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ABSTRACT 

 

BubR1 in the Coordination of 

Kinetochore-Microtubule Attachment and Spindle 

Assembly Checkpoint Signaling 

 

Inai Park 

School of Biological Sciences 

Seoul National University 

 

BubR1 is a key protein constituting the mitotic checkpoint complex 

(MCC). During mitosis, the spindle assembly checkpoint (SAC) acts to delay 

anaphase onset until all chromosomes are attached to mitotic spindles at 

kinetochores. The SAC works through generation of MCC, which inhibits 

the anaphase-promoting complex/cyclosome E3 ligase (APC/C) in the 

cytoplasm. This study addresses on first, how BubR1 coordinated 

kinetochore-microtubule (KT-MT) attachments and SAC signaling. Secondly, 

it also addresses on how a regulator in mitosis, tumor suppressor BRCA2 

serves as a signaling platform during SAC. 
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In order to understand the physiological role of BubR1 acetylation, 

acetylation deficient knock-in mice (K243R/+) were generated. After 60 

weeks, 38% of mice spontaneously developed tumors at various tissues. 

K243R/+ Mouse Embryonic Fibroblasts (MEFs) were highly aneuploid and 

had weakened SAC. At kinetochores, unstable KT-MT attachments were 

observed due to reduced recruitment of PP2AB56a. Insufficient amount of 

PP2AB56a could not counterbalance the excessive Aurora B activity at 

kinetochores. All together, unstable KT-MT attachment and failure in 

maintaining MCC formed in mitosis led to accumulation of chromosome 

instability (CIN) in K243R/+. These CIN manifested in various forms in the 

acetylation deficient mice generated a mutation-prone cellular environment 

favoring tumorigenesis. 

Previous works have shown that in prometaphase, BubR1 

acetylation occurs at kinetochores, only if BRCA2 is present to support the 

BubR1-P300/CBP-associated factor (PCAF) interaction (Choi et al., 2012). 

My research showed that BubR1 was deacetylated when SAC was silenced. 

Deacetylation of BubR1 was a cue to SAC silencing, as cells expressing 

acetylation mimetic form of BubR1 could not exit mitosis after the 

metaphase delay. Also, acetylation of BubR1 diminished when SAC 

silencing was mimicked in mitotic cells. Deacetylation of BubR1 was 
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mediated by class I HDACs, and BRCA2 was needed for HDACs to interact 

with BubR1 at prometaphase. Hence, one can conclude that BRCA2 not only 

regulates BubR1 acetylation, but it presents the acetylated BubR1 to HDACs 

at prometaphase for deacetylation. Analysis on the BRCA2 complex in 

mitosis suggested that BRCA2 acts as a signaling platform within the SAC 

signaling network by specifying the interaction and localization of essential 

proteins at kinetochores. 

In essence, my study provides further insight into the following key 

questions in mitosis. First, the question of how KT-MT attachment is sensed 

and relayed to SAC was further explained by elucidating the role of BubR1 

in coordinating KT-MT attachment and SAC signaling. Second, the question 

of how complex SAC signaling is punctually regulated by multiple proteins 

during metaphase to anaphase transition was addressed through elucidating 

the role of BRCA2 as a scaffold for BubR1 acetylation/deacetylation at 

kinetochores.  

 

Key words: spindle assembly checkpoint (SAC), BubR1, tumorigenesis, 

SAC signaling, KT-MT attachment 
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I. INTRODUCTION 

I-1. Mitosis and chromosome instability (CIN) 

The cell cycle is a series of events that allows cells to grow and divide. It 

is divided into three main stages; in the order of interphase, mitosis and 

cytokinesis. During interphase, the genetic material replicates and the 

organelles prepare for division. In mitosis, genetic material is distributed and 

the cleavage of cytoplasmic content during cytokinesis produces two 

daughter cells. The oscillation in the activity of specific Cyclins and Cyclin-

dependent kinases together supports the directional flow into each events of 

the cell cycle (Malumbres and Barbacid, 2009). The conserved E3-ubiquitin 

ligase in eukaryotes called anaphase promoting complex /cyclosome (APC/C) 

targets numerous key proteins through ubiquitination so that they are 

degraded by 26S proteasome at right place and time to drive the cell cycle. 

Such targeted substrates of APC/C include Cyclins A/B, Geminin, 

Polo/Aurora kinases, Cdc20, BubR1 and Securin (Pines, 2011). Substrate 

specificity of APC/C during cell cycle is determined by interaction with 

either co-activators Cdh1 in interphase or Cdc20 in mitosis. 

In mitosis, APC/C-Cdc20 co-activator complex is activated primarily by 

Cyclin-Cdk1 dependent phosphorylation. Non-phosphorable APC/C mutant 

by Cdc28 (Cdk1) is defective in performing Cdc20 dependent activity such 

as ubiquitinating Cyclin B (Rudner et al., 2000) and phosphorylation by 
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Cdk1 is sufficient for increasing binding of MCC to Cdc20 in vivo (Kraft et 

al., 2003). It is important that activity of APC/C-Cdc20 is regulated to allow 

timely degradation of Securin and Cyclin B for proper segregation of sister 

chromatids. In order to make this happen, inappropriately attached or 

unattached microtubules are monitored by spindle assembly checkpoint 

(SAC) proteins which assemble at kinetochores (Lara-Gonzalez et al., 2012). 

Thus, APC/C activity in mitosis is strictly monitored by SAC. 

 If dividing cells experience failure in SAC, the chances of 

chromosome mis-segregation increase, generating aneuploid (abnormal 

number of chromosomes, termed first in 1922 by Tackholm) cells (Fig.1). 

Acquiring more or less chromosomes due to problems in SAC result to a 

condition in which cells harbor unstable DNA content, or Chromosome 

instability (CIN). CIN could be manifested in various forms such as change 

in structures (e.g. fusion and internal gene deletion) or numbers of 

chromosomes (e.g. loss and duplication).  
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Figure 1 

 

 

 

 

 

 

 

 

 

 

 



 

12 

 

 

 

 

 

 

 

 

Fig.1 SAC and chromosome segregation 

 

A schematic diagram on the fate of chromosomes in mitosis.  

An unattached kinetochore elicits SAC. (Top) When SAC is activated, 

chromosome segregation is corrected in mitosis and daughter cells receive 

equal copies of genes. (Bottom) Failure in SAC affects daughter cells to end 

up with uneven copy of genes which may result to cell death or become 

cancerous.  
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The effect of aneuploidy at an organism or individual level is 

detrimental, leading to embryonic lethality, yet with one exception of 

carrying trisomy at chromosome 21 (known as Down syndrome). The effect 

of carrying somatic cell aneuploidy maybe severe, as evaluated from the 

examples of human patients with mosaic variated aneuploidy (MVA) 

syndrome. The MVA patients carry mutations in a SAC protein gene, BubR1, 

and this symptom is characterized by mosaic aneuploidies in multiple 

different chromosomes and tissues. Overt features include microcephaly, 

early childhood cancer and mental retardation (Hanks et al., 2004). In the 

case of budding yeasts engineered to be disomic for one or two 

chromosomes, aneuploidy causes delay in G1 phase, inhibiting proliferation 

(Stingeles et al., 2012; Torres et al., 2007).  

On the other hand, over 90% of solid tumors are highly aneuploid 

with typical karyotypes ranging from 40 to 60 chromosomes on average 

(http://cgap.nci.nih.gov/chromosomes/mitelman). As CIN is frequently 

detected in human solid tumor masses, one can infer that there is a high 

correlation between CIN and cancer.  
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I-2. Mouse models for CIN 

In order to understand how aneuploidy could affect tumorigenesis, 

mouse models which could inflict aneuploidy were generated and analyzed. 

These mouse models were generated by mutating or regulating transcription 

of the genes involved in SAC such as Mad2, Hec1, Bub3, CENP-E, Plk1 and 

BubR1 (Schvartzman et al., 2010). 

One of the early models include transgenic mice over expressing Mad2, 

using the doxycycline inducible system. The mouse embryonic fibroblasts 

(MEFs) from these Mad2 over expressing mice take longer time to complete 

mitosis, with lagging chromosomes and chromosome bridges, resulting in 

both aneuploidy and tetraploidy. Furthermore, the mice show wide spectrum 

of tumors including hepatomas, lung adenomas and lymphomas at the 

latency of 12 months. When neoplastic transformation occurs, Mad2 is no 

longer needed to be over expressed; indicating CIN could be an early and 

transient oncogenic event (Sotillo et al., 2007). 

On the contrary, Weaver et al. showed that aneuploidy could act either as 

oncogenic or tumor-suppressive through the analysis of Centromere-

associated Protein-E (CENP-E) knock-out mice. CENP-E is a mitosis 

specific motor protein which acts in maintaining end-on attachments 

between microtubules and kinetochores. Reduction in CENP-E results in the 

accumulation of aneuploidy in vitro and in vivo. In CENP-E
+/- 

mice, 
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spontaneous tumorigenesis takes place in liver and blood cells. But when 

CENP-E
+/- 

mice are challenged with carcinogen, dimethyl benzanthracene 

(DMBA), the whole number of incidence of tumors decrease. Also, when 

these mice are intercrossed with p19/ARF
-/-

, elevated aneuploidy owing to 

CENP-E knockout increases the average tumor-free survival of p19/ARF
-/-

animals from 60 days to 90 days (Weaver et al., 2007). Interestingly, in this 

model, aneuploidy does drive spontaneous tumorigenesis, but aneuploidy 

also suppresses tumorigenesis when circumstances favorable to tumor 

formation are made by chemical or genetic induction. 

In essence, previous studies have shown that deregulated expression or 

mutation of mitotic checkpoint genes lead to various grade of aneuploidy in 

mice. Yet, consequences varied; some develop tumors under exposure to 

carcinogens or are completely tumor-free (Schvartzman et al., 2010), which I 

think provided an inconclusive answer to the question of whether aneuploidy 

is a negative or a positive cue to tumorigenesis. 
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BubR1 mouse models 

What do we know so far, when BubR1 is constitutively mutated or 

disrupted in mouse models? In 2004, BubR1 knockout mice were generated 

using the gene trapping method to insert the neomycin cassette between exon 

1 and 2 of mBubR1, disrupting the allele. BubR1-/- mice are embryonic lethal 

at Embryonic Stage 6.5 days, due to apoptosis, unable to be characterized 

(Wang et al., 2004). BubR1+/- MEFs express ~50% at the protein level, and 

are defective in SAC activation, as levels of Cdc20 and Securin are low. In 

addition, incidence of polyploidy and micronuclei increase after cell 

divisions (Dai et al., 2004). Haploinsufficient BubR1+/- mice lack obvious 

abnormal phenotypes but harbor splenomegaly and show abnormal 

megakaryopoiesis. But when the mice are challenged with carcinogen 

azoxymethane (AOM), they develop colon and lung adenoma at high 

incidence (Dai et al., 2004).  

Unlike the tumor-prone phenotype seen from BubR1+/- mice, mutant 

mice generated to express BubR1 at graded levels show unanticipated roles 

of BubR1 in regulating aging. Expression of BubR1 was gradually reduced 

from the normal level (+/+) to zero by the use of the wild type (+), knock out 

(-) and hypomorphic alleles (H). When BubR1 level is expressed at the level 

around 10% of the normal (BubR1-/H), the mice die within several hours due 

to respiratory problems. But the mice expressing about 29% of the protein 
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(BubR1
H/H

, hypomorphic), have the life span of 6 months and develop aging 

related phenotypes such as dwarfism, lordokyphosis, cataracts, loss of 

subcutaneous fat and impaired wound healing. At cellular level, BubR1
H/H 

MEFs show shortened duration of mitotic arrest under the exposure to 

nocodazole, high incidence of aneuploidy and grow slow in culture, going 

into senescence (Baker et al., 2004). However, the hypomorphic mice do not 

develop spontaneous tumors.  

All together, mice with mutations in BubR1 vary in characteristics. Even 

though both mouse models commonly possess aneuploidy at cellular level, 

they show overtly different phenotypes. It is still unclear from analyzing 

these previous mouse models in that what aspects of BubR1 and whether 

aneuploidy resulting from defective SAC directly affect tumorigenesis. Also, 

one cannot rule out the possibility that by over expressing or down regulating 

the cellular expression level of genes throughout the cell cycle, none mitotic 

consequences could have affected the phenotype of mice. In effect, 

insufficiency of BubR1 causes accumulation of senescence markers and 

growth arrest. Also, several checkpoint genes including Mad2 are reported to 

be regulated under the control of E2F transcription factor from G1 to S phase 

(Lovino et al., 2006). 

Therefore, there is a need for a better mouse model which could  

1) Specifically access the correlation between SAC regulation and 
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tumorigenesis and further  

2) Elucidate the roles of BubR1 in SAC. 

 

I-3. Spindle assembly checkpoint (SAC) activity and 

regulation 

In eukaryotes, SAC is a safety mechanism which monitors 

kinetochore-microtubule (KT-MT) attachment during prometaphase to 

ensure faithful segregation of chromosomes by delaying the entry into 

anaphase (Musacchio and Salmon, 2007). Some essential checkpoint 

proteins include Mad1, Mad2, BubR1 (MAD3 in yeast), Bub3, Bub1 and 

Mps1. These genes were first identified in 1991, through a genetic screen in 

budding yeast for sensitivity to spindle poisons. Loss-of-function mutants of 

such mitotic arrest deficient (MAD) and budding uninhibited by 

benzimidazole (BUB) genes are viable as long as the cell division proceeds 

(Benezra et al., 2010). The checkpoint proteins Mad2, BubR1, Bub3 and 

Cdc20 form the MCC, enabling SAC to be effective upon activation. 

 

Signal generation at kinetochore 

Spindle assembly is a dynamic yet error-prone process, involving 

multiple rounds of microtubule attachment and detachment at individual 

kinetochores (Dick et al., 2013). For instance, when the sister kinetochores 
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attach to microtubule spindles emanating from a single spindle pole (syntelic 

attachment) or when only one of the sister kinetochores attach to the mitotic 

spindle (monotelic attachment), SAC is activated. SAC is very sensitive, 

enough to respond to a single unattached kinetochore to delay anaphase 

onset for several hours, as seen from laser ablation experiments from Ptk1 

cells (Rieder et al., 1995) and to loss of tension between sister chromatid 

kinetochores. The number of unattached kinetochores are proportional to the 

strength of SAC signaling (Dick and Gerlich, 2013; Collin et al., 2013) and 

unattached kinetochores are critical to priming the catalysis of MCC 

(Kulukian, A. et al., 2009). 

During prometaphase, SAC proteins and Cdc20 accumulate at outer 

kinetochore to generate the wait-anaphase signal and inhibit APC/C-Cdc20 

activator complex to block degradation of Cyclin B and Securin (Lara-

Gonzalez et al., 2012).The kinetochore, in which MCC assembles, is a built 

on CENP-A marked centromeric chromatin (Perpelescu and Fukagawa, 

2011). Specifically, outer kinetochore is constituted by the KMN network 

comprised of KNL1, Mis12 and Ndc80 sub complexes. The KMN network 

has the prime role in allowing load-bearing attachments to dynamic 

microtubules (Joglekar and Deluca, 2009). In addition, KNL1 and its binding 

partner Zwint act as a scaffold for the SAC proteins (Bub1, BubR1, Bub3, 

Mad1, Mad2, the RZZ (Rod/Zw10/Zwilch) complex and Spindly) (Varma 
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and Salmon, 2012). Another complex at the outer kinetochore needed for 

microtubule attachment is the RZZ complex, unique to the metazoan cells. 

The RZZ complex plays an essential role in SAC, by recruiting Mad1 and 

Mad2 to unattached kinetochores (Karess et al., 2005).  

 

MCC, inhibitor of SAC 

How is then, the mechanical sensor at unattached kinetochores is 

converted to chemical signaling to inhibit APC/C in prometaphase? In other 

words, what is the nature of the wait-anaphase signal generated from 

unattached kinetochores? The best understanding up-to-date comes from the 

„Mad2 template model‟. The fluorescence recovery after photo bleaching 

(FRAP) analysis of GFP tagged proteins showed that all MCC components 

cycle on and off from the kinetochores with high turnover rates. This implies 

that MCC is dynamically created at kinetochores (Howell et al., 2004). In 

this theory, Mad2 acts as the template for generation of Mad2-Cdc20 

complexes, an initial step in MCC assembly. In short, Mad2 adopts two 

distinct structural conformations: open (o-Mad2) and closed (c-Mad2) 

conformations. Upon mitotic entry, Mad1 and c-Mad2 form a hetero 

tetrameric complex at the kinetochores (Schuyler et al., 2012). Then 

cytosolic o-Mad2 are recruited to the kinetochore bound Mad1-c-Mad2, 

dimerizing with the Mad1 bound c-Mad2. This newly recruited o-Mad2 is 



 

21 

 

activated and leaves the kinetochore to capture Cdc20, creating c-Mad2-

Cdc20 complex (De-antoni et al., 2005). The c-Mad2-Cdc20 complex auto-

amplifies the signal by converting more o-Mad2 into c-Mad2 (Luo et al., 

2002). Thus, c-Mad2-Mad1 acts as a template, by catalyzing the conversion 

of o-Mad2 to compatible c-Mad2 for Cdc20 interaction. Whereas the first 

sub complex of MCC (c-Mad2-Cdc20) is actively generated from 

kinetochores, the second sub complex of the MCC, BubR1-Bub3 complex 

exists throughout the cell cycle (Chen et al., 2002).  

Through the analysis of crystal structure on MCC in yeast cells, 

much on the protein-protein interaction within the MCC is unraveled. Mad2 

is necessary for BubR1-Cdc20 interaction and the KEN1 box in BubR1 is 

also needed for Mad2-Cdc20 binding (Davenport et al., 2006; Nilsson et al., 

2008; Lara-Gonzalez et al., 2011). Although the yeast MCC structure 

includes only N-terminus of hBubR1 (MAD3), it is clear that 1) TPR domain 

of BubR1 interacts with Cdc20, 2) KEN box forms a Helix-loop-helix 

structure to interact with Mad2-Cdc20, 3) c-Mad2 interacts with BubR1 and 

Cdc20 through the same domain that interacts with o-Mad2 and 4) BubR1 

acts as a pseudo-substrate inhibitor of APC/C by occupying the substrate 

recognition module within the APC/C, disabling APC/C to accept substrates 

in mitosis (Chao et al., 2012). These MCC proteins bind in approximately 

1:1:1:1 sub-stoichiometric amounts, and with Bub3-BubR1 fully 
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incorporated to Mad2-Cdc20, more effectively inhibit APC/C-Cdc20co-

activator complex (Fig.2) (Nilsson et al., 2008). 
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Figure 2 
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Fig.2 Activation of SAC 

 

(Top) Mechanical sensor at unattached/tensionless kinetochore is converted 

to chemical signaling to inhibit APC/C in prometaphase. When the sister 

kinetochores attach to microtubule spindles emanating from a single spindle 

pole (syntelic attachment) or when only one of the sister kinetochores attach 

to the mitotic spindle (monotelic attachment), SAC is activated.  

(Bottom) Upon SAC activation, MCC accumulates at the kinetochores in a 

hierarchical manner. MCC in the cytoplasm binds to APC/C to inhibit the 

ubiquitination of APC/C substrates. Inhibition of Cyclin B and Securin 

ubiquitination stops the cell from progressing into anaphase. 

 

 

 

 

 

 



 

25 

 

I-4. Sensors in SAC 

Multiple kinases are involved in the activation of SAC. Mps1 and 

Aurora B kinase actively recruit checkpoint proteins to kinetochores and 

sense KT-MT tension, respectively.  

Mps1 kinase 

Mps1 kinase is recruited to unaligned kinetochores at the 

autophosphorylated state, and phosphorylates Met-Glu-Leu-Thr (MELT) 

motifs of KNL1. Activity of Mps1 is important for recruitment of Mad1-c-

Mad2 complex and Bub3-BubR1 complex to kinetochores (Funabaki and 

Wynne, 2013). In yeast, Bub1 recruitment to kinetochores is dependent on 

the phosphorylation of KNL1 by Mps1, which in turn allows the formation 

of Bub3-Bub1 or Bub3-BubR1 complexes at kinetochores (Yamagishi et al., 

2012; Krenn et al., 2014). In addition, Mps1 also has an important role in 

regulating Mad2 template mechanism, putting the kinase at the top of the 

SAC signaling. Mps1 promotes recruitment of the RZZ complex to the 

kinetochores, which in turn recruits Mad1-c-Mad2. After recruiting the 

RZZ complex, Mps1 activity is needed to maintain the flow of o-Mad2 to 

the MAD1-c-MAD2 core complex (Hewitt et al., 2010). Continuous Mps1 

activity is important, as inactivation of Mps1 after SAC silencing leads to 

block the assembly of Mad2-Cdc20 complex, essential to sustaining the 

SAC (Maciejowski et al., 2010). 
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Aurora B kinase 

Aurora B Ser/Thr kinase has multiple substrates in mitosis, 

reflecting its broad implications throughout the cell cycle. Aurora B is 

included in the chromosomal passenger complex (CPC), constituted of 

INCENP (Inner centromere protein), Survivin and Borealin. At the entry of 

prometaphase, Aurora B relocates to inner centromere region from the 

chromosome arms. Aurora B functions in regulating KT-MT attachments and 

SAC signaling (F.Wang et al., 2012). If erroneous KT-MT attachments are 

made, such that tension is not generated at sister chromatid kinetochores 

(through bipolar-attachment), Aurora B destabilizes KT-MT attachment by 

phosphorylating the KMN network (e.g. Hec1), to lose their attachment to 

microtubules (Cheeseman et al., 2006; DeLuca et al., 2006). Hence, 

unattached kinetochores are generated to allow proper KT-MT attachments 

to reoccur. How concentrated localization of Aurora B at inner centromere 

during prometaphase relates to phosphorylation of distal targets at outer 

kinetochores could be explained by the “diffusion-based gradient” model 

(E.Wang et al., 2011). According to this model, locally concentrated activity 

of Aurora B at centromere is dependent on the concentration and 

phosphorylation of the C-terminus of the INCENP. When functional 

INCENP is vacant at centromeres, Aurora B is then free to reach immobile, 

distal targets by diffusion in addition to its activation at centromeres (E.Wang 
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et al., 2011). These phosphorylated substrates are dephosphorylated in 

metaphase (Welburn et al., 2010), consistent with the localization of PP1 and 

PP2A phosphatases at kinetochores (Kim et al., 2010). 

In addition, independent to the KT-MT attachment regulation, 

Aurora B also plays a more direct role in SAC signaling (Hauf et al., 2003; 

Santagueda et al., 2011; F. Wang et al., 2012; Saurin et al., 2011). Several 

studies have pointed out the implication of Aurora B in SAC signaling. One 

way is by potentiating SAC signaling at the onset of mitosis by recruiting 

Mps1 to kinetochores. Upon Aurora B inhibition and deletion of Hec1, Mps1 

activation and SAC establishment are delayed and this in turn is rescued by 

tethering Mps1 to kinetochores (Saurin et al., 2011). Furthermore, analysis 

with the Haspin inhibitor which targets protein Haspin has provided further 

insight. Haspin phosphorylateshistone H3 at Thr-3 to provide the docking 

site for Aurora B complex at kinetochores. When cells are treated with the 

Haspin inhibitor, phosphorylation of H3T3 decreases, resulting in loss of 

centromere located Aurora B and phosphorylation of its substrates (F. Wang 

et al., 2012). In consequence, along with alignment defects in metaphase, 

SCA signaling is compromised as evident from deterred response to 

activation by nocodazole and delay in recruitment of BubR1 to kinetochores 

(F.Wang et al., 2012). 
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It is clear that major kinases active at the epic of SAC signaling are 

Aurora B and Mps1, potentially aiding in recruitment of checkpoint proteins 

to kinetochores at the onset of prometaphase. Considering the fact that SAC 

is sensitive and checkpoint proteins have fast turnover rates, the nature of the 

signaling in SAC is likely to be complex and meticulously shaped. Thus, it 

would be interesting to delve into how post-translational modifications of 

SAC proteins layer the molecular built up of SAC to aid efficient 

transmission of the SAC signals throughout the cytoplasm. 
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I-5. Roles of BubR1 in mitosis 

BubR1 is an evolutionarily conserved SAC protein with multiple 

domains. It is one of the key proteins constituting the MCC, present at 

unattached kinetochores and cytosol in mitosis. Main regions of BubR1 can 

be classified into 1) two N-terminal Lys-Glu-Asn KEN box motifs in vicinity 

to each other, with putative destruction box (D box) in between, 2) 

tetratricopeptide repeat (TPR) also present at the N-terminus, the interacting 

region to Blinkin and KNL1 (Kiyomitsu et al., 2007; D′arcy et al., 2010), 3) 

followed by Gle2-binding sequence (GLEBS) motif mediating binding to 

Bub3 (Taylor et al., 1998), 4) internal Cdc20 binding domain, needed for 

Mad2 independent interaction with Cdc20 (Fiore et al., 2015; Diaz-Martinez 

et al., 2015), 5) and lastly, carboxyl terminal „kinase‟ domain (Kapanidou, M. 

et al., 2015) (Fig.3). 

 

Functional units of BubR1 

The KEN box of BubR1 is crucial for SAC function. KEN boxes can 

act as degrons of APC/C (Pfleger and Kirchner, 2000). Indeed, study with 

budding yeast homolog MAD3 has shown that MAD3 acts as a pseudo 

substrate, competing with real substrate Hsl1 for Cdc20 binding within the 

APC/C (Burton and Solomon, 2007). In detail, the mechanism was 

elucidated on how the first and second KEN boxes cooperate in human 
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BubR1, to block substrates to the APC/C-Cdc20. In mitotic cells, the N-

terminus of BubR1 including the first KEN box is necessary and sufficient to 

assembling with Cdc20, Mad2 and APC/C (Lara-Gonzalez et al., 2011; 

Malureanu et al., 2009). Deletion of the second KEN box is negligible in 

forming BubR1-MCC complex, yet both KEN1 and KEN2 boxes are needed 

for SAC activity. When Lys-Glu-Asn in each KEN Box is mutated to 

degenerate Ala-Ala-Ala (AAA form), cells expressing such mutants fail to 

be arrested in mitosis compared to cells expressing wild type BubR1 (Lara-

Gonzalez et al., 2011). How KEN2 box affects the SAC activity is explained 

by measuring APC/C ubiquitination activity with BubR1 KEN box mutants 

assembled into the MCC bound APC/C complex (APC/C-MCC). 

Interestingly, when BubR1 with mutated KEN2 box is incorporated into the 

APC/C-MCC, the ability of APC/C to degrade its substrate Cyclin B is 

enhanced compared to the APC/C-MCC in which either KEN1 mutated 

BubR1 or wild type BubR1 is incorporated (Lara-Gonzalez et al., 2011). 

Furthermore, mutation in the KEN2 box hinders recruitment of the substrate 

(Securin) to the APC/C-MCC (Lara-Gonzalez et al., 2011). Yeast cryo-EM 

structure analysis on MCC supports the idea that MAD3 (equivalent to N-

terminus of human BubR1) induces displacement of Cdc20 from the bi-

partite receptor (Chao et al., 2012). Thus, KEN-box containing MAD3/ 

BubR1 acts as a pseudo substrate because it efficiently inhibits APC/C-



 

31 

 

Cdc20 activity. 

TPR motif of BubR1 is crucial to the kinetochore localization 

activity of BubR1. This domain allows BubR1 to directly bind to Blinkin and 

KNL1 at the Met-Glu-Leu-Thr (MELT) motif repeat (Kiyomitsu et al., 2007; 

D'Arcy et al., 2010). Another region central to the kinetochore localization of 

BubR1 is the stretch of 40 amino acid residues called the GLEBS motif, 

needed for specific binding with Bub3 (Larson et al., 2007). Bub3 itself is 

also recruited to kinetochores by Bub1 upon phosphorylation of KNL1 

MELT domain at prometaphase (Primorac,I. et al., 2013). Thus, Bub 

complexes altogether enhance the kinetochore localization activity of BubR1. 

This is further confirmed through mutagenesis analysis; BubR1 with 

mutation at E406K in the GLEBs motif fails to bind to Bub3 and localize to 

kinetochores (Malureanu et al., 2009). 

Middle region of BubR1, following the GLEBs motif is called the 

internal Cdc20 binding site (IC20BD). This region spans over residues 490-

560 and plays an important role in binding to Cdc20, independent of Mad2 

(Lischetti et al., 2014). In different studies, this region was also termed at 

„ABBA‟ motif referring to its identification in Cyclin A, Bub1, BubR1 and 

Acm1 (Di Fiore et al., 2015) or the “Phe” box due to the two phenylalanine 

residues (Diaz-Martinez et al., 2015). This domain is implicated in eliciting 

SAC response at full strength and recruiting Cdc20 to the kinetochores 
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during SAC (Di Fiore et al., 2015). 

The C-terminus of human BubR1 is the kinase domain (738-1014aa), 

which is unique to the vertebrate counterpart of BubR1. The requirement for 

the kinase domain was suggested in proper KT-MT attachments (Huang H. 

et al., 2008; Mao et al., 2003), but rescue experiments using the kinase dead 

mutant (K1204A) of BubR1 suggested that the effect of kinase domain on 

chromosome congression is trivial (Elowe et al., 2007). Moreover, it has 

been suggested that BubR1 is actually a pseudokinase. Even though the 

protein possesses the catalytic triad characteristic of conventional kinases, 

the kinase domain is used only as a structural stabilizer (Suijkerbuijk et al., 

2012). 

 

Post-translational modifications of BubR1 

BubR1 is post-translationally modified in mitosis. Modifications 

take form in phosphorylation, acetylation, sumolylation and ubiquitination. 

These post-translational modifications of BubR1 affect the localization, 

stability, half life and hierarchical order in assembly of checkpoint proteins 

(Kapanidou, M. et al., 2015). 

BubR1 is heavily phosphorylated in mitosis, causing electrophoretic 

upshit. Hyperphosphorylation of BubR1 has been suggested to affect mitotic 

progression and mainly, establishment of tension and attachment of 
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microtubules at kinetochores. The evolutionarily conserved Ser/Thr residues 

of BubR1 are phosphorylated by Cdk1, Plk1 and Mps1. The threonine at 620 

is phosphorylated by Cdk1, and this allows Plk1 to bind to BubR1 via the 

polo-box-domain. Additionally, serine at 676 is phosphorylated as well by 

Plk1, specifically at unattached kinetochores, implying its role in KT-MT 

attachment (Elowe et al., 2007). Another phosphorylation at 670 serine by 

Cdk1 (possibly also Mps1) is suggested to reflect tension sensitive KT-MT 

attachments (Huang, H. et al., 2008). Lately, threonine at 680 is suggested to 

be phosphorylated by Plk1 as well (Suijkerbuijk et al., 2012). Through 

domain architecture and genetic screening, the domain (647-697aa) which 

encompasses the previously mentioned phosphorylation sites as well as the 

novel 680 threonine, is designated as the “KARD (Kinetochore Attachment 

Regulatory Domain)” domain (Suijkerbuijk et al., 2012; T.Kruse et al., 2013). 

The KARD domain is strictly regulated by Plk1 phosphorylation and 

promotes direct interaction of BubR1 with the PP2AB56а phosphatase to 

counteract excessive Aurora B activity at kinetochores. In parallel, when 

Plk1 is inhibited or BubR1 is depleted from cells, the level of PP2AB56a 

diminishes at kinetochores and phosphorylation of Aurora B substrates is 

elevated (Suijkerbuijk et al., 2012). Collectively, the conserved 

phosphorylations of BubR1 seem to be primarily involved in mediating KT-

MT attachment.  
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Another post-translational modification which shows high functional 

relevance in regulating BubR1 in prometaphase is acetylation. In 

prometaphase, BubR1 is acetylated at the 250
th

 lysine by PCAF acetyl-

transferase (Choi et al., 2009). Acetylation of BubR1 at the 250
th

 lysine 

switches BubR1 from substrate to inhibitor of APC/C. In line of that, mitotic 

timing is shortened when deacetylated BubR1 is expressed in cells (Choi et 

al., 2009). The specific acetylation of BubR1 by PCAF occurs at kinetochore, 

using tumor suppressor BRCA2 as the platform (Choi et al., 2012). 

Interestingly, when the interaction of BRCA2 and BubR1 is abrogated by 

ectopically expressing the BubR1 binding C-terminus of BRCA2, the mice 

spontaneously develop tumors (Choi et al., 2012). Hence, it is plausible that 

the involvement of tumor suppressor BRCA2 in licensing acetylation of 

BubR1 suggests a possible role of BubR1 acetylation in tumorigenesis.  

 

 

 

 

 

 

 

 



 

35 

 

 

Figure 3 
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Fig.3 Regulatory domains and post-translational modifications of 

human BubR1 protein 

 

Main regions of BubR1 are classified into 1) two N-terminal Lys-Glu-Asn 

KEN box motifs with putative destruction box (D box) in between, 2) 

tetratricopeptide repeat (TPR), 3) Gle2-binding sequence (GLEBS) motif, 4) 

internal Cdc20 binding domain, and 5) carboxyl terminal „kinase‟ domain. 

BubR1 is phosphorylated at indicated Ser/Thr by kinases and acetylated at 

the 250
th

 lysine by PCAF. 
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I-6. A Novel function of BRCA2 in mitosis 

Germ line mutation in tumor suppressor BRCA2 confers susceptibility 

to tumorigenesis. Functionally, BRCA2 is suggested to play essential roles in 

preserving chromosome integrity during cell division. BRCA2 deficient cells 

spontaneously accumulate in aberrant chromosome number and structure. 

The structural anomalies include breaks at single chromosome or 

quadriradial and triradial chromosomes (A.Venkitaraman, 2014). Such 

chromosomal morphology is reflective of defects in homologous DNA 

recombination (HR) (K.J. Patel et al., 1998). On the other hand, additionally 

occurring large deletions or translocations reflect inaccurate chromosome 

segregation (H.Lee et al., 1999). This infers that, in addition to the well 

established roles of BRCA2 in regulating HR, BRCA2 is also involved in 

cell division. Indeed, checkpoint activity is intricately related with 

understanding tumorigenesis in BRCA2 cancer.   

The study with murine BRCA2 deficient MEFs shows that inactivation 

of cell cycle checkpoints relive growth arrest or apoptosis, initiating 

neoplastic transformation (H.Lee et al., 1999; Skoulidis, F. et al., 2010). In 

this line, mutation of p53 is frequently reported in BRCA2 cancer cells 

(T.Crook et al., 1998).  

Surprisingly, BRCA2 itself is directly related to controlling cell division, 

one way by achieving it through regulation of SAC. The first implication 
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was made from observing mutations in Bub1 and BubR1 in BRCA2 

lymphomas. Also, the fact that Bub1 expression could reverse growth arrest 

and initiate transformation in BRCA2 MEFs supported the idea (Lee et al., 

1999). The later work from Choi, Park and Lee et al. (2012) shows that such 

aneuploidy found in BRCA2 deficient MEFs arise due to involvement of 

BRCA2 in control of BubR1 acetylation. In prometaphase, BRCA2 recruits 

PCAF and mediates association with BubR1 to enforce acetylation of BubR1 

at kinetochores (Choi et al, 2009). Furthermore, transgenic mouse model 

over expressing C-terminal region of BRCA2 (B2-9) which is needed to bind 

BubR1, spontaneously develop tumors. The B2-9 fragment is located at the 

far C-terminal end of BRCA2 when BRCA2 is divided into 9 pieces (Esashi 

et al., 2005). In these mice, mitotic function of BRCA2 in mediating 

acetylation of BubR1 is disrupted due to competition between B2-9 fragment 

and endogenous BRCA2 (Choi et al., 2012).  

These previous results suggest several questions to be answered. As 

implied from the spontaneous tumorigenesis from B2-9 mice, does 

acetylation of BubR1 carry a tumor suppressive role? At molecular basis, 

BRCA2 brings BubR1 and PCAF together at kinetochores as the platform 

for BubR1 acetylation (Choi et al., 2012). But how is BRCA2 recruited to 

kinetochores in mitosis and could it extend its role as a scaffold to support 

SAC signaling in mitosis? 
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I-7. SAC silencing 

When all KT-MT attachments are satisfied, cells enter anaphase to 

complete chromosome segregation and eventually exit mitosis. This event 

requires inactivation of kinases and activation of phosphatases to reverse 

phosphorylation of kinase targeted substrates and to generate checkpoint 

silencing signals at kinetochores. At the end point of SAC silencing, MCC 

disassembles from APC/C (Lara-Gonzalez et al., 2012). The complete nature 

of signals for SAC silencing and how microtubule binding satisfies SAC are 

unclear. But possibly, stretches in kinetochore due to pulling forces generated 

by microtubules could be a cue (Uchida, K. S., 2009). Aurora B undertakes 

the role of “tension sensor” at kinetochores and its phosphorylation activity 

leads to destabilization of KT-MT attachment (Funabaki et al., 2013). Hence, 

to stabilize KT-MT attachment, physical distancing of Aurora B substrates 

from kinetochores and counteracting Aurora B activity in Plk1 dependent 

manner are required (Suijkerbuijk et al., 2012; Liu, D. et al., 2012). The plk1 

dependent phosphorylation of BubR1 at the KARD domain recruits 

phosphatase PP2AB56a which counteracts Aurora B activity (Suijkerbuijk et 

al., 2012). Not only is PP2AB56a required, but also PP1 phosphatase is 

targeted to kinetochores to dephosphorylate Aurora B substrates and to 

support stabilization of microtubule attachments (Liu, D et al., 2010). 

In eukaryotes, the stable KT-MT attachment strips Mad2 and 



 

40 

 

Mad1from kinetochores, mediated by the minus end directed motor protein 

dynein (Howell et al., 2001). The removal of Mad1 and Mad2 from 

kinetochores is critical, as artificial tethering of Mad1 to kinetochores delays 

anaphase onset (Maldonado, M. et al., 2011). In addition, RZZ complex 

which is required for the recruitment of Mad1 and Mad2 (Buffin, E., 2005) is 

also stripped away from kinetochores (Chan et al., 2009). 

Another key step assuring mitotic exit is the inactivation of APC/C 

inhibitor, which correlates with the disassembly of MCC from APC/C (Lara-

Gonzalez et al., 2012). Several mechanisms and factors have been suggested 

to contribute to the disassembly of MCC from APC/C. Two key proteins 

required are P31 comet and APC15, a subunit of the APC/C holoenzyme 

complex. P31 comet, an interactor of Mad2 functions in two ways: 1) first, 

by binding to c-Mad2 interface of Mad1-c-Mad2 and interfering with 

catalysis of recruited o-Mad2 at kinetochores (Yang.M et al., 2007; 

Mussachio et al., 2007), 2) second, by disrupting MCC bound to APC/C 

through distortion of interaction between Mad2 and BubR1-Cdc20 

(Westhorpe et al., 2011; Teichner et al., 2011). APC15 is responsible for the 

turnover of MCC and Cdc20 bound to APC/C, in response to SAC signaling. 

When cells are depleted of APC15, the MCCs and ubiquitinated Cdc20 are 

stabilized to the APC/C, preventing the ubiquitination and degradation of 

Cyclin B (Mansfeld et al., 2011). MCC disassembly from APC/C is the 
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ultimate and necessary molecular transition which needs to happen, as 

subsequent proteolysis of Securin and Cyclin B by active APC/C-Cdc20 will 

turn off Cdk1 activity. Based on these previous researches, possibly one can 

deduce that BubR1 is deacetylated when SAC is satisfied as checkpoint 

signal regresses.  

Collectively, following questions could be raised to attention.   

1) Whether acetylation of BubR1 is involved in regulation of MCC assembly 

and regulation of KT-MT attachment, 

2) as implied from the previous research, if acetylation of BubR1 is indeed a 

tumor suppressive mechanism, and lastly, 

3) what molecules aid in BubR1 acetylation and deacetylation in mitosis. 
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II. Materials and Methods 

II-1. Genotyping 

PCR was used to genotype the adult BubR1 acetylation-deficient 

mice using genomic DNA extracted from the tail. The genomic DNA from 

the in vitro cultured ES cells and embryos was extracted using the Direct 

PCR reagent (Viagen Biotech, Inc.). A 3–5μl sample of the genomic DNA 

was used for the PCR. The primers for BubR1 were as follows:  

5΄-CCCTCACAAACGCCTACC-3΄ (forward) and  

5΄-CATCTCACCAGCCCAGAAGA-3΄(reverse). The primers flank the 

region adjacent to the lox p, FRT site in the targeted gene. The resulting PCR 

products were separated on a 1.5% agarose gel. Using the primers indicated, 

the WT DNA produced a 145-bp PCR product, and the homozygote mutant 

allele produced a slower migrating 219-bp band. 

 

II-2. Cell culture, drugs and transfection 

MEFs were generated from E13.5-14.5 embryos and passage 4 

MEFs were used for experiments. MEFs were cultured in high glucose 

DMEM (16% FBS, 1% penicillin/streptomycin, 55 μM β-Mercaptanol) in a 

37°C humidified chamber with 10% CO2. HeLa cells were cultured in high 

glucose DMEM (10% FBS, 1% p/s) at 37°C with 5% CO2. 
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Inducible HeLa-flippase recognition target (FRT) cell lines were 

generated by cloning HDAC3 into pcDNA5/FRT/TO construct (a gift from J. 

Pines, Gurdon Institute, Cambridge, UK). The HeLa-FRT/TO cells (a gift 

from S. Taylor) were cotransfected with the pOG44 and pcDNA5/FRT/TO-

HDAC3 construct, and the cells were selected according to the FLIP-in 

protocol (Invitrogen). 1 μg/ml of doxycycline was treated to induce the 

ectopically expressing genes. 

2.5 mM thymidine was used to block cells in S phase. After 16 hr, 

cells were washed with PBS twice and released into media. 200 ng/ml 

nocodazole or 10 μM taxol or 100 μM monastrol and 10 μM MG132 was 

treated to enrich cells in mitosis. 

DNA constructs or siRNA were delivered to cells using 

lipofectamine 2000 (according to manufactor‟s protocol) or Neon 

microporator (Invitrogen) at 1300 mV, 2 ms, 1 pulse.  

 

II-3. Constructs, antibodies and siRNA 

PP2A-B56a-expressing constructs were gifts from G. Kops 

(University Medical Center, Utrecht, Netherlands). EGFP-PP2A-B56a 

expressing construct was generated by sub cloning PP2A-B56a into EGFP-

N1 vector (Invitrogen). Various BubR1 constructs were generated by PCR 

and sub cloned into pcDNA3.1-mcherry for expression in cultured cells. The 
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K250R/Q, KARD-3A/D and T680A/D BubR1 mutants were generated by 

site-directed mutagenesis using pcDNA3.1-mcherry BubR1 as the template.  

The following antibodies were used: anti-Cyclin A (H-432; Santa 

Cruz Biotechnology Inc), anti–Cyclin B (H-433; Santa Cruz Biotechnology 

Inc), anti-Mad2 (C-19; Santa Cruz Biotechnology Inc), anti-PCAF (H369 

and E-8; Santa Cruz Biotechnology Inc), anti-Cdc20 (H-175; Santa Cruz 

Biotechnology Inc), anti-APC3 (H-300; Santa Cruz Biotechnology Inc), anti-

HDAC2 (H-54; Santa Cruz Biotechnology Inc), anti–α tubulin (DM1A; 

Sigma-Aldrich), anti-beta actin (AC-15; Sigma-Aldrich), anti-BubR1(BD), 

anti-FITC conjugated BrdU (BD), anti–PP2AB56a (BD), anti-CREST 

(Cortex Biochem), anti-HDAC3 (ab7030; Abcam), anti-Plk1 (ab26-298; 

Abcam), anti-phosphohistoneH3 (06-570; Millipore), anti-BRCA2 (Ab-1; 

Millipore), anti-BRCA2 (B2-4 antigen; custom made sheep polyclonal) and 

Alexa Fluor 657, 568, 488 antibodies (Invitrogen). The anti-Bub3 antibody 

was a gift from S. Taylor (University of Manchester, Manchester, UK). The 

anti-Mad2 and anti-Mad1 antibodies were obtained from H. Yu (University 

of Texas Southwestern Medical Center, Dallas, TX), anti–pS55 Hec1 

antibody was obtained from J. Deluca (Colorado State University, Fort 

Collins, CO). 

The following siRNAs were used: 

HDAC3 3΄UTR: 5΄-GAGGACTACATTGACTTCCTGCAGA-3΄,  
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BubR1 3΄UTR: 5΄-GUC UCA CAG AUU GCU GCC U-3΄, BRCA2: 5΄-

GAA GAA CAA UAU CCU ACU ATT-3΄ 

II-4. Immunoprecipitation (IP) and western blot (WB) 

Cells were lysed in NETN buffer (150 mM NaCl, 1 mM EDTA, 20 

mM Tris, pH 8.0, and 0.5% NP-40) supplemented with protease inhibitors 

for IP and WB analysis. Cells were incubated on ice for 20 min and 

supernatants were collected after centrifugation at 4°C, 12000 rpm. Cell 

lysates were precleared for 1 hr at 4°C with protein A/G beads and subjected 

to immunoprecipitation with indicated antibodies at 4°C o/n. Immune-

complexes were precipitated by incubating with A/G beads for 2 hr. Before 

elution with 3x SDS sample buffer, immunoprecipitated beads were washed 

3 times with the lysis buffer. 

II-5. Immunofluorescence assay (IFA) 

Cells were grown on cover slips, fixed in 4% paraformaldehyde in 

PBS, and permeabilized by incubation in 0.5% Triton X-100 in PBS (0.5% 

PBST) for 20 min at RT. 3% BSA in 0.1% PBST was used as a blocking 

agent and antibody dilution solution. After blocking for 1 hr at RT, cells 

were incubated with the indicated primary antibodies for 1 hr at RT or 

overnight at 4°C followed by incubation with fluorescence-conjugated 

secondary antibodies. DNA was detected using DAPI and cells were 

mounted in vectashield (Vector laboratories). 
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II-6. Chromosome spreads  

For the SKY analysis, the K243R/+MEFs (at passage 27) were 

treated with 5 μg/ml colcemid for 7 hr before fixation. The SKY analysis 

was performed at the Molecular Cytogenetics Core at the University of 

Texas M.D. Anderson Cancer Center. 

For chromosome spreads coupled with immunofluorescence assays, 

cells were incubated with 200 ng/ml nocodazole for 4 hr. To harvest cells, 

media was removed and cells were washed with PBS, and then pelleted. 

Cells were swelled in 0.2% KCl and 0.2% trisodium carbonate containing 

water and cytospinned at 850 rpm for 5 min. The slides were subjected to 

immunofluorescence assay as described. 

II-7. Histopathology 

Tissue specimens were collected from all organs that exhibited an 

abnormal appearance. Hematoxylin and eosin (H&E) staining was conducted 

following the standard procedures. First, paraffinized tissue block was 

deparaffinizationin xylene, followed by rehydration in ethanol in a serial 

manner (100%, 95%, and 70%), and subjected to hematoxylin staining. Then 

the specimen was decolorized in acid alcohol and counterstained with eosin. 

H&E or immuno histochemical stains and were reviewed by the pathologist.  
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II-8. Microscope image acquisition and processing 

Fixed cell images were acquired with a microscope (Delta Vision; 

Applied Precision) equipped with a 100× objective lens (Olympus). The 

images were obtained with 0.2-μm-distanced optical sections in z-axis. Each 

section was deconvoluted and projected into one image using the softWoRx 

software (Applied Precision) for image display. 

For live-cell imaging, cells were monitored using the UPlanFLN 

40×/NA 1.30 oil lens on a microscope (DeltaVision; GE Healthcare) 

equipped with a charge-coupled device camera (Photometrics) in a CO2 

chamber at 37°C (Applied Precision). The cells were seeded in a glass-

bottom dish containing culture media and images were acquired every 5 min 

at 7-μm-distanced optical section using a 20× objective lens (Olympus). 

II-9. Cold stable microtubule assay and scoring of the 

immunofluorescence intensity 

The cells were treated with 10 μM MG132 for 2 hr and incubated 

with serum-free DMEM containing 20 mM Hepes, pH 7.3, for 10 min on ice. 

When cold MT assay was performed to assess recovery from monastrol 

treatment, cells were treated with 100 μM monastrol for 3 hr. In the final 

hour, cells were incubated with 10 μM MG132 as well. Monastrol-arrested 

cells were washed at least three times with fresh media containing 10 μM 

MG132. The cells were released into media with 10 μM MG132 for 1 hr. 
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The cells were fixed in 4% paraformaldehyde for 10 min and the 

immunofluorescence assays were performed as needed. Images were 

acquired and processed using DetaVision Softworx software (GE 

Healthcare), and the images for display were generated by projecting the sum 

of the optical sections. Quantitative analysis of the immunofluorescence was 

performed in the projected images using the Image J software (National 

Institutes of Health). For quantification of intensities at kinetochores, a mask 

covering each kinetochore foci was created within a circular region, and the 

mean pixel intensities were obtained. More than 300 kinetochores were 

scored for the intensities in each experiment for statistical analysis. 

II-10. Cell cycle analysis 

Three independent experiments were conducted using early passage 

MEFs. MEFs were serum starved with 0.1% FBS for 72 hr and forced to 

enter the cell cycle after stimulation with 20% FBS. 8 x10
4
 MEFs were 

seeded onto cover slips and pulsed with 10 μM BrdU at indicated time points 

before fixation with cold Methanol (-20°C). BrdU positive cells were stained 

with DAPI and BrdU-FITC antibody for IFA. 

 

*K243R/+ mice is deposited to Jackson laboratory 

 (Symbol: Bub1b 
+m1.1Hsl

) 
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III. Results 

BUBR1 ACETYLATION IS REQUIRED FOR 

KINETOCHORE-MICROTUBULE ATTACHMENT 

AND STABLE MITOTIC CHECKPOINT 

COMPLEX FORMATION 

 
 

III-1. Loss of BubR1 acetylation leads to spontaneous 

tumorigenesis in mice 

SAC is an elaborate safeguard mechanism ensuring equal distribution of 

genomic contents into daughter cells during mitosis (Mussachio et al., 2007). 

Constant attachments and detachments are made between microtubules 

stemming from spindle poles and sister chromatid kinetochores. The forces 

generated by microtubule dynamics power chromosome movement towards 

the center. During this course, erroneous attachments could be made and 

corrected only if SAC is activated at an instant. Thus, the kinetochore which 

is composed of over 100 proteins is at the center of SAC activation, 

modulating the stability of KT-MT attachments and relaying the microtubule 

binding status to SAC (Foley and Kapoor, 2013).  

Only one unattached kinetochore is enough to instigate SAC (Rieder et 

al., 1995). At unattached kinetochores, checkpoint proteins are recruited in a 

hierarchical manner and propel formation of MCC to inhibit APC/C 

(Mussachio et al., 2007; Lara-Gonzalez et al., 2011). When APC/C is 
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inhibited, the degradation of Securin and Cyclin B is blocked, which in turn 

inhibits progression into anaphase.  

BubR1 is a checkpoint protein, constituting the MCC and localizes to 

kinetochore in prometaphase when SAC is activated (Hardwick et al., 2000; 

Sudakin et al., 2001). At kinetochores, BubR1 binds to KNL1 and Blinkin, 

constituting the KMN complex, which is the direct interface of KT-MT 

attachment (Kiyomitsu et al., 2007; D'Arcy et al., 2010). Furthermore, Plk1 

phosphorylation of BubR1 at conserved Ser/Thr residues endows BubR1 a 

role in docking PP2AB56a phosphatase to the outer kinetochore 

(Suijkerbuijk et al., 2012; T.Kruse et al., 2013). This recruitment of 

PP2AB56a counterbalances the phosphorylating activity of Aurora B on the 

KMN network, stabilizing KT-MT attachments. Therefore, in addition to 

SAC activity, BubR1 function is crucial in chromosome congression, the 

bipolar spindle attachment that forms the metaphase plate. 

During mitosis, BubR1 is acetylated at 250
th

 lysine by PCAF 

acetyltransferase, mediated by tumorsuppressor BRCA2. The acetylation of 

BubR1 could act as a molecular switch, converting BubR1 from substrate to 

the inhibitor of APC/C upon SAC activation (Choi et al., 2009). Interaction 

with BRCA2 is necessary for acetylation of BubR1, as BubR1 and PCAF is 

brought in vicinity by binding to BRCA2 at the C-terminus and N-terminus 

respectively (Choi et al., 2012). When endogenous BRCA2 and BubR1 
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interaction is disrupted in vivo by over-expressing the BRCA2 C-terminus 

needed for BubR1 interaction, SAC activity is weakened and mice 

spontaneously develop tumors (mostly carcinoma and lymphoma) (Choi et 

al., 2012). As BubR1 acetylation is hampered in these mice, this observation 

suggests possible tumor suppressive role of BubR1 acetylation. 

To further investigate the physiological role of bubR1 acetylation, 

acetylation defective knock-in mice with the substitution mutant of the 

conserved 243
th

 lysine with argentine was generated. When mice with 

heterozygous acetylation deficient allele (K243R/+) were intercrossed, mice 

were born normally at mendelian ratio. The K243R/+ mice grew without any 

developmental defects; no aging phenotypes were detected, which were 

observed in BubR1
H/H

 mice (Baker et al., 2004). Also, BubR1 expression and 

the overall protein level were unaltered in the thymus and testis of the 

K243R/+ mice (data not shown). However, out of the 339 mice monitored, 

no pups with homozygous acetylation deficient allele (K243R/K243R) were 

born (Table.1). 

To determine when homozygous mice die, 20 embryo from K243R/+; 

K243R/+ intercross were subjected to in vitro culture after E.3.5. Four 

embryos which correlated with the number of homozygous born, died after 3 

days of culture, at E6.5. Early death during embryogenesis was due to 

apoptotic cell death, confirmed with TUNNEL assay (data not shown). This 
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implies that complete loss of BubR1 acetylation in homozygous accumulate 

to severely weakened mitotic checkpoint activity during embryogenesis, 

which cannot be tolerated until birth. 

 On the contrary, ~30% of K243R/+ mice were susceptible to 

spontaneous tumorigenesis at various tissues after a year (Fig.4). When the 

tumors were analyzed, a significant increase of malignant tumor 

development in solid and hematologic origin was detected in K243R/+ 

compared to WT (Table.2). Also splenomegaly was detected in K243R/+, 

some of which were B cell lymphomas showing white cell expansion as well 

as high B220 positivity.  
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Table 1 

 

 

 

 

 

 

 

 

 

 

Table.1 K243R/+ mice are born at mendelian ratio 

Summary of the crosses and progeny. The K243R/+ heterozygous mice were 

intercrossed, and the newborn pups were scored. Total number of mice 

genotyped and categorized: n=385. 
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Figure 4 
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Fig.4 Tumor incidence of K243R/+ mice 

Tumor incidence was assessed using Kaplan-Meier graphs. The tumor-free 

survival analysis (left) includes both benign and malignant tumors; the 

cancer-free survival analysis (right) includes only the malignant cancers. 

Total number of mice analyzed cumulatively: WT, n= 41; K243R/+, n= 121. 

Representative H&E stained sections of the major pathologies found in the 

K243R/+ mice are shown. The insets show high-magnification images. 
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Table 2 
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Table.2 Tumor spectrum of K243R/+ mice. 

Tumor spectrum and analysis are summarized in a table. Mice were 

monitored until 38 months of age. In K243R/+ mice, a marked increase in 

malignant tumor development (23.1%, n= 28) was observed for both solid 

(10.7%, n= 13) and hematologic (12.4%, n= 15) tumors. Solid tumors and 

hematologic tumors are further classified into specific tumor types in the 

table. Benign tumors in K243R/+ (n= 18) included simple cysts in the genital 

tract (n= 10), hemangioma (n= 5), epidermal cyst (n= 1), acrochordon (n= 1), 

and mesenchymal fibroma (n= 1). In WT or BubR1
+/+

 mice, 2 cases of 

tumors in total were detected. Both were malignant tumors, one of which 

was sarcoma and another, B cell lymphoma.  
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III-2. CIN in BubR1 acetylation deficient mice 

The effect of BubR1 acetylation deficiency at cellular level was more 

profound. When chromosome content was analyzed by conducting 

chromosome spreads in MEFs at passage 4, the degree of polyploidy was 

comparable to that of WT in K243R/+ MEFs but strikingly, 67% of K243R/+ 

MEFs were aneuploid (Fig.5 top). The degree of premature sister chromatid 

separation (PMSC) was measured as well and K243R/+ MEFs exhibited a 

5.5 fold increase compared to WT (data not shown). PMSC is a hallmark of 

defective mitotic checkpoint (Basu.J et al., 1999) and could also possibly 

arise from failure in maintaining sister chromatid cohesion (Hoque et al., 

2002; Minshull et al., 1996). Addition of MG132 prior to the fixation of cells 

for chromosome spreads restored the degree of PMSC in K243R/+ MEFs to 

the level comparable to that of WT (data not shown). As treating MG132 

interferes with the destruction of Securin and Cyclin B, it could be inferred 

that PMSC caused by acetylation deficiency in K243R/+ MEFs is responsive 

to premature activation of APC/C. 

When late passage MEFs were subjected to spectral karyotyping (SKY) 

analysis, aneuploidy as well as structural chromosome aberrations were 

detected. Out of 14 samples analyzed, 9 samples had irregular chromosome 

content. Specifically, one sample harbored chromosome translocation and 

another sample showed signs of chromosome pulverization, in which 
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chromosomes were shattered into pieces (Fig.5 bottom). In addition, over 50% 

of lymphomas also showed aneuploidy and PMSC (data not shown).  

It can be inferred that acetylation deficiency of BubR1 not only triggers 

aneuploidy but also chromosome structural aberrations. Thus CIN is 

manifested in various forms in K243R/+. 
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Figure 5 
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Fig.5 K243R/+ MEFs are aneuploid and CIN is manifested in various 

forms at late passage 

(Top) The percentage of cells with indicated numbers of chromosomes are 

shown in the histogram. The results are from three and five different WT and 

K243R/+ MEFs, respectively. The table summarizes the analysis of the 

chromosome numbers in the histogram  

(Bottom) Two examples of SKY analysis of the K243R/+ MEFs cultured for 

27 passages are shown (with E.Choi). 
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III-3. SAC is weakened in BubR1 acetylation deficient mice 

The previous study from Choi et al (2009) addressed the 

implications of BubR1 acetylation in SAC regulation. To understand the 

molecular basis underlying CIN in K243R/+ MEFs, progression in mitosis 

was monitored by time lapse microscopy. K243R/+ was intercrossed to H2B-

GFP expressing transgenic mice. The duration of mitosis was determined by 

measuring the start of nuclear envelope breakdown (NEBD) to the entry into 

anaphase, in which chromosomes separate apart. In normal conditions, 

mitotic timing was shortened on average of 5 minutes in K243R/+; GFP-

H2B compared to WT; GFP-H2B control. When MEFs were challenged with 

microtubule depolymerizing drug- nocodazole - or stabilizing drug- taxol-to 

activate SAC, K243R/+ MEFs showed a weakened response, escaping 

mitosis earlier than the control (Fig.6 bottom). Shortened mitotic timing and 

lowered response to SAC activating drugs suggest that SAC activity is 

hampered in K243R/+ MEFs. In addition, as shown in captured images from 

the live imaging of representative cells (Fig.6 top), chromosomes misaligned 

and chromosome bridges and lagging chromosomes were shown in 85% of 

K243R/+ MEFs. 

 

 

 



 

63 

 

 

Figure 6 
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Fig.6 Weakened SAC in K243R/+ MEFs 

Statistical mitotic timing from the NEBD to anaphase onset. The MEFs were 

subjected to time-lapse microscopy with or without treatment with 200 ng/ml 

nocodazole or 2 μM taxol. Images were captured every 5 min, and the live 

images were processed for 36 hr. Without a spindle poison, mitosis required 

an average of 25 min in the WT cells (n= 170) and 20 min in the K243R/+ 

MEFs (n= 153).After spindle poison exposure, the WT cells remained in 

mitosis for 331 min with nocodazole (n= 66) and 106 min with taxol (n= 

218). The K243R/+ MEFs exited mitosis (chromosome decondensation) 

within 117 min with nocodazole treatment (n= 144) and within 87 min with 

taxol treatment (n= 191). The bars in the box represent the median values. 

The outliers (open circles) and suspected outliers (asterisks), as determined 

by statistical analysis, are marked (with E.Choi). 
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III-4. Intact initialization of SAC in BubR1 acetylation 

deficient mice 

 I thought the problem of weakened SAC could be scrutinized into 

either problems in initiation or maintenance of SAC. First to access the 

initiation step in SAC, the localization of Mad1 and Mad2 at unattached 

kinetochores was accessed in K243R/+ MEFs. Prometaphase cells were 

analyzed at untreated or nocodazole/taxol treated conditions. Nocodazole 

was treated at high concentration (3.3 μM) in which SAC satisfaction is 

virtually impossible due to complete depolymerization of microtubules 

(Yang et al., 2009; Santaguida et al., 2010).As expected, Mad2 was recruited 

to kinetochores at a higher extent in the nocodazole treated condition 

compared to the taxol treated condition in general. The degree of Mad2 

recruitment to kinetochores was similar between WT, K243R/+ and haplo-

insufficient BubR1
+/- 

MEFs. Mad1 was also recruited at a similar degree in 

all genotypes. The “Mad2 template” model which represents the mode of 

signal generation during SAC activation includes catalysis of active c-Mad2 

from o-Mad2 recruited to Mad1-c-Mad2 positioned at outer kinetochores 

(De-antoni et al., 2005). No difference in the recruited level of Mad1 and 

Mad2 compared to WT suggests that signal generation at kinetochores in the 

initial step of SAC activation is intact in K243R/+ MEFs (Fig.7). 
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Figure 7 

 

 

 

 

 

 

 

 

 

Fig.7 Recruited levels of Mad1 and Mad2 in K243R/+ MEFs 

WT, K243R/+, and BubR1
+/-  

MEFs were treated with 3.3 μM nocodazole or 

2 μM taxol or left untreated. Cells were subjected to co-immunostaining with 

anti-Mad2 or -Mad1 antibody and FITC-conjugated anti–α tubulin antibodies. 

10 unaligned/unattached kinetochores were analyzed per cell. The result is 

from three independent experiments of 35 different cells each. Relative value 

compared with the untreated prometaphase cell (Asyn) in WT is depicted by 

bar graphs (mean ± SEM; n > 350 KTs each). 
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Figure 8 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 Recruited levels of BubR1 at kinetochores in K243R/+ MEFs 

Quantification of BubR1 at kinetochoress in chromosome spreads after 

treatment with 200 ng/ml nocodazole. The level of BubR1, determined by 

anti-BubR1 immunofluorescence in nocodazole-treated prometaphase MEFs, 

was scored in WT, BubR1
+/-

, and K243R/+ MEFs. Each dot represents the 

mean BubR1 intensity calculated from 20 randomly picked kinetochoress per 

cell. 40 chromosome spreads from each genotype were scored in two 

independent experiments. Mean value is indicated with a line (mean ± SEM; 

n > 800 kinetochores each).  
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III-5. BubR1 acetylation deficiency leads to premature mitotic 

checkpoint complex (MCC) disassembly 

 In prometaphase, when SAC is active, BubR1 is also recruited to 

kinetochores along with Mad1 and Mad2 (Musacchio and Salmon, 2007). 

When the level of BubR1 recruited to kinetochores was accessed in MEFs, 

the amount of BubR1 recruited to kinetochores was highest in WT MEFs and 

lowest in BubR1
+/-

 MEFs. The level of BubR1 at kinetochores in K243R/+ 

MEFs was about 70% of that of WT. As the BubR1 antibody recognizes the 

deacetylated form of BubR1 as well, one can deduce that the deacetylated 

K243R-BubR1 is also recruited to kinetochores to fulfill its function in 

mitosis (Fig.8). 

In order to analyze the capacity of K243R/+ to maintain SAC after 

activation, the level of MCC was analyzed. Active SAC successfully inhibits 

APC/C-Cdc20 co-activator complex from ubiquitinating Cyclin B and 

Securin, to delay the entry into anaphase (Lara-Gonzalez et al., 2012). The 

MCC, composed of BubR1-Bub3-Mad2-Cdc20, is the potent inhibitor of the 

APC/C-Cdc20 co-activator complex (Sudakin et al., 2001). The MCC 

formation in K243R/+ MEFs was assessed by analyzing the BubR1 immuno-

complex in prometaphase (Fig.9b). In nocodazole treated MEFs, the BubR1 

level was lower in K243R/+, but was restored after treating with the 

proteasome inhibitor (Noc+MG132). This correlates with the previous 
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observation that non-acetylated BubR1 is ubiquitinated and targeted for 

destruction, as a substrate of APC/C (Choi et al., 2009). When the same 

amount of BubR1 was immunoprecipitaed in the nocodazole treated 

condition, Cdc20, Bub3 and Mad2 immunoprecipitated from the BubR1 

complex were lower than WT control MEFs. The amount of these MCC 

factors bound to BubR1 was rescued in the MG132 treated condition. 

Considering that at prometaphase acetylated BubR1 and non-acetylated 

BubR1 consistently existed in 1:1 ratio in K243R/+ MEFs (Fig.9a) and 

K243R-BubR1 did not have a problem in forming MCC (Noc+MG132 panel 

from Fig.9b), one can deduce the following. After formation of intact MCC 

upon entry into prometaphase, the presence of K243R-BubR1 in the complex 

quickly disintegrates Bub3, Mad2 and Cdc20 from APC/C and ultimately 

leads to failure in SAC maintenance.  
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Figure 9 
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Fig.9 MCC in K243R/+ MEFs 

 

(A) Assessment of BubR1 acetylation levels in WT and K243R/+ MEFs. 

The MEFs were treated with nocodazole (+ MG132) and subjected to IP and 

WB. The ratio of AcK243/total BubR1, when the level in +/+ cells is 

normalized to 1, was the same for both the anti-BubR1 and anti-AcK IPs and 

is marked below each lane. IP with a mixture of rabbit serum and 12CA5 

anti-HA antibody is shown as a negative control (Neg). Only a non-specific 

band migrating just below the band recognized by anti-AcK antibody (top 

left two lanes) was detected. Black lines in the top four panels indicate the 

removal of an intervening lane for presentation purposes (with E.Choi). 

(B) The asynchronous and mitotic MEFs of WT and K243R/+, respectively, 

were subjected to IP and WB as indicated. For the mitotic extracts, the cells 

were serum starved for 26 hr, released for 20 hr, and treated with nocodazole 

for 7 hr. In Noc+MG132-treated MEFs, nocodazole treatment was followed 

by MG132 treatment for 2 hr before lysis. IP with anti-HA antibody was 

included as a negative control (Neg.). A sample representing 3% of the total 

cell lysate (TCL) was loaded as a control (with Haeock Lee).   
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III-6. BubR1 acetylation deficiency leads to abrupt 

kinetochore-microtubule attachment 

As shown previously, K243R/+ MEFs harbored CIN manifested in 

various forms (Fig.5) and high incidence of lagging chromosomes and 

chromosome bridges occurred in mitosis (Fig.6). Chromosome mis-

segregations could arise from lack of attachment to mitotic spindles or 

inability of chromosomes to bi-orient after the attachments (E.A Foley and 

Kapoor, 2013). Presence of BubR1 at kinetochores is important for KT-MT 

attachment. When BubR1 is absent from kinetochores, stable KT-MT 

attachments are not made (Lampson and Kapoor, 2005). To access whether 

BubR1 acetylation actively participates in regulation of KT-MT attachment, 

presence of cold-stable microtubules were assayed. At 4°C, kinetochore 

microtubules are preferentially stabilized in metaphase cells (Rieder et al., 

1981). As MG132 treatment was included in this assay, cells passing through 

metaphase were collected due to the block in degradation of Cyclin B and 

Securin. Also degradation of K243R-BubR1 was blocked, enabling 

localization of both K243R-BubR1 and WT BubR1 to kinetochores. 

Compared to WT MEFs, K243R/+ MEFs displayed severe defects in KT-MT 

attachment. The severity in KT-MT attachment was more profound in 

K243R/+ MEFs compared to BubR1
+/-

 MEFs, which recruited less BubR1 at 

kinetochores (Fig.10). Hence, BubR1 acetylation is required for chromosome 
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congression. 

In K243R/+ MEFs, additional to the kinetochores with cold-stable 

microtubules, there were also kinetochores with no microtubules attached 

and some sister chromatid kinetochores were attached to microtubules 

emanating from single pole only (monotelic attachment) (Fig.10). At 

kinetochores, erroneous attachment and the resulting lack of tension are 

sensed by Aurora B ser/Thr kinase located at the inner centromere (F.Wang 

et al., 2012). When erroneous attachments are made, Aurora B destabilizes 

KT-MT attachment by phosphorylating the KMN network (e.g. Hec1), to 

disrupt the KT-MT attachments made (Cheeseman et al., 2006; DeLuca et al., 

2006). This generation of unattached kinetochores allows proper KT-MT 

attachment to reoccur. To test if Aurora B activity is involved in the 

regulation of KT-MT attachments in K243R/+ MEFs, two approaches were 

taken. First, activity of Aurora B kinase was measured by phosphorylation of 

its substrates at kinetochore and secondly, efficiency of Aurora B mediated 

error-correction was tested with monastrol washout assay. 
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Figure 10 
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Fig.10 Chromosome alignment defects in K243R/+ MEFs 

WT, BubR1
+/-

, and K243R/+ MEFs were treated with MG132 for 2 hr and 

subjected to cold microtubule assay, followed by staining with anti–a-tubulin 

and CREST. Enlarged images of the insets show the properly attached 

microtubules in WT MEFs; syntelic attachment in BubR1
+/- 

MEFs; and 

unattached (c), syntelic (a and b), and monotelic attachment (d) in K243R/+ 

MEFs. Green, α-tubulin; red, CREST immunostaining. Bars: (yellow) 5 μm; 

(white) 1 μm. The congression defects were scored in cells from each mouse 

strain in the absence of microtubule poison, and data are shown as bar graphs 

(mean ± SEM). Number of cells scored: WT, n= 75; K243R/+, n= 102; 

BubR1
+/-

, n = 60 (with M.Kwon). 
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The phosphorylation activity of Aurora B at kinetochores was 

determined using a phosphorylation specific Hec1 antibody targeting the 55
th

 

serine (Deluca et al., 2011). Hec1 is a constituent of KMN network proteins 

and is a substrate of the Aurora B kinase at kinetochores. After MG132 

treatment for two hours, MEFs were subjected to cold microtubule assay and 

phosphorylation of Hec1 at kinetochores was calculated by measuring the 

ratio of phosphor-S55 Hec1 (pHec1) to CREST (anti-kinetochore) (Fig.11). 

K243R/+ MEFs displayed a 1.3 fold higher level of pHEC1 than WT and 

BubR1
+/- 

MEFs. 

 To probe the efficiency of error correction in K243R/+ MEFs, an 

established assay which enables accumulation of monopolar cells by 

reversible chemical inhibition of kinesin-5 (Eg5) with monastrol was used 

(Mayer et al., 1999). In this “monastrol washout” assay, monastrol treatment 

leads to high incidence of attachment errors as both sister kinetochores are 

attached to spindles from mono-pole prior to segregation. Such attachment 

error becomes corrected as monastrol is removed and pole segregates into 

two, and spindles become bipolar. This error-correction pathway requires 

Aurora B mediated destabilization and correction of erroneous attachments 

(Lampson et al., 2004). Monastrol was washed out and cells were released 

into media containing MG132. After 40 min, cells were fixed and evaluated 

on the capacity to align chromosomes. Higher percentage of K243R/+ MEFs 
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failed to congress properly after KT-MT error-correction compared to WT or 

BubR1
+/-

 MEFs (Fig.12). 

Collectively, high incidence of pHec1 and low KT-MT error 

correction ability point out that Aurora B activity is not balanced to ensure 

proper KT-MT attachments in K243R/+ MEFs. 
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Figure 11 

 

 

 

 

 

 

 

 

 

 

Fig.11 pHec1 intensity at kinetochores in K243R/+ MEFs 

Comparison of phosphorylated Hec1 in metaphase cells. MEFs from WT, 

K243R/+, and BubR1
+/- 

mice were treated with 10 μM MG132 for 2 hr and 

subjected to cold microtubule assay. The levels of pHec1 scored in two 

independent experiments are shown in bar graphs (mean ± SEM; n > 450 

kinetochores; number of cells scored: WT, n= 23; K243R/+, n= 34; BubR1
+/-

, 

n= 25). Representative images are shown at the right with enlarged images of 

individual kinetochores in the insets. Bars: (white) 1 μm; (yellow) 5 μm. 
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Figure 12 
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Fig.12 Recovery of chromosome alignment after monastrol wash out  

MEFs were treated with monastrol for 3 hr, washed extensively, and released 

for an hour in the presence of MG132 and subjected to cold microtubule 

assay. Congressed and uncongressed chromosomes were scored in two 

independent experiments and presented in the bar graphs (mean ± SEM; 

number of cells scored: WT, n= 71; K243R/+, n= 78; BubR1
+/-

, n= 73). 

Asterisks mark significant p-values when compared with WT (*, P = 0.1; **, 

P = 0.5). Yellow bar: 5 μm. 
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 To guarantee stable KT-MT attachment and error correction, Aurora 

B activity of phosphorylating the KMN network needs to be regulated at a 

balanced level. Previously, BubR1 has been suggested to bind to PP2AB56a 

subunit of PP2A phosphatase after phosphorylation at “KARD (Kinetochore 

attachment regulatory domain)” Domain (Suijkerbuijk et al., 2012; T.Kruse 

et al., 2013). The phosphorylation of KARD domain is predominantly 

regulated by Plk1 in prometaphase at kinetochores. The phosphorylated 

KARD domain serves as the docking site to recruit PP2AB56a, which in turn 

counteracts Aurora B phosphorylation (Suijkerbuijk et al., 2012; T.Kruse et 

al., 2013).As hyperphosphorylation of Hec1 in K243R/+ cells indicated 

excessive Aurora B activity, the ability of K243R-BubR1 to bind with 

PP2AB56a was tested. Myc-tagged WT, K250R (acetylation deficient) or 

K250Q (acetylation mimicking) mutants were ectopically expressed into 

HeLa-FRT/TO cells expressing PP2AB56a. Immunoprecipitation analysis 

showed that acetylation deficient BubR1 bound to PP2AB56a at a reduced 

level of 75% (data not shown). In addition, when EGFP-PP2AB56a was 

expressed into MEFs, localization of PP2AB56a was reduced to 70% at 

kinetochores in K243R/+ MEFs (Fig.13). This was verified with 

immunostaining of endogenous PP2AB56a with the specific antibody 

(Fig.14). These results show that BubR1 acetylation is involved in 

recruitment of PP2AB56a to kinetochores. 
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Figure 13 
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Fig.13 PP2AB56a is recruited at a reduced level to kinetochores in 

K243R/+ MEFs 

EGFP-PP2A-B56a expressing construct was transfected into K243R/+ 

MEFs. 24 hr later, MEFs were treated with 200 ng/ml nocodazole for 4 hr, 

and then subjected to chromosome spread and immunofluorescence assay. 

BubR1 was detected by anti-BubR1 antibody and PP2AB56a by the 

fluorescence of GFP (right). This experiment was done in the absence of 

MG132. Fluorescence intensity of PP2AB56a relative to BubR1 at 

kinetochores was scored in WT and K243R/+ cells and depicted as a 

histogram (left). The results are from two independent experiments of  

>600 kinetochores (mean ± SEM; number of cells: WT, n= 33; K243R/+, n= 

32; P = 0.061). Red, BubR1; green, PP2A-B56a; blue, DAPI. 

Bars: (white) 1 μm; (yellow) 5 μm. 
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Figure 14 
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Fig.14 The level of endogenous PP2AB56a recruited to kinetochores 

ofK243R/+ MEFs 

PP2AB56a recruitment to kinetochores in WT and K243R/+ MEFs was 

analyzed by staining with the antibody specific to PP2AB56a. Metaphase 

chromosome spreads were coupled with immunofluorescence assay. 

Immunofluorescence assay was performed with anti-CREST and anti–

PP2AB56a. The result is from two independent experiments of 27 cells in 

each setting (mean ± SEM; n > 450 kinetochores). Bars: 5μm. 
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III-7. Cell cycle profile of cells with acetylation deficiency 

Previous mouse models targeting BubR1 are BubR1
+/- 

mouse and 

BubR1
H/H 

mouse (Dai et al., 2004; Baker et al., 2004). All three mouse 

models harbor aneuploidy yet K243R/+ mouse was the only model which 

spontaneously developed tumors (Fig.4 and Table.2).  

Acetylation of BubR1 is very specific to mitosis (Choi et al., 2009). 

On the contrary, the two other mouse models have constantly low level of 

BubR1 expressed throughout the cell cycle, which could possibly affect 

regulation of BubR1 outside mitosis (Dai et al., 2004; Baker et al., 2004). It 

has been suggested that BubR1 has a role in interphase, by independently 

acting as a soluble inhibitor of APC/C-Cdc20 and blocking Cyclin B 

destruction (Malureanu et al., 2009). When the Cyclin B level was measured 

throughout the cell cycle in K243R/+, it was comparable to that of WT 

(Fig.15). Also, in mitosis, the acetylation of BubR1 did not affect 

accumulation of Cyclin B in prophase and mitotic entry (data not shown). In 

effect, K243R-BubR1 was constantly expressed at the level comparable to 

WT in various tissues (data not shown). Hence, the protein level or non-

mitotic function of BubR1 cannot be a factor affecting the phenotype of 

K243R/+ mice.  

To compare and verify that acetylation deficiency of BubR1 does not 

affect other cell cycle phases, the timing of entire cell cycle was analyzed. 
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First, entry into mitosis was analyzed by synchronizing MEFs into Go and 

releasing the MEFs into cell cycle. The entry and exit into specific phases of 

cell cycle was determined by the rise and fall of Cyclin levels. As 

fluctuations in Cyclin A and Cyclin B levels were comparable to that of WT, 

K243R/+ MEFs did not have a problem in entering mitosis (Fig.15). But the 

difference in time at the exit of mitosis shown in Fig.6 was not reflected in 

the fall of Cyclin B level in the western blot (Fig.15) because the cell lysates 

were harvested at an interval of 2-3 hours. In addition, entry into S phase was 

analyzed as well by labeling with BrdU. K243R/+ MEFs did not have a 

problem entering into S phase as increment in the level of BrdU incorporated 

was compatible to that of WT MEFs (Fig.16). 
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Figure 15 

 

 

 

Fig.15 BubR1 acetylation deficiency does not affect entry into mitosis  

A comparison on the cell cycle progression in WT and K243R/+ MEFs. The 

MEFs were serum starved using 0.1% FBS for 72 hr and forced to enter the 

S phase after stimulation with 20% FBS. Cell aliquots were collected at the 

indicated time points and were subjected to western blot using the indicated 

antibodies.  
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Figure 16 
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Fig.16 Duration of S phase in BubR1 acetylation deficient cells 

The MEFs were pulsed with BrdU for an hour prior to fixation at the 

indicated time points after serum stimulation. The results represent the mean 

of two independent experiments using different siblings. More than 1000 

cells were counted at each time point (mean ± SEM). Scale bar: 100μm. 
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EXTENDED STUDY ON THE ROLE OF BRCA2 IN 

MITOSIS: SPINDLE ASSSEMBLY CHECKPOINT 

SIGNALING REGULATING BUBR1 

 
III-8. BRCA2 complex in mitosis 

 Previous research with the acetylation deficient knock-in mouse 

model showed that acetylation of BubR1 is specifically required for 

maintaining MCC integrity and proper KT-MT attachment. But specifically 

which signaling factors influence BubR1 acetylation in mitosis needs to be 

analyzed in detail.  

Considering the fact that only one kinetochore is enough to activate 

SAC and the turn-over rate of SAC proteins is fast, it is presumable that SAC 

signaling network is complex and meticulously designed. Many essential 

proteins such as kinases and phosphatases play important roles in 

initialization and extinguishment of SAC signaling. For example, Cdk1, 

Aurora B, Mps1 and Plk1 are representative kinases working at the forefront 

of SAC signaling. Phosphorylations by kinases on its target SAC proteins 

enable spatiotemporal regulation (Musacchio and Salmon, 2007). On the 

contrary, PP2A complex and PP1 mediated dephosphorylation promote 

mitotic exit (Wu.J.Q. et al., 2009; Grallert, A. et al., 2015). 

It has been reported that BRCA2 is involved in acetylation of BubR1 

at K250 by PCAF acetyltransferase in mitosis (Choi et al., 2012). But it is 
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unknown what licenses BRCA2 to kinetochores to full fill its function in 

mediating acetylation of BubR1. Also, whether BRCA2 acts beyond 

recruiting PCAF and BubR1 and fine tunes SAC signaling to maintain 

genomic integrity is another question.  

To access how BRCA2 may be involved in mitotic signaling, 

targeted approach was taken to confirm and validate the BRCA2 complex 

specific to mitosis. Mitotic extracts were harvested after nocodazole 

treatment and immunoprecipitated with BRCA2. In mitosis, BRCA2 is 

phosphorylated, as reflected in the shift in gel electrophoresis. Cdk1 

phosphorylates BRCA2 at S3291 and this specific phosphorylation inhibits 

interaction with RAD51 and interferes with recombination activity in mitosis 

(Esashi et al., 2005). Plk1 is another kinase which phosphorylates BRCA2 at 

the N-terminus (Lin et al., 2003) but how this phosphorylation of BRCA2 

affects activity of BRCA2 in mitosis is unclear. BRCA2 co-precipitated with 

Plk1, BubR1 and PCAF acetyltransferase (Fig.17). As these proteins form a 

complex on phosphorylated BRCA2 specifically in mitosis, it may be 

possible that Plk1 phosphorylation of BRCA2 have a distinct effect on 

assembling the complex. 
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Figure 17 

 

 

 

 

 

 

 

 

 

Fig.17 BRCA2 complex in mitosis 

A comparison of BRCA2 interacting proteins in asynchronous cells and 

nocodazole treated mitotic cells. Cells were synchronized in mitosis by 

treating 200 ng/ml nocodazole after thymidine block and release. 3 mg of 

cell lysate was used for immunoprecipitation of BRCA2 with anti-B2-4 

antibody coupled beads for 4 hr at 4°C.  
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In addition, SAC proteins required for the formation of APC/C-

MCC did not co-immunoprecipitate with BRCA2 in mitosis. The APC/C 

subunit APC3, Bub3 and Mad2 were not detected (data not shown). This 

suggests that acetylated BubR1 leaves BRCA2 in order to form the MCC.  

 

III-9. BRCA2 mediated BubR1 acetylation is required for the 

BubR1-HDAC interaction 

 

 BubR1 is deacetylated as cells exit mitosis (Choi et al., 2009). 

Previously, it was shown that under transient expression, BubR1 could 

interact with HDAC1, HDAC2 and HDAC3, which are all members of class 

I histone deacetylase family (Choi et al., 2009). Class I HDACs are 

ubiquitously expressed throughout the cell cycle and localize to the nucleus 

and cytoplasm (New et al., 2012). These HDACs have been suggested to 

play a role in mitosis, as HDAC inhibitors induce mitotic slippage (Stevens 

et al., 2008) and disrupt centromere function (Taddei et al., 2001). 

Interestingly, HDAC3 localizes to mitotic spindles and its enzymatic activity 

is important for chromosome alignment and the duration of mitosis. However, 

it does not deacetylate tubulin, nor histone H3K9, possibly suggesting the 

presence of another target (Ishii et al., 2008; Warrener et al., 2010). To verify 

HDAC3 interaction with endogenous BubR1 in mitosis, a cell line 
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expressing HDAC3-Flag-Venus at an endogenous level was generated. To 

verify HDAC2 interaction with BubR1, antibody specific to HDAC2 was 

used for immunoprecipitation. For comparison, asynchronous cells and 

mitotic cells enriched with taxol or nocodazole were used for 

immunoprecipitation. HDAC2 and HDAC3 interacted with BubR1, 

specifically in prometaphase when BubR1 is acetylated (Fig.18). As these 

HDACs specifically recognized acetylated BubR1, I tested the possibility of 

this interaction requiring BRCA2. When BRCA2 was depleted in mitotic 

cells, the interaction between the HDACs and BubR1 was disrupted (Fig.19).  

 

.  
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Figure 18 
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Fig.18 HDAC2 and HDAC3 interact with BubR1 in prometaphase 

Interaction between endogenous BubR1 and HDAC2/HDAC3 was assessed 

in asynchronous and prometaphase cells. 10 μM taxol or 200 ng/ml 

nocodazole was treated to arrest cells in prometaphase. 1 mg cell lysate was 

used for immunoprecipitation. 

(Left) Endogenous HDAC2 was immunoprecipitated with the anti-HDAC2 

antibody. 200 ng/ml nocodazole was treated to arrest cells in prometaphase. 

(Right) FRT/TO flip-in HeLa cells expressing HDAC3-flag-venus was 

treated with 1 μg/ml doxycycline to induce HDAC3 expression. Endogenous 

HDAC3 was depleted with siRNA targeting 3′UTR. 10 μM taxol was treated 

to arrest cells in prometaphase. HDAC3 was immunoprecipitated using the 

flag coupled beads. 

* non specific band 
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Figure 19 

 

Figure.19 HDAC2 and HDAC3 interact with BubR1 in the presence of 

BRCA2 at prometaphase 

siBRCA2 or siluciferase was transfected to HeLa cells. Cells were arrested in 

prometaphase by treating 200 ng/ml nocodazole for 12 hr. Mitotic cells were 

harvested by mechanical shake off. 2 mg of cell lysate was 

immunoprecipitated with anti-HDAC2 or anti-HDAC3 antibody.  
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III-10. BubR1 deacetylation is a cue to SAC silencing 

To access if deacetylation of BubR1 could act as a signal for SAC 

silencing, the fate of cells expressing BubR1 acetylation deficient (K250R) 

and mimicking mutant (K250Q) was analyzed by time lapse microscopy. 

Studies with cells lacking P31 comet or APC15, which are specific 

regulators in silencing the SAC, have pointed out that in addition to 

lengthened mitotic timing; prolonged metaphase is a phenotype indicative of 

mitotic exit problem (Westhorpe et al., 2011; Mansfeld et al., 2011).   

Endogenous BubR1 was silenced by targeting 3′UTR with siRNA 

and mcherry tagged BubR1 K250R or K250Q mutants were co-expressed. In 

mitosis, acetylation deficient BubR1 is susceptible to ubiquitination and is 

prematurely degraded (Choi et al., 2009). As expected, expression of K250Q 

mutant resided in mitosis for a longer period. But strikingly, metaphase was 

lengthened in these cells; even though mature bipolar KT-MT attachment 

was accomplished (Fig.20).  

To access if this metaphase delay was a result of BubR1 acetylation 

functioning through SAC and not due to defective APC/C activity, 

kinetochore dependent pathway was blocked with Mps1 inhibitor reversine 

(Santaguida et al., 2010). Treatment with 0.5 μM reversine eliminated the 

metaphase delay in K250Q expressing cells (Fig.21) which indicates that in 

the absence of SAC, APC/C activity is likely equal in siLuc treated control 



 

100 

 

cells and BubR1 depleted cells rescued with K250Q. As acetylation status 

affects the integrity of MCC (Fig.9), it could be inferred that MCC 

disassembly is affected. This result suggests that deacetylation of BubR1 is a 

cue to SAC silencing. 
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Figure 20 

 

 

 

 

 

 

 

 

 

Fig.20 Analysis on the APC/C activity in cells expressing BubR1 K250Q  

H2B-GFP HeLa cells were transfected with siBubR1 3΄UTR and pcDNA3.1-

mcherry BubR1 plasmids. After 6 hr of release from thymidine block, cells 

were filmed with time lapse microscopy in 5 min intervals, for total of 24 hr. 

On average, single cell intensity of mcherry-BubR1 was comparable among 

the mutants. n>50 cells were analyzed per mutants. Outliers are shown in red. 
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Figure 21 
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Fig.21 Metaphase delay occurs when acetylation is prolonged in cells 

Captured images of representative cells expressing the BubR1 mutants 

(K250, K250R and K250Q) from NEBD to anaphase onset. Each frame is in 

5 min interval. Metaphase is depicted in an orange line. The graph on the 

right represents the duration of metaphase before anaphase onset. 
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To validate if BubR1 deacetylation is under the control of canonical 

SAC signaling, acetylation of BubR1 was monitored in the conditions 

mimicking SAC silencing. Previous studies showed that when cells are 

blocked in mitosis with MG132 only, despite the fact that chromosomes are 

aligned at the metaphase plate, MCC still exists and APC/C remains inactive, 

indicating that SAC is not silenced in this condition (Jia et al., 2011). 

Reversine is an inhibitor of Mps1 kinase and hesperadin is an inhibitor of 

Aurora B kinase. The combinatorial use of either reversine or hesperadin 

with MG132 faithfully mimics the SAC silenced state as MCC readily 

disassemble and APC/C-Cdc20 is activated (Jia et al., 2011; Mansfeld et al., 

2011). To chemically recapitulate SAC silencing at kinetochores, cells were 

arrested in prometaphase with taxol and sequentially released into media 

containing different combination of drugs. MG132 (blocks degradation of 

Securin and Cyclin B) was used to maintain cells in mitosis and reversine or 

hesparadin was used to shut down the kinetochore signaling (Jia et al., 2011; 

Santaguida et al., 2011; Mansfeld et al., 2011). Acetylation of BubR1 

decreased in mitotic extracts (+MG132) deprived of Mps1 or Aurora B 

activity, in concert with dephosphorylation of BubR1 (Fig.22). Hence, 

BubR1 is deacetylated when SAC signaling is turned off at kinetochores in 

mitosis and acetylation is regulated in parallel with phosphorylation of 

BubR1. 
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Figure 22 

 

 

 

 

 

 

 

 

 

 

 

Fig.22 BubR1 is deacetylated upon SAC silencing in mitosis 

HeLa cells were synchronized with a single thymidine block and released 

into G2/M phase of the cell cycle. After 7 hr of release, cells were treated 

with 10 μM taxol. Mitotic cells were enriched with mechanical shake off and 

were further released into media containing the combination of drugs. 10 μM 

MG132, 2 μM reversine, 200 nM hesperadin was used. Cells were harvested 

after 1.5 or 3 hr. 
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Previous blot showed that acetylation-phosphorylation and 

deacetylation-dephosphorylation of BubR1 work in parallel during mitosis. 

Studies have suggested that in mitosis BubR1 is phosphorylated by Plk1 

(Elowe et al., 2007; Matsumura et al., 2007) and Aurora B (Ditchfield et al., 

2003; Hauf et al., 2003). Among the many phosphorylated residues, 

phosphorylation of BubR1 at 670, 676 serine and 680 threonine are 

suggested to be involved in chromosome alignment (Elowe et al., 2007; 

Huang et al., 2008; Suijkerbuijk et al., 2012). These residues are grouped 

nearby, forming the KARD domain and regulate KT-MT attachment through 

recruiting PP2AB56a to counterbalance Aurora B activity (Suijkerbuijk et al., 

2012). As acetylation of BubR1 was specifically involved in KT-MT 

attachment through PP2AB56a recruitment along with SAC activity, the idea 

of possible sequential regulation of K250 acetylation and KARD domain 

phosphorylation was tested. Constructs with both acetylation and 

phosphorylation mutations were made. K250 was mutated to either 

acetylation deficient argentine (R) or acetylation mimicking glutamine (Q). 

The S670, S676, T680 sites in the KARD domain were all mutated to 

phosphorylation deficient aspartic acid (A) or phosphorylation mimicking 

alanine mutant (D).  
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 First, H2B-GFP HeLa cells were depleted of endogenous BubR1 and 

rescued with double mutants of acetylation and phosphorylation. BubR1 

acetylation mutants (WT, K250R and K250Q) had the KARD 

phosphorylation sites mutated to phosphorylation deficient (3A) or 

phosphorylation mimicking form (3D). Timelapse microscopy analysis was 

done to analyze both mitotic timing and chromosome congression. The 

hypothesis was that as KARD domain phosphorylation mainly contributes to 

chromosome alignment (Suijkerbuijk et al., 2012), mitotic timing would be 

determined by the acetylation status. When key residues of KARD domain 

were all mutated to phosphorylation deficient form (3A), most cells were 

blocked in mitosis with severe chromosome alignment defects (Fig.23a,c). 

This was indifferent when acetylation was deficient or enforced at the same 

time (Fig.23b).  

Unexpectedly, as seen from cells expressing phosphorylation 

mimicking mutant W3D, KARD phosphorylation itself seemed to activate 

SAC as mitotic timing was extended compared to control cells rescued with 

WT BubR1 (Fig.23a). Percentage of cells with normal congression was 

comparable to that of WT. This suggests that phosphorylation itself actually 

affects SAC signaling and this may be possible as S760 is also regulated by 

Mps1 kinase (Huang et al., 2008). It was hard to tell apart the effect of 

acetylation in either mitotic timing or congression, making it difficult to 
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determine the sequence of events (Fig.23b). SAC regulation was juxtaposed 

when all three residues in KARD domain was simultaneously mutated, 

possibly suggesting an order of regulation within these residues. 
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Figure 23 
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Fig.23 Mitotic timing of cells expressing BubR1 acetyl-KARD 3A/3D 

mutants 

H2B-GFP HeLa cells were depleted of endogenous BubR1 by siRNA 

targeting 3΄UTR of BubR1. pcDNA3.1-mcherry BubR1 mutants were co-

transfected. Cells were synchronized in S phase by thymidine block and 

released into G2/M phase at the time of filming. (A) Mitotic timing of cells 

expressing phosphorylation mimicking (3D) or phosphorylation deficient 

(3A) mutants. (B) Mitotic timing of cells expressing mutants of both BubR1 

acetylation and KARD phosphorylation. (C) Captured images of two 

different representative cells expressing WT- KARD3A or WT- KARD3D. 
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 To simplify the matter, single phosphorylation site was targeted in 

concert with the acetylation site. T680 is directly phosphorylated by Plk1 

(Suijkerbuijk et al., 2012) and is essential for KT-MT attachment. Single 

phosphorylation deficient mutation at T680 (WT-KARD680A) lengthened 

mitotic timing consistent with presence of unaligned chromosomes. However, 

eventhough cells expressing the WT-KARD680D mutant congressed 

properly, mitotic timing was shortened, which may imply SAC was silenced 

faster (Fig.24a). This too suggests another pathway other than Plk1 mediated 

signaling could be involved when T680 phosphorylation is constantly 

enforced or absent. Hence, single site targeting of phosphorylation could also 

affect SAC activity in away, apart from KT-MT attachment. In conclusion, 

live analysis data reflected that SAC signaling network is complex and 

although acetylation and phosphorylation of BubR1 act in concert, the 

sequential activation and silencing between the two signals cannot be 

specified. 
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Figure 24 

 

 

 

 

Fig.24 Mitotic timing of cells expressing BubR1 acetylation-

phosphorylation mutants 

H2B-GFP HeLa cells were depleted of endogenous BubR1 by siRNA 

targeting 3΄UTR of BubR1. (A) Mitotic timing of cells rescued with BubR1 

680T phosphorylation mutants. (B) Mitotic timing of cells expressing double 

mutants of K250 acetylation and 680T phosphorylation. 

NEBD is set to 00:00 min. 
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IV. Discussion 

 

IV-1. Dual roles of BubR1 acetylation and tumorigenesis  

In eukaryotes, BubR1 is a central component of SAC, which is a 

surveillance mechanism ensuring bipolar segregation of chromosomes in 

anaphase (Mussachio and Salmon, 2007). In prometaphase, BubR1 is 

acetylated at K250 by PCAF through BRCA2 interaction (Choi et al., 2009; 

Choi et al., 2012). These previous studies have suggested that acetylation of 

BubR1 is integral to protecting the protein from ubiquitination and SAC 

activity. Also, possible tumor-suppressive role of BubR1 acetylation was 

inferred from the tumorigenesis occurring in B2-9 transgenic mouse model 

(Choi et al., 2012). But how acetylation of BubR1 acts within SAC and its in 

vivo significance is unknown. Through the study with BubR1 acetylation 

deficient knock-in mouse model (K243R/+), I suggest that BubR1 

acetylation is specifically involved in 1) the maintenance of the MCC formed 

and 2) KT-MT attachment (Fig.25).  
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Figure 25 
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Fig.25 BubR1 acetylation is required for stable KT-MT attachment and 

MCC maintenance. 

(A) K243R/+ cells exhibit congression failure because 50% of BubR1 is 

acetylation deficient. Acetylation-deficient BubR1 (K243R) is incapable of 

recruiting PP2AB56a to counterbalance Aurora B kinase activity at the KMN 

network, and this process is crucial for stable KT–MT interaction. K243R 

also has reduced CENP-E binding (data not shown), which may contribute to 

the problem in chromosome congression. 

(B) Half of the SAC complex contains K243R-BubR1 and fails to maintain 

SAC activity. K243R associates with other MCC components; however, the 

protein is readily ubiquitinated by the APC/C, resulting in disassociation of 

MCC. As initial SAC signal generation is intact, premature disassembly of 

MCC leads to failure in the maintenance of SAC, effectively weakening 

SAC activity. The combined effects of chromosome–spindle attachment 

failure and weakened SAC lead to massive chromosome mis-segregation and 

initiate tumorigenesis in K243R/+ mice. 



 

116 

 

IV-1-1. BubR1 acetylation deficiency results in premature disassembly 

of MCC 

In K243R/+ cells, the level of Mad1 and Mad2 recruited to 

kinetochores were comparable to that of WT at prometaphase, which 

indicates that signals priming the MCC formation are intact (Fig.7). But 

MCC formed in K243R/+ prometaphase cells disassembled even though 

SAC was activated by nocodazole. Under this nocodazole treated condition, 

a similar amount of BubR1 was immunoprecipitated as in WT cells to 

compare MCC bound to BubR1. The disassembly of Mad2, Bub3 and Cdc20 

was further rescued with MG132 treatment, implying that K243R-BubR1 

affects how MCC is held together (Fig.9). In essence, upon SAC activation, 

recruited MAD proteins at kinetochore catalyze the formation of MCC but 

after formation, presence of deacetylated BubR1 within the complex disrupts 

the maintenance of MCC throughout mitosis.  

Considering the fact that K243R/+ MEFs expressed WT-BubR1 and 

K243R-BubR1 protein at 1:1 ratio in mitosis (Fig.9a) and higher level of 

BubR1 is recruited to kinetochores compared to BubR1
+/- 

MEFs, the 

acetylation-deficient BubR1 allele functions as a dominant allele in SAC 

maintenance and KT-MT attachment. It is clear that acetylation of BubR1 is 

necessary for maintaining the MCC, and further question of whether 

deacetylation is indeed a direct cue to SAC silencing is addressed in this 
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study. Once SAC proteins are ubiquitinated by APC/C E3 ligase (Musacchio 

and Salmon, 2007), they leave APC/C to be degraded by 26S proteasome in 

the cytosol. I imagine, as deacetylation of BubR1 occurs prior to 

ubiquitination of the protein (Choi et al., 2009) and deacetylation of BubR1 

affects disassembly of MCC proteins from APC/C, deacetylation triggers 

structural change in BubR1 which disrupts molecular interactions within the 

MCC. In line of this, it would be interesting to model the structural 

difference between the acetylated and deacetylated form of BubR1. 

IV-I-2. BubR1 acetylation deficiency disrupts stable kinetochore-

microtubule attachment 

K243R-BubR1 localizes to kinetochores (Fig.8) and chromosome 

alignment defects occur at high incidence in K243R/+ MEFs (Fig.10). To 

guarantee stable KT-MT attachment and error correction, Aurora B activity 

of phosphorylating the KMN network needs to be regulated at a balanced 

level. BubR1 has been suggested to bind to PP2AB56a subunit of PP2A 

phosphatase after phosphorylation at KARD domain (Suijkerbuijk et al., 

2012; T.Kruse et al., 2013). From this study, I have elucidated that KT-MT 

attachment defects in K243R/+ arise from imbalance in Aurora B activity, 

due to reduced recruitment of  PP2AB56a (Fig.13). This suggests the 

possible cross talk between phosphorylation of KARD domain and 
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acetylation of BubR1 at 243
th 

lysine. 

Collectively, when K243R/+ cells proceeded through mitosis, the 

probability of making erroneous KT-MT attachments were high, but 

shortened duration of SAC prompted chromosomes to segregate despite the 

presence of unstable KT-MT attachments. Hence, lagging chromosomes 

occurred at high incidence of 15% in K243R/+ MEFs, which could be a 

direct source for micronuclei that also appeared 3 fold higher than WT (data 

not shown). It has been suggested that errors in mitosis and the resulting 

micronuclei could be a source of chromothripsis, the shattering of 

chromosomes. Also, as micronuclei undergo asynchronous and defective 

DNA replication (Crasta et al., 2012), they could stimulate local genetic 

alterations to occur. Indeed, after multiple rounds of cell division, CIN 

manifested in forms of aberrant number and structure of chromosomes, 

which may accompany genetic alterations favoring tumorigenesis. In effect, 

p53 mutations frequently occurring in human tumors were detected in 

K243R/+ tumors (data not shown).  

The answer to the question of whether aneuploidy is a result or 

cause of tumorigenesis is addressed through this study on K243R/+ mice. 

BubR1
+/- 

resulted in abnormal megakaryopoiesis, but spontaneous cancer 

development was not observed (Wang et al., 2004). Unexpectedly, BubR1 

insufficiency in BubR1
H/H 

succumbed to premature aging phenotype (Baker 
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et al., 2004). In comparison, K243R/+ mice did not show any premature 

aging phenotype but a high incidence of spontaneous tumorigenesis occurred 

in solid and hematologic tissues (Table.2). These differences show that 

effects by deacetylation of BubR1 are not simply due to decrease in protein 

level in mitosis. Specifically, in chromosome congression analysis, K243R/+ 

MEFs displayed significant defects in KT-MT attachments than BubR1
+/-

MEFs. As BubR1
+/- 

and BubR1
H/H 

MEFs also harbor aneuploidy, whole 

chromosome aneuploidy alone cannot be the cause for spontaneous 

tumorigenesis.  

Mutations of SAC regulators have been reported in human cancer 

by genetic or epigenetic means (I.Perez de Castro et al., 2007). It is 

interesting to note that single arginine mutation at 250
th

 lysine of human 

BubR1 can be tumorigenic, as conserved 243
th

 lysine mutated to arginine in 

mice lead to cancer predisposition. Further analysis of whether acetylation 

mutation of BubR1 occurs in human tumors and if other mutations of BubR1 

affect the 250
th

 lysine acetylation should be carried out.  
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IV-2. BubR1 acetylation/deacetylation in SAC signaling 

network 

Through this study, I have shown that BubR1 deacetylation is an 

active signal to SAC silencing (Fig.21 and Fig.22). As evident from studies 

with cells lacking P31 comet or APC15, which are specific regulators in 

silencing the mitotic checkpoint through regulation of MCC disassembly, 

prolonged metaphase is a typical phenotype indicative of mitotic exit 

problem (Westhorpe et al., 2011; Mansfeld et al., 2011). When endogenous 

BubR1 was depleted and acetylation mimicking mutant was expressed in 

cells, metaphase was delayed in addition to extended mitotic timing (Fig.21). 

This point out that deacetylation is a cue for SAC silencing and could also be 

a direct cue to disassembly of MCC. The steps into how MCC disassembly 

occurs is unclear, but it would be interesting to test if deacetylation of BubR1 

acts in concord with P31 comet or APC15. 

In addition, when SAC is silenced in mitosis by targeting Mps1 and 

Aurora B kinase required for SAC activation, BubR1 was deacetylated 

(Fig.22). This suggests that deacetylation of BubR1 acts within the canonical 

SAC signaling pathway. But it still remains to be known when and where 

BubR1 is acetylated and deacetylated in the cell. I believe better insight into 

spatiotemporal regulation of BubR1 acetylation could be done with antibody 

that works for IFA (in the progress of screening) and through analysis of 
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primary cell genetically engineered to have the BubR1 K250R-GFP allele.  

As K250 acetylation and KARD domain phosphorylation of BubR1 

both affects chromosome alignment, the possibility of these modifications 

acting in a sequence was tested. However, the approach with live imaging 

analysis showed that phosphorylation in the KARD domain itself also affects 

SAC activity (Fig.23 and Fig.24), which might be attributed by various roles 

of Plk1 phosphorylation in SAC signaling. Furthermore, existence of various 

cues other than post-translational modification of BubR1 makes it hard to 

isolate and examine the sequential activation between the signals during 

SAC.  
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IV-3. BRCA2 is a hub for SAC silencing: a hub for BubR1 

modulation 

A method in which cells achieve specificity in their molecular 

signaling networks is to organize discrete subsets of proteins in space and 

time. This can be achieved through utilizing proteins acting as “scaffold”.  

BRCA2 is a multi domain protein, which interacts with PCAF at the C-

terminus and BubR1 at the N-terminus in prometaphase (Choi et al., 2012). 

Analysis on the proteins interacting with BRCA2 in mitosis suggested the 

possibility that BRCA2 is not only required for recruitment of BubR1 and 

PCAF together for acetylation of BubR1 (Fig.17). An interesting fact is that 

Plk1 co-immunoprecipitated with BRCA2-BubR1. How BRCA2 localizes to 

kinetochores and what activates the assembly of PCAF and BubR1 on 

BRCA2 is unknown, but Plk1 may be a good candidate considering the fact 

that it phosphorylates BRCA2 before entry into mitosis at N-terminus and 

within the BRC repeat region (Lin et al., 2003; Lee et al., 2004; Takaoka et 

al., 2014). 

Specific to prometaphase, HDAC2 and HDAC3 interacted with 

endogenous BubR1 (Fig.18 and Fig.19). HDAC2 and HDAC3 have broad 

range of localization in prometaphase, diffuse throughout the cytoplasm (He 

et al., 2012). The interaction between HDACs and BubR1 was intact only if 

BRCA2 was present in prometaphase cell extracts (Fig.19), which suggests 
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that BRCA2 helps class I HDACs to be specifically recruited to BubR1 at 

kinetochores in prometaphase. As class I HDACs (HDAC1, HDAC2 and 

HDAC3) share the conserved deacetylase domain and localize in cytoplasm, 

they seem to share a redundant role in deacetylating BubR1 in mitosis. 

Detection of PP2AC may also suggest possible interaction between BRCA2 

and functional regulatory B subunits of PP2A, implicated in 

dephosphorylation activities in mitosis (Fig.17). If PP2AB56a co-

immunoprecipitates with BRCA2 mitotic complex, it would imply that 

BRCA2 extends beyond mediating acetylation and deacetylation of BubR1 

to regulate BubR1 signaling in SAC. More profound analysis on the mitotic 

complex could be carried out through mass spectrometry analysis to compare 

the difference in interacting proteins by using the acetylated and deacetylated 

BubR1 as baits.   

As BRCA2 only localizes to kinetochores in prometaphase, it is 

likely that Plk1, BubR1 and class I HDACs all co-localize to kinetochores. 

Such confined localization of the proteins could enhance the efficiency of 

acetylation and deacetylation switch of BubR1 and ultimately, SAC 

signaling in prometaphase. Furthermore, the regulatory role of BRCA2 as a 

scaffold in mitosis and tumor suppressive characteristics of BubR1 

acetylation suggest BubR1 acetylation as an attractive target for BRCA2 

mutated cancers.  
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Cancer cells in general show deregulation in cell-cycle and anti-

mitotic therapies have been suggested effective against the abnormal 

proliferation of transformed cells (Chan et al., 2012). Taxane (or taxol) is 

one of the anti-mitotic drugs proven to be successful in clinics. But taxane 

could also target quiescent cancer cells because of the importance of 

microtubule dynamics in cells not undergoing mitosis (Mitchison, 2012). 

Hence, more selective strategies targeting mitosis are in a need. I suggest that 

as Plk1 and HDACs cooperate with BRCA2 in mitosis, possibly Plk1 

inhibitor BI2536 (Boehringer Ingelheim Inc.) and HDAC inhibitors in 

combination could selectively killing cancer cells with BubR1 or BRCA2 

mutation. This should be tested with cancer cells with BRCA2 mutations. 
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Figure 26 
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Fig. 26 BRCA2 is the scaffold for BubR1 acetylation/deacetylation 

In prometaphase, when SAC is active, BRCA2 localizes to kinetochores with 

BubR1 and PCAF. Direct interaction of BRCA2 with BubR1 and PCAF at 

the N-terminus and C-terminus respectively, mediate acetylation of K250 

BubR1. The acetylated BubR1 presented by BRCA2, recruits HDAC2/3 to 

BubR1. Followed by HDAC2/3-BubR1 interaction, BubR1 is deacetylated 

as SAC is silenced. 
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국문 초록 

 

BubR1은 세포분열 복합체 (MCC)를 구성하는 중요 단백질

로, APC/C E3 리가아제 활성을 조절하여 세포분열 체크포인트 

(SAC)를 관장한다. 본 연구는 1) BubR1이 염색체 방추사 부착점에 

미세소관의 부착과 세포분열 체크포인트 신호 전달을 어떻게 조

절하는지, 그리고 2) 세포분열 체크포인트에서도 작용한다고 알려

진 암 억제인자 BRCA2가 기존의 세포분열기에서의 역할에서 더 

나아가 신호전달 지지체로 활발하게 작용한다는 내용을 포함하고 

있다.  

 

 BubR1의 아세틸화가 생리학적으로 어떠한 의미를 가는지 

분석하기 위해 아세틸화가 결손 된 마우스(K243R/+)를 knock-in 방

법을 이용하여 제작하였다. 약 60주가 지나면 38%의 개체의 다양

한 조직에서 자연적으로 암이 발생하였다. 해당 마우스의 세포를 

분석한 결과, 염색체 이수성이 높게 나타났으며, 세포분열 체크포

인트도 약화되어있었다. BubR1 아세틸화가 저해된 세포의 염색체 

방추사 부착점에서는 PP2AB56a가 적게 형성되고, Aurora B가 활성

화되는 문제로 미세소관 부착이 불안정하였다. 즉, BubR1 아세틸화

가 1) MMC 복합체 유지와 2) 염색체 방추사 부착점과 미세소관 사

이의 안정적 결합을 형성하는데 중요하게 작용하고, 이 두 특성이 

K243R/+ 마우스에서는 저해되어 있어 염색체 불안정성(CIN)이 축

적되었다고 볼 수 있다. CIN은 세포분열이 여러 번 반복되면서 다

양한 형태로 나타났으며, 실제 암 발생과 연관성이 높고, 영향을 



줄 수 있다고 알려진 유전자 돌연변이를 유도하였다.  

 

사전 연구결과들은 염색체 분열기가 시작될 때 염색체 방추

사 부착점에서 BRCA2의 매개로 BubR1이 PCAF에 의해 아세틸화

된다는 것을 보여주었다. 본 연구에서는 염색체 분열기가 종료될 

때, 즉 세포분열 체크포인트가 비활성화될때 BubR1의 탈아세틸화

가 필수임을 보여준다. BubR1의 탈아세틸화는 세포분열 체크포인트 

비활성화에 작용하는데, 이는 BubR1 아세틸화가 지속적으로 유지

되면 중기가 오래 지속되면서 세포분열이 완료되지 않는 것으로 

확인할 수 있었다. 또한, 생화학적으로 세포분열기에 들어가 있는 

세포에서 세포분열 체크포인트 신호를 억제하여 세포분열 체크포

인트가 비활성화된 상황을 재현하였을 때 BubR1의 탈아세틸화가 

진행되는 것을 보였다. BubR1의 탈아세틸화는 class I 탈아세틸화 효

소 (HDAC)에 의해 조절되며, 해당 작용에는 BRCA2가 탈아세틸화 

효소와 BubR1의 결합 형성에 필요하였다. 따라서, BRCA2는 기존에 

알려진 BubR1의 아세틸화 뿐만 아니라 더 나아가 세포분열기 

BubR1의 탈아세틸화에도 작용한다고 볼 수 있다. 세포분열기에서

의 BRCA2 복합체 분석을 통해 BRCA2가 세포분열 체크포인트 신

호전달 과정에서 특정 단백질들이 염색체 동원체 부착점에 위치하

고 서로간의 결합을 형성할 수 있게 도와주면서, 하나의 신호전달 

지지체로 작용할 수 있음을 제안하고자 한다. 

  

결과적으로 해당 연구 내용은 세포분열 연구에서 대두되는 

중요 질문들에 대한 답을 제시함으로써 이해를 증진시켰다고 볼 



수 있다. 첫째, 염색체 동원체 부착점에 방추사가 부착되면서 나타

나는 물리적 변화가 어떻게 SAC 조절에 필요한 화학적 시그널로 

변화하는지는 BubR1이 염색체 부착점과 방추사 연결, 그리고 SAC 

조절에 연계하여 작용하는 점으로 설명하고 있다. 둘째, 짧은 시간 

안에 어떻게 SAC 신호전달이 효율적으로 작용할 수 있는지에 대해

서는 BRCA2가 BubR1 아세틸/탈아세틸화 조절에 지지체로 작용한

다는 점으로 설명하고 있다.  

 

주요어: 세포분열 체크포인트, BubR1, 암 발생, 세포분열 체크포인

트 신호 전달, 동원체-방추사 부착 
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