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Abstract

Embeddings between
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In this thesis, we characterize the linearity of holomorphic embeddings of the
complex Grassmannian Gr(2,m) into the complex Grassmannian Gr(2, n).
We study such embeddings by finding all possible total Chern classes of the
pullback bundles E of the dual bundles of the universal bundles on Gr(2, n)

under these embeddings. We first take a Z-module basis of the cohomology
ring of Gr(2,m) which is useful for further works, and express every coho-
mology classes as a linear combination with respect to this basis. For each
holomorphic embedding of Gr(2,m) into Gr(2, n), the total Chern class of E
is written uniquely as a linear combination of basis elements with three inte-
gral coefficients, the linearity of the embedding is determined completely by
these integers. We obtain several conditions on the three integers, including
a upper bound of the specific integer, by solving 3-variate Diophantine equa-
tions which are constructed from the Chern classes and the Euler class of the
normal bundle induced by the embedding, together with a criterion of the nu-
merical non-negativity of Chern classes of holomorphic vector bundles. This
upper bound enables us to apply W. Barth and A. Van de Ven’s results to E,
and we find conditions on m and n for which any holomorphic embedding of
Gr(2,m) into Gr(2, n) is linear.
Key words: Complex Grassmannians, Holomorphic embeddings, Schubert
cycles, Chern classes
Student Number: 2009-22883
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Chapter 1

Introduction

Let d, m be positive integers with d < m. For an m-dimensional complex
vector space V , a complex Grassmannian Gr(d, V ) is the space parameterizing
all d-dimensional subspaces of V . Since the description of Gr(d, V ) is concrete
and explicit, and concerns matrices and vector spaces over the complex field
C, many practical and computable techniques to study it have been developed.
There are algebraic varieties which are generalized from Gr(d, V ), for instance,
an orthogonal Grassmannian Grq(d, V ), a symplectic Grassmannian Grω(d, V )

and a flag variety F (d1, d2, · · · , dk−1,m). In addition, after replacing C by a
field k, it is possible to construct another Grassmannian Grk(d, V ) and its
structure depends substantially on the base field k. For this reason, many
mathematicians have been interested in complex Grassmannians with their
generalizations, and have studied them from various perspectives and purposes.

A complex Grassmannian is a smooth projective variety, and a fundamen-
tal and significant object of algebraic geometry. Many features of complex
Grassmannians, including homology and the cohomology groups, automor-
phism groups, holomorphic embedding of them into complex projective spaces
and defining ideals, are well-known. In particular, a complex Grassmannian
Gr(d, V ) admits a cell decomposition. The closure of each cell is called a
Schubert variety and Schubert varieties play an important role in understand-
ing Gr(d, V ). Using Poincaré duality, the homology class of each Schubert
variety corresponds to the cohomology class, which is called a Schubert cycle,
and Schubert cycles on Gr(d, V ) can be classified by the d-tuples of non-
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CHAPTER 1. INTRODUCTION

negative integers satisfying some inequality. The set of all Schubert cycles
forms a Z-module basis of the cohomology ring of Gr(d, V ), and the multi-
plications of Schubert cycles are determined by a combinatorial rule, namely
Pieri’s formula.

There are two canonical holomorphic vector bundles on Gr(d, V ), the uni-
versal bundle E(d, V ) and the universal quotient bundle Q(d, V ), which are
defined in natural ways: the fiber of E(d, V ) at x ∈ Gr(d, V ) is given by

the d-dimensional subspace Lx of V which corresponds to x,

and the fiber of Q(d, V ) at x is given by the quotient space V /Lx . Every
Chern class of E(d, V ) and Q(d, V ) is a Schubert cycle (up to sign) and the
cohomology ring of Gr(d, V ) is generated by the set of all Chern classes of
E(d, V ) as a ring. Furthermore, the tangent bundle of Gr(d, V ) is isomorphic
to Ě(d, V )⊗Q(d, V ) where Ě(d, V ) is the dual bundle of E(d, V ). When V =

Cm, we denote Gr(d, V ), E(d, V ) and Q(d, V ) simply by Gr(d,m), E(d,m)

and Q(d,m), respectively.
In this thesis, we discuss holomorphic embeddings between complex Grass-

mannians. For any d1 < m and d2 < n with d1 ≤ d2 and m − d1 ≤ n − d2,
there is a natural holomorphic embedding of Gr(d1,m) into Gr(d2, n):

1 Let f : Cm ↪→ Cn be an injective linear map and let W be a (d2 − d1)-
dimensional subspace of Cn satisfying W ∩ f(Cm) = 0;

2 the pair (f,W ) induces a holomorphic embedding f̃W : Gr(d1,m) ↪→
Gr(d2, n) which is given by

Lf̃W (x) := Lf(x) ⊕W, x ∈ Gr(d1,m).

We call such an embedding f̃W to be linear. Consider the following question:

Question. For d1 < m and d2 < n with d1 ≤ d2 and m− d1 ≤ n− d2, what is
a sufficient condition for the linearity of holomorphic embeddings of Gr(d1,m)

into Gr(d2, n)? More generally, how can we classify such embeddings?

The most fundamental answer for Question is about the case when d1 =

d2 (=: d) and m = n. In this case, a holomorphic embedding φ : Gr(d,m) ↪→

2



CHAPTER 1. INTRODUCTION

Gr(d,m) is an automorphism of Gr(d,m). To describe a non-linear automor-
phism of Gr(d,m), fix a basis B := {e1, · · · , em} of Cm and let {e∗1, · · · e∗m} be
the dual basis of B. The choice of B induces a linear isomorphism ι : (Cm)∗ →
Cm which is determined by ι(e∗j) = ej for all 1 ≤ j ≤ m. Define a map
ϕ : Gr(d,m) → Gr(m− d,m) by

Lϕ(x) := ι
(
L⊥
x

)
, x ∈ Gr(d,m) (1.0.1)

where L⊥
x ⊂ (Cm)∗ is the annihilator of Lx. We call such a map ϕ a dual

map. In particular, when m = 2d, a dual map ϕ : Gr(d, 2d) → Gr(d, 2d) is
an automorphism. In [Cho49], W.-L. Chow classified all automorphisms of
Gr(d,m) and showed that every automorphism of Gr(d,m) is linear except
when m = 2d.

Theorem 1.0.1 ([Cho49, Theorem XI and XV]). The automorphism group of
Gr(d,m) is

Aut(Gr(d,m)) =


PGL(m,C), if m ̸= 2d

PGL(2d,C) ⊔ (ϕ ◦ PGL(2d,C))
= PGL(2d,C) ⊔ (PGL(2d,C) ◦ ϕ)

, if m = 2d

where ϕ : Gr(d, 2d) → Gr(d, 2d) is a dual map.

In [Mok08], N. Mok considered holomorphic embeddings φ : Gr(d1,m) ↪→
Gr(d2, n) with 2 ≤ d1 ≤ d2 and 2 ≤ m− d1 ≤ n− d2, and obtained geometric
condition on φ for the linearity. For x ∈ Gr(d1,m), we regard each tangent vec-
tor of Gr(d1,m) at x as an element of Ě(d1,m)x⊗Q(d1,m)x where Ex denotes
the fiber of E at x. We call a tangent vector of Gr(d1,m) at x to be decompos-
able if it can be written as v ⊗ w for some v ∈ Ě(d1,m)x and w ∈ Q(d1,m)x.
N. Mok characterized linear embeddings φ : Gr(d1,m) ↪→ Gr(d2, n) when the
differential dφ of φ preserves the decomposability of tangent vectors.

Theorem 1.0.2 ([Mok08, Proposition 1, 3 and 4]). Let φ : Gr(d1,m) ↪→
Gr(d2, n) be a holomorphic embedding with 2 ≤ d1 ≤ d2 and 2 ≤ m − d1 ≤
n − d2. Assume that dφ transforms decomposable tangent vectors into de-
composable tangent vectors. Then either φ is linear up to automorphisms
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CHAPTER 1. INTRODUCTION

of Gr(d1,m) or Gr(d2, n), or the image of φ lies on some projective space
in Gr(d2, n) (Here, Y is a projective space in Gr(d2, n) if and only if i(Y )

is a projective space in P(
n
d2
)−1 where i : Gr(d2, n) ↪→ P(

n
d2
)−1 is the Plücker

embedding).

Although N. Mok studied holomorphic embeddings between complex
Grassmannians by the pushforward of vector fields, there have been several
approaches to study them by the pullback of vector bundles.

Consider more general situations: holomorphic maps from a compact com-
plex manifold Z into the complex Grassmannian Gr(d, n). When we write
Gr(d, n) = Gr(d,Cn) definitely, the space Γ(Gr(d,Cn), Ě(d,Cn)) of all holo-
morphic global sections of Ě(d,Cn) is naturally identified with (Cn)∗.

Any holomorphic map ψ : Z → Gr(d, n) is determined completely by the
pullback bundle ψ∗(Ě(d, n)) because the fiber of ψ∗(Ě(d, n)) at z ∈ Z is
equal to (Lψ(z))

∗ ⊂ (Cn)∗ = Γ(Gr(d, n), Ě(d, n)). Let E := ψ∗(Ě(d, n)) and
π : (Cn)∗ ⊗ OZ → E be the pullback of the canonical surjective vector mor-
phism (Cn)∗⊗OGr(d,n) → Ě(d, n) under the holomorphic map ψ, then the pair
(E , π) satisfies that

• E is a holomorphic vector bundle on Z of rank d;
• π : (Cn)∗ ⊗OZ → E is a surjective holomorphic vector morphism.

(1.0.2)
Conversely, assume that a pair (E , π) satisfies (1.0.2). For each z ∈ Z,

π induces a surjective linear map πz : (Cn)∗ → Ez between fibers at z. From
these maps, define a holomorphic map ψ : Z → Gr(d, n) by the composition
of holomorphic maps

Z
π̃→ Gr(n− d, (Cn)∗)

⊥→ Gr(d, (Cn)∗∗) = Gr(d, n) (1.0.3)

where Lπ̃(z) := ker(πz) ⊂ (Cn)∗ and L⊥(y) ⊂ Cn is defined by the annihilator
of Ly ⊂ (Cn)∗. Then we can show that π∗ : Ě → F̌ is an isomorphism and
π∗ : Ě → Cn⊗OZ is a composition of the map F̌ → (Cn)∗⊗OZ with π∗ : Ě →
F̌ . For more details on the correspondence between maps and vector bundles,
see [BT82, Section 23] (in the differential category), [GH94, page 207–209] or
[Huy05, Remark 4.3.21].

The subsequent results are proved from this aspect.
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CHAPTER 1. INTRODUCTION

In [Fed65], S. Feder considered holomorphic embeddings φ : Pm ↪→ Pn and
classified them by means of their degrees. Let OPk(1) be the complex line
bundle which corresponds to a hyperplane H of Pk, then every complex line
bundle on Pk can be expressed as OPk(r) := OPk(1)⊗r for some r ∈ Z up to
isomorphisms. Given a holomorphic map ψ : Pm → Pn, the pullback bundle of
OPn(1) under the map ψ is isomorphic to OPm(r) for a unique integer r, and
we call it the degree of φ. A holomorphic embedding φ is linear if and only if
the degree of φ is 1.

Theorem 1.0.3 ([Fed65, Theorem 1.2, 2.1 and 2.2]).

(a) Let φ : Pm ↪→ Pn be a holomorphic embedding. Then we have

the degree of φ =

{
1, if n < 2m

1 or 2, if n = 2m .

(b) If n > 2m, then for any r > 0, there is a holomorphic embedding Pm ↪→
Pn of degree r.

In [Tan74], H. Tango considered holomorphic embeddings φ : Pn−2 ↪→
Gr(2, n) with n ≥ 4 and classified their images. In this case, φ is linear if and
only if the image of φ equals {x ∈ Gr(2, n) | p ∈ Lx} for some p ∈ Cn. To state
H. Tango’s result, we need to define some subvarieties of Gr(2, n) which are
biholomorphic to Pn−2. For x ∈ Gr(2, n), choose a basis {v1, v2} of Lx ⊂ Cn,
and construct the 2×n matrix of rank 2 whose ith row is the transpose of vi for
i = 1 and 2. The choice of bases of Lx is not unique, but {w1, w2} is a basis of
Lx if and only if the change of basis from {v1, v2} to {w1, w2} is an invertible
2× 2 matrix. So we express an element in Gr(2, n) as the equivalence class of
a 2× n matrix of rank 2 [(

∗ ∗ · · · ∗ ∗
∗ ∗ · · · ∗ ∗

)]
where the equivalence relation is given by

A ∼ B if and only if A = g B for some g ∈ GL(2,C).

5



CHAPTER 1. INTRODUCTION

When n ≥ 4, define subvarieties X0
n−1,1 and X1

n−1,1 of Gr(2, n) by

X0
n−1,1 :=

{[(
1 0 · · · 0 0

0 x0 · · · xn−3 xn−2

)] ∣∣∣ [x] ∈ Pn−2

}
;

X1
n−1,1 :=

{[(
x0 x1 · · · xn−2 0

0 x0 · · · xn−3 xn−2

)] ∣∣∣ [x] ∈ Pn−2

} (1.0.4)

where [x] := [x0 : x1 : · · · : xn−2], and define subvarieties X̌0
3,1 and X̌1

3,1 of
Gr(2, 4) by

X̌0
3,1 := ϕ(X0

3,1);

X̌1
3,1 := ϕ(X1

3,1)
(1.0.5)

where ϕ : Gr(2, 4) → Gr(2, 4) is a dual map. For a quadric hypersurface S of
P4, define a subvariety Xq(S) of Gr(2, 5) by

Xq(S) := {x ∈ Gr(2, 5) | Lx ⊂ C(S)} (1.0.6)

where C(S) ⊂ C5 is the affine cone over S.
Theorem 1.0.4 ([Tan74, Theorem 5.1 and 6.2]). Let φ : Pn−2 ↪→ Gr(2, n) be
a holomorphic embedding and X be the image of φ.

(a) If n = 4, then X ≃ X0
3,1, X

1
3,1, X̌

0
3,1 or X̌1

3,1.

(b) If n = 5, then X ≃ X0
4,1, X

1
4,1 or Xq(S) where S is a fixed non-singular

quadric hypersurface of P4.

(c) If n ≥ 6, then X ≃ X0
n−1,1 or X1

n−1,1.
(Here, X ≃ X0 if and only if X = g X0 for some g ∈ PGL(n,C).)

In [SU06], J. C. Sierra and L. Ugaglia classified all the holomorphic
embeddings φ : Pm ↪→ Gr(2, n) such that the composition of the Plücker em-
bedding Gr(2, n) ↪→ P(

n
2
)−1 with them is given by a linear system of quadrics

in Pm.
Theorem 1.0.5 ([SU06, Theorem 2.12]). Let φ : Pm ↪→ Gr(2, n) be a holo-
morphic embedding satisfying that the line bundle ∧2φ∗(Ě(2, n)) is isomorphic
to OPm(2). Let E := φ∗(Ě(2, n)), then one of the following holds:

6



CHAPTER 1. INTRODUCTION

(a) E ≃ OPm ⊕OPm(2).

(b) E ≃ OPm(1)⊕OPm(1).

(c) m = 3 and E is the kernel of a surjective holomorphic bundle morphism
TP3 → OP3(2), with a resolution of the form:

0 → OP3(−2) →
4⊕

OP3(−1) →
5⊕

OP3 → E → 0.

(c) m = 2 and E has a resolution of the form:

0 → OP2(1) → E → mP ⊗OP2(1) → 0

where mP denotes the ideal sheaf of a point P ∈ P2.

(e) m = 2 and E has a resolution of the form:

0 →
2⊕

OP2(−1) →
4⊕

OP2 → E → 0.

For each holomorphic vector bundle E on Pm classified in Theorem 1.0.5,
the pair (E ,Γ(Pm, E)) induces a holomorphic embedding φ : Pm ↪→ Gr(2, n)

where n := dim(Γ(Pm, E)) uniquely up to linear automorphisms of Gr(2, n)
(For the construction of φ, see (1.0.3) and its next paragraph). We provide
here examples of such embeddings φ.

Example 1.0.6 ([SU06, Example 1.5−1.9 and Remark 3.5]). For each item,
let E be the holomorphic vector bundle on Pm in the same item of Theorem
1.0.5 and V := Γ(Pm, E).

(a) The pair (E , V ) induces a holomorphic embedding φ : Pm ↪→ Gr
(
2,
(
m+2
2

)
+ 1
)

which is given by the family of ruling lines of a cone over the second
Veronese embedding v2(Pm) ⊂ P(

m+2
2
)−1 with vertex a point.

(b) The pair (E , V ) induces a holomorphic embedding φ : Pm ↪→ Gr(2, 2m+

2) which is given by the family of lines joining the corresponding points
on two disjoint Pm’s in Gr(2, 2m + 2). Moreover, the holomorphic em-
bedding φ0 : Pm ↪→ Gr(2,m+ 2) whose image equals X1

m+1,1 given as in

7
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(1.0.4) can be obtained by projecting from φ(Pm) ⊂ Gr(2, 2m + 2) to
Gr(2,m+2) and the pullback bundle φ∗

0(Ě(2,m+2)) is also isomorphic
to E .

(c) The pair (E , V ) induces a holomorphic embedding φ : P3 ↪→ Gr(2, 5)

whose image equals the subvariety Xq(S) given as in (1.0.6).

(d) The pair (E , V ) induces a holomorphic embedding φ : P2 ↪→ Gr(2, 5)

which is a composition of the holomorphic embedding P3 ↪→ Gr(2, 5) in
(c) with a linear embedding P2 ↪→ P3.

(e) The pair (E , V ) induces a holomorphic embedding φ : P2 ↪→ Gr(2, 4)

whose image equals the subvariety X̌1
3,1 given as in (1.0.5).

Similarly, in [Huh11], S. Huh classified all the holomorphic embeddings
Pm ↪→ Gr(2, n) such that the composition of the Plücker embeddingGr(2, n) ↪→
P(

n
2
)−1 with them is given by a linear system of cubics in Pm.
Motivated by the previous results, we consider holomorphic embeddings

φ : Gr(2,m) ↪→ Gr(2, n) and obtain the following numerical conditions on m

and n for the linearity of φ:

Main Theorem. Let φ : Gr(2,m) ↪→ Gr(2, n) be a holomorphic embedding.

(a) If 9 ≤ m and n ≤ 3m−6
2

, then φ is linear.

(b) If 4 ≤ m and n = m + 1, then either φ is linear, or m = 4 and φ is a
composition of a linear holomorphic embedding of Gr(2, 4) into Gr(2, 5)
with a dual map ϕ : Gr(2, 4) → Gr(2, 4).

Main Theorem follows from Theorem 4.1.1 and 4.2.1. We do not have
enough examples of non-linear embeddings φ : Gr(2,m) ↪→ Gr(2, n) except
when m ≥ 3 and n > m(m − 1) (see Example 3.1.3 (b)). Since m(m − 1) is
much greater than both 3m−6

2
and m + 1, the assumptions in Main Theorem

can be improved. To find a sharp condition of m and n for the linearity will
be an interesting problem.

Although S. Feder and H. Tango dealt with different cases, they used simi-
lar numerical techniques. These methods can be applied to every holomorphic
embedding φ : Gr(d1,m) ↪→ Gr(d2, n) if d1, d2 are fixed and d2(n − d2) ≤
2d1(m− d1) as follows:

8
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Step 1. Let E be the pullback bundle of Ě(d2, n) under the embedding φ. If φ
is linear, then E is isomorphic to Ě(d1,m) ⊕ (

⊕d2−d1 OGr(d1,m)), thus
the first Chern class c1(E) of E equals c1(Ě(d1,m)). Conversely, if
c1(E) = c1(Ě(d1,m)), then dφ preserves the decomposability of tangent
vectors (see Remark 3.2.3), thus either φ is linear up to automorphisms
of Gr(d1,m) or Gr(d2, n), or φ embeds Gr(d1,m) into some projective
space in Gr(d2, n) by Theorem 1.0.2. To distinguish the linear case from
the others, we need additional conditions.

Step 2. Choose a Z-module basis B of the cohomology ring of Gr(d1,m). The
total Chern class of E can be written uniquely as a linear combination
of elements in B with coefficients a, b, · · · , c in Z (Here, a is determined
so that c1(E) = a c1(Ě(d1,m))). Let N be the pullback bundle of the
normal bundle of φ(Gr(d1,m)) in Gr(d2, n) under the embedding φ. Us-
ing canonical short exact sequences for E(d1,m) and for E(d2, n), we
construct an equation of the total Chern class of N in terms of the to-
tal Chern classes of E, E(d1,m), their dual bundles and tensor product
bundles. Thus each Chern class of N can be written as a linear com-
bination of elements in B with coefficients in the 3-variate polynomial
ring Z[a, b, c] over Z. The Euler class of NR, which is the real vector
bundle corresponding to N , equals the pullback bundle of the Poincaré
dual to the homology class of φ(Gr(d1,m)) under the embedding φ. So
we also express the Euler class of NR as a linear combination of elements
in B with coefficients in Z[a, b, c]. By definitions of Chern classes, the
top Chern class of N equals the Euler class of NR, and the kth Chern
class of N equals 0 if k > rank(N). Since a, b, · · · , c are integers, these
equations are Diophantine equations (If rank(N) > dim(Gr(d1,m)) or,
equivalently, d2(n− d2) > 2d1(m− d1), then we cannot obtain any equa-
tion).

Step 3. In general, it is hard to solve these kinds of equations. To overcome this
difficulty, we need additional conditions on a, b, · · · c, such as inequalities
in a, b and c. Applying a criterion of the numerical non-negativity of
Chern classes of holomorphic vector bundles to suitable holomorphic
vector bundles on Gr(d1,m), we obtain some inequalities in a, b, · · · , c.

9
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To obtain other conditions, we have to look for a useful method case by
case.

In this way, we can think of the problem on the classification of holomorphic
embeddings between complex Grassmannians as the problem on solving the
obtained Diophantine equations and inequalities. We prove Main Theorem by
applying the above numerical techniques together with further results to our
case.

The thesis consists of four chapters.
In Chapter 2, we introduce backgrounds about complex Grassmannians

Gr(d,m), such as Schubert cycles, the universal and the universal quotient
bundles. While most subjects in this chapter are basic and well-known, there
are two remarkable subjects which play significant roles in reach our goal.
First, we provide two Z-module bases of the cohomology ring of Gr(2,m).
One is the set of all Schubert cycles on Gr(2,m) and the other is the set
of all monomials of the form (c1(Ě(2,m)))i (c2(Ě(2,m)))j satisfying a certain
condition on i and j (Proposition 2.1.7). As we already mentioned, the formal
basis arises from a cell decomposition of Gr(2,m), thus it is useful to verify
geometric features of Gr(2,m). The latter basis, denoted by C, arises from a
ring generator {c1(Ě(2,m)), c2(Ě(2,m))} of the cohomology ring of Gr(2,m),
thus it is useful to express multiplications of cohomology classes until the
degree is not greater than 2(m − 2). For this reason, we use the basis C to
express cohomology classes as linear combinations like B in Step 2. Second,
we provide W. Barth and A. Van de Ven’s results, which are about the
decomposability of holomorphic vector bundles on complex Grassmannians
of rank 2 (Proposition 2.2.3 and 2.2.4). If a holomorphic vector bundle E on
Gr(2,m) of rank 2 satisfies the assumptions of their results, then we can handle
E easily.

In Chapter 3, we consider holomorphic embeddings φ : Gr(2,m) ↪→ Gr(2, n)

and their linearity. As in Step 2, we set the integral coefficients a, b and c to
express the total Chern class of E with respect to the basis C, and provide
an equivalent condition on the pair (a, b, c) for the linearity of φ (Proposition
3.2.2). When we focus on the coefficients of the powers of c1(Ě(2,m)) (resp.
c2(Ě(2,m))) in the equation of the total Chern class of N in Step 2, we derive a
refined equation whose both sides are polynomials in one variable c1(Ě(2,m))

10



CHAPTER 1. INTRODUCTION

(resp. c2(Ě(2,m))). If rank(N) = 2n − 2m is not greater than m − 2, then
these two refined equations preserve the coefficients of the cohomology classes
of degree 2n − 2m (Proposition 3.3.4). Solving the refined equations and the
equation of the Euler class of NR in Step 2 together with the inequalities in
Step 3, we obtain a lower bound of the coefficient of (c1(Ě(2,m)))2n−2m in the
top Chern class of N with respect to C (Lemma 3.4.7) and an inequality in
a, b (Proposition 3.4.9).

In Chapter 4, we prove Main Theorem (a) and (b) separately. For the
proof of (a), we first obtain a upper bound of a (Proposition 4.1.2 (b)) from all
the previous results. This bound enables us to apply W. Barth and A. Van
de Ven’s results to E, thus we can solve the refined equation in c1(Ě(2,m))

more easily (Theorem 4.1.1). For the proof of (b), we solve the equality of the
top Chern class of N and the Euler class of NR directly (Theorem 4.2.1). It is
reasonable because rank(N) = 2 is sufficiently small.

Throughout the thesis, a Grassmannian means a complex Grassmannian,
a map means a holomorphic map, and a vector bundle means a holomorphic
vector bundle by abuse of terminology.

11



Chapter 2

Preliminaries

We introduce here basic concepts about Grassmannians Gr(d,m) for further
use.

The chapter consists of two sections. In Section 2.1, we provide Schubert
varieties, Schubert cycles on Gr(d,m) and Pieri’s formula which describes the
multiplications of Schubert cycles on Gr(d,m). In general, the set of all Schu-
bert cycles on Gr(d,m) is a Z-module basis of the cohomology ring of Gr(d,m).
When d = 2, we provide another Z-module basis of the cohomology ring of
Gr(2,m), which is motivated by its ring generator, and the relation between
these two bases. In Section 2.2, we provide the universal bundle, the universal
quotient bundle on Gr(d,m) and their total Chern classes. In addition, we
provide W. Barth and A. Van de Ven’s results which are about the decom-
posability of vector bundles on complex Grassmannians of rank 2. For more
details on Section 2.1, see [Arr96] and [GH94, Section 1.5], and for more details
on Section 2.2, see [Tan74], [BVdV74a] and [BVdV74b].

2.1 Schubert cycles on Grassmannians
For a partial flag 0 ⊂ A1 ⊊ · · · ⊊ Ad ⊂ Cm, let ω(A1, · · · , Ad) be the subvariety
of Gr(d,m) which is given by

{x ∈ Gr(d,m) | dim(Lx ∩ Ai) ≥ i for all 1 ≤ i ≤ d}.

12
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We call such a subvariety ω(A1, · · · , Ad) a Schubert variety of type (a1, · · · , ad)
where ai := m − d + i − dim(Ai) for 1 ≤ i ≤ d. The (complex) codimension
of ω(A1, · · · , Ad) in Gr(d,m) is

∑d
i=1 ai. We sometimes denote (a1, · · · , ad)

simply by the bold lowercase letter a.

Example 2.1.1. There are some familiar Schubert varieties on Gr(d,m),
which are sub-Grassmannians ofGr(d,m). Given a type ⋆, letX⋆ := ω(A1, · · · , Ad)
be a Schubert variety of type ⋆.

(a) a = (m− d, · · · ,m− d, 0) : Since dim(Ai) = i for all 1 ≤ i ≤ d− 1 and
dim(Ad) = m,

Ai = span({v1, · · · , vi}) for all 1 ≤ i ≤ d− 1;

Ad = Cm

for some linearly independent vectors v1, · · · , vd−1 ∈ Cm. So we have

Xa = {x ∈ Gr(d,m) | Ad−1 ⊂ Lx}
≃ P

(
Cm
/
Ad−1

)
≃ Pm−d

(When d = 2, Xa ≃ X0
n−1,1 where X0

n−1,1 is given as in (1.0.4)).
Xa is a maximal projective space in Gr(d,m), that is, there is not a
projective space in Gr(d,m) containing it properly.

(b) b = (m− d, · · · ,m− d︸ ︷︷ ︸
k

, 0, · · · , 0) : Since dim(Ai) = i for all 1 ≤ i ≤ k

and dim(Aj) = m− d+ j for all k + 1 ≤ j ≤ d,

Xb = {x ∈ Gr(d,m) | Ak ⊂ Lx}
≃ Gr(d− k, Cm/Ak ) ≃ Gr(d− k,m− k).

(c) c = (k, · · · , k) : Since dim(Ai) = m− d+ i− k for all 1 ≤ i ≤ d,

Xc = {x ∈ Gr(d,m) | Lx ⊂ Ad}
= Gr(d,Ad) ≃ Gr(d,m− k).

13
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So any subvariety Gr(d,H) of Gr(d,m) where H is a subspace of Cm is
of this form.

(d) d = (m− d, · · · ,m− d︸ ︷︷ ︸
k

, l, · · · , l) : Combining the results of (b) and (c),

Xd ≃ Gr(d− k,m− k − l),

which is contained in a Schubert variety of the form Xb. The inclusion
Xd ⊂ Xb corresponds to the inclusion Xc ⊂ Gr(d,m) in (c).

Two Schubert varieties of types a and b have the same homology class
if and only if a = b. We denote the Poincaré dual to a Schubert variety of
type (a1, · · · , ad) by ωa1,··· ,ad and call it the Schubert cycle of type (a1, · · · , ad).
Since the codimension of a Schubert variety of type (a1, · · · , ad) is

∑d
i=1 ai,

ωa1,··· ,ad ∈ H2(
∑d

i=1 ai)(Gr(d,m),Z)

and the set of all Schubert cycles describes every cohomology group of Gr(d,m)

completely as follows:

H i(Gr(d,m),Z) =

{
0, if i is odd
span(Bk), if i (= 2k) is even

where Bk is a basis which is given by{
ωa1,··· ,ad

∣∣∣ m− d ≥ a1 ≥ · · · ≥ ad ≥ 0;
d∑
i=1

ai = k

}
.

In particular, when d = 2,

{ωk−i,i | m− 2 ≥ k − i ≥ i ≥ 0} (2.1.1)

is a basis of H2k(Gr(2,m),Z). For k = 2m − 4, H2(2m−4)(Gr(2,m),Z) ≃ Z
is generated by ωm−2,m−2 = ωm−2

1,1 . Every Γ ∈ H2(2m−4)(Gr(2,m),Z) is of the
form cΓ ω

m−2
1,1 for some integer cΓ, thus we identify Γ with cΓ ∈ Z.

By Example 2.1.1 (c), the Poincaré dual to the homology class of the

14
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subvariety Gr(d,H) ⊂ Gr(d,m) where H is a subspace of Cm is ωk,··· ,k for
some 0 ≤ k ≤ m− d. The next Proposition is about its converse.

Proposition 2.1.2 ([Wal97, Theorem 7 and Corollary 5] or [Bry01, Example
11]). For m ≥ d ≥ 2, let X0 be a subvariety of Gr(d,m) satisfying that the
Poincaré dual to the homology class of X0 is ωk,··· ,k for some 0 ≤ k ≤ m− d.
Then X0 = Gr(d,H) for some (m− k)-dimensional subspace H of Cm.

The multiplications of Schubert cycles are commutative and satisfy the
following rule, named Pieri’s formula.

Lemma 2.1.3 (Pieri’s formula). In Gr(d,m), for m − d ≥ a1 ≥ a2 ≥ · · · ≥
ad ≥ 0 and m− d ≥ h ≥ 0,

ωa1,a2,··· ,ad ωh,0,··· ,0 =
∑

(b1,b2,··· ,bd)∈I

ωb1,b2,··· ,bd (2.1.2)

where I is the set of all pairs (b1, b2, · · · , bd) ∈ Zd satisfying

m− d ≥ b1 ≥ a1 ≥ b2 ≥ a2 ≥ · · · ≥ bd ≥ ad ≥ 0;(
d∑
i=1

ai

)
+ h =

d∑
i=1

bi.

For the proof of Lemma 2.1.3, see [GH94, page 203]. To multiply two
general Schubert cycles on Gr(d,m) by using Lemma 2.1.3, we need to express
this multiplication as a composition of finite multiplications of the form (2.1.2).
In general, it is not easy. But when d = 2, we have a refined Pieri’s formula
which enables us to multiply any two general Schubert cycles easily. Before
describing this formula, we adopt the following convention:

Convention 2.1.4. In Gr(2,m), let ωk,l = 0 unless m− 2 ≥ k ≥ l ≥ 0.

From now on, we always assume Convention 2.1.4 when d = 2.
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Corollary 2.1.5 (Refined Pieri’s formula). Schubert cycles on Gr(2,m) satisfy
the following relations:

(a) ([Tan74, Lemma 4.2 (i)]) ωi,j ω1,1 = ωi+1,j+1.

(b) (Restate of Lemma 2.1.3) ωi,0 ωj,0 = ωi+j,0+ωi+j−1,1+· · ·+ωi+1,j−1+ωi,j.

Using Corollary 2.1.5 and the commutativity of multiplications, we can
multiply Schubert cycles on Gr(2,m) easily. For example,

ω8,5 ω7,3 = (ω3,0 ω
5
1,1) (ω4,0 ω

3
1,1) = ω4,0 ω3,0 ω

8
1,1

= (ω7,0 + ω6,1 + ω5,2 + ω4,3)ω
8
1,1

= ω15,8 + ω14,9 + ω13,10 + ω12,11

(Some terms can be omitted if m < 17).
Furthermore, using Corollary 2.1.5, we obtain the result on the multipli-

cations of two Schubert cycles of complementary degrees.

Corollary 2.1.6 ([Tan74, Lemma 4.2 (ii)]). In Gr(2,m), let i, j, k and l be
integers with m−2 ≥ i ≥ j ≥ 0, m−2 ≥ k ≥ l ≥ 0 and i+ j+k+ l = 2m−4.
Then we have

ωi,j ωk,l =

{
1, if i+ l = m− 2 = j + k

0, otherwise .

By Corollary 2.1.6, for each 0 ≤ p ≤ 2m− 4, there is a bijection

τp : {ωi,j | m− 2 ≥ i ≥ j ≥ 0; i+ j = p}
→ {ωk,l | m− 2 ≥ k ≥ l ≥ 0; k + l = 2m− 4− p}

which is defined by the property: the multiplication of ωi,j and τp(ωi,j) is equal
to 1. We call the image τp(ωi,j) = ωm−2−j,m−2−i the dual Schubert cycle of ωi,j.

Note that the cohomology ring of Gr(2,m)

H•(Gr(2,m),Z) =
2m−4⊕
k=0

H2k(Gr(2,m),Z)
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is generated by ω1,0 and ω1,1 as a ring. Motivated by this fact, we find a new
basis of H2k(Gr(2,m),Z) whose elements are expressed by ω1,0 and ω1,1.

Proposition 2.1.7. (a) For 0 ≤ k ≤ 2m− 4, the set of Schubert cycles{
ωk−2i
1,0 ωi1,1 | m− 2 ≥ k − i ≥ i ≥ 0

}
(2.1.3)

forms a basis of H2k(Gr(2,m),Z). In particular, when 0 ≤ k ≤ m − 2,
the set of Schubert cycles{

ωk−2i
1,0 ωi1,1

∣∣∣ 0 ≤ i ≤
⌊
k

2

⌋}
(2.1.4)

forms a basis of H2k(Gr(2,m),Z) where ⌊•⌋ is the maximal integer which
does not exceed •.

(b) For 0 ≤ k ≤ m − 2, let Γ ∈ H2k(Gr(2,m),Z) be a cohomology class.
Then the coefficient of ωk,0 in Γ with respect to the basis (2.1.1) coincides
with that of ωk1,0 in Γ with respect to the basis (2.1.4).

Proof. (a) Using Corollary 2.1.5, for each i ∈ Z with m− 2 ≥ k − i ≥ i ≥ 0,

ωk−2i
1,0 ωi1,1 =

(
ωk−2i,0 +

h∑
j=1

ai,j ωk−2i−j,j

)
ωi1,1

= ωk−i,i +
h∑
j=1

ai,j ωk−i−j,i+j

(2.1.5)

for some non-negative integers ai,j and h :=
⌊
k−2i
2

⌋
. Sincem−2 ≥ k−i ≥ i ≥ 0,

the leading term ωk−i,i of (2.1.5) is not a zero.
Note that m − 2 ≥ k − i ≥ i ≥ 0 if and only if i0 ≤ i ≤

⌊
k
2

⌋
where

i0 := max{0, k −m+ 2}, so we have

(2.1.1) =
{
ωk−i,i | i0 ≤ i ≤

⌊
k

2

⌋}
. (2.1.6)

Let Ai := span
{
ωk−2j
1,0 ωj1,1 | i ≤ j ≤

⌊
k
2

⌋}
for i0 ≤ i ≤ ⌊k

2
⌋ and A⌊ k

2
⌋+1 := 0

17
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(zero Z-module). Then we have by (2.1.5),

Ai+1 ⊂ Ai \ {ωk−2i
1,0 ωi1,1}; ωk−i,i ∈ ωk−2i

1,0 ωi1,1 +Ai+1 ⊂ Ai (2.1.7)

for all i0 ≤ i ≤ ⌊k
2
⌋. So the basis (2.1.6) is contained in Ai0 , which is the

Z-submodule generated by (2.1.3). Furthermore, the basis (2.1.6) and the set
(2.1.3) have the same number of elements. Hence, (2.1.3) is also a basis of
H2k(Gr(2,m),Z).

(b) Since k ≤ m − 2, i0 = 0. By (2.1.7), we have ωk,0 ∈ ωk1,0 + A1,
ωk1,0 ̸= A1 and ωk−i,i ∈ Ai for all 1 ≤ i ≤ ⌊k

2
⌋. Hence, the coefficient of ωk,0 in

Γ with respect to the basis (2.1.1) is equal to that of ωk1,0 in Γ with respect to
(2.1.4).

Remark 2.1.8. By Proposition 2.1.7 (a), the set of Schubert cycles{
ωk−2i
1,0 ωi1,1

∣∣∣ 0 ≤ i ≤
⌊
k

2

⌋}
=
{
ωk1,0, ω

k−2
1,0 ω1,1, · · · , ωk−2⌊k/2⌋

1,0 ω
⌊k/2⌋
1,1

}
is linearly independent if 0 ≤ k ≤ m−2, but it is linearly dependent if m−1 ≤
k ≤ 2m − 4. For this reason, we assume that (rank(N) =) 2n − 2m ≤ m − 2

in Proposition 3.3.4 where N is the vector bundle on Gr(2,m) which is given
as in the introductory part of Section 3.3.

Corollary 2.1.9. For 0 ≤ k ≤ 2m− 4, let Ck be the basis of H2k(Gr(2,m),Z)
which is given as in (2.1.3). Let Q1,0 and Q1,1 be the quotient Z-modules

Q1,0 := H•(Gr(2,m),Z)
/
M1,0 ;

Q1,1 := H•(Gr(2,m),Z)
/
M1,1

(2.1.8)

where M1,0 is the Z-submodule of H•(Gr(2,m),Z) which is generated by the
basis (

2m−4⊔
k=0

Ck

)
\
{
ωk1,0 | 0 ≤ k ≤ m− 2

}
,

and M1,1 is the Z-submodule of H•(Gr(2,m),Z) which is generated by the
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basis (
2m−4⊔
k=0

Ck

)
\
{
ωk1,1

∣∣∣ 0 ≤ k ≤
⌊
m− 2

2

⌋}
.

Then we have

Q1,0 ≃ Z[ω1,0]
/
(ωm−1

1,0 ) ; Q1,1 ≃ Z[ω1,1]
/
(ω

⌊(m−2)/2⌋+1
1,1 )

as both a Z-module and a ring (Here, (xk) is an ideal in Z[x] generated by xk).

Proof. Since M1,0 is an ideal in H•(Gr(2,m),Z), the quotient Z-module Q1,0

has a canonical ring structure. By Proposition 2.1.7 (a),
⊔2m−4
k=0 Ck is a Z-

module basis of H•(Gr(2,m),Z), and {ωk1,0 | 0 ≤ k ≤ m − 2} ⊂
⊔m−2
k=0 Ck.

Hence, Q1,0 is isomorphic to

span
({
ωk1,0 | 0 ≤ k ≤ m− 2

})
≃ Z[ω1,0]

/
(ωm−1

1,0 ) (2.1.9)

as a Z-module. Furthermore, Q1,0 is isomorphic to the right hand side of
(2.1.9) as a ring. The proof for Q1,1 is similar.

2.2 Vector bundles on Grassmannians
Let E(d,m) be the universal bundle on Gr(d,m) whose total space is

{(x, v) ∈ Gr(d,m)× Cm | v ∈ Lx}.

Denote the universal bundle on Gr(d, V ) by E(d, V ). We have the following
canonical short exact sequence:

0 → E(d,m) →
m⊕

OGr(d,m) → Q(d,m) → 0 (2.2.1)

where Q(d,m) := (
⊕mOGr(d,m))

/
E(d,m) , which is called the universal quo-

tient bundle on Gr(d,m).
Recall that automorphisms of Gr(d,m) are classified in Theorem 1.0.1.

The following Lemma is about the relations between E(d,m), Q(d,m) and
these automorphisms.
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Lemma 2.2.1. Let φ be an automorphism of Gr(d,m).

(a) If φ ∈ PGL(m,C), then φ∗(E(d,m)) ≃ E(d,m).

(b) If m = 2d and φ ∈ PGL(2d,C) ◦ ϕ, then φ∗(Ě(d, 2d)) ≃ Q(d, 2d) where
Ě(d, 2d) is the dual bundle of E(d, 2d).

The proof of Lemma 2.2.1 is clear by definitions of E(d,m) and Q(d,m).

Proposition 2.2.2 ([Tan74, Lemma 1.3 and 1.4]). In Gr(d,m), the total
Chern classes of E(d,m) and Q(d,m) are as follows:

(a) c(E(d,m)) = 1 +
∑d

k=1 (−1)k ω 1,··· ,1︸︷︷︸
k

,0,··· ,0.

(b) c(Q(d,m)) = 1 +
∑m−d

k=1 ωk,0,··· ,0.

Next, we consider vector bundles on complex Grassmannians of rank 2. In
[BVdV74a] and [BVdV74b], W. Barth and A. Van de Ven found criteria of
the decomposability of such vector bundles.

Let E be a vector bundle on Pk of rank 2. For a projective line ℓ in Pk, the
restriction E

∣∣
ℓ

is decomposable by Grothendieck theorem ([OSS11, Theorem
2.1.1]), that is,

E
∣∣
ℓ
= Oℓ(a1)⊕Oℓ(a2)

for some integers a1 and a2 unique up to permutations. For such a1 and a2,
define b(E

∣∣
ℓ
) by the integer

⌊
|a1−a2|

2

⌋
and using this, let

B(E) := max
{
b(E
∣∣
ℓ
) | P1 ≃ ℓ ⊂ Pk

}
. (2.2.2)

The following proposition tells us a sufficient condition for the decomposability
of vector bundles on Pk of rank 2.

Proposition 2.2.3 ([BVdV74a, Theorem 5.1]). Let E be a vector bundle on
Pk of rank 2 satisfying B(E) < k−2

4
. Then E is decomposable.

Also, there is a sufficient condition for which vector bundles on Gr(d,m)

of rank 2 is either decomposable or isomorphic to some special form.
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Proposition 2.2.4 ([BVdV74a, Theorem 4.1]). Let E be a vector bundle on
Gr(d,m) of rank 2 with m − d ≥ 2 satisfying that the restrictions E

∣∣
Y

are
decomposable for all Schubert varieties Y ⊂ Gr(d,m) of type (m− d, · · · ,m−
d, 0). Then either E is decomposable, or d = 2 and E ≃ E(2,m)⊗ L for some
line bundle L on Gr(2,m).

By Example 2.1.1 (a), every Schubert variety of type (m−d, · · · ,m−d, 0)
is biholomorphic to a maximal projective space Pm−d, thus the conclusion of
Proposition 2.2.3 relates to the assumption of Proposition 2.2.4. Proposition
2.2.3 and 2.2.4 play an important role in proving Theorem 4.1.1.
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Embeddings of Gr(2,m) into
Gr(2, n)

For n ≥ m > d, let φ : Gr(d,m) ↪→ Gr(d, n) be an embedding. As we already
mentioned in Chapter 1, we characterize such an embedding φ by means of
the pullback bundle E of the dual bundle of the universal bundle on Gr(d, n)

under the embedding φ.
Let d = 2 and m ≥ 4, and let Ck be the set of cohomology classes which

is given as in (2.1.3) for each 0 ≤ k ≤ 2m − 4. Then C :=
∪2m−4
k=0 Ck is a

Z-module basis of the cohomology ring of Gr(2,m) by Proposition 2.1.7 (a).
The total Chern class of E can be written uniquely as a linear combination
of ω0,0, ω1,0, ω

2
1,0 and ω1,1 with integral coefficients 1, a, b and c, respectively.

To determine possible pairs (a, b, c), we consider the pullback bundle N of the
normal bundle of φ(Gr(d,m)) in Gr(d, n) under the embedding φ, and use the
descriptions of Chern classes in terms of an Euler class (Note 3.3.1).

The chapter consists of four sections. We assume that d = 2 and m ≥ 4

except Section 3.1. In Section 3.1, we define the linearity and the twisted
linearity of embeddings φ : Gr(d,m) ↪→ Gr(d, n) and present relations between
the (twisted) linearity of φ and the image of φ (Proposition 3.1.4 and Corollary
3.1.5). In Section 3.2, we set the integral coefficients a, b and c, and present
an equivalent condition on the pair (a, b, c) for the (twisted) linearity of φ
(Proposition 3.2.2). In Section 3.3, we construct an equation of the Euler
class of NR (Proposition 3.3.2) and an equation of the total Chern class of N
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(Lemma 3.3.3), by independent ways. From these two equations, we express
the kth Chern classes of N (k ≥ rank(N)) and the Euler class of NR as linear
combinations of elements in the basis C with coefficients in Z[a, b, c]. Using
Note 3.3.1, we obtain several Diophantine equations in variables a, b and c.
When we assume that rank(N) = 2n−2m ≤ m−2 and focus on the coefficients
of ωk1,0 and ωl1,1, we derive two refined equations from the equation of the total
Chern class of N (Proposition 3.3.4). In Section 3.4, we obtain inequalities in
variables a, b and c (Proposition 3.4.4 and 3.4.9) by various ways: a criterion of
the numerical non-negativity of Chern classes of holomorphic vector bundles
(Proposition 3.4.2), two refined equations in one variable, the result on the
degrees of Schubert cycles (Lemma 3.4.6) and so on.

3.1 Linear embeddings
In Chapter 1, we defined a linear embedding f̃W : Gr(d1,m) ↪→ Gr(d2, n),
which is induced by an injective linear map f : Cm ↪→ Cn and a (d2 − d1)-
dimensional subspace W of Cn satisfying f(Cm)∩W = 0. When d1 = d2 (=: d),
we do not have to consider an extra summand W of Lf̃W (x) (x ∈ Gr(d,m)), so
the definition of the linearity is simpler. Furthermore, when either m = 2d or
n = 2d, there is a non-linear, but natural embedding because of the existence
of a dual map ϕ, which is a non-linear automorphism of Aut(Gr(d, 2d)).

Definition 3.1.1. Let φ : Gr(d,m) ↪→ Gr(d, n) be an embedding.

(a) An embedding φ is linear if φ is induced by an injective linear map
f : Cm ↪→ Cn, that is,

Lφ(x) = the d-dimensional subspace f(Lx) of Cn

for all x ∈ Gr(d,m).

(b) When m = 2d (resp. n = 2d), an embedding φ is twisted linear if φ is of
the form φ0 ◦ϕ (resp. ϕ ◦φ0) where φ0 : Gr(d,m) ↪→ Gr(d, n) is a linear
embedding and ϕ : Gr(d, 2d) → Gr(d, 2d) is a dual map.
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Remark 3.1.2. Assume that m = 2d = n and φ : Gr(d, 2d) ↪→ Gr(d, 2d) is a
twisted linear embedding of the form ϕ ◦ φ0 where φ0 : Gr(d, 2d) ↪→ Gr(d, 2d)

is a linear embedding. In this case, ϕ and φ0 are automorphisms of Gr(d, 2d),
and since φ0 is linear, φ0 ∈ PGL(2d,C). By Theorem 1.0.1, PGL(2d,C)◦ϕ =

ϕ ◦ PGL(2d,C), thus we have

φ = ϕ ◦ φ0 = φ1 ◦ ϕ

for some φ1 ∈ PGL(2d,C).

Of course, every embedding of Gr(d,m) into Gr(d, n) is not always linear.
When d = 1, S. Feder showed the existence of a non-linear embedding Pm ↪→
Pn for n > 2m by Theorem 1.0.3 (b). The following example provides some
non-linear embeddings for d ≥ 2.

Example 3.1.3 (Non-linear embeddings). Let φ : Gr(d,m) ↪→ Gr(d, n) be an
embedding.

(a) If either m = 2d or n = 2d, then every twisted linear embedding is not
linear.

(b) Consider the Plücker embedding i : Gr(d,m) ↪→ P(∧dCm) = PN where
N :=

(
m
d

)
−1. There is a maximal projective space Y ≃ Pn−d of Gr(d, n),

which is a Schubert variety of type (n− d, · · · , n− d, 0) (Example 2.1.1
(a)), and let j : Y ↪→ Gr(d, n) be an inclusion. Apply S. Feder’s result
to this situation. If n − d > 2N , then there is a non-linear embedding
ψ : PN ↪→ Pn−d ≃ Y by Theorem 1.0.3 (b). The composition of maps
φ := j ◦ ψ ◦ i is an embedding of Gr(d,m) into Gr(d, n), but it is not
linear.

(c) Consider an embedding φ : Gr(2, 3) → Gr(2, 4). Let ψ := φ ◦ ϕ be the
composition of maps where ϕ : P2 → Gr(2, 3) is a dual map, then ψ is an
embedding of P2 into Gr(2, 4). By Theorem 1.0.4, there are the following
4 types of X := ψ(P2) = φ(Gr(2, 3)):

X0
3,1; X1

3,1; X̌0
3,1; X̌1

3,1
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which are given as in (1.0.4) and (1.0.5), up to linear automorphisms of
Gr(2, 4). In particular, X0

3,1 is a Schubert variety of type (2, 0) and X̌0
3,1 is

a Schubert variety of type (1, 1). IfX = X̌0
3,1 up to linear automorphisms,

then φ is linear, and if X = X0
3,1 up to linear automorphisms, then φ

is twisted linear. On the other hand, if X = X1
3,1 or X̌1

3,1 up to linear
automorphisms, then φ is neither linear nor twisted linear.

There is a relation between the (twisted) linearity of an embedding φ of
Gr(d,m) into Gr(d, n) and the image of φ.
Proposition 3.1.4. For n ≥ m ≥ d, let φ : Gr(d,m) ↪→ Gr(d, n) be an
embedding. Then the image of φ is equal to Gr(d,Hφ) for some m-dimensional
subspace Hφ of Cn if and only if one of the following conditions holds:

• φ is linear;

• m = 2d and φ is twisted linear.
Proof. During this proof, we denote the image of φ by X.

If φ is linear, then φ is induced by an injective linear map f : Cm ↪→ Cn,
thus X = Gr(d, f(Cm)). Moreover, if φ is twisted linear with m = 2d, then
φ = φ0 ◦ ϕ for some linear embedding φ0 : Gr(d, 2d) ↪→ Gr(d, n) (For the case
when n = m, see Remark 3.1.2). So we have

X = φ0(ϕ(Gr(d, 2d))) = φ0(Gr(d, 2d)),

thus the image of φ = φ0 ◦ ϕ is Gr(d,H) for some (2d)-dimensional subspace
H of Cn.

Conversely, assume that X = Gr(d,Hφ) where Hφ is an m-dimensional
subspace of Cm. Fix a biholomorphism ψφ : Gr(d,Hφ) → Gr(d,m) which is
induced by a linear isomorphism Hφ → Cm. Let φ1 : Gr(d,m) → Gr(d,Hφ)

be a biholomorphism which is obtained by restricting the codomain of φ to its
image Gr(d,Hφ). Then ψφ ◦ φ1 is an automorphism of Gr(d,m) as follows:

Gr(d,m) ≃
φ1

Gr(d,Hφ)
⊂ Gr(d, n)

≃ ψφ

Gr(d,m)

⟲
ψφ ◦ φ1

.
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If m ̸= 2d, then ψφ ◦ φ1 ∈ PGL(m,C) by Theorem 1.0.1, thus φ is linear. If
m = 2d, then ψφ ◦ φ1 ∈ PGL(2d,C) ⊔ (PGL(2d,C) ◦ ϕ) by Theorem 1.0.1,
thus φ is either linear or twisted linear.

Proposition 3.1.4 covers all the cases when φ : Gr(d,m) ↪→ Gr(d, n) is
either linear or twisted linear except when n = 2d > m and φ is twisted linear.
The following corollary is an analogous result for this exceptional case.

Corollary 3.1.5. For 2d > m, let φ : Gr(d,m) ↪→ Gr(d, 2d) be an embedding.
Then the image of φ is equal to {x ∈ Gr(d, 2d) | Vφ ⊂ Lx} for some (2d−m)-
dimensional subspace Vφ of C2d if and only if φ is twisted linear.

Proof. Since 2d > m, φ is twisted linear if and only if φ = ϕ◦φ0 for some linear
embedding φ0 : Gr(d,m) ↪→ Gr(d, 2d) or, equivalently, the image of ϕ ◦ φ is
equal to Gr(d,H) for some m-dimensional subspace H of C2d by Proposition
3.1.4. Since ϕ ◦ ϕ = id, to complete the proof, it suffices to show that given a
(2d−m)-dimensional subspace Vφ of C2d,

ϕ({x ∈ Gr(d, 2d) | Vφ ⊂ Lx}) = Gr(d,H)

for some m-dimensional subspace H of C2d. By definition (1.0.1) of a dual
map ϕ,

ϕ ({x ∈ Gr(d, 2d) | Vφ ⊂ Lx}) = {ϕ(x) ∈ Gr(d, 2d) | Vφ ⊂ Lx}
= {ϕ(x) ∈ Gr(d, 2d) | Lϕ(x) = ι(L⊥

x ) ⊂ ι(V ⊥
φ )}

= {y ∈ Gr(d, 2d) | Ly ⊂ ι(V ⊥
φ )} (y := ϕ(x))

= Gr(d, ι(V ⊥
φ )).

Here, the dimension of ι(V ⊥
φ ) is 2d− (2d−m) = m as desired.

3.2 Equivalent conditions for the linearity
Let φ : Gr(2,m) ↪→ Gr(2, n) be an embedding and E := φ∗(Ě(2, n)) where
Ě(2, n) is the dual bundle of E(2, n). To distinguish Schubert cycles on two
Grassmannians Gr(2,m) and Gr(2, n), denote Schubert cycles on Gr(2, n)
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(resp. Gr(2,m)) by ω̃i,j (resp. ωk,l) (Of course, all properties in Chapter 2
hold for Gr(2, n) and ω̃i,j). By Proposition 2.2.2 (a),

c(Ě(2, n)) = 1 + ω̃1,0 + ω̃1,1

and
c1(E) = φ∗(ω̃1,0) = aω1,0,

c2(E) = φ∗(ω̃1,1) = b ω2
1,0 + c ω1,1 = b ω2,0 + (b+ c)ω1,1

(3.2.1)

for some a, b, c ∈ Z. By Proposition 2.1.7 (a), {ω0,0, ω1,0, ω
2
1,0, ω1,1} is a basis of

the Z-module
⊕2

k=0H
2k(Gr(2,m),Z) if and only if m ≥ 4. So the coefficients

a, b and c given as in (3.2.1) are determined uniquely for each φ. For this
reason, we always assume that m ≥ 4.

Lemma 3.2.1. For n ≥ m ≥ 4, let φ : Gr(2,m) ↪→ Gr(2, n) be an embedding.
Then the Poincaré dual to the homology class of X := φ(Gr(2,m)) is

n−m∑
i=0

(X · ω̃n−2−i,2m−n−2+i) ω̃2n−2m−i,i

where X · ω̃n−2−i,2m−n−2+i is the intersection number in Gr(2, n).

Proof. Since the codimension of X ≃ Gr(2,m) in Gr(2, n) is 2n − 2m, the
Poincaré dual to the homology class of X is

n−m∑
i=0

di ω̃2n−2m−i,i

for some integers di. By Corollary 2.1.6,

X · ω̃n−2−j,2m−n−2+j =
n−m∑
i=0

di (ω̃2n−2m−i,i · ω̃n−2−j,2m−n−2+j) = dj

as desired.

Now we ready to prove the following proposition on the equivalent condi-
tions for the (twisted) linearity of an embedding.
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Proposition 3.2.2. For n ≥ m ≥ 4 (resp. n ≥ m = 4), let φ : Gr(2,m) ↪→
Gr(2, n) be an embedding and a, b, c be the the integers given as in (3.2.1). The
following are equivalent:

(a) φ is linear (resp. φ is twisted linear);

(b) E ≃ Ě(2,m) (resp. E ≃ Q(2, 4));

(c) (a, b, c) = (1, 0, 1) (resp. (a, b, c) = (1, 1,−1)).

Proof. During this proof, we denote the image of φ by X.

• (a)⇒ (b) : Assume that φ is linear, then X = Gr(2, Hφ) for some m-
dimensional subspace Hφ of Cn by Proposition 3.1.4. The total space of
E(2, n)|X is

{(x, v) ∈ X × Cn | v ∈ Lx ⊂ Cn}
={(x, v) ∈ Gr(2, Hφ)×Hφ | v ∈ Lx ⊂ Hφ}

which is exactly equal to the total space of E(2, Hφ). So E(2, n)|X =

E(2, Hφ) and we have

E = φ∗(Ě(2, n)) = φ∗(Ě(2, n)|X) = φ∗(Ě(2, Hφ)) ≃ Ě(2,m).

If φ is twisted linear, then φ ◦ ϕ is linear. By the previous result, (φ ◦
ϕ)∗(E) ≃ Ě(2,m). So φ∗(E) ≃ ϕ∗(Ě(2,m)), which is isomorphic to
Q(2,m) by Lemma 2.2.1 (b).

• (b)⇒ (c) : By Proposition 2.2.2, we have

c(Ě(2,m)) = 1 + ω1,0 + ω1,1

c(Q(2,m)) = 1 + ω1,0 + ω2,0 = 1 + ω1,0 + ω2
1,0 − ω1,1.

So if E ≃ Ě(2,m) (resp. E ≃ Q(2, 4)), then (a, b, c) = (1, 0, 1) (resp.
(a, b, c) = (1, 1,−1)).

• (c)⇒ (a) : Assume that (a, b, c) = (1, 0, 1). Then φ∗(ω̃1,0) = ω1,0 and
φ∗(ω̃1,1) = ω1,1. Note that H•(Gr(2, n),Z) (resp. H•(Gr(2,m),Z)) is
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generated by ω̃1,0 and ω̃1,1 (resp. ω1,0 and ω1,1) as a ring. Moreover,
the multiplicative structures of H•(Gr(2, n),Z) and H•(Gr(2,m),Z) are
exactly same when we adopt Convention 2.1.4. So we have

φ∗(ω̃i,j) = ωi,j (3.2.2)

for all n− 2 ≥ i ≥ j ≥ 0, thus the Poincaré dual to the homology class
of X is

n−m∑
i=0

(X · ω̃n−2−i,2m−n−2+i) ω̃2n−2m−i,i (3.2.3)

by Lemma 3.2.1, and so we have

(3.2.3) =
n−m∑
i=0

(φ∗(ω̃n−2−i,2m−n−2+i)) ω̃2n−2m−i,i

=
n−m∑
i=0

(ωn−2−i,2m−n−2+i) ω̃2n−2m−i,i (∵ Equation (3.2.2))

=(ωm−2,m−2) ω̃n−m,n−m (∵ ωn−2−i,2m−n−2+i = 0

unless m− 2 ≥ n− 2− i ≥ 2m− n− 2 + i ≥ 0)

=ω̃n−m,n−m.

By Proposition 2.1.2, any subvariety of Gr(2, n) which corresponds to
ω̃n−m,n−m is of the form Gr(2, H) where H is an m-dimensional subspace
of Cn. Applying Proposition 3.1.4 and the implication of (a)⇒ (c), we
obtain the desired result.
Assume that (a, b, c) = (1, 1,−1). To prove the implication of (c)⇒ (a)
for this case, it suffices to show that φ ◦ ϕ is linear. The total Chern
class of (φ ◦ ϕ)∗(E) = ϕ∗(φ∗(E)) equals

c((φ ◦ ϕ)∗(E)) =c(ϕ∗(φ∗(E))) = ϕ∗(c(φ∗(E)))

=ϕ∗(1 + ω1,0 + ω2
1,0 − ω1,1)

=1 + ω1,0 + ω2
1,0 − (ω2

1,0 − ω1,1)

=1 + ω1,0 + ω1,1,
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thus φ◦ϕ is linear by the implication of (c)⇒ (a) for the case of linearity.
Hence, φ is twisted linear.

Remark 3.2.3. Assume that n < 2m− 2 and a = 1. Using Theorem 1.0.2, we
can prove the implication of (c)⇒ (a) in Proposition 3.2.2 for this case, with-
out computing the Poincaré dual to the homology class of X. Since a = 1, φ
maps each projective line in Gr(2,m) to a projective line in Gr(2, n), thus for
any x ∈ Gr(2,m), the differential dφ preserves the decomposability of tangent
vectors of Gr(2,m) at x. So by Theorem 1.0.2, either φ is linear up to auto-
morphisms of Gr(2,m) or Gr(2, n), or the image of φ lies on some projective
space in Gr(2, n). But the latter case is impossible because the dimension of
φ(Gr(2,m)) is greater than the dimension of each maximal projective space
in Gr(2, n), that is, 2m− 4 > n− 2. By Theorem 1.0.1, there is a non-linear
automorphism of Gr(2,m) only for the case when m = 4. Hence, if m ≥ 5,
then φ is linear, and if m = 4, then φ is either linear or twisted linear.

3.3 Equations in a, b and c

Let a, b and c be the integers which are given as in (3.2.1), and N be the
pullback bundle of the normal bundle of X := φ(Gr(2,m)) in Gr(2, n) under
the embedding φ. In this section, we construct an equation of the total Chern
class c(N) of N (Lemma 3.3.3) and under the assumption when n ≤ 3m−2

2
,

we deduce the refined equations in one variable (Proposition 3.3.4) from the
equation of c(N). Using the definition of the Chern classes of N in terms of
the Euler class of NR (Note 3.3.1), we obtain several Diophantine equations in
variables a, b and c.

3.3.1 Euler class of NR

There are two methods to construct the Chern classes of a complex vector
bundle E : one is via Chern-Weil theory and the other is via the Euler class
E(ER) of ER. For more details on the first and the second methods to construct
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Chern classes, see [BT82, Section 20] and [MS74, Section 14], respectively. For
more details on Euler classes, see [BT82, Section 11] or [MS74, Section 9].

By the second method (or deriving from the first method), we have the
following result on the kth Chern classes ck(E) of E for k ≥ rank(E):

Note 3.3.1 ([BT82, (20.10.4) and (20.10.6)] or [MS74, page 158]). Let Z be a
real manifold and E be a complex vector bundle on Z. Then we have

ck(E) =

{
e(ER), if k = rank(E)
0, if k > rank(E)

where ER is the real vector bundle on Z which corresponds to E .

As in Note 3.3.1, let NR be the real vector bundle which corresponds to
N . Then we can compute the Euler class of NR as follows:

Proposition 3.3.2. For n ≥ m ≥ 4, the Euler class of NR is

e(NR) =
n−m∑
i=0

(X · ω̃n−2−i,2m−n−2+i)φ
∗(ω̃2n−2m−i,i). (3.3.1)

In particular, when n = m+ 1,

e(NR) = (X · ω̃m−1,m−3)φ
∗(ω̃2,0) + (X · ω̃m−2,m−2)φ

∗(ω̃1,1)

= {(X · ω̃m−1,m−3) (a
2 − b) + (X · ω̃m−2,m−2) b}ω2

1,0

+ (X · ω̃m−2,m−2 −X · ω̃m−1,m−3) c ω1,1.

Proof. By [Fed65, Theorem 1.3],

e(NR) = φ∗(φ∗(1))

where 1 is the cohomology class in H•(Gr(2,m),Z) which corresponds to
Gr(2,m) itself. Since φ∗(1) is the cohomology class in H•(Gr(2, n),Z) which
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corresponds to X,

e(NR) = φ∗

(
n−m∑
i=0

(X · ω̃n−2−i,2m−n−2+i) ω̃2n−2m−i,i

)

=
n−m∑
i=0

(X · ω̃n−2−i,2m−n−2+i)φ
∗(ω̃2n−2m−i,i)

by Lemma 3.2.1.

The cohomology ringH•(Gr(2, n),Z) ofGr(2, n) is generated by {ω̃1,0, ω̃1,1}
as a ring, thus any Γ̃ ∈ H2k(Gr(2, n),Z) can be written as fΓ̃(ω̃1,0, ω̃1,1) for
some polynomial fΓ̃ ∈ Z[x, y]. Since φ∗ : H•(Gr(2, n),Z) → H•(Gr(2,m),Z)
is a ring homomorphism, we have φ∗(Γ̃) = fΓ̃(aω1,0, b ω

2
1,0 + c ω1,1), which is

expressed as gΓ̃,φ(ω1,0, ω1,1) for some gΓ̃,φ ∈ Z[x, y].
Apply this method to the Euler class e(NR). In each summand of (3.3.1),

X · ω̃n−2−i,2m−n−2+i ∈ Z and φ∗(ω̃2n−2m−i,i) ∈ H2n−2m(Gr(2,m),Z), so we can
express e(NR) as

e(NR) =
n−m∑
i=0

Ai ω
2n−2m−2i
1,0 ωi1,1 (3.3.2)

for some polynomials Ai ∈ Z[a, b, c].

3.3.2 Total Chern class of N
Lemma 3.3.3. Let n ≥ m ≥ 4. Then the total Chern class c(N) of N satisfies
the following equation:

c(N)(1 + (4b− a2)ω2
1,0 + 4c ω1,1)(1 + ω1,0 + ω1,1)

m

= (1 + aω1,0 + b ω2
1,0 + c ω1,1)

n(1− ω2
1,0 + 4ω1,1)

(3.3.3)
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which is satisfied in H•(Gr(2,m),Z). Moreover, the first and the second Chern
classes of N are

c1(N) = (an−m)ω1,0;

c2(N) =

{(
n

2

)
a2 − amn+m2 −

(
m

2

)
+ a2 − 1 + b(n− 4)

}
ω2
1,0

+ {c(n− 4)−m+ 4}ω1,1.

Proof. Taking the tensor product of (2.2.1) with Ě(2,m), we obtain a short
exact sequence

0 → E(2,m)⊗Ě(2,m) →
m⊕
Ě(2,m) → Q(2,m)⊗Ě(2,m) → 0, (3.3.4)

and after replacing m with n, we also obtain a short exact sequence

0 → E(2, n)⊗ Ě(2, n) →
n⊕
Ě(2, n) → Q(2, n)⊗ Ě(2, n) → 0. (3.3.5)

Since TGr(2,n) ≃ Q(2, n)⊗ Ě(2, n) and TGr(2,m) ≃ Q(2,m)⊗ Ě(2,m),

c(φ∗(TGr(2,n))) =
φ∗(c(Ě(2, n)))n

φ∗(c(E(2, n)⊗ Ě(2, n)))
=

c(E)n

c(Ě ⊗ E)
;

c(TGr(2,m)) =
c(Ě(2,m))m

c(E(2,m)⊗ Ě(2,m))

by (3.3.4) and (3.3.5). So we have the following equation:

c(N) =
c(φ∗(TGr(2,n)))

c(TGr(2,m))
=

c(E)n/c(Ě ⊗ E)

c(Ě(2,m))m/c(E(2,m)⊗ Ě(2,m))
,

that is,

c(N)c(Ě ⊗ E)c(Ě(2,m))m = c(E)nc(E(2,m)⊗ Ě(2,m)). (3.3.6)
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Note that

c(E) = 1 + aω1,0 + b ω2
1,0 + c ω1,1;

c(Ě ⊗ E) = 1 + (4b− a2)ω2
1,0 + 4c ω1,1;

c(Ě(2,m)) = 1 + ω1,0 + ω1,1;

c(E(2,m)⊗ Ě(2,m)) = 1− ω2
1,0 + 4ω1,1.

(3.3.7)

Putting (3.3.7) into (3.3.6), we obtain Equation (3.3.3).
Comparing the cohomology classes of degree 2 in both sides of (3.3.3), we

have
c1(N) +mω1,0 = anω1,0,

so we obtain
c1(N) = (an−m)ω1,0. (3.3.8)

Comparing the cohomology classes of degree 4 in both sides of (3.3.3), we have

c2(N) + c1(N) ·mω1,0 + (4b− a2)ω2
1,0 + 4c ω1,1 +

(
m

2

)
ω2
1,0 +mω1,1

=

(
n

2

)
a2 ω2

1,0 + bnω2
1,0 + cnω1,1 − ω2

1,0 + 4ω1,1.

(3.3.9)

Putting (3.3.8) into (3.3.9), we obtain

c2(N) =

{(
n

2

)
a2 − amn+m2 −

(
m

2

)
+ a2 − 1 + b(n− 4)

}
ω2
1,0

+ {c(n− 4)−m+ 4}ω1,1

as desired.

By replacing c(N) by Γ, regard (3.3.3) as an equation with a variable Γ.
Write a solution Γ of (3.3.3) as Γ =

∑2m−4
k=0 Γk where Γk ∈ H2k(Gr(2,m),Z)

for all 0 ≤ k ≤ 2m− 4. In the proof of Lemma 3.3.3, we compute Γk for k = 1

and 2 by the following steps:

1 Obtain an equation (⋆k), which is satisfied in H2k(Gr(2,m),Z), after
comparing the cohomology classes of degree 2k in both sides of (3.3.3);
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2 compute Γk by putting Γi into (⋆k) for all 0 ≤ i < k.

Repeat these operations from k = 3 to 2m− 4. After that, we can express
Γk (= ck(N)) for 0 ≤ k ≤ 2m− 4 as follows:

Γ0 =1 = B0,0 ω
0
1,0 = B0,0 ω

0
1,1

Γ1 =B1,0 ω1,0

Γ2 =B2,0 ω
2
1,0 +B2,1 ω1,1

...
Γk =Bk,0 ω

k
1,0 +Bk,1 ω

k−2
1,0 ω1,1 + · · ·+Bk,hk ω

k−2hk
1,0 ωhk1,1

...
Γ2m−4 =B2m−4,0 ω

2m−4
1,0 +B2m−4,1 ω

2m−6
1,0 ω1,1 + · · ·+B2m−4,m−2 ω

m−2
1,1

(3.3.10)

where hk :=
⌊
k
2

⌋
and Bk,i ∈ Z[a, b, c] for all 0 ≤ k ≤ 2m − 4, 0 ≤ i ≤ hk. In

addition, Γk = 0 for all k > 2m− 4.
Since the rank of N is 2n− 2m, we have by Note 3.3.1,

ck(N) =

{
e(NR), if k = 2n− 2m

0, if 2n− 2m < k ≤ 2m− 4 . (3.3.11)

If 2n − 2m > 2m − 4, then we cannot obtain any further information from
(3.3.11). On the other hand, if 2n − 2m ≤ 2m − 4, then we obtain several
Diophantine equations in a, b and c by applying (3.3.2) and (3.3.10) to (3.3.11).
For this reason, the condition 2n− 2m ≤ 2m− 4 (or equivalently, n ≤ 2m− 2)
is essential in order to find all possible pairs (a, b, c) of integers from these
Diophantine equations.

If m− 2 < 2n− 2m ≤ 2m− 4, then the choices of coefficients Ai in (3.3.2)
is not unique and the choice of coefficients Bk,i in (3.3.10) is not unique for
all 2n − 2m ≤ k ≤ 2m − 4 by Proposition 2.1.7 (a) (or Remark 2.1.8). To
apply (3.3.2) and (3.3.10) to (3.3.11), we need to write e(NR) and Γ2n−2m with
respect to the same basis of H2(2n−2m)(Gr(2,m),Z), and write Γk with respect
to a basis of H2k(Gr(2,m),Z) for each 2n− 2m < k ≤ 2m− 4 again.

If 2n − 2m ≤ m − 2, then we do not have to care the uniqueness of
coefficients in e(NR) and Γk (2n − 2m ≤ k ≤ m − 2), thus we have the
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following Diophantine equations directly:

A0 = B2n−2m,0; A1 = B2n−2m,1; · · · An−m = B2n−2m,n−m;

0 = Bk,0; 0 = Bk,1; · · · 0 = Bk,hh

(3.3.12)

for all 2n − 2m < k ≤ m − 2. However, if n −m is big, then it is difficult to
find all Diophantine equations in (3.3.12). So we need simpler equations than
(3.3.3).

3.3.3 Refined equations in ω1,0 and ω1,1

Using Equation (3.3.3) and the basis (2.1.4) of a cohomology group together
with Corollary 2.1.9, we obtain two refined equations in one variable as follows:

Proposition 3.3.4. Let m ≤ n ≤ 3m−2
2

. For 0 ≤ k ≤ 2n− 2m, write the kth

Chern class ck(N) of N as

ck(N) =


α0 = 1 = β0, if k = 0

α1 ω1,0 = β1 ω1,0, if k = 1

αk ω
k
1,0 + · · ·+ βk ω

k/2
1,1 , if k ≥ 2 is even

αk ω
k
1,0 + · · ·+ βk ω1,0ω

(k−1)/2
1,1 , if k ≥ 3 is odd

(3.3.13)

with respect to the basis (2.1.4). Then we have two equations(
2n−2m∑
k=0

αk ω
k
1,0

)
(1 + (4b− a2)ω2

1,0)(1 + ω1,0)
m−1

= (1 + aω1,0 + b ω2
1,0)

n(1− ω1,0)

(3.3.14)

which is satisfied in Z[ω1,0]
/
(ωm−1

1,0 ) , and

(
n−m∑
k=0

β2k ω
k
1,1

)
(1 + 4c ω1,1)(1 + ω1,1)

m = (1 + c ω1,1)
n(1 + 4ω1,1) (3.3.15)

which is satisfied in Z[ω1,1]
/
(ω

⌊(m−2)/2⌋+1
1,1 ) .
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Proof. By Proposition 2.1.7 (a), we can express each ck(N) where 0 ≤ k ≤
2n− 2m uniquely as in (3.3.13) because 2n− 2m ≤ m− 2.

By Corollary 2.1.9, there are ring isomorphisms ρ0 : Q1,0 → Z[ω1,0]
/
(ωm−1

1,0 )

and ρ1 : Q1,1 → Z[ω1,1]
/
(ω

⌊(m−2)/2⌋+1
1,1 ) where Q1,0 and Q1,1 are the quo-

tient rings given as in (2.1.8). Consider the images of both sides of (3.3.3)
under the composition of the isomorphism ρ0 with the canonical projection
H•(Gr(2,m),Z) → Q1,0. To find their images, it suffices to consider the terms
involving in ω1,0, we have(

2n−2m∑
k=0

αk ω
k
1,0

)
(1+ (4b− a2)ω2

1,0)(1+ω1,0)
m = (1+ aω1,0 + b ω2

1,0)
n(1−ω2

1,0),

and after dividing both sides by 1 + ω1,0, we obtain Equation (3.3.14). Sim-
ilarly, we can obtain Equation (3.3.15) by considering the image of both
sides of (3.3.3) under the composition of ρ1 with the canonical projection
H•(Gr(2,m),Z) → Q1,1.

Remark 3.3.5. Assume that n ≤ 3m−2
2

. After comparing the notations in
(3.3.10) and 3.3.13, αk = Ak,0 and βk = Bk,⌊k/2⌋ for all 0 ≤ k ≤ 2n − 2m. In
particular, β2i = B2i,i for all 0 ≤ i ≤ n−m.

Each of (3.3.14) and (3.3.15) is satisfied in a quotient ring of the form
Z[x]

/
(xk) , which is isomorphic to the Z-submodule of all polynomials in Z[x]

of degree < k as a Z-module. When we express each element in Z[x]
/
(xk) as

a polynomial of degree < k, we use (3.3.14) and (3.3.15) as follows:

• We can compare the coefficients of ωk1,0 in both sides of (3.3.14) for
0 ≤ k ≤ m− 2;

• we can compare the coefficients of ωk1,1 in both sides of (3.3.15) for 0 ≤
2k ≤ m− 2.

In this way, we obtain the leftest and the rightest Diophantine equations among
(3.3.12).
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3.4 Inequalities in a, b and c

In this section, we derive some inequalities in a, b, c and αk (Proposition 3.4.4,
3.4.5 and 3.4.9) by using numerical non-negativity of Chern classes and solving
two refined equations (3.3.14) and (3.3.15) in one variable.

3.4.1 Numerical non-negativity of Chern classes
Definition 3.4.1. Let Y be a non-singular variety. A cohomology class Γ ∈
H2k(Y,Z) is numerically non-negative if the intersection numbers Γ · Z are
non-negative for all subvarieties Z of Y of dimension k.

In our case when Y = Gr(2,m), a cohomology class Γ ∈ H2k(Gr(2,m),Z)
is numerically non-negative means that when we write Γ as the linear combi-
nation with respect to the basis (2.1.1), every coefficient in Γ is non-negative.
The following proposition tells us a sufficient condition for the numerical non-
negativity of all Chern classes of vector bundles E .

Proposition 3.4.2 ([Tan74, Proposition 2.1 (i)]). Let Z be a non-singular
variety and let E be a vector bundle of arbitrary rank on Z which is generated
by global sections. Then each Chern class ci(E) of E is numerically non-negative
for all i = 1, 2, · · · dim(Z).

We find vector bundles on Gr(2,m) satisfying the assumption of Proposi-
tion 3.4.2 and obtain inequalities in a, b and c.

Lemma 3.4.3. Each of vector bundles E = φ∗(Ě(2, n)), φ∗(Q(2, n)) and N

is generated by global sections, and its Chern classes are all numerically non-
negative.

Proof. Note that a vector bundle E on Z is generated by global sections if and
only if there is a surjective bundle morphism from a trivial bundle on Z (of
any rank) to E . By the short exact sequence after replacing m in (2.2.1) with
n and its dual, E and φ∗(Q(2, n)) are generated by global sections. Moreover,
by the short exact sequence (3.3.5), TGr(2,n) ≃ Q(2, n)⊗Ě(2, n) is generated by
global sections and from this, we can conclude that N = φ∗(TGr(2,n))

/
TGr(2,m)

is generated by global sections. Hence, for E = E, φ∗(Q(2, n)) and N , c0(E) =
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1 ≥ 0 and c1(E), · · · , c2m−4(E) are all numerically non-negative by Proposition
3.4.2.

Proposition 3.4.4. Let n ≥ m ≥ 4.

(a) a ≥ 1, b ≥ 0 and b+ c ≥ 0 with a2 ≥ b.

(b) If m ≥ 5, then a2 ≥ 2b.

(c) If m ≥ 6, then a2 > 2b.

(d) For n ≤ 3m−2
2

, let αk (0 ≤ k ≤ 2n− 2m) be the integers which are given
as in (3.3.13). Then αk ≥ 0 for all 0 ≤ k ≤ 2n− 2m.

Proof. (a) By Lemma 3.4.3, each Chern class of E and N is numerically non-
negative. By (3.2.1),

c(E) = 1 + aω1,0 + b ω2,0 + (b+ c)ω1,1,

so a, b and b+ c are non-negative. By Lemma 3.3.3,

c1(N) = (an−m)ω1,0,

so a ≥ 1.
By Lemma 3.4.3 again,

c2(φ
∗(Q(2, n))) = φ∗(ω̃2,0) (∵ Proposition 2.2.2 (b))

= φ∗(ω̃2
1,0 − ω̃1,1) (∵ Corollary 2.1.5)

= (aω1,0)
2 − (b ω2

1,0 + c ω1,1)

= (a2 − b)ω2
1,0 − c ω1,1

= (a2 − b)ω2,0 + (a2 − b− c)ω1,1

is numerically non-negative. Since m ≥ 4, ω2,0 is not zero, so we have a2 ≥ b.
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(b) By Lemma 3.4.3,

c3(φ
∗(Q(2, n))) = φ∗(ω̃3,0) (∵ Proposition 2.2.2 (b))

= φ∗(ω̃3
1,0 − 2 ω̃1,0 ω̃1,1) (∵ Corollary 2.1.5)

= (aω1,0)
3 − 2aω1,0 (b ω

2
1,0 + c ω1,1)

= a(a2 − 2b)ω3
1,0 − 2ac ω1,0 ω1,1

= a(a2 − 2b)ω3,0 + 2a(a2 − 2b− c)ω2,1

is numerically non-negative. Since m ≥ 5, ω3,0 is not zero, so we have a(a2 −
2b) ≥ 0. By (a), a ≥ 1, thus a2 ≥ 2b.

(c) By Lemma 3.4.3,

c4(φ
∗(Q(2, n))) = φ∗(ω̃4,0) (∵ Proposition 2.2.2 (b))

= φ∗(ω̃4
1,0 − 3 ω̃2

1,0 ω̃1,1 + ω̃2
1,1) (∵ Corollary 2.1.5)

= (aω1,0)
4 − 3(aω1,0)

2(b ω2
1,0 + c ω1,1) + (b ω2

1,0 + c ω1,1)
2

= (a4 − 3a2b+ b2)ω4
1,0 + (−3a2c+ 2bc)ω2

1,0 ω1,1 + c2 ω2
1,1

= (a4 − 3a2b+ b2)ω4,0 + αω3,1 + β ω2,2 (∵ Proposition 2.1.7(b))

is numerically non-negative (α, β ∈ Z[a, b, c]). Since m ≥ 6, ω4,0 is not zero,
so we have a4 − 3a2b+ b2 ≥ 0, that is, either a2 ≥

(
3+

√
5

2

)
b or a2 ≤

(
3−

√
5

2

)
b.

But a2 ≤
(

3−
√
5

2

)
b < b is impossible by (a). Hence, we have

a2 ≥

(
3 +

√
5

2

)
b > 2b.

(d) By Proposition 2.1.7 (b), the coefficient of ωk,0 in ck(N) with respect
to the basis (2.1.1) is equal to αk. By Lemma 3.4.3, each ck(N) is numerically
non-negative, thus αk ≥ 0 for all 0 ≤ k ≤ 2n− 2m.

3.4.2 Refined equation in ω1,1

Solving the refined equation (3.3.15) in one variable ω1,1, each βk with 1 ≤
k ≤ n−m is a polynomial in only one variable c. Comparing the coefficients
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of ωk1,1 in both sides of (3.3.15) for a suitable power k, we obtain a numerical
condition on c.

Proposition 3.4.5. For m ≤ n ≤ 3m−6
2

, we have c ≥ 1.

Proof. We complete the proof by showing that the following two cases are
impossible:

Case 1. c ≤ −1; Case 2. c = 0.

Case 1. Suppose that c ≤ −1. By (3.3.15), we have(
n−m∑
k=0

β2k ω
k
1,1

)
(1 + 4c ω1,1)

= (1 + c ω1,1)
n(1 + ω1,1)

−m(1 + 4ω1,1),

(3.4.1)

which is satisfied in Z[ω1,1]
/
(ω

⌊(m−2)/2⌋+1
1,1 ) . Since 2(n−m+2) ≤ m− 2,

we can compare the coefficient of ωn−m+2
1,1 in both sides of (3.4.1). Thus

we have

0 =
n−m+2∑
k=0

(
n

k

)(
m+ (n−m+ 2− k)− 1

n−m+ 2− k

)
ck (−1)n−m+2−k

+ 4
n−m+1∑
k=0

(
n

k

)(
m+ (n−m+ 1− k)− 1

n−m+ 1− k

)
ck (−1)n−m+1−k

=
n−m+2∑
k=0

(
n

k

)(
n+ 1− k

m− 1

)
(−c)k (−1)n−m+2

+ 4
n−m+1∑
k=0

(
n

k

)(
n− k

m− 1

)
(−c)k (−1)n−m+1.

(3.4.2)
After dividing both sides of (3.4.2) by (−1)n−m+1,

4
n−m+1∑
k=0

(
n

k

)(
n− k

m− 1

)
(−c)k =

n−m+2∑
k=0

(
n

k

)(
n+ 1− k

m− 1

)
(−c)k. (3.4.3)
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Since (
n

k

)(
n− k

m− 1

)
=

n!

k!(n− k)!
· (n− k)!

(m− 1)!(n−m+ 1− k)!

=
n!

(m− 1)!(n−m+ 1)!
· (n−m+ 1)!

k!(n−m+ 1− k)!

=

(
n

m− 1

)(
n−m+ 1

k

)
,

the left hand side of (3.4.3) is equal to

(LHS) = 4
n−m+1∑
k=0

(
n

m− 1

)(
n−m+ 1

k

)
(−c)k

= 4

(
n

m− 1

)
(1− c)n−m+1.

(3.4.4)

Similarly, since(
n

k

)(
n+ 1− k

m− 1

)
=

n!

k!(n− k)!
· (n+ 1− k)!

(m− 1)!(n−m+ 2− k)!

=
(n+ 1)!

(m− 1)!(n−m+ 2)!
· (n−m+ 2)!

k!(n−m+ 2− k)!
· n+ 1− k

n+ 1

=

(
n+ 1

m− 1

)(
n−m+ 2

k

)
· n+ 1− k

n+ 1

≥
(
n+ 1

m− 1

)(
n−m+ 2

k

)
· m− 1

n+ 1

=

(
n

m− 2

)(
n−m+ 2

k

)
for 0 ≤ k ≤ n−m+ 2, the right hand side of (3.4.3) satisfies

(RHS) ≥
(

n

m− 2

)
(1− c)n−m+2. (3.4.5)
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Applying (3.4.4) and (3.4.5) to (3.4.3), since 1− c ≥ 0, we have

(1− c)

(
n

m− 2

)
≤ 4

(
n

m− 1

)
.

So (1− c) (m− 1) ≤ 4 (n−m+ 2), that is,

4n ≥ (5− c)m+ c− 9.

But since 4n ≤ 6m− 12, we have

(c+ 1)m ≥ c+ 3. (3.4.6)

If c = −1, then (3.4.6) is impossible clearly. If c ≤ −2, then c+ 1 ≤ −1,
so we have

m ≤ c+ 3

c+ 1
= 1 +

2

c+ 1
< 1

by (3.4.6), which implies a contradiction.

Case 2. Suppose that c = 0. Putting c = 0 into (3.3.15), we have

n−m∑
k=0

β2k ω
k
1,1 = (1 + ω1,1)

−m(1 + 4ω1,1), (3.4.7)

which is satisfied in Z[ω1,1]
/
(ω

⌊(m−2)/2⌋+1
1,1 ) . Comparing the coefficient of

ωn−m+i
1,1 in both sides of (3.4.7) for i = 1 and 2, we have

0 =

(
m+ (n−m+ i)− 1

n−m+ i

)
(−1)n−m+i

+ 4

(
m+ (n−m+ i− 1)− 1

n−m+ i− 1

)
(−1)n−m+i−1

= (−1)n−m+i

{(
n+ i− 1

m− 1

)
− 4

(
n+ i− 2

m− 1

)}
= (−1)n−m+i

(
n+ i− 1

m− 1

)(
1− 4 · n−m+ i

n+ i− 1

)
.
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So we obtain
3n = 4m− 3i− 1

for i = 1 and 2, which implies a contradiction.

Hence, we conclude that c ≥ 1.

3.4.3 Refined equation in ω1,0

The refined equation (3.3.14) in one variable ω1,0 is harder than the refined
equation (3.3.15) in ω1,1 to solve. To overcome this difficulty, using Note 3.3.1,
the previous inequalities together with Lemma 3.4.6, we obtain a lower bound
of α2n−2m (Lemma 3.4.7). This bound has a key role to solve (3.3.14).

Lemma 3.4.6 ([Ful98, Example 14.7.11] (or [HP52, page 364])). In Gr(2,m),

ωi,j ω
2m−4−i−j
1,0 =

(2m− 4− i− j)!(i− j + 1)!

(m− 2− i)!(m− 1− j)!

for m− 2 ≥ i ≥ j ≥ 0.

Lemma 3.4.7. Let m ≤ n ≤ 3m−6
2

and α2n−2m be the integer given as in
(3.3.13). Then

α2n−2m ≥ (2m− 4)!

(m− 2)!(m− 1)!
· bn−2.

Proof. By Note 3.3.1, c2n−2m(N) = e(NR). So α2n−2m is equal to the coefficient
of ω2n−2m

1,0 in

e(NR) =
n−m∑
i=0

di φ
∗(ω̃2n−2m−i,i)

where di := X · ω̃n−2−i,2m−n−2+i, by Proposition 3.3.2. Here, di ≥ 0 for all
0 ≤ i ≤ n −m because each di is the intersection number of two subvarieties
of Gr(2, n).

Let Γi be the coefficient of ω2n−2m−2i
1,0 in φ∗(ω̃2n−2m−2i,0) with respect to the

basis (2.1.4). Then the coefficient of ω2n−2m
1,0 in

φ∗(ω̃2n−2m−i,i) = φ∗(ω̃2n−2m−2i,0)φ
∗(ω̃i1,1) (∵ Corollary 2.1.5)

= φ∗(ω̃2n−2m−2i,0) (b ω
2
1,0 + c ω1,1)

i
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with respect to (2.1.4) is equal to Γi b
i. By Proposition 2.1.7 (b), Γi is equal

to the coefficient of ω2n−2m−2i,0 in φ∗(ω̃2n−2m−2i,0) with respect to (2.1.1), and
by Lemma 3.4.3 it is non-negative for all 0 ≤ i ≤ n−m. So we have

α2n−2m =
n−m∑
i=0

di Γi b
i

≥ dn−m Γn−m b
n−m (∵ b ≥ 0 by Proposition 3.4.4 (a))

= dn−m b
n−m (∵ Since φ∗(ω̃0,0) = ω0,0, Γn−m = 1).

(3.4.8)

Applying

dn−m = φ∗(ω̃m−2
1,1 ) = (b ω2

1,0 + c ω1,1)
m−2

=
m−2∑
i=0

(
m− 2

i

)
bm−2−i ci ω2m−4−2i

1,0 ωi1,1

≥ bm−2 ω2m−4
1,0 (∵ b, c, ω2m−4−2i

1,0 ωi1,1 ≥ 0

by Proposition 3.4.4 (a), 3.4.5 and Lemma 3.4.6)

=
(2m− 4)!

(m− 2)!(m− 1)!
· bm−2 (∵ Lemma 3.4.6)

to (3.4.8), we obtain the desired inequality.

Now, we ready to prove an inequality in a and b better than that of Propo-
sition 3.4.4 (c). Before proving this, we use the following notation.

Notation 3.4.8. Let R be a ring Z or R. Identifying R[x]
/
(xk) with the R-

module which is generated by a basis {1, x, x2, · · · , xk−1}, express an element
in R[x]

/
(xk) uniquely as a linear combination of 1, x, x2, · · ·xk−1 with integral

coefficients. Denote by f(x) ⪯ g(x) in R[x]
/
(xk) if the coefficient of xi in

g(x)− f(x) is non-negative for all 0 ≤ i < k.

Proposition 3.4.9. For m ≤ n ≤ 3m−6
2

, let a and b be the integers which are
given as in (3.2.1). Then a2 > 4b.

Proof. Suppose that a2 ≤ 4b. By Proposition 3.4.4 (a), a ≥ 1, so we have
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b ≥ 1. Then by (3.3.14), we have

2n−2m∑
k=0

αk ω
k
1,0 ⪯ (1 + aω1,0 + b ω2

1,0)
n

⪯ (1 +
√
b ω1,0)

2n

(3.4.9)

in Z[ω1,0]
/
(ωm−1

1,0 ) . Comparing the coefficient of ω2n−2m
1,0 in both sides of

(3.4.9),

α2n−2m ≤
(

2n

2n− 2m

)
bn−m =

(
2n

2m

)
bn−m. (3.4.10)

By Lemma 3.4.7 and (3.4.10),

(2m− 4)!

(m− 2)!(m− 1)!
· bn−2 ≤

(
2n

2m

)
bn−m,

so we have

bm−2 ≤
(
2n

2m

)
· (m− 2)!(m− 1)!

(2m− 4)!

≤
(
3m− 6

2m

)
· (m− 2)!(m− 1)!

(2m− 4)!
(∵ n ≤ 2m; 2n ≤ 3m− 6)

=
(3m− 6)(3m− 7) · · · (2m+ 1)

(2m− 4)(2m− 5) · · · (m+ 3)
· (m− 2)(m− 3)(m− 4)

(m+ 2)(m+ 1)m
· (m− 5)

≤ 2m−6 · (m− 5).
(3.4.11)

Hence, we conclude that b ≤ 2.
Since m ≤ 3m−6

2
, we have m ≥ 6. By Proposition 3.4.4 (c), 2b < a2 ≤ 4b,

so the only possible pair (a, b) is (2, 1). Putting (a, b) = (2, 1) into (3.3.14), we
have

2n−2m∑
k=0

αk ω
k
1,0 = (1 + ω1,0)

2n−m+1(1− ω1,0) (3.4.12)

which is satisfied in Z[ω1,0]
/
(ωm−1

1,0 ) . Since 2n − 2m + 1 ≤ m − 2, we can
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compare the coefficient of ω2n−2m+1
1,0 in both sides of (3.4.12). Then we have

0 =

(
2n−m+ 1

2n− 2m+ 1

)
−
(
2n−m+ 1

2n− 2m

)
=

(
2n−m+ 1

2n− 2m+ 1

)(
1− 2n− 2m+ 1

m+ 1

)
.

So 2n−2m+1
m+1

= 1, that is, 3m = 2n (≤ 3m − 6) which implies a contradiction.
Hence, we conclude that a2 > 4b.
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Chapter 4

Characterization of linear
embeddings

Recall Main Theorem in Chapter 1, which characterizes linear embeddings of
Gr(2,m) into Gr(2, n).

Main Theorem. Let φ : Gr(2,m) ↪→ Gr(2, n) be a holomorphic embedding.

(a) If 9 ≤ m and n ≤ 3m−6
2

, then φ is linear.

(b) If 4 ≤ m and n = m + 1, then either φ is linear, or m = 4 and φ is a
composition of a linear embedding of Gr(2, 4) into Gr(2, 5) with a dual
map ϕ : Gr(2, 4) → Gr(2, 4).

Combining Main Theorem and Proposition 3.1.4, we have the following
corollary:

Corollary 4.0.1. Let φ : Gr(2,m) ↪→ Gr(2, n) be a holomorphic embedding.
Either if 9 ≤ m and n ≤ 3m−6

2
, or if 4 ≤ m and n = m+ 1, then the image of

φ equals Gr(2, H) for some m-dimensional subspace H of Cn.

Denote each assumption on Main Theorem as follows:

• General case : 9 ≤ m and n ≤ 3m−6
2

;

• Special case : 4 ≤ m and n = m+ 1.
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The chapter consists of two sections. In Section 4.1, we prove Main The-
orem for general case (Theorem 4.1.1) by applying W. Barth and A. Van
de Ven’s results (Proposition 2.2.3 and 2.2.4) to E = φ∗(Ě(2, n)). The up-
per bound of a (Proposition 4.1.2 (b)) makes it possible. In Section 4.2, we
prove Main Theorem for special case (Theorem 4.2.1) by comparing c2(N) with
e(NR) directly.

4.1 General case
In this section, we prove Main Theorem for the case when 9 ≤ m and n ≤ 3m−6

2
.

Theorem 4.1.1. If 9 ≤ m and n ≤ 3m−6
2

, then any embedding φ : Gr(2,m) ↪→
Gr(2, n) is linear.

Before proving Theorem 4.1.1, we first prove the following inequalities in
a and b:
Proposition 4.1.2. Under the same assumption with Theorem 4.1.1, we have
the following inequalities:

(a)
√
a2 − 4b < m−4

3
.

(b) a < m−4
2

.
Proof. (a) First, by Proposition 3.4.9, the expression

√
a2 − 4b is well defined.

By (3.3.14), we have(
2n−2m∑
k=0

αk ω
k
1,0

)
(1 + ω1,0)

m−1(1 + (4b− a2)ω2
1,0)

= (1 + aω1,0 + b ω2
1,0)

n(1− ω1,0)

which is satisfied in Z[ω1,0]
/
(ωm−1

1,0 ) . For convenience, let

m−2∑
k=0

Ak ω
k
1,0 :=

(
2n−2m∑
i=0

αi ω
i
1,0

)
(1 + ω1,0)

m−1;

m−2∑
k=0

Bk ω
k
1,0 := (1 + aω1,0 + b ω2

1,0)
n
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which are satisfied in Z[ω1,0]
/
(ωm−1

1,0 ) . Then we have

Ak+2 + (4b− a2)Ak = Bk+2 −Bk+1

for all 0 ≤ k ≤ m− 4. In particular, when k = 2n− 2m+ 2 (≤ m− 4),

A2n−2m+4 + (4b− a2)A2n−2m+2 = B2n−2m+4 −B2n−2m+3. (4.1.1)

Suppose that
√
a2 − 4b ≥ m−4

3
. We derive a contradiction by comparing

the signs of both sides of (4.1.1).

• Since Ak =
∑2n−2m

i=0 αi
(
m−1
k−i

)
for all k ≥ 2n− 2m, we have

(LHS) = A2n−2m+4 + (4b− a2)A2n−2m+2

=
2n−2m∑
i=0

αi

{(
m− 1

2n− 2m+ 4− i

)
− (a2 − 4b)

(
m− 1

2n− 2m+ 2− i

)}

=
2n−2m∑
i=0

αi

(
m− 1

2n− 2m+ 2− i

)
· Ci

where Ci := (−2n+3m−3+i)(−2n+3m−4+i)
(2n−2m+4−i)(2n−2m+3−i) − (a2 − 4b). Since

Ci ≤
(m− 3)(m− 4)

4 · 3
− (a2 − 4b)

≤ (m− 4)(−m+ 7)

36
< 0 (∵ m ≥ 9)

for all 0 ≤ i ≤ 2n − 2m and since αi ≥ 0 by Proposition 3.4.4 (d), the
left hand side of (4.1.1) is negative.
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• Since Bk =
∑⌊k/2⌋

i=0

(
n
i

)(
n−i
k−2i

)
ak−2i bi, we have

(RHS) =B2n−2m+4 −B2n−2m+3

≥
n−m+1∑
i=0

(
n

i

)
a2n−2m+3−2i bi·{(

n− i

2n− 2m+ 4− 2i

)
a−

(
n− i

2n− 2m+ 3− 2i

)}
=

n−m+1∑
i=0

(
n

i

)
a2n−2m+3−2i bi

(
n− i

2n− 2m+ 4− 2i

)
·Di

where Di := a− 2n−2m+4−2i
−n+2m−3+i

. Since

Di ≥
√
a2 − 4b− 2n− 2m+ 4

−n+ 2m− 3

≥ m− 4

3
− (3m− 6)− 2m+ 4

−3m−6
2

+ 2m− 3

(
∵ n ≤ 3m− 6

2

)
=
m− 4

3
− 2m− 4

m

=
(m− 5)2 − 13

3m
> 0 (∵ m ≥ 9)

for all 0 ≤ i ≤ n−m+1 and since a, b ≥ 0 by Proposition 3.4.4 (a), the
right hand side of (4.1.1) is positive.

As a result, the equality (4.1.1) does not hold, thus this implies a contra-
diction. Hence,

√
a2 − 4b < m−4

3
.

(b) Suppose that a ≥ m−4
2

. Then by (a),

a2 − 4b <
(m− 4)2

9
≤
(
2a

3

)2

. (4.1.2)
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Regard (3.3.14) as an equation over R. By (3.3.14) and (4.1.2), we have

2n−2m∑
k=0

αk ω
k
1,0 ⪯ (1 + aω1,0 + b ω2

1,0)
n

{
2m−4∑
i=0

( √
a2 − 4b ω1,0

)i}

⪯
(
1 +

a

2
ω1,0

)2n{2m−4∑
i=0

(
2a

3
ω1,0

)i} (4.1.3)

which is satisfied in R[ω1,0]
/
(ωm−1

1,0 ) . Comparing the coefficients of ω2n−2m
1,0 in

both sides of (4.1.3),

α2n−2m ≤
2n−2m∑
i=0

(
2n

i

)(a
2

)i(2a

3

)2n−2m−i

=

{
2n−2m∑
i=0

(
2n

i

)(
1

2

)i(
2

3

)2n−i
}

·
(
3

2

)2m

a2n−2m

≤

{
1

2

2n∑
i=0

(
2n

i

)(
1

2

)i(
2

3

)2n−i
}

·
(
3

2

)2m

a2n−2m (∵ 2n− 2m ≤ n)

=
81

32

(
1

2
+

2

3

)2n

·
(
3

2

)2m−4

a2n−2m

≤ 81

32

(
7

6

)3m−6

·
(
3

2

)2m−4

a2n−2m (∵ 2n ≤ 3m− 6)

=
81

32

(
73

96

)m−2

a2n−2m.

By Lemma 3.4.7, we have

(2m− 4)!

(m− 2)!(m− 1)!
· bn−2 ≤ 81

32

(
73

96

)m−2

a2n−2m. (4.1.4)
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By (4.1.2), b > 5
36
a2, so the left hand side of (4.1.4) satisfies

(2m− 4)!

(m− 2)!(m− 1)!
· bn−2 =

(2m− 4)(2m− 5) · · ·m
(m− 2)(m− 3) · · · 2

· bn−2

≥ 2m−3 ·
(

5

36

)n−2

a2n−4

≥ 2m−3 ·
(

5

36

)(3m−10)/2

a2n−4

(
∵ n ≤ 3m− 6

2

)
≥ 1

2

(
36

5

)2

· 2m−2 ·
(

5

36

)(3m−6)/2

a2n−4

> 24

(
5
√
5

3 · 62

)m−2

a2n−4,

thus,

24

(
5
√
5a2

3 · 62

)m−2

<
81

32

(
73

96

)m−2

.

So 5
√
5a2

3·62 ≤ 73

96
, that is, a2 ≤ 9·73

40
√
5
≃ 34.5137, thus a ≤ 5.

Since 4b < a2 < 36
5
b, the only possible pairs (a, b) are

(3, 2); (4, 3); (5, 4); (5, 5); (5, 6).

However they are all impossible by Lemma 4.1.4 which is provided later.
Hence, a < m−4

2
as desired.

Lemma 4.1.3. If m ≥ 7, then 12 divides ab (a2 − b+ 3).

Proof. By [Tan74, Lemma 4.10], if k ≥ 5 and E is a vector bundle on Pk of
rank 2 with

c(E) = 1 + αH + β H2

where H is a hyperplane of Pk, then αβ (α2 − β + 3) is divisible by 12. In our
case, Gr(2,m) contains a Schubert variety Y ≃ Pm−2 of type (m − 2, 0) and
the total Chern class of the restriction of E to Y is

c(E
∣∣
Y
) = 1 + aH + bH2.
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Since m− 2 ≥ 5, ab (a2 − b+ 3) is divisible by 12.

Lemma 4.1.4. The following pairs (a, b) of integers are impossible:

(a) (3, 2), (4, 3) and (5, 4) for m ≤ n ≤ 3m−4
2

;

(b) (5, 5) for 7 ≤ m ≤ n;

(c) (5, 6) for m ≤ n ≤ 3m−2
2

.

Proof. (a) In this case, a = b + 1 with b = 2, 3 or 4, so 1 + aω1,0 + b ω2
1,0 =

(1 + ω1,0)(1 + b ω1,0) and a2 − 4b = (b− 1)2. By (3.3.14), we have(
2n−2m∑
k=0

αk ω
k
1,0

)
(1− (b− 1)2 ω2

1,0)

= (1 + ω1,0)
n−m+1(1 + b ω1,0)

n(1− ω1,0)

(4.1.5)

which is satisfied in Z[ω1,0]
/
(ωm−1

1,0 ) . Comparing the coefficient of ω2n−2m+2
1,0

in both sides of (4.1.5),

− (b− 1)2 α2n−2m

=
n−m+1∑
k=0

(
n−m+ 1

k

){(
n

2n− 2m+ 2− k

)
b2n−2m+2−k

−
(

n

2n− 2m+ 1− k

)
b2n−2m+1−k

}
=

n−m+1∑
k=0

(
n−m+ 1

k

)(
n

2n− 2m+ 2− k

)
b2n−2m+1−k · Ak

(4.1.6)

where Ak := b − 2n−2m+2−k
−n+2m−1+k

. By Proposition 3.4.4 (d), the left hand side of
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(4.1.6) is non-positive. On the other hand, since

Ak ≥ b− 2n− 2m+ 2

−n+ 2m− 1

≥ b− (3m− 4)− 2m+ 2

−
(
3m−4

2

)
+ 2m− 1

(
∵ n ≤ 3m− 4

2

)
= b− 2m− 4

m+ 2

> 0 (∵ b = 2, 3 or 4)

for 0 ≤ k ≤ n−m+ 1, the right hand side of (4.1.6) is positive which implies
a contradiction.

(b) Since ab (a2 − b+ 3) = 25 · (25− 5 + 3) = 25 · 23 is not divisible by 12,
this case is impossible by Lemma 4.1.3.

(c) Since a2 − 4b = 1, we have by (3.3.14),

2n−2m∑
k=0

αk ω
k
1,0 ⪯ (1 + 5ω1,0 + 6ω2

1,0)
n

⪯
(
1 +

5

2
ω1,0

)2n
(4.1.7)

which is satisfied in Z[ω1,0]
/
(ωm−1

1,0 ) . Comparing the coefficient of ω2n−2m
1,0 in

both sides of (4.1.7),

α2n−2m ≤
(

2n

2n− 2m

)(
5

2

)2n−2m

=

(
2n

2m

)(
5

2

)2n−4(
2

5

)2m−4
(4.1.8)
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Applying Lemma 3.4.7 to (4.1.8),(
24

25

)n−2

≤
(
2n

2m

)
· (m− 2)!(m− 1)!

(2m− 4)!

(
2

5

)2m−4

≤2m−6 · (m− 5)

(
2

5

)2m−4

(∵ The same argument with (3.4.11))

=
m− 5

16

(
8

25

)m−2

.

(4.1.9)

But since n ≤ 3m−6
2

,

(
24

25

)n−2

≥
(
25

24

)2
{(

24

25

)3/2
}m−2

,

thus by (4.1.9), we have 48
√
6

125
=
(
24
25

)3/2 ≤ 8
25

which implies a contradiction.

Proof of Theorem 4.1.1. Let Y ≃ Pm−2 be a Schubert variety of Gr(2,m)

of type (m − 2, 0). Then the total Chern class of the restriction of E :=

φ∗(Ě(2, n)) to Y is
c(E

∣∣
Y
) = 1 + aH + bH2

where H is a hyperplane of Y . For any projective line ℓ in Y ,

(E
∣∣
Y
)
∣∣
ℓ
= E

∣∣
ℓ
≃ Oℓ(a1)⊕Oℓ(a2)

for some integers a1, a2 with a1 + a2 = a. Since (E
∣∣
Y
)
∣∣
ℓ

is generated by global
sections by Lemma 3.4.3, a1 and a2 are non-negative. So we have

B(E
∣∣
Y
) ≤ a− 0

2
<
m− 4

4

by Proposition 4.1.2 (b) (For the definition of B(E
∣∣
Y
), see (2.2.2)). Hence,

E
∣∣
Y

is decomposable by Proposition 2.2.3. Since Y ≃ Pm−2 is arbitrary, E is
either decomposable or isomorphic to E(2,m) ⊗ L for some line bundle L on
Gr(2,m) by Proposition 2.2.4.
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Case 1. E ≃ E(2,m)⊗ L : Let c(L) = 1 + r ω1,0 with r ∈ Z. Then

c(E(2,m)⊗ L) = 1 + (2r + 1)ω1,0 + r(r + 1)ω2
1,0 + ω1,1,

that is,
a = 2r + 1; b = r(r + 1); c = 1 (4.1.10)

with r ≥ 0 by Proposition 3.4.4 (a). After putting (4.1.10) into (3.3.14),
we have(

2n−2m∑
k=0

αk ω
k
1,0

)
(1 + ω1,0)

m = (1 + r ω1,0)
n(1 + (r + 1)ω1,0)

n (4.1.11)

which is satisfied in Z[ω1,0]
/
(ωm−1

1,0 ) . Comparing the coefficients of
ω2n−2m
1,0 in both sides of (4.1.11),

α2n−2m ≤
(

2n

2n− 2m

)
(r + 1)2n−2m =

(
2n

2m

)
(r + 1)2n−2m. (4.1.12)

By Lemma 3.4.7, we have

(r(r + 1))n−2 ≤
(
2n

2m

)
· (m− 2)!(m− 1)!

(2m− 4)!
· (r + 1)2n−2m

≤ 2m−6 · (m− 5)(r + 1)2n−2m

(∵ The same argument with (3.4.11)).

(4.1.13)

After dividing both sides of (4.1.13) by (r + 1)2n−2m,

rn−2(r + 1)−n+2m−2 ≤ m− 5

16
· 2m−2. (4.1.14)

Since −n+ 2m− 2 ≥ −
(
3m−6

2

)
+ 2m− 2 = m+2

2
> 0, we have

r2m−4 ≤ rn−2(r + 1)−n+2m−2. (4.1.15)

Combining (4.1.14) and (4.1.15), r2 ≤ 2, thus, r = 0 or 1.
If r = 1, then (a, b) = (3, 2) by (4.1.10), which is impossible by Lemma
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4.1.4 (a). Hence, r = 0.

Case 2. E ≃ L1 ⊕ L2 : Let c(L1) = 1 + r1 ω1,0 and c(L2) = 1 + r2 ω1,0 with
r1, r2 ∈ Z. Then

c(L1 ⊕ L2) = 1 + (r1 + r2)ω1,0 + r1r2 ω
2
1,0,

that is,
a = r1 + r2; b = r1r2; c = 0.

However by Proposition 3.4.5, c = 0 cannot be happened.

As a result, E ≃ E(2,m)⊗L where L is the trivial line bundle on Gr(2,m)

and thus (a, b, c) = (1, 0, 1). Hence, φ : Gr(2,m) ↪→ Gr(2, n) is linear by
Proposition 3.2.2.

4.2 Special case
In this section, we prove Main Theorem for the case when 4 ≤ m and n = m+1.

Theorem 4.2.1. Let φ : Gr(2,m) ↪→ Gr(2,m+ 1) be an embedding.

(a) If m = 4, then any embedding φ is either linear or twisted linear.

(b) If m ≥ 5, then any embedding φ is linear.

Since 9 ≤ m = n − 1 satisfies the conditions 9 ≤ m and n ≤ 3m−6
2

, the
result of Theorem 4.2.1 for that case is already verified and we do not have
to prove it again. However, we prove Theorem 4.2.1 for whole cases without
using any results in Section 4.1.

When m is too small, we cannot apply some results in Section 3.3 and 3.4.
But since rank(N) = 2 is small, we can compute the top Chern class of N and
the Euler class of NR by hand, and construct explicit Diophantine equations
in a, b and c.
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Proposition 4.2.2. Let m ≥ 4.

(a) The following two equations hold:(
m+ 1

2

)
(a− 1)2 + a2 − 1 + b (m− 3) = (a2 − b) d0 + b d1 (4.2.1)

and
c (m− 3)−m+ 4 = c (d1 − d0) (4.2.2)

where d0 := φ∗(ω̃m−1,m−3) and d1 := φ∗(ω̃m−2,m−2).

(b) If m ≥ 5, then c divides m− 4. Moreover, 2b+ 2c− a2 > 0 and c ≥ 1.

Proof. (a) By Note 3.3.1, c2(N) = e(NR), and we compute e(NR) and c2(N)

in Proposition 3.3.2 and Lemma 3.3.3, respectively. Comparing the coefficient
of ω2

1,0 (resp. ω1,1) in c2(N) with that in e(NR), we obtain the desired equation
(4.2.1) (resp. (4.2.2)).

(b) If m ≥ 5, then c divides m − 4 by (4.2.2) and in particular, c ̸= 0.
After dividing both sides of (4.2.2) by c,

m− 3− m− 4

c

= d1 − d0

= {(2b− a2)ω2
1,0 + 2c ω1,1}(b ω2

1,0 + c ω1,1)
m−3

= {(2b− a2)ω2,0 + (2b+ 2c− a2)ω1,1} (b ω2,0 + (b+ c)ω1,1)
m−3

=
m−3∑
i=0

(
m− 3

i

)
bi (b+ c)m−3−i·{

(2b− a2)ωi+1
2,0 ω

m−3−i
1,1 + (2b+ 2c− a2)ωi2,0 ω

m−2−i
1,1

}
.

(4.2.3)

Since m−3− m−4
c

≥ m−3− m−4
1

= 1, the right hand side of (4.2.3) is positive.
Furthermore, since b, b+ c, a2−2b ≥ 0 by Proposition 3.4.4 (a), (b), and since
ωi+1
2,0 ω

m−3−i
1,1 , ωi2,0 ω

m−2−i
1,1 ≥ 0, we have

2b+ 2c− a2 > 0.

Hence, c > 1
2
(a2 − 2b) ≥ 0 by Proposition 3.4.4 (b) again.
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Proof of Theorem 4.2.1. (a) Note that since ω4
1,0 = 2 and ω2

1,0 ω1,1 = 1 = ω2
1,1

in H8(Gr(2, 4),Z) ≃ Z,

d0 = b (a2 − b) + (b+ c) (a2 − b− c);

d1 = b2 + (b+ c)2.
(4.2.4)

By (4.2.1) and (4.2.2), we have

10 (a− 1)2 + a2 − 1 + b = (a2 − b) d0 + b d1 (4.2.5)

and
c = c (d1 − d0). (4.2.6)

Case 1. c ̸= 0 : By (4.2.4) and (4.2.6),

1 = d1 − d0

= b (2b− a2) + (b+ c) (2b+ 2c− a2).
(4.2.7)

Applying (4.2.7) to (4.2.5), we have

11a2 − 20a+ 9 + b = a2 d0 + b (d1 − d0)

= a2 d0 + b.
(4.2.8)

So a divides 9 and a2 divides −20a + 9, thus, a = 1. Furthermore, in
this case,

0 = d0 = −b2 + 2b+ c− (b+ c)2

by putting a = 1 into the first equation in (4.2.4), that is,

b (b− 1) = (b+ c) {1− (b+ c)} . (4.2.9)

Since the right hand side of (4.2.9) is less than or equal to 1
4
, b = 0 or 1.

The only possible pairs (b, c) satisfying (4.2.7) and (4.2.9) are (0, 1) and
(1,−1). Hence, (a, b, c) = (1, 0, 1) or (1, 1,−1).

Case 2. c = 0 : Applying (4.2.4) to (4.2.5), we have

10 (a− 1)2 + a2 − 1 + b = 2b
{
(a2 − b)2 + b2

}
. (4.2.10)
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Suppose that b > 0. After dividing both sides of (4.2.10) by b,

2b2

{(
a2

b
− 1

)2

+ 1

}
< 11 · a

2

b
+ 1,

that is,
2b2 t2 − (4b2 + 11) t+ 4b2 − 1 < 0 (4.2.11)

where t := a2

b
. The discriminant of (4.2.11) is

D = (4b2 + 11)2 − 4 · 2b2 · (4b2 − 1)

= −16b4 + 96b2 + 121

= −16(b2 − 3)2 + 265.

If b ≥ 3, then D < 0, so (4.2.11) is impossible. For b = 1 or 2, we can
show directly that (4.2.10) does not have any integral solution a. Hence,
b = 0 (= c), so a = 1 by (4.2.10).

By Proposition 3.2.2, if (a, b, c) = (1, 0, 1), then φ is linear and if (a, b, c) =
(1, 1,−1), then φ is twisted linear. To complete the proof, it suffices to show
that the pair (a, b, c) = (1, 0, 0) is impossible. In this case, by Lemma 3.3.3,
we have

c(N) = 1 + ω1,0 = c(E). (4.2.12)

After dividing both sides of (3.3.3) by (4.2.12), we have

(1− ω2
1,0)(1 + ω1,0 + ω1,1)

4 = (1 + ω1,0)
4(1− ω2

1,0 + 4ω1,1). (4.2.13)

Comparing the cohomology classes of degree 6 in (4.2.13),(
4

3

)
ω3
1,0+

(
4

2

)
· 2ω1,0 ω1,1−

(
4

1

)
ω3
1,0 =

(
4

3

)
ω3
1,0+

(
4

1

)
ω1,0 (−ω2

1,0+4ω1,1),

and from this, we have

(4 · 2 + 12− 4 · 2)ω2,1 = {4 · 2 + 4 · (−2 + 4)} ω2,1

because ω3
1,0 = 2ω2,1. Hence, this implies a contradiction.
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(b) By Proposition 3.4.4 (b), a2 − b ≥ b, so we have(
m+ 1

2

)
(a− 1)2 + a2 − 1 + b (m− 3)

≥ b (d0 + d1) (∵ Equation (4.2.1))
= a2 b ω2

1,0 (b ω
2
1,0 + c ω1,1)

m−3

≥ a2 bm−2 ω2m−4
1,0

(∵ b, c, ω2m−4−2i
1,0 ωi1,1 ≥ 0 by Proposition 3.4.4 (a),

4.2.2 (b) and Lemma 3.4.6)

=
(2m− 4)!

(m− 2)!(m− 1)!
· a2 bm−2 (∵ Lemma 3.4.6).

(4.2.14)

The left hand side of (4.2.14) is less than

a2
{(

m+ 1

2

)
+m− 2

}
because a2 ≥ b by Proposition 3.4.4 (a). After dividing both sides of (4.2.14)
by a2, (

m+ 1

2

)
+m− 2 ≥ (2m− 4)!

(m− 2)!(m− 1)!
· bm−2,

thus we have

b =

{
0 or 1, if m = 5 or 6

0, if m ≥ 7 .

Assume that b = 1 with m = 5 or 6. By Proposition 3.4.4 (b) and Propo-
sition 4.2.2 (b),

2 = 2b ≤ a2 < 2b+ 2c = 2 + 2c

and c (≥ 1) divides m − 4. The only possible pair (m, a, c) satisfying these
properties is (6, 2, 2). Apply (m, a, b, c) = (6, 2, 1, 2) to (4.2.14), then

27 =

(
7

2

)
+ 6 ≥ 8!

4! · 5!
· 4 = 56

which implies a contradiction.
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Assume that b = 0 with m ≥ 5. Then by (4.2.2),

c (m− 3)−m+ 4 = c (−a2 ω2
1,0 + 2c ω1,1) (c ω1,1)

m−3

= (2c− a2) cm−2

≥ cm−2 (∵ Proposition 4.2.2 (b)),

thus c = 1. By Proposition 4.2.2 (b), 2− a2 > 0, so a = 1.
Hence, (a, b, c) = (1, 0, 1) for m ≥ 5, thus any embedding φ : Gr(2,m) ↪→

Gr(2,m+ 1) is linear by Proposition 3.2.2.
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국문초록

이 논문에서는 복소 그라스만 다양체 Gr(2,m) 에서 복소 그라스만 다양체
Gr(2, n) 으로 가는 복소해석적 매장의 선형성에 대해 규명하고자 한다. 복소
그라스만 다양체 Gr(2, n) 위의 보편벡터다발의 쌍대벡터다발을, 주어진 매장
으로 끌어당긴 벡터다발을 E 라고 하면, 가능한 모든 E 의 전 천 특성류들을
조사함으로써 이러한 매장들에 대한 성질을 파악할 수 있다. 먼저, 앞으로의
논리를전개하는데유용하게사용될 Gr(2,m)의코호몰로지환의 Z-가군기저를
하나잡고, 모든코호몰로지류들은이기저에대한선형결합으로표현한다. 복소
그라스만 다양체 Gr(2,m) 에서 Gr(2, n) 으로 가는 각각의 복소해석적 매장에
대해, 벡터다발 E 의 전 천 특성류를 이 기저로 표현하면, 세 개의 정수계수를
가지는 선형결합으로 유일하게 쓸 수 있는데, 매장의 선형성은 이러한 정수들에
의해 완전히 결정된다. 주어진 매장으로부터 유도된 법벡터다발의 천 특성류와
오일러 특성류로부터, 3-변수 디오판토스 방정식들을 얻을 수 있고, 해석적벡
터다발의 천 특성류가 음이 아닐 판정 기준과 함께 이 방정식들을 풀면, 특정
정수의 상계를 비롯한, 세 개의 정수들이 만족해야 하는 몇 가지 조건들을 얻을
수 있다. 이 정수 상계로부터 W. Barth 와 A. Van de Ven 이 증명한 결과들을
벡터다발 E 에 적용할 수 있고, 복소 그라스만 다양체 Gr(2,m) 에서 Gr(2, n)

으로 가는 복소해석적 매장이 항상 선형이 되기 위한 m 과 n 의 조건들을 구할
수 있다.

주요어휘:복소그라스만다양체, 복소해석적매장, 슈베르트싸이클, 천 특성류
학번: 2009-22883
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