proportional to the Yukawa coupling. The lepton masses

are easily defined by pole of the propagator:

me = 0.511MeV, mµ = 105.6MeV, mτ = 1777MeV (2.22)

On the other hand, the quarks do not propagate as isolated particles. They are con-

fined inside hadrons(mesons or baryons) due to the asymptotic freedom of the

strong interaction. One way to estimate the quark masses is dynamical breaking

of chiral symmetry. Suppose we have three massless quarks, u,d, and s only[11].

In this case, left- and right- handed quarks are decoupled since they couple only

through mass term. Gauge interaction is (left handed)-(left handed)-(gauge boson)

and (right handed)-(right handed)-(gauge boson) couplings. Therefore, the theory

is described by the Lagrangian q̄LiDµγµqL + q̄RiDµγµqR where q = (u,d,s) and it is

invariant under chiral rotation,

qL → exp(i
∑

a

λa

2
θa

L)qL, qR → exp(i
∑

a

λa

2
θa

R)qR, (2.23)
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where λa are SU(3) generator for fundamental representation, Gell-Mann matrices.

This is equivalent to the invariance under

q → exp
(

i
∑

a

λa

2
(θa

V +θa
Aγ5)

)
q (2.24)

where θV/A = θL±θR with the convention PL/R = 1
2 (1±γ5). By quark confinement,

SU(3)A generated by (λa/2)γ5 is the broken and only SU(3)V generated by (λa/2)

remains [12]. To describe this in detail, we can parameterize the quark triplet q as

q(x) = exp
(
− iγ5

∑
a

ξa(x)
λa

2

)
q̃. (2.25)

With ⟨ ¯̃qq̃⟩= v and ⟨ ¯̃qγ5q̃⟩= 0, spontaneous symmetry breaking SU(3)L×SU(3)R →SU(3)V

occurs and ξ(x)a accompanied with the eight broken symmetry generator are inter-

preted as the Goldstone bosons. For effective Lagrangian, we can use the fact that

it is always possible to find out ξ′ such that [13]

exp
(

i
∑

a

λa

2
(θa

V +θa
Aγ5)

)
exp

(
− iγ5

∑
a

λa

2
ξ(x)a

)
= exp

(
− iγ5

∑
a

λa

2
ξ′a(x)

)
exp

(
i
∑

a

λa

2
θa
)
.

(2.26)

Then, from

exp
(

i
∑

a

λa

2
θa

L

)
exp

(
− i

∑
a

λa

2
ξ(x)a

)
= exp

(
− i

∑
a

λa

2
ξ′a(x)

)
exp

(
i
∑

a

λa

2
θa
)

exp
(

i
∑

a

λa

2
θa

R

)
exp

(
i
∑

a

λa

2
ξ(x)a

)
= exp

(
i
∑

a

λa

2
ξ′a(x)

)
exp

(
i
∑

a

λa

2
θa
)
(2.27)

we obtain unitary, unimodular matrix

U(x) = exp
(

i
∑

a

ξa(x)λa
)
. (2.28)
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which transformations like

U ′(x) = exp
(

i
∑

a

λa

2
θa

R

)
U(x)exp

(
− i

∑
a

λa

2
θa

L

)
(2.29)

when the Goldstone bosons transform ξ(x)→ ξ′(x). Unitarity of U(x) implies that

the Goldstone bosons cannot have the mass term and only described by the deriva-

tive terms like −(1/4)F2Tr∂µU∂µU† where F is decay constant of the meson.

Therefore, Goldstone bosons are interpreted as light mesons,

∑
a

λa

2
ξa(x) =

√
2

F


1√
2
π0 + 1√

6
η0 π+ K+

π− − 1√
2
π0 + 1√

6
η0 K0

K̄− K̄0 −
√

2
3 η0

≡
√

2
B
F
.

(2.30)

However, the quark masses break SU(3)L×SU(3)R explicitly and give the masses

to the light mesons as

q̄Mqq = ¯̃qe−i
√

2γ5B/F


mu 0 0

0 md 0

0 0 ms

e−i
√

2γ5B/F q (2.31)

then meson masses satisfy following relations,

m2
π+ = m2

π0 =
4v
F2 (mu +md)

m2
K+ =

4v
F2 (mu +ms)

m2
K0 =

4v
F2 (md +ms)

m2
η0 =

4v
F2

1
3
(mu +md +4ms).

(2.32)
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Comparing with the measured values of meson masses, F = 184MeV, and v =

255MeV, light quark masses can be obtained. The measured values are

mu = 2.5+0.6
−0.8(1.7−3.1)MeV md = 5.0+0.7

−0.9(4.1−5.7)MeV

ms = 3.8+1.0
−0.8(3.0−4.8)MeV

(2.33)

Such quark masses are called current quark masses. They are distinguished from

constituent quark masses, in which the energy of ‘cloud’ from the gluons and the

virtual quarks are taken into account. On the other hand, masses for heavy quarks,

quarks heavier than confinement scale v, should be calculated taking perturbation

effects into account in addition to non-perturbation effects described above. Heavy

quark effective theory(HQET)[14] is representative theoretical tool. Measured val-

ues of the heavy quark masses are given by

mc = 1.29+0.05
−0.11(1.18−1.34)GeV, mb = 4.19+0.18

−0.06MeV

mt = 172.9±0.6±0.9GeV.

(2.34)

Such quark masses come from diagonalization of complex 3×3 Yukawa cou-

plings. Let Y u,d be Yukawa couplings for U = (u,c, t) and D = (d,s,b). Then they

are diagonalized as

LuY uR†
u = Ỹ u, LdY dR†

d = Ỹ d (2.35)

where Lu,d ,Ru,d are 3×3 unitary matrices and Ỹ u,d are diagonalized matrices. Equiv-

alently, Y 2 is diagonalized as Ỹ 2 = RY †Y R† = LY Y †L†. In the case of neutral

currents, ŪLγµUL,ŪRγµUR, D̄LγµDL, and D̄RγµDR, unitary matrices Lu,d ,Ru,d does

not appear. However, for charged current in the weak interaction mediated by W
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boson, one combination of these matrices

ŪγµD = ŪγµLuL†
dD (2.36)

appears. Chiral nature of the weak interaction prevents Ru,d from observables.

This combination of unitary matrices rotating left handed fermions is called the

Cabibbo-Kobayashi-Maskawa(CKM) matrix[15]: VCKM = LuL†
d .

One important feature of the CKM matrix is that it has one unremovable

phase. This is the source of CP violation[16] in the weak interaction. Under parity

and charge conjugate operations,

P : ψ(t, x⃗)→ γ0ψ(t,−⃗x)

C : ψ(t, x⃗)→ C ψ̄T (t, x⃗), C = iγ2γ0,

(2.37)

then

CP : ψ(t, x⃗) P→ γ0ψ(t,−⃗x) C→ γ0C ψ̄T (t,−⃗x) =−iγ2γ0ψ∗(t,−⃗x) (2.38)

and

CP :V+µ(t, x⃗) = ψ̄a(t, x⃗)γµψb(t, x⃗)→−V−
µ (t,−⃗x) =−ψ̄b(t,−⃗x)γµψa(t,−⃗x)

A+µ(t, x⃗) = ψ̄a(t, x⃗)γµγ5ψb(t, x⃗)→−A−
µ (t,−⃗x) =−ψ̄b(t,−⃗x)γµγ5ψa(t,−⃗x).

(2.39)

Therefore the interaction

aV+
µ (t, x⃗)V−µ(t, x⃗)+bA+

µ (t, x⃗)A
−µ(t, x⃗)+ cV+

µ (t, x⃗)A−µ(t, x⃗)+ c∗A+
µ (t, x⃗)V

−µ(t, x⃗)
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transforms to

aV−µ(t,−⃗x)V+
µ (t,−⃗x)+bA−µ(t,−⃗x)A+

µ (t,−⃗x)

+ cV−µ(t,−⃗x)A+
µ (t,−⃗x)+ c∗A−µ(t,−⃗x)V+

µ (t,−⃗x)

under CP. Here, CP is violated unless c is complex. In fact, CP violating phase can-

not be removed when the number of generation is more than three. CKM matrix

in n generations is complex n×n matrix so it has 2n2 real parameters. But unitar-

ity conditions reduces n2 parameters. 2n phases of u− and d−type quarks can be

absorbed by field redefinitions, but overall phase is irrelevant so 2n− 1 parame-

ters are reduced. Then the total number of real parameters in the CKM matrix is

(n− 1)2. Among them, (1/2)n(n− 1) parameters are mixing angles. Remaining

(1/2)(n−1)(n−2) parameters are the unremovable phases. For three generations

(n = 3) only one CP phase remains. Three mixing angles are parameterized by Eu-

ler angles. The conventional parametrization comes from Chau-Keung-Maiani[17],



c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13


. (2.40)
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제 3장

Problems in the Standard Model

3.1 Massive Neutrinos

In the SM, neutrinos[18] are massless. However, the neutrino oscillation, gen-

eration changing effect of the neutrinos, implies that they are massive, and mix-

ings in the lepton sector appear. The charged leptons are diagonalized as m̃l =

LlmlRl whereas neutrinos are diagonalized as m̃ν = LνmνRν for Dirac mass and

m̃ν = LνmνLT
ν for Majorana mass. Then the mixing matrix called Pontecorvo-Maki-

Nakagawa-Sakata(PMNS) matrix[19] is defined by VPMNS = LlL
†
ν.

For simplicity, suppose Ll = I and consider the propagation of the massive

neutrinos in the vacuum, neglecting the medium effect. The flavor basis |να⟩ is

the superposition of the mass eigenstates |ν j⟩ with the coefficients provided by the

PMNS matrix elements,

|να⟩=
∑

j

V ∗
α j|ν j⟩ (3.1)

where the subscript α indicates e,µ,τ, and j runs from 1 to 3. The probability am-

plitude of observing |να′⟩ after the propagation in spacetime interval (T,L) of |να⟩

is given by

A(να → να′) =
∑

j

Vα′ jV
†
jαe−i(E jT−p jL) (3.2)
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and the probability P(να → να′) is just |A(να → να′)|2,

P(να → να′)∼= P(ν̄α → ν̄α′)

∼= δαα′ −2|Vα3|2(δαα′ −|Vα′3|2)
(

1− cos
∆m2

31
2p

L
) (3.3)

which holds in the limit ∆m2
13 dominates the neutrino oscillation. Therefore, the

survival of the electron type neutrino is given by

P(νe → νe)∼= 1−2|Ve3|2(1−|Ve3|2)
(

1− cos
∆m2

31
2p

L
)

(3.4)

which is used in the Double CHOOZ, Daya Bay and RENO experiments.A similar

expression can be written for P(νµ → νµ), used in K2K and MINOS experiments.

On the other hand, the appearance is given by

P(νµ(e) → νe(µ))∼= 2|Vµ3|2|Ve3|2(1− cos
∆m2

31
2p

L)

=
|Vµ3|2

1−|Ve3|2
P2ν(|Ve3|2,∆m2

31)

(3.5)

where P2ν(|Ve3|2,∆m2
31) indicates the probability of 2-neutrino transition, νe →

(satmνµ + catmντ), used in MINOS experiment. Similar expression for P(νµ → ντ)

is used in OPERA.

When the neutrino source has a sizable dimension ∆L and the energy resolu-

tion of detector is ∆E, we integrate over the region of neutrino source and energy

resolution function. Then, a large phase ∆m2
31

2p L in the argument of cos is averaged

over and the average probability is given by

P(να → να′) = P(ν̄α → ν̄α′)∼=
∑

j

|Vα′ j|2|Vα j|2. (3.6)
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Especially, for the case of α = α′ = e, the averaged probability is

P(νe → νe) = P(ν̄e → ν̄e)

∼= |Ve3|4 +(1−|Ve3|2)2P2ν(νe → νe)

(3.7)

where

P2ν(νe → νe) = P2ν(ν̄e → ν̄e)

= 1− 1
2

sin2 2θsol(1− cos
∆m2

21
2p

L),
(3.8)

which has been used in the KamLand experiment.

The solar neutrino angle θsol = θ12 can be determined from the solar neutrino

flux observation, for example, in the SNO and the Super-Kamiokande experiments

or from the detection of ν̄e neutrinos emitted from the nuclear power reactors in the

KamLand. The atmospheric neutrino angle θatm = θ23 measurement can be made

by observing the atmospheric neutrino, the product of cosmic ray interaction in the

atmosphere, in the Super-Kamiokande, or product from accelerator experiment, for

example, in the K2K and MINOS experiments. Finally, the deviation from zero

of V13 is determined by observing P(ν̄e → ν̄e) in the CHOOZ experiment, and

P(νµ → νe) in the K2K experiment.

As shown above, neutrino oscillation in vacuum shows mixing angles and

absolute values of mass square differences, |m2
i j| = |m2

j −m2
i |. On the other hand,

when neutrinos propagate through matter, νe interacts with electrons in matters via

charged(W boson exchange) and neutral(Z boson exchange) currents, whereas νµ,τ

interact only via neutral current. Such matter effect[20] enables one to know sign

of m2
2 −m2

1 > 0. Therefore, what we know about the neutrino masses are ∆msol =

m2
2 −m2

1 and ∆matm = |m2
3 −m2

1|. ∆matm ≫ ∆msol but we do not know whether m3

is heavier(normal hierarchy) or lighter(inverted hierarchy) than m1.

The neutrino masses are known to be smaller than 2eV[21]. One may wonder
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why the neutrino masses are very small compare to the quark and lepton masses.

Simple modification of the SM just by adding neutrino Yukawa coupling Y ν l̄νH̃

does not explain this satisfactory. On the other hand, we can obtain very small

mass using two preexisting scales. We already have the electroweak scale, typically

represented by Higgs VEV v = 246GeV. Another higher scale would be Planck

scale, where the gravity becomes important. However, lower scale can be chosen

by introducing heavy neutrinos N and imposing Dirac mass of vector-like fermion

MN̄LNR+h.c or Majorana mass, MN̄cN. They can be much larger than electroweak

scale. As the simplest case, suppose we consider the minimal number of degrees

of freedom and do not think of the gravity effect. Then SM singlet fermion with

the Majorana mass can be taken. With these two scales, say, high scale (Majorana

mass here) and intermediate scale(electroweak scale), much smaller scale can be

obtained from (intermediate scale)2/(high scale). This can be realized through see-

saw mechanism model[22],

(Y ν)iJ l̄iNJH̃ +
1
2

MIJN̄cINJ . (3.9)

Note that the number of heavy neutrinos need not be the same as the number of the

lepton generations, 3. In this model, the mass term in the (ν,N) basis is given by

 03×3 mD

mT
D M

 (3.10)

where mD = vY ν. This mass matrix is diagonalized by (3+N)× (3+N) (N is the

number of heavy neutrinos N) unitary matrix

 I3×3 − 1
2 m∗

DM−2mT
D m∗

DM−1

−M−1mT
D IN×N − 1

2 M−1mT
Dm∗

DM−1

 (3.11)
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and the mass eigenvalues are given by

 −mDM−1mT
D 0

0 M+ 1
2 (M

−1m†
DmD +mT

Dm∗
DM−1)

 . (3.12)

The submatrix mν =−mDM−1mT
D is of the form discussed above, so naturally ex-

plains tiny neutrino masses. Then, how two different scales can exist? Usually, one

of them is what already known: in the case of seesaw mechanism, electroweak scale

v corresponds to it. Another scale comes from symmetry breaking scale. The mass

in the nonrenormalizable form (intermediate scale)2/(high scale) implies that tree

level mass is forbidden by symmetry principle. The basic idea of the seesaw mech-

anism is that, abnormally small neutrino mass is tiny breaking effect of ‘accidental’

symmetry which holds in the renormalizable interactions. By making neutrino mass

Majorana, we can break lepton number conservation. Therefore, Majorana mass of

heavy neutrino N is the scale where global symmetry for lepton number conserva-

tion is broken.

If neutrinos are massless or degenerate, PMNS matrix is just the identity by

redefinition of the fields. However, the measured values are given by [23]

7.05×10−5eV2 ≤ ∆m2
12 ≤ 8.34×10−5eV2

0.25 ≤ sin2 θ12 ≤ 0.37

2.70×10−3eV2 ≤ |∆m2
31| ≤ 2.75×10−3eV2

0.36 ≤ sin2 θ23 ≤ 0.67

sin2 θ13 < 0.035(0.056) at 90% (99.73%) C.L.

(3.13)
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with the following BF values

(∆m2
12)BF = 7.65×10−5eV2,

(sin2 θ12)BF = 0.304,

(|∆m2
31|)BF = 2.40×10−3eV2,

(sin2 θ23)BF = 0.5.

(3.14)

Note that the neutrino mass in the seesaw mechanism is Majorana mass,

(mν)i jν̄c
i ν j. By integrating out heavy neutrinos N, it is effectively (1/M)(LH)(LH)

where M is typical mass scale of heavy neutrino Majorana mass, not (1/M)(LH)†(LH).

It is different from the Dirac mass which describes the quark and the charged lep-

ton masses, in the form of Hψ†ψ. If the field is defined with the phase, eiδψ, it

does not appear in the Dirac mass so physically irrelevant. On the other hand, such

phase cannot be removed in the Majorana mass term. In the case of the neutrino

mass, neutrinos can have the phase as (νe,e−iανµ,e−iβντ) = P · (νe,νµ,ντ) where

P = diag.(1,e−iα,e−iβ). Then the phases P can be contained in the PMNS matrix

making the neutrino masses real as



c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13





1 0 0

0 eiα 0

0 0 eiβ


.

(3.15)

3.2 Gauge Hierarchy Problem

Originally, gauge hierarchy problem[24] came out of the GUTconsiderations.

If the SM gauge group is obtained from breaking of larger gauge group[25], elec-

troweak and strong interactions are unified above this breaking scale. Such unifica-
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그림 2: Fermion(above) and boson(below) loop corrections to the funda-
mental scalar mass.

tion breaks baryon number conservation, accidental symmetry in the SM. so proton

can decay. Current proton lifetime bound, 2× 1029 years[26] imposes that GUT

scale shoud be of order 1016GeV. Then, one may ask why this scale is much larger

than electroweak scale. This is original version of gauge hierarchy problem.

Another version of gauge hierarchy problem visits the issue of stability of fun-

damental scalar mass in the electroweak scale under quantum correction. In the SM,

the Higgs scalar is introduced from chiral nature of the SM fermions in the weak

interaction. One SU(2)L doublet Higgs as a fundamental scalar in the SM is just a

minimal setup: we can think of multi-Higgs doublets and even composite Higgs.

In any case, gauge symmetry should be broken spontaneously, not explicitly. Oth-

erwise the model is not unitary at least in the perturbative scheme. If we just begin

with massive gauge boson, scattering amplitudes of massive gauge bosons, such as

W+W− → W+W−, violate unitarity at high energy[27], so such theory is just the

low energy effective theory. On the other hand, if the Higgs is fundamental scalar,

fine tuning problem arises. Since this fine tuning is originated from large hierarchy

between electroweak scale and cutoff scale, usually taken as GUT or Planck scale,

this is also hierarchy problem. To see this consider the quantum correction to the
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Higgs mass from top Yukawa coupling (yt/
√

2)H0t̄LtR in the regularization with

cutoff Λ,

δm2
h = i(−1)Nc

∫
d4k
(2π)4 Tr

[−iyt√
2

i
kµγµ −mt

−iy∗t√
2

i
kµγµ −mt

]
=−Nc|yt |2

8π2

[
Λ2 −3m2

t ln
(Λ2 +m2

t

m2
t

)]
.

(3.16)

The quadratic divergence Λ2 makes the Higgs mass in the electroweak scale

fine-tuned. If the cutoff Λ is the Planck scale so that the SM is valid up to this scale,

it is interpreted as very large bare Higgs mass of order M2
P/(8π2) get quantum cor-

rection −M2
P/(8π2) to make 10−16 times smaller mass mh at the electroweak scale.

If there is a new physics between the electroweak scale and MP, smaller cutoff

characterizing this new physics can be introduced and the fine tuning is lightened.

Supersymmetry[28], symmetry between the boson and fermion, is one of such ex-

amples. This is easily understood by noting that boson and fermion loop have op-

posite sign contributions. Introducing the scalar couples to the Higgs,

−λ
2
(H0)2(|ϕL|2 + |ϕR|2)−H0(µL|ϕL|2 +µR|ϕR|2)−m2

Lϕ2
L −m2

Rϕ2
R, (3.17)

the quantum correction from this scalar interaction is given by

δm2
h = λN

∫
d4k
(2π)4

[ i
k2 −m2

L
+

i
k2 −m2

R

]
+ iN

∫
d4k
(2π)4

[(
− iµL

i
k2 −m2

L

)2
+
(
− iµR

i
k2 −m2

R

)2]
=

λN
16π2

[
2Λ2 −m2

L ln
(Λ2 +m2

L

m2
L

)
−m2

R ln
(Λ2 +m2

R

m2
R

)]
− N

16π2

[
µ2

L ln
(Λ2 +m2

L

m2
L

)
+µ2

R ln
(Λ2 +m2

R

m2
R

)]
.

(3.18)

If N = Nc, λ = |y2
t |, mL = mR = mt , and µ2

L = µ2
R = 2λm2

t , then the logarithmic as

well as quadratic divergences vanish. That means, if the scalar has the same mass
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and the same number of degrees of freedom as the quark, and its coupling to the

Higgs is related to the coupling between the quark and the Higgs, fine tuning from

the quadratic divergence vanishes. This is supersymmetry and the scalar ‘partner’

of the quark is called the squark. Such new type of symmetry avoiding fine tuning

is related to the naturalness. If the symmetry is enhanced when specific interaction

such as mass term is absent, it is natural that this term is small: Originally forbid-

den by symmetry so proportional to the small symmetry breaking effects[29]. For

example, gauge boson mass is naturally small since gauge symmetry is enhanced

in the massless limit. In the same way, the fact that massless fermion has chiral

rotation symmetry implies small fermion mass is natural. Since the scalar with the

same mass as the lepton or the quark does not exist, supersymmetry is broken, then

the breaking scale sets the cutoff scale Λ for new physics in which scalar partners

of SM fermions appear.

The interpretation of quantum correction in this way is ambiguous in dimen-

sional regularization since mass scale is not used. In dimensional regularization,

divergence is regulated in the 4+ ε dimension, and it is given by M2/ε for scalar

mass square correction where M is mass of particle in the loop. When the Higgs

interacts with heavy particles whose masses are GUT or Planck scale, it behaves as

quadratic divergence. So, dimensional regularization also has fine tuning problem

provided that the Higgs is regulated by high energy physics as well as electroweak

scale physics.

To see fine tuning more explicitly, it is more appropriate to investigate it in

the Wilsonian picture, in which the degrees of freedom in the scale higher than the

observation scale are integrated out[30]. The following arguments come from [31].
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×

m
2

: + + · · ·

+ · · ·λ :

그림 3: Quantum corrections for m2 and λ from loop diagram.

Consider the scalar field described by

S =

∫ Λ d4 p
(2π)d

1
2

ϕ(−p)(p2 +m2)ϕ(p)

+
λ
4!

∫ Λ 4∏
a=1

dd pa

(2π)d δd(
4∑

a=1

pa)ϕ(p1)ϕ(p2)ϕ(p3)ϕ(p4).

(3.19)

This is the simplification of the Higgs and the squark system showing quadratic

divergence in the absence of the quark. The Wilsonian renormalization undergoes

the following steps:

• Divide the scale by inner region [0, Λ
N ] and outer region [Λ

N ,Λ] where N =

1+ ε.

• Take the functional integral over the outer region.

• Rescale momentum p′=N p and field ϕ′(p′)=N−Dϕ(p) where −D=−(1/2)(d+

2) is the dimension of ϕ(p) so that the theory which is integrated out trans-

forms to the equivalent theory with the cutoff Λ. Then effective Lagrangian

of low energy degrees of freedom is obtained and couplings reflect the quan-

tum corrections where high scale degrees of freedoms are integrated out.
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Resulting parameters are given by

m′2 = N2D−d(m2 + c1λ− c2m2λ),

λ′ = N4D−3d(λ−3c2λ2)

(3.20)

N dependences come from rescaling. ci are calculated from diagrams shown in Fig.

3 and given by

c1 =
1
2

∫
outer region

d4 p
(2π)d

1
q2 ∼ Λd−2(1−N−(d−2))

c2 =
1
2

∫
outer region

d4 p
(2π)d

( 1
q2

)2
∼ Λd−4(1−N−(d−4)).

(3.21)

Then c1 corresponds to the quadratic divergence and c2 corresponds to the logarith-

mic divergence. The renormalized parameters are given by

1
λ′ −

1
λ∗ = N−(4D−3d)

(1
λ
− 1

λ∗

)
m′2 −m2

c(λ
′) = N2D−d(1− c2λ)m2 −m2

c(λ
′)

(3.22)

and after repeating integrate-out n times, we have

1
λn

− 1
λ∗ = N−(4D−3d)n

( 1
λ0

− 1
λ∗

)
m2

n −m2
c(λn) = N(2D−d)ne−c2

∑n−1
i=1 λi(m2

0 −m2
c(λ0)).

(3.23)

Here λ∗ = (N4D−3d −1)/3c2 and m2
c(λ) =−λc1/(1−N2(D−d)) so quadratic diver-

gence appears in the fixed point of the mass only, and running to the low energy is

governed by logarithmic divergence only. The renormalization group flow for fun-

damental scalar is depicted in Fig.4. Note that λ < 0 region is not valid because it

destabilizes the vacuum. If the bare mass is on the mc(λ), it runs down along the

critical line, m = mc(λ), to the zero mass with λ = 0, the fixed point.(For d = 4,

λ∗ =−1/3c2 → 0 as Λ → ∞.) In this case, very small scalar mass is natural. How-
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m
2

λ

m
2 = mc

2(λ)

그림 4: Renomalization group running of m2 and λ.

ever, if this mass is slightly deviated from the critical line, it flows down to the

large mass. Therefore, the fine tuning problem in the Wilsonian renormalization

can be interpreted as the question, why the mass at the high scale is very close

to the critical line, m = mc(λ). Since m2
c determining the critical line is quadratic

to the cutoff, it is the same as the interpretation in the regularization with cutoff:

Bare mass should be of order Λ2/(8π2), the same order as m2
c whose quadratic

divergence comes from the quantum correction c1.

If quantum correction to the field renormalization is large enough, it has a

large anomalous dimension so running dimension of ϕ is large. −D is no longer the

same as the dimension of ϕ and anomalous dimension δ=−D+(d+2)/2 affects N

dependent scaling of m2: N−2δ factor is additionally multiplied to (m2
0 −m2

c) to get

m′2 −m′2
c . So mass is getting closer to the critical line as running down to the lower

scale. This can be seen easily by redefinitions p̃n =N−n p, ϕ̃(p̃n) = (N−n)−
d+2

2 ϕ(p),

m̃2
n = (N−n)2m2 and λ̃n = (N−n)4−dλ. The bare values(n = 0) does not scale at all

and

m̃2
n − m̃2

c(λn) = N(2D−d−2)ne−c2
∑n−1

i=1 λi(m2
0 −m2

c(λ0))

= N−2δne−c2
∑n−1

i=1 λi(m2
0 −m2

c(λ0))

(3.24)

This would be another solution to the fine-tuning problem. On the other hand, su-
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persymmetry eliminates both quadratic and logarithmic divergences. Since large

deviation from the critical line at low energy in renormalization group running is

regulated by logarithmic divergence, its vanishing implies that fine-tuning problem

vanishes. Choosing initial condition near the critical line has no unnaturalness.

3.3 Flavor Problem

By flavor, we mean quantum number determined by existence of the specific

quark. For example, strangeness +1 means s̄ quark is contained in the physical

observable. If the observable does not have strange quark, strangeness is assigned

to be zero. However, frequently, this term is used in the meaning of generation.

So, when we say the SM gauge group is flavor universal, it means each generation

is equally charged under the SM gauge group. In a view of the SM gauge group,

generations are just copies of a set of the fields. The SM does not explain different

properties depending on the flavor. For example, even though the u quark and the t

quark, corresponding particles in the first and the third generations, have the same

properties under the electroweak interaction, their masses are quite different. This

makes many different phenomena such as life time. In the SM, different masses

come from different magnitudes of the Yukawa couplings. But they are just free

parameters determined by observations, and the SM does not explain how they

have values as measured.

Such problem also arises in the mixing matrix. Yukawa couplings in general

form 3×3 complex matrix(so we call it Yukawa matrix) and masses are eigenval-

ues of this matrix. When it is not diagonal from the beginning, unitary matrices

diagonalizing it should appear, and mixing matrix is one combination of such uni-

tary matrices. The CKM and PMNS matrices are such mixing matrices in the quark

and the lepton sector, respectively. The form of mixing matrices is important be-

cause unremovable phase is source of the CP violation in the weak interaction. If
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any of the mixing angles vanishes, this phase can be removed by field redefinitions.

Therefore, the smallest mixing angle is used to parameterize the CP violation of the

weak interaction. The CKM matrix is very close to identity. The mixing between

the first two generations, Cabibbo angle is the largest one, but it is just 13o. Other

two mixing angles are much smaller, but do not vanish, so the quark sector has

weak CP violation. On the other hand, the PMNS matrix has very large mixings.

The mixing between the second and the third generations,atmospheric mixing, are

maximal: the mixing angle is almost 45o. Mixing between the first and the second

generations, solar mixing is also sizable. However, the mixing between the first and

the third generations are small. If it is nonzero, weak CP phase appears when we

neglect the Majorana phases. It can be measured from the neutrino oscillation.

Aα′α
CP ≡ P(να → να′)−P(ν̄α → ν̄α′)

= 4
∑
j>k

Im(Vα′ jV
∗
α jVαkV ∗

α′k)sin
∆m2

jk

2p
L

(3.25)

Especially,

A(µe)
CP =−A(τe)

CP = A(τµ)
CP

= 4J(sin
∆m2

32
2p

L+ sin
∆m2

21
2p

L+ sin
∆m2

13
2p

L)
(3.26)

where J = Im(Vα′ jV ∗
α jVαkV ∗

α′k) is the Jarlskog determinant of the PMNS matrix

which will be studied in detail later. Therefore, understanding the patterns of mixing

matrices is important but the SM does not explain the origin of these patterns.

If we know all unitary matrices diagonalizing the Yukawa matrices, it is pos-

sible to reconstruct the Yukawa couplings before diagonalization, and also possible

to study the origin of patterns of these original Yukawa matrices. If some elements

of the Yukawa matrix are very small compared to other elements, we can guess that

there may be some symmetry which suppresses them. In this sense, structures of
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the Yukawa matrices imply flavor dependent symmetry beyond the SM. However,

we do not know all these unitary matrices. First, the mixing matrix is combination

of unitary matrices rotating left handed fermions. We do not know how to sepa-

rate it into two unitary matrices, for example Lu and Ld . Second, the mixing matrix

appears in the charged current in the weak interaction, and by chiral nature of the

weak interaction, right handed fermions do not make the charged current. So, there

is no way to know unitary matrices rotating right handed fermions within the con-

text of the SM. Therefore, to know them, the hint from new physics beyond the SM

should be considered. At this stage, information from new physics is not enough, so

even though it is possible to construct the models consistent with the measured val-

ues, there is no way to select the unique description of real world. In this sense, for

plausible model construction, more experimental evidences as well as consistency

with the other model outside the flavor physics itself are required.

3.4 Strong CP Problem

Strong CP problem is another fine-tuning problem in the SM[32]. In the

path integral language, transition amplitude is the sum of all paths weighted by

exp(iS/h̄)[33]. In the limit of h̄ → 0,(classical limit) strong interference between

exp(iS/h̄)s from different paths takes place, and only small portions around the ex-

tremum remain. This is why classical equation of motion makes action extremum.

Among such classical solutions, special types of solutions for vacuum of the system

called instanton solutions exist. They make action (for Minkowski spacetime) or en-

ergy (for Euclidean spacetime) finite. These solutions are sorted out by topological

number, for example winding number. To make energy finite, vacuum configura-

tions are assigned at infinite spacetime coordinates. When we have degenerate vac-

uums, there is a correspondence between vacuum configurations and coordinates

at infinity, and this can be interpreted as vacuums ‘wrap’ the spacetime. The wind-
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ing number counts how many times do the vacuums wrap spacetime. In light of

topology, objects characterized by different winding numbers cannot be deformed

from one to another smoothly, so the vacuum with the specific winding number

is stable with respect to that with different winding number. This story arises in

the non-Abelian gauge theory in the Euclidean spacetime. Consider the Euclidean

Lagrangian for the field strength Fµν = ∂µAν − ∂νAµ + [Aµ,Aν]. From the identity∫
d4xTr(Fµν − F̃µν)

2 ≥ 0 where F̃µν = (1/2)εµνρσFρσ is dual field of Fµν, we know

E =
1

2g2

∫
d4xtrFµνFµν ≥ | 1

2g2

∫
d4xtrFµνF̃µν| (3.27)

so energy is minimum for Fµν =±F̃µν. Since the term trFµνF̃µν = 8εµνρσtr∂µ[Aν∂λAρ+

(2/3)AνAλAρ] is total derivative, it does not affect the perturbative Feynman rules.

But it is known that[34] instanton solutions make

1
2g2

∫
d4xtrFµνF̃µν =

8π2

g2 n (3.28)

with n integer, interpreted as winding number. The instanton solution for n = 1 is

given by

Aµ =
r2

r2 +ρ2 ω∂µω−1 =−iηµνρxνσρ
1

r2 +ρ2 ,

Fµν = 2iηµνρσρ
ρ2

r2 +ρ2 ,

(3.29)

where ω =
xµσµ

r , σµ = (I,−i⃗σ) and η0iµ =−ηi0 j = δi j, ηi jk = εi jk. Therefore, each

instanton solutions corresponding to winding number n form equivalent, stable vac-

uum solutions. However, this is not the vacuum for the whole system. As shown in

5, the system with equivalent |n⟩ vacuums has discrete translation symmetry i.e.

invariance under |n⟩ → |n+ 1⟩ so vacuum wave function should respect this sym-

metry either. This is so-called θ-vacuum, |θ⟩ =
∑

n einθ|n⟩. The new quantity θ is
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그림 5: Schematic figure for θ vacuum. y axis corresponds to the energy
wall. Figure is adopted from J. E. Kim, Phys. Rep. 150 (1987), 1 in [32].

observable. Since ⟨n|exp(−Ht)|m⟩=
∫
[dAµ]n−mexp(−S),

⟨θ′|e−Ht |θ⟩=
∑

n′

∑
n

e−i(n′θ−nθ)⟨n′|e−Ht |n⟩=
∑

n′
e−in′(θ′−θ)

∑
q

∫
[dAµ]qe−S−iqθ

(3.30)

and
∑

n′ exp(−in′(θ′−θ)) = δ(θ′−θ). So the action has −iq in addition, and it is

equivalent to the additional Lagrangian

θ
32π2 Fa

µνF̃aµν. (3.31)

This term has two properties. First, it breaks CP. Since P : E⃗ → −E⃗, B⃗ → B⃗ and

C : E⃗ → −E⃗, B⃗ → −B⃗, FF̃ which is equivalent to E⃗ · B⃗ is CP odd. Second, it is

related to the axial anomaly: quantum breaking of symmetry under chiral rotation,

ψ→ exp(iαγ5/2)ψ[35]. Such anomaly is given by − α
32π2 Fa

µνF̃aµν. If the quark mass

matrix, or equivalently, Yukawa matrix has the phase, such phase can be moved to

FF̃ term through anomaly. Then θ is redefined by θ̄ = θ−Arg.Det.Mq. It is not ac-

cidental. Consider the Dirac operator iγµDµ in Euclidean space. Let ϕk be the eigen-

vector of this Hermitian operator with eigenvalue λk. Since γµDµγ5 =−γ5γµDµ,

i(γµDµ)(γ5ϕk) =−γ5i(γµDµ)ϕk = (−λk)(γ5ϕk), (3.32)
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so for nonzero λk, we can make chirality pair ϕk,± = (1/2)(1± γ5)ϕk. On the other

hand, for λk = 0, pairing is not essential so the number of ϕk,+ need not be the same

as that of ϕk,−. Under the chiral rotation U = ψ → exp(iαγ5/2)ψ, path integral

measure DψDψ̄ is not invariant, but transforms to (DetU)−2DψDψ̄[36]. Then,

(DetU)−2 = e−2tr lnU = ei
∫

d4x 1
2 αA(x) (3.33)

where A(x) represents the anomaly of the chiral rotation. Here,

tr lnU =

∫
d4x⟨x|tr lnU|x⟩=

∫
d4xδ(4)(x− x) lnU(x) =

∫
d4xδ(4)(0)i

α(x)
2

trγ5.

(3.34)

Note that rotation parameter α is regarded as local even though the original chi-

ral rotation is global. It comes from deriving Noether current, the current associ-

ated with the symmetry. Pretending global symmetry local, the variation of action

with respect to local parameter α(x) is of the form δS =
∫

d4xα(x)J0 +∂µα(x)Jµ =

−
∫

d4xα(x)∂µJµ. Here, the variation of action under the global transformation J0

vanishes. When equation of motion holds, δS should be zero so ∂µJµ = 0. This is

Noether’s theorem: symmetry is associated with the conserved current. When the

symmetry is anomalous, quantum effects modifies ⟨∂µJµ⟩= 0 into ⟨∂µJµ −A⟩= 0.

A is what we want to obtain.

Note that Eq. (3.34) is a product of infinity(δ(4)(0)) and zero(trγ5). To regulate

this, we introduce gauge invariant regulator, trγ5 f ((Dµγµ)2/Λ2), where f ((Dµγµ)2/Λ2)

is some function of (Dµγµ)2/Λ2 with f (0) = 1 and f (∞)→ 0. Then

trγ5 f
( (Dµγµ)2

Λ2

)
=
∑

x

⟨ϕk|γ5 f
( (Dµγµ)2

Λ2

)
|ϕk⟩=

∑
x

f
( λ2

k
Λ2

)
⟨ϕk|γ5|ϕk⟩

=

n+∑
f (0)⟨ϕ+|ϕ+⟩−

n−∑
f (0)⟨ϕ−|ϕ−⟩= n+−n−.

(3.35)
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Therefore, anomaly counts difference between zero modes in + and − chiralities.

So it affects the topological number. This is known as Atiya-Singer theorem[37].

If we take appropriate α, chiral rotation of quarks, θ̄ can be made zero but

moved to the fermion mass term as q̄exp(i(α(θ̄)/2)γ5)Mqexp(i(α/2(θ̄))γ5)q, so

it can be measured through CP violating process in the strong interaction such

as neutron electric dipole moment[38]. The measured value is very close to zero,

|θ̄|< 0.7×10−11[39]. Then one may ask why CP violation in the strong interaction

is so small. This is the strong CP problem. If one of the quark is massless, for

example, mu = 0, it is possible to assign arbitrary phase to this, so specific value

of θ̄ is meaningless. However, all quarks seem to be massive[40]. One attractive

explanation is dynamical one, suggested by Peccei and Quinn[41]. Suppose we

have the ‘axion’ field a with the symmetry under shift, a → a+φ, and couples to

gluon FF̃ term so we have

1
32π2

(
θ̄+

a
Fa

)
Fa

µνFaµν. (3.36)

By shifting a → a−Faθ̄, it is just (1/32π2)(a/Fa)Fa
µνFaµν and it makes action min-

imum at a = 0 because

e−
∫

d4xV [a] =
∣∣∣∫ DAµ

∏
i

Det(Dµγµ +mi)e
−
∫

d4x 1
4g2 FF−i a

Fa FF̃
∣∣∣

≤
∫

DAµ

∣∣∣∏
i

Det(Dµγµ +mi)e
−
∫

d4x 1
4g2 FF−i a

Fa FF̃
∣∣∣= e−

∫
d4xV [0]

(3.37)

so
∫

d4xV [0] <
∫

d4xV [a]. Note that Det(Dµγµ +mi) =
∏

λk
(−iλk +mi) is always

positive because chiral pairing guarantees that we have the same number of positive

(λk > 0) and negative(−λk) eigenvalues, so
∏

λk
(−iλk +mi) = mn

i
∏

λk>0(λ2
k +m2

i )

where n= n++n− is the number of zero modes. The field a with the shift symmetry

can come from Goldstone boson in the global symmetry breaking, i.e. σ = [(Fa +
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ρ)/
√

2]exp(ia/Fa). Since a accompanies with i, it is CP odd. So, CP is broken when

a is stabilized with the nonzero value, but since it favors zero, CP violation is very

small. The general interactions of CP odd Goldstone boson are of the form

c1∂µa
1
Fa

q̄γµγ5q+(q̄LmqReic2
a

Fa +h.c.)+ c3
a

32π2 Fa
µνFaµν. (3.38)

Such global symmetry is called U(1) Peccei-Quinn(PQ) symmetry. When it

was firstly suggested, its breaking scale was thought of as the electroweak scale:

Fa = v. Suppose we have two Higgs doublets, Hu and Hd responsible for the masses

of the up- and down- components of the SU(2) doublet, respectively. These two

Higgses have the same charge under the PQ symmetry, i.e. U(1) PQ transforms

the Higgses as Hu → exp(iα)Hu and Hd → exp(iα)Hd . The quarks are also PQ

charged to make Yukawa coupling PQ singlet. When electroweak symmetry is bro-

ken, Hu,d = [(vu,d +ρu,d)/
√

2]exp(iau,d/v) and one combination of au and ad , say,

−cosβau + sinβad is absorbed by Z boson to make it massive. Another combina-

tion sinβau + cosβad is a physical field, but since global PQ symmetry is spon-

taneously broken, it is massless (Goldstone boson). Such type of axion, Peccei-

Quinn-Weinberg-Wilczek(PQWW) axion[42] is rule out experimentally since it

predicts the processes such as K+ → π++ a, which is not observed. To suppress

the probability of finding out axion, we need to raise Fa to much higher scale. In

this ‘invisible’ axion, σ is no longer the CP odd Higgs and Fa is much higher than

electroweak scale.

There are two models for invisible axion. First, σ does not couple to the

SM particles. instead, vectorlike heavy quark exists, and have the mass from PQ

symmetry breaking via the coupling σQ̄LQR + h.c.. Such model is Kim-Shifman-

Vainstein-Zakharov(KSVZ) axion[43]. On the other hand, σ can couple to the

Higgs but does not couples to the SM quarks to avoid the experimental bound.

This is Dine-Fischler-Srednicki-Zhitniskii(DFSZ)[44] axion.
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3.5 Cosmological Problem

Even though this topic is important in exploring the new physics, it is beyond

the scope of discussion in this thesis. We briefly discuss some issues which can be

studied by extending materials treated here.

One of mysteries in cosmology is the baryon asymmetry, a strong imbal-

ance in baryon and antibaryon[45]. To explain this, CP violation as well as baryon

number violating interactions and out-of-equilibrium condition are required[46].

If CP violation responsible for the baryon asymmetry takes place in the decay

of some heavy particle into Standard Model particles, understanding flavor struc-

ture of quarks and leptons could give a good model for baryon asymmetry. Es-

pecially, leptogenesis[47] is interesting because the decaying heavy particle is the

right handed heavy neutrino. Introducing heavy neutrinos is a plausible extension

of the SM as it explains the very small masses of neutrinos through the seesaw

mechanism. Therefore, studies on leptogenesis essentially include construction of

a model for the flavor structure in the lepton sector. Then flavor dependent symme-

try plays very important role as it restricts possible form of flavor structure. In this

regards, leptogenesis is a good topic to extend studies on flavor dependent symme-

tries.

On the other hand, the total matter density of the Universe, Ω ≡ ρM/ρc ∼

0.3 where ρc = 3H2
0/(8πGN) = 1.9×10−26h2

0kgm−3 is the critical density for the

flat Universe, but known baryonic matter is just Ω ≡ ρB/ρc ∼ 0.02. The existence

of the Dark matter[48], matter explaining such missing density, is confirmed in

the observations, but identity and its microscopic properties are not known yet.

Moreover, the expansion of the Universe is being accelerated by dark energy, which

occupies ΩΛ ∼ 0.7, but we do not know how to explain this.
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제 4장

Supersymmetry as a solution of the
gauge hierarchy problem

4.1 Current Status of the study on the electroweak
symmetry breaking

There are two issues in physics of the electroweak symmetry breaking. One

is identification of the Higgs: is the Higgs fundamental scalar or composite of

fermions? how many Higgs does the Nature have? if there is a new physics be-

yond the SM, does the Higgs couple to it? if so, how does the new physics affect

the electroweak symmetry breaking? The other is stabilization of the Higgs mass at

the electroweak scale. Assuming the Higgs to be the elementary scalar, we need to

find new physics to solve the gauge hierarchy problem. Supersymmetry is the prime

example. The LHC experiments are expected to unveil the physics of electroweak

symmetry breaking by finding out Higgs or evidence of new physics. However, at

present, there is no solid evidence of them.

4.1.1 Higgs search at the LHC

The SM Higgs decay rates to various decay channels and their branching

ratios depend on the Higgs mass[49]. For the Higgs mass mH < 140GeV, H →

bb̄ is dominant. If the Higgs is heavier than 140GeV, it will mainly decay into

W+W− or ZZ. If such Higgs decays are not observed, we expect much smaller cross

section for Higgs production. In this way, we can exclude the Higgs production
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그림 6: The example of the Higgs exclusion plot. Adopted from ALTAS
homepage, [50]

cross section and if the SM cross section is not excluded at some value of mH , it

can be interpreted as discovery of the SM-like Higgs at this mass.

Fig. 6[50] shows the example of exclusion plot. The dotted line shows the

average expected exclusion in the absence of the Higgs. That means, with the SM

without the Higgs, cross section above the dotted line is expected to be excluded.

The solid line is the observed exclusion line with 95% Confidence level(C. L.). The

Higgs cross section above this line is excluded from observation. If the line dips

below 1.0(σ= σSM), the Higgs is not produced with the expected cross section σSM

in the corresponding Higgs mass region so this Higgs mass is excluded in the 95%

certainty. In Fig. 6, the Higgs mass in the range (135,225)GeV and (290,490)GeV

is excluded. As the luminosity is integrated, dotted line would keep going down. If

the solid line does not dip below no longer but stops around σ=σSM, corresponding

mass is the SM Higgs mass.

When new physics is taken into account, other possibilities may be consid-

48



그림 7: ATLAS and CMS reports on exclusion of the Higgs production
cross section.

ered. For example, Higgs production cross section can be different from that in the

SM. When the Higgs decays into non-SM particles, branching ratio of observing

channel can be much smaller and this can be the reason why the Higgs has not been

found yet.

The LHC at CERN has two detectors searching for the Higgs and new physics

beyond the SM: ATLAS and CMS. ATLAS searches for the Higgs decay chan-

nels H → γγ, H → ZZ(∗) → l+l−l+l−, and H → WW (∗) → l+νl−ν̄ to exclude

(112.7,115.5)GeV, (131,237)GeV, and (251, 468)GeV at 95% confidence level(C.L.).

On the other hand, CMS excluded (127,600)GeV at 95% C. L. from five decay

modes, γγ, bb̄, ττ̄, W+W−, and ZZ. These are shown in Fig. 7. Interestingly, both

experiments show apparently unexcluded the SM Higgs cross section around the

similar mass region: 126GeV for ATLAS and 124GeV for CMS[51]. If these sig-
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nals are not mere fluctuations, we may already discovered the Higgs.

4.1.2 Supersymmetry searches in the LHC

Even though supersymmetry(SUSY) has a good theoretical motivation as a

solution to the gauge hierarchy problem, it should be broken because there is no ex-

perimental evidence of superpartners of the quarks and the leptons, called squarks

and sleptons, respectively. SUSY breaking scale can be parameterized by typical

mass scale of the superpartners. When SUSY is broken, the Higgs mass correction

from MP to the scale µ, say, electroweak scale is approximately given by

δm2
h =− 3y2

t

8π2 m2
t̃ ln

( µ
MP

)
. (4.1)

Then δm2
h/m2

h can represent the degree of fine tuning. Let m2
h ≃ 100 ∼ 150GeV.

Allowing the fine tuning of the Higgs mass within factor 10, i.e. |δmh| ≃ 1TeV in

running from MP to MZ , we require m2
t̃ ≃ 1.2TeV so SUSY breaking scale is better

to be around or below 1TeV. This is why low energy SUSY characterized by sub

TeV squark mass is preferred as a solution of the hierarchy problem.

Supersymmetric extension of the SM simply adds SUSY to the flavor blind

SM gauge group representations. SUSY breaking effects in squark and slepton

masses are free parameters as long as we do not specify SUSY breaking mecha-

nism. Moreover, gauge bosons have their own supersymmetric partners, gauginos.

Their masses are also splitted from gauge boson masses as SUSY is broken. There-

fore, broken SUSY needs much more free parameters unless the exact SUSY break-

ing mechanism is verified. To work with the least number of free parameters, we

assume that squark masses, slepton masses, gaugino masses, and A-terms (the coef-

ficient of three scalar interaction with mass dimension one) are unified at GUT scale

respectively, and are splitted by renormalization group running effect. This scenario

is called Constrained Minimal Supersymmetric Standard Model(CMSSM). Exper-
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imental studies are made based on this simple model, but they can cover general

cases with two features:

• SUSY model with R-parity. As can be seen later, we can impose discrete R

parity under which the SM particles are even and their superpartners (spar-

ticles) are odd. It can prevent fast decay of proton and decay of the sparticle

into SM particles only. So, the Lightest Supersymmetric Particle (LSP) can-

not decay into the SM particles even it is heavier than the SM particles. In

cosmology, LSP can be a good candidate of Dark Matter. In collider, LSP

no longer decays and escapes out of detector so observing defects of en-

ergy, called missing energy is the evidence of such particle. SUSY searches

mainly focus on searching for missing energy and CMSSM is a good bench-

mark.

• SUSY breaking effect has a typical scale. Hadron collider is mainly sensi-

tive to the first two generation squarks since production of the third gener-

ation squarks is suppressed. When two protons are collide with each other,

squarks are produced via processes, such as qiq j → q̃iq̃ j and gg → q̃i ¯̃q j.

To generate the third generation squark, the third generation quarks are re-

quired but they are much less contained in the proton compared to the first

two generation quarks. The first two generation quarks can produce the third

generation squarks through CKM mixing and squark mixing but in many

models mixing with the third generation is very small. So, the third gener-

ation sqaurks are mainly produced from gluon. e.g. gg → q̃i ¯̃q j or gq → g̃q̃

but they have velocity suppression. For example, consider the s−channel

process gg → g(∗) → q̃i ¯̃q j. Since the virtual gluon can have helicity +1 or

−1, for angular momentum conservation, both gg → g(∗) annihilation and

g(∗) → q̃i ¯̃q j creation should have orbital angular momentum contribution.

That’s why (scalar)-(scalar)-(scalar) Feynman rules in scalar QED and gluon
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그림 8: (Left) Exclusion bound for squark and gluino based on
mSUGRA/CMSSM (tanβ = 10, A0 = 0, µ > 0). (Right) Exclusion bound
for stop t̃ in Gauge mediated SUSY with χ̃0 the next-to-lightest supersym-
metric particle.

self interaction have a velocity dependence. Since squark velocity is less

than 1, such processes have velocity suppression. t−channel process would

be suppressed unless t is very close to the virtual squark or gluino masses.

In this way, the third generation squarks have very small chance to be pro-

duced in the LHC, so even they are not found, we cannot say they are too

massive. In principle, t̃ and b̃ are less bounded than the first two generation

squarks. In CMSSM, squarks have almost the similar scales. If the first two

generation squark masses are excluded, the third generation squarks around

the similar scale are also excluded.

The recent LHC experiments report squarks and gluino based on CMSSM

are excluded to about 1.4TeV as shown in the left of Fig. 8[52]. That means, low

energy SUSY models with two features above are being excluded. Then there are

four alternative possibilities:

1. Low energy SUSY is excluded. Then SUSY does not solve the hierarchy
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problem. In this case, we have to seek for another solution consistent with

experiments or ask whether the hierarchy problem is well-defined problem.

2. R-parity is violated[53]. Then LSP can decay into the SM particles and miss-

ing energy may not be detected. In this case, we should select R-parity vio-

lating operator to make the proton live long enough. SUSY may not provide

the Dark matter candidate.

3. The first two generation squarks are above 1TeV but the third generation

squarks are sub-TeV[54]. In fact, dominant contribution to the Higgs mass

correction comes from the stop t̃, superpartner of top quark since only it

has a large Yukawa coupling of order 1. The sbottom b̃ may be in the sub-

TeV since superpartner of the left handed bottom quark constitutes SU(2)L

doublet together with the stop. So if the third generation quarks are still in

sub-TeV, hierarchy problem is still solved by SUSY. Actually, b̃ and t̃ mass

bounds are lower than 400GeV as shown in the right of Fig. 8 and Ref. [55].

4. Sparticle spectrums are degenerated compared to the quark masses. For ex-

ample, b̃ mass can be measured by detecting missing energy of neutralino

χ̃0 through decaying process b̃ → bχ̃0. If mass difference between b̃ and χ̃0

is so small that b quark does not have enough energy to be detected over

background or energy cut, b̃ cannot be discovered. In this case, we do not

have sqaurk mass bound.

4.2 Minimal supersymmetric Standard Model

4.2.1 Model description

The Minimal Supersymmetric Standard Model (MSSM) is, literally, minimal

supersymmetric extension of the SM. It just adds superpartners to all the SM parti-

cles. One difference from the SM in matter contents is that the MSSM is two Higgs
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doublet model. There should be two Higgs doublets, Hu and Hd , responsible for

the masses of upper and lower components of the SU(2)L doublets, respectively. It

has two reasons, First, supersymmetric Lagrangian comes from superpotential W

by L =
∫

d2θW but W is holomorphic. That means, the term H†Q̄U where H,Q,

and U are left chiral superfields of the Higgs, SU(2)L doublet and singlet quarks

respectively, is not allowed as H† is a right chiral superfield. Superpotential should

be the combination of either left chiral superfields only or right chiral superfields

only. So we have to introduce another left chiral superfield for Hu. Second, as the

Higgs scalar has fermionic superpartner(higgsino), it gives rise to anomaly. To can-

cel it, we should have higgsino‘s’ in vector-like pair under the SM gauge group.

SU(2) doublets Hu = (H+
u ,H0

u ) and Hd = (H0
d ,H

−
d ) have U(1)Y quantum number

1/2 and −1/2, respectively so their superpartners(higgsinos) cancel anomalies of

SU(2)L and U(1)Y .

Supersymmetric extension of the SM breaks some ‘accidental’ symmetries

of the SM. In the SM, taking renormalizable terms into account only, baryon and

lepton numbers are conserved. That means, we can assign quantum numbers for

global U(1) symmetries in such a way that

1. quarks have 1/3 and leptons have 0 (baryon number) and

2. quarks have 0 and leptons have 1 (lepton number).

More precisely, the SM Lagrangian is written by hand in this way to describe the

Nature. Such symmetries are broken when nonrenormalizable terms are included.

For example, seesaw mechanism introduces (1/M)(lHu)
T (lHu) and it breaks the

lepton number. On the other hand, MSSM breaks these two symmetries even in the

holomorphic renormalizable superpotential:

W ⊃ αi jkQiL jdc
k +βi jkLiL jec

k + γiLiHu +δi jkdc
i dc

j u
c
k. (4.2)
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This can be dangerous as it predicts the proton decay, which has not been

observed yet. For example, from the s−channel process dRuR → b̃(∗)R → lqL, the

proton can decay into eπ̄, µK̄, or νeπ+, νµK+, etc. One way to forbid this is impos-

ing R-parity, giving the SM particle even and sparticles odd under it.

4.2.2 Higgs sector

The superpotential for the MSSM is given by

W =−µHu ·Hd −Y l
i jHd ·LiEc

j −Y d
i j Hd ·QiDc

j −Y u
i j Hu ·QiUc

j (4.3)

where A ·B= εabAaBb, a,b are indices for SU(2)L doublet. From this, F-term contri-

bution to the potential is given by VF =
∑

i |−∂W/∂Φ†
i |2 where Φi represents chiral

superfields in W . On the other hand, integrating out auxiliary D-terms for SU(2)L

and U(1)Y gauge superfields, we obtain D⃗H =−g2H†
i

σ⃗
2 Hi and DY

H =−gY H†
i Y Hi so

the supersymmetric Higgs potential is given by

VF +VD = |µ|2(|Hu|2 + |Hd |2)+
1
8
(g2

Y +g2
2)(|Hu|2 −|Hd |2)2 +

g2
2

2
|H†

u Hd |2 (4.4)

Finally, the soft SUSY breaking effects comes in as

Vsoft = m2
u|Hu|2 +m2

d |Hd |2 − (BµHu ·Hd +h.c.) (4.5)

The Higgs VEVs,

⟨Hu⟩=
1√
2

 0

vu

 , ⟨Hd⟩=
1√
2

 vd

0

 (4.6)

where vu,d are taken to be real numbers, breaks electroweak symmetry. To parame-

terize these Higgs VEVs, we use v = (v2
u+v2

d)
1/2 and tanβ = vu/vd as independent
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parameters. Note that v can replace the Higgs VEV in the SM with one Higgs dou-

blet. At the minimum of the Higgs potential,

Vmin =
1
32

(g2
Y +g2

2)(v
2
u − v2

d)
2 +

1
2

m2
uv2

u +
1
2

m2
dv2

d −Bµvuvd (4.7)

and conditions ∂Vmin/∂vu = ∂Vmin/∂vd = 0 give conditions for the electroweak

symmetry breaking at the Higgs VEVs:

−2Bµ =−(m2
u −m2

d) tan2β+M2
Z sin2β

|µ|2 = 1
cos2β

(m2
u sin2 β−m2

d cos2 β)− 1
2

M2
Z .

(4.8)

The charged Higgses, H+
u and H−

d form 2×2 matrix,

 m2
d −

1
8 (g

2
Y +g2

2)(v
2
u − v2

d)+
1
4 g2

2v2
u Bµ+ 1

4 g2
2vuvd

Bµ+ 1
4 g2

2vuvd m2
u +

1
8 (g

2
Y +g2

2)(v
2
u − v2

d)+
1
4 g2

2v2
d


=
( Bµ

vuvd
+

1
4

g2
2

) v2
u vuvd

vuvd v2
d


(4.9)

where the conditions (4.8) are used. One eigenvalue is zero, corresponding to the

Goldstone mode sinβH±
u −cosβH±

d and it is absorbed by W boson. Another eigen-

value is given by ( Bµ
vuvd

+ 1
4 g2

2)v, corresponding to the charged Higgs mode H± =

cosβH±
u + sinβH±

d

The neutral Higgses have real(CP even) and imaginary(CP odd) parts, H0
u,d =

1√
2
(Reh0

u,d + iImh0
u,d). CP even scalar mass matrix is given by

 m2
d −

1
8 (g

2
Y +g2

2)(v
2
u − v2

d) Bµ

Bµ m2
u +

1
8 (g

2
Y +g2

2)(v
2
u − v2

d)

= Bµ

 tanβ 1

1 cotβ


(4.10)
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One eigenvalue is zero for the Goldstone mode sinβImH0
u − cosβImH0

d which is

absorbed by Z boson. Another mode A = cosβImH0
u + sinβImH0

d has eigenvalue

m2
A = 2Bµ/sin2β. Note that mA becomes zero for vanishing Bµ. In fact, when µ = 0

and Bµ = 0, global U(1) symmetry under which Hu and Hd have the same charge is

recovered. As Higgses have VEVs, this global symmetry is spontaneously broken

so massless zero mode should appear. This is nothing more than PQWW axion but

it cannot be the QCD axion as it is ruled out experimentally. Its quantum correction

has very simplified form. Since the Goldstone mode should be massless even in the

presence of quantum correction, the basic structure of the matrix proportional to

 tanβ 1

1 cotβ

 (4.11)

is maintained. So, quantum correction just changes overall factor Bµ to Bµ + ∆

and ∆ is proportional to µ and At . Proportionality in µ can be easily understood

because when µ = Bµ = 0 PQWW type symmetry is enhanced so there should be

massless mode. Moreover, it does not have a top loop correction since the amplitude

is proportional to

Tr
[
γ5(γ · p+m)γ5(γ · p+m)

]
= Tr

[
(−γ · p+m)(γ · p+m)

]
= 0.

Stop correction comes from the (left squark)-(right squark) mixing and it is propor-

tional to −mt(At +µcotβ). So in the absence of such mixing, i.e. At = µ = 0, there

is no quantum correction for CP odd Higgs mass.

Finally, CP even Higgs mass matrix is given by
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 m2
d −

1
8 (g

2
Y +g2

2)(v
2
u −3v2

d) −Bµ− 1
4 (g

2
Y +g2

2)vuvd

−Bµ− 1
4 (g

2
Y +g2

2)vuvd m2
u +

1
8 (g

2
Y +g2

2)(3v2
u − v2

d)


=

 m2
A sin2 β+M2

Z cos2 β −(m2
A +M2

Z)sinβcosβ

−(m2
A +M2

Z)sinβcosβ m2
A cos2 β+M2

Z sin2 β


(4.12)

The eigenvalues are

m2
H,h =

1
2
[m2

A +M2
Z ± [(m2

A +M2
Z)

2 −4M2
Zm2

A cos2 2β]1/2] (4.13)

where

H = (ReH0
u − vu)sinα+(ReH0

d − vd)cosα

h = (ReH0
u − vu)cosα− (ReH0

d − vd)sinα,
(4.14)

tan2α = tan2β(m2
A +M2

Z)/(m
2
A −M2

Z).

Consider the lightest CP even Higgs mass, mh. It is smaller than min(mA,MZ)|cos2β|<

min(mA,MZ). In the decoupling limit, i.e. mA → ∞, heavy CP even Higgs H is also

decoupled from mH > max(mA,MZ) > mA and light CP even Higgs mass satisfies

mh < MZ at the tree level. To raise mh beyond the MZ , large quantum correction

should be required. It is known that

m2
h ≤ M2

Z +
3GF√

2π2 sin2 β

[
m4

t (
√

mtMs) ln
(M2

s

m2
t

)
+
( At

Ms

)2
m4

t (Ms)(1−
1
12

( At

Ms

)2
)
]

(4.15)

where Ms =
√mt̃1 mt̃2 is a typical stop mass scale. Taking Mt = 1TeV, mh < 132GeV.
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4.2.3 sparticle masses

For later discussions, we list here various sparticle masses. Squrak and slep-

ton mass matrices come from F- and D- term superpotential and the soft mass

Mq̃,Mũ,Md̃ , Ml̃ ,Mẽ and Mν̃:

m2
ũ =

(
MuM†

u +M2
q̃ +M2

Z (
1
2 − 2

3 sin2 θW )cos2βI −Mu(Au∗+µcotβ)

−(AuT +µ∗ cotβ)M†
u M†

u Mu +M2
ũ +M2

Z
2
3 sin2 θW cos2βI

)
, (4.16)

m2
d̃ =

(
Md M†

d +M2
q̃ +M2

Z (−
1
2 + 1

3 sin2 θW )cos2βI −Md (Ad∗+µ tanβ)

−(AdT +µ∗ tanβ)M†
d M†

d Md +M2
d̃
−M2

Z
1
3 sin2 θW cos2βI

)
, (4.17)

m2
l̃ =

(
Ml M

†
l +M2

l̃
+M2

Z (−
1
2 + sin2 θW )cos2βI −Ml (Al∗+µ tanβ)

−(AdT +µ∗ tanβ)M†
l M†

l Ml +M2
l̃
−M2

Z sin2 θW cos2βI

)
, (4.18)

m2
ν̃ =

(
M2

l̃
+M2

Z
1
2 cos2βI 0

0 0

)
. (4.19)

Here triple scalar coupling (A term) is defined by

Hd · q̃Li(Y
dAd)i jd̃

†
R j + q̃Li ·Hu(Y

uAu)i jũ
†
R j +Hd · l̃Li(Y

eAe)i j ẽ
†
R j +h.c. (4.20)

Neutralino mass matrix, mass matrix for neutral gauginos(Photino and Zino)

and neutral Higgsinos in the basis of (λY ,λ3, h̃d , h̃u) is given by


M1 0 −MZcβsW MZsβsW

0 M2 MZcβcW −MZsβcW

−MZcβsW MZcβcW 0 −µ

MZsβsW −MZsβcW −µ 0


. (4.21)

Finally, chargino mass matrix in the basis of 1√
2
(λ1 − iλ2, h̃+) (Wino and charged
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Higgsino basis),

 M2
√

2MW sinβ
√

2MW sinβ µ

 . (4.22)

This is diagonalized as U∗MV † where

U = Ou,

V = Ov (when detM > 0), σ3Ov (when detM < 0)

Ov,u =

 cosθv,u sinθv,u

−sinθv,u cosθv,u


tan2θu,v =

2
√

2MW (µsinβ+M2 cosβ)
M2

2 −µ2 ∓2M2
W cos2β

. (4.23)

4.3 Higgs sector in the next minimal supersym-
metric Standard Model and Peccei-Quinn
symmetry

4.3.1 µ term from Peccei-Quinn symmetry

In the MSSM summarized in the previous section, µ in the Higgs sector su-

perpotential can be problematic. It is the only mass scale in the superpotential.

All other dimensional parameters(soft masses, A term and Bµ) come from SUSY

breaking so related to the SUSY breaking scale. µ should be in the electroweak

scale for electroweak symmetry breaking but MSSM itself does not give natural

explanation why µ is at this scale. This has been called the µ problem[56].

In fact, this is early version of the gauge hierarchy problem. The natural Higgs

mass without fine tuning would be at the very high energy scale such as GUT or
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Hu Hd S1 S2 Z1 Z2 X X ′ X
QPQ +1 +1 −1 +1 0 0 −2 −2 +2

R +1 +1 0 0 2 2 0 0 2

표 2: The PQ and R charges of Hu,d ,S1,2Z1,2,X and X .

Planck scale. The Higgs mass is proportional to the Higgs VEV so with order one

quartic self coupling, the natural scale for electroweak symmetry breaking would

be such high scale, either[57]. Once typical scale of the Higgs characterized by µ is

fixed at the electroweak scale, SUSY can explain how it is stabilized at this scale.

Quantum correction can be small enough, and SUSY breaking parameters adjusted

to be around electroweak scale would make the Higgs to break electroweak gauge

group at this scale. But SUSY does not explain why µ should be at the electroweak

scale.

It may be wise to relate the SUSY breaking scale and µ term since they are

the similar scales[58]. Another way might be generate this scale dynamically. It is

very similar to the seesaw mechanism. If we have two scales, say, intermediate and

high scale, low scale can be generated through (intermediate scale)2/(high scale),

which indicates symmetry breaking effect whose scale would be one of two scales.

High scale can be GUT or Planck scale. On the other hand, Peccei-Quinn symmetry

breaking can be taken as the intermediate scale, 109GeV < Fa < 1012GeV. Then

electroweak scale about 100GeV can be easily obtained from, for example, µ term

can be of order F2
a /MP where Fa = 1010GeV and MP ∼ 1018GeV and interpreted as

breaking effect of the Peccei-Quinn symmetry. To see it from model[59], consider

the superpotential with the PQ symmetry and the U(1)R symmetry shown in Table
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2,

W =−HuHdX +−ξHuHdX ′+mXX +m′X ′X

−ηXS2
1 +Z1(S1S2 −F2

1 )+Z2(S1S2 −F2
2 ).

(4.24)

Here, F1,2 are of order of the PQ scale. PQ symmetry and SUSY may be bro-

ken by such a number of terms. One linear combination of S1 and S2 is a Goldstone

mode, the axion superfield A. In the nonlinear representation, axion superfield A is

defined by S1 = φe−A and S2 = φeA. m,m′ = O(MP)∼ O(MGUT). These two scales

combine to make electroweak scale. The potential is

V =VF +VD +Vsoft. (4.25)

The F-term potential is given by

VF =
∣∣∣X +ξX ′

∣∣∣2(|Hu|2 + |Hd |2)+ |−HuHd +mX |2 + |−ξHuHd +m′X |2

+ |m̃X̃ −ηS2
1|2 + |Z1 +Z2|2|S1|2 +

∣∣∣−2ηXS1 +(Z1 +Z2)S2

∣∣∣2
+ |S1S2 −F2

1 |2 + |S1S2 −F2
2 |2,

(4.26)

where

X̃ = cosαX + sinαX ′,

Xe =−sinαX + cosαX ′,

cosα =
m
m̃
, sinα =

m′

m̃
, m̃ =

√
m2 +m′2.

(4.27)

Note here that X̃ and X have the mass of order m, m′ but Xe can have the mass of

the order of electroweak scale. Therefore, Xe can survive at the electroweak scale

and participate in the electroweak symmetry breaking.

62



The D-term potential is given by

VD =
1
8
(g2

Y +g2
2)(|Hu|2 −|Hd |2)2 +

g2
2

2
|H†

u Hd |2 + · · · , (4.28)

and the soft term is

Vsoft =−m2
u|Hu|2 +m2

d |Hd |2 +M2
1 |Z1|2 +M2

2 |Z2|2

+m2
1|X |2 +m2

2|X ′|2 +m2
3|X |2 +µ2

1|S1|2 +µ2
2|S2|2.

(4.29)

The important terms determining the vacuum expectation values of S1,S2 and

X̃ are

V ′ = |S1S2 −F2
1 |2 + |S1S2 −F2

2 |2 + |m̃X̃ −ηS2
1|2. (4.30)

They are stabilized at s1,2 = |S1,2| and x̃ = |X̃ | satisfying

s1 =

√
mx̃
η

,
s2

s1
=

ηF2

2mx̃
(4.31)

where F2 = F2
1 +F2

2 . Requiring s1 ∼ s2 ∼ F = Fa, x̃ = O(TeV).

Below the scale m, m′,heavy fields X̃ , X are integrated out, and the superpo-

tential becomes

W =− S2
1

MP
HuHd − fhHuHdXe

+Z1(S1S2 −F2
1 )+Z2(S1S2 −F2

2 )

(4.32)

where

fh =−sinα+ξcosα. (4.33)
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As the PQ symmetry is broken we have the Higgs superpotential

Wew =−µHuHd − fhHuHdXe (4.34)

where µ = s2
1/m. Therefore, there are two ways to generate µ term. First, in the

similar way to the seesaw mechanism, PQ symmetry breaking scale Fa can make

electroweak scale as F2
a /MP. Second, surviving field Xe has a VEV around the elec-

troweak scale. The latter case is what frequently used in the Next to the MSSM(NMSSM)

model[60]. The field Xe can have the VEV around the electroweak scale with the

help of soft term m2
e |Xe|2 and mixing with the Higgs. Xe potential can be stabilized

when coefficient of quadratic term ( |Xe|2 ) from the soft term and supersymmetric

potential is positive. One may consider quartic term |Xe|4 for stabilization of neg-

ative quadratic term. To achieve this, NMSSM models usually impose S3 discrete

symmetry such that the superpotential is given by

−XeHu ·Hd +
1
3

κX3
e . (4.35)

Then VF ⊃ |∂W/∂Xe|2 has the quartic self coupling |κ|2|Xe|4. On the other hand,

in the presence of gauge U(1)′ symmetry where Xe is charged under it, D-term

(g̃2/2)|X†
e Xe|2 can be made. This quartic term should be treated carefully. When

the U(1)′ gauge symmetry is broken at high energy scale, e.g. GUT scale or PQ

scale, whole D term potential is of the form

1
2

D2 =
g′2

2
(
Y ′

e |Xe|2 +Y ′
x |X |2 + · · ·

)2

=
g′2

2
(
Y ′

e |Xe|2 +Y ′
x |VGUT +ρx|2 + · · ·

)2

=
g′2

2
(
Y ′2

e |Xe|4 +Y ′
eY ′

xV 2
GUT |Xe|2 +Y ′2

x |VGUT |4 · · ·
)

(4.36)

so it gives rise to large quadratic term for |Xe| at the tree level, and fine tuning
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problem arises again. Therefore, such term should not appear at the electroweak

scale[61]. If U(1)′ for quartic term exists, it should be broken at the electroweak

scale[62] but it is not our case.

Therefore, we can consider the following potential for Higgs and Xe:

V = |µ+ fhXe|2(|Hu|2 + |Hd |2)+ f 2
h |HuHd |2

−m2
u|Hu|2 +m2

d |Hd |2 − (BµHuHd +h.c.)

+m2
e |Xe|2 − (AXeHuHd +h.c.)

+
1
8
(g2

Y +g2
2)(|Hu|2 −|Hd |2)2 +

g2
2

2
|H†

u Hd |2.

(4.37)

In the same way as MSSM, we can decompose neutral fields into real and complex

components, ϕ = 1√
2
(ϕr + iϕi) where ϕ = H0

u ,H
0
d ,Xe. At the vacuum, they take

VEVs vu,vd ,x, respectively, and

V min =
1
2
[(µ+

fh√
2

x)2 −m2
u]v

2
u +

1
2
[(µ+

fh√
2

x)2 +m2
d ]v

2
d

+
f 2
h
4

v2
uv2

d +
1
32

(g2
Y +g2

2)(v
2
u − v2

d)
2

−Bµvuvd −
A√
2

xvuvd +
1
2

m2
ex2.

(4.38)

From ∂V min/∂hu = ∂V min/∂hd = ∂V min/∂x = 0, we have three conditions:

(µ+
fh√
2

x)2 −m2
u = (

A√
2

x+Bµ)
vd

vu
− 1

8
(g2

Y +g2
2)(v

2
u − v2

d)−
f 2
h
2

v2
d

(µ+
fh√
2

x)2 +m2
u = (

A√
2

x+Bµ)
vu

vd
+

1
8
(g2

Y +g2
2)(v

2
u − v2

d)−
f 2
h
2

v2
u

x(
f 2
h
2
(v2

u + v2
d)+m2

e) =
A√
2

vuvd −
fh√
2

µ(v2
u + v2

d)

(4.39)

4.3.2 CP even Higgs mass

From m2
i j = ⟨∂V/∂ϕi∂ϕ j⟩, we can obtain mass matrices. For CP even scalars,

in the basis of (hu,hd ,Xe), mass matrix is given by
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그림 9: CP even Higgs masses.

M2
H =



m2
0 cos2 β

+M2
Z sin2 β

,
1
2 sin2β( f 2

h v2

−m2
0 −M2

Z)
,

m2
c sinβ

−m′2
c cosβ

1
2 sin2β( f 2

h v2

−m2
0 −M2

Z)
,

m2
0 sin2 β

+M2
Z cos2 β

,
m2

c cosβ

−m′2
c sinβ

m2
c sinβ

−m′2
c cosβ

,
m2

c cosβ

−m′2
c sinβ

, M2
E


(4.40)

where M2
O = 1√

2x
(Avuvd − µ fh(v2

u + v2
d)), M2

E = M2
O, m2

c = fh(
√

2µ+ fhx)v, m′2
c =

Av/
√

2, and m2
0 = (

√
2Ax+2Bµ)/sin2β. Note that originally (11) element is (µ+

( fh/
√

2)x)2−m2
u+(1/8)(g2

Y +g2
2)(3v2

u−v2
d)+( f 2

h /2)v2
d , (22) element is (µ+( fh/

√
2)x)2+

m2
d +(1/8)(g2

Y +g2
2)(−v2

u+3v2
d)+( f 2

h /2)v2
u and (33) element is (1/2) f 2

h (v
2
u+v2

d)−

m2
e but equivalent to those shown in the matrix with the help of Eq. (4.39).

The smallest eigenvalue, which we will identify with the Higgs, is smaller

than the smallest eigenvalue of the top 2×2 submatrix[63]. Therefore,

2m02
h ≤ (m2

0 +M2
Z)− [(m2

0 +M2
Z)

2 −4m2
0M2

Z cos2 2β+ f 2
h v2( f 2

h v2 −2m2
0 −2M2

Z)sin2 2β]1/2

(4.41)
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Taking quantum correction from top quark and At into account, the mass eigen-

values become larger. Fig. 9 shows the Higgs boson in the GeV units. We set

Ms = 1TeV, At = 800GeV, B = 500GeV, µ = A/ fh = 200GeV. Left panel is for

tanβ = 3, right panel is for tanβ = 5.

Typically, for the large Higgs mass, we need large coupling | fh|. However,

too large | fh| makes perturbativity be broken down. The relevant renormalization

group equations of couplings are given by

16π2 dg2
i

dt
= big2

i

16π2 dy2
t

dt
= y2

t [ f
2
h +6y2

t −
16
3

g2
3 −3g2

2 −
13
15

g2
1]

16π2 d f 2
h

dt
= f 2

h [4 f 2
h +3y2

t −3g2
2 −

3
5

g2
1]

(4.42)

where gi are gauge couplings(g1 =
√

5/3g′) so that b1 = 33/5,b2 = 1,b3 = −3

and t = ln(µ2/M2
GUT). We see that for perturbativity up to GUT scale, say, fh(µ =

MGUT) < 2π, low energy fh should satisfy fh(µ = 100GeV) < 0.7. When fh ≃ 2,

perturbativity bound is kept only below 10TeV[64]. In our case, low energy fields

and couplings come from physics of PQ symmetry breaking. Then we may require

that perturbativity holds up to PQ scale, 109 ∼ 1012GeV, and fh(µ = 100GeV) <
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그림 10: The lightest eigenvalue versus β. x axis extends from θ = 0 to π/2.
The unit of y axis is GeV. fh is fixed by −0.6, x = 320GeV, Ms = 1TeV,
At =GeV, B = 500GeV, µ = A/ fh = 200GeV.
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0.8 ∼ 0.9. Fig. 9 shows that the for given parameters, especially at tanβ = 3 ∼ 5,

the 125∼130GeV Higgs is almostly on the perturbativity bound.

The 3×3 CP even scalar mass matrix has complicated dependence on various

parameters. tanβ dependence on the tree level mass is shown in the left of Fig. 10.

However, quantum correction

3GF√
2π2 sin2 β

[
m4

t ln
(M2

s

m2
t

)
+
( At

Ms

)2
m2

t (1−
1
12

( At

Ms

)2
)
]
, (4.43)

where Ms =
√mt̃1 mt̃2 , gives strong dependence on tanβ at its small values. As

shown in Fig. 10, the quantum corrected Higgs mass grows as tanβ decreases.

Now, consider fh and x dependence of the mass matrix. To begin with, con-

sider 2×2 matrix,

 a b

b c

 . (4.44)

The smallest eigenvalue is given by

1
2

[
(a+ c)−

√
(a+ c)2 −4(ac−b2)

]
. (4.45)

Note that off diagonal element b reduces the eigenvalue. In the limit a,b ≪ c,

eigenvalue is approximately a− (b2/c). This simple fact is useful to understand

the Higgs mass in the model.

The lightest mass of CP even mass matrix is, mainly the Higgs-like, not

Xe−like. As an illustration, consider eigenvectors of the lightest CP even mass ma-

trix in the basis of (Hu,Hd ,Xe) in the case of tanβ = 3 in Fig. 9 (Other parameters
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그림 11: lightest squared mass eigenvaue(GeV2 unit) of 2× 2 submatrix
composed of (11), (13), (31), (33) elements.

are the same as those for Fig. 9). For fh =−0.6,

x = 300GeV : (0.773,0.209,0.599)

x = 250GeV : (0.770,0.211,0.602)

x = 200GeV : (0.781,0.219,0.584)

x = 150GeV : (0.803,0.231,0.549)

x = 100GeV : (0.840,0.248,0.482)

x = 50GeV : (0.901,0.278,0.332)

x = 10GeV : (0.948,0.307,0.008)

(4.46)

From this, we notice that the lightest mass in the CP even mass matrix is

mostly Hu−like. Moreover, since (33) element is proportional to 1/x, for large x

(33) element is smaller than (22) element. So, in this region, Xe is more mixed than

Hd in the lightest scalar, and (13) element plays crucial role in reducing values of

the lightest scalar.

Fig. 11 shows lightest squared mass eigenvaue(GeV2 unit) of 2×2 submatrix

composed of (11), (13), (31), (33) elements. Such pattern can be explained as fol-
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그림 12: Reduction of the Higgs mass from mixing with Xe.
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그림 13: lightest squared mass eigenvaue(GeV2 unit) of 2× 2 submatrix
composed of (11), (12), (21), (22) elements.

lows. The left of Fig. 12 shows (11) element mass, [(
√

2Ax+2Bµ)cos2 β/sin2β+

M2
Z sin2 β]1/2 in GeV unit. A is proportional to fh. The right of Fig. 12 shows (13)

element in GeV2 unit. Nonzero value of it reduces the lightest eigenvalue. In par-

ticular, increasing magnitude of (13) element for small x pulls isomass line to the

right where large (11) element is reduced by large (13) element.

On the other hand, for very small x< 80GeV, (33) element becomes very large

so decoupled from the Higgs. The lightest scalar mass is mainly determined by

mixing between Hu and Hd , which is shown in Fig. 13. Therefore, main contribution
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to the lightest scalar mass eigenvalue comes from 2× 2 submatrix composed of

(11), (12), (21), (22) elements, and the eigenvalue of this submatrix is given by

1
2

(
(m2

0 +M2
Z)− (m2

0 +M2
Z)
[
1−4

m2
0M2

Z cos2 2β
(m2

0 +M2
Z)

2
+

f 2
h v2( f 2

h v2 −2m2
0 −2M2

Z)sin2 2β
(m2

0 +M2
Z)

2

]1/2)
(4.47)

For example, consider the case of x = 0.1GeV and fh =−0.6. The second term in

[ ] is about 0.06 and the third term in [ ] is about 0.04. So, the lightest mass squared

value is approximately given by (1/40)(m2
0 +M2

Z). In our parameter choice, m0 ≃

577GeV. Then the lightest scalar mass is estimated by 92GeV. Including sublead-

ing effects, this can be changed, and numerical value of whole 3× 3 mass matrix

gives 96GeV. Quantum correction from mt̃ and At can increase the Higgs mass to

125GeV.

In the region where x very close to zero, Xe does not provide VEV, but pro-

vides the Higgs quartic term fh|HuHd |2. Effecitve µ term, µeff = µ + ( fh/
√

2)x

comes out of µ = S2
1/MP. This region allows sizable µeff. (Fig. 14)
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그림 14: 125GeV Higgs line compared to contours for µeff.
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그림 15: Lightest CP odd scalar aX mass.

4.3.3 CP odd Higgs mass

The CP odd scalar mass matrix is given by

M2
P =


( A√

2
x+Bµ) vd

vu
, ( A√

2
x+Bµ), A√

2
vd

( A√
2
x+Bµ), ( A√

2
x+Bµ) vu

vd
, A√

2
vu

A√
2
vd ,

A√
2
vu, M2

O

 (4.48)

Originally, (11) element is given by (µ+( fh/
√

2)x)2 −m2
u +(1/8)(g2

Y + g2
2)(v

2
u −

v2
d) + ( f 2

h /2)v2
d , (22) element is (µ + ( fh/

√
2)x)2 + m2

d + (1/8)(g2
Y + g2

2)(−v2
u +

v2
d)+ ( f 2

h /2)v2
u and (33) element is (1/2) f 2

h (v
2
u + v2

d)−m2
e but equivalent to what

is shown in the matrix with the help of Eq. (4.39). One eigenvalue in the direc-

tion of (−sinβ,cosβ,0) is zero, longitudinal component of Z boson. Among two

remaining eigenvalues, the smaller one is

2m2
aX

= (m2
0 +M2

O)−
[
(m2

0 +M2
O)

2 − 4µM̃3

sin2β

]1/2
(4.49)

where M̃3 = 2BM2
O − fhA(v2

u + v2
d). Consider the lightest eigenvalue direction in
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그림 16: The CP odd scalar aX squared mass versus β. x axis extends from
β = 0 to π/2. The unit of y axis is GeV2.

large tanβ limit. The mass matrix is of the form


xa x ya

x x
a y

ya y z

 (4.50)

where a = cotβ, and we can expand eigenvalue in terms of a. For large tanβ, vu >

vd so electroweak symmetry is broken mainly in the direction of Hu so Z boson

longitudinal component is mainly CP odd part of Hu ((1,0,0) direction). Then, the

lightest eigenvalue direction is (0,e2,e3) where

tanγ ≡ e2

e3

=
(1+a2)x2 +2a2y2 − x[az+

√
(1+a2)x2 −2a(1+a2)xz+a2(4(1+a2)y2 + z2)]

y
[
(1+a2)x+az−

√
(1+a2)x2 −2a(1+a2)xz+a2(4(1+a2)y2 + z2)

]
≃−a2 y

x
(4.51)

for small a. In our case,

tanγ =−
A√
2
v

A√
2
x+Bµ

cos2 β
sinβ

(4.52)
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그림 17: aX → γγ decay through Higgsino loop.

which is very small for large tanβ. Therefore, the lightest eigenvalue is Xe-like,

not the Higgs like. Actually, if µ = 0, the Lagrangian recovers PQWW-type PQ

symmetry (the remnant of the PQ symmetry for the QCD axion) so Goldstone

mode should appear when Xe and the Higgses develop VEVs.

The lightest mass, say, mass of aX is shown in Fig. 15 This is for tanβ = 3,

A = fh ×200GeV, B = 500GeV, and µ = 150,200GeV, respectively. The mass maX

has β dependence as shown in Fig. 16 which is drawn for x = 160GeV, fh =−0.6

and other parameters except tanβ is the same as before.

In the case of extreme Xe−like aX , it decays into γγ through the triangle dia-

gram shown in Fig. 17. Fermion in internal loop is the Higgsinos. As low energy

PQWW-type PQ symmetry, which will be called ‘Higgsino symmetry’ is mainly

broken by Xe VEV, we can simply estimate such coupling as

LaX γγ =
αem

4π
aX

x
FemµνF̃µν

em (4.53)

and similar decays into ZZ or W+W− can be considered either. In the LEP, in

may be produced through, for example, the s−channel process like e+(p′)e−(p)→

γ(∗)(q)→ γ(k)aX (k′) whose amplitude is given by

M = v̄(p′)(−ieγµ)u(p)
−i
q2

(αem

2π

)1
x

εµνρσqνkσε(k)ρ (4.54)
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그림 18: aX production from WW fusion.

and then the cross section is given by

σ(s) =
α3

em

768π
1
x2

(
1−

m2
aX

2s

)(
1−

m2
aX

3s
+

m4
aX

12s2

)
. (4.55)

To count how many this aX production events can take place, we can sum over

(integrated luminosity at s)×(cross section at s) with respect to s>maX . We assume

maX = 125GeV and integrated luminosity in LEP II experiment is provided by [65].

Then the number of events are estimated as ∼ 5×10−3. In hadron collider, it may

be produced from electroweak gauge boson fusion with the Higgsino triangle(Fig.

18), which has much smaller probability than the CP even Higgs produced from

the gluon-gluon fusion, since electroweak coupling is smaller than the strong cou-

pling, so production rate is suppressed about ∼ α4
2/α2

c ∼ 0.03364/0.1182 ≃ 10−4.

Actually, scalar production by the vector boson fusion accompanies dijets in for-

ward direction, so it can be distinguished from scalar production from gluon-gluon

fusion. As observed events at the LHC do not have forward dijets, 125GeV sig-

nal mainly come from gluon-gluon fusion. Therefore, pseudoscalar cannot explain

125GeV signal[61].

Of course, aX also contains the Higgs components, mainly from Hd for large
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tanβ, then it may decay into bb̄ pair. The ratio of BRs to aX → γγ and to ax → bb̄

in our example is given by

R =
α2

emm3
aX

64π2x2
8πM2

W

3C2m2
bmaX

=
α2

emm2
aX

24πx2
M2

W

C2m2
b
, (4.56)

where C = g2 tanβsinγ in a large tanβ limit, and 1
3 is multiplied for three colors

of b. R of Eq. (4.56) is about (maX /67Cx)2. In a large tanβ and a small µ lim-

its, C ≈ −g2vcosβ/x which is very small. Therefore, aX almost decays into bb̄ is

suppressed.

Moreover, the absence of quartic term, |Xe|4 makes the Xe-like neutral fermion,

say, X̃e very light. Then, tree level decay aX → X̃eX̃e would be a dominant decay

mode of aX . Since aX decay is mainly invisible, we do not have much chance to

detect it.

4.4 Effective supersymmetry from flavor non-
universal U(1)′ mediation

If the Higgs is a fundamental scalar, we encounter the gauge hierarchy prob-

lem. As described in Sec. 3.2, it arises from quadratic divergence in the Higgs mass

correction and such quadratic divergence comes from fermion loop. However, since

Yukawa couplings are very small except top quark Yukawa coupling, contributions

from all quarks and leptons but top quark arenegligibly small. For this reason, if

we want to construct minimal model for solving hierarchy problem, it would be

sufficient to search for top-like contribution whose coupling to the Higgs is com-

parable with that of top quark so that it can reduce quadratic divergence against the

top quark contribution. Then one may ask what makes only top-like contribution

resides in sub TeV region whereas other new physics are at very heavy scale. To

answer to this question, we have to introduce flavor dependent new physics.
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In this section, we consider SUSY as a candidate of new physics as a solution

of hierarchy problem. As an application of flavor dependent symmetry to SUSY, we

consider the effective SUSY, in which all squarks but stop mass are heavy enough

so that they are out of reach of the LHC searches.

4.4.1 Supersymmetry breaking mediation mechanism

SUSY should be broken since sparticles with the same mass as quarks, lep-

tons, or gauge bosons have not been found yet. It can be broken spontaneously

when potential has nonzero vacuum value. SUSY algebra [QA, Q̄Ḃ]+ = 2σµ
AḂPµ or,

equivalently, Pµ = (1/4)σ̄ḂA
µ [QA, Q̄Ḃ]+ implies that H = P0 = (1/4)[Q1, Q̄1̇]+ +

(1/4)[Q2, Q̄2̇]+. Then, if ⟨VAC|H|VAC⟩ ̸= 0, QA|VAC⟩ is in general nonzero so

vacuum is not invariant under the SUSY transformation: SUSY is spontaneously

broken. However, SUSY is not likely to be broken within the MSSM sector. To see

this consider the structure of the mass matrices of fermion and boson in the broken

SUSY. Gauge boson obtain the mass via the Higgs mechanism,

(m2
V )

i
j = Da

jD
bi +DaiDb

j (4.57)

For scalars, the potential is given by

V = FiF
†
i +

1
2

DaDa

Fi =−∂W †

∂ϕ†
i

, Da =−ηa −gaϕ†
i (T

aϕ)i.
(4.58)

The scalar mass is given by ⟨∂V/∂Φi∂Φ j⟩ where Φ = ϕ,ϕ†, so in the basis of

(ϕ,ϕ†),

 W †ikWk j +DaiDa
j +Dai

j Da W †i jkWk +DaiDa j

Wi jkW †k +Da
i Da

j WikW †k j +Da
i Da j +Da j

i Da

 . (4.59)
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On the other hand, fermion and gaugino masses come from

−
√

2ga(T λ)aψi⟨ϕi⟩−
1
2

ψiψ jWi j +h.c. (4.60)

Then, the mass matrix in the (λ,ψ) basis is given by

 Wi j −
√

2Da
i

√
D

a
j 0

 (4.61)

and the supertrace is given by

sTrm2 =
∑

J

(−1)2J(2J+1)m2
J

= Trm2
S −Tr(m†

F mF +mF m†
F)+3m2

V =−2Tr(T aDa).

(4.62)

Let us consider the mass squared matrices for each electromagnetic charge

(2/3, −1/3, −1 and 0) separately. Since SU(3)c and U(1)em should not be broken,

only color and electromagnetic neutral D terms may be contribute to the SUSY

breaking: D0, D term for U(1)Y and D3, that for T3 component of SU(2)L. Then we

have

sTrM2
l = g2D3 −gY D0

sTrM2
ν =−g2D3 +gY D0

sTrM2
u =−g2D3 +gY D0

sTrM2
d = g2D3 −gY D0

(4.63)

which implies that sTrM2
e +sTrM2

ν = sTrM2
u +sTrM2

d = 0 and there should be some

sfermions lighter than the fermion[66]. This is ruled out by experiment.

In this regard, SUSY breaking sector need to be secluded from the MSSM

sector. By secluded, we mean it should not affect the phenomenology of the SM (or
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MSSM) without SUSY breaking. So we call it ‘hidden sector’. Even hidden and

the MSSM (‘visible’) sector are completely separated, both are regulated by the

gravitational interaction, so SUSY breaking can be transferred to the visible sector.

This is gravity mediation. On the other hand, hidden sector can couple to the some

unknown fields charged under the SM gauge group. In this case, these fields play

the role of ‘messenger’ transferring the SUSY breaking in the hidden sector to

the visible sector. This scenario is called gauge mediation. Under the messenger

scale, at which messengers are integrated out, sparticle masses and their interaction

obtain soft SUSY breaking term. Soft terms come into the quantum correction to the

Higgs mass as M̃2 ln(Λ/M̃), instead of Λ2. It replaces the quadratic divergence with

the more ‘soft’ logarithmic divergence, and it is why such terms are called ‘soft’

breaking term. The form of soft term therefore depends on the SUSY breaking

mechanism.

4.4.2 Effective Supersymmetry

Now, consider the current experimental status. The low energy SUSY models

with two features, 1. R-parity is conserved and 2. SUSY breaking is described by

the common scale, are almostly ruled out. To maintain the motivation of low energy

SUSY as a solution of the gauge hierarchy problem, we should consider either R-

parity violation constrained by proton stability or two different soft mass scales in

the SUSY breaking. Let us focus on the latter case[67].

As mentioned previously, the third generation squarks are less constrained

and those in sub-TeV are not ruled out in experiments. Moreover, the large Yukawa

coupling of the third generation gives decisive contribution to the Higgs mass cor-

rection. So even though other squark masses are beyond the reach of the current

LHC search, the third generation can be (sub-)TeV and it still solves the hierar-

chy problem. Such idea is called effective SUSY or natural SUSY[68]. In many

models, stops are lighter than other squarks. As can be seen in the squark mass ma-
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trix, left- and right- squark mixing is proportional to the quark mass, For example,

−Mu(Au + µcotβ) for u−type squarks(ũ, c̃, t̃). For the first two generations, these

terms are very small due to the small Yukawa couplings. On the other hand, the third

generation has sizable Yukawa couplings then such large off-diagonal term makes

the lightest mass eigenvalue lighter. Moreover, the squark soft masses run in the

form of dm̃/d lnµ = (1/8π2)(Y 2(m2
h +m2

qL
+m2

qc)−g2
aM2

a) where mh is the Higgs

soft term, mu or md . Then rough estimation gives δm̃2 ∼ (Y 2/8π2) ln(µ/Λ)< 0 for

large Yukawa coupling. Therefore, the third generation squark can run to the lighter

mass scale. In this regard, light stop is favored.

More progressively, we can consider the model making the third generation

squark masses and other squark mass scales drastically different. In construction

of a model for it, flavor dependent U(1) gauge symmetry is useful. Suppose new

U(1) gauge symmetry, say, U(1)′, under which the quark superfields in the first two

generation are charged, but those in the third generation are uncharged. SUSY is

broken in the hidden sector and messenger is charged under U(1)′. Then SUSY

breaking can be transmitted to the visible sector through U(1)′ gauge interaction.

What about lepton sector? If we prefer the simplest model, we can make sleptons

heavy enough likely to the first two generation squarks. Then we don’t need to con-

cern the lepton sector any more. However, there are some motivations of consid-

ering light((sub-)TeV) slepton(s). First, one may require anomaly-free U(1)′ from

appropriate assignments of U(1)′ charges to the quark and lepton superfields. Then,

some lepton superfields can be uncharged under it and corresponding sleptons can

have (sub-)TeV mass. Second, as the quarks and the leptons are charged under

flavor dependent U(1)′, the U(1)′ charges can affect the flavor structures. For ex-

ample, we can find the origin of mixing patterns appearing in the CKM or PMNS

matrices from such U(1)′. Then there may be (sub-)TeV sleptons determined by

U(1)′ charge assignments. Third, there are some phenomena which may require

new physics at (sub-)TeV. For example, muon g−2 = 2aµ still has deviation from
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the SM prediction[23],

∆aµ = aexp
µ −aSM

µ = (255±63±49)×10−11. (4.64)

Such deviation may be due to lack of understanding on the hadron physics then it

would be explained within the SM framework. However, it can also be interpreted

as a smoking gun of new physics, such as SUSY. MSSM contribution to muon g−2

is given by[69]

aSUSY
µ

1×10−9 ≃ 1.5
( tanβ

10

)(300GeV
mν̃

)2(µM2

m2
ν̃

)
. (4.65)

If we assume that new physics contribution entirely comes from SUSY, ∆aµ can

be used to estimate the scale of sneutrinos, and even can constrain upper bound

of slepton mass as sub-TeV[70]. Of course, even though they can be motivations

of considering light sleptons, it does not mean the sleptons have to be light. One

can assign non-anomalous U(1)′ charges consistent with mixing patterns, but also

make all the sleptons heavy enough. Muon g−2 deviation can be attributed to the

QCD effects which may have not been noticed. Light sleptons are entirely optional.

However, in this thesis, we consider light sleptons(Fig. 19):

1. Many U(1)s may contribute in the mediation. Here we choose the simplest

possibility that only one U(1)′ with the superpartner Zprimino (Z′-ino) is

effective in the mediation.

2. The SUSY breaking source does not carry the weak hypercharge Y , or the

low energy SM does not result. The messenger sector at Mmess carries the Z′

charge Y ′.

3. The superpartners of the third family fermions, (t,b,τ,ντ) do not carry the

U(1)′ charge Y ′. This item realizes the effSUSY.
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그림 19: SUSY breaking mediation through U(1)′ under which the third
generation matter and the Higgses are uncharged

4. The Higgs doublets do not carry the U(1)′ charge Y ′. The SU(2)W×U(1)Y

breaking is naturally achieved by a running of Higgs boson masses.

Suppose SUSY is broken in the hidden sector with confining gauge group, for ex-

ample, SU(5)′. The messenger fields, carrying the hidden sector color such as the

SU(5)′ charge have the following (Y,Y ′;SU(5))

f (0,1;5′), f̄ (0,−1; 5̄′). (4.66)

and the third family members do not carry the Y ′ charges. In addition, Higgs

doublets also do not carry the Y ′ charges. Then, a light Higgs boson and the light

3rd family members are obtained naturally.

We may take some variations. For the lepton sector, one of the first two gen-

erations, instead of the third generation may be uncharged under this U(1)′. We

82



will see this example later to explain mixing in the lepton sector. To explain heavy,

nearly degenerate first two generation squarks, we may introduce SU(2)′ for them

and the third generation squark is singlet under it[71]. We do not consider this

case here for the following reason. Suppose we look for the origin of gauge sym-

metries from more high energy physics, for example, orbifold compactification of

superstring[72]. To eliminate tachyonic state, string theory has both bosonic and

fermionic degrees of freedom related by SUSY which is called superstring. For

unitarity, negative norm state is not allowed and this condition predicts the 10 di-

mensional spacetime. For anomaly cancelation, gauge group on superstring should

be SO(32) or E8×E8[73]. In order to obtain realistic model, we need to compactify

extra 6 dimensions, and the SM gauge group and its chiral representation should be

obtained from such compactification. However, we usually obtain more than one

SUSY (N > 1) in such compactifications. With N > 1 SUSY, fermions in chiral

or complex representation cannot be obtained. Therefore for chiral representation,

we introduce discrete symmetry on extra dimensions. By identifying points related

by such discrete group transformation, we can mode out multiple SUSY. This is

called orbifold compactification. In this process, many U(1)s come out. For exam-

ple, E8×E8 can be broken down to SU(3)c×SU(2)L×U(1)Y×U(1)3×SU(5)′×U(1)′

where primed groups come from E′
8[74]. Such U(1)s are in general flavor depen-

dent, and we may find combinations of U(1)s under which the third generation

quarks and the Higgses are not charged. For this reason, we prefer U(1)s for medi-

ator rather than other gauge groups. On the other hand, mediation of SUSY break-

ing may take place not only through U(1)′ but also through the flavor universal SM

gauge group. In this case, the third generation squark masses can be heavy enough

but still lighter than other squarks. To make third generation squark masses low

enough, SUSY breaking scale can be made lower. Consider the example where the
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Messenger

f(y,1;5′)

f̄(−y,−1;5̄′)

MSSM

u, d, e, νe

c, s, µ, νµ

t, b, τ, ντ

Hu, Hd

Hidden Sector

DSB

그림 20: SUSY breaking mediation through U(1)′ under which the third
generation matter and the Higgses are uncharged and U(1)Y .

messenger fields carry the Y charge,

f (1,1;5′), f̄ (−1,−1; 5̄′). (4.67)

Then SUSY breaking is transferred to the visible sector as follows:

1. Many U(1)s may contribute in the mediation. In addition, U(1)Y of the SM

also can be effective as a SUSY breaking mediator. These gauge bosons are

Z′ and B, and their superpartners are called Zprimino Z̃′ and Bino.

2. The SUSY breaking source does not carry the weak hypercharge Y , or the

low energy SM does not result. The messenger sector carries both the weak

hypercharge Y and the Z′ charge Y ′.

3. The superpartners of the third family fermions do not carry the Z′ charge Y ′.
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light families Y Y ′ 3rd family and Hd,u Y Y ′

q1,2
1
6

1
3 (t,b) 1

6 0

uc
1,2

−2
3

−1
3 tc −2

3 0

dc
1,2

1
3

−1
3 bc 1

3 0

l1,2 −1
2 −1 (ντ,τ) −1

2 0

ec
1,2 1 1 τc 1 0

Nc
1,2 0 1 Nc

3 0 0

Hd
−1
2 0

Hu
1
2 0

표 3: The Y ′ = B−L charges of the SM fermions, Higgs doublets and heavy
neutrinos.

This item realizes the effective SUSY .

4. Higgs doublets do not carry the Z′ charge Y ′.

5. The SU(2)W×U(1)Y breaking is done by a fine-tuning between parameters

of the Higgs boson mass matrix.

4.4.3 Soft mass terms and sparticle spectrum from fla-
vor non-universal U(1)′ mediation

In this section, we obtain soft terms from U(1)′ mediation[75]. To be specific,

we present minimal case here. For matter contents, MSSM matter fields(the quarks,

the leptons, the Higgs) and the heavy neutrinos in the seesaw mechanism are con-

sidered, and we do not introduce more SM charged matters under the messenger

scale. With these matters only, we can consider the anomaly-free U(1)′, for exam-

ple, Y ′ = B−L for the first two generations and Y ′ = 0 for the third generation as

listed in Table 3. Messengers form vector-like U(1)′ charged pair.

At the messenger scale Mmess, the messengers obtain mass from the effective

85



그림 21: The mass diagram of Zprimino. The SUSY breaking insertion from
SUSY breaking in the hidden sector is ×. The bulleted line is Z̃′. This soft
mass is added to the SUSY mass.

superpotential X f f̄ with spurion X = Mmess +θ2Fmess as

 M2
mess Fmess

Fmess M2
mess

 (4.68)

Nonzero Fmess makes scalar masses split and different from the fermionic super-

partners of f and f̄ which have common mass Mmess. In this way, SUSY breaking

is transferred to the messenger sector. Then, Z′−ino and the MSSM gauginos ac-

quire soft masses as(Fig. 21)

MZ̃′(Mmess) =−
N′

messg
2
Z̃′(Mmess)

16π2
Fmess

Mmess

Ma(Mmess) = 0

(4.69)

where N′
mess =

∑
i Y

′2
i is the number of messengers. Since we consider f , f̄ pair,

N′
mess = 2.

Suppose U(1)′ is broken at scale MZ′ lower than the messenger scale. At

MZ′ < µ < Mmess, Z′-ino obtains mass MZ′ +MZ̃′ . In one-loop, gaugino soft term

runs in the same way as the gauge coupling, i.e.

dMZ̃′

d lnµ
=

bZ′g2
Z′

8π2 MZ′ ,
d

d lnµ
1

g2
Z′

=− bZ′

8π2 (4.70)
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그림 22: The mass diagram of the SM gauginos. The SUSY breaking from
Zprimino sector is shown as ×. The Z̃′ line is a bulleted line.

그림 23: The first two family sfermion(q̃1,2, l̃1,2) mass diagrams. The SUSY
breaking from Zprimino sector is shown as ×.

그림 24: The mass diagrams for the third family sfermion( q̃3, l̃3) and Higgs
bosons. The SUSY breaking from the SM gauginos are shown as ×.

so,

d
d lnµ

(MZ̃′

g2
Z′

)
= 0. (4.71)
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Under MZ′ , both Z′ gauge boson and Z′-ino are integrated out. (We assume

here that MZ′ ≫ MZ̃′ .) Then Z′-ino running is summarized as

MZ̃′(µ)
g2

Y ′(µ)
=− 1

8π2
Fmess

Mmess
, (4.72)

This also holds for the SM gauginos. But at one-loop level, SUSY breaking

effect does not appear. Including leading SUSY breaking effect(Fig. 22),

dMa

d lnµ
=

bag2
a

8π2 Ma +
cag2

a

(8π2)2 g2
Z′MZ̃′ ,

d
d lnµ

1
ga

=− ba

8π2
(4.73)

so

d
d lnµ

(Ma

g2
a

)
=

ca

8π2bZ′

dMZ̃′

d lnµ
. (4.74)

where ca are given by

cY =
∑[

6
(

1
6

)2

Y
′2
Q +3

(
1
3

)2

Y ′2
Uc +3

(
1
3

)2

Y ′2
Dc +2

(
1
2

)2

Y ′2
L +Y ′2

Ec

]
,

c2 =
∑[

3Y
′2
Q +Y ′2

L

]
,

c3 =
∑[

2Y
′2
Q +Y

′2
Uc +Y

′2
Dc

]
.

(4.75)

In our case(Y ′ = B−L), cY = 92/27, c2 = 8/3, and c3 = 8/9. For more accurate

and systematic analysis, refer to [76] in which extra gauge boson interaction broken

by Yukawa couplings mediates SUSY breaking.

At µ < MZ′ , the U(1)′ vector multiplet is decoupled, so the MSSM gaugino

masses are determined by

d
d lnµ

(Ma

g2
a

)
= 0 (4.76)
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so

Ma(µ)
g2

a(µ)
=−

cag2
Y ′(MZ′)

(8π2)2 MZ̃′(MZ′) ln
(

Mmess

MZ′

)
. (4.77)

Note that

M1 : M2 : M3 = c1g2
1 : c2g2

2 : c3g3
3 ≃ c1 : 2c2 : 6c3 (4.78)

at low energy scale. The MSSM gauginos obtain soft masses as Ma ∼ 10−4MZ̃′ .

On the other hand, the first two generation sfermions directly couple to U(1)′

as (Fig. 23):

m2
q̃1,2,l̃1,2

= Y ′2
q1,2,l1,2 M2

Z̃′ , (4.79)

at the messenger scale. The low energy soft scalar masses are determined by

dm2
q̃1,2,l̃1,2

d lnµ
≃−

Y ′2
q1,2,l1,2

2π2 g2
Z′M2

Z̃′
(4.80)

because Ma ∼ 10−4MZ̃′ ≪ MZ̃′ and the Yukawa couplings for the first two families

are negligibly small.

Finally, the third generation sfermions and the Higgs doublets are not charged

under U(1)′ so m2
q̃3,l̃3,Hu,d

(Mmess) = 0 but obtain soft masses through renormaliza-

tion group running(Fig. 24):

8π2 dm2
q̃3

d lnµ
= y2

t Pt + y2
bPb −

(16
3

g2
3M2

3 +3g2
2M2

2 +
1
15

g2
1M2

1

)
8π2 dm2

t̃c

d lnµ
= 2y2

t Pt −
(16

3
g2

3M2
3 +

16
15

g2
1M2

1

)
8π2 dm2

b̃c

d lnµ
= 2y2

bPb −
(16

3
g2

3M2
3 +

4
15

g2
1M2

1

)
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8π2
dm2

l̃3
d lnµ

= y2
τPτ −

(
3g2

2M2
2 +

3
5

g2
1M2

1

)
8π2 dm2

τ̃c

d lnµ
= 2y2

τPτ −
12
5

g2
1M2

1

8π2 dm2
Hu

d lnµ
= 3y2

τPt −
(

3g2
2M2

2 +
3
5

g2
1M2

1

)
8π2 dm2

Hd

d lnµ
= 3y2

bPb + y2
τPτ −

(
3g2

2M2
2 +

3
5

g2
1M2

1

)
(4.81)

where

Pt = m2
q̃3
+m2

t̃c +m2
Hu

+At 2

Pb = m2
q̃3
+m2

b̃c +m2
Hd

+Ab2

Pτ = m2
l̃3
+m2

τ̃c +m2
Hd

+Aτ2.

(4.82)

For A-term, At,b,τ = 0 at the messenger scale, but can be induced through

renormalization group running:

8π2 dAt

d lnµ
= 6y2

t At + y2
bAb −

(16
3

g2
3M3 +3g2

2M2 +
13
15

g2
1M1

)
8π2 dAb

d lnµ
= y2

t At +6y2
bAb + y2

τAτ −
(16

3
g2

3M3 +3g2
2M2 +

7
15

g2
1M1

)
8π2 dAτ

d lnµ
= 3y2

bAb +4y2
τAτ −

(
3g2

2M2 +
9
15

g2
1M1

) (4.83)

In summary, the third generation and the Higgses do not couple to U(1)′ gauge

superfields directly, so it acquire soft masses indirectly. As the SM gauginos also

obtain SUSY breaking in a indirect way and Yukawa interaction gives correction

to the sparticle masses through fermion loop where soft masses are not come in,

the SUSY breaking effect in the third generation is two more loop suppressed com-

pared to those in the first two generations. More explicitly, taking gaugino-quark

loop into account, the first two generation squark soft term is approximately g2
Y ′M2

Z̃′

whereas the third generation squark soft term is approximately g4
ag2

Y ′M2
Z̃′ . So loop

suppression from gauge couplings makes mass hierarchy between squarks.
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Moreover, too heavy the first two generation squarks can make stop mass

tachyonic through two loop contribution as dominant terms in renormalization

group (RG) equation of stop is given in the form

d
dt

m2
t̃ =−8

∑
i

α̃iC
f
i M2

i +8
[∑

i

ciα̃2C f
i + · · ·

]
m̃2

1,2 (4.84)

where C f
i is the Casimir for stop and α̃i = g2

i /16π2. K − K̄ mixing determines

minimal value of m̃2
1,2 and non-tachyonic condition determines the ratio of stop to

heavy squark mass less than 0.2. Then stop should be heavier than 4TeV[77].

Now, let us discuss the spectrum of our model. Since we considered the ef-

fective SUSY from broken U(1)′ gauge group, we need two scales: SUSY breaking

scale and gauge symmetry breaking scale. In the model, messenger scale where

SUSY breaking is transferred to flavor dependent U(1)′ gauge boson and its super-

partner is 1014GeV, U(1)′ gauge boson mass is 108GeV,and soft mass for gaugino

is 106GeV. U(1)′ gaugino mass would be 108 +106 ≃ 108GeV. For scale between

108 ∼ 1014GeV, we have to consider RG running of MSSM and U(1)′ gauge bo-

son. Stop is massless at 1014GeV but heavy squark and gaugino masses make stop

run to obtain mass. At 108GeV where U(1)′ gauge boson and gaugino are inte-

grated out. stop is massive at this scale. For scale between 108 ∼ 105GeV, where

105GeV is mass of the heavy squarks, MSSM renormalization group running is

applied. Stop mass at 108GeV is initial condition. Heavy squarks would affect two

loop RG running of stop mass within 105 ∼ 1014GeV. Large two loop runnning

within this wide range makes stop tachyonic. Threshold effect may alleviate tachy-

onic catastrophy[78] but it is not enough to make stop nontachyonic. Finally, below

heavy squark mass (105GeV), only stop RG running is taken into account.
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4.4.4 U(1)′ charge assignments reflecting flavor struc-
ture

We may consider another type of U(1)′ charge assignments. Previous model

considers U(1)B−L which cancels anomalies within each generation. But such a

type of anomaly cancelations is not a dogma, just simplification. We may cancel

anomalies within two or more generations.

In this section, we try to relate flavor structure with U(1)′ gauge group. From

this, it may be possible to construct the model which solves gauge hierarchy prob-

lem and flavor problem simultaneously and consistent with experiments. To solve

the flavor problem completely, we have to explain both mass hierarchies and mix-

ing matrices, but in this thesis, we mainly concentrate on the structure of mixing

matrices only. Actually, the flavor dependent symmetry in supersymmetric model

may provide interesting flavor structure. Flavor dependent symmetry can restrict

the form of Yukawa matrices before diagonalization. As both the SM matters and

their superpartners are U(1)′ charged in a flavor dependent way, mixings in the

quarks(leptons) have the similar pattern to that of squarks(sleptons). Such restric-

tion from symmetry is the basic reasoning for Minimal Flavor Violation(MFV)

hypothesis: “any flavor violation originates from Yukawa structure of the SM”[79].

Consider first the u quark sector. It has global SU(3)q×SU(3)u flavor symme-

try in the absence of quark masses and flavor dependent U(1)′ symmetry. As the

third generation is not charged under U(1)′, the global family symmetry is broken

and only SU(2)q×SU(2)u for the first two generations remains. Then the mixing be-

tween the first two generation is natural. The same holds in the d quark sector. Then

it could explain why mixing of the third generation with the first two generations is

much smaller than mixing between the first two generations.

The mixing in the lepton sector is more complicated, since PMNS matrix has

large mixing. We can throw this problem away by raising all the slepton masses
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heavy enough by assigning nonzero charges, but let us suppose that the deviation

of muon g−2 from the SM value implies sub-TeV slepton mass, say, ν̃µ. Then, the

second generation lepton doublet is uncharged under U(1)′. Anomalies are not can-

celed in each generation, but canceled in the whole matter contents. Also assume

that the second generation µc superfield is uncharged either. Then, naturally, O(1)

coupling can be attached as

l1 ·Hdec + l1 ·Hdτc + l2 ·Hdµc + l3 ·Hdec + l3 ·Hdτc (4.85)

From this, the leading term of charged lepton mass matrix is given by


a 0 a′

0 1 0

a′ 0 a

 (4.86)

which is diagonalized by unitary matrix,

Ul =


1√
2

0 − 1√
2

0 1 0

1√
2

0 1√
2

 . (4.87)

If PMNS matrix has the form of

VPMNS =


1√
2

− 1√
2

0

1
2

1
2

1√
2

− 1
2 − 1

2
1√
2

 (4.88)

(Solar mixing angle is about π/4 and no θ13), unitary matrix diagonalizing neutrino
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mass is given by

Uν =


1
2 +

1
2
√

2
− 1

2 +
1√
2

− 1
2

1
2

1
2

1√
2

1
2 −

1
2
√

2
− 1

2 −
1√
2

1
2

 (4.89)

If neutrino masses have normal hierarchy, so that diagonalized to the form of

diag.(0,0,1), the neutrino mass matrix in flavor basis is given by

mν = v2
uY M−1Y T ∝


1
4 − 1

2
√

2
− 1

4

− 1
2
√

2
1
2

1
2
√

2

− 1
4

1√
2

1
4

 . (4.90)

Suppose heavy neutrinos have U(1)′ charges for the second and the third genera-

tions, and zero charge for the first generation. Then Yukawa matrix Y in the seesaw

mechanism is of the form

Y =


0 a a

1 0 0

0 a a

 . (4.91)

Now, U(1)B−L is broken in the Majorana mass M. Introducing superfields Φ1 with

U(1)B−L charge -2, Φ2 with charge -1. To cancel the anomaly, there should be Φc
1

and Φc
2 with charges opposite to those of Φ1 and Φ2, respectively. the VEVs of Φ1,2

breaks U(1)B−L and

M1Nc
1Nc

1 +Φ1(Nc
1Nc

2 +Nc
1Nc

3 +Nc
2Nc

1 +Nc
3Nc

1)

+Φ2(Nc
2Nc

2 +Nc
2Nc

3 +Nc
3Nc

2 +Nc
3Nc

3)

(4.92)
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give the Majorana mass matrix M,

M = M1


1 c c

c b d

c d b

 . (4.93)

with b ≃ d. Redefining neutrinos (N1,N2,N3) to(N1,N2,−N3)The neutrino mass

matrix is proportional to

mν = Y M−1Y T =
1

b+d −2c2


2a2 −2ac −2a2

−2ac b+d 2ac

−2a2 2ac 2a2

 . (4.94)

which is very similar to (4.90).

In this way, basic patterns of mixing matrices can be understood in the pres-

ence of flavor dependent U(1)′ symmetry. Subleading breaking effects would ex-

plain deviation of such basic patterns from observed values. Especially, when this

breaking is made of VEV with the phase, it will be the source of CP violation in

the weak interaction.

4.4.5 Flavor problem in the supersymmetry

In general, new physics can enhance some phenomena which should be sup-

pressed. Flavor changing neutral current(FCNC) and CP violation are such exam-

ples. If observations report sizable values of these effects, they may provide hints

for new physics. To understand this, calculating both new physics contribution and

the SM contribution in exact values are important. Especially, when taking hadron

process into account, more exact calculation of the QCD effect is important. Many

of such effects are loop suppressed. For CP violation from the phase, single dia-

gram does not tend to show it since overall phase can be absorbed by redefinition
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d

s̄ d̄

s

γ, Z u, c, t u, c, t

W

W

d

s̄

s

d̄

그림 25: FCNC in the SM.

of external fields. Phase effect can be seen from interference with other diagrams

and in many cases, loop diagrams should be taken into account. For FCNC effects,

leading contribution comes from loop effect. One of the famous example is K − K̄

mixing. Tree level diagram like left of Fig. 25 is forbidden because mixing in the

neutral current does not appear even we move from the flavor basis to the mass ba-

sis s̄γµd →
∑

i s̄V ∗
isγµVidd = s̄γµd by unitarity of V = PLLd +PRRd . So, the leading

contribution is one-loop box diagram (right of Fig. 25). Aside from loop suppres-

sion, it has additional suppression come from unitarity of mixing matrix, known as

Glashow-Iliopoulos-Maiani(GIM) mechanism[80]. This diagram contains the fac-

tor

( ∑
i=u,c,t

V ∗
id

1
γ · k−mi

Vis

)2

(4.95)

where V is the CKM matrix. Let m0 be the common mass scale of the virtual quarks.

We can express the mass of each quark as mi = m0 +∆mi then the factor above is
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s

d̄

그림 26: FCNC in the SUSY.

written as

( ∑
i=u,c,t

V ∗
id

1
γ · k−mi

Vis

)2
=
( ∑

i=u,c,t

V ∗
idVis

1
γ · k− (m0 +∆mi)

)2

=
[ ∑

i=u,c,t

V ∗
idVis

( 1
γ · k−m0

+
1

γ · k−m0
∆mi

1
γ · k−m0

)]2

=
( ∑

i=u,c,t

V ∗
idVis

1
γ · k−m0

∆mi
1

γ · k−m0

)2
.

(4.96)

The leading contribution of order O((1/m0)
2)vanishes by unitarity of the CKM

matrix, and subleading order O((∆mi/m2
0)

2) remains.

For scale lower than MW , K − K̄ mixing is described by the four-Fermi effec-

tive operator,

L
|∆S|=2
eff =C|∆S|=2d̄γµ(1+ γ5)sd̄γµ(1+ γ5)s+h.c. (4.97)

and C|∆S|=2 from the SM box diagram is given by

C|∆S|=2 =
g2

2

M2
W

∑
i=u,c

λ∗
i λ∗

jF
i j
(m2

i, j

M2
W

)
, (4.98)

where λi ≡VidV ∗
is . Note that t quark is integrated out as mt > MW so we do not con-

sider it. Mixing parameter for K−K̄ mixing is ∆mK =(3.483±0.006)×10−12MeV

and the SM estimation explains roughly 80% of it [81]. New physics may introduce

sizable mixing effect. For example, extra U(1)′ may lead to the tree-level FCNC,
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with the diagram of the same type as left of Fig. 25. To suppress this, we should

impose either heavy Z′ gauge boson mass or very small coupling. SUSY also con-

tribute to FCNC process through one loop diagram shown in Fig. 26. We can con-

sider the super-GIM mechanism[82] where virtual squarks contribute,

( ∑
i=d̄,s̄,b̄

U∗
id

1
k2 − m̃2

i
Uis

)2
=

1
k2 − m̃2

0

[∑
i

U∗
idUis∆m̃2

i

]2
. (4.99)

Then FCNC from SUSY, C|∆S=2|
SUSY is given by

g4
s

m̃6

[∑
i

U∗
idUis∆m̃2

i

]2
(4.100)

where m̃ is the typical scale of the squarks and gluino. In the case of gauge me-

diation though the SM gauge group[83], soft mass is flavor universal. Then in the

quark mass basis, squark mass is of the form



m2
d +M2

0 0 0 −mdA′ 0 0

0 m2
s +M2

0 0 0 −msA′ 0

0 0 m2
b +M2

0 0 0 −mbA′

−mdA′ 0 0 m2
d +M′2

0 0 0

0 −msA′ 0 0 m2
s +M′2

0 0

0 0 −mbA′ 0 0 m2
b +M′2

0


(4.101)
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and diagonalized by

U =



c1 0 0 −s1 0 0

0 c2 0 0 −s2 0

0 0 c3 0 0 −s3

s1 0 0 c1 0 0

0 s2 0 0 c2 0

0 0 s3 0 0 c3


(4.102)

which mixes left and right handed squarks but does not violate the flavor.

In the case of the effective SUSY, soft term from U(1)′ mediation is not flavor

universal, so it can have flavor violating effect. However, the first two generation

squarks are heavy enough, we can consider the third generation effect only[84].

Moreover, as mixing is similar to that of quark, the first two generation quarks(ds̄

in K meson) do not mix with the third generation squark too much. So in this case,

we can be safe from FCNC problem. The same can hold for D− D̄ mixing where

D = ūc, composed of the first two generation quarks[85]. So, stringent bound may

come from B− B̄ mixing.
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제 5장

Flavor Problem in a view of flavor
dependent symmetry

In the SM, mass hierarchies and mixing pattern come from the structure of the

Yukawa couplings in a flavor basis, i.e. undiagonalized basis. But what we know

from observations are not sufficient to guess the original forms of the Yukawa cou-

plings in a matrix form. Moreover, the SM does not fix the form of Yukawa cou-

plings due to the flavor universal nature of the SM gauge group. To add new type

of flavor dependent symmetry determining flavor structure, we may get motivation

outside the flavor physics. One of such example could be flavor dependent U(1)′,

mediator of SUSY breaking for effective SUSY spectrum. In this chapter, we in-

vestigate flavor problem within the realm of flavor physics. For this, we first study

the structure of mixing matrix in the quark sector, CKM matrix, focusing on the

CP violation in the weak sector and λ = sinθC expansion. They can be interpreted

as violation effects from basic pattern provided by some kinds of flavor dependent

symmetry. We also consider the PMNS matrix in a parallel way. As an example

of such symmetry, we present the structure of the CKM and PMNS matrices from

non-Abelian discrete symmetry, D12.
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5.1 Structure of the CKM matrix

5.1.1 Parameterizations of the CKM matrix

If we do not assume the fourth or more generations, CKM matrix is 3×3

unitary matrix. Its moduli is measured as

 |Vud | |Vus | |Vub |

|Vcd | |Vcs | |Vcb|

|Vtd | |Vts | |Vtb |

=

 0.97428±0.00015 0.2253±0.0007 0.00347+0.00016
−0.00012

0.2252±0.0007 0.97345+0.00015
−0.00016 0.0410+0.0011

−0.0007

0.00862+0.00026
−0.00020 0.0403+0.0011

−0.0007 0.999152+0.000030
−0.000045

 (5.1)

It can be parameterized by three mixing angles, Euler angles and one unremovable

phase. When firstly suggested by Kobayashi and Maskawa[15], they parameterized

CKM matrix as


1 0 0

0 c2 −s2

0 s2 c2




c1 −s1 0

s1 c1 0

0 0 eiδ′




1 0 0

0 c3 s3

0 s3 −c3



=


c1 −s1c3 −s1s3

s1c2 c1c2c3 − s2s3eiδ′ c1c2s3 + s2c3eiδ′

s1s2 c1s2c3 + c2s3eiδ′ c1s2s3 − c2c3eiδ′


(5.2)

On the other hand, the widely used parametrization comes from Chau-Keung,

and similarly, by Maiani[17],


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e−iϕ

0 1 0

−s13eiϕ 0 c13




c12 s12 0

−s12 c12 0

0 0 1



=


c12c13 s12c13 s13e−iϕ

−s12c23 − c12s23s13eiϕ c12c23 − s12s23s13eiϕ s23c13

s12s23 − c12c23s13eiϕ −c12s23 − s12c23s13eiϕ c23c13


(5.3)

102



그림 27: Unitary triangle for the CKM matrix [23].

Both are just different parameterizations of the same matrix. Moreover, Such

parameterizations do not concern which angle is very large or which angle is negli-

gible. In 1983, Wolfenstein noticed that |Vcb| ∼ |Vus|2. Among three mixing angles,

Cabibbo angle θC, mixing between the first two generations, is the largest. From

them, he expanded CKM matrix in terms of λ = sinθC = |Vus|[86]. Then,


1−λ2/2 λ Aλ3(ρ− iη)

−λ 1−λ2/2 Aλ2

Aλ3(1−ρ− iη) −Aλ2 1

+O(λ4) (5.4)

and these parameterizations correspond to

s1 : s2 : s3 = λ : 0.75λ2 : 0.31λ2, s12 : s23 : s13 = λ : 0.81λ2 : 0.31λ3. (5.5)

Further discussion on parametrization of the CKM matrix can be found in [87].

Measured values with the global fit is given by

λ = 0.2253±0.0007, A = 0.808+0.022
−0.015,

ρ̄ = 0.132+0.022
−0.014, η̄ = 0.341±0.013.

(5.6)

where ρ̄= ρ(1−λ2/2+· · ·), η̄=η(1−λ2/2+· · ·) come from ρ̄+iη̄=−(VudV ∗
ub)/(VcdV ∗

cb).

The barred parameters ρ̄, η̄ show one special property of the CKM matrix. From
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unitarity of the CKM matrix, we have

VudV ∗
ub +VcdV ∗

cb +VtdV ∗
tb = 0. (5.7)

Dividing both sides by VcdV ∗
cb, we obtain the closed triangle shown in Fig. 27 with

(ρ̄, η̄) being the complex vertex. Then the angle α = (89.0+4.4
4.2 )o is very close

to 90o[23]. This is why we call the CP violation in the weak interaction maxi-

mal. In commonly used Chau-Keung-Maiani parametrization, ϕ = (67.19+2.40
−1.76)

o

so maximal CP violation is not apparent. Within the SM framework, this does

not matter because the phase can be moved anywhere by phase redefinition of

the quarks without affecting phenomena. However, if there is a flavor dependent

symmetry so that the Yukawa matrix in the flavor basis is fixed, maximal CP viola-

tion can be regarded as an important feature of the Yukawa matrices. In this sense,

adopting the parametrization of the CKM matrix with 90o phase can be a good

parametrization[88].

Since

α ≡ Arg.
(
−

VtdV ∗
tb

VudV ∗
ub

)
, (5.8)

parametrization


1 0 0

0 1 0

0 0 eiδ




1 0 0

0 c2 s2

0 −s2 c2




c1 s1 0

−s1 c1 0

0 0 eiδ′




1 0 0

0 c3 −eiδs3

0 e−iδs3 c3




1 0 0

0 1 0

0 0 e−iδ



=


c1 s1c3 −s1s3

−s1c2 c1c2c3 + s2s3e−iδ −c1c2s3 + s2c3e−iδ

eiδs1s2 −eiδc1s2c3 + c2s3 c2c3 + c1s2s3eiδ


(5.9)
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has δ = α = 89.0o. With this parametrization, three Euler angles are given by

θ1 = 13.0o = 0.227

θ2 = 2.42o = 0.0423

θ3 = 1.54o = 0.0276

(5.10)

so angles have hierarchy θ1 = O(λ), and θ2,3 = O(λ2). Note that unphased part

of VtdV ∗
tb given by −c1s1s2

2s3 = O(λ7) is very small compared to the phased part,

−s1c2s2c3 = O(λ3). Therefore, to a good approximation, the separated phases of

Vub and Vtd are moved and merged to make maximal mixing. This can be seen in

the expansion in terms of λ = |Vus|:



1− λ2
2 − λ4

8 − λ6
16 (1+8κ2

b), λ, λ3κb

(
1+ λ2

3

)

−λ+ λ5
2 (κ2

t −κ2
b),

1− λ2
2 − λ4

8 − λ6
16

− λ4
2 (κ2

t +κ2
b −2κbκt e−iδ)

− λ6
12

(
7κ2

b +κ2
t −8κt κbe−iδ) ,

λ2
(

κb −κt e−iδ)
− λ4

6 (2κt e−iδ +κb)

−λ3κt eiδ
(

1+ λ2
3

)
,

−λ2
(

κb −κt eiδ)
− λ4

6 (2κb +κt eiδ)
,

1− λ4
2 (κ2

t +κ2
b −2κbκt eiδ)

− λ6
6

(
2[κ2

b +κ2
t ]−κt κbeiδ)


. (5.11)

Similar expansion making Vub and Vtd simple was originally suggested by

[89]. If δ = 0, there is no CP violation. Moreover, if either κb or κt vanish, one or

more mixing angles vanish. Then, phase can be eliminated by phase redefinitions

of the quarks, so CP is not violated.

If we do not consider the phase, Euler angles are just what was used in

Kobayashi-Maskawa parametrization. But phase was put differently. In fact, in

Kobayashi-Maskawa parametrization, determinant is not unity but eiδ′ . However,

the phase in determinant can be related to the phase of the quark mass matrix,

Arg.Det.Mq. This can be rotated away with the help of the Peccei-Quinn sym-

metry redefining θ term in GG̃ as θ̄ = θ + Arg.Det.Mq. So one can start with

Arg.Det.Mq = 0 and detVCKM = 1. In this case, one can see CP violation of the

CKM matrix easily. This is discussed in the next section.
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5.1.2 Jarlskog determinant

To parameterize CP violation of the mixing matrix, Jalskog suggested the

following quantity, Jarlskog determinant[90].

J =
∣∣∣− Det.C

2(m2
t −m2

c)(m
2
t −m2

u)(m2
c −m2

u)(m
2
b −m2

s )(m
2
b −m2

d)(m
2
s −m2

d)

∣∣∣ (5.12)

where

C =−i[MuM†
u ,MdM†

d ]. (5.13)

So, Jarlskog determinant can be one way of parameterizing CP violation in

the quark mass matrices independent of mass eigenvalues[91]. The result is given

by

J = |ImV ∗
kmVlmVknV ∗

ln|= |ImV ∗
mkVmlVnkV ∗

nl | (5.14)

The same quantity also comes from unitarity of the CKM matrix. For exam-

ple, the unitarity condition implies

VudV ∗
ub +VcdV ∗

cb +VtdV ∗
tb = 0

→VudV ∗
ubV ∗

tdVtb +VcdV ∗
cbV ∗

tdVtb =−|V ∗
tdVtb|2

→ ImVudV ∗
ubV ∗

tdVtb =−ImVcdV ∗
cbV ∗

tdVtb

→ |ImVudV ∗
ubV ∗

tdVtb|= |ImVcdV ∗
cbV ∗

tdVtb|

(5.15)

and this is nothing more than Jarlskog determinant J. The measured value is given

by J =(2.91+0.19
−0.11)×10−5 and it is parameterized in Chau-Keung-Maiani parametriza-

tion as J = c12s12c2
13s13c23s23 sinδ. Since s12 =O(λ), s23 =O(λ2), and s13 =O(λ3),

J = O(λ6).
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The Jarlskog determinant is the product of four matrix elements, But when

DetV is real i.e. equal to one, more simplification can be made. To see this, consider

the parametrization (5.9). The Jarlskog determinant is given by c1c2c3s2
1s2s3 sinδ,

and it is of order λ6 as s12 = O(λ), s23 = O(λ2), and s13 = O(λ2). This is expected

because Jarlskog determinant is unique property of the CKM matrix, and it is in-

dependent of parameterizations. One important feature of our parameterizations is

that since δ is almost 90o it does not have more suppression. In this sense, Jarlskog

determinant is maximal for a given λ6 order. Also, this parametrization has a unit

determinant. To make the determinant real, imaginary parts of the six elements of

determinant, product of three matrix elements, cancel with each other. Moreover,

each element has the same imaginary number, Jalskog determinant:

V11V22V33 = c2
1c2

2c2
3 + c2

1s2
2s2

3 +2c1c2c3s2s3 cosδ

− c1c2c3s2
1s2s3eiδ

−V11V23V32 = c2
1c2

2s2
3 + c2

1s2
2c2

3 −2c1c2c3s2s3 cosδ

+ c1c2c3s2
1s2s3eiδ

V12V23V31 = s2
1s2

2c2
3 − c1c2c3s2

1s2s3eiδ

−V12V21V33 = s2
1c2

2c2
3 + c1c2c3s2

1s2s3eiδ

V13V21V32 = s2
1c2

2s2
3 − c1c2c3s2

1s2s3eiδ

−V13V22V31 = s2
1s2

2s2
3 + c1c2c3s2

1s2s3eiδ .

(5.16)

or

V11V22V33 = c2
12c2

23c2
13 − c12s12c23s23c2

13s13eiδ,

−V11V23V32 = c2
12s2

23c2
13 + c12s12c23s23c2

13s13eiδ,

V12V23V31 = s2
12s2

23c2
13 − c12s12c23s23c2

13s13eiδ,
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and

−V12V21V33 = s2
12c2

23c2
13 + c12s12c23s23c2

13s13eiδ,

V13V21V32 = c12s12c23s23s13 cosδ− c12s12c23s23c13c2
13s13eiδ

+ s2
12c2

23s2
13 + c2

12s2
23s2

13,

−V13V22V31 − c12s12c23s23s13 cosδ+ c12s12c23s23c13c2
13s13eiδ

+ c2
12c2

23s2
13 + s2

12s2
23s2

13.

(5.17)

Therefore, Jarlskog determinant can be expressed as a product of three matrix el-

ements, and it can be just read off from the imaginary part of one of elements in

determinant, for example, ImVubVcsVtd . To see this more explicitly[92], we denote

indices for matrix elements as numbers, not quark names, e.g. Vuc ≡V12. The unit,

real determinant condition is written as

1 =V11V22V33 −V11V23V32 +V12V23V31

−V12V21V33 +V13V21V32 −V13V22V31.

(5.18)

Multiplying V ∗
13V ∗

22V ∗
31 on both sides,

V ∗
13V ∗

22V ∗
31 = |V22|2V11V33V ∗

13V ∗
31 −V11V23V32V ∗

13V ∗
31V ∗

22

+ |V31|2V12V23V ∗
13V ∗

22 −V12V21V33V ∗
13V ∗

31V ∗
22

+ |V13|2V21V32V ∗
31V ∗

22 −|V13V22V31|2.

(5.19)

Consider the second term on the RHS, −V11V23V32V ∗
13V ∗

31V ∗
22. It contains a factor

V32V ∗
22, which is equal to −V31V ∗

21−V33V ∗
23 by the unitarity of V . Then, −V11V23V32V ∗

13V ∗
31V ∗

22 =

V11V23V ∗
13V ∗

21|V31|2+V11V33V ∗
13V ∗

31|V23|2. Especially, the second term V11V33V ∗
13V ∗

31|V23|2

combines with the first term of Eq. (5.19), |V 2
22|V11V33V ∗

13V ∗
31 to make (1−|V21|2)V11V33V ∗

13V ∗
31.

In the same way, for the fourth term on the RHS of Eq. (5.19), −V12V21V33V ∗
13V ∗

31V ∗
22

containing the factor V33V ∗
31 =−V23V ∗

21−V13V ∗
11, can be rewritten as −V12V21V33V ∗

13V ∗
31V ∗

22 =
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V12V23V ∗
13V ∗

22|V21|2 +V12V21V ∗
11V ∗

22|V13|2. Here, the first term −V12V23V ∗
13V ∗

22|V21|2

combines with the third term on the RHS of Eq. (5.19), |V31|2V12V23V ∗
13V ∗

22 to make

(1−|V11|2)V12V23V ∗
13V ∗

22.

In summary, Eq. (2) can be rewritten as

V ∗
13V ∗

22V ∗
31 = (1−|V21|2)V11V33V ∗

13V ∗
31

+V11V23V ∗
13V ∗

21|V31|2 +(1−|V11|2)V12V23V ∗
13V ∗

22

+ |V13|2(V12V21V ∗
11V ∗

22 +V21V32V ∗
31V ∗

22)

−|V13V22V31|2.

(5.20)

Now, the unitarity plays an important role in simplifying this expression.

Let the imaginary part of V11V33V ∗
13V ∗

31 be J. From V ∗
11V13 +V ∗

21V23 +V ∗
31V33 = 0,

we know |V11|2|V13|2 +V11V23V ∗
13V ∗

21 +V11V33V ∗
13V ∗

31 = 0; so the imaginary part of

V11V23V ∗
13V ∗

21 is −J. From V11V ∗
31 +V12V ∗

32 +V13V ∗
33 = 0, we have V11V33V ∗

13V ∗
31 +

V12V33V ∗
32V ∗

13 + |V ∗
13V33|2 = 0. And, from V ∗

12V13 +V ∗
22V23 +V ∗

32V33 = 0, we have

V12V33V ∗
32V ∗

13 +V12V23V ∗
22V ∗

13 + |V ∗
12V13|2 = 0. These two combine to show that the

imaginary part of V12V23V ∗
22V ∗

13 is J. On the other hand, from V ∗
11V12 +V ∗

21V22 +

V ∗
31V32 = 0, we know V21V32V ∗

22V ∗
31+V12V21V ∗

11V ∗
22+ |V ∗

21V22|= 0; so the imaginary

part of (V21V32V ∗
22V ∗

31 +V12V21V ∗
11V ∗

22) is zero. Then, the imaginary part of the RHS

of Eq. (5.20) is [(1−|V21|2)−|V31|2 +(1−|V11|2)]J = J. Therefore, the imaginary

part of V ∗
13V ∗

22V ∗
31 (the LHS of Eq. (5.20)) is J. Maximality of CP violation in the

weak interaction characterized by δ = 90o can be visualized in the unitarity trian-

gle. Original definition of Jarlskog determinant is product of four matrix elements,

more precisely, two matrix elements and two complex conjugates of matrix ele-

ments. In unitarity condition VudV ∗
ub +VcdV ∗

cb +VtdV ∗
tb = 0, if we do not divide both

sides by VcdV ∗
cb, each side of unitaity triangle is composed of one matrix element

and one complex conjugate of matrix element. Therefore, the twice of area of the

unitarity triangle, or area of the parallelogram is just the Jarlskog determinant. If
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그림 28: Rotated Jarlskog triangle showing maximal CP violation.

the magnitudes of two sides are fixed, the area is maximal when the angle between

them is 90o. This is shown in Fig. 28.

5.1.3 Interpretation of the Wolfenstein parametriza-
tion

The Wolfenstein’s idea that λ = sinθC can be an expansion parameter for the

CKM matrix may have a physical interpretation. If we have flavor dependent sym-

metry, it can restrict the form of the Yukawa matrix. U(1)′ in the effective SUSY

may be one of examples. Suppose that the basic pattern of the CKM matrix de-

termined from certain symmetry principle is identity. Then expansion of the CKM

matrix in terms of λ implies that Yukawa coupling constructed from the symmetry

principle has breaking effects parameterized by λ. Suppose we have the scalar ϕ

which is the SM singlet but charged under the flavor dependent symmetry. When it

has VEV, symmetry is broken and Yukawa matrix has powers of ⟨ϕ⟩/M which can

be the λ. For realization, one may assign flavor dependent symmetry charges such

that couplings q̄Hu is not a singlet of such symmetry so that it has to be coupled to

ϕ. So Yukawa coupling has the form of nonrenormalizable term (⟨ϕ⟩/M)nq̄Hu to
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make singlet of flavor dependent symmetry. In this case, basic pattern is symmetry

breaking effect in the leading order, and it can have λ expansion form. The sublead-

ing effects or small explicit breaking effects may be responsible for deviation from

the measured values. Moreover, when one of such ϕs has the VEV with the phase,

CP phase can be interpreted as a spontaneous breaking effect of flavor dependent

symmetry.

The flavor problem of the SM asks two questions: mixing pattern and mass

hierarchy. They all come from the Yukawa matrices. Then how can we relate these

two aspects of the flavor problem? Writing Yukawa couplings in the form of (⟨ϕ⟩/M)nq̄Hu

is originally come from Froggatt and Nielsen[93], to explain the mass hierarchy in

the quark sector by introducing flavor dependent U(1) symmetry. Expressing mass

ratios as some powers of λ, mass hierarchies and mixing pattern can be related.

Weinberg pointed out the numerical similarity, λ ≃
√

md/ms[94]. With this point

of view many efforts have been made to construct the original form of the Yukawa

couplings at the GUT scale, texture[95], which produces measured mixing angles

and mass hierarchies at the electroweak scale. Especially, it is favored that some

elements of the Yukawa coupling at high energy vanish, as forbidden by symmetry

principle.

On the other hand, recent observations show that the PMNS matrix, mixing

in the lepton sector has large mixing. This is different from mixing pattern of the

CKM matrix, very close to identity. To explain this, non-Abelian discrete sym-

metries have been used[96]. One representative example is tri-bi maximal mixing,

suggested by Harrison, Perkins, and Scott[97]:


√

2
3

√
1
3 0

−
√

1
6

√
1
3 −

√
1
2

−
√

1
6

√
1
3

√
1
2

 (5.21)

In fact, similar type of mixing was studied by Pakvasa and Sugawara[98] to
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explain Cabibbo angle in the CKM matrix and widely used thereafter to explain

large mass hierarchy. Suppose the Yukawa matrix in ‘democratic form’,

1
3


1 1 1

1 1 1

1 1 1

 (5.22)

This matrix is not democratic at all in the mass eigenbasis, as it is diagonalized to

diag.(0,0,1). The unitary matrix diagonalizing it is

1√
3


1 1 1

ω ω2 1

ω2 ω 1

 (5.23)

where ω = exp(i2π/3), the solution to the equation ω2+ω+1 = 0. Since eigenval-

ues in the first two generations are degenerated, we can rotate them freely. When it

is combined with maximal mixing, 45o rotation, it becomes

V0 =
1√
3


1 1 1

ω ω2 1

ω2 ω 1

 · 1√
2


1 −1 0

1 1 0

0 0
√

2

=
1√
3


√

2
3 0

√
1
3

−
√

1
6 − i√

2

√
1
3

−
√

1
6 − i√

2

√
1
3

 .

(5.24)

Suppose u−, d− quark sector and charged lepton sector have a such structure.

For CKM matrix, since Lu = Ld = V0, the CKM matrix is identity in the leading

order. Deviations from identity in the quark sector are parameterized by λ, explain-

ing the first two generation mass hierarchy and λ expansion in the Wolfenstein

parametrization. On the other hand, if neutrino sector is diagonalized with basis

changing matrix, PMNS matrix has a tri-bi maximal mixing.

However, tri-bi maximal mixing may be irrelevant for mass hierarchy. The
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unitary matrix (5.23) diagonalizes the mass matrix with the permutation structure


a b b∗

b∗ a b

b b∗ a

 (5.25)

to diag.(a+ωb+ω∗b∗,a+ωb∗+ω∗b,a+b+c). As this mass matrix has three in-

dependent real numbers, mass hierarchy may not be considered. Only permutation

pattern matters. Maximal mixing also irrelevant for the mass hierarchy. 45o mixing

diagonalizes the mass matrix of the form


a b 0

b a 0

0 0 1

 . (5.26)

Then the sameness of diagonal and that of off-diagonal do matter but mass

hierarchy may not be imposed. In fact, U(1)′ symmetry in effective SUSY does

not consider the mass hierarchy too much either. Many discrete symmetry model

buildings on the PMNS matrix mainly focuses on the permutation pattern of the

Yukawa matrices and mass hierarchy is not an important issue. We will see an

example in the next section.

5.2 Quark and Lepton Mixings from discrete
D12 symmetry

Whereas tri-bi maximal pattern mainly concerns the permutation structure of

the Yukawa matrix, our example here considers breaking of the discrete symmetry
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with phase. It predicts the basic structure of the PMNS matrix as

VPMNS =


cos π

6 sin π
6 0

− 1√
2
sin π

6
1√
2
cos π

6 − 1√
2

− 1√
2
sin π

6
1√
2
cos π

6
1√
2

 (5.27)

On the other hand, we try to explain one sizable angle in the CKM matrix,

Cabibbo angle. So, basic structure of the CKM matrix is given by

VCKM =


cos π

12 sin π
12 0

sin π
12 cos π

12 0

0 0 1

 (5.28)

We set the Cabibbo angle by 15o, slightly different from measured value 13o. This

comes from hypothetical relation, so called quark-lepton complementarity

θsol +θC ≃ 45o. (5.29)

which states that the sum of the corresponding angles (the mixing between the first

and the second generations here) in the CKM and the PMNS matrix is 45o[99].

To obtain these patterns, we employ dihedral group D12 as a flavor dependent

symmetry[100].

5.2.1 Properties of dihedral group D12 and breaking
pattern

The dihedral group D2N represents the symmetry of a regular polygon of 2N

sides. Its properties are:

1. It is isomorphic to Z2N ⋊Z2 (cyclic rotation + reflection).
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2. It is generated by two generators a and b,

a : (x1,x2, · · · ,x2N)→ (x2N ,x1, · · · ,x2N−1)

b : (x1,x2, · · · ,x2N)→ (x1,x2N , · · · ,x2)

(5.30)

which satisfies

a2N = e, b2 = e, bab = a−1. (5.31)

3. Its irreducible representations are

Four singlets : 1++,1−−,1+−,1−+

(N −1)−doublets : 2k(k = 1, · · · ,N −1)
(5.32)

For a (complex) 2k doublet basis, a and b are represented by

a =

 e2πik/2N 0

0 e−2πik/2N

 , b =

 0 1

1 0

 (5.33)

For a (complex) 1i j singlet basis, i is the eigenvalue of b and j is the eigen-

value of ab.

4. Tensor products satisfy the following.

• Singlet times singlet multiplication,

1s1s2 ×1s′1s′2
= 1s′′1s′′2

(5.34)

where s′′1 = s1s′1 and s′′2 = s2s′2.
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• Singlet times doublet multiplication,

(w)(1++)×

(
x1

x2

)
(2k) =

(
wx1

wx2

)
(2k), (w)(1−−)×

(
x1

x2

)
(2k) =

(
wx1

−wx2

)
(2k),

(5.35)

(w)(1+−)×

(
x1

x2

)
(2k) =

(
wx2

wx1

)
(2k),(w)(1−+)×

(
x1

x2

)
(2k) =

(
wx2

−wx1

)
(2k).

(5.36)

where the boldface symbols inside the brackets show the D2N repre-

sentations.

• Doublet times doublet multiplication,

(a) For k+ k′ ̸= N and k− k′ ̸= 0,

(
x1

x2

)
(2k)×

(
y1

y2

)
(2k′ ) =

(
x1y1

x2y2

)
(2k+k′ )+

(
x1y2

x2y1

)
(2k−k′ ). (5.37)

(b) For k+ k′ = N and k− k′ ̸= 0 ,

(
x1

x2

)
(2k)×

(
y1

y2

)
(2k′ ) = (x1y1 +x2y2)(1+−)+(x1y1 −x2y2)(1−+)+

(
x1y2

x2y1

)
(2k−k′ ) (5.38)

(c) For k+ k′ ̸= N and k− k′ = 0 , (which will be frequently used)

(
x1

x2

)
(2k)×

(
y1

y2

)
(2k′ )= (x1y2+x2y1)(1++)+(x1y2−x2y1)(1−−)+

(
x1y1

x2y2

)
(2k+k′ ). (5.39)

(d) For k+ k′ = N and k− k′ = 0 ,

(
x1

x2

)
(2k)×

(
y1

y2

)
(2k′ ) =(x1y2 + x2y1)(1++)+(x1y2 − x2y1)(1−−)

+(x1y1 + x2y2)(1+−)+(x1y1 − x2y2)(1−+).

(5.40)

116



When D2N charged field has VEV, it is spontaneously broken. For a D2N dou-

blet, suppose that the VEV is chosen as

⟨H(2k)⟩ ∼

 e
−2πi
2N km

1

 . (5.41)

Note that ⟨H(2k)⟩ is the eigenvector of bam with eigenvalue 1, and hence it is still

invariant under the action of bam. Therefore, by the VEV of Eq. (5.41) D2N is bro-

ken down to the smaller group generated by bam. Since (bam)2 = 1, the remaining

group should have a subgroup Z2 generated by bam. The symmetry breaking pattern

for this vacuum choice is as follows:

• When j divides 2N (m = 0,1, · · · 2N
j −1), D2N is broken down to

D2N
2 j−→ D j = ⟨a2N/ j,bam⟩. (5.42)

Note that a2N/ j generates Z j since (a2N/ j) j = 1. Therefore, the group gener-

ated by a2N/ j,bam is Z j ⋊Z2 = D j.

• When j does not divide 2N (m = 0,1, · · · ,2N −1), D2N is broken down to

D2N
2 j−→ Z2 = ⟨bam⟩ (5.43)

• A successive application of doublet VEVs lead to (a) When k divides j with

m j = mk,

D2N
2 j−→ D j

2k−→ Dk. (5.44)
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(b) When k does not divide j with m j = mk,

D2N
2 j−→ D j

2k−→ Z2. (5.45)

Of course, one can choose an arbitrary value for the VEV, and [101] lists all the

possible symmetry breaking patterns and the resulting subgroups.

5.2.2 Model for the CKM matrix

To obtain appropriate structure of the Yukawa matrices for observed the CKM

and the PMNS matrices, we have to assign D12 charges to the quarks and the lep-

tons. Moreover, the Higgs may be charged, but in this case, too many Higgses in

the different representation of the D12 group are required. Many neutral Higgses

give rise to FCNC problem[102], but FCNC from Yukawa coupling is very small

as long as the top quark is not taken into account. Instead, we may assume that the

Higgs doublet is not charged and introduce scalars in the Froggatt-Nielsen scheme.

They have VEVs suppressed by their mass scale explaining the Yukawa couplings.

Such scalars are called ‘flavons’.

In our case, we consider the multi-Higgs case. Higgses are charged under D12

as

Hu
0 : 1++,

 H ′u
1

H ′u
2

 : 21,

 H ′′u
1

H ′′u
2

 : 23 (5.46)

Hd
0 : 1++, H ′d

0 : 1++,

 H ′d
1

H ′d
2

 : 22 (5.47)

H l
0 : 1++, H ′l

0 : 1++,

 H ′l
1

H ′l
2

 : 22. (5.48)
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For H ls to couple to leptons but not to quarks and for Hd
0 to couple to quarks but not

to leptons, we can introduce a leptonic Z3 discrete symmetry such that charged sin-

glet leptons, lepton doublets and H ls carry Z3 quantum number 1 and all the other

fields, except the singlet neutrinos, carry Z3 quantum number 0. Moreover, Hu and

Hd are distinguished by their different U(1)Y quantum numbers. To avoid unwanted

Hu and Hd mixing, we can assign U(1) PQ symmetry, as will be seen later. Note that

we have not introduces following Higgses which mix the D12 doublet and singlet

fermions:

 Hu
1

Hu
2

 : 21,

 Hd
1

Hd
2

 : 21,

 H l
1

H l
2

 : 21. (5.49)

Even though we write some couplings with the fields of (5.49) below, we will even-

tually set those entries zero, either by not introducing the lowest order D12 repre-

sentations as above or by assuming their vanishing VEVs.

For quark sector, we assign D12 charges as follows:

 Q1

Q2

 : 21, Q3 : 1++

 uc

cc

 : 22, tc : 1++,

 dc

sc

 : 21, bc : 1++ (5.50)

The tensor product of Q3(1++)×tc(1++) implies that it can couple to Hu
0 (1++),

leading to the coupling, viz. Eq. (5.39),

yu
1Hu

0 t̄LtR (5.51)

where yu
1 is the Yukawa coupling constant.
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On the other hand, since 22 Higgs does not exist,

Q3(1++)×

 uc

cc

(22)

cannot make D12 singlet, but

 Q1

Q2

(21)× tc(1++)

can couple to

 Hu
1

Hu
2

(21).

So, we consider the coupling

yu
3(H

u
2 ūLtR +Hu

1 c̄LtR) (5.52)

where we used Eq. (5.39). Consideration of

 Q1

Q2

(21)×

 uc

cc

(22)

allows its coupling, via Eq. (5.39), to

 H ′u
1

H ′u
2

(21) and

 H ′′u
1

H ′′u
2

(23),

i.e. the following Yukawa coupling

yu
4(H

′u
1 ūLcR +H ′u

2 c̄LuR)+ yu
5(H

′′u
2 ūLuR +H ′′u

1 c̄LcR). (5.53)
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These couplings are summarized by the following up mass matrix

M(u) =


yu

5H ′′u
2 yu

4H ′u
1 yu

3Hu
2

yu
4H ′u

2 yu
5H ′′u

1 yu
3Hu

1

0 0 yu
1Hu

0

 (5.54)

One can construct a desirable mixing matrix by taking the zero VEV of

(Hu
1 ,H

u
2 )

T , which represents (21 − 1++) quark mixing if not vanished. One may

also think of it as (Hu
1 ,H

u
2 )

T Higgs is forbidden by some kinds of symmetry. That

means, 1++ and 21 quarks are completely separated.

The D12 symmetry is broken down to a smaller symmetry generated by b, by

assigning the VEVs as

 Hu
1

Hu
2

(21) = vu

 1

1

 ,

 Hu
1

Hu
2

(22) = v′u

 1

1

 ,

yu
4

 H ′u
1

H ′u
2

(21) = wu

 1

1

 ,

yu
5

 H ′′u
1

H ′′u
2

(23) = zu

 1

1

 ,

yu
1Hu

0 = xu.

(5.55)

Not introducing Eq. (5.49) is equivalent to setting vu = 0 and v′u = 0 in the

mass matrix, and we consider only 22 vacuum and D12 is then broken down to D2

generated by a6 and ba6, where a and b are generators of D12 defined in Appendix.

Thus, the mass matrix becomes

M(u) =


wu zu 0

zu wu 0

0 0 xu

 (5.56)
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which is diagonalized by the following unitary matrix,

Uu =


1√
2

1
−
√

2
0

1√
2

1√
2

0

0 0 1

 (5.57)

Then, the mass eigenvalues appear as

M̃(u)2 =Uu(M(u)M(u)†
u )U†

u

=


(wu − zu)

2 0 0

0 (wu + zu)
2 0

0 0 x2
u

 (5.58)

which allow three independent mass values for the u,c, and t quarks. Calculating

the down type quark Yukawa couplings in the same way, we obtain

M(d) =


yd

5H ′d
2 yd

4H ′d
0 yd

3Hd
2

yd
4H ′d

0 yd
5H ′d

1 yd
3Hd

1

yd
2Hd

2 yd
2Hd

1 yd
1Hd

0

 (5.59)

The D12 symmetry is broken down to a D2 generated by ba and a6, by assign-

ing VEVs (for vd = 0) as

 Hd
1

Hd
2

(21) = vd

 e−iϕ

1

 ,

yd
5

 H ′d
1

H ′d
2

(22) = wd

 e−2iϕ

1

 ,

yd
1Hd

0 = xd , yd
4H ′d

0 = zd

(5.60)

where we choose ϕ = 2π
12 , the smallest angle with the dodeca-symmetry. Not intro-
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ducing Eq. (5.49) is equivalent to setting v = 0 in the mass matrix, and we obtain

the following d quark mass matrix,

M(d) =


wd zd 0

zd wde−2iϕ 0

0 0 xd

 (5.61)

which is diagonalized by the unitary matrix

Ud =


1√
2

− 1√
2
eiϕ 0

− 1√
2
e−iϕ 1√

2
0

0 0 1

 . (5.62)

Then, the diagonalized mass matrix squared becomes

M̃(d)2 =Ud(M(d)M(d)†)U†
d

=


w2

d + z2
d −2wdzd cosϕ 0 0

0 w2
d + z2

d +2wdzd cosϕ 0

0 0 x2
d

 (5.63)

Then, The CKM mixing matrix becomes

VCKM =UuU†
d =


e−iϕ/2cos ϕ

2 ieiϕ/2sin ϕ
2 0

ie−iϕ/2sin ϕ
2 eiϕ/2cos ϕ

2 0

0 0 1

 (5.64)

Note that the (11) element of VCKM gives the Cabibbo angle θC = ϕ
2 = 15◦.

123



그림 29: Double seesaw mechanism. Adopted from J. E. Kim and J. -C.
Park in [103].

5.2.3 Double seesaw mechanism model for the PMNS
matrix

To obtain the PMNS matrix, the seesaw mechanism should be used. Here, we

employ the special type, so called double seesaw mechanism. For this, we introduce

two kinds of heavy neutrinos, (n1,n2,n3) and (N1,N2,N3). In this double seesaw

mechanism, the Dirac flavor structure is screened in the neutrino mass matrix, and

hence the light-neutrino mass matrix becomes directly proportional to a heavy-

neutrino (n) mass matrix.

In the following renormalizable Yukawa couplings

f (lN)
IJ NIHνNLJ + f (Nn)

IJ NInJSnN + f (nn)
IJ nInJSn, (5.65)

we require the condition f (lN)
IJ ∝ f (Nn)

IJ . Such an (almost) exact proportionality could

arise in the context of GUT[103]. Suppose Li and ni belong to the same multiplet of

a larger gauge group, say, F1, and HνN and SnN belong to the same multiplet, say S.

Let F2 be the multiplet to which N neutrinos belong. Then both f (lN)
IJ NIHνNLJ and

f (Nn)
IJ NInJSnN come from the same interaction, SF1F2, with a common coupling

constant. If the see-saw scale is at the high energy scale so that the splitting of
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couplings are not so large, then f (lN)
IJ is almost the same as f (Nn)

IJ . For example, in

the SU(6) GUT model[104], one of right handed neutrino (n in this case) and lepton

doublet belong to the same representation, say 6M
, another right handed neutrino

N is an SU(6) singlet and S belongs to 6S representation. Then, the first two terms

in Eq. (5.65) have the same origin, f (6̄MN6S). When SU(6) is broken down to

SU(5)×U(1), splitting of the coupling f into f lN and f Nn occurs, at the order of
f 2

16π2 ln(Msee saw
MGUT

). Supposing Msee saw ∼ 1014 GeV , MGUT ∼ 1016 GeV, and f ∼O(1)

then the splitting effect is about 0.03, i.e. only 3 per cent. On the other hand, we

can also construct a term 15M 6̄M 6̄H to form the Yukawa coupling. As splitting

6̄M → 5̄M + n occurs, we obtain various terms where n couples to the SM matter

as well as to the as-yet-unobserved massive particles. Since the Yukawa coupling

of the SM particles (in the SU(5) language, y(10M 5̄M 5̄H)) should be present, it

might be hard to prevent all these terms toward the screening in the double see-

saw mechanism. But even in this case, the coupling y could be much smaller than

f since y < O(10−2), and the screening effects in double see-saw mechanism is

a very good approximation. For example, the τ lepton mass is about 1.8 GeV at

electroweak scale and therefore its Yukawa coupling is about 10−2. Since the RG

equation of each Yukawa coupling is proportional to the Yukawa coupling itself, we

expect that the correction from unified Yukawa coupling is small, y2

16π2 ln( MEW
MGUT

)∼

O(10−2 − 10−3), which means that y is still much smaller than the O(1) coupling

f even at the GUT scale.

We give the following D12 assignments for the SM leptons,

L1 : 1++,

 L2

L3

 : 21

ec : 1++,

 µc

τc

 : 21

(5.66)
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For the heavy-neutrinos whose mass matrix is proportional to the light-neutrino

mass matrix, we assign

 n1 + in2

n1 − in2

 : 22 n3 : 1++ . (5.67)

Note that we combined two Majorana neutrinos to make a complex field required

for a doublet representation of D12. We need not specify the representation content

of Ni if it applies to the double see-saw mechanism.

For charged lepton masses, we use the Higgs doublets presented in Eq. (5.47).

Then, the mass matrix of charged leptons is given by

M(l) =


yl

1H l
0 yl

2H l
2 yl

2H l
1

yl
3H l

2 yl
5H ′l

2 yl
4H ′l

0

yl
3H l

1 yl
4H ′l

0 yl
5H ′l

1

 (5.68)

The D12 symmetry is broken down to D2, generated by a6 and ba6, by assign-

ing the VEVs as

 H l
1

H l
2

(21) =vl

 −1

1

 , yl
5

 H ′l
1

H ′l
2

(22) = wl

 1

1

 ,

yl
1H l

0 = xl , yl
4H ′l

0 = zl .

(5.69)

Note that we introduced H l’s which are different from Hd’s. Not introducing Eq.

(5.49) is equivalent to setting v = 0 in the mass matrix, and the 1++ lepton and the

21 leptons are not mixed,

M(l) =


xl 0 0

0 wl zl

0 zl wl

 . (5.70)
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The charged lepton mass squared, MlM
†
l , is diagonalized by

Ul =


1 0 0

0 1√
2

− 1√
2

0 1√
2

1√
2

 . (5.71)

In models with the screening of the Dirac flavor structure in the neutrino mass

matrix, the light neutrino mass matrix is assumed to be proportional to the heavy n

neutrino mass matrix, M(ν) ∝ M(n). So the number of heavy Majorana neutrinos n

is the same as that of the SM doublet neutrinos ν. The SM singlet neutrinos n are

required to obtain masses by the VEVs of SM singlet Higgs fields S. So, the needed

SM singlet Higgs fields S is

Sn
0 : 1++, S′n0 : 1++, Sn

1

Sn
2

 : 21,

 S′n1

S′n2

 : 24

(5.72)

To forbid S to couple to charged leptons or quarks, we need to assign Z3

quantum number as stated. Therefore, S and n neutrinos have Z3 quantum number

−1.

Now, the neutrino mass matrix can be written as

M(ν) =


yn

42S′n0 + yn
5(S

′n
1 +S′n2 ) iyn

5(S
′n
2 −S′n1 ) yn

3(S
n
1 +Sn

2)

iyn
5(S

′n
2 −S′n1 ) yn

42S′n0 − yn
5(S

′n
1 +S′n2 ) iyn

3(S
n
2 −Sn

1)

yn
2(S

n
2 +Sn

1) iyn
2(S

n
2 −Sn

1) yn
1Sn

0


(5.73)

We require that the D12 symmetry is broken down to D2 generated by a3 and

127



ba (for vn = 0)

 Sn
1

Sn
2

(21) = vn

 e−iϕ/2

eiϕ/2

 ,

yn
5

 S′n1

S′n2

(24) = wn

 e−iϕ

eiϕ

 ,

yn
1Sn

0 = xn, yn
4S′n0 = zn

(5.74)

where ϕ = 2π
12 ×2 . Also, taking v = 0, we obtain

M(ν) =


2(zn +wncosϕ) −2wnsinϕ 0

−2wnsinϕ 2(zn −wncosϕ) 0

0 0 xn

 (5.75)

which is diagonalized by

Uν =


cos ϕ

2 −sin ϕ
2 0

sin ϕ
2 cos ϕ

2 0

0 0 1

 (5.76)

M̃(ν) =UνM(ν)U†
ν =


2(zn +wn) 0 0

0 2(zn −wn) 0

0 0 xn

 . (5.77)

The three independent neutrino masses can be fitted to the observed neutrino mass

ratios from the neutrino oscillation data.
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Therefore, the PMNS matrix is calculated as

VPMNS =UlU†
ν =


cos π

6 sin π
6 0

− 1√
2
sin π

6
1√
2
cos π

6 − 1√
2

− 1√
2
sin π

6
1√
2
cos π

6
1√
2

 . (5.78)

5.2.4 Vacuum stability in D12 breaking

The vacuum choices for desired quark and lepton mixing angles must be con-

sistent with the Higgs potential. Couplings between Higgs and their complex con-

jugates are restricted by SU(2)L ×U(1)Y ×U(1)Γ ×Z3 ×D12 where U(1)Γ is the

PQ symmetry and Z3 is the leptonic one discussed below Eq. (5.48). For example,

by the U(1)Y symmetry, HuHd and (HuH†
d )(H

†
u Hd) are allowed, whereas (HuH†

d )
2

is forbidden.

In Higgs potential, the most problematic terms are those containing D12 dou-

blets H ′d , Sn, and S′n, which have non-trivial phases so that we have to verify

whether our phase choice is not spoiled. By imposing another symmetry such as

the PQ symmetry or a Z2 symmetry, we can forbid the unwanted terms. We show

how this possibility is realized for D12 doublets. The potential containing D12 sin-

glets can be treated in the same way.

Consider the tree level Higgs potential made of D12 doublets. For the quartic
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tensor products, the following terms are allowed,

(H ′uH ′u)(H ′dH ′d), (H ′uH ′u)(H ′u†H ′u†)

(H ′uH ′u)(H ′u†H ′d), (H ′dH ′d)(H ′d†H ′d†)

(H ′dH ′d)(H ′d†H ′u), (H ′uH ′d)(H ′u†H ′d†)

(H ′uH ′d)(H ′u†H ′u), (H ′uH ′d)(H ′d†H ′d)

(H ′d†H ′u)(H ′u†H ′d), (H ′uH ′d)(H ′uH ′d)

(H ′u†H ′u)(H ′u†H ′u), (H ′d†H ′d)(H ′d†H ′d)

(H ′u†H ′u)(H ′d†H ′d)

(5.79)

and their Hermitian conjugates. Suppose we introduce the PQ charge +1 to both

H ′u and H ′d . H ′u might be replaced by H ′′u, but in this case the term such as

(H ′†
u H ′′

u )(H
′†
d H ′

d)+ h.c. do not minimize our vacuum phase choice. For both H ′u

and H ′′u not to appear in the same tree level quartic terms, we assign different PQ

charges to H ′u and H ′′u. Then, the following terms survive,

(H ′uH ′u)(H ′u†H ′u†), (H ′dH ′d)(H ′d†H ′d†)

(H ′uH ′d)(H ′u†H ′d†), (H ′d†H ′u)(H ′u†H ′d)

(H ′u†H ′u)(H ′u†H ′u), (H ′d†H ′d)(H ′d†H ′d)

(H ′u†H ′u)(H ′d†H ′d)

(5.80)

and terms with H ′u replaced by H ′′u. The Lagrangian contains the following terms,
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|H ′u
1 |2|H ′u

2 |2, |H ′u
1 |4 + |H ′u

2 |4

|H ′′u
1 |2|H ′′u

2 |2, |H ′′u
1 |4 + |H ′′u

2 |4

|H ′d
1 |2|H ′d

2 |2, |H ′d
1 |4 + |H ′d

2 |4

(|H ′u
1 |2 + |H ′u

2 |2)2, (|H ′u
1 |2 −|H ′u

2 |2)2

(|H ′d
1 |2 + |H ′d

2 |2)2, (|H ′d
1 |2 −|H ′d

2 |2)2

(H ′u
1 H ′d

1 )(H ′u†
1 H ′d†

1 )+(H ′u
2 H ′d

2 )(H ′u†
2 H ′d†

2 )

(H ′u
2 H ′d

1 )(H ′u†
2 H ′d†

1 )+(H ′u
1 H ′d

2 )(H ′u†
1 H ′d†

2 )

(H ′′u
1 H ′d

1 )(H ′′u†
1 H ′d†

1 )+(H ′′u
2 H ′d

2 )(H ′′u†
2 H ′d†

2 )

(H ′′u
2 H ′d

1 )(H ′′u†
2 H ′d†

1 )+(H ′′u
1 H ′d

2 )(H ′′u†
1 H ′d†

2 )

(H ′d†
2 H ′u

1 )(H ′u†
1 H ′d

2 )+(H ′d†
1 H ′u

2 )(H ′u†
2 H ′d

1 )

(H ′d†
2 H ′u

2 )(H ′u†
2 H ′d

2 )+(H ′d†
1 H ′u

1 )(H ′u†
1 H ′d

1 )

(H ′d†
2 H ′′u

1 )(H ′′u†
1 H ′d

2 )+(H ′′d†
1 H ′′u

2 )(H ′′u†
2 H ′d

1 )

(H ′d†
2 H ′′u

2 )(H ′′u†
2 H ′d

2 )+(H ′d†
1 H ′′u

1 )(H ′′u†
1 H ′d

1 )

(|H ′u
1 |2 + |H ′u

2 |2)(|H ′d
1 |2 + |H ′d

2 |2)

(|H ′′u
1 |2 + |H ′′u

2 |2)(|H ′d
1 |2 + |H ′d

2 |2)

(H ′′u†
2 H ′′u

1 )2 +(H ′′u†
1 H ′′u

2 )2

(5.81)

Our phase choice of VEVs must be consistent with the above potential. To inves-

tigate it in more detail, we pay attention to the last term. The other terms are not

introducing phases. Let δ1 and δ2 be phases of H ′′u
1 and H ′′u

2 , respectively. For Her-

miticity and D12 invariance, the coupling constant should be real. The last term

depends on phases through

cos(2(δ1 −δ2)) (5.82)
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and our vacuum choice δ1 = δ2 = 0 minimize it provided the coupling constant is

negative. It is worth to note here that, if at least one of two D12 Higgs doublets

were in the same representation, it is very hard to minimize the potential toward

the desired vacuum property. For example, suppose that both H ′u and H ′d are in the

same representation. In this case, the following terms are allowed.

(H ′u
1 H ′d

2 )(H ′u†
2 H ′d†

1 )+h.c. (5.83)

For the invariance under the generator b of D12, the overall coefficient must be

real. Let αu
1, αu

2, αd
1 , αd

2 be the phases of Higgs VEV of H ′u
1 ,H ′u

2 ,H ′d
1 , and H ′d

2 ,

respectively. So, this quartic term has the phase dependence cos(αu
1−αu

2−αd
1 +αd

2)

and our vacuum choice does not minimize it.

The quadratic terms allowed by gauge and PQ symmetries are, viz. Eq. (5.46),

H ′u†H ′u, H ′′u†H ′′u, H ′d†H ′d (5.84)

and their Hermitian conjugates. D12 singlets are

|H ′u
1 |2 + |H ′u

2 |2,

|H ′′u
1 |2 + |H ′′u

2 |2

|H ′d
1 |2 + |H ′d

2 |2 .

(5.85)

These quadratic terms may introduce negative mass squared toward achieving the

VEVs of neutral members of the Higgs doublets.

The forbidden terms at tree level can appear integrating out heavy fields whose

VEVs possibly break the assumed symmetries. These could be used to explain the

vacuum choice of H ′d and therefore explains how D12 can be the flavor symme-

try. For example, consider the quartic terms made of D12 doublet Higgs without
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conjugate (or starred) fields. Then, we have

1++ : (H ′u
2 H ′d

1 )(H ′u
1 H ′d

2 ), (H ′u
1 H ′d

1 )(H ′u
2 H ′d

2 ) (5.86)

1+− : (H ′u
1 H ′d

1 )2 +(H ′u
2 H ′d

2 )2 (5.87)

1−+ : (H ′u
1 H ′d

1 )2 − (H ′u
2 H ′d

2 )2 (5.88)

22 :

 (H ′u
2 H ′d

1 )2

(H ′u
1 H ′d

2 )2


 (H ′u

1 H ′d
2 )(H ′u

1 H ′d
1 )

(H ′u
2 H ′d

1 )(H ′u
2 H ′d

2 )


(5.89)

24 :

 (H ′u
2 H ′d

1 )(H ′u
1 H ′d

1 )

(H ′u
1 H ′d

2 )(H ′u
2 H ′d

2 )

 (5.90)

Note that the term given in Eq. (5.86) is forbidden by the PQ symmetry assigning

+1 to Hu′,Hd′ and +2 to Hu′′.

Let us introduce a D12 doublet 24 which is denoted as a SM singlet scalar Φ,

Φ =

 Φ1

Φ2

 : 24 (5.91)

Using Φ, the allowed quartic couplings are obtained. In addition, we note

• The dimension-5 D12 allowed couplings are

λ[Φ†
1(H

′u
2 H ′d

1 )(H ′u
1 H ′d

1 )+Φ†
2(H

′u
1 H ′d

2 )(H ′u
2 H ′d

2 )] (5.92)
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• The dimension-6 D12 allowed couplings are

ζ1Φ†
1Φ†

2(H
′u
2 H ′d

1 )(H ′u
1 H ′d

2 )+ζ2Φ†
1Φ†

2(H
′u
1 H ′d

1 )(H ′u
2 H ′d

2 )

+ζ3[Φ†2
2 (H ′u

2 H ′d
1 )(H ′u

1 H ′d
1 )+Φ†2

1 (H ′u
1 H ′d

2 )(H ′u
2 H ′d

2 )].

(5.93)

Here, 28 is shown to be equivalent to 24 by applying a D12 transformation b of Eq.

(5.33)

 0 1

1 0

 x1

x2

(28) : 24. (5.94)

Operators with dimension more than 7 are highly suppressed and hence they can

be ignored. All effective quartic terms coupling to Φ do not give the vacuum

we want to obtain. So, the unwanted terms must be forbidden by some symme-

try or at least highly suppressed. For example, if we choose the VEV of Φ as

1√
2
(exp(−i2π/3),1)T, only the dimension-5 operator is independent of the phase

choices given in Eqs. (5.55) and (5.60). However, this vacuum choice is dangerous.

With our discrete symmetry, a dimension-6 operator of the form

(Φ3
1 +Φ3

2)(Φ
†3
1 +Φ†3

2 ) (5.95)

is not forbidden. Moreover, this term favors the direction which makes ⟨Φ3
1⟩+

⟨Φ3
2⟩= 0. With this dimension 6 potential, our vacuum choice is not the minimum.

To forbid Eq. (5.92), we introduce a Z2 symmetry: Φ →−Φ.

Since dimension-5 operators are forbidden, we may choose an alternate direc-

tion Φ ∝ 1√
2
(1,exp(−iπ/3))T. Then, our vacuum choice corresponds to the mini-

mum.
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5.3 Realistic parameterizations for the PMNS
matrix

As shown in the previous section, the basic pattern of the PMNS matrix can be

explained in terms of non-Abelian discrete symmetry and seesaw model. However,

observed values show deviation from the discrete symmetric pattern. One important

issue is nonzero (13) element of the PMNS matrix. Vanishing this element implies

that one of the mixing angle is zero. In this case, if we neglect the Majorana phase,

lepton sector does not have CP violation in the weak interaction. Only when three

mixing angles do not vanish, the unremovable phase in the PMNS matrix, the Dirac

phase appear. Most model based on the non-Abelian discrete symmetry predicts

that θ13, or θ3 vanishes. However, subleading breaking effects of such symmetry

can introduce nonzero value. Nonzero Dirac phase can appear as the breaking effect

of the discrete symmetry with the phase.

Recently, the T2K collaboration reported a large θ13[105]. At the 90% confi-

dence limit, they report 0.03(0.04)< sin2 2θ13 < 0.28(0.34) for sin2 2θ23 = 1.0, |∆m2
23|=

2.4×10−3eV2, δ= 0 and normal(inverted) hierarchy. The BF points are 0.11(0.14).

The MINOS group also reported that a vanishing θ13 is disfavored[105]. Based on

the global neutrino data analysis shows a sizable θ13, as well as a deviation of θ23

from π/4. The best fit values in their analysis, which will be used in the estimation

here, are as follows[106]:

sin2 θ12 = 0.306(0.312), sin2 θ13 = 0.021(0.025), sin2 θ23 = 0.42. (5.96)

Nonzero θ13 is confirming in RENO, Daya Bay, and Double Choose[107]. Dou-

ble Chooz reports sin2 2θ13 = 0.086± 0.041(stat)± 0.030(syst), or, at 90% CL,

0.017< sin2 2θ13 < 0.16, Daya Bay reports sin2 2θ13 = 0.092±0.016(stat)±0.005(syst).

and RENO reports sin2 2θ13 = 0.103±0.013(stat)±0.011(sys)
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In this regard, we should put the correction to the discrete symmetry patterns.

Suppose the basic pattern provided by D12 symmetry[108]. With the traditional

Chau-Keung-Maiani parametrization, we obtain a parametrization where the mix-

ing of V23 and V33 is maximal. Kept to O(β), with the (13) element being of order

β, we have



1
2 (

√
3−β−

√
3

2 (1+B2)β2) 1
2 (1+

√
3β− 1

2 (1+B2)β2) Bβ

− 1
2
√

2
(1+

√
3(1+Be−iδ)β

−(A+ 1
2 +Be−iδ)β2)

1
2
√

2

(√
3− (1+Be−iδ)β

−
√

3(A+ 1
2 +Be−iδ)β2

) 1√
2
(1+(A− B2

2 )β2)e−iδ

1
2
√

2

(
eiδ +

√
3(eiδ −B)β

+([A− 1
2 ]e

iδ +B)β2
) − 1

2
√

2

(√
3eiδ − [eiδ −B]β

+
√

3([A− 1
2 ]e

iδ +B)β2
) 1√

2

(
1− (A+ B2

2 )β2
)

 (5.97)

With the BF values above (Eq. 5.96),

β = 0.062, B = 2.32, A = 1.28 (5.98)

and the CP phase δ = 0 as assumed in the measurement.

For the modified Kobayashi-Maskawa parametrization, giving O(β) correc-

tion to θ2,3 gives



1
2 (

√
3−β−

√
3

2 β2) 1
2

(
1+

√
3β− 1

2 (1+B2)β2
)

B
2 (1+

√
3β)β

− 1
2
√

2

(
1+(

√
3−A)β

−[ 1
2 + A2

2 +
√

3A]β2
)

1
2
√

2

(√
3− [1+

√
3A−2Be−iδ ]β

−(
√

3
2 (1+A2 +B2)

−A(1+2Be−iδ))β2
) − e−iδ

√
2

(
1− 1

2 (e
iδ√3B−2A)β

− 1
2 (A

2 +B2 − eiδ(
√

3A+1)B)β2
)

− eiδ
2
√

2

(
1+(

√
3+A)β

+[
√

3A− A2
2 − 1

2 ]β
2
)

eiδ
2
√

2

(√
3− [1−

√
3A+2Be−iδ ]β

− 1
2 [
√

3(1+A2 +B2)

+2A(1−2Be−iδ)]β2
)

1√
2

(
1+(

√
3

2 Beiδ −A)β

− 1
2 [A

2 +B2 + eiδB(1−
√

3A)]β2
)


(5.99)

and

β = 0.078, B = 3.3, A = 3.8. (5.100)
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Among the mixing angles obtained from the D12 model, θC = 15o, θsol = 30o

are deviated from measured values, θC ≃ 13o, θsol ≃ 33o. Such deviations, as well

as nonzero mixing angles which were zero in the model can be expressed in some

powers of β ≡ θsol−π/6. Especially, θ13 of the PMNS matrix can be parameterized

by θ13 = Bβ, where B ≃ 2. It might be a modest modification from θ13 = 0.

However, in terms of λ = sinθC, θ13 ≃ λ/
√

2 i.e. of order of λ. Since D12

model explains λ in the CKM matrix, it would be a good challenge to obtain θ13

in the context of D12. In this case, either M(l) or M(ν) have rather complicated

form. More than two Higgs would be responsible for one of the Yukawa matrix

elements and their VEV with phase might be fine-tuned. For example, to explain a

certain Yukawa matrix element proportional to λ, we have to express it in the form

of ⟨Hx +Hy⟩ where x, y are representations of D12 to which Hx,y belong, and take

VEVs as ⟨Hx⟩= vxexp(iπ/12) and ⟨Hy⟩=−vxexp(−iπ/12).

On the other hand, we may use the quark-lepton complementarity in other

way. We may set three mixing angles in the PMNS matrix by θ12 = θ23 = π/4,

θ13 = 0 and CKM matrix by identity at leading order. It would be implemented by

another discrete symmetry. Then, λ parameterizes the subleading effect of discrete

symmetry breaking. We can make λ expansion for PMNS matrix by setting solar

angle by θ12 = π/4− λ and expressing deviation of atmospheric angle θ23 from

π/4 and that of θ13 from zero by some powers of λ.

When the nonzero θ13 is confirmed, the next issue would be measuring the

Dirac phase δ, weak CP violation in the lepton sector. The Jalrskog determinant

can be measured from neutrino oscillation, as P(να → να′)−P(ν̄α → ν̄α′) is pro-

portional to the Jarlskog determinant. At leading order,

J =

√
3

8
|V13|sinδ. (5.101)

Before closing this section, we visit two more issues. We explain very small
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neutrino mass naturally using the seesaw mechanism. Seesaw mechanism predicts

the presence of Majorana mass term and in general, Majorana phase should appear.

Then the PMNS matrix should be modified by multiplying



1 0 0

0 eiα 0

0 0 eiβ


(5.102)

on the right side. Such phases can be measured through neutrinoless double beta

(0νββ)decay [109], (Z,A)→ (Z±2,A)+2e∓. The 0νββ decay rate is proportional

to the squared effective neutrino mass,

⟨mββ⟩2 = |
∑

i

V 2
eimνi |

2
(5.103)

and in terms of exact form of PMNS matrix element, it is given by

|c2
1m2

1 + s2
1c2

3eiαm2
2 + s2

1s2
3eiβm2

3|2 (5.104)

in the modified Kobayashi-Maskawa parametrization and

|c2
12c2

13m2
1 + s2

12c2
13eiαm2

2 + s2
13ei(β−δ)m2

3|2 (5.105)

in the Chau-Keung-Maiani parametrization.

On the other hand, in the early Universe, heavy neutrinos decay into the

leptons[47], and CP violation effect in decay can give rise to the lepton num-

ber asymmetry. This can transferred to the baryon number asymmetry through

sphaleron process. The SM extended to the seesaw mechanism preserves B− L.

At the quantum level, the SM fermions are chiral under the weak interaction so B
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N1

lβ

H

×
N1 ×Nα

lβ

H

lγ

H

N1

Nα

lβ

HH

lγ

× N1

Nα

lβ

HH

lγ

×

그림 30: Diagrams responsible for CP violating interference in the heavy
neutrino decay.

and L global symmetry is anomalous proportional to WµνW̃ µν. Then there are many

vacuums with different B+L winding numbers but even in this case, B−L is not

anomalous. If vacuum to vacuum transition takes place, The excess of lepton over

antilepton can transferred to that of baryon over antibaryon. In ordinary case, such

transition is made by tunneling so very suppressed. On the other hand, In the high

temperature, transition ‘over’(not tunneling) the potential barrier is possible, and

this is the sphaleron process[110]. Once baryon asymmetry is produced this should

be fixed as the Universe becomes the state of out-of-equilibrium. Such scenario is

leptogenesis. The CP violation in the lightest heavy neutrino decay from the inter-

ference between tree and loop effects depicted in Fig. 30 is given by [111]

ε ≡
∑

l

Γ(Na1 → Hl)−Γ(Na1 → H̄l̄)
Γ(Na1 → Hl)+Γ(Na1 → H̄l̄)

=− 3
16π

1
(Y †Y )a1a1

∑
b ̸=a1

Im
[ (Y †Y )ba1

Mb

]
(5.106)

where a1 is the index for the lightest heavy neutrinos. When neutrino is diagonal-

ized from the seesaw mechanism,

m̃ν = Lν(−Y M−1
N Y T )LT

ν (5.107)
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where Lν is what appears in the PMNS matrix V = LlL
†
ν. Then, Yukawa matrix Y

is diagonalized in the form of Ỹ = LνY U−1
N where UN is unknown unitary ma-

trix. Then the combination Y †Y in ε does not depend on Lν. That means, what we

know from ground observation can be irrelevant for the leptogenesis. Of course, ε

is just the total decay rate, and if we consider decay to lepton in each flavor sepa-

rately, PMNS matrix parameter can appear in the leptogenesis. Even in this case,

by arbitrariness of the UN , leptogenesis is very insensitive to the PMNS matrix

parameters[112]. To see this explicitly[113], note that unitary matrix can be writ-

ten in the form, U = exp(iϕ)PUKMQ, where P and Q are diagonal matrices in the

form of diag.(1,exp(iϕ′),exp(iϕ′′), · · ·) and UKM is the CKM matrix type unitary

matrix. With n generations, each of P and Q has (n− 1) independent phases and

UKM has (1/2)(n−1)(n−2) independent phases. Hence, n×n unitary matrix has

(1/2)n(n+1) phases in total, and Yukawa matrix

Y = LνỸ UN ≡ (eiϕνPνLKMQν)Ỹ (eiϕN PNUKMQN) (5.108)

seem to have n(n + 1) degrees of freedom. However, as Pν,N , Y , and Qν,N are

diagonal, so commute with each other. Then QνỸ PN can be written in the form

of P′Ỹ . On the other hand, overall phases exp(iϕν,N) and Pν are absorbed by field

redefinitions. Therefore, 2+(n− 1)+ (n− 1) = 2n phases are eliminated, Ỹ has

n(n−1) phases in total. Among them, (1/2)(n−1)(n−2) phases in Lν is the Dirac

phase and n−1 phases in P′ is the Majorana phases in the PMNS matrix. We have

more phases which affect the CP violation in the heavy neutrino decay.

Other ways to parameterizing extra degrees of freedom are possible. For ex-

ample, in the basis where MN is diagonalized, m̃ν =−LνY M̃−1
N Y T LT

ν , we separate

M̃−1
N into M̃−1/2

N M̃−1/2
N and m̃ν into m̃1/2

ν m̃1/2
ν . Then we can rewrite the diagonal-

ized neutrino mass as 1 = OOT where O = m̃1/2
ν LνỸ M̃−1/2

N is the complex unitary

matrix[114].
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제 6장

Conclusion

In this thesis, we considered the two problems in the SM mainly in light of fla-

vor dependent symmetry. To make the electroweak gauge symmetry SU(2)L×U(1)Y

spontaneously broken, we need the scalar charged under this gauge symmetry, the

Higgs. But such fundamental scalar mass at electroweak scale requires large fine

tuning between electroweak scale and Planck scale. As a solution to this hierarchy

problem, we employ the supersymmetry(SUSY), symmetry between the bosons

and fermions. We firstly observed the SUSY model explaining the LHC results

which may be interpreted as evidence of the Higgs scalar. We investigate the CP

even and odd Higgs mass by combining SUSY with the Peccei-Quinn symme-

try, which is introduced to explain very small CP violation in the strong interac-

tion. However, direct evidence for SUSY has not been found yet. Exclusion of the

squarks in the sub TeV scale threatened the motivation of low energy SUSY as a

solution of the hierarchy problem. As a viable possibility of low energy SUSY, we

considered the effective SUSY, only the third generation squarks, responsible for

the stable the Higgs mass at electroweak scale, have the mass of the sub TeV. As

a model for it, we introduce extra U(1)′ gauge group under which the third gener-

ation quark and the Higgs superfields are not charged. As SUSY breaking in the

hidden sector come to the visible sector through U(1)′ interaction, effective SUSY

can be easily obtained. Moreover, it may be related to the flavor structure, the sec-

ond problem of the SM we considered. The mass hierarchy and structure of mixing

matrices, the CKM and the PMNS matrices cannot be understood in the context of

the SM only, as the SM gauge group is flavor universal. We observed that Cabibbo

141



angle expansion or λ = sinθC expansion of the CKM matrix can be a hint for flavor

dependent symmetry based on the Froggatt-Nielsen mechanism. Flavor structure

has many ambiguities, so we try to find the important feature of the CKM matrix.

Especially, focusing on the maximal CP violation, we suggest the parametrization

of the CKM matrix which shows it apparently. We interpret λ expansion and CP

violating phase as breaking effects of basic pattern provided by flavor dependent

symmetry and consider the structure of the CKM and the PMNS matrix based on

the non-Abelian discrete symmetry D12. We more discuss nonzero θ13, which may

be observed in the present experiments.

Such studies require more analysis in detail, and the model can be changed

for consistency with future experiments. On the other hand, low energy models we

considered here give some questions. First, in many models concerning the physics

at high energy scale, intermediate scale between 108 ∼ 1012GeV appears. Seesaw

scale, Peccei-Quinn scale, and messenger scale in SUSY breaking are their exam-

ples. Some of them are used to explain very small scale in terms of intermediate

and high energy scale, so in this case, we put the problem at the electroweak scale

or below to the unobserved scales. But the fact that these scales are concentrated

in such ranges may imply that many problems in the SM are not separated with

each other but related. Building model for each phenomena, we have to introduce

many symmetries and exotic particles and in many cases, but it looks rather com-

plicated. As we consider the GUT for simpler gauge group than the SM gauge

group SU(3)c×SU(2)L×U(1)Y , we may ask of the existence of simpler, and unified

feature of physics beyond the SM. If flavor dependent symmetry is what Nature

really has, we should ask why such symmetries are broken at such intermediated

scale and whether it could be understood in a unified way with the symmetries in

the SM. In the regard, thinking of origin of such symmetries may have important

meaning.

We hope future experiments can give hints for such questions.
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Abstract

입자의종류마다다른대칭성에
관한연구

Min-Seok Seo

Department of Physics & Astronomy

The Graduate School

Seoul National University

본 논문에서는, 표준모형으로 설명하지 못하는 입자 물리의 문제들을

다루기 위하여 다양한 대칭성, 주로 입자의 종류마다 다른 대칭성을 이용한

표준모형의확장을논의한다.우선,위계문제에대한설명으로,초대칭을도

입한다. 전약 상호작용이 깨지는 스케일의 근원을 페차이-퀸 대칭성에 의한

다음으로 최소인 표준모형의 초대칭 확장으로 이해한다. 위계 문제를 푸는

가장 간단한 경우로, 세번째 세대 짝쿼크들이 가벼운 유효초대칭을 다룬다.

유효초대칭에서의 짝쿼크 질량들은 입자의 종류다마 다른, 즉 세번째 세대

에작용하지않는 U(1)′ 대칭성을도입하여설명한다.이러한입자마다다른

대칭성은 입자들의 질량 위계와 섞임을 설명하는데 중요한 역할을 한다. 특

히,섞임행렬은최대 CP깨짐과같은고유한특징을반영한기술로이해할수

있다.섞임각들은입자종류마다다른대칭성으로설명할수있다. D12 군을

이용하여 카비보각 15o, 태양섞임 30o, 대기 섞임 45o 를 얻는다. 이들 값은

어느 정도 크기를 가지는 θ13 등 최근 중성미자 실험 결과에 의하여 수정되

어야한다.본논문에서다루었듯이,입자종류마다다른대칭성은표준모형
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너머의새로운물리가될수있다.

Keywords : 표준모형, 대칭성, 플래버에 의존하는 대칭성, 초대칭, 힉스, 불

연속대칭성,섞임행렬

Student Number : 2006-20333
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하려고 했고, 때로는 지극히 자기 중심적으로 가다가 때로는 완전히 반대로

가려고하는일이여러번있었던것같습니다.그런여러과정을거치면서꽤

주변에대해멋지게이해하고있다고생각되기는하지만곧바로다시궁금한

것이생겼지요.제가몸담고있는입자물리를생각해보면정말인간이이런

것을생각해낼수있구나하고감탄하면서도어떨때는내가하고있는일이

정말 자연을 이해하는 ‘옳은’ 방향일까 하는 의문이 들기도 합니다. 그래서

괴테가 이야기했듯이 인간은 노력하면 할 수록 헤매는 법일지도 모르겠습

니다. 정말 물리 공부를 한다고 느끼는 것은, 제 생각에는 단순하게 뭔가를

찾아내는 것에서 즐거움을 느끼는 것이 아니라 정말 그것이 무엇을 의미하

는지,어떤 ‘전체’가뒤에있는지궁금해하는것이아닐까싶습니다.그래서

그것에 충실하자고 노력을 해 온 것 같지만, 그다지 만족스럽다고 생각하지

는 않습니다. 때로는 앞에 있는 것에 너무 신경을 쓰다가 옆에 있는 볼만한

것들을 지나치기도 했고, 많은 것을 포기한 것 같기도 합니다. 인간 관계가

넓은 것도 아니고 그렇다고 좋은 인상을 주는 사람이 된 것도 아니고. 아주

똑똑해서 튀는 사람도 아닌데 그나마 ‘이해’를 하기 위해 헤매다 보니 어떨



때는질문을던지는방법도잊어버린것같습니다.어떨때는선택한것도만

족스럽지않고놓친것도많은데내가정말가지고있는것이무엇일까하는

생각이들기도합니다.정말제대로헤매고있는것같지요.그길이어디까지

갈지, 제 삶에 어떤 결과를 줄지는 저도 모르겠습니다. 항상 그런 불안함을

가지면서도앞으로갈수밖에없는것이인생일까요.

제가이렇게모자란점이많음에도이정도나마할수있었던것은많은

분들의 도움이 있었기 때문입니다. 사람과 사람의 만남 혹은 사람과 사람의

관계에는사람의힘만으로는할수없는어떤것이있는것이아닐까하는생

각이 듭니다. 앞으로도 많은 사람들과 만나고 많은 관계가 만들어지겠지만,

지금까지의일들을생각해보면감사하고싶은분들이참많은것같습니다.

우선저와 30여년동안함꼐해주신엄마께가장감사드립니다.그동안

많은힘드신일이있었음에도저를항상먼저생각해주셨고공부이외의일

로불편함이없도록많은것을도와주셨습니다.이제건강도챙기시고여유를

많이가지셨으면합니다.매일보지만매일걱정되고매일생각이나게됩니

다. 저도 자신 있게 엄마의 좋은 아들이라고 말할 수 있다면 참 좋겠습니다.

언제가될지몰라서안타깝지만노력해보겠습니다.

누나도이제직장생활에어느정도안정되어가는것같아서다행입니

다.좋은인연만나서행복하게사시길,

6년동안지도교수님으로써많은도움을주신김형도교수님께도감사

드립니다.제가모자람이많은사람이라그다지이해가빠른사람이아닌데,

이것저것설명해주실때많은인내심을발휘하신것같습니다.

대학원생활동안아마가장큰영향을미치신분이라면김진의교수님

이겠지요.평소때감사하다는말을많이못한것같아서죄송합니다.같이연

구하면서여러가지많은것을가르쳐주셨고,제가가지고있는입자물리에

대한관점에가장많은영향을주셨습니다.입자물리에대한여러가지이야

기를 듣고 논문을 쓰면서이것 저것 찾아보고 의논할 때가 대학원 생활에서

가장재미있었던순간이었던것같습니다.생각해보니 gmail에있는편지들

의 90%가교수님과교환한것들이군요.어리버리한저에게많은배려를해



주신것도정말감사합니다.

바쁘신 와중에 심사에 참여해 주신 교수님들도 계셨습니다. 최기운 교

수님께서는졸업논문의초대칭과 Higgs에관한논의에많은도움을주셨습

니다. 오류를 바로잡고 놓친 부분을 생각할 수 있게 되어 정말 감사합니다.

이수종교수님과이원종교수님,김수봉교수님께도감사드립니다.

대학원 생활을 해 오면서 연구원으로, 혹은 선배로 서울대를 거쳐가신

많은 분들이 계셨습니다. 계범석 교수님, 박성찬 교수님, 신서동 박사님, 이

현민박사님,최기영교수님,최강신교수님과는많은주제에대해이야기할

기회가 있었고, 그때마다 많은 것을 배울 수 있었습니다. 앞으로 논문 쓸 기

회가있었으면하는생각이듭니다.금용연교수님,김연우박사님모두배울

것이많은분들인데제대로물리이야기해볼기회가많이없어서많이아쉽

습니다. 박종철 박사님, 허지행 박사님, 배규정 박사님, 김도윤 박사님, 김지

훈박사님모두연구실선배로많은도움을주셨던것같습니다.모두계실때

연구실분위기가 많이 떠들썩 해서 한편으로는이렇게 말을많이해도될까

하는생각도들고,한편으로는뭔가한다는것이생산적인것같아서좋기도

했습니다. 입자물리를 하는 분들이야 워낙 개성이 많다보니 그런 것일까요.

후배로써 헛소리도 하고 해서 좀 답답하셨을지도 모르겠는데, 저도 이제 벌

써 졸업할 때가 되고 나니 제가 아직도 모르는 것이 너무 많은 것이 아닌가

하는생각마저듭니다.

후배인모도영과곽혜정,정태현의건승을바랍니다.좋은연구주제를

찾고좋은연구를할수있기를.그리고좀더깊은생각을할수있기를바라

며...

입자물리를하면서많은만남이있어왔고,저에게영향을주신분들도

참많은것같습니다.학부때부터많은것을보여주신송재원선배,제연구실

혹은옆방등에서열심히일하고있는박재성,배진범씨,곽승호씨,김재원씨,

김희연씨등,격자이론방에서저는잘모르는세계를공부해오신김형진씨,

윤보람씨, 김장호 등등... 일일이 적기 힘든 많은 사람들과많은이야기를 해

왔고,인간적으로나학문적으로나여러가지감사할점이많은것같습니다.



이제저도졸업을합니다.앞으로어떻게될지,궁금하기도하고걱정되

기도 하지만, 1학년 때 천문학을 가르쳐 주시며 깊은 인상을 남기신 홍승수

교수님말씀대로일단코가가리키는방향으로한번가보려고합니다.인생

이불안하면서도재미가있는점은아마예측하기참힘들다는점이겠지요.
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