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Abstract

Embeddings between
complex Grassmannians

Minhyuk Kwon

Department of Mathematical Sciences
The Graduate School
Seoul National University

In this thesis, we characterize the linearity of holomorphic embeddings of the
complex Grassmannian Gr(2,m) into the complex Grassmannian Gr(2,n).
We study such embeddings by finding all possible total Chern classes of the
pullback bundles E of the dual bundles of the universal bundles on Gr(2,n)
under these embeddings. We first take a Z-module basis of the cohomology
ring of Gr(2,m) which is useful for further works, and express every coho-
mology classes as a linear combination with respect to this basis. For each
holomorphic embedding of Gr(2,m) into Gr(2,n), the total Chern class of E
is written uniquely as a linear combination of basis elements with three inte-
gral coefficients, the linearity of the embedding is determined completely by
these integers. We obtain several conditions on the three integers, including
a upper bound of the specific integer, by solving 3-variate Diophantine equa-
tions which are constructed from the Chern classes and the Euler class of the
normal bundle induced by the embedding, together with a criterion of the nu-
merical non-negativity of Chern classes of holomorphic vector bundles. This
upper bound enables us to apply W. Barth and A. Van de Ven’s results to F,
and we find conditions on m and n for which any holomorphic embedding of
Gr(2,m) into Gr(2,n) is linear.

Key words: Complex Grassmannians, Holomorphic embeddings, Schubert
cycles, Chern classes

Student Number: 2009-22883
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Chapter 1

Introduction

Let d, m be positive integers with d < m. For an m-dimensional complex
vector space V', a complex Grassmannian Gr(d, V') is the space parameterizing
all d-dimensional subspaces of V. Since the description of Gr(d, V') is concrete
and explicit, and concerns matrices and vector spaces over the complex field
C, many practical and computable techniques to study it have been developed.
There are algebraic varieties which are generalized from Gr(d, V'), for instance,
an orthogonal Grassmannian Gr,(d, V'), a symplectic Grassmannian Gr(d, V)
and a flag variety F'(dy,ds, -+ ,dg_1,m). In addition, after replacing C by a
field k, it is possible to construct another Grassmannian Grg(d,V) and its
structure depends substantially on the base field k. For this reason, many
mathematicians have been interested in complex Grassmannians with their
generalizations, and have studied them from various perspectives and purposes.

A complex Grassmannian is a smooth projective variety, and a fundamen-
tal and significant object of algebraic geometry. Many features of complex
Grassmannians, including homology and the cohomology groups, automor-
phism groups, holomorphic embedding of them into complex projective spaces
and defining ideals, are well-known. In particular, a complex Grassmannian
Gr(d,V) admits a cell decomposition. The closure of each cell is called a
Schubert variety and Schubert varieties play an important role in understand-
ing Gr(d,V). Using Poincaré duality, the homology class of each Schubert
variety corresponds to the cohomology class, which is called a Schubert cycle,
and Schubert cycles on Gr(d,V’) can be classified by the d-tuples of non-
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negative integers satisfying some inequality. The set of all Schubert cycles
forms a Z-module basis of the cohomology ring of Gr(d, V'), and the multi-
plications of Schubert cycles are determined by a combinatorial rule, namely
Pieri’s formula.

There are two canonical holomorphic vector bundles on Gr(d, V'), the uni-
versal bundle E(d,V) and the universal quotient bundle Q(d, V'), which are
defined in natural ways: the fiber of E(d,V) at = € Gr(d, V) is given by

the d-dimensional subspace L, of V' which corresponds to z,

and the fiber of Q(d,V) at x is given by the quotient space V' /[, . Every
Chern class of E(d,V) and Q(d,V) is a Schubert cycle (up to sign) and the
cohomology ring of Gr(d,V) is generated by the set of all Chern classes of
E(d,V) as a ring. Furthermore, the tangent bundle of Gr(d, V) is isomorphic
to £(d,V)®Q(d, V) where E(d, V) is the dual bundle of E(d, V). When V =
C™, we denote Gr(d,V), E(d,V) and Q(d,V) simply by Gr(d,m), E(d,m)
and Q(d, m), respectively.

In this thesis, we discuss holomorphic embeddings between complex Grass-
mannians. For any d; < m and dy < n with d; < dy and m — dy < n — ds,
there is a natural holomorphic embedding of Gr(d;, m) into Gr(ds,n):

Let f: C™ < C™ be an injective linear map and let W be a (dy — dy)-
dimensional subspace of C" satisfying W N f(C™) = 0;

the pair (f,1W) induces a holomorphic embedding fy : Gr(dy,m) —
Gr(dy,n) which is given by

wa(z) = L) @ W, xr € Gr(d;,m).

We call such an embedding fi to be linear. Consider the following question:

Question. For d; < m and dy < n with d; < dy and m — dy < n — dy, what is
a sufficient condition for the linearity of holomorphic embeddings of Gr(dy,m)
into Gr(dy,n)? More generally, how can we classify such embeddings?

The most fundamental answer for is about the case when d; =
dy (=: d) and m = n. In this case, a holomorphic embedding ¢: Gr(d,m) —
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Gr(d,m) is an automorphism of Gr(d,m). To describe a non-linear automor-
phism of Gr(d, m), fix a basis B := {ey,--- ,e,} of C™ and let {ef,---¢ } be
the dual basis of B. The choice of B induces a linear isomorphism ¢: (C™)* —
C™ which is determined by L(e;) = ¢; for all 1 < j < m. Define a map
¢: Gr(d,m) — Gr(m —d,m) by

Lo =1t (Ly), x € Gr(d,m) (1.0.1)

where LT C (C™)* is the annihilator of L,. We call such a map ¢ a dual
map. In particular, when m = 2d, a dual map ¢: Gr(d,2d) — Gr(d,2d) is
an automorphism. In [Cho49], W.-L. Chow classified all automorphisms of
Gr(d,m) and showed that every automorphism of Gr(d,m) is linear except
when m = 2d.

Theorem 1.0.1 ([Cho49, Theorem XI and XV]). The automorphism group of
Gr(d,m) is

PGL(m,C), if m #2d
Aut(Gr(d,m)) = ¢ PGL(2d,C) U (¢ o PGL(2d,C)) ifm = 2d
— PGL(2d,C) U (PGL(2d,C) 0 ¢) N

where ¢: Gr(d,2d) — Gr(d,2d) is a dual map.

In [Mok08], N. Mok considered holomorphic embeddings ¢: Gr(dy, m) <
Gr(ds,n) with 2 < d; <ds and 2 < m — dy < n — dy, and obtained geometric
condition on ¢ for the linearity. For z € Gr(dy, m), we regard each tangent vec-
tor of Gr(d;, m) at x as an element of E(dl, m). ® Q(dy, m), where &, denotes
the fiber of £ at . We call a tangent vector of Gr(dy, m) at x to be decompos-
able if it can be written as v ® w for some v € FE(dy,m), and w € Q(dy, m),.
N. Mok characterized linear embeddings ¢: Gr(dy, m) < Gr(ds,n) when the
differential dy of ¢ preserves the decomposability of tangent vectors.

Theorem 1.0.2 ([Mok08, Proposition 1, 3 and 4]). Let ¢: Gr(dy,m) —
Gr(dy,m) be a holomorphic embedding with 2 < dy < dy and 2 < m —dy <
n — dy. Assume that dy transforms decomposable tangent vectors into de-
composable tangent vectors. Then either ¢ s linear up to automorphisms
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of Gr(dy,m) or Gr(dy,n), or the image of ¢ lies on some projective space
in Gr(dy,n) (Here, Y is a projective space in Gr(ds,n) if and only if i(Y)
is a projective space in IP’(dnz)_l where i: Gr(dy,n) — IP’(dnz)_l is the Pliicker
embedding).

Although N. Mok studied holomorphic embeddings between complex
Grassmannians by the pushforward of vector fields, there have been several
approaches to study them by the pullback of vector bundles.

Consider more general situations: holomorphic maps from a compact com-
plex manifold Z into the complex Grassmannian Gr(d,n). When we write

Gr(d,n) = Gr(d,C") definitely, the space I'(Gr(d,C"), E(d,C")) of all holo-
morphic global sections of E(d, C") is naturally identified with (C™)*.

Any holomorphic map 1: Z — Gr(d,n) is determined completely by the
pullback bundle 1*(E(d,n)) because the fiber of 1*(E(d,n)) at z € Z is
equal to (Lyw)* C (C")* = I'(Gr(d,n), E(d,n)). Let & := ¢*(E(d,n)) and
m: (C")* ® Oz — & be the pullback of the canonical surjective vector mor-
phism (C")*® Ogr(an) — E(d, n) under the holomorphic map 1), then the pair
(€, ) satisfies that

e & is a holomorphic vector bundle on Z of rank d;
o 7m: (C"*® Oy — & is a surjective holomorphic vector morphism.
(1.0.2)
Conversely, assume that a pair (€, 7) satisfies (|L.0.2). For each z € Z,
7 induces a surjective linear map 7, : (C")* — &, between fibers at z. From
these maps, define a holomorphic map ©: Z — Gr(d,n) by the composition
of holomorphic maps
Z 5 Grn—d,(CY) S  Gr(d,(CY*™) = Gr(d,n) (1.0.3)
where Lz, := ker(r,) C (C*)* and L, C C" is defined by the annihilator
of L, C (C")*. Then we can show that 7*: & — F is an isomorphism and
7: €& = C"® Oy is a composition of the map F — (C")* ® Oy with 7*: £ —
F. For more details on the correspondence between maps and vector bundles,
see [BT82, Section 23| (in the differential category), [GH94, page 207-209] or
[Huy05, Remark 4.3.21].
The subsequent results are proved from this aspect.
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In [Fed65], S. Feder considered holomorphic embeddings ¢: P™ < P™ and
classified them by means of their degrees. Let Opi(1) be the complex line
bundle which corresponds to a hyperplane H of P*, then every complex line
bundle on P* can be expressed as Opr (1) 1= Opx(1)®" for some r € Z up to
isomorphisms. Given a holomorphic map v : P — P, the pullback bundle of
Opn (1) under the map 1 is isomorphic to Opm (r) for a unique integer r, and
we call it the degree of . A holomorphic embedding ¢ is linear if and only if
the degree of ¢ is 1.

Theorem 1.0.3 ([Fed65, Theorem 1.2, 2.1 and 2.2]).

(a) Let ¢: P™ < P be a holomorphic embedding. Then we have

1, if n < 2m
the degree of ¢ =
lor2, ifn=2m -

(b) If n > 2m, then for any r > 0, there is a holomorphic embedding P™ —
P™ of degree r.

In [Tan74], H. Tango considered holomorphic embeddings ¢: P" 2
Gr(2,n) with n > 4 and classified their images. In this case, ¢ is linear if and
only if the image of p equals {z € Gr(2,n) | p € L.} for some p € C". To state
H. Tango’s result, we need to define some subvarieties of Gr(2,n) which are
biholomorphic to P"~2. For z € Gr(2,n), choose a basis {vi, vy} of L, C C",
and construct the 2 x n matrix of rank 2 whose i row is the transpose of v; for
i =1 and 2. The choice of bases of L, is not unique, but {wy,wsy} is a basis of
L, if and only if the change of basis from {vy,v2} to {w;,ws} is an invertible
2 x 2 matrix. So we express an element in Gr(2,n) as the equivalence class of
a 2 X n matrix of rank 2

where the equivalence relation is given by

A~ B ifandonlyif A= gB for some g € GL(2,C).
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When n > 4, define subvarieties X, , and X} | of Gr(2,n) by

1 0 - 0 0
X0, = | X eP2t;
n—1,1 { |:(0 To -t Tp_s xn—Z):| [X] S } )

; (1.0.4)
X = (T T e | X e P2
n—1,1 {{( 0 2o -+ Tys T x] €
where [x] := [¥g : ©1 : -+ : @,_], and define subvarieties X9, and X}, of
Gr(2,4) by
X0 = o(XY));
51 = 0(X31) (1.0.5)

X?},l = ¢(X§,1)

where ¢: Gr(2,4) — Gr(2,4) is a dual map. For a quadric hypersurface S of
P4, define a subvariety X,(S) of Gr(2,5) by

X,(S) == {z € Gr(2,5) | L, ¢ C(S)} (1.0.6)

where C(S) C C5 is the affine cone over S.

Theorem 1.0.4 ([Tan74, Theorem 5.1 and 6.2]). Let p: P2 — Gr(2,n) be
a holomorphic embedding and X be the image of ¢.

(a) If n =4, then X ~ X??,p X§,1» Xgl or X§,1-
(b) If n =5, then X ~ X{,, X, or X,(S) where S is a fived non-singular
quadric hypersurface of P*.
(¢) If n>6, then X ~ X7 || or X)) | .
(Here, X ~ X if and only if X = g Xy for some g € PGL(n,C).)
In [SUO06], J. C. Sierra and L. Ugaglia classified all the holomorphic

embeddings ¢: P™ < Gr(2,n) such that the composition of the Pliicker em-
bedding Gr(2,n) — P(3)-1 with them is given by a linear system of quadrics
in P

Theorem 1.0.5 ([SU0G, Theorem 2.12]). Let ¢: P™ — Gr(2,n) be a holo-
morphic embedding satisfying that the line bundle N*@*(E(2,n)) is isomorphic
to Opm(2). Let E := ¢*(E(2,n)), then one of the following holds:
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(a) B~ OIP’"L s> Opm(Q).
(b) E =~ Opn(1) ® Opn(1).

(c) m =3 and E is the kernel of a surjective holomorphic bundle morphism
Tps — Ops(2), with a resolution of the form:

4 5
0 — Ops(—2) — @Opa(—l) — @(’)ps — E — 0.
(¢c) m =2 and E has a resolution of the form:
0 = Op(l) > E = mpR0p2(1) — 0

where mp denotes the ideal sheaf of a point P € P?.

(e) m =2 and E has a resolution of the form:

2 4
0 — @OP2(—1) — @Opz — E — 0.

For each holomorphic vector bundle £ on P™ classified in Theorem ,
the pair (£, I'(P™,€)) induces a holomorphic embedding ¢: P™ — Gr(2,n)
where n := dim(I'(P™, £)) uniquely up to linear automorphisms of Gr(2,n)
(For the construction of ¢, see () and its next paragraph). We provide
here examples of such embeddings .

Example 1.0.6 ([SU06G, Example 1.5—1.9 and Remark 3.5]). For each item,
let £ be the holomorphic vector bundle on P™ in the same item of Theorem

and V .= T(P™,£).

(a) The pair (£, V) induces a holomorphic embedding ¢: P™ < Gr (2, ("}?) + 1)

2
which is given by the family of ruling lines of a cone over the second

Veronese embedding ve(P™) C P("3*)-1 with vertex a point.

(b) The pair (£,V) induces a holomorphic embedding ¢: P™ — Gr(2,2m +
2) which is given by the family of lines joining the corresponding points
on two disjoint P™’s in Gr(2,2m + 2). Moreover, the holomorphic em-
bedding ¢o: P™ < Gr(2,m + 2) whose image equals X, ., | given as in
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() can be obtained by projecting from o(P™) C Gr(2,2m + 2) to

Gr(2,m+2) and the pullback bundle ¢§(E(2, m+2)) is also isomorphic
to &.

(c) The pair (£,V) induces a holomorphic embedding ¢: P3 — Gr(2,5)
whose image equals the subvariety X, (S) given as in ()

(d) The pair (£,V) induces a holomorphic embedding ¢: P? — Gr(2,5)

which is a composition of the holomorphic embedding P? < Gr(2,5) in
(c) with a linear embedding P? — P3.

(e) The pair (£,V) induces a holomorphic embedding ¢: P? — Gr(2,4)
bod)

Similarly, in [Huh11], S. Huh classified all the holomorphic embeddings

P™ < G7r(2,n) such that the composition of the Pliicker embedding Gr(2,n) —

P(5)-1 with them is given by a linear system of cubics in P™.

whose image equals the subvariety X. 51 given as in

Motivated by the previous results, we consider holomorphic embeddings
¢: Gr(2,m) — Gr(2,n) and obtain the following numerical conditions on m
and n for the linearity of ¢:

Main Theorem. Let p: Gr(2,m) < Gr(2,n) be a holomorphic embedding.

(a) If9 <m and n < 325 then ¢ is linear.

(b) If 4 < m and n = m+ 1, then either ¢ is linear, or m = 4 and ¢ is a
composition of a linear holomorphic embedding of Gr(2,4) into Gr(2,5)
with a dual map ¢: Gr(2,4) = Gr(2,4).

lMain Theorem| follows from Theorem |41]J and |42]J We do not have
enough examples of non-linear embeddings ¢: Gr(2,m) — Gr(2,n) except
@ (b)). Since m(m — 1) is

much greater than both 3’"—2’6 and m + 1, the assumptions in IMain Theorem|

when m > 3 and n > m(m — 1) (see Example

can be improved. To find a sharp condition of m and n for the linearity will
be an interesting problem.

Although S. Feder and H. Tango dealt with different cases, they used simi-
lar numerical techniques. These methods can be applied to every holomorphic
embedding ¢: Gr(dy,m) — Gr(dy,n) if dy, do are fixed and dy(n — dy) <
2d;(m — dy) as follows:

&

| &1

1V
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Step 1.

Step 2.

Step 3.

Let E be the pullback bundle of E(dy,n) under the embedding ¢. If ¢
is linear, then E is isomorphic to E(dy,m) & (@™ " OGr(dy,m)), thus
the first Chern class ¢;(E) of E equals c;(E(dy,m)). Conversely, if
c1(E) = ¢1(E(dy,m)), then dy preserves the decomposability of tangent
vectors (see Remark ), thus either ¢ is linear up to automorphisms
of Gr(dy,m) or Gr(dz,n), or ¢ embeds Gr(d;, m) into some projective
space in Gr(ds,n) by Theorem . To distinguish the linear case from

the others, we need additional conditions.

Choose a Z-module basis B of the cohomology ring of Gr(dy,m). The
total Chern class of E can be written uniquely as a linear combination
of elements in B with coefficients a, b, -- - ,c in Z (Here, a is determined
so that ¢;(E) = acy(E(di,m))). Let N be the pullback bundle of the
normal bundle of p(Gr(dy,m)) in Gr(dz, n) under the embedding ¢. Us-
ing canonical short exact sequences for E(dy,m) and for E(ds,n), we
construct an equation of the total Chern class of N in terms of the to-
tal Chern classes of E, E(d;, m), their dual bundles and tensor product
bundles. Thus each Chern class of N can be written as a linear com-
bination of elements in B with coefficients in the 3-variate polynomial
ring Zla,b,c| over Z. The Euler class of N, which is the real vector
bundle corresponding to N, equals the pullback bundle of the Poincaré
dual to the homology class of ¢(Gr(d;,m)) under the embedding ¢. So
we also express the Euler class of Ny as a linear combination of elements
in B with coefficients in Z[a,b,c|]. By definitions of Chern classes, the
top Chern class of N equals the Euler class of Ng, and the k" Chern
class of N equals 0 if £ > rank(N). Since a,b,--- ,c are integers, these
equations are Diophantine equations (If rank(N) > dim(Gr(d;,m)) or,
equivalently, do(n — ds) > 2d;(m — dy), then we cannot obtain any equa-
tion).

In general, it is hard to solve these kinds of equations. To overcome this
difficulty, we need additional conditions on a, b, - - - ¢, such as inequalities
in a,b and c. Applying a criterion of the numerical non-negativity of
Chern classes of holomorphic vector bundles to suitable holomorphic
vector bundles on Gr(dy, m), we obtain some inequalities in a,b,--- ,c.
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To obtain other conditions, we have to look for a useful method case by
case.

In this way, we can think of the problem on the classification of holomorphic
embeddings between complex Grassmannians as the problem on solving the

obtained Diophantine equations and inequalities. We prove |Main Theorem| by

applying the above numerical techniques together with further results to our
case.

The thesis consists of four chapters.

In Chapter E, we introduce backgrounds about complex Grassmannians
Gr(d,m), such as Schubert cycles, the universal and the universal quotient
bundles. While most subjects in this chapter are basic and well-known, there
are two remarkable subjects which play significant roles in reach our goal.
First, we provide two Z-module bases of the cohomology ring of Gr(2,m).
One is the set of all Schubert cycles on Gr(2,m) and the other is the set
of all monomials of the form (cy(E(2,m)))* (co(E(2,m)))’ satisfying a certain
condition on ¢ and j (Proposition ) As we already mentioned, the formal
basis arises from a cell decomposition of Gr(2,m), thus it is useful to verify
geometric features of Gr(2,m). The latter basis, denoted by C, arises from a
ring generator {c,(F(2,m)), co(E(2,m))} of the cohomology ring of G7(2,m),
thus it is useful to express multiplications of cohomology classes until the
degree is not greater than 2(m — 2). For this reason, we use the basis C to
express cohomology classes as linear combinations like B in Step 2. Second,
we provide W. Barth and A. Van de Ven’s results, which are about the
decomposability of holomorphic vector bundles on complex Grassmannians
of rank 2 (Proposition l22i4 and b241) If a holomorphic vector bundle £ on
Gr(2,m) of rank 2 satisfies the assumptions of their results, then we can handle

& easily.

In Chapter E, we consider holomorphic embeddings ¢: Gr(2,m) — Gr(2,n)
and their linearity. As in Step 2, we set the integral coefficients a,b and ¢ to
express the total Chern class of E with respect to the basis C, and provide
an_equivalent condition on the pair (a, b, ¢) for the linearity of ¢ (Proposition
). When we focus on the coefficients of the powers of ¢;(E(2,m)) (resp.

c2(F(2,m))) in the equation of the total Chern class of N in Step 2, we derive a

refined equation whose both sides are polynomials in one variable ¢;(E(2,m))

10
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(resp. c2(E(2,m))). If rank(N) = 2n — 2m is not greater than m — 2, then
these two refined equations preserve the coefficients of the cohomology classes
of degree 2n — 2m (Proposition ) Solving the refined equations and the
equation of the Fuler class of Nk in Step 2 together with the inequalities in
Step 3, we obtain a lower bound of the coefficient of (¢;(E£(2,m)))?"~?™ in the
top Chern class of N with respect to C (Lemma
a, b (Proposition )

In Chapter @, we prove Main Theorem (a) and (b) separately. For the
proof of (a), we first obtain a upper bound of a (Proposition (b)) from all
the previous results. This bound enables us to apply W. Barth and A. Van
de Ven’s results to F, thus we can solve the refined equation in ¢y (FE(2,m))
more easily (Theorem ) For the proof of (b), we solve the equality of the
top Chern class of N and the Euler class of Ny directly (Theorem ) It is
reasonable because rank(/N) = 2 is sufficiently small.

Throughout the thesis, a Grassmannian means a complex Grassmannian,

) and an inequality in

a map means a holomorphic map, and a vector bundle means a holomorphic
vector bundle by abuse of terminology.

11



Chapter 2

Preliminaries

We introduce here basic concepts about Grassmannians Gr(d, m) for further
use.

The chapter consists of two sections. In Section El], we provide Schubert
varieties, Schubert cycles on Gr(d, m) and Pieri’s formula which describes the
multiplications of Schubert cycles on Gr(d,m). In general, the set of all Schu-
bert cycles on Gr(d, m) is a Z-module basis of the cohomology ring of Gr(d, m).
When d = 2, we provide another Z-module basis of the cohomology ring of
Gr(2,m), which is motivated by its ring generator, and the relation between
these two bases. In Section R.2, we provide the universal bundle, the universal
quotient bundle on Gr(d,m) and their total Chern classes. In addition, we
provide W. Barth and A. Van de Ven’s results which are about the decom-
posability of vector bundles on complex Grassmannians of rank 2. For more
details on Section Ell, see [Arr96] and [GH94, Section 1.5], and for more details
on Section @, see [Tan74], [BVdV74a] and [BVAV74b].

2.1 Schubert cycles on Grassmannians

For a partial flag0 C Ay € --- C Ay C C™ let w(Ay, -+, Ag) be the subvariety
of Gr(d, m) which is given by

{z € Gr(d,m) | dim(L, N A;) >iforall 1 <i<d}.

12
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We call such a subvariety w(Ay, - -+, Aq) a Schubert variety of type (a1, - - ,aq)
where a; := m —d + i — dim(A4;) for 1 < i < d. The (complex) codimension
of w(Ay, -+, Ay) in Gr(d,m) is Z?Zl a;. We sometimes denote (ai,--- ,aq)
simply by the bold lowercase letter a.

Example 2.1.1. There are some familiar Schubert varieties on Gr(d, m),
which are sub-Grassmannians of Gr(d, m). Given a type %, let X, := w(Ay, -+, Ay)
be a Schubert variety of type x.

(a) a=(m—d,---,m—d,0) : Since dim(A4;) =i forall 1 <i<d-—1 and
dim(Ad):m,

A; =span({vy, - ,v;}) forall 1 <i<d-—1;
Ag=C"

for some linearly independent vectors vy, - ,v4_1 € C™. So we have

Xo={z€Gr(d,m) | Ay_1 C L}
~P(C" /4, ) =P ?

(When d = 2, Xo ~ X, | where X} | is given as in ())

X, is a maximal projective space in Gr(d,m), that is, there is not a
projective space in Gr(d, m) containing it properly.

(b) b=(m—d,--- ,m—d,0,---,0) : Since dim(A;) =i forall 1 <i <k

L

g

k
and dim(A;) =m—d+jforall k+1<j <d,

Xy ={z€Gr(d,m) | Ay C L.}
~Gr(d—k,C"/A,) ~Gr(d—k,m—k).

(¢c) e=(k,---,k): Since dim(A;) =m —d+1i—k forall 1 <i<d,

Xe={xeGr(d,m) | L, C A4}
= Gr(d, Ay) ~ Gr(d,m — k).

13
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So any subvariety Gr(d, H) of Gr(d, m) where H is a subspace of C" is
of this form.

(dyd=(m-—d,--- ,m—d,l,--- 1) : Combining the results of (b) and (c),

Xa~Gr(d—k,m—Fk—1),

which is contained in a Schubert variety of the form X,. The inclusion
Xa C Xp corresponds to the inclusion X, C Gr(d, m) in (c).

Two Schubert varieties of types @ and b have the same homology class
if and only if a = b. We denote the Poincaré dual to a Schubert variety of
type (a1, ,aq) bY Wa, ... o, and call it the Schubert cycle of type (a1, --- ,aq).
Since the codimension of a Schubert variety of type (ai,--- ,aq) is Z?:l a;,

Way - ay € HQ(Z?:1 ai) (Gr(d,m),Z)

and the set of all Schubert cycles describes every cohomology group of Gr(d, m)
completely as follows:

0, if 7 is odd

HY(Gr(d,m),Z) =
span(By), if i (= 2k) is even

where By, is a basis which is given by

{wal,“',ad

In particular, when d = 2,

d
m—d>a > - >aq>0; Zaizk}.
=1

is a basis of H?*(Gr(2,m),Z). For k = 2m — 4, H*®™"=Y(Gr(2,m),Z) ~ Z
is generated by wWy—2m-2 = wi'i >. Every I' € H*®"=Y(Gr(2,m),Z) is of the
form cr w{'?f 2 for some integer cr, thus we identify I' with ¢p € Z.

By Example (c), the Poincaré dual to the homology class of the

14
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subvariety Gr(d, H) C Gr(d,m) where H is a subspace of C™ is wy.... ) for
some 0 < k < m — d. The next Proposition is about its converse.

Proposition 2.1.2 ([Wal97, Theorem 7 and Corollary 5] or [Bry0l, Example
11]). For m > d > 2, let Xy be a subvariety of Gr(d,m) satisfying that the
Poincaré dual to the homology class of Xy s wg,... ;, for some 0 < k < m —d.
Then Xo = Gr(d, H) for some (m — k)-dimensional subspace H of C™.

The multiplications of Schubert cycles are commutative and satisfy the
following rule, named Pieri’s formula.

Lemma 2.1.3 (Pieri’s formula). In Gr(d,m), form —d > a; > ay > -+ >
ag>0andm—d>h>0,

Way g sag W0 = D Why by, ba (2.1.2)
(b1,b2, ,bg)EeTl

where I is the set of all pairs (by, by, -+ ,bg) € Z2 satisfying

For the proof of Lemma , see [GH94, page 203]. To multiply two
general Schubert cycles on Gr(d, m) by using Lemma , we need to express

this multiplication as a composition of finite multiplications of the form ()
In general, it is not easy. But when d = 2, we have a refined Pieri’s formula
which enables us to multiply any two general Schubert cycles easily. Before
describing this formula, we adopt the following convention:

Convention 2.1.4. In Gr(2,m), let wy; =0 unless m —2 >k > 1> 0.

From now on, we always assume Convention when d = 2.

15
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Corollary 2.1.5 (Refined Pieri’s formula). Schubert cycles on Gr(2,m) satisfy
the following relations:

(a) ([Tan74, Lemma 4.2 (i)]) wijwi1 = Wit1,j+1-
(b) (Restate of Lemma ) Wi,0 Wj,0 = Witj,0FWigj—1,1F - FWig1j—1+wi ;-

Using Corollary and the commutativity of multiplications, we can
multiply Schubert cycles on Gr(2,m) easily. For example,

Wg 5 W73 = (ws,o Wil) (w4,0 wiﬁ) = W4,0W3,0 wil
= (u}7,0 + We,1 + W52 + W4’3) wil

= w158 + Wi49 + Wi3,10 + W1i2,11

(Some terms can be omitted if m < 17).
Furthermore, using Corollary , we obtain the result on the multipli-
cations of two Schubert cycles of complementary degrees.

Corollary 2.1.6 ([Tan74, Lemma 4.2 (ii)]). In Gr(2,m), let i, j, k and [ be
integers withm—2>1>35>0 m—2>k>1>0andi+j+k+1=2m—4.
Then we have

1, ifi+l=m—-2=7+k
Wi,j Wkl = .
0, otherwise

By Corollary , for each 0 < p < 2m — 4, there is a bijection

Tpi{wig [m=221>2720; i+j=p}
—{wp |m—2>k>1>0; k+1=2m—4—p}

which is defined by the property: the multiplication of w; j; and 7,(w; ;) is equal
to 1. We call the image 7,(w; ;) = Wm—2—jm—2—; the dual Schubert cycle of w; ;.
Note that the cohomology ring of Gr(2,m)

H*(Gr(2,m),Z) = @ H*(Gr(2,m),Z)

16
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is generated by w; o and w;; as a ring. Motivated by this fact, we find a new
basis of H?*(Gr(2,m),Z) whose elements are expressed by wi g and wy ;.

Proposition 2.1.7. (a) For 0 < k < 2m — 4, the set of Schubert cycles
{wigPwiy [ m—2>k—i>i>0} (2.1.3)

forms a basis of H*(Gr(2,m),Z). In particular, when 0 < k < m — 2,
the set of Schubert cycles

{w’{g?iwgl ‘ 0<i< EJ} (2.1.4)

forms a basis of H**(Gr(2,m),Z) where | e| is the mazimal integer which
does not exceed ®.

(b) For 0 < k <m —2, let ' € H*(Gr(2,m),Z) be a cohomology class.
Then the coefficient of wi in I' with respect to the basis (El l) coincides
with that of wf in T with respect to the basis (Elﬁ}l)

Proof. (a) Using Corollary , foreachi € Zwithm —2>k—i>1i>0,

h
k—2i 1 _ 7
Wio Wi = | Wk—2i0 T+ Qi Wr—2i—jj | Wi

j=1
. (2.1.5)

= Wg—ii + Z Ui, j Wk—i—j,itj
j=1
for some non-negative integers a; ; and h := L%J Sincem—2>k—i>1> 0,
the leading term wy_;; of () is not a zero.
Note that m —2 > k —4 > ¢ > 0 if and only if ip < i < L%J where
ip := max{0,k —m + 2}, so we have

(1.1 = {wk-z-,i lig<i< EJ } (2.1.6)

Let A; := span {wfygzj w{,l |i1<j< ng} for ip < ¢ < |%] and AL%JH =0

17
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(zero Z-module). Then we have by (),
.Ai+1 C .AZ \ {wlchZi Wil}; Wg—ii € w’fBQi Wil + AiJrl C Az (217)

for all 7 < i < Lg] So the basis (R.1.6) is contained in A; , which is the
Z-submodule generated by () Furthermore, the basis (ﬁ) and the set
() have the same number of elements. Hence, () is also a basis of
H?*(Gr(2,m),Z).

(b) Since k < m — 2, ip, = 0. By (), we have wpo € wiy + A,
w'ﬁo # Ay and wy_;; € A; forall 1 <i < L%J Hence, the coefficient of wy o in
I' with respect to the basis () is equal to that of wf in I with respect to

(R14). m

Remark 2.1.8. By Proposition (a), the set of Schubert cycles

k _
0<i< b” - { fo, wiiaz Wi, ’wioztk/ﬂ wltfcl/aJ}

is linearly independent if 0 < & < m —2, but it is linearly dependent if m—1 <
k < 2m — 4. For this reason, we assume that (rank(N) =)2n —2m < m — 2
in Proposition where N is the vector bundle on Gr(2,m) which is given
as in the introductory part of Section B.3.

k—2i
{Wl,o W11

Corollary 2.1.9. For 0 < k < 2m —4, let Cy, be the basis of H**(Gr(2,m),Z)
which is given as in (ElS) Let Q1 and Qy ;1 be the quotient Z-modules

Qi := H'(Gr(2,m),Z)/MLO ;
Qi1 := H*(Gr(2,m), Z)/M1,1

where My is the Z-submodule of H*(Gr(2,m),Z) which is generated by the

basis -
<|_| Ck>\{wf0|0§k§m—2},

k=0

(2.1.8)

and My, is the Z-submodule of H*(Gr(2,m),Z) which is generated by the

18
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() fo

Q10 = Z[WLO]/(WTO_I) ; Qi1 Z[wl,l]/(wlt’({n_m/gj—i—l)

basis

0<k

IN
—
‘5
i
N}
| I
—

Then we have

as both a Z-module and a ring (Here, (x%) is an ideal in Z[x] generated by x*).

Proof. Since M is an ideal in H*(Gr(2,m),Z), the quotient Z-module Q; g

has a canonical ring structure. By Proposition (a), ?:o_ 10 is a Z-

module basis of H*(Gr(2,m),Z), and {wi, | 0 < k < m —2} C LIT-2 Cr.
Hence, Q; is isomorphic to

span ({wfo |0<k<m-— 2}) ~ Z[WI,O]/(WTO_I) (2.1.9)
as a Z-module. Furthermore, Q;( is isomorphic to the right hand side of
() as a ring. The proof for Q; ; is similar. O
2.2 Vector bundles on Grassmannians
Let E(d, m) be the universal bundle on Gr(d, m) whose total space is

{(z,v) € Gr(d,m) x C™ | v € L,}.

Denote the universal bundle on Gr(d,V') by E(d,V). We have the following
canonical short exact sequence:

0 — E(d,m) - @ Ocrigm — Qd,m) — 0 (2.2.1)

where Q(d, m) := (" OGr(dm))/E(d, m), which is called the universal quo-
tient bundle on Gr(d, m).

Recall that automorphisms of Gr(d,m) are classified in Theorem .
The following Lemma is about the relations between FE(d,m), Q(d,m) and
these automorphisms.
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Lemma 2.2.1. Let ¢ be an automorphism of Gr(d, m).
(a) If ¢ € PGL(m,C), then ©*(E(d,m)) ~ E(d,m).

(b) If m = 2d and ¢ € PGL(2d,C) o ¢, then ¢*(E(d,2d)) ~ Q(d, 2d) where
E(d,2d) is the dual bundle of E(d,2d).

The proof of Lemma is clear by definitions of F(d,m) and Q(d, m).

Proposition 2.2.2 ([Tan74, Lemma 1.3 and 1.4]). In Gr(d,m), the total
Chern classes of E(d,m) and Q(d, m) are as follows:
(a) e(B(d,m)) =143, (1) w100

~—
k

(b) (Q(d;m)) =1+ 3 wro,.

Next, we consider vector bundles on complex Grassmannians of rank 2. In
[BVdV74a] and [BVAV74b], W. Barth and A. Van de Ven found criteria of
the decomposability of such vector bundles.

Let € be a vector bundle on P* of rank 2. For a projective line ¢ in P¥, the
restriction 5‘ , 1s decomposable by Grothendieck theorem ([OSS11, Theorem
2.1.1)), that is,

5‘5 = Oe(al) ) Oy(dg)

for some integers a; and as unique up to permutations. For such a; and as,
define b(& | ,) by the integer L"“%’”'J and using this, let

B(€) = max{b(g‘e) |P'~¢C P}, (2.2.2)

The following proposition tells us a sufficient condition for the decomposability
of vector bundles on P* of rank 2.

Proposition 2.2.3 ([BVdV74a, Theorem 5.1]). Let € be a vector bundle on
P* of rank 2 satisfying B(E) < %. Then & is decomposable.

Also, there is a sufficient condition for which vector bundles on Gr(d, m)
of rank 2 is either decomposable or isomorphic to some special form.
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Proposition 2.2.4 ([, Theorem 4.1]). Let € be a vector bundle on
Gr(d,m) of rank 2 with m — d > 2 salisfying that the restrictions S‘Y are
decomposable for all Schubert varieties Y C Gr(d,m) of type (m —d,--- ,m —
d,0). Then either € is decomposable, or d =2 and € ~ FE(2,m) ® L for some
line bundle L on Gr(2,m).

By Example (a), every Schubert variety of type (m—d,--- ,m—d,0)
is biholomorphic to a maximal projective space P™~¢, thus the conclusion of
E 2% relates to the assumption of Proposition R.2.4. Proposition

Proposition P.
b.Q.SJ and b24l play an important role in proving Theorem #.1.1l.
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Chapter 3

Embeddings of Gr(2,m) into
Gr(2,n)

For n > m > d, let ¢: Gr(d,m) — Gr(d,n) be an embedding. As we already
mentioned in Chapter [l|, we characterize such an embedding ¢ by means of
the pullback bundle £ of the dual bundle of the universal bundle on Gr(d,n)
under the embedding .

Let d = 2 and m > 4, and let C, be the set of cohomology classes which
is given as in () for each 0 < k < 2m — 4. Then C := ch_4 Cy is a
Z-module basis of the cohomology ring of Gr(2,m) by Proposition ﬂ (a).

The total Chern class of E can be written uniquely as a linear combination
of wo 0, wi 0, wio and w;; with integral coefficients 1,a,b and c, respectively.
To determine possible pairs (a, b, ¢), we consider the pullback bundle N of the
normal bundle of ¢(Gr(d,m)) in Gr(d,n) under the embedding ¢, and use the
descriptions of Chern classes in terms of an Euler class (Note )

The chapter consists of four sections. We assume that d = 2 and m > 4
except Section @ In Section @, we define the linearity and the twisted
linearity of embeddings ¢: Gr(d,m) — Gr(d,n) and present relations between
the (twisted) linearity of ¢ and the image of ¢ (Proposition and Corollary
). In Section B.2, we set the integral coefficients a,b and ¢, and present
an equivalent condition on the pair (a,b,c) for the (twisted) linearity of ¢
(Proposition ) In Section @, we construct an equation of the Euler
class of Ng (Proposition ) and an equation of the total Chern class of N
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(Lemma ), by independent ways. From these two equations, we express
the k™™ Chern classes of N (k > rank(NV)) and the Euler class of Ng as linear
combinations of elements in the basis C with coefficients in Z[a, b, ¢|]. Using
Note , we obtain several Diophantine equations in variables a,b and c.
When we assume that rank(N) = 2n—2m < m—2 and focus on the coefficients
of wf, and wi |, we derive two refined equations from the equation of the total
Chern class of N (Proposition M) In Section @, we obtain inequalities in
variables a, b and ¢ (Proposition B44l and |349|) by various ways: a criterion of

the numerical non-negativity of Chern classes of holomorphic vector bundles
(Proposition ), two refined equations in one variable, the result on the
degrees of Schubert cycles (Lemma ) and so on.

3.1 Linear embeddings

In Chapter m, we defined a linear embedding fiy Gr(dy,m) < Gr(ds,n),
which is induced by an injective linear map f: C™ — C" and a (dy — dy)-
dimensional subspace W of C" satisfying f(C™)NW = 0. When d; = d (=: d),
we do not have to consider an extra summand W of Lz ) (z € Gr(d,m)), so
the definition of the linearity is simpler. Furthermore, when either m = 2d or
n = 2d, there is a non-linear, but natural embedding because of the existence
of a dual map ¢, which is a non-linear automorphism of Aut(Gr(d,2d)).

Definition 3.1.1. Let ¢: Gr(d,m) — Gr(d,n) be an embedding.

(a) An embedding ¢ is linear if ¢ is induced by an injective linear map
f: C™ — C", that is,

L) = the d-dimensional subspace f(L,) of C"

for all x € Gr(d, m).

(b) When m = 2d (resp. n = 2d), an embedding ¢ is twisted linear if ¢ is of
the form ¢g 0 ¢ (resp. ¢ o pg) where po: Gr(d, m) — Gr(d,n) is a linear
embedding and ¢: Gr(d, 2d) — Gr(d,2d) is a dual map.
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Remark 3.1.2. Assume that m = 2d = n and ¢: Gr(d,2d) — Gr(d,2d) is a
twisted linear embedding of the form ¢ o ¢ where ¢q: Gr(d, 2d) — Gr(d,2d)
is a linear embedding. In this case, ¢ and ¢ are automorphisms of Gr(d, 2d),
and since (y is linear, ¢y € PGL(2d, C). By Theorem 1.0.1], PGL(2d,C)o¢p =
¢ o PGL(2d,C), thus we have

p=0¢opy=p100¢
for some ¢, € PGL(2d,C).

Of course, every embedding of Gr(d, m) into Gr(d,n) is not always linear.
When d = 1, S. Feder showed the existence of a non-linear embedding P™ —
P" for n > 2m by Theorem (b). The following example provides some
non-linear embeddings for d > 2.

Example 3.1.3 (Non-linear embeddings). Let ¢: Gr(d, m) — Gr(d,n) be an
embedding.

(a) If either m = 2d or n = 2d, then every twisted linear embedding is not
linear.

(b) Consider the Pliicker embedding i: Gr(d,m) < P(AYC™) = PV where
N := (")) —1. There is a maximal projective space Y ~ P"~% of Gr(cﬁ
which is a Schubert variety of type (n —d,--- ,n —d,0) (Example R.1.
(a)), and let j: Y < Gr(d,n) be an inclusion. Apply S. Feder’s result
to this situation. If n —d > 2N, then there is a non-linear embedding
: PN <« P4 ~ Y by Theorem (b). The composition of maps
@ = jotoiis an embedding of Gr(d,m) into Gr(d,n), but it is not
linear.

(c¢) Consider an embedding ¢: Gr(2,3) — Gr(2,4). Let ¢ :== ¢ o ¢ be the
composition of maps where ¢: P* — Gr(2,3) is a dual map, then ¢ is an
embedding of P? into Gr(2,4). By Theorem
4 types of X := (P?) = p(Gr(2,3)):

|, there are the following
0. 1. w0 . il
X3,1’ X3,17 X3,17 X3,1
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which are given as in (I()Z-ll) and ( 1.0.3), up to linear automorphisms of
Gr(2,4). In particular, X9, is a Schubert variety of type (2, 0) and X3 is
a Schubert variety of type (1,1). If X = X :(5),1 up to linear automorphisms,

then ¢ is linear, and if X = X??’l up to linear automorphisms, then ¢
is twisted linear. On the other hand, if X = X}, or X3, up to linear
automorphisms, then ¢ is neither linear nor twisted linear.

There is a relation between the (twisted) linearity of an embedding ¢ of
Gr(d,m) into Gr(d,n) and the image of .
Proposition 3.1.4. For n > m > d, let ¢: Gr(d,m) — Gr(d,n) be an
embedding. Then the image of ¢ is equal to Gr(d, H,) for some m-dimensional
subspace H, of C" if and only if one of the following conditions holds:

e o is linear;

e m = 2d and ¢ is twisted linear.
Proof. During this proof, we denote the image of ¢ by X.

If ¢ is linear, then ¢ is induced by an injective linear map f: C"™ — C",
thus X = Gr(d, f(C™)). Moreover, if ¢ is twisted linear with m = 2d, then

© = o o ¢ for some linear embedding ¢: Gr(d,2d) — Gr(d,n) (For the case
when n = m, see Remark ) So we have

X = ¢o(¢(Gr(d, 2d))) = ¢o(Gr(d,2d)),

thus the image of ¢ = ¢ 0 ¢ is Gr(d, H) for some (2d)-dimensional subspace
H of C".

Conversely, assume that X = Gr(d, H,) where H, is an m-dimensional
subspace of C™. Fix a biholomorphism v,: Gr(d, H,) — Gr(d,m) which is
induced by a linear isomorphism H, — C™. Let ¢;: Gr(d,m) — Gr(d, H,)
be a biholomorphism which is obtained by restricting the codomain of ¢ to its
image Gr(d, H,). Then v, o ¢; is an automorphism of Gr(d, m) as follows:

Gr(d,m)

thy 0 1
o A MD

Gr(d,m) —— Gr(d, H,) SCEN Gr(d,n)

©1
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If m # 2d, then v, o p; € PGL(m,C) by Theorem , thus ¢ is linear. If
m = 2d, then v, o ¢, € PGL(2d,C) U (PGL(2d,C) o ¢) by Theorem [L.0.1,

thus ¢ is either linear or twisted linear. O

Proposition covers all the cases when ¢: Gr(d,m) — Gr(d,n) is
either linear or twisted linear except when n = 2d > m and ¢ is twisted linear.
The following corollary is an analogous result for this exceptional case.

Corollary 3.1.5. For2d > m, let ¢: Gr(d,m) — Gr(d,2d) be an embedding.
Then the image of ¢ is equal to {x € Gr(d,2d) | V,, C L,} for some (2d —m)-
dimensional subspace V,, of C** if and only if ¢ is twisted linear.

Proof. Since 2d > m, ¢ is twisted linear if and only if o = ¢poyq for some linear
embedding ¢q: Gr(d,m) — Gr(d,2d) or, equivalently, the image of ¢ o ¢ is
equal to Gr(d, H) for some m-dimensional subspace H of C?? by Proposition

. Since ¢ o ¢ = id, to complete the proof, it suffices to show that given a
(2d — m)-dimensional subspace V,, of C*?,

o({x € Gr(d,2d) | V, C L,}) = Gr(d, H)

for some m-dimensional subspace H of C?*?. By definition () of a dual
map ¢,

¢ ({x € Gr(d,2d) | V, C L,}) = {¢(x) € Gr(d,2d) | V,, C L,}
={¢(x) € Gr(d,2d) | Ly = 1(Ly) C UV )}

={y € Gr(d.2d) | L, C «(V;)} (y:=¢(x))
= Gr(d, L(le)).

Here, the dimension of +(V,") is 2d — (2d — m) = m as desired. O

3.2 Equivalent conditions for the linearity

Let ¢: Gr(2,m) < Gr(2,n) be an embedding and E := ¢*(E(2,n)) where

E(2,n) is the dual bundle of E(2,n). To distinguish Schubert cycles on two
Grassmannians Gr(2,m) and Gr(2,n), denote Schubert cycles on Gr(2,n)
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(resp. Gr(2,m)) by @;; (resp. wy;) (Of course, all properties in Chapter B
hold for Gr(2,n) and w; ;). By Proposition D.2.2 (a),

c(B(2,n)) =1+ @10+ @1,

and
c1(E) = ¢"(@10) = awr,

- ) (3.2.1)
CQ(E) =Y (wlyl) = bwLO + Cwiy = b(JJ270 + (b + C) W11

for some a, b, c € Z. By Proposition (a), {wo,0, w10, Wi, w1} is a basis of
the Z-module @;_, szgGr 2,m),Z) if and only if m > 4. So the coefficients
2.1

1)) are determined uniquely for each ¢. For this

a,b and ¢ given as in (B.
reason, we always assume that m > 4.

Lemma 3.2.1. Forn >m >4, let ¢: Gr(2,m) < Gr(2,n) be an embedding.
Then the Poincaré dual to the homology class of X := p(Gr(2,m)) is

n

—m
(X : wn—2—i,2m—n—2+i) Won—2m—ii
=0
where X - Wn—9_;am—n—a2+: 1S the intersection number in Gr(2,n).

Proof. Since the codimension of X ~ Gr(2,m) in Gr(2,n) is 2n — 2m, the
Poincaré dual to the homology class of X is

n—m
E d; Won—2m—i,i
i=0

for some integers d;. By Corollary ,

n—m

X - Wn—2—j2m—n—2+j — E d; (WQn—2m—i,i : wn—2—j,2m—n—2+j) = dj
i=0

as desired. n

Now we ready to prove the following proposition on the equivalent condi-
tions for the (twisted) linearity of an embedding.
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CHAPTER 3. EMBEDDINGS OF Gr(2,m) INTO Gr(2,n)

A)). The

Proposition 3.2.2. Forn > m >4 (resp. n > m = 4), let p: Gr(2,m) —
Gr(2,n) be an embedding and a,b, ¢ be the the integers given as in (3.2

following are equivalent:

(a) @ is linear (resp. @ is twisted linear);

(b) E~ E((2,m) (resp. E ~ Q(2,4));

(¢) (a,b,¢)=1(1,0,1) (resp. (a,b,c) = (1,1,—1)).
Proof. During this proof, we denote the image of ¢ by X.

e (a)=(b) : Assume that ¢ is linear, then X = Gr(2, H,) for some m-
dimensional subspace H,, of C" by Proposition B.1.4. The total space of
E(2,n)|x is

{(z,v) e X xC" |ve L, CcC"}
={(z,v) €e Gr(2,H,) x H, |ve L, C H,}

which is exactly equal to the total space of E(2,H,). So E(2,n)|x =
E(2,H,) and we have

E = ¢*(B(2,n)) = ¢*(B(2,n)|x) = ¢"(B(2, H,)) ~ B(2,m).

If ¢ is twisted linear, then ¢ o ¢ is linear. By the previous result, (p o
¢)(E) ~ E(2,m). So ¢*(E) ~ ¢*(E(2,m)), which is isomorphic to
Q(2,m) by Lemma (b).

e (b)=(c) : By Proposition , we have

c(E(2,m)) =1+ wio+wi
C(Q(27 m)) =1+ W10 + Wa 0 = 1+ W1,0 + UJiO — w11

So if E ~ E(2,m) (resp. E ~ Q(2,4)), then (a,b,c¢) = (1,0,1) (resp.
(&7 ba C) = (1? 17 _1))

e (c)=(a) : Assume that (a,b,¢) = (1,0,1). Then ¢*(@19) = wio and
©*(011) = wy1. Note that H*(Gr(2,n),Z) (resp. H*(Gr(2,m),Z)) is
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CHAPTER 3. EMBEDDINGS OF Gr(2,m) INTO Gr(2,n)

generated by @19 and @y (resp. wip and wi;) as a ring. Moreover,
the multiplicative structures of H*(Gr(2, n)2 Z) and H*(Gr(2,m),Z) are

exactly same when we adopt Convention . So we have

QO*(C:)Z‘J') = wi,j (322)

foralln —2 >1¢ > 5 > 0, thus the Poincaré dual to the homology class
of X is

n

(X - On—2—i2m—n—2+i) D2n—2m—ii (3.2.3)
—0

)

by Lemma , and so we have

() = (90* ((Dn727i,2mfn72+i)> @2n72mfi,i

i
3 ©

(Wn—2-i2m-n—2+i) Won—2m—ii (.° Equation ())

Il
=)

7
:(Wm—2,m—2) (:)n—m,n—m ( Wn—2—i2m—n—2+i — 0

unlessm—2>n—2—i>2m—n—2+1>0)

=Wn—m,n—m-

By Proposition , any subvariety of Gr(2,n) which corresponds to
On—m.n—m is of the form Gr(2, H) where H is an m-dimensional subspace
of C". Applying Proposition @ and the implication of (a)= (c), we
obtain the desired result.

Assume that (a,b,c) = (1,1, —1). To prove the implication of (c)=(a)
for this case, it suffices to show that ¢ o ¢ is linear. The total Chern

class of (¢ o ¢)"(F) = ¢*(¢*(F)) equals

c((po @) (E)) =c(¢"(¢"(E))) = ¢*(c(¢™(E)))
=¢" (1 + w10+ wio —wi1)
=1+ W1,0 + wio — (wio — wl’1>

=1+ wig+wii,
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thus po¢ is linear by the implication of (¢) = (a) for the case of linearity.
Hence, ¢ is twisted linear.

[]

Remark 3.2.3. Assume that n < 2m — 2 and a = 1. Using Theorem , we
can prove the implication of (¢) = (a) in Proposition for this case, with-
out computing the Poincaré dual to the homology class of X. Since a =1, ¢
maps each projective line in Gr(2,m) to a projective line in Gr(2,n), thus for
any = € Gr(2,m), the differential dp preserves the decomposability of tangent
vectors of Gr(2,m) at . So by Theorem , either ¢ is linear up to auto-
morphisms of Gr(2,m) or Gr(2,n), or the image of ¢ lies on some projective
space in Gr(2,n). But the latter case is impossible because the dimension of
©(Gr(2,m)) is greater than the dimension of each maximal projective space
in Gr(2,n), that is, 2m — 4 > n — 2. By Theorem , there is a non-linear
automorphism of Gr(2,m) only for the case when m = 4. Hence, if m > 5,
then ¢ is linear, and if m = 4, then ¢ is either linear or twisted linear.

3.3 Equations in a,0 and c

Let a,b and c be the integers which are given as in (), and N be the
pullback bundle of the normal bundle of X := ¢(Gr(2,m)) in Gr(2,n) under
the embedding . In this section, we construct an equation of the total Chern
class ¢(N) of N (Lemma ) and under the assumption when n < 3722,
we deduce the refined equations in one variable (Proposition ) from the
equation of ¢(N). Using the definition of the Chern classes of N in terms of
the Euler class of Ng (Note ), we obtain several Diophantine equations in

variables a, b and c.

3.3.1 Euler class of Ny

There are two methods to construct the Chern classes of a complex vector
bundle &£: one is via Chern-Weil theory and the other is via the Euler class
E(&r) of Eg. For more details on the first and the second methods to construct
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Chern classes, see [BT82, Section 20] and [MS74, Section 14], respectively. For

more details on Euler classes, see [BT82, Section 11] or [MS74, Section 9.
By the second method (or deriving from the first method), we have the

following result on the k™ Chern classes c;(€) of € for k > rank(€):

Note 3.3.1 ([BT82, (20.10.4) and (20.10.6)] or [MS74, page 158]). Let Z be a

real manifold and £ be a complex vector bundle on Z. Then we have

0 (E) = {;(&R), if £ = rank(&)

, if k> rank(€)
where &g is the real vector bundle on Z which corresponds to &£.

As in Note , let Ng be the real vector bundle which corresponds to
N. Then we can compute the Euler class of Ny as follows:

Proposition 3.3.2. For n > m > 4, the Euler class of Ny is

n—

6(NR) = Z(X : @n—2—z‘,2m—n—2+z‘) 90*(@2n—2m—i,z‘)- (3.31)
i=0

(2

In particular, when n =m + 1,

e(Nr) = (X - Wm—1.m—3) ¢"(W20) + (X - Op—2.m—2) ©"(@011)
= {(X - Om-1,m-3) (a2 —b) + (X - Opom-2) b} wio

+ (X - Om—om—2 — X - Opm—1,m—3) CW1 1.
Proof. By [Fed65, Theorem 1.3],
e(Nr) = ¢ (p:(1))

where 1 is the cohomology class in H*(Gr(2,m),Z) which corresponds to
Gr(2,m) itself. Since ¢.(1) is the cohomology class in H*(Gr(2,n),7Z) which
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corresponds to X,

n

)

e(Ng) = ¢ <

—m
(X : wanfi,2m7n72+i) Won—2m—i,i
=0

n—

m
= Z (X - On2izmn—2+vi) ¢ (Oon—2m—is)
=0

7

by Lemma . O

The cohomology ring H*(Gr(2,n),Z) of Gr(2,n) is generated by {&1 9, @11}
as a ring, thus any T' € H?*(Gr(2,n),Z) can be written as fr (1,9, @1,1) for
some polynomial fr € Z[x,y|. Since ¢*: H*(Gr(2,n),Z) — H*(Gr(2,m),Z)
is a ring homomorphism, we have gp*(f) = fr(awi o, bwio + cwy 1), which is
expressed as gr. (w10, wi1) for some gp , € Z[z, y].

Apply this method to the Euler class e(Ng). In each summand of (B.3.1),
X - Op-s—iom-n—2+i € Z and p*(Wap_am—ii) € H**"*™(Gr(2,m),Z), so we can
express e(IVg) as

e(Np) =) Ajwiy > i, (3.3.2)
i=0
for some polynomials A; € Zla, b, c|.

3.3.2 Total Chern class of N

Lemma 3.3.3. Letn > m > 4. Then the total Chern class ¢(N) of N satisfies
the following equation:

c(N)(1+ (4b — a®)wi o + dcwr 1) (1 + wi g + wig)™

3.3.3
=(1+ awy o+ bwio + Cw1,1)n(1 - Wio + 4WLI) ( )
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which is satisfied in H*(Gr(2,m),Z). Moreover, the first and the second Chern
classes of N are

c1(N) = (an — m)wy;

esl) = { (5 ) —amn st = () ) <10t )} e

+{c(n —4) —m+4}w ;.

Proof. Taking the tensor product of () with F(2,m), we obtain a short

exact sequence

0 = EQ2m)®E(@2,m) - @E?2m) - Q2 meE?2,m) — 0, (3.34)
and after replacing m with n, we also obtain a short exact sequence

0 = EQn)@E@2n) - PEE2n) - Q2n)aE@2n) - 0. (335)

Since Tr2,n) ~ Q(2,7) ® E(Q, n) and Tgrom) ~ Q(2,m) ® E(2, m),

: P B (B
W loren) = B w Bam)  dB @ )
B c(E(2,m))™
C(TGT(Q,m)) - (E(2, m) ® EV’(Q’ m))

by () and () So we have the following equation:

_ Ao (Tarom)) _ o(E)"/c(E® E)
C(N) = = 2 m < 9
(Torem) — c(E(2,m))"/c(E(2,m)® E(2,m))
that is,
c(N)e(E @ E)e(E(2,m))™ = c¢(E)"¢(E(2,m) @ E(2,m)). (3.3.6)
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Note that

c(E)=14aw o+ bwio + cwy 1;

y=1
o(E®E) =1+ (4b — a?) wio +4dcwy i; (3.3.7)
c(B(2,m)) =1+ wio+wii; o
c(E(2,m)® E(2,m)) =1— Wio + 4w

Putting (B.3.7) into (), we obtain Equation ()
Comparing the cohomology classes of degree 2 in both sides of (), we
have

c1(N) +mwy g = anwp,

so we obtain
c1(N) = (an — m) wy p. (3.3.8)

Comparing the cohomology classes of degree 4 in both sides of (), we have

m
(N) +ci(N) - mwig+ (4b — a*) wi g + dcwry + (2 > wi o+ muwi
3.3.9
Y 2 o 2 2 ( )
= (2>a wigt+bnwig+cenwin —wig+ 4w

Putting (B.3.§) into (), we obtain

+{c(n —4) —m+4}w,
as desired. [
By replacing ¢(N) b% I', regard () as an equation with a variable I'.

Write a solution I' of ( ) as T = 27Ty where Ty, € H?*(Gr(2,m),Z)
for all 0 < k£ < 2m — 4. In the proof of Lemma B.3.3, we compute I'}, for £ =1

and 2 by the following steps:

Obtain an equation (%), which is satisfied in H?*(Gr(2,m),Z), after
comparing the cohomology classes of degree 2k in both sides of (),
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compute 'y by putting I'; into (%) for all 0 <i < k.

Repeat these operations from k& = 3 to 2m — 4. After that, we can express
'y (= cx(N)) for 0 < k < 2m — 4 as follows:

_1 _ 0 _ 0
Lo =1 = Byowiy = Boowi,
I :BLO W10

2
Iy =Bypgwig+ Baiwin

(3.3.10)

_ k k—2 k—2hy , hy
I'y, =By Wi+ Bya Wi Wi+t By Wio Wi

2m—4 2m—6 m—2
Pom—a =Bom-aowiy ~ + Bom—a1wiy wii+ -+ Bomam-awi]

where hy, := ng and By; € Za,b,c] for all 0 <k <2m —4,0 < i < hy. In
addition, I', = 0 for all £ > 2m — 4.
Since the rank of N is 2n — 2m, we have by Note ,
N, if k=2n—2
cr(N) = {e( &), | e (3.3.11)

0, if2n —2m <k <2m—4 -

If 2n — 2m > 2m — 4, then we cannot obtain any further information from
() On the other hand, if 2n — 2m < 2m — 4, then we obtain several
Diophantine equations in a, b and ¢ by applying (M) and (|331d) to (|331]J)
For this reason, the condition 2n —2m < 2m — 4 (or equivalently, n < 2m — 2)

is essential in order to find all possible pairs (a,b,c) of integers from these
Diophantine equations.

If m —2 < 2n—2m < 2m — 4, then the choices of coefficients A; in ()
is not unique and the choice of coefficients By ; in () is not unique for
all 2n —2m < k < 2m — 4 by Proposition (a) (or Remark ). To
apply () and (3.3.1d) to (|3.3.1]J), we need to write e(Ng) and Iy, o, with
respect to the same basis of H22"=2™)(Gr(2,m),Z), and write I';, with respect
to a basis of H?*(Gr(2,m),Z) for each 2n — 2m < k < 2m — 4 again.

If 2n — 2m < m — 2, then we do not have to care the uniqueness of
coefficients in e(Ng) and T'y, (2n —2m < k < m — 2), thus we have the
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following Diophantine equations directly:

AOZ BQn—Zm,O; A1: BZn—Qm,l; An—m: BZn—Qm,n—m;

3.3.12
0= DByo; 0= Bi; 0= DBin, ( )

for all 2n — 2m < k < m — 2. However, if n — m is big, then it is difficult to
find all Diophantine equations in () So we need simpler equations than

(B-3.3).

3.3.3 Refined equations in w;y and w;

Using Equatio) and the basis () of a cohomology group together

with Corollary , we obtain two refined equations in one variable as follows:

Proposition 3.3.4. Let m < n < 322 For 0 < k < 2n — 2m, write the k™
Chern class cx(N) of N as

ag = 1= Py, if k=0
cr(N) = o wio = P wi, ifk=1 (3.3.13)
k - . .
akwfojL""f'ﬁkwlff, if k> 2 is even

Q W]f,o + e+ By w1,0w§lffl)/2, if k> 3 is odd

with respect to the basis () Then we have two equations

2n—2m
< Z y Wf,o) (14 (4b — a?) wio)(l + wy o)™t
k=0

= (1 + a w1 o -+ bwio)”(l — WL(])

(3.3.14)

which is satisfied in Z[ww]/(w%ﬂ), and

(Z 5276 wf,l) (]_ + 40&)1,1)(1 + wl,l)m = (1 + Cle)n(l + 4&)171) (3315)
k=0

which is satisfied in Z[Wl,l]/(w}({”_”mﬂ),
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Proof. By Proposition a), we can express each c¢x(N) where 0 < k <
2n — 2m uniquely as in () because 2n — 2m < m — 2.

By Corollary , there are ring isomorphisms po: Q19 — Z[w1 0] / (wi'sh)

and p;: Q11 — Z[M@%}TZ)/ZJH) where Q; and Q;; are the quo-

). Consider the images of both sides of ()
under the composition of the isomorphism p, with the canonical projection
H*(Gr(2,m),Z) — Q1. To find their images, it suffices to consider the terms
involving in wy o, we have

tient rings given as in (

2n—2m
( > w’f,o) (14 (4b—a®) wig) (1 +wio)™ = (1 +awio+bwi,)"(1—wiy),

and after dividing both sides by 1 + w; o, we obtain Equation () Sim-
ilarly, we can obtain Equation (@) by considering the image of both
sides of () under the composition of p; with the canonical projection
H*(Gr(2,m),Z) — Q11. -

Remark 3.3.5. Assume that n < 3’"2—_2 After comparing the notations in

() and , ap = Ago and B = By k2 for all 0 < k < 2n —2m. In

particular, By; = By;; for all 0 <7 <mn —m.

Each of () and () is satisfied in a quotient ring of the form

Z]x] / (z*), which is isomorphic to the Z-submodule of all polynomials in Z[x]
of degree < k as a Z-module. When we express each element in Z[z] / (x’f) as
a polynomial of degree < k, we use (531211) and (E?)la) as follows:

e We can compare the coefficients of wfo in both sides of () for
0<k<m-—2;

e we can compare the coefficients of wfl in both sides of () for 0 <
2k <m — 2.

In this way, we obtain the leftest and the rightest Diophantine equations among

(b.3.19).
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3.4 Inequalities in a,b and c

In this section, we derive some inequalities in a, b, c and a4, (Proposition ,

|3.4.5| and |34d) by using numerical non-negativity of Chern classes and solving
two refined equations (| 3.3.14-11

) and (EBla) in one variable.

3.4.1 Numerical non-negativity of Chern classes

Definition 3.4.1. Let Y be a non-singular variety. A cohomology class I' €
H?!(Y,Z) is numerically non-negative if the intersection numbers I' - Z are
non-negative for all subvarieties Z of Y of dimension k.

In our case when Y = G7(2,m), a cohomology class I' € H**(Gr(2,m),Z)
is numerically non-negative means that when we write I' as the linear combi-
nation with respect to the basis (R.1.1)), every coefficient in I" is non-negative.
The following proposition tells us a sufficient condition for the numerical non-
negativity of all Chern classes of vector bundles &£.

Proposition 3.4.2 ([Tan74, Proposition 2.1 (i)]). Let Z be a non-singular
variety and let £ be a vector bundle of arbitrary rank on Z which is generated

by global sections. Then each Chern class ¢;(E) of £ is numerically non-negative
foralli=1,2,---dim(Z).

We find vector bundles on G7(2,m) satisfying the assumption of Proposi-
tion and obtain inequalities in a, b and c.

Lemma 3.4.3. Each of vector bundles E = ¢p*(E(2,n)), ¢*(Q(2,n)) and N
is generated by global sections, and its Chern classes are all numerically non-
negative.

Proof. Note that a vector bundle £ on Z is generated by global sections if and
only if there is a surjective bundle morphism from a trivial bundle on Z (of
any rank) to £. By the short exact sequence after replacing m in () with
n and its dual, £ and ¢*(Q(2,n)) are generated by global sections. Moreover,
by the short exact sequence (B.3.5), Tarzn) ~ Q(2,n)® E(2,n) is generated by

global sections and from this, we can conclude that N = ¢*(Tar(2n)) / Ter(2,m)
is generated by global sections. Hence, for € = E, ¢*(Q(2,n)) and N, ¢y(€) =
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1 >0and ¢1(€), -, com—4a(E) are all numerically non-negative by Proposition
[]

E
AN

Proposition 3.4.4. Let n > m > 4.
(@) a>1, b>0and b+ c >0 with a*> > b.
(b) If m > 5, then a® > 2b.
(c) If m > 6, then a® > 2b.

(d) Forn <372 et ap (0 < k < 2n — 2m) be the integers which are given
as in (3313) Then oy, > 0 for all 0 < k < 2n — 2m.

Proof. (a) By Lemma , each Chern class of £ and N is numerically non-
negative. By (),

C(E) =1+ a w10 + beo + (b + C) W11,
so a,b and b 4 ¢ are non-negative. By Lemma ,
c1(N) = (an —m) wy,

soa > 1.
By Lemma M again,

is numerically non-negative. Since m > 4, wy is not zero, so we have a® > b.
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(b) By Lemma ,

es(0"(Q(2,n))) = " (G50) (.- Proposition R.2.9 (b))
=" (d)io — 201 0w1,1) (.0 Corollary )
= (a w1,0)3 —2awi (b Wio +cwig)
= a(a® — 2b) wiy — 2acwipwiy

= a(a® — 2b) w3 + 2a(a® — 2b — ¢) wa

is numerically non-negative. Since m > 5, ws is not zero, so we have a(a® —
20) > 0. By (a), a > 1, thus a® > 2b.

(c¢) By Lemma 4%,
*(@40) (. Proposition (b))

¥ Wy

P (@ — 307 @ng +@2)) (. Corollary p.1.)

= (awio)! = 3(awi )’ (bwiy+ cwin) + (bwi g+ cwig)?

= (a* = 3a®b + b*) wiy + (—3a’c + 2bc) wi gwi1 + P wi )

= (a* — 3a*b + b%) wio + awsy + Pws (.0 Proposition (b))

(o8]

is numerically non-negative (a, 8 € Z[a, b, c]). Since m > 6, wyq is not zero,
so we have a* — 3a%b+ b? > 0, that is, either a? > <%5) bora®< (—3*2‘/5) b.

But a? < (%) b < b is impossible by (a). Hence, we have

02> (3 +2\/5> b > 2.

(d) By Proposition (b), the coefficient of wy ¢ in cx(N) with respect
to the basis () is equal to ay. By Lemma , cach cx(N) is numerically
non-negative, thus oy > 0 for all 0 < k£ < 2n — 2m. L]

3.4.2 Refined equation in w; ;

Solving the refined equation () in one variable w1, each §; with 1 <
k < mn —m is a polynomial in only one variable ¢. Comparing the coefficients
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of wf, in both sides of () for a suitable power k, we obtain a numerical

condition on c.

Proposition 3.4.5. Form <n < 3"‘2—’6, we have ¢ > 1.

Proof. We complete the proof by showing that the following two cases are

impossible:
Case 1. ¢ < —1; Case 2. ¢ = 0.

Case 1. Suppose that ¢ < —1. By (), we have

(Z Bar wfl) (14+4cwy)
k=0

=(1+cw)"(I+w1) "(1+4wa),

(3.4.1)

which is satisfied in Z[M,l]/(wluf%m/%*l). Since 2(n —m+2) < m—2,

we can compare the coefficient of w{'7"** in both sides of (B.4.1). Thus

we have

— k n—m+1—k
n—m-+2
_ ny\(n+l-Fk k n—m-+2
- () (e ) et
k=0
n—m+1 n n k
4 - _\k _ 1)l
DS ()8 coren

After dividing both sides of () by (_1)"—m+1,

R (G -E (OCR)e

41

)
. 4n,m+1 (n> (m +(n—m+1—-k)— 1) o (_pynmiik
)

(3.4.2)

(3.4.3)
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Since

(Z) (:z_—lD - k;!(nni ) (m—1)! ((2:2;1 — k)
n!  (n—m+1)

(m—Dn—m+1! kE(n—m+1-k)!

(5T

the left hand side of () is equal to
n—m+1
n n—m+1 i
LHS) =4 —
wms = 3, ) (e

n
=4 1 — )" ™,
(., )a-9
Similarly, since

n\(n+1-k\ n! ‘ (n+1—k)!
(k)( m—1 )_k!(n—k)! (m—1ln—m+2—k)
(n—|—1) m-—m+2)l  n+tl-k
(m Din—m+2) kl(n—m+2—k! n+1

T
)T
()

for 0 < k <n —m+ 2, the right hand side of () satisfies

(3.4.4)

v

n
m— 2

(RHS) > ( )(1 — )t (3.4.5)
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Applying () and (|34d) to (|3431), since 1 — ¢ > 0, we have

o) 54

So(l—c¢)(m—1) < 4(n—m+2), that is,

dn> (b —c)m+c—09.
But since 4n < 6m — 12, we have
(c+1)m>c+3. (3.4.6)

If c = —1, then () is impossible clearly. If ¢ < —2, then ¢+ 1 < —1,

so we have

§c+3:1+ 2
c+1 c+1

by (), which implies a contradiction.

Case 2. Suppose that ¢ = 0. Putting ¢ = 0 into (), we have

<1

3
3

BQk wfl = (1 + WLl)_m(]. + 4&}171), (347)
0

B
Il

which is satisfied in Z[ws 1] (wlL(;n—2)/ 2”1) . Comparing the coefficient of

wi7™" in both sides of (

0= (m+(n—m+i)—1)(_1)n_m+i

n—m-+1

_ r— 1) =1 .
+4 (m+(n m_'_Z ) )(_1)n—m+z—1
n—m-+i—1

e () ()

_ (—qyrme n+i—1 1_4.n—m+i .
m—1 n+1i—1

) for i = 1 and 2, we have
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So we obtain
In=4m—-—3i—1

for ¢ = 1 and 2, which implies a contradiction.

Hence, we conclude that ¢ > 1. O

3.4.3 Refined equation in w;

The refined equation () in one variable w; o is harder than the refined
i

equation ( ) in wy 1 to solve. To overcome this difficulty, using Note ,
the previous inequalities together with Lemma , we obtain a lower bound
of agy_op (Lemma ) This bound has a key role to solve ()

Lemma 3.4.6 ([Ful98, Example 14.7.11] (or [HP52, page 364])). In Gr(2,m),

2m—4—i—j (2m—4 —i—j)li—j+1)!
Wi,j W10 = Y Y
(m—=2—-0!(m-—1-j)!

form—2>1>75>0.

Lemma 3.4.7. Let m < n < 37“2—_6 and «a,_om be the integer given as in

(.313). Then

S (2m — 4)!
Qop—om = :
= = 2)(m — 1))
Proof. By Note , Con—am(N) = €(NR). S0 ooy, is equal to the coefficient

2n—2m
of wily ™™ in

bn—2

€(N]R) = Z dz (;0* (QQn—Qm—i,i)
1=0

where d; := X - @0p_2_ 2m—n—2+i, by Proposition . Here, d; > 0 for all
0 <7 < n —m because each d; is the intersection number of two subvarieties
of Gr(2,n).

Let I'; be the coefficient of wf?})_%”_% in ¢*(Wan—2m—2i0) With respect to the
basis () Then the coefficient of wih ™ in

O (Won—2m—ii) = ¢ (Dan—2m—2i0) ¢ (@11) (.- Corollary P13)

= " (@an-2m-2:0) (bwi g+ cwi)’
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with respect to () is equal to I'; b'. By Proposition El/ (b), I'; is equal
to the coefficient of way—2m—2i0 N ©*(W2n—2m—2:0) With respect to (El lj), and

by Lemma it is non-negative for all 0 < ¢ <n —m. So we have

Qop—2m = iﬂdi L v’
i=0

- (3.4.8)
>dpm Do 0™ (0.0 b > 0 by Proposition (a))

=dp_m U"™™ (. Since ¢*(@o0) = wo.0, Tnem = 1).
Applying
nm = @ (@7 %) = (bwig+ cwin)™?
_ «— (m - 2) pm—2-i i winoz—4—2i Wzi,1
S bR (b e WP 30
by Proposition (a), and Lemma )
(2m — 4)! ! b2 (- Lemma )

T m—-2)(m—1)

to (), we obtain the desired inequality. O

Now, we ready to prove an inequality in a and b better than that of Propo-
sition (c). Before proving this, we use the following notation.

Notation 3.4.8. Let R be a ring Z or R. Identifying R[x]/(xk) with the R-
module which is generated by a basis {1,x, 2%, -+, 2571}, express an element
in R[z]/(z*) uniquely as a linear combination of 1, z,2?, - - 2*~! with integral
coefficients. Denote by f(z) =< g(z) in R[z]/(z*) if the coefficient of z in
g(x) — f(x) is non-negative for all 0 <7 < k.

3Im—6

Proposition 3.4.9. Form <n < =%

, let a and b be the integers which are
given as in () Then a* > 4b.

Proof. Suppose that a?> < 4b. By Proposition (a), a > 1, so we have
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b > 1. Then by (), we have

Z apwly X (1+aw g+ bwiy)"

)

- (3.4.9)
‘_< (1 -+ \/I_?CUL())%Z

in Z[wLo]/( m-1). Comparing the coefficient of wif ™ in both sides of

(ad), |

Qonom < <2n2_"2m>bn—m - (22:) b, (3.4.10)
By Lemma and (),
(2m — 4)' n—2 2n n—m
m—2im—11 "= (2m> o
so we have
I 2n\ (m—2)!(m—1)!
s (Qm)  2m—4)
m — m —2)!/(m —1)!
- (3 2m6> : <22(_4)! P s msam g
_ (Bm —6)3m—17)---(2m+1) (m—2)(m—3)(m —4) (m—5)
(2m —4)2m —5)---(m+3) (m+2)(m+1)m
< 2m70 . (m —5).
(3.4.11)

Hence, we conclude that b < 2.

Since m < 3"12—_6, we have m > 6. By Proposition (c), 2b < a* < 4b,
so the only possible pair (a,b) is (2,1). Putting (a,b) = (2, 1) into (5.3.14), we
have

2n—2m

> apwly = (14 wie)™ (1 = wip) (3.4.12)
k=0

which is satisfied in Z[wl,o]/(wﬁ;l). Since 2n — 2m + 1 < m — 2, we can

46



CHAPTER 3. EMBEDDINGS OF Gr(2,m) INTO Gr(2,n)

compare the coefficient of wffffzmﬂ in both sides of () Then we have
0— 2n—m+1 2n—m+1
\2n-2m+1 2n — 2m

B 2n—m+1 1 2n —2m + 1
C\2n—2m—+1 m+ 1 '

So 22=2mtl — 1 that is, 3m = 2n (< 3m — 6) which implies a contradiction.

m+1

Hence, we conclude that a? > 4b. O
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Chapter 4

Characterization of linear
embeddings

Recall h\/[ain Theoreml in Chapter m, which characterizes linear embeddings of
Gr(2,m) into Gr(2,n).

Main Theorem. Let p: Gr(2,m) — Gr(2,n) be a holomorphic embedding.

(a) If9 <m and n < 325 then ¢ is linear.

(b) If 4 < m and n = m + 1, then either ¢ is linear, or m = 4 and ¢ is a
composition of a linear embedding of Gr(2,4) into Gr(2,5) with a dual
map ¢: Gr(2,4) — Gr(2,4).

Combining lMain T heoreml and Proposition , we have the following

corollary:

Corollary 4.0.1. Let ¢: Gr(2,m) — Gr(2,n) be a holomorphic embedding.

Either if 9 < m and n < 3”‘2_6, orif 4 <m and n =m+ 1, then the image of

¢ equals Gr(2, H) for some m-dimensional subspace H of C™.

Denote each assumption on lMain Theoreml as follows:

3Im—6

e General case : 9 <m and n < “%=;

e Special case : 4 <m and n=m + 1.
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CHAPTER 4. CHARACTERIZATION OF LINEAR EMBEDDINGS

The chapter consists of two sections. In Section @, we prove

for general case (Theorem 'EI) by applying W. Barth and A. Van
de Ven’s results (Proposition P.2.3 and w) to E = ¢*(E(2,n)). The up-
per bound of a (Proposition (b)) makes it possible. In Section @, we
prove IMain Theorem| for special case (Theorem ) by comparing co(N) with

e(Ng) directly.

4.1 General case

3m—6

In this section, we prove IMain Theorem| for the case when 9 < m and n < =%

Theorem 4.1.1. If9 <m andn < 3"12_6, then any embedding ¢: Gr(2,m) —
Gr(2,n) is linear.

Before proving Theorem 4.1.1, we first prove the following inequalities in
a and b:

Proposition 4.1.2. Under the same assumption with Theorem , we have
the following inequalities:

(a) Va® —4b < 22

(b) a < =4,
Proof. (a) First, by Proposition , the expression v/a? — 4b is well defined.
By (B.3.14), we have

2n—2m
( > wa> (1+wio)™ (14 (4b— @®) wiy)
k=0
= (1 + a Wi o + bWiO)n(]_ — wLo)

which is satisfied in Z[wi ] / (w™ ). For convenience, let

m—2 2n—2m
k. E i m—1,
Ak wLO = (073 wl,O (1 + UJLO) )
k=0 1=0
m—2
k. 2 \n
Brwiy=(1+awp+bwy,)
k=0
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which are satisfied in Z[wl,o]/(w%_l). Then we have
Ak+2 + (4b - CL2)Ak = B]H_g — Bk—i—l
for all 0 < k < m — 4. In particular, when k = 2n — 2m + 2 (< m — 4),
Aon—omia + (4b — a*) Asn_a2m+2 = Ban—am+a — Bon_amys. (4.1.1)

Suppose that v/a? —4b > mT_‘l. We derive a contradiction by comparing
the signs of both sides of ()

e Since A;, = Z?Zggm o (’Z:Z.l) for all £ > 2n — 2m, we have

(LHS) = Agp—omta + (4 — CL2) Aoy —omq2

2n—2m m—1 m—1
= Zai | — (a® — 4b) ,
, 2n—2m+4 —1 2n—2m—+2—1

1=0
2n—2m
m—1
= i - C;
; “ (2n—2m+2—i)

. (—2n43m—3414)(—2n+3m—4+i) 2 .
where C; := T Ty oo e wali (a® — 4b). Since

(m —3)(m —4) 9
(m—4)(—m+7) N
< % <0 (. m>9)

for all 0 <7 < 2n — 2m and since a; > 0 by Proposition (d), the
left hand side of () is negative.
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e Since By, = zi:{fj (") (7)) ak=% bi, we have

(RHS) :Ban2m+4 - BZn72m+3

n—m-+1 n
Z E < . )a2n2m+321 bl'
1

=0

n—1 n—1
a/_
2n —2m+4 — 2 2n—2m+3 — 21

n—m-+1 .
_ ) 2n—2mt3-2i pi n—1 . D,
2 <z)a (2n—2m+4—2i> :

1=0

_ 2n—2m+44-—24
—n+2m—3+i°

—-n—+2m-—3
>m—4_(3m—6)—2m+4 .._n<3m—6
-3 —3m=0 4 2m -3 -2
m—4 2m-—4

3 m
_5\2 _
(m —5) 13>
3m

where D, := a Since

0 (. m>9)

for all 0 <7 <n—m+1 and since a,b > 0 by Proposition (a), the
right hand side of () is positive.

As a result, the equality () does not hold, thus this implies a contra-

diction. Hence, va? — 4b < mT_ZL.
(b) Suppose that a > ™=4. Then by (a),

a? —4b < (m%f)z < (%‘)2 (4.1.2)
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CHAPTER 4. CHARACTERIZATION OF LINEAR EMBEDDINGS

Regard () as an equation over R. By () and (), we have

2n—2m 2m—4
Z ay, Wlf,o = (14 awp+bwiy)" { Z ( Vva? —4bwi g
k=0 i=0

a an (2220 /9 ‘
= (1 + §w1,0> {Z (E UJ1,0> }

=0

)

(4.1.3)

which is satisfied in Rlwy o] / (wi1). Comparing the coefficients of wi’y " in

both sides of (),

By Lemma , we have

(2m — 4)!
(m—2)(m — 1)1

52

(3
7 3Im—6 2m—4

m—2
bn—2 < E 7_3 a2n—2m‘
- 32\96

1,0

(4.1.4)

&
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By (), b > a?, so the left hand side of () satisfies

(2m — 4)! 2 _ (2m —4)2m —5)---m
(m—2m -1~ (m—2)(m—23)---2

n—2
> 2m73 (E) a2n74
(3m—10)/2
3m — 6
2n—4 . <
() (n=25)
) —6)/2

. bn—2

thus,

m—2
oy [ B0 C 8 "
3. 62 32 \ 96

So 55/;2’ < 56, that is, a® < 49\7[ ~ 34.5137, thus a < 5.

Since 4b < a® < %b, the only possible pairs (a, b) are

(3,2);  (4,3); (5,4); (5,5); (5,6).

However they are all impossible by Lemma which is provided later.
Hence, a < msz; as desired. O]

Lemma 4.1.3. If m > 7, then 12 divides ab (a* — b+ 3).

Proof. By [Tan74, Lemma 4.10], if £ > 5 and & is a vector bundle on P* of
rank 2 with
co(&)=1+aH+BH?

where H is a hyperplane of P*, then o (a? — 3+ 3) is divisible by 12. In our
case, Gr(2,m) contains a Schubert variety Y ~ P2 of type (m — 2,0) and
the total Chern class of the restriction of £ to Y is

¢(E|l,)=1+aH+bH"

53
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CHAPTER 4. CHARACTERIZATION OF LINEAR EMBEDDINGS

Since m — 2 > 5, ab (a® — b+ 3) is divisible by 12. O
Lemma 4.1.4. The following pairs (a,b) of integers are impossible:

(a) (3,2),(4,3) and (5,4) for m <n < 324,

(b) (5,5) for 7<m <mn;

(c) (5,6) form <n < 3m=2

Proof. (a) In this case, a = b+ 1 with b = 2,3 or 4, so 1 + awy o + bwio =
(14 wio)(1 4 bwy) and a® — 4b = (b — 1)%. By (B.3.14), we have

2n—2m
( > a wiio) (1= (b= 1)) i)
= (1 + wLo)nierl(l + bww)”(l — wl’0>

which is satisfied in Z[w1 0] / (w™1). Comparing the coefficient of wi’>"*+?

in both sides of (),

n—m-+1
_ n—m+1 n p2n—2m+2—k
ar k 2n —2m +2 — k
o n an—2m+1—k <416>
2n —2m+1—k

n—m+1
_ n—m+1 n b2nf2m+1fk: . Ak:
ar k on —2m+2 — k

where Ay 1= b — 2n=2mt2-k By Proposition (d), the left hand side of

—n+2m—1+k "

o4
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(B.1.6) is non-positive. On the other hand, since

A, > b 2n —2m + 2
—n—+2m—1
(3m —4) —2m + 2 ( 3m—4>
>b——5— o n<
—( 5 )+2m—1 2
B 2m — 4
- m+ 2

>0 (- b=2,3o0r4)

for 0 < k <n —m+ 1, the right hand side of () is positive which implies
a contradiction.

(b) Since ab (a®> —b+3) = 25- (25 — 5+ 3) = 25 - 23 is not divisible by 12,
this case is impossible by Lemma .

(c) Since a* — 4b = 1, we have by (),

2n—2m

Z ay, w’fyo < (145w o+ 6wio)”
k=0

=< {1+ > w .
- 2 1,0
2n—2m :

which is satisfied in Z[wi 0] / (w{’fo— ). Comparing the coefficient of wilp in

both sides of (4.1.7),

_ ( m ) (5>2n—2m
Qon—o2m > a
2n — 2 2
noem (4.1.8)

SHIONON

(4.1.7)
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Applying Lemma E4/ to (lllg),

(%>n_2 S(ZQZL) A (_22‘(_7%)_; 1)! (%) o
<26 . (m — 5) (2) "

5

(. The same argument with ())

m—5/8\"?
16 \25 ‘

(4.1.9)

But since n < 3’"—2_6,

E = EET

thus by (), we have %ﬁ = (%)3/ < = which implies a contradiction. [

Proof of Theorem . Let Y ~ P™=2 be a Schubert variety of Gr(2,m)
of type (m — 2,0). Then the total Chern class of the restriction of E :=

©*(E(2,n)) to Y is
¢(E|,) =1+ aH + bH?

where H is a hyperplane of Y. For any projective line ¢ in Y,
<E|Y)|€ = E}g ~ Og(al) D O[(ag)

for some integers ay, as with a; + as = a. Since (E}Y) ‘ , is generated by global
sections by Lemma , a; and ay are non-negative. So we have

a—0 cm= 4

2 4
by Proposition (b) (For the definition of B(E'|Y)7 see ()) Hence,
E}Y is decomposable by Proposition . Since Y ~ P™2 is arbitrary, F is

either decomposable or isomorphic to F(2,m) ® L for some line bundle L on
Gr(2,m) by Proposition .

B(8],) <
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Case 1. E~FE(2,m)®L : Let ¢(L) =1+ rwyo with r € Z. Then

((B2,m)®L) =14 (2r+ 1w+ r(r+1)wiy+w,,

that is,

a=2r+1; b=r(r+1); c=1 (4.1.10)
with r > 0 by Proposition (a). After putting () into (),
we have

which is satisfied in Z[wi o] (Wi 1). Comparing the coefficients of

wih #™ in both sides of (#.1.11)),

2n — 2m

2n 2n
Qonom < ( )(r F 1) (Qm) (r+1)2" (4.1.12)
By Lemma , we have

< 2™ 0. (m —5)(r + 1) 2™
(. The same argument with ())

(4.1.13)

After dividing both sides of () by (r + 1)2n=2m

m—2>5

n—2 —n+2m—2
1 <
" (r 4+ 1) T

LQm2 (4.1.14)
Since —n +2m — 2 > —(%)—i—Qm—Z:mT” > 0, we have
p2med <2 (p g 1) I (4.1.15)

Combining (lillé-ll) and (lzl.l.la), r? <2, thus, r =0 or 1.
If r =1, then (a,b) = (3,2) by (), which is impossible by Lemma
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(a). Hence, r = 0.

Case 2. £ >~ L1 @ Ly : Let ¢(Ly1) = 1+ rywip and ¢(Lg) = 1 + row; o with
r1,T2 € Z. Then

C<L1 D L2> =1+ (7’1 + 7’2) w1,0 + 1179 wio,

that is,
a =11+ b=riry; c=0.

However by Proposition , ¢ = 0 cannot be happened.

As aresult, ' ~ E(2,m)® L where L is the trivial line bundle on Gr(2,m)
and thus (aE bf ci = (1,0,1). Hence, ¢: Gr(2,m) — Gr(2,n) is linear by

Proposition O]

4.2 Special case

In this section, we prove IMain Theorem| for the case when 4 < mand n = m+1.

Theorem 4.2.1. Let ¢: Gr(2,m) — Gr(2,m+ 1) be an embedding.
(a) If m =4, then any embedding ¢ is either linear or twisted linear.

(b) If m > 5, then any embedding ¢ is linear.

3m

Since 9 < m = n — 1 satisfies the conditions 9 < m and n <
result of Theorem for that case is already verified and we do not have
to prove it again. HOWGVGI, we prove Theorem for whole cases without

using any results in Section

When m is too small, we cannot apply some results in Section @ and @
But since rank(/N) = 2 is small, we can compute the top Chern class of N and
the Euler class of Ng by hand, and construct explicit Diophantine equations
in a,b and c.
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Proposition 4.2.2. Let m > 4.

(a) The following two equations hold:

(m;1> (@a—12+a2—1+b(m—23)=(a®—b)dy+bdy (4.2.1)

and
c(m—=3)—m+4=c(d —dy) (4.2.2)
where dy == ©* (Om—1,m—3) and dy = " (Oym—2,m—2).

(b) If m > 5, then ¢ divides m — 4. Moreover, 2b+ 2c —a*> >0 and ¢ > 1.

Proof. (a) By Note , c2(N) = e(Ng), and we compute e(Ng) and co(N)
in Proposition m and Lemma , respectively. Comparing the coefficient
of w?, (resp. wyy) in co(N) with that in e(Ng), we obtain the desired equation
(£2.1) (vesp. <>>.

(b) If m > 5, then ¢ divides m — 4 by () and in particular, ¢ # 0.
After dividing both sides of () by ¢,

—4
m—3—m

c

— d1 - do

= {(2b—a®)wi )+ 2cwii}(bwiy+ cwry)™

= {(2b—a?) wao + (2b+ 2¢ — a?) wia} (bwag+ (b+c) wljl)m—?’ (4.2.3)

m—3

-y (m n 3) b (b-+ ey

=0

{(Qb —a?) w%l wﬁ_?’_i + (2b + 2¢ — a?) W;,o wﬁ_z_i} )
Since m—3— "4 > m—3— "1 =1, the right hand side of () is positive.
Furthermore, since b, b+ ¢, a?> —2b > 0 by Proposition (a), (b), and since

i+1, m—3—i ) m—2—i
Wop Wiy~ WygWwi > 0, we have

2b+2¢ —a® > 0.

Hence, ¢ > 1 (a* — 2b) > 0 by Proposition (b) again. O
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Proof of Theorem . (a) Note that since wiy =2 and wi w1y = 1 = wi,
in H3(Gr(2,4),Z) ~Z,

do="b(a®>—b)+ (b+c)(a®—b—c);

dy = b+ (b+c)”. (4.24)
By ('ﬁl) and (M), we have
10(a—1)*4+a®>—1+b=(a*>—b)dy+bd; (4.2.5)
and
c=c(dy — dp). (4.2.6)
Case 1. ¢#0: By () and (4.2.6),
1l=dy —d
= b1(2b —Oaz) + (b +¢) (2b 4 2¢ — a?). (4.27)
Applying () to (), we have
11a* —20a+ 9 +b = a*dy + b (dy — dy) (428)

:a2d0+b.

So a divides 9 and a? divides —20a + 9, thus, a = 1. Furthermore, in
this case,
0=dy=—-b"+2b+c— (b+c)

by putting @ = 1 into the first equation in (4.2.4), that is,
b(b—=1)=(b+c){l—(b+c)}. (4.2.9)
Since the right hand side of () is less than or equal to 1, b= 0 or 1.

The only possible pairs (b, ¢) satisfying (4.2.7) and ) are (0,1) and
(1,—1). Hence, (a,b,c) =(1,0,1) or (1,1,—1).

Case 2. ¢ =0 : Applying (|424l) to (|42ﬂ), we have

10(a—1)+a*>—14+b=2b{(a® —b)*+b°}. (4.2.10)
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Suppose that b > 0. After dividing both sides of () by b,
a’ 2 a?
209 | ——1 1y < 11-—+1

207 12 — (4b* + 11)t +4b* — 1 <0 (4.2.11)
where ¢ := % The discriminant of () is
D = (46 + 11)% — 4-2b* - (46> — 1)

= —16b* + 96b* + 121
= —16(b* — 3)* + 265.

that is,

Ifb> 3, then D <0, so () is impossible. For b = 1 or 2, we can
show directly that (@.2.10 does not have any integral solution a. Hence,
b=0(=c),s0a=1 by (4.2.10).

By Proposition , if (a,b,c) = (1,0,1), then ¢ is linear and if (a, b, c) =
(1,1,—1), then ¢ is twisted linear. To complete the proof, it suffices to show
that the pair (a,b,¢) = (1,0,0) is impossible. In this case, by Lemma ,
we have

C(N) =1+ W10 = C(E) (4212)
After dividing both sides of (|33&1) by (|4.2.1j), we have

(1 — Q)io)(]. + w10 + w1’1)4 = (1 + W1’0)4(1 - wio + 4(4}1’1). (4213)

Comparing the cohomology classes of degree 6 in (),

4 4 4 4 4
(3) U.Jio + (2) . 2(4.)1,0 w11 — (1) wio = (3) wig—i— (1) W1,0 (—wio+4w1,1),

and from this, we have
(42"‘12-42)0&2’1 :{42+4(—2+4>} W21

because w} ; = 2wy ;. Hence, this implies a contradiction.
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(b) By Proposition (b), a*> — b > b, so we have

(m2+1>(a—1>2+a2—1+b<m‘3)

> b(do+dy) (" Equation (#.2.1))
= a’bwiy(bwig+ cwy)"
> a? bt (4.2.14)
(b, ¢ wiﬂ?""% wi; >0 by Proposition [544-11 (a),
(b) and Lemma Béld)
<2m — 4)' 2 pm—2 .. A
(m —2)1(m — 1] ~a”b (. Lemma )

The left hand side of () is less than
A )
2
because a* > b by Proposition (a). After dividing both sides of ()

by a?,
m+1 (2m — 4)! s
( 2 )*m = = im -1 "

thus we have

h— Oorl, ifm=50r6
0, iftm>7

Assume that b = 1 with m =5 or 6. By Proposition (b) and Propo-
sition (b),

2 =92 < a® < 264+2c = 2+ 2¢

and ¢ (> 1) divides m — 4. The only possible pair (m,a,c) satisfying these
properties is (6,2,2). Apply (m,a,b,c) = (6,2,1,2) to (), then

7 8!
7 <2>—|—6 T 56

which implies a contradiction.
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Assume that b = 0 with m > 5. Then by (),

c(m—=3)—m+4=c(—a*wiy+2cwy) (cwi)™ >
= (2c — a?) ™2

> @2 (.- Proposition (b)),

thus ¢ = 1. By Proposition (b), 2—a? >0, s0 a=1.

Hence, (a,b,c¢) = (1,0,1) for m > 5, thus any embedding ¢: Gr(2,m) —

Gr(2,m + 1) is linear by Proposition .
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