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ABSTRACT 
 

Iron is an important cofactor for a wide variety of proteins involved in the major  

life processes, such as respiration and tricarboxylic acid cycle, DNA replication 

and repair, and nitrogen fixation. The essential redox-active property of iron that 

enables facile switch between ferric (Fe3+) and ferrous iron (Fe2+) also renders 

toxicity via generating reactive oxygen species. Therefore, most organisms are 

equipped with regulated mechanisms to maintain optimal intracellular levels of 

iron. 

In the fission yeast Schizosaccharomyces pombe, two repressors Php4 and Fep1 

regulate iron-dependent expression of genes for iron usage/storage and 

acquisition, respectively. The iron-sensing depends on the CGFS-type monothiol 

glutaredoxin Grx4 that binds Fe-S cluster in a homodimer or in a heterodimer with 

a BolA-type protein Fra2. Under iron-rich condition, Grx4 binding to Php4 causes 

its cytosolic sequestration, resulting in the induction of iron usage/storage genes. 

Grx4 also binds Fep1 regardless of iron availability. Under iron-starved condition, 

Grx4 and Fra2 inhibit Fep1 repressor activity, resulting in derepression of iron 

acquisition genes. 

Fep1, a GATA-family transcription factor, binds to the promoter regions of 

genes for iron acquisition, such as reductive iron import (fio1+, frp1+), siderophore 

transport (str1+, str2+, str3+), and  vacuolar transport (abc3+), to avoid iron 

overload under iron-rich conditions. The N-terminal DNA-binding domain of 

Fep1 contains four conserved cysteines located between the two zinc finger motifs. 

It has been demonstrated that the N-terminal 241 aa residues of Fep1 can bind to 

the target promoters in vivo under iron-replete condition. Through this N-terminal 
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domain, Fep1 is known to interact with the monothiol glutaredoxin domain of 

Grx4 under iron-starved condition. Under iron-starved condition, Fep1 is released 

from binding to its target sites, inducing iron uptake genes. Fep1 orthologs are well 

conserved, especially in the DNA binding domain, across filamentous fungi, such 

as Ustilago maydis (Urbs1), Neurospora crassa (SRE), Histoplasma capsulatum (Sre1), 

Aspergillus spp. (SREA), Candida albicans (Sfu1), and Cryptococcus neoformans (Cir1). 

Even though the function and interaction partners of Fep1 have been elucidated 

extensively in S. pombe, the molecular basis by which Fep1 is inactivated under 

iron starvation remains unknown. In this study, to elucidate the mechanism 

behind iron-sensing by Fep1, I pursued biochemical and spectroscopic analyses of 

Fep1, in full length and truncated forms, as isolated or reconstituted proteins, with 

the wild type or substituted cysteine mutations. Evidences are presented that Fep1 

binds iron, in the form of Fe-S cluster. Spectroscopic and biochemical analyses of 

as isolated and reconstituted Fep1 suggest that the dimeric Fep1 binds Fe-S clusters. 

Iron to acid-labile sulfide stoichiometry of purified Fep1-N238 was roughly 1 : 1 in 

both before and after chemical reconstitution. Furthermore, the reconstitution of 

the His-tagged Fep1-N238 requires not only iron donor but also sulfide donor, 

indicating that Fep1 binds [Fe-S] clusters. The mutation study revealed that the 

cluster-binding depended on the conserved cysteines located between the two zinc 

fingers in the DNA binding domain. EPR analyses revealed [Fe-S]-specific peaks 

indicative of mixed presence of [2Fe-2S], [3Fe-4S], or [4Fe-4S]. Overall, the finding 

that Fep1 is an Fe-S protein fits nicely with the model that the Fe-S-trafficking Grx4 

senses intracellular iron environment and modulates the activity of Fep1.  

 

Key Words 

; Monothiol glutaredoxin, Iron homeostasis, Fe-S cluster, Fep1, EPR 
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I.1. Iron homeostasis and disease 

Iron is an important cofactor for a wide variety of proteins involved in the major 

life processes, such as respiration, tricarboxylic acid cycle, DNA replication and 

repair, and nitrogen fixation (Kaplan & Ward, 2013). In high concentrations, 

however, the essential redox-active property of iron that enables facile switch 

between ferric (Fe3+) and ferrous iron (Fe2+) also renders toxicity via generating 

reactive oxygen species. Therefore, most organisms are equipped with regulated 

mechanisms to maintain optimal intracellular levels of iron. Because of the low 

bioavailability of iron, iron deficiency is the most common and widespread 

nutritional disorder in the world (Zimmermann & Hurrell, 2007). At the other 

extreme, iron overload diseases are common systemic iron disorders primarily 

caused by mutations in proteins that sense, regulate, or mediate iron absorption 

from the gastrointestinal tract (Fleming & Ponka, 2012, Nairz & Weiss, 2006). 

Increased iron absorption and storage leads to excessive iron accumulation in 

various organs (mainly liver, heart, and pancreas) causing progressive organ 

damage and increased mortality as a consequence of elevated oxidative stress. In 

addition to systemic iron disorders, numerous human diseases have also been 

linked with iron dysregulation at the cellular level. For example, specific defects in 

Fe-S cluster biogenesis factors lead to Friedreich’s ataxia, X-linked sideroblastic 

anemia, sideroblastic-like microcytic anemia, and myopathy (Sheftel, Stehling et 

al., 2010, Ye & Rouault, 2010).  

The fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe have proven to 

be effective models for studying eukaryotic iron homeostasis at the cellular level. 

Despite their relative simplicity, biochemical and genetic studies in yeast have 

been critical for identifying proteins required for iron uptake, intracellular iron 

transport and mobilization, and heme and Fe-S cluster biogenesis in higher 

eukaryotes (Askwith & Kaplan, 1998, De Freitas, Wintz et al., 2003, Lill & 
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Muhlenhoff, 2008, Wingert, Galloway et al., 2005). Furthermore, genome-wide 

studies in yeast have revealed how eukaryotic cells adapt to both iron deficiency 

(Philpott, Leidgens et al., 2012) and iron overload (Jo, Loguinov et al., 2008, Lin, Li 

et al., 2011). In addition, yeast studies have been pivotal in defining the 

pathophysiology of human diseases of iron metabolism, such as Friedreich’s ataxia 

and aceruloplasminemia (Bleackley & Macgillivray, 2011, Lodi, Tonon et al., 2006, 

Pandolfo & Pastore, 2009, Rouault & Tong, 2008). 

 

I.2. Regulation of iron homeostasis in 

Schizosaccaromyces pombe 

I.2.1. Fep1, the iron-regulatory GATA-type repressor 

In the fission yeast S. pombe, two repressors Php4 and Fep1 regulate iron-

dependent expression of genes for iron usage/storage and acquisition, 

respectively (Brault, Mourer et al., 2015, Labbe, Khan et al., 2013, Mercier, Pelletier 

et al., 2006, Pelletier, Beaudoin et al., 2003). Fep1, a GATA-family transcription 

factor, binds to the promoter regions of genes for iron acquisition, such as 

reductive iron import (fio1+, frp1+), siderophore transport (str1+, str2+, str3+), and 

vacuolar transport (abc3+), to avoid iron overload under iron-rich conditions (Fig 

I-1). The N-terminal DNA-binding domain of Fep1 contains four conserved 

cysteines located between the two zinc finger motifs (Brault et al., 2015, Labbe et 

al., 2013). It has been demonstrated that the N-terminal 241 aa residues of Fep1 can 

bind to the target promoters in vivo under iron-replete condition (Jbel, Mercier et 

al., 2009). Through this N-terminal domain, Fep1 is known to interact with the 

monothiol glutaredoxin domain of Grx4 under iron-starved condition (Jbel, 

Mercier et al., 2011). Repression by DNA-bound Fep1 requires recruitment and 

binding of the co-repressors Tup11 and Tup12 in an iron-independent manner, 

and deletion mapping studies have delineated the Tup11 interaction domain in the 
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Fig I-1. Models for the regulatory action of iron-responsive transcription 

factors in response to levels of iron (Brault, A et al., 2015) 

A. In S. pombe, Fep1 interacts with GATA elements in promoters of php4+ and iron 

transport genes. Fep1 represses target gene transcription with the help of the 

corepressor Tup11 or Tup12. In this context, Fra2 may participate in the 

dissociation of the GRX domain (of Grx4) from the N-terminal portion of Fep1 by 

forming a [2Fe-2S] (red circle) Fra2-GRX domain heterodimer, allowing the N-

terminus of Fep1 to be free and available for binding to chromatin and repressing 

transcription. Under conditions of iron excess (Fe+), Grx4 acquires an [2Fe-2S] 

cluster that would in turn trigger the interaction between the GRX domain (of Grx4) 

and the C-terminal region of Php4. This interaction between the GRX domain and 

Php4 would disrupt the Php4/Php2/Php3/Php5 heteromeric complex, leading to 

Php4 release and inactivation. The Grx4-mediated inactivation of Php4 would lead 

to its recruitment by the exportin Crm1 and then to its subsequent export from the 

nucleus to the cytoplasm. The absence of Php4 enables fep1+ and iron utilization 

genes to be expressed through the CCAAT-binding core complex that is composed 

of Php2, Php3, and Php5.  

B. Grx4 and Fra2 are inhibitory partners of Fep1, blocking its association with 

chromatin and preventing its repressive effect on target gene expression. In the 

absence of iron (Fe-), Php4 forms a complex with Php2, Php3, Php5, and Grx4. 

Because only the TRX domain of Grx4 interacts with Php4, this leaves the 

repression domain of Php4 available to repress several genes, including fep1+ and 

several others encoding iron-using proteins. Php4 nuclear import is mediated by 

distinct karyopherins, namely Imp1, Cut15, and Sal3. 



5 

 

 

 

 

 



6 

 

C-terminus of Fep1 (Fig I-2) (Znaidi, Pelletier et al., 2004). The C-terminus of Fep1 

also contains a dimerization domain that is required for efficient repression of Fep1 

target genes (Pelletier, Trott et al., 2005). Under iron-starved condition, Fep1 is 

released from binding to its target sites, inducing iron uptake genes (Jbel et al., 

2009). Fep1 orthologs are well conserved (Fig I-2), especially in the DNA binding 

domain, across filamentous fungi, such as Ustilago maydis (Urbs1) (An, Mei et al., 

1997), Neurospora crassa (SRE) (Zhou, Haas et al., 1998), Histoplasma capsulatum 

(Sre1) (Chao, Marletta et al., 2008), Aspergillus spp. (SREA) (Haas, Zadra et al., 1999, 

Schrettl, Kim et al., 2008), Candida albicans (Sfu1)(Lan, Rodarte et al., 2004), and 

Cryptococcus neoformans (Cir1) (Jung, Sham et al., 2006). 

 

I.2.2. Php4, a key regulator for iron economy 
The transcriptional repressor Php4 also controls iron homeostasis in S. pombe by 

regulating expression of genes involved in iron-dependent metabolic pathways. 

Php4 binds to a heterotrimeric protein complex composed of Php2, Php3, and 

Php5. Under iron replete conditions, Php4 is not expressed and the 

Php2/Php3/Php5 complex activates expression of its target genes by binding to 

CCAAT sequences in their promoters (Fig I-1A). Php2/Php3/Php5-regulated 

genes encode proteins involved in iron-dependent metabolic pathways such as 

iron-sulfur cluster biogenesis, heme biosynthesis, the mitochondrial electron 

transport chain, and the tricarboxylic acid cycle (Mercier et al., 2006). Under low 

iron conditions, Php4 is expressed and binds to the Php2/Php3/Php5 complex, 

causing it to switch from an activator to a repressor (Fig I-1B). Thus, iron-utilizing 

pathways are downregulated as an iron sparing response to lower bioavailable 

iron. 

Php4 itself is regulated at the transcriptional level by Fep1 since the php4+ gene 

contains GATA elements within its promoter (Mercier et al., 2006). When iron 
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Fig I-2. Domain comparisons of GATA-type iron regulatory transcription 

factors (Brault, A et al., 2015). 

ZF1 and ZF2 (red) are the N-terminal and C-terminal GATA-type zinc finger 

motifs, respectively. Four highly conserved Cys residues, denoted Cys-rich region 

(blue). A conserved coiled-coil region (black). Putative NLSs are indicated in green. 

Regions of Fep1 that interact with the GRX and TRX domains of Grx4 as well as 

with the corepressor Tup11 are indicated within brackets. 
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levels are high, Fep1 binds to the promoter of php4+ and represses the 

transcription of php4+ (Fig I-1A). When iron levels are low, Fep1 is unable to 

inhibit php4+ transcription and Php4 is subsequently expressed, allowing it to 

repress iron-utilizing pathways via the Php2/Php3/Php5 complex (Fig I-1B). A 

genome-wide DNA microarray study also revealed that the fep1+ gene contains 

CCAAT cis-acting elements in its promoter region and is downregulated in a 

Php4-dependent manner in response to iron deprivation (Fig I-1B) (Mercier, Watt 

et al., 2008). This reciprocal regulatory loop between two iron-responsive 

repressors through mutual control of each other’s expression allows direct 

crosstalk between iron acquisition and iron utilization pathways to fine tune iron 

homeostasis in S. pombe.  

  

I.2.3. Roles for Grx4 in iron homeostasis in S. pombe 

The activities of both Fep1 and Php4 are controlled at the post-translational level 

by S. pombe Grx4, a member of the multidomain CGFS Grx subfamily. Grx4 is 

required to regulate the activity of both Fep1 and Php4 through specific protein-

protein interactions.  

Fep1 is regulated through Grx4 at the post-translational level (Jbel et al., 2011, 

Kim, Kim et al., 2011). Grx4 was shown to constitutively interact with Fep1; 

however, the Fep1-Grx4 complex resides in the nucleus regardless of iron status 

inside the cell. Under iron-starved condition, Grx4 and Fra2 inhibit Fep1 repressor 

activity, resulting in derepression of iron acquisition genes. When iron is abundant, 

Grx4 is unable to inhibit Fep1 repressor function, although it still physically 

interacts with Fep1 (Fig I-1A) (Jbel et al., 2011, Kim et al., 2011). 

Deletion of grx4 leads to constitutive repression of both Php4- and Fep1-

regulated genes and constitutive nuclear localization of Php4 (Fig I-3) (Jbel et al., 

2011, Kim et al., 2011, Mercier & Labbe, 2009). Yeast two-hybrid and bimolecular 
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Fig I-3. A schematic model of iron-dependent regulation of Fep1 

repressor activity. 

[Fe-S]-binding Grx4-Fra2 has been reported to bind Fep1. In the presence of 

sufficient iron, Fep1 represses genes for iron acquisition. Under iron starvation, 

Fep1 repressor activity is inhibited by Grx4 and Fra2, de-repressing iron 

acquisition genes. Whether iron binds to Fep1 as a mononuclear form or as an Fe-

S cluster is under question. 
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fluorescence complementation experiments established that Grx4 physically 

interacts with Php4 regardless of cellular iron levels. However, under iron-replete 

conditions Grx4 promotes Php4 export to the cytosol by facilitating direct 

interaction with the nuclear exportin Crm1 (Fig I-1A). 

 

I.3. CGFS monothiol glutaredoxins  
Glutaredoxins (Grxs) were initially identified as members of the thioredoxin (Trx)-

fold family that catalyze thiol-disulfide exchange reactions in a glutathione (GSH)-

dependent manner via a conserved CPY/FC active site (Lillig, Berndt et al., 2008). 

Classical dithiol Grxs that utilize a dithiol mechanism to reduce intramolecular 

disulfide bonds require both cysteines for catalytic activity, while Grxs that 

catalyze glutathionylation/deglutathionylation reactions via a monothiol 

mechanism require only the N-terminal active site Cys (Fernandes & Holmgren, 

2004). With the increasing number of sequenced genomes, several Grxs with 

divergent active site sequences have been identified, thus requiring an updated 

phylogenetic classification for the Grx family (Couturier, Jacquot et al., 2009). The 

most widespread Grxs present in both prokaryotes and eukaryotes are grouped in 

Class I, which includes the classical dithiol Grxs, and in Class II, which are defined 

as monothiol Grxs with a conserved CGFS active site. CGFS-type monothiol Grxs 

can be further classified into two groups: single domain CGFS Grxs and 

multidomain CGFS Grxs with an N-terminal Trx-like domain and one or more 

Grx-like domains (Fig I-4). 

Unlike Class I Grxs, CGFS Grxs have little or no thiol-disulfide oxidoreductase 

activity when tested with standard Grx model substrates (Fernandes, Fladvad et 

al., 2005, Ken, Chen et al., 2011, Mesecke, Mittler et al., 2008, Tamarit, Belli et al., 

2003, Zaffagnini, Michelet et al., 2008). However, the CGFS active site is required 
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Fig I-4. Domain structure of CGFS monothiol Grxs from E. coli, S. 

cerevisiae, S. pombe, and H. sapiens (Li, H et al., 2012) 

The Trx-like domains and Grx-like domains are shown as purple and blue boxes, 

respectively. The conserved cysteines in the active sites of the Trx and Grx domains 

are numbered and shown in yellow. Predicted or known mitochondrial targeting 

signals are shown as pink boxes. 
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for a different purpose: coordination of a [2Fe-2S] cluster. Both single and 

multidomain CGFS Grxs form [2Fe-2S]2+-bridged homodimers with all-cysteinyl 

ligation provided by the two CGFS active sites and two GSH molecules 

(Bandyopadhyay, Gama et al., 2008, Haunhorst, Berndt et al., 2010, Iwema, 

Picciocchi et al., 2009, Li, Mapolelo et al., 2009, Picciocchi, Saguez et al., 2007, Ye, 

Jeong et al., 2010, Yeung, Gold et al., 2011). Formation of this Fe-S complex is 

supported by studies in S. cerevisiae demonstrating that iron binding to CGFS Grxs 

in vivo requires the CGFS motif, sufficient cellular GSH levels, and the 

mitochondrial Fe-S assembly machinery (Muhlenhoff, Molik et al., 2010). The first 

crystal structure of a [2Fe-2S]-bridged CGFS Grx homodimer was published for E. 

coli Grx4 in 2009, confirming that two GSH molecules are covalently linked to the 

cluster, but held in place by non-covalent interactions with the GSH binding 

pocket of each Grx4 monomer (Iwema et al., 2009). There is currently no published 

crystal structure available for a [2Fe-2S]-bound multidomain CGFS Grx, thus the 

orientation of the Trx-like domain in relation to the [2Fe-2S]-bridged Grx-like 

domain(s) is unknown. 

In eukaryotes, single domain CGFS Grxs (e.g., yeast Grx5 and human Glrx5, see 

Fig I-4) are localized to mitochondria or chloroplasts and have been implicated in 

the maturation of Fe-S cluster proteins (Herrero, Belli et al., 2010, Rouhier, 

Couturier et al., 2010, Ye & Rouault, 2010). In contrast, multidomain CGFS Grxs 

(e.g., yeast Grx3/4 and human Glrx3) display cytosolic/nuclear localization where 

they are proposed to play dual roles in cytosolic iron trafficking and iron 

regulation (Jbel et al., 2011, Kumanovics, Chen et al., 2008, Muhlenhoff et al., 2010, 

Ojeda, Keller et al., 2006, Pujol-Carrion, Belli et al., 2006). The Fe-S biogenesis 

function of single domain CGFS Grxs as well as the trafficking and regulatory 

functions of multidomain CGFS Grxs in yeast are all dependent on the presence of 

the conserved Cys in the CGFS active site, suggesting that coordination of the [2Fe-

2S] cluster is essential to these functions (Belli, Polaina et al., 2002, Jbel et al., 2011, 
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Kim et al., 2011, Molina, Belli et al., 2004, Muhlenhoff et al., 2010, Ojeda et al., 2006)  

 

I.3.1. Mitochondrial monodomain Grxs in the maturation of Fe-S protein 

A role for yeast mitochondrial Grx5p in Fe–S cluster biogenesis was initially 

suggested by studies in a grx5 deletion mutant. These yeast cells displayed 

deficient cluster assembly for at least two Fe–S proteins (aconitase and succinate 

dehydrogenase), leading to impaired respiratory growth and increased sensitivity 

to oxidative stress as a result of the accumulation of free iron in the cell (Rodriguez-

Manzaneque, Ros et al., 1999, Rodriguez-Manzaneque, Tamarit et al., 2002). Later, 

radio-labelled 55Fe immunoprecipitation experiments revealed that Grx5p most 

likely facilitates the transfer of preassembled clusters from U-type ISC scaffold 

proteins (Isu1p) to acceptor proteins and bioinformatics predictions indicated that 

it is involved either in regulating the Nfs1p cysteine desulfurase or in the assembly 

of Fe–S clusters on scaffold proteins (Alves, Herrero et al., 2004, Muhlenhoff, 

Gerber et al., 2003). The specific interaction of Grx5p with the A-type ISC scaffold 

protein Isa1p, but not Isa2p, demonstrated by yeast two hybrid experiments, 

further supports the view that Grxs participate in the initial steps of cluster 

assembly or in the transfer of preassembled clusters (Vilella, Alves et al., 2004). 

Furthermore, complementation experiments of the yeast grx5 deletion strain 

demonstrated that most CGFS Grxs from prokaryotic or eukaryotic sources other 

than yeast, when targeted to the yeast mitochondrial matrix, can functionally 

substitute for Grx5p, suggesting that this role might be conserved throughout 

evolution (Bandyopadhyay et al., 2008, Molina-Navarro, Casas et al., 2006). 

A series of recent papers indicates that the recombinant versions of bacterial, 

human, yeast and plant Grx5 orthologues produced in E. coli are able to 

incorporate labile Fe–S clusters (Bandyopadhyay et al., 2008, Picciocchi et al., 2007). 

Owing to their labile nature and to technical limitations, the presence of Fe–S 

clusters complexed to these CGFS Grxs has yet to be confirmed in vivo. Analytical 
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and spectroscopic [UV-visible absorption/circular dichroism (CD), resonance 

Raman and MÖ ssbauer] analyses of anaerobically purified proteins or proteins 

repurified after in vitro cysteine desulfurase-mediated cluster reconstitution of 

apoproteins indicated that two plant CGFS Grxs (the plastid GrxS14 and GrxS16) 

could incorporate one [2Fe–2S]2+ cluster per homodimer with complete cysteinyl 

ligation (Bandyopadhyay et al., 2008). Cysteine mutagenesis studies of these Grxs, 

the requirement for GSH in GrxS14 reconstitution experiments and the recent 

determination of the 3D structure of the E. coli Grx4 holodimer revealed that the 

[2Fe–2S] cluster is ligated by the active-site cysteines of two Grx monomers and 

two GSH molecules (Bandyopadhyay et al., 2008, Iwema et al., 2009, Rouhier, 

Unno et al., 2007). The [2Fe–2S]2+ clusters of these CGFS Grxs are oxidatively and 

reductively labile, as evidenced by cluster degradation on exposure to air and 

following anaerobic reduction with dithionite (Bandyopadhyay et al., 2008). 

 

I.3.2. Nucleo-cytosolic multidomain Grxs in iron metabolism 

Most multidomain class II Grxs are localized in the cytosol and/or in the nucleus 

(Babichev & Isakov, 2001, Cheng, Liu et al., 2011, Lopreiato, Facchin et al., 2004, 

Molina et al., 2004). Although not involved in Fe–S cluster binding, the N-terminal 

Trx-domain found in these proteins proved to have important contributions. 

Despite the lack of specific NLS signature, the Trx-domain is responsible for the 

nuclear localization of yeast Grx3/4 (Molina et al., 2004). Moreover, it is essential 

for their roles in iron trafficking and Aft1 regulation in vivo, possibly functioning 

as a docking site facilitating the interaction with partner proteins (Hoffmann, 

Uzarska et al., 2011, Li et al., 2009). Accordingly, its importance was also confirmed 

for the interactions of Grx4 with Fep1 and Php4, two transcriptional regulators of 

iron homeostasis in S. pombe (Jbel et al., 2011, Vachon, Mercier et al., 2012) and for 

the demonstrated role in actin cytoskeleton organization (Pujol-Carrion & de la 

Torre-Ruiz, 2010). Interestingly, all these functions do not require the remnant 
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cysteine of the Trx-like active site signature (Hoffmann et al., 2011, Pujol-Carrion 

& de la Torre-Ruiz, 2010).  

Most multidomain Grxs tested so far (ScGrx3, ScGrx4, SpGrx5 poplar and 

Arabidopsis GrxS17 and human Grx3) are able to restore the deficiency of yeast 

grx5 mutant when they are expressed in mitochondria (Bandyopadhyay et al., 2008, 

Cheng, Zhang et al., 2011, Li et al., 2009), (Kim et al., unpublished data). These data 

suggested that these Grxs could fulfill a carrier function similar to Grx5 isoforms, 

i.e., to accept an Fe–S cluster from a donor and to transfer it to an acceptor.  

Besides their involvement in Aft1/2-dependent iron sensing (detailed below), 

an independent function in the regulation of intracellular Fe trafficking was 

suggested (Fig I-5). Indeed, the deletion of both Grx3 and 4 is lethal (Muhlenhoff 

et al., 2010). Using a conditional mutant strain, it was shown that all iron-requiring 

reactions in cytosol, mitochondria and nucleus are affected. Despite the induction 

of Aft1-dependent iron uptake, the Grx3 and 4 depletion also leads to the 

impairment of several mitochondrial iron-dependent proteins such as complexes 

II and III, the mitochondrial Fe–S protein aconitase, but also of cytosolic proteins 

such as the heme-containing catalase (Muhlenhoff et al., 2010). In addition, the 

activity of several proteins containing di-iron centers such as the cytosolic 

ribonucleotide reductase (RNR), the mitochondrial mono-oxygenase Coq7 are also 

strongly decreased (Muhlenhoff et al., 2010, Zhang, Liu et al., 2011). These Grx3/4 

depleted cells also displayed a decreased iron level in mitochondria and an 

increased iron level in the cytosol respectively.  

Altogether, these data indicate that, in S. cerevisiae, Grx3 and 4 facilitate the 

correct assembly of several types of iron containing centers in various proteins. 

The exact biochemical role of these Grxs is however unclear. Since the mutation of 

the active site cysteine abolished the ability of these Grxs to function in iron 

regulation and trafficking, the role might be either related to their ability to bind 

an Fe–S cluster, which was proved to occur in vivo or to its inability to mediate  
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Fig I-5. Intracellular iron trafficking and the regulation of cellular iron 

uptake in eukaryotes (Muhlenhoff, U. et al., 2015). 

Iron ions acquired at the plasma membrane by high- and low-affinity iron uptake 

systems enter the cytosol, where they likely bind to diverse low molecular weight 

biological ligands, forming the labile iron pool. In parallel, fungi internalize iron 

siderophore complexes and vertebrates internalize iron bound to transferrin by 

receptor mediated endocytosis. Internalized iron is released in the 

endosomal/vacuolar compartment from where it is exported into the cytosol by 

the high affinity iron transporter Fth1/Fet5 and Smf3 (vertebrate DMT1) (Philpott, 

2006). Cytosolic iron is transported into the mitochondrial matrix by the 

mitochondrial carrier family proteins Mrs3/4 (vertebrate MFRN1 and 2) where it 

is used for heme synthesis and the de novo synthesis of Fe/S clusters which is 

catalyzed by the mitochondrial ISC assembly system (Lill et al., 2012). In fungi, 

excess cytosolic iron is exported into the vacuole by the vacuolar divalent metal 

transporter Ccc1. In vertebrates, iron is stored in ferritin in the cytosol. The 

essential cytosolic monothiol glutaredoxin Grx4 (mammalian PICOT) plays 

acentral role in cytosolic iron trafficking. Grx4 accepts iron from the cytosolic labile 

iron pool in form of an Fe/S cluster and is crucially involved in the donation of 

iron to cytosolic iron-dependent enzymes and the cytosolic iron sulfur protein 

assembly (CIA) system (Paul and Lill, 2015). The latter further requires an 

unknown sulfur-containing low-molecular weight solute (X) that is produced by 

the mitochondrial ISC system and exported into the cytosol by the mitochondrial 

inner membrane ABC transporterAtm1 (vertebrate ABCB7) (Lill et al., 2014a). 

Cellular iron acquisition is tightly regulated. In vertebrates, the cytosolic iron 

regulatory proteins IRP1 and IRP2 play key roles in the posttranscriptional 

regulation of iron metabolism. Both bind to iron-responsive elements (IREs) of 

iron-regulated mRNAs. Under high iron conditions, the CIA system assembles a 

[4Fe-4S] cluster on IRP1 which transforms IRP1 into a cytosolic aconitase that no 

longer binds to IREs (Fig. 3). In fungi, genes involved in iron uptake at theplasma 

membrane are controlled by iron-responsive transcriptional regulators that 

respond to two iron-dependent intracellular signals: (1) A Grx4 bound Fe/S-

cluster that functions as sensor for the status of the cytosolic iron pool. (2) A key 

regulatory molecule (X) that signals the iron status of the mitochondrial ISC 

systems. 
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GSH-dependent reactions (Hoffmann et al., 2011, Muhlenhoff et al., 2010).  

 

I.4. CGFS monothiol glutaredoxins and BolA proteins 
I.4.1. Evolutive conservation of the Grx-BolA interaction  

There are a lot of evidences that the class II Fe–S Grx–BolA functional relationship 

is conserved in both prokaryotes and eukaryotes. Indeed, both genes are found in 

adjacent position in several prokaryote genomes and a strong co-occurrence exists 

between both genes (Couturier et al., 2009, Huynen, Spronk et al., 2005). Moreover, 

hybrid proteins where a BolA domain is fused to a Grx domain are present in some 

proteobacteria of the Methylococcale order. Besides these genomic evidences, 

highthroughput approaches experimentally confirmed a physical interaction for S. 

cerevisiae, Drosophila melanogaster, E. coli and A. thaliana proteins (Arabidopsis 

Interactome Mapping, 2011, Butland, Babu et al., 2008, Giot, Bader et al., 2003, Ho, 

Gruhler et al., 2002, Ito, Tashiro et al., 2000, Krogan, Cagney et al., 2006). 

During the last five years, the Grx–BolA interaction has been more extensively 

studied using targeted biochemical and cellular approaches, focusing in particular 

on the molecular and structural determinants involved in the formation of Grx–

BolA holo-heterodimer (Couturier, Wu et al., 2014, Kumanovics et al., 2008, Li et 

al., 2009). However, despite the demonstration that proteins from E. coli, human 

and A. thaliana can form [2Fe–2S] cluster-bridged heterodimer (Fig I-6) (Dhalleine, 

Rouhier et al., 2014, Li, Mapolelo et al., 2012, Yeung et al., 2011), their involvement 

in the regulation of iron homeostasis has been demonstrated only in S. cerevisiae 

and S. pombe. 
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Fig I-6. Models for [2Fe-2S] Grx homodimers (left) and [2Fe–2S]2+ Grx-

BolA heterocomplexes (right) characterized from E. coli, S. cerevisiae, and 

H. sapiens (Li, H et al., 2012). 

In each case, Grx-BolA heterocomplexes can be formed by titration of Grx 

homodimers with the apo BolA-like protein. In all CGFS Grx homodimers, the 

active site cysteines in the Grx-like domains and 2 GSH molecules ligate the [2Fe-

2S] clusters. For yeast and human Grx-BolA heterocomplexes, each [2Fe-2S] cluster 

is ligated by one Grx domain active site cysteine, one GSH, a histidine from the 

BolA-like protein and an unidentified 4th ligand. For the E. coli [2Fe-2S] Grx4-BolA 

heterodimer, the ligands provided by BolA have not been identified. 
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I.4.2. Roles of Grx3/4 and Fra2 in iron homeostasis in S. cerevisiae 

In S. cerevisiae, the iron metabolism is controlled at the transcriptional level by two 

major transcription factors, Aft1/2 constituting the sensing system under low-iron 

conditions. Aft1 and its paralog Aft2 are involved in the response to iron deficiency 

by activating the iron regulon i.e., genes coding for proteins involved in iron 

uptake and intracellular sequestration and in mitochondrial iron metabolism.  

  Iron-dependent inhibition of both Aft1 and Aft2 activity is regulated by a 

cytosolic signaling pathway comprised of the Cys-Gly-Phe-Ser (CGFS) monothiol 

glutaredoxins Grx3 and Grx4, the BolA-like protein Fe repressor of activation-2 

(Fra2), and the aminopeptidase P-like protein Fe repressor of activation-1 (Fra1), 

which relays an inhibitory signal that is dependent on the synthesis of 

mitochondrial Fe-S clusters (Kumanovics et al., 2008, Ojeda et al., 2006, Pujol-

Carrion et al., 2006, Rutherford, Ojeda et al., 2005, Ueta, Fujiwara et al., 2012). 

  Subsequently, several studies have reported that, besides the capacity of Grx3/4 

to bind an Fe–S cluster into homodimers, they can also form [2Fe–2S] cluster-

bridging heterodimeric complexes with Fra2 (Li et al., 2009). Interestingly, Fra2 

converted the [2Fe–2S] Grx3 homodimer to [2Fe–2S] Grx3–Fra2 heterodimer, this 

conversion being thermodynamically and kinetically favored (Li, Mapolelo et al., 

2011). 

  Aft2 can bind a [2Fe–2S] cluster into a dimer and that it only interacts with and 

accepts an Fe–S cluster from a [2Fe–2S] loaded Fra2–Grx3 complex but not from a 

[2Fe–2S] cluster bound form of a Grx3–Grx3 homodimer (Fig I-7) (Poor, Wegner et 

al., 2014). Overall, it was concluded that the DNA affinity of the [2Fe–2S] loaded 

Aft2 is decreased, which promotes its nuclear export, preventing as explained 

above its ability to activate the iron regulon (Fig I-7). The fact that Aft1/2 is only 

partially repressed in the fra2 mutant under iron-replete conditions suggests that 

a Grx3/4 holo-homodimer may be able to transfer Fe–S cluster to Aft1/2 in vivo 

although less efficiently (Kumanovics et al., 2008). 
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Fig I-7. Proposed model for iron regulation via Aft1 and Aft2 under iron 
replete conditions (Poor, C. et al., 2014) 

During conditions of iron sufficiency, Fe–S clusters are synthesized in 

mitochondria via integration of iron, sulfur, and redox control pathways. An 

unknown substrate produced by the mitochondrial Fe-S cluster biogenesis 

machinery is exported to the cytosol by the transporter Atm1. GSH is also required 

for export of this signal. Grx3 and Grx4, which form GSH ligated, Fe-S–bridged 

homodimers, are proposed to form heterodimers with Fra2 to relay this signal to 

Aft1 and Aft2. Interaction of Grx3/4 with Aft1 promotes dissociation of the 

transcriptional activator from its target DNA and export to the cytosol, leading to 

deactivation of Aft1/2-regulated genes. The exportin Msn5 facilitates iron-

dependent export of both Aft1 and Aft2.  
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I.4.3. Role of Grx4 and Fra2 in iron homeostasis in S. pombe 

Inactivation of the grx4+ gene (grx4Δ) generates a constitutively active Fep1 that 

binds to its target gene promoters in vivo. In the absence of Grx4, Fep1 behaves 

like an insensitive protein, constitutively repressing target gene expression (Jbel et 

al., 2011). Although the molecular basis by which Grx4 communicates iron 

deficiency to Fep1 remains obscure, two-hybrid and co-immunoprecipitation 

experiments have revealed that the TRX domain of Grx4 associates strongly and 

constitutively with the C-terminal region of Fep1. Additional analyses have shown 

that, under low but not high-iron conditions, the GRX domain of Grx4 associates 

with the N-terminal region of Fep1, which contains its DNA-binding domain. A 

possible mechanism for iron starvation-dependent inactivation of Fep1 by Grx4 

would be that Fep1-GRX domain interaction triggers conformational changes that 

impair Fep1 DNA binding, thus blocking its association with chromatin and its 

repressive effect on target gene expression (Fig I-1) 

One additional molecule has lately been reported to play a role in Fep1 

inactivation in response to iron deficiency (Encinar del Dedo, Gabrielli et al., 2015, 

Jacques, Mercier et al., 2014). In S. pombe, the fra2+ gene encodes a BolA2-like 

protein, which has been shown to form a [Fe-S]-bridged complex with the 

multidomain CGFS monothiol glutaredoxins Grx4 (Encinar del Dedo et al., 2015). 

Disruption of fra2+ (fra2Δ) causes a constitutive repression of iron transport genes 

and leads to constitutive promoter occupancy by Fep1 where it mediates its 

repressive effect (Encinar del Dedo et al., 2015, Jacques et al., 2014). In S. pombe, 

Fra2 and Grx4 are distributed throughout the cells with a significant proportion of 

the two proteins located in the nuclei (Jacques et al., 2014). Co-

immunoprecipitation experiments have revealed that Fra2, Fep1 and Grx4 are 

associated in a heteroprotein complex. Bimolecular fluorescence complementation 

(BiFC) experiments have brought further evidence that an interaction between 

Fep1 and Fra2 occurs in the nucleus. 
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I.5. Biology of Schizosaccharomyces pombe  

I.5.1. The early research and phylogeny of S. pombe  

In 1893, Lindner discovered Schizosaccharomyces pombe in East African millet beer, 

locally called ‘pombe’. The strain currently used for genetic research was isolated 

by Urs Leupold (University of Berne, Switzerland) in 1950 from a grape-derived 

yeast culture of the 'Centraalbureau voor Schimmelcultures' (Central depository 

for fungi cultures) in the Netherlands. 

The fission yeast S. pombe is proving increasingly attractive as an experimental 

system for investigating problems of eukaryotic cells and molecular biology. Many 

of the powerful molecular genetic procedures developed for Saccharomyces 

cerevisiae can now be applied to S. pombe (Moreno, Klar et al., 1991). The single 

genus Schizosaccharomyces embraces a small group of possibly quite divergent 

ascomycete yeasts that share the common feature of division by medial fission. 

With the exception of S. pombe, the fission yeasts are studied relatively little. 

However, the relationships between the various members of the group have been 

clarified (Sipiczki, 1989). S. pombe and S. malidevorans produce four spore asci. Since 

these strains are cross-fertile, they are, strictly speaking, varieties of a single species, 

i.e., S. pombe var. pombe and S. pombe var. malidevorans. S. octosporus and S. japonicus 

produce eight spore asci, and the latter species is also subdivided into two varieties, 

S. japonicus var. japonicus and S. japonicus var. versatilis, on the basis of their growth 

form.  

S. pombe is classified as a fungus, namely an ascomycete fungus characterized 

by the formation of an ascus. Over the past century, ascomycete fungi have been 

reclassified frequently, based on various phenotypic characteristics, such as the 

shape of the ascospore, type of cell division (budding vs. fission), presence of 

hyphae, ability to ferment certain sugars or grow on various carbon and nitrogen 

sources. Recently, DNA and RNA sequence analyses have been used to determine 
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sequence divergence among ascomycete fungi and, thus, to quantitate genetic 

differences between species. These molecular techniques demonstrate that fission 

yeast S. pombe is phylogenetically as distant from budding yeasts as it is from 

humans. The Schizosaccharomyces lineage separated about 1 billion years ago to 

form an ancestral branch of the ascomycetes, denoted archaeascomycetes. 

However, the view that S. pombe maps to a different part of the tree than expected 

is supported by phylogenetic analyses using mitochondrial sequence data. The 

universal translation code is used for all ubiquitous mitochondrial genes of S. 

pombe, which clearly distinguishes it from other ascomycetes that have one or more 

codon reassignments. The universal translation code is also used in mitochondria 

of several lower fungi, such as the zygomycetes (e.g., Rhizopus stolonifer) and 

certain lineages of the chytridiomycetes (e.g., Allo-myces, belonging to the 

Blastocladiales; as well as Monoblepharella and Harpo-chytrium, belonging to the 

Monoblepharidales). The universal translation code in S. pombe can be explained 

as a primitive character inherited from its lower fungal ancestors. In view of this 

special position of S. pombe within the ascomycetes, the common name "fission 

yeast" is misleading, because it has not more in common with budding yeasts (e.g., 

Saccharomyces, or Pichia) as have non-yeast ascomycetes (e.g., Neurospora or 

Penicillium). Despite its use of a mitochondrial universal translation code, however, 

the tiny S. pombe mitochondrial genome rather reflects a very derived fungus.  

 

I.5.2. Life cycle of S. pombe 

During its normal life cycle, fission yeast cells are haploid, meaning that they have 

only one copy of each chromosome. Haploid yeast cells are used for research 

because both recessive and dominant mutations will result in mutant phenotype. 

Haploid cells multiply asexually through mitosis. Newly born daughter cells grow 

at the tips of their cylindrical rod shape. When they have grown to a mature length, 
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cells stop growing and produce septa in the middle of the cells. The septum divides 

the mother cell into two equal-size daughter cells. In rich medium, the daughter 

cells will separate to start over the haploid cell cycle; each haploid cell cycle takes 

about 3 hours (In contrast, the mammalian cell cycle takes about 24 h). In the wild, 

yeast cells often live under nutrient-deprived conditions. Because S. pombe is a 

dimorphic yeast, it can switch from a yeast-form morphology to a pseudo-hyphal 

morphology, in which the daughter cells remain attached. Pseudo-hyphal growth 

allows the cells to spread out more efficiently and forage for fresh nutrients.  

S. pombe has two opposite mating types, namely '+' and '-' mating types. When 

rich conditions are followed by starvation conditions, haploid yeast-form cells of 

the opposite mating type will conjugate pair-wise and fuse at their tips. 

Subsequently, the nuclei will fuse to form diploid cells, called zygotes. Usually, 

zygotes undergo meiosis immediately, followed by sporulation and formation of 

four-spore zygotic asci. The ascus wall will auto-lyse, liberating the haploid 

ascospores, which are able to survive long periods of stress. When environmental 

conditions become favorable for growth, the spores will germinate and the haploid 

cell cycle will begin again. If zygotes encounter rich conditions, they infrequently 

can undergo mitosis instead of meiosis and enter the diploid cell cycle.  

Diploid cells divide by medial fission, like haploid cells, but are longer and 

wider than haploid cells. Haploid cells measure 7-8 (newly born) to 12-15 m (at 

division) in length and 3-4 m in width, while diploid cells measure 11-14 (newly 

born) to 20-25 m (at division) in length and 4-5 m in width. Diploid cells will 

continue mitotic growth until nutrients run out. Then, they undergo meiosis and 

form azygotic asci, containing four haploid ascospores. After environmental 

condition become favorable for growth, the spores will germinate and the normal 

haploid cell cycle will begin. 
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I.5.3. Genomic information of S. pombe 

The fully annotated genome sequence of S. pombe has been completed 

(WoodGwilliam et al., 2002). It becomes the sixth eukaryotic genome to be 

sequenced, following Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila 

melanogaster, Arabidopsis thaliana, and Homo sapiens. The 13.8 Mb genome of S. 

pombe is distributed between chromosomes I (5.7 Mb), II (4.6 Mb) and III (3.5 Mb), 

together with a 20 kb mitochondrial genome. It contains the smallest number of 

protein-coding genes yet recorded for a eukaryote: 4,824 genes (including 11 

mitochondrial genes), substantially less than the 5,570 ~ 5,651 genes predicted for 

S. cerevisiae, the 6,752 genes predicted for Mesorhizobium loti, the largest published 

prokaryote genome sequence to date, and the 7,825 genes estimated in the 8.67 Mb 

genome of the prokaryote Streptomyces coelicolor (Wood et al., 2002). 
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Fig. I-8. Life cycle of fission yeast S. pombe 

(‘www information on Schizosaccharomyces pombe by Frans Hochstenbach at the 

University of Amsterdam’ (http://www.bio.uva.nl/pombe/cycle/lifetext.html)) 

 

A. Haploid cells multiply asexually through mitosis. 

B. Pseudo-hyphal morphology cells. 

C. Conjugation of two different mating type cells. 

D. Formation of zygotes, the diploid cells. 

E. Formation of four-spore zygotic asci. 

F. Spore germination. 

G. Diploid cells divided by medial fission. 

H. Diploid cells are longer and wider than haploid cells. 

I. Formation of azygotic asci.  

J. Life cycle of fission yeast. (top left) Haploid mitotic cell cycle; (center and lower 

left) haploid cells mating to form a diploid zygote, followed by meiosis and 

sporulation leading to zygotic ascus formation; (lower right) re-entry of diploid 

zygotes into mitotic cycle (copied from MacNeill and Nurse, 1997). 
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I.6. Aims of this study 

How iron-responsive gene expression is mechanistically linked to the fitness of 

mitochondrial ISC assembly is based on the assumption that fungal iron-

responsive transcription factors are Fe/S proteins. Their Fe/S co-factor is 

assembled in a Grx4-dependent manner, which is supported by the fact that 

monothiol glutaredoxins play a central role in cytosolic iron metabolism and easily 

transfer their own bound Fe/S cluster to target apo-proteins in vitro (Muhlenhoff 

et al., 2010, Rouhier et al., 2010). 

So far, it has not been demonstrated that Aft1, Fep1 or Php4 bind Fe/S clusters 

when purified from their native host. Evidence for Fe/S cluster binding to these 

regulators is based on in vitro analysis of recombinant proteins only. The Fep1 

homolog SRE from Neurospora crassa binds iron when purified from Escherichia coli 

(Harrison & Marzluf, 2002). The bound co-factor was poorly characterized, but the 

UV–vis spectrum was indicative of an Fe/S cluster. Iron binding involved a 

cysteine pair that is essential for iron sensing and highly conserved in the Fep1 

ortholog SreA of ascomycetes (Schrettl et al., 2008). The Fep1 ortholog Sre1 from 

Histoplasma capsulatum also bound sub-stoichiometric amounts of iron, but 

whether the recombinant protein bound iron in form of an Fe/S cluster was not 

thoroughly analyzed (Chao et al., 2008). However, binding to target promoters in 

vitro was induced by ferric iron, indicating that iron alone is sufficient for iron-

responsive regulation by Sre1. 

A recent study reported that Fep1 binds iron, but not as an Fe-S cluster form 

(Encinar del Dedo et al., 2015). It also demonstrated that Grx4-Fra2 complex can 

bind [Fe-S] and facilitates iron transfer from Fep1 to Grx4-apo-Fra2. This supports 

a model that iron starvation causes dismantling of [Fe-S] from the Grx4-Fra2 

complex and facilitates iron transfer from Fep1 to Grx4-Fra2, inactivating Fep1 

function. However, numerous questions remain unresolved, regarding the type of 
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iron cofactor in Fep1, and the mechanism of iron transfer between Fep1 and Grx4-

Fra2. In this study, I pursued biochemical and spectroscopic analyses of Fep1, in 

full length and truncated forms, as isolated or reconstituted proteins, with the wild 

type or substituted cysteine mutations. 
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CHAPTER II.  

MATERIALS AND METHODS 
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II.1. Strains and plasmids construction 

For N-terminal hexa-histidine tagging, the full length and N-terminal half (1-238 

aa) of the fep1+ gene in S. pombe were amplified by PCR from the chromosomal 

DNA as a template. The PCR products were cloned into pET15b vector (Novagen) 

via Nde1 and BamH1 sites, resulting in pET15b-Fep1 or pET15b-Fep1-N238 or 

pET15b-Fep1-N114. The cysteine mutant Fep1-N238 2CS (C85S/C88S),  Fep1-

N238 4CS (C70S/C76S/C85S/C88S) was generated by PCR mutagenesis and 

cloned into pET15b. All constructs were confirmed by nucleotide sequencing. 

 

II.2. Protein expression and purification 

The His-tagged recombinant proteins of full-length Fep1, Fep1-N238, and Fep1-

N238 4CS were expressed in E. coli BL21 (DE3) grown in LB at 37°C to OD600 of 

0.5~0.6, followed by induction with 1 mM IPTG for 5 h. Harvested cells were lysed 

at 4°C in the binding buffer (20 mM Tris-HCl, pH 8.0, 500 mM NaCl, 5 mM 

imidazole) by using a high-pressure homogenizer EmulsiFlex-C3 (Avestin). 

Following centrifugation at 15000 g for 15 min at 4°C, the cell-free extracts were 

loaded onto Ni-IDA (iminodiacetic acid) column (ELPIS) pre-equilibrated with the 

binding buffer, and eluted with 500 mM imidazole. The partially purified proteins 

were then applied to HiLoad Superdex 75 column (GE Healthcare), followed by 

elution with 20 mM Tris-HCl buffer containing 500 mM NaCl and 1 mM DTT. For 

anaerobic purification, Ni-affinity chromatographies were done in the anaerobic 

glove box (O2 < 2 ppm; Coy Laboratory Products, Inc.).  

 

II.3. Transformation of Escherichia coli and Yeast 

For the purpose of general cloning, E. coli DH5 competent cells were used for 

transformation by heat shock method (42C for 1 min 30 sec.). High efficiency 
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electroporation method of E. coli (XL1-Blue) was used to amplify S. pombe genomic 

library plasmid of interesting target gene from the purified yeast total genomic 

DNA.  

The S. pombe transformation was routinely done using lithium acetate (LiAc) / 

Polyethylene glycol (PEG) method according to Moreno et al. (1991). 

 

II.4. Western blot analysis 

Western blot analyses were performed E. coli cells were cultured and harvested at 

certain growth phase. Total cell extracts or fractionated extracts were resolved in 

SDS-PAGE (10 ~ 18%). Gel was transferred onto PROTRAN (nitrocellulose transfer 

membrane; Schleicher & Schuell) using TransBlot system (BioRad) at 160 ~ 180 mA 

for 50 min.  

Filters with bound protein were washed 3 times and blocked in 10 ml of Tris-

buffered saline containing 0.1% Triton-X 100 (TBS-T) with 0.5% BSA. Filters were 

incubated for 1 hr with proper antibodies in TBS-T containing 0.5% BSA. Excess 

antibodies were removed by repeated washing in TBS-T. After 1 hr incubation in 

TBS-T containing the secondary antibody conjugated with horseradish peroxidase, 

the signal was visualized with LAS3000 (Fuji) and quantified with Multi Gauge 

(Fuji) program.  

 

II.5. Preparation of apoprotein 

Apo-Fep1-N238 was prepared by incubating the iron-bound as-isolated Fep1-

N238 (100 µM) in 20 mM Tris-HCl buffer (pH 8.0) containing 500 mM NaCl, 10 

mM EDTA, and 5 mM sodium dithionite (SDT) for 1 h on ice. The colorless protein 

solution was then buffer-exchanged into 20 mM Tris-HCl, pH 8.0, 500 mM NaCl 

through two consecutive PD10-desalting columns (GE Healthcare). 
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II.6. Fe-S cluster reconstitution in vitro 

Reconstitution of Fe-S cluster into full-length Fep1 or Fep1-N238 was performed 

anaerobically (O2 < 2 ppm) in a glove box (Coy Laboratory Products, Inc.). 

Following incubation of 50~100 μM apo-Fep1-N238 with 2 mM DTT for 30 min, 5-

fold molar excess of ferric chloride (FeCl3) and sodium sulfide (Na2S) were added 

and incubated for 2 h at room temperature. The reconstitution mixture was 

subjected to two consecutive chromatographies in the glove box through PD10-

desalting column equilibrated with 20 mM Tris-HCl and 500 mM NaCl, to remove 

excess iron and sulfide. 

 

II.7. Assays for quantification of iron, sulfide and 

protein 

II.7.1. Determination of iron concentration 

The amount of iron in the purified protein sample was determined by using 

colorimetric ferrozine assay (Riemer, Hoepken et al., 2004). Aliquots (100 μL) of 

proteins were placed in Eppendorf tubes and mixed with 100 μL of 10 mM HCl 

(the solvent of the iron standard FeCl3), and 100 μL of the iron-releasing reagent 

(a freshly mixed solution of equal volumns of 1.4 M HCl and 4.5% (w/v) KMn04 

in H2o). These mixtures were incubated for 2 h at 60°C. The HCl/ KMnO4-

mediated digestion of iron-containing proteins is essential for iron quantitation of 

proteins. After the mixtures had cooled to room temperature, 30 μL of the iron-

detection reagent (6.5 mM ferrozine, 6.5 mM neocuproine, 2.5 M ammonium 

acetate, and 1 M ascorbic acid dissolved in water) was added to each tube. After 

30 min, 280 μL of the solution in each tube was transferred into a well of a 96-well 

plate and the absorbance was measured at 550 nm on a microplate reader. 
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II.7.2. Determination of sulfide concentration 

Acid labile sulfide concentration was determined by using methylene blue-based 

color assay as described previously (Beinert, 1983). The tubes were kept tightly 

capped except when adding reagents. Rather than using stir bars, the tubes were 

closed and vortexed when mixing was called for. The procedure used was as 

follows. The sample volumes were brought to 100mL with pH 8 water. One at a 

time, each tube was opened, 300 mL 1% ZnOAc and 15 mL 12% NaOH were added 

simultaneously, the tube was closed tightly and vortexed. When all tubes had been 

treated in this way, they were allowed to sit for 15 min before addition of 75 mL 

DMPD (0.1% in 5 N HCl) and 2 mL FeCl3 (23 mM in 1.2 N HCl). Using Na2S z 

9H2O as a standard as described by Beinert, this method proved very reproducible 

in our hands. In this assay, N,N-dimethyl-p-phenylenediamine (DMPD) is 

converted to methylene blue (MB) in the presence of sulfide and FeCl3. Precautions 

were made to avoid residual amount of reducing agent such as DTT in the buffer 

that could hinder oxidation of DMPD by FeCl3. 

 

II.7.3. Determination of protein concentration 

Protein concentrations were determined by infrared-based peptide quantification 

system, using Direct Detect infrared spectrometer (Merck Millipore). Bovine 

serum albumin (BSA) was used as a standard. 

 

II.8. EPR spectroscopy 

Fresh Fep1-N238 samples purified anaerobically were equilibrated in 20 mM Tris-

HCl buffer containing 500 mM NaCl, 1 mM DTT, and 10% (v/v) glycerol in the 

glove box. Fep1 proteins were either non-treated or treated with sodium dithionite 

(10 mM final) or ferricyanide (5 mM final), and transferred to EPR tubes. Following 
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10 min incubation at room temperature, the EPR tubes were frozen in liquid 

nitrogen. EPR measurements were carried out at Korea Basic Science Institute 

(KBSI), Western Seoul Center, for low temperature (5 K) analysis. CW X-band (9.6 

GHz) EPR spectra were collected on a Bruker EMX plus 6/1 spectrometer 

equipped with a liquid helium cryostat (ESR900, Oxford Instrument) and ITC 503 

temperature controller. All spectra were collected with the following experimental 

parameters: microwave frequency, 9.6 GHz; microwave power, 1 mW; modulation 

amplitude, 10 G; time constant, 20.48 ms; 5 scans. For measurements at liquid 

nitrogen temperature (123 K), samples were subjected to ESR spectrometer (JES-

TE200, JEOL) at National Instrumentation Center for Environment Management 

(NICEM), Seoul National University. 
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CHAPTER III.  

RESULTS & DISCUSSION 
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III. 1. Purification and UV-visible absorption 

spectroscopy of full-length Fep1 

III. 1. 1. Purification of full-length Fep1 
Aiming at identifying biochemical characterizations of Fep1 protein, His-

tagged full length Fep1 (564 aa) was overproduced in E. coli and 

anaerobically purified through Ni-IDA affinity column. Multiple protein 

bands were observed on SDS-PAGE at 70 kDa and 30-35 kDa size ranges 

(Fig. II-2A). LC-MS/MS analysis identified that 30-35 kDa bands are 

degraded products of Fep1. A Western blot assay using 6His-probe 

Antibody confirmed that bands of SDS-PAGE were 6His-tagged full length 

Fep1 and 6His-tagged Fep1 degraded products (Fig. II-2B). To remove the 

degraded Fep1 fragments and other possible contaminating proteins, gel 

filtration chromatography was performed on Superdex 75 column, 

equilibrated with 20 mM Tris-HCl, pH 8.0, 500 mM NaCl, 1 mM DTT. 

Finally, we could successfully isolate full-length Fep1 only. The single-

peaked fractions centered around 128 kDa position were collected (Fig. II-

2C, red bracket) and subjected to SDS-PAGE to confirm purification of the 

full-length Fep1. A prominent single band was observed, coinciding with 

the calculated mass of 62.9 kDa with a hexa-histidine tag (Fig. II-2D). The 

gel filtration behavior fits with the previous report that Fep1 can dimerize 

through C-terminal region of Fep1 (Pelletier et al., 2005). As demonstrated 

in Fig. II-2D, the purified full length protein did not undergo further 

degradation, when it was concentrated through centricon (Millipore) in the 

air, and kept at 4°C in the refrigerator or in the anaerobic glove box for 19 h 

(lanes 2-4).  
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Fig II-1. Domain structure of Fep1 in S. pombe 

Localization of Zinc finger (ZN) motifs and conserved cysteine residues within the 

sequence. 
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Fig II-2. Purification of full-length His-tagged Fep1.  

A. Anaerobically purified Fep1 by Ni-agarose column.  

B. LC-MS/MS analysis showed that multi-bands of SDS-PAGE were degraded 

products of expressed Fep1. A Western blot assay using 6His-probe Antibody 

(Santa cruz, sc 804) confirmed that bands of SDS-PAGE were 6His-tagged full 

length Fep1 and 6His-tagged Fep1 degraded products.  

C. D. A gel filtration chromatogram of Fep1 protein, following Ni-affinity column. 

From Superdex 75 column, the full length Fep1 is eluted as a single peak, with the 

median elution volume (Ve) of 47 ml, which corresponds to 128 kDa determined 

by standard size marker proteins. Degraded Fep1 fragments were eluted later. The 

purity and stability of full-length Fep1 was monitored by SDS-PAGE. The freshly 

eluted Fep1 (lane 1) was concentrated by Centricon (Millipore) (lane 2), and stored 

either in the air (lane 3) or in the anaerobic glove box (O2 < 2 ppm; lane 4) for 19 

hours.  

E. Effect of DTT on Fe binding stability of Fep1 during purification  
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III. 1.2. UV-visible absorption spectroscopy of full-length Fep1 

During Ni-affinity purification, Fep1 protein showed reddish brown color. 

During gel filtration, the reddish color disappeared in the absence of DTT. 

Therefore 1 mM DTT was added in the buffer throughout the 

chromatography (Fig. II-2E). The UV-visible absorption spectra were 

recorded immediately after purification for both anaerobically and 

aerobically prepared samples. The aerobically purified Fep1 also showed 

similar reddish brown color and nearly identical absorption behavior. The 

absorption spectra demonstrated peaks at 320 and 420 nm, and a shoulder 

around 520 nm for both samples, characteristic of Fe-S-containing proteins 

(Fig. II-3A). The absorption spectra looked quite similar to that of purified 

recombinant SRE (Harrison & Marzluf, 2002), a Fep1 homologue in 

Neurospora crassa. Molar extinction coefficients (ε) at 420 nm based on the 

concentration of the purified Fep1 was 3.0 mM-1cm-1. (Fig. II-3A).  

To further examine the oxygen lability of its Fe-binding, I observed UV-

visible spectra of anaerobically purified Fep1 depending on the time in the 

presence of oxygen. Fep1 showed stable spectra at least for several hours 

(Fig. II-3B). These results suggest that the iron-binding in the purified Fep1 

is relatively stable in DTT-containing buffer during several hours of aerobic 

purification procedures. I also found that the absorption peaks at 320, 420, 

and 520 nm all disappeared when treated with 5 mM sodium dithionite, a 

strong reductant (Fig. II-4). These spectrophotometric observations indicate 

that the purified, as isolated Fep1 contains redox-active iron, possibly in the 

Fe-S cluster form. Upon reconstitution, UV-visible absorption was 

significantly enhanced (Fig. II-5, red line), but shape of absorption spectra 
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was similar to as-isolated Fep1 (Fig. II-5, gray line). After reconstitution of 

full-length Fep1, molar extinction coefficients (ε) at 420 nm was 5.2 mM-1cm-

1 (Fig. II-5). 

 

III.2. Fep1-N238 binds an Fe-S cluster via four 

conserved cysteine residues 

III.2.1. Purification and UV-visible absorption spectroscopy of Fep1-

N238 

Since Fep1 undergoes extensive degradation during Ni-affinity purification 

procedure, resulting in low yield of full length proteins, I constructed and 

purified truncated forms of Fep1 that contains N-terminal 238 aa and 114 aa 

(Fig II-6). Fep1-N238 contains a conserved cysteine-rich region between two 

consensus zinc finger motif that is critical region to DNA-binding and the 

inhibition mechanism (Jbel et al., 2011). Fep1-N114 doesn’t have second zinc 

finger motif (ZF2). 6His-tagged wild type Fep1-N238 and Fep1-N114 

overproduced in E. coli cells showed reddish brown color, suggesting the 

possibility that iron cofactor might be involved in the overproduced 

proteins (Fig II-7). As expected, the purified Fep1-N238 and Fep1-N114 

proteins also were reddish color. Purified Fep1-N238 (28.1 kDa with His-

tag) and Fep1-N114 (13.5 kDa) by nickel affinity agarose and gel filtration 

column were confirmed on SDS-PAGE gel (Fig II-8). The UV-visible 

absorption spectrum of Fep1-N238 looked almost identical to that of the full 

length Fep1 (Fig II-9A) and it was unaffected by absence of second zinc 

finger (ZF2). It suggest that the iron-binding property of Fep1 resides in the 

N-terminal region, and is not significantly affected by the C-terminal  



45 

 

 

 

 

 

 

 

 

 

 

Fig II-3. Effect of oxygen on stability of Fe binding on full-length Fep1 

A. UV-visible absorption spectra of full-length Fep1, purified anaerobically (red 

line) or aerobically (gray line). Absorbance was presented as molar extinction 

coefficient (ε) to normalize protein content in each sample. 

B. Time-course of absorption spectra of anaerobically purified Fep1 after exposure 

to air for the times indicated. 
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Fig II-4. UV-visible absorption spectra of reduced full-length Fep1 

Anaerobically purified full-length Fep1 (orange line) was reduced by sodium 

dithionite (SDT; gray line).  

 

Fig II-5. UV-visible absorption spectra of reconstituted full-length Fep1 

UV-visible absorption spectra of as-isolated Fep1 (gray line) and chemical 

reconstituted Fep1 (red line). Absorbance was presented as molar extinction 

coefficient (ε) to normalize protein content in each sample. 
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half of Fep1. The visible spectra of wild type Fep1-N238 did not change for 

several hours even without dithiothreitol (DTT), suggesting that the Fep1-

N238 protein has relatively more stable Fe-S cluster in oxidation condition 

than full-length Fep1 (Fig II-9B). We therefore pursued further 

experiments with the Fep1-N238. 

After aerobically-purified wild-type Fep1-N238 was equilibrated under 

anaerobic conditions (O2 < 2 ppm), sodium dithionite (20 mM final 

concentration) was added. Anaerobic reduction of Fep1-N238 protein by 

dithionite partially bleached its visible absorbance (Fig II-10A, gray line). 

This observation indicates that Fep1-N238 has redox-active metal cofactor 

most likely Fe-S cluster. After reconstitution of Fep1-N238, molar extinction 

coefficients (ε) at 420 nm was increased from 2.7 mM-1cm-1 to 6.9 mM-1cm-1 

(Fig II-10B).  
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Fig II-6. Schematic presentations of the wild-type and the cysteine mutant 

Fep1 used in this study.  

In the N-terminal DNA-binding domain, two GATA-type zinc finger motifs (ZF1 

and ZF2; green) flank the central region that contain four cysteines conserved 

among Fep1-like proteins. In the C-terminal region resides a Tup11-interacting 

domain (405-541; orange). The truncated N238 proteins with wild type or four 

cysteine substitutions (4CS) were depicted. 
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Fig II-7. Reddish brown color of Fep1-overexproduced cell 

Escherichia.coli BL21 (DE3) were transformed with pET15b vector (Vc), 

recombinant Fep1 WT (full-length, truncated Fep1) and their conserved cysteine 

mutants C85S/C88S (2CS), C70S/C76S/C85S/C88S (4CS). Cells were incubated in 

1 mM IPTG at 30℃ for 5 h. Fep1 WT proteins overexpressed cell showed reddish 

brown color, while cysteine mutants Fep1-N238 2CS, Fep1-N238 4CS, Fep1-N114 

2CS were shown significantly decreased reddish color. 
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Fig II-8. SDS-PAGE analysis of truncated variant Fep1 proteins 

The purified variant Fep1 proteins were determined by SDS-PAGE analysis. 

A. His-Fep1-N238 and His-Fep1-N114 purified by Gel filtration chromatography. 

B. His-Fep1-N238 2CS and His-Fep1-N238 4CS purified by Gel filtration 

chromatography.  

C. His-Fep1-N238 2CS and His-Fep1-N238 4CS purified by Ni-affinity column 
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Fig II-9. UV-visible absorption spectra of Fep1-N238 & Oxygen stability 

A. UV-visible absorption spectrum of anaerobically purified Fep1-N238 and Fep1-

N114 in comparison with full-length Fep1.  

B. Effect of oxygen on stability of Fe binding on aerobically purified Fep1. Time-

course of absorption spectra of aerobically purified Fep1-N238 after exposure to 

air. 
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Fig II-10. UV-visible absorption spectra of reduced & reconstituted 

Fep1-N238 

A. Absorption spectra of the sample as-isolated in the oxidized form (red line) and 

the reduced form after the addition of 20 mM sodium dithionite (gray line) were 

anaerobically (O2 < 2 ppm) recorded at room temperature. 

B. UV-visible spectra of as-isolated Fep1-N238 and reconstituted (RCN) Fep1-N238. 

Absorbance was presented as molar extinction coefficient (ε) to normalize protein 

content in each sample. 
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III. 2.2. Purification and UV-visible absorption spectroscopy of Fep1 

cysteine mutants 

To verify that four conserved cysteine residues are involved in coordination 

of Fe-S cluster, four cysteine residues in Fep1-N238 was individually 

mutated to serine (C70S/C76S/C85S/C88S) designated Fep1-N238 4CS. 

We also created a mutant Fep1 where the conserved two cysteines (C85, 88) 

that is necessary for iron-mediated repression of fio1+ expression (Pelletier 

et al., 2005) were changed to serines. In contrast to wild type, mutated Fep1-

N238 4CS and 2CS-overproducing cells lost almost reddish color, 

suggesting that these mutants most likely impaired iron-binding property 

of Fep1 (Fig II-7). Fep1-N114 2CS-expressed cells also showed the same 

result. The Cys mutant proteins 4CS and 2CS (28.1 kDa with His-tag) was 

purified by nickel affinity agarose and confirmed on SDS-PAGE gel (Fig II-

8). Absorption spectrum of the Fep1-N238 4CS mutant showed that it lost 

the majority of the characteristic absorption peaks, leaving only some 

residual absorption at 320 and 420 nm (Fig II-11). Besides 4CS mutant, 2CS 

mutants lost reddish brown color and the majority of the characteristic 

absorption peaks (Fig II-12). This indicates that the conserved cysteines are 

critical in binding the iron cofactor, most likely as coordinating ligands. 
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Fig II-11. UV-visible absorption spectra of aerobically purified Fep1-

N238 & Fep1-N238 4CS (C70S, C76S, C85S, C88S)  

UV-visible absorption spectra of Fep1-N238 with 4CS mutation (blue line) in 

comparison with the wild type (red) 
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Fig II-12. UV-visible absorption spectrum of truncated Fep1 & truncated 

Fep1 2CS 

UV-visible absorption spectra of truncated Fep1 with 2CS (C85/88S) mutation 

(gray line) in comparison with the wild type (red line) 
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III. 2.3. Both iron and sulfide are required to reconstitute iron-bound 

Fep1 

In order to further confirm the presence of Fe-S cluster in Fep1, we prepared 

apo-Fep1-N238 from the purified protein and tried reconstitution of metal 

cofactor under anaerobic condition. The reconstitution mixture contained 

ferric chloride (FeCl3) with or without sodium sulfide (Na2S). Results in Fig 

II-13. demonstrated that the addition of sodium sulfide produced Fep1 with 

absorption spectrum similar to that of the as isolated Fep1. Iron alone did 

not produce the form with the characteristic absorption spectrum. 

Compared with apo-Fep1, the iron-only reconstitution resulted in increased 

absorption below 400 nm, suggestive of some iron binding. The degraded 

Fep1 fragments-containing Full-length Fep1 showed the same result (Fig II-

14). 

 

III. 2.4. Iron and acid labile sulfide content of purified Fep1-N238 

I then determined the content of iron and sulfide in the anaerobically 

purified Fep1-N238. [2Fe-2S]-containing SoxR protein was assayed in 

parallel as a positive control for Fe-S detection. In my hands, as isolated 

SoxR was determined to contain 0.33 and 0.34 atoms of iron and sulfide, 

respectively, per monomeric protein (Table II-1), consistent with the 

presence of [2Fe-2S] cluster, even though not fully metallated. Incomplete 

Fe-S cluster bound to Fep1 may be limited by E. coli overexpression system. 

The apo-Fep1 protein contained 0.04 and 0.03 atoms of iron and sulfide, 

indicating successful de-metallation. The wild type Fep1-N238 contained 

0.37 ± 0.02 atoms of iron and 0.30 ± 0.09 atoms of sulfide per monomeric 

protein. The roughly 1:1 ratio of iron to sulfide is indicative of the presence 
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of Fe-S cluster. The 4CS mutant, on the other hand, showed much lower 

amount of iron and sulfide (0.17 ± 0.02 iron and 0.07 ± 0.07 sulfide per 

monomer), consistent with the mostly bleached absorption spectrum of the 

mutant protein. Some residual amount of iron in the 4CS mutant suggests 

that there could be some weaker binding site(s) for iron, possibly in the zinc- 

finger domains. This coincides with the low level of absorption by 4CS 

mutant (Fig II-11).  

The reconstituted Fep1 was determined to contain 3.14 and 3.26 atoms of 

iron and sulfide, respectively, per monomer (Table II-1). The nearly 1:1 ratio 

of iron to sulfide again supports the presence of Fe-S cluster in the 

reconstituted Fep1. The stoichiometry suggests the possibility of more than 

one [2Fe-2S], or the presence of [4Fe-4S], or a mixture of clusters. The results 

indicated that both iron and sulfide are required for reconstitution of the 

Fep1-N238. Thus, we could confirm again our conclusion that Fep1-N238 

binds Fe-S clusters.  
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Fig II-13. Iron and sulfide requirement to reconstitute iron-bound Fep1-N238.  

A. Absorption spectra were taken for purified Fep1-N238 (as isolated, blue), apo-

Fep1-N238 (green), or the reconstituted one in the presence of iron and sulfide 

(red), or iron only (gray).  

B. Reconstituted Fep1 with both Fe and Sulfide has a reddish brown color (right 

side) compared with only Fe addition (left side). 
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Fig II-14. Iron and sulfide requirement to reconstitute iron-bound full-length 

Fep1 

A. Reconstituted Fep1 with both Fe and Sulfide has a reddish brown color (b) 

compared with only Fe addition (a). 

B. Absorption spectra were taken for purified full-length and truncated Fep1 (as 

isolated, blue), apo-Fep1 (green), or the reconstituted one in the presence of iron 

and sulfide (red), or iron only (gray).  
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Table II-1. Iron and acid labile sulfide content of purified Fep1-N238 

Iron concentration in the purified protein sample was determined by colorimetric 

ferrozine assay. Acid labile sulfide concentration was determined by using 

methylene blue-based color assay. The amount of iron and acid labile sulfide was 

determined for three independently prepared protein samples. Stoichiometry per 

monomeric protein was presented.  
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Table II-2. Molecular mass analysis of Fep1 

Experimental mass (shown in Da) is from gel filtration analyses.  
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III. 3. EPR analyses of Fep1-N238 

To further obtain information on the type of Fe-S cluster in the purified (as 

isolated) Fep1-N238, we pursued electron paramagnetic resonance (EPR) 

spectroscopy. At 123 K, broad isotropic signal around a g-factor value of 

2.01 was detected in the dithionite-treated (reduced) sample (Fig II-16). The 

peak is indicative of the presence of [2Fe-2S]2+ cluster in the purified protein 

that becomes visible in EPR when reduced to paramagnetic [2Fe-2S]1+ (spin 

status 1/2). The presence of oxidized status of iron in the purified Fep1 

protein is reminiscent of SoxR we analyzed by EPR previously (Lee, Singh 

et al., 2015, Singh, Shin et al., 2013). To resolve broad isotropic signal at 123 

K, we prepared another batch of Fep1-N238 samples, and performed EPR 

analysis with liquid helium cryostat. At 5 K, as isolated Fep1-N238 samples 

exhibited two different types of signal depending on sample preparation. 

For one sample, a single rhombic signal near a g-factor value of 4.3 was 

detected in the purified sample, suggesting the presence of mononuclear 

ferric ion (Fig II-17A). Reduction by sodium dithionite produced a signal 

near a g-factor value of approx. 2.00, indicative of spin status 1/2 from [2Fe-

2S]1+ or [4Fe-4S]1+ cluster (Fig II-17A). In the third sample, two rhombic 

signals near g-factor values of 4.3 and 2.00 were observed in the absence of 

dithionite reduction, which nearly disappeared in the dithionite-treated 

sample (Fig II-17B). The peaks remained unchanged when oxidized by 

ferricyanide (data not shown). The signals observed near g-factor values of 

4.3 and 2.00 under oxidized condition resemble those typically observed for 

a linear [3Fe-4S] cluster with spin status 5/2. Both signals decreased by 

elevating the temperatrure to 10 K (data not shown), supporting the 
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presence of linear 3Fe-4S. Taken together, the EPR analyses confirmed the 

presence of Fe-S cluster in the purified as isolated Fep1, and suggests the 

possibility of mixed population of multiple Fe-S cluster types that could 

involve [2Fe-2S], [3Fe-4S], [4Fe-4S], and a mononuclear iron. The diverse 

EPR spectra observed in different samples may reflect the versatile 

intracellular environment of Fe-S cluster in Fep1 that form a complex with 

Grx4 and Fra2. Depending on the condition of cell lysis and early steps of 

purification, different populations of Fe-S cluster could be captured in the 

purified protein samples as snapshots. Further systematic spectroscopic 

analyses are in need to elucidate the exact cluster type and the time course 

of conversion, if any.  
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Fig II-15. Most important types of Fe-S clusters encountered in nature and 

their corresponding electronic properties. (Pandelia, Lanz et al., 2015) 

Fe3+ is represented with blue, Fe2+with red and the mixed-valent Fe2.5+ with purple 

spheres. Sulfide ligands are depicted with yellow spheres. 
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Fig II-16. EPR spectra of as-isolated Fep1-N238 analyzed at 123 K 

Anaerobically purified Fep1 (red line) was reduced by dithionite (blue line), and it 

was transferred to EPR tubes, and incubated anaerobically for 10 min at room 

temperature, and immediately frozen in liquid nitrogen. Fep1-N238 protein 

samples were subjected to EPR analyses. Microwave power, 1 mW; Microwave 

frequency, 9.17 GHz; Modulation frequency, 100 KHz; Temperature, 123 K 
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Fig II-17. EPR spectra of as-isolated Fep1-N238 analyzed at 5 K 

Anaerobically purified Fep1-N238 protein samples with or without dithionite 

treatments were subjected to EPR analyses. The following settings were used 

throughout the measurement: (A),(B) Microwave power, 1 mW; Microwave 

frequency, 9.64 GHz; Modulation frequency, 100 kHz; Modulation Amplitude, 10 

Gauss; Temperature, 5 K.  
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CHAPTER IV. 

 CONCLUSION 
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Recently, Hidalgo and her colleagues (Encinar del Dedo et al., 2015) 

reported that Fep1 is an iron-binding protein, but not an Fe-S protein, based 

on analysis of GST-tagged truncated Fep1. We analyzed His-tagged Fep1, 

and showed that both the full length and N238 fragment of Fep1 show 

nearly identical UV-Vis absorption spectra characteristic of Fe-S proteins. I 

observed 1:1 stoichiometric amounts of iron and sulfide in both 

reconstituted and as isolated proteins, indicative of Fe-S cluster. We took 

precautions for reproducible quantification of sulfide content, which can be 

hindered by the presence of reducing agent such as DTT or glutathione in 

the buffer. The absorption spectrum, quantification of iron and sulfide, 

metal reconstitution, and EPR analyses all support the presence of Fe-S 

cluster in Fep1.  

Our finding that Fep1 contains Fe-S cluster fits nicely with the current 

model of iron signaling that involve Grx4, whose conserved cysteines in the 

glutaredoxin domain is required to inhibit Fep1 activity under iron 

starvation condition (Encinar del Dedo et al., 2015, Jbel et al., 2011, Kim et 

al., 2011), and the interaction of [Fe-S]-binding Grx4-Fra2 heterodimer with 

Fep1 (Fig II-19). Demonstration of [Fe-S] in Fep1 leads to a proposal that there 

could be a two-way trafficking of [Fe-S] between Grx4-Fra2 complex and 

Fep1. Under iron starvation condition, [Fe-S] cluster may be transferred to 

Grx4-Fra2, resulting in inhibition of DNA-binding activity of Fep1 and 

subsequent derepression of iron acquisition genes (Fig II-19). Under iron 

replete condition, Fep1 may acquire [Fe-S] by itself or from the [Fe-S]-bound 

Grx4-Fra2. The finding that iron acquisition genes remain repressed in grx4 

mutant even under iron starved condition suggest that the [Fe-S] binding 
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in Fep1 is quite stable in the absence of Grx4. Whether a two-way transfer 

of [Fe-S] between Fep1 and Grx4-Fra2 complex occurs in vitro and in vivo 

needs be elucidated in the future. In both prokaryotes and eukaryotes, 

CGFS-type monothiol glutaredoxins are known to incorporate [2Fe-2S] 

cluster (Picciocchi et al., 2007). The exact type of Fe-S cluster in Grx4 of S. 

pombe has not been determined experimentally, even though it is likely to 

be [2Fe-2S] as observed in S. cerevisiae. Future studies on the transfer of Fe-

S cluster between Fep1 and Grx4-Fra2 complex (Fig II-20) will reveal a key 

mechanism behind the iron-regulation of Fep1 activity. Whether Fep1 

orthologs in other fungi bind [Fe-S] and utilize monothiol glutaredoxin to 

convey iron signaling via cluster transfer will be another interesting subject 

to investigate.  
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Fig II-19. A proposed model of iron-dependent regulation of Fep1 

repressor activity 

Under iron-replete conditions, Grx4-Fra2 heterodimer might acquire an [2Fe-2S] 

cluster. Fep1 also binds an [Fe-S] cluster and can represses expression of iron 

acquisition genes. Intracellular Fe depletion could trigger Fe loss from the Fe-S 

cluster bridging Grx4 and Fra2 first, the heterodimer can then [Fe-S] cluster from 

Fep1, which would then become inactive as a transcriptional repressor. 

Protein-protein interaction studies have revealed that Grx4 interacts Fep1 and Fra2 

iron-independently. Fep1 also interacts Fra2 iron-independently (J.F. Jacques et al., 

2014, J. Encinar et al., 2015, K.D Kim et al.,2011). 
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Fig II-20. A proposed model of iron-dependent regulation of Fep1 
repressor activity  
 
Under iron-replete conditions, Grx4-Fra2 heterodimer might acquire an [2Fe-2S] 

cluster. Fep1 also binds an [Fe-S] cluster and can represses expression of iron 

acquisition genes. Intracellular Fe depletion could trigger Fe loss from the Fe-S 

cluster bridging Grx4 and Fra2 first (a), the heterodimer can then [Fe-S] cluster 

from Fep1, which would then become inactive as a transcriptional repressor (b). 

Protein-protein interaction studies have revealed that Grx4 interacts Fep1 and Fra2 

iron-independently. Fep1 also interacts Fra2 iron-independently (J.F. Jacques et al., 

2014, J. Encinar et al., 2015, K.D Kim et al.,2011). 

The Trx-like domain (TRX) of Grx4 interacts with the C-terminal region of Fep1 

iron-independently, whereas the Grx-like domain (GRX) of Grx4 weakly interacts 

with the N-terminal region of Fep1 only under low iron condition (c) (M. Jbel et al., 

2011).   
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국문초록 
철은 세포 내에서 호흡이나, TCA cycle, DNA 복제와 수리 같은 다양한 과정

에 필수적인 단백질 보조인자이다. 철은 3가 이온 (Fe3+)과 2가 이온 (Fe2+) 

사이를 스위치하는 산화-환원 성질 때문에 활성 산소족을 발생시킬 수 있어 

잠재적인 독성을 갖는다. 따라서 세포는 적절한 농도의 철을 유지하기 위해 

엄격히 조절된다. 

분열성 효모인 Schizosaccharomyces pombe는 두 개의 억제 전사인자에 의

해 철 항상성이 조절된다. Fep1은 철 획득관련 유전자의 발현을 조절하고 

Php4는 철 이용과 철 저장에 관련된 유전자의 발현을 조절하는 억제 전사인

자이다. Fep1은 GATA 타입의 억제 전사인자로써 fio1+, frp1+, str1+, str2+, 

str3+ 같은 철 흡수 유전자와 abc3+같은 액포 수송 유전자의 프로모터에 결

합한다. 이로써 철이 충분한 조건일 때 세포내로 더 이상의 철 유입을 막을 

수 있다. 

본 실험실의 이전 연구에서 CGFS 타입의 monothiol 글루타리독신인 Grx4 결

손 균주의 경우, 철 흡수와 철 이용에 관여하는 유전자의 조절이 무너진 것을 

보았다. Grx4는 Fep1과 직접적으로 결합함으로써 Fep1의 활성을 조절하는데 

Grx4가 필요하다는 것을 밝혀내었다. Fep1뿐 만 아니라 Php4의 경우에도 글

루타리독신 Grx4에 의해서 번역 후 조절된다. 철이 충분한 조건일 경우, Grx4

는 Php4와 결합하여 Php4를 세포질에 위치하도록 조절함으로써 철 이용, 저

장 유전자의 발현이 증가한다. CGFS 타입의 monothiol 글루타리독신인 Grx4

는 homodimer로써 Fe-S cluster를 결합한다. 혹은 BolA 타입 단백질인 Fra2

와 heterodimer를 이루면서 Fe-S cluster를 갖는다고 Saccharomyces 

cerevisiae에서 알려져 있다. S. pombe 에서, 철이 부족한 환경일 때 Grx4와 

Fra2 heterodimer가 Fep1의 DNA 결합 활성을 저해하면서 철 흡수 유전자의 

발현을 증가시키는 데에 필요하다는 것이 알려져 있다. 
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지금까지 Fep1의 기능과 상호작용하는 단백질 파트너들이 밝혀져 왔지만, 철

이 부족한 조건일 때 Fep1이 비활성화되는 분자적 기작은 아직 모른다. 본  

연구에서 Fep1에 의한 철 감지 기작을 밝히기 위해 생화학적, 그리고 분광학

적으로 Fep1을 분석하였다. 완전한 길이의 Fep1과 잘려진 Fep1 단백질, 그

리고 E. coli에서 분리한 후의 자연적인 Fep1과 재구성한 Fep1에서 철과 황을 

가지고 있음을 확인하였다. UV-visible spectroscopy 분석 결과 Fep1 단백질

은 Fe보다는 Fe-S cluster를 결합할 것이라고 보였는데, 실제로 단백질의 철

과 황을 정량 분석한 결과 약 1 : 1 의 비율로 철과 황이 검출되었다. 혐기적 

조건에서 Fe과 Sulfide를 첨가하여 cluster를 재구성한 경우에도 Fep1 단백질

이 갖는 Fe과 sulfide가 비슷한 비율임을 확인하였다. 또한 Fe과 Sulfide를 제

공하여 재구성한 후 UV-visible spectroscopy 분석을 했을 때, Fe뿐 만 아니

라 sulfide도 함께 제공해야만 본래의 Fep1이 갖는 흡광도의 특징을 볼 수 있

었다. 이를 통해서 Fep1은 Fe-S cluster를 갖는 단백질임을 밝혀내었다. 또한 

뮤테이션 연구를 통해 Fep1의 DNA 결합 도메인에 있는 두 zinc finger 사이

의 보존된 시스테인들이 [Fe-S] 클러스터 결합에 중요함을 알게 되었다. EPR 

spectroscopy 분석결과 Fep1이 [2Fe-2S], [3Fe-4S], [4Fe-4S]의 여러 클러

스터 타입이 혼재된 [Fe-S] 특유의 peak을 확인하였다. 본 연구결과를 통해 

[Fe-S]를 갖는 monothiol Grx4가 Fep1의 활성을 조절한다는 기존 연구 결과

를 더 잘 이해할 수 있다. 또한 본 연구결과는 Grx4가 Fep1의 활성을 조절하

는 기작을 밝히기 위한 기반이 되어 준다. 
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