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Abstract

In this dissertation, we mainly focus on a kinetic Cucker–Smale–Fokker–

Planck (CS-FP) type equation with a degenerate diffusion coefficient. The

CS-FP equation is described in a differential equation for a probability distri-

bution function f of the infinitely many Cucker–Smale flocking particles in a

random environment. We will present a priori estimates for proving the global

existence of classical solutions to the CS-FP equation. The global existence of

classical solutions under a given sufficiently smooth initial datum will be ob-

tained by applying sobolev embedding theorem to the a priori estimates and

iterating the solutions of uniformly parabolic equations which approximates

the CS-FP equation. We also present the Cucker-Smale-Kuramoto model

which describes flocking and synchronization coupled phenomena. Sufficient

conditions for the asymptotic flocking and synchronization will be derived

with the Lyapunov functional approach. We provide the numerical compua-

tions for a special case to suggest the future works on clustering.

Key words: Cucker-Smale Model, Flocking, Cucker-Smale-Fokker-Planck

equation, Threshold phenomena, Cucker-Smale-Kuramoto equation, Synchro-

nization
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Chapter 1

Introduction

The collective behaviour among species on the earth, such as a swarm of

insects, a flight of birds, a school of fish, are often observed. Such groups

display arranged formations surprisingly in order and they travel without

scattering as if there are some governing rules. We call such phenomenon as

flocking. Flocking can be more precisely defined as a phenomenon in which

self-propelled particles organize into an ordered motion with only limited

environmental influences and simple rules. Flocking has drawn attention to

many mathematicians. Taking interactions into account, we now have sev-

eral models that intuitively make sense and fit into the phenomena. Flocking

is expected to be further applied to develop unmanned vehicles and sensor

networks etc. In this dissertation, the derivation of flocking model will be

discussed first and current and future work will be introduced. We mainly

take the Cucker and smale [13, 14]’s flocking model and its modified models.

The Cucker-Smale model(CS model) is a time-continuous first-order ODE

system with position and velocity variables. In this model, each agent is re-

garded as a point particle, so the volume is neglected. The time derivatives

of velocity variables in this dynamical system are expressed as an average

value of the other particles’ relative velocities multiplied by the communica-

tion weight coefficients, which depends on the distance of a pair of particles.

The communication weight tends to increase when two particles are located

close.

1



CHAPTER 1. INTRODUCTION

The dynamics in which multiplicative noise is grafted onto the C-S model

(2.1.2) is rewritten[2] as follows :
dxit = vitdt, t > 0, 1 ≤ i ≤ N,

dvit =
K

N

N∑
j=1

ψ(|xjt − xit|)(v
j
t − vit)dt+

√
2σ(vct − vit)dBt.

(1.0.1)

In case that the number of CS particles is large enough, the kinetic mean-

field model corresponding to (1.0.1), called the Cucker-Smale-Fokker-Planck

model(CS-FP model), for the one-particle distribution function is used to

further study its dynamics. The CS-FP model is described as follows. Let

f = f(x, v, t) be the one-particle distribution function of the CS ensemble.

The evolution of the kinetic density function f is governed by the following

Cauchy problem for the kinetic CS-FP equation:

∂tf + v · ∇xf +∇v · (L[f ]f) = σ∆v(|v − vc|2f), x, v ∈ Rd, t > 0,

L[f ](x, v, t) := −K
∫
R2d

ψ(|x− y|)(v − v∗)f(y, v∗, t)dv∗dy,
(1.0.2)

subject to suitable initial datum

f(x, v, 0) = f0(x, v),

∫
R2d

f0 = 1, (1.0.3)

whereK and σ are nonnegative constants that represent the coupling strength

and noise strength of noise in a random environment, respectively. vc is de-

fined as the average velocity, i.e.,

vc(t) :=

∫
R2d vfdvdx∫
Rd fdvdx

.

Note that vc is a conserved quantity along the dynamics in (1.0.2)–(5.1.3).

It will be shown.

The main purpose of this thesis is to classify the large-time dynamics of

the CS-FP equation in (1.0.2) depending on the relative ratio between the

coupling strength K and the diffusion coefficient σ.

2



CHAPTER 1. INTRODUCTION

There have been a lot of literatures that dealt with the flocking phe-

nomena: the global existence theories of classical solutions, measure-valued

solutions, weak solutions and their flocking estimates in [25, 27, 31, 32], the

rigorous mean-field limit from the particle system [8, 25], coupling with fluid

equations [3, 4, 9, 10], and the macroscopic C-S model and its asymptotic

justification [21, 22, 30].

In this thesis, we present the analysis of the CS-FP model and other

flocking dynamics in the following order: First, we introduce the a priori

asymptotic dynamics of (1.0.2) under an assumption of the positivity and

boundedness of the communication weight ψ. To measure the degree of ve-

locity alignment, we use the velocity variance of the kinetic density function

f , so that the velocity variance decay implies the formation of velocity align-

ment. In the course of the proof for Theorem 2.2.1, we derive an identity

representing the competition between the velocity alignment forcing and the

nonuniform diffusion. Thus, we have two dichotomies of the large-time be-

havior of the velocity variance.

Second, we present the global existence of classical solutions to the ki-

netic mean-field equation in (1.0.2). In Theorem 4.1.1, we show that the CS-

FP equation admits a global smooth solution for an Hk
α (k > d+2, α > d+2

2
)-

initial datum with finite mass and energy. The smallness of the initial datum

is not needed in the a priori estimate. Of course, we cannot expect a uniform

bound for the Hk
α-norm of f because we have the formation of the velocity

alignment for K � σ, which reflects the unlimited growth of the Hk
α-norm

of f .

The thesis after the introduction is organized as follows. In Chapter

2, we briefly discuss the flocking models. In Chapter 3, the Cucker-Smale

model with white noise is introduced. In Chapter 4, we present the global

Hk
α solvability of the CS-FP equation in (1.0.2)–(5.1.3) in a suitable admis-

sible function space using the energy method. In Chapter 5, we present the

Cucker-Smale model coupled with phase interaction. Numerical experiments

are included to supplement the future works. Finally, Chapter 6 is devoted

to a summary of our main results.

3



CHAPTER 1. INTRODUCTION

Notations for the CS-FP Equation: For a measurable function u =

u(x, v) in the phase space R2d, we set

‖u‖L1
2

:= ‖(1 + |v|2)u‖L1(R2d), ‖u‖2L2
α

:=

∫
R2d

(1 + |v|2)α|f |2dvdx, α ≥ 0,

‖u‖2Hk
α

:= ‖u‖2L2
α

+
∑

1≤i+j≤k

‖∂ix∂jvu‖2L2
α
, k ∈ N ∪ {0}.

For α = 0, we denote ‖u‖2
Hk := ‖u‖2

Hk
0
.

Notations for the CSK Equation: For x = (x1, · · · , xN), v = (v1, · · · , vN),

θ = (θ1, · · · , θN) and ω = (ω1, · · · , ωN), we set

‖x‖ :=
(∑N

i=1 |xi|2
) 1

2
, D(x) := max

1≤i,j≤N
‖xi − xj‖,

D(v) := max1≤i,j≤N ‖vi − vj‖, D(θ) := max
1≤i,j≤N

‖θi(t)− θj(t)‖,
D(ω) := max1≤i,j≤N ‖ωi − ωj‖.

4



Chapter 2

Preliminaries

In this chapter, we present Cucker-Smale flocking models from microscopic

to macroscopic scales [15] and relavent results from previous literatures. We

also consider how to transform the CS model with random communication

into a stochastic model with multiplicative noise.

2.1 The Cucker-Smale Model

2.1.1 The Vicsek Model

Vicsek et al presented a simple phase transition model in [43]. The model is

motivated from the effort to understand self-ordered behaviour of biological

systems such as clustering, migration, and various pattern formations. The

basic rule of the model is that at each time step the velocity of each particle

driven with a constant absolute velocity is updated according to the average

direction of the neighboring particles’ moves with some random perturbation

added. In this context, its neighborhood particles within radius r are involed

in the interaction.

The numerical simulations of the Vicsek model is conducted in [43] under

these conditions: i) Initially,N particles are randomly distributed in the cell(a

5



CHAPTER 2. PRELIMINARIES

square shaped cell of length L with periodic boundary).

ii) All the particles have the same absolute velocity value.

iii) The initial moving direction θ of each particle is randomly distributed,

and, at each time step, the moving direction and position are updated in the

following manner: {
xi(t+ 1) = xi(t) + vi(t)∆t,

θi(t+ 1) = 〈θ(t)〉r + ∆θ,
(2.1.1)

where 〈θ(t)〉r represents the average direction of the velocities of particles

within a neighborhood of radius r and ∆θ is chosen from a continuous uniform

distribution with a finite support [−η
2
, η
2
]. By changing three free parameters

such as a density ρ = N
L2 , noise η, and a velocity size |v|, Vicsek et al presents

orderedness for particles.

2.1.2 The Cucker-Smale Model

Felipe Cucker and Steve Smale suggested a Newton type microscopic model

for an interactive multiple number of particle system which present a flocking

phenomenon in their works [14]. Motivated by the work of Vicsek et al in

[43] , Cucker and Smale worked on sufficient conditions for an asymptotic

flocking in terms of interaction coefficients and initial configuration, and they

showed a rigorous flocking estimates. The Cucker-Smale model(C-S model)

is described as the system of ODEs for N−particles:
dxi
dt

= vi, t > 0, i = 1, ..., N,

dvi
dt

= K
N

∑N
j=1 ψ(|xj − xi|)(vj − vi),

(2.1.2)

where K and ψ(s) =
1

(1 + s2)
β
2

, β ≥ 0 represent a nonnegative coupling

strength and a communication weight reflecting the intensity of communica-

tion, respectively. We recall the definition of flocking:

6



CHAPTER 2. PRELIMINARIES

Definition 2.1.1. [2, 27] Let B = {(xi, vi)}Ni=1 be a solution to the deter-

ministic system (2.1.2). Then, the system B exhibits global (or mono-cluster)

flocking if and only if it satisfies the following two conditions.

1. The spatial diameter of B is uniformly bounded, i.e.,

sup
0≤t<∞

max
1≤i,j≤N

‖xj(t)− xi(t)‖ <∞. (2.1.3)

2. The velocity diameter of B tends to zero asymptotically, i.e.,

lim
t→∞

max
1≤i,j≤N

‖vj(t)− vi(t)‖ = 0, (2.1.4)

where | · | is the standard `2-norm in Rd.

Remark 2.1.1. when the conditions in (2.1.3) and (2.1.4) hold for a stochas-

tic interacting system almost surely, the system is said to be presenting the

strong stochastic flocking.

For an all-to-all case, the communication weight is ψ ≡ 1, i.e., β = 0. The

C-S model has been extensively studied in many literatures [13, 14, 25, 27, 2,

17, 24] etc, and in [...] it is verified that the threshold between a conditional

and unconditional flocking is β = 1. Under ψ is a long range interaction, i.e.,

β ≤ 1, flocking unconditionally occurs no matter how scarce the given initial

configuration is.

2.1.3 The Kinetic Cucker-Smale Model

As N grows sufficiently large, i.e., the CS system (2.1.2) is rewritten as a

partial differential equation for f = f(x, v, t), a one particle distribution

function, described as:{
∂tf + v · ∇xf +∇v · (F (f)f) = 0, x, v ∈ Rd, t > 0,

F (f)(x, v, t) = −K
∫
R2d ψ(|x− y|)(v − v∗)f(y, v∗, t)dv∗dy.

(2.1.5)

7



CHAPTER 2. PRELIMINARIES

Let us denote fN = fN(x1, ..., xN , v1, ..., vN , t) by the N−particle prob-

ability density function. The density function fN does not change its value

by interchanging any two space-phace arguments, i.e., for any j and k

fN(..., xj, ..., xk, ..., vj, ..., vk, ..., t) = fN(..., xk, ..., xj, ..., vk, ..., vj, ..., t)

holds. In [15], the time evolution of fN is written in a form of Liouville

equation as follows:

∂tf
N +

N∑
i=1

vi · ∇xif
N +

1

N

N∑
i=1

∇vi ·

(
N∑
j=1

ψ(|xi − xj|)(vj − vi)fN
)

= 0.

We set the marginal distribution f̂N = f̂N(x1, v1, t) as

f̂N(x1, v1, t) =

∫
R2d(N−1)

fN(x1, x−, v1, v−, t)dx−dv−,

with (x−, v−) := (x2, ..., xN , v2, ..., vN). We then obtain the kinetic C-S equa-

tion by integrating the above Liouville type equation with respect to (x−, v−)

and taking the mean-field limit N →∞.

The communication between particles can also be affected by their sur-

roundings. The roles of the environment can be subtle to be accurately mea-

sured. Using the stochastic noise, not only we take the environmental effect

into account, but also we present its indeterministic feature. Let xi and vi be

the position and velocity, respectively, of the i-th particle in Rd. Recall the

CS flocking model:

dxi
dt

= vi, t > 0, 1 ≤ i ≤ N,

dvi
dt

=
K

N

N∑
j=1

ψ̄(|xj − xi|)(vj − vi).

After Cucker and Smale’s seminal works in [13, 14], further extensions

of the CS model in (2.1.2) have been attempted in [8, 11, 12, 23, 24, 26]. Let

us now consider the case that the Gaussian white noise is involed in ψ̄ , so

that it is rewritten as

ψ̄(|xj − xi|) = ψ(|xj − xi|)︸ ︷︷ ︸
deterministic

+

√
2σ

K
ηt︸ ︷︷ ︸

random noise

, (2.1.6)

8



CHAPTER 2. PRELIMINARIES

with the d-dimensional Gaussian white noise ηt = (η1t , ..., η
d
t ) satisfying

〈dηit〉 = 0, 〈dηit, dηjs〉 = δijd(t ∧ s), 1 ≤ i, j ≤ N, t, s > 0.

Combined with the random communication part in (2.1.6), the C-S model in

(2.1.2) turns into the stochastic CS model with multiplicative noise [2]:

dxi = vidt, t > 0, 1 ≤ i ≤ N,

dvi =
K

N

N∑
j=1

ψ(|xj − xi|)(vj − vi)dt+
√

2σ(vc − vi)dBt,
(2.1.7)

where the average velocity vc is defined as

vc :=
1

N

N∑
j=1

vj.

Note that system in (2.1.7) conserves the total momentum. Hence, if asymp-

totic flocking occurs in the sense of Definition 2.1.1, then the flocking velocity

is given by the initial average velocity vc0, as in the original CS model [25, 27].

It is well known [2, 17, 24] that noise can stabilize and destabilize determin-

istic dynamical systems depending on its type. For example, additive noise

destabilizes flocking states in the C-S model, whereas multiplicative noise can

stabilize flocking states (see [2, 12, 24]). For the reader’s interest, we quote

the stabilization result of multiplicative noise in C-S flocking without proof.

Remark 2.1.2. If the conditions in (2.1.3) and (2.1.4) hold a.s. for a stochas-

tic interacting system, then we say that strong stochastic flocking occurs.

2.2 The Cucker-Smale-Fokker-Planck Equa-

tion

In this subsection, we study the estimates for the conservation laws and

the exponential flocking estimate in (1.0.2). Recall that the kinetic CS-FP

equation is written as follows:{
∂tf + v · ∇xf +∇v · (L[f ]f) = σ∆v(|v − vc|2f), x, v ∈ Rd, t > 0,

L[f ](x, v, t) = −K
∫
R2d ψ(|x− y|)(v − v∗)f(y, v∗, t)dv∗dy,

9



CHAPTER 2. PRELIMINARIES

subject to an initial datum

f(x, v, 0) = f0(x, v),

∫
R2d

f0(x, v)dxdv = 1.

Lemma 2.2.1. (Conservation laws) Let f = f(x, v, t) be a smooth solution

to the CS-FP equation (1.0.2)–(5.1.3) which vanishes at infinity and has the

finite first moments, i.e.,∫
R2d

(1 + |v|)f0(x, v)dvdx < +∞, t ≥ 0.

Then, the total mass and total momentum are conserved:

d

dt

∫
R2d

fdvdx = 0,
d

dt

∫
R2d

vfdvdx = 0 t > 0.

Proof. The equation in (1.0.2) can be written in a divergent form:

∂tf +∇x · (vf) +∇v ·
[
L[f ]f − σ∇v(|v − vc|2f)

]
= 0. (2.2.8)

In order to obtain the conservation of mass, we integrate (2.2.8) with respect

to (x, v). For the conservation of momentum, we first multiply the CS-FP

equation(1.0.2) by v, so that we find the local balanced law for vf :

∂t(vf) +∇x · (v ⊗ vf) +∇v ·
[
v ⊗ (L[f ]f)− σv ⊗∇v(|v − vc|2f)

]
= L(f)f − σ∇v(|v − vc|2f).

(2.2.9)

By integrating the above the relation (2.2.9) with respect to (x, v) and as-

signing the definition of L(f), i.e.,∫
R2d

L(f)fdvdx = −K
∫
R4d

ψ(|x−y|)(v−v∗)f(y, v∗, t)f(x, v, t)dvdv∗dydx = 0

to the relation, we derive the conservation of total momentum.

We define a functional F(f) so that the velocity variance of the kinetic

density function f is measured:

F(f(t)) :=

∫
R2d

|v − vc(t)|2fdvdx =

∫
R2d

|v − vc(0)|2fdvdx,

10
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where vc(t) = vc(0), t > 0 due to the conservation of momentum. Note that

the zero convergence of F(f(t)) as t→∞ is interpreted as the formation of

velocity alignment in probability. The connection between the zero conver-

gence of F(f(t)) and the probabilistic velocity alignment is easily shown by

the Chebyshev inequality as the following: let us define f(t) as a probability

density function in (x, v). For any ε > 0, we have

F(f(t)) =

∫
R2d

|v − vc(t)|2fdvdx

≥
∫
|v−vc(0)|>ε

|v − vc(0)|2fdvdx

≥ ε2
∫
|v−vc(0)|>ε

fdvdx = ε2P[|v − vc(0)| > ε].

This yields the following inequality:

lim
t→∞

P[|v − vc(0)| > ε] ≤ 1

ε2
lim
t→∞
L(f(t)) = 0.

The first main result in this thesis is the asymptotic threshold phenomenon

of F depending on the relative strengths between K and σ.

Theorem 2.2.1. Suppose that the communication weight function ψ is pos-

itive and bounded below and above, i.e., there exists positive constants ψM
and ψm satisfying

ψm ≤ ψ(s) ≤ ψM , s ≥ 0.

In addition, let f = f(x, v, t) be a classical solution to (1.0.2) which quickly

vanishes at infinity and satisfies the finite second moments∫
R2d

(1 + |v|2)f(x, v, t)dvdx <∞, t ≥ 0.

i) For K >
dσ

ψm‖f0‖L1

, there is a positive constant Km := 2 (Kψm‖f0‖L1 − dσ)

which satisfies

F(f(t)) ≤ F(f0)e
−Kmt, t ≥ 0.

ii) If K <
dσ

ψM‖f0‖L1

, there is a positive constant KM := 2 (dσ −KψM‖f0‖L1)

which satisfies

F(f(t)) ≥ F(f0)e
KM t, t ≥ 0.

11
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Proof. First, let us multiply (1.0.2) by |v − vc|2 in order to obtain

∂t(|v − vc|2f) +∇x · (v|v − vc|2f)

+∇v ·
(
|v − vc|2L(f)f − σ|v − vc|2∇v(|v − vc|2f) + 2σ(v − vc)|v − vc|2f

)
= 2(v − vc) · (L(f)f) + 2dσ|v − vc|2f.

(2.2.10)

We then integrate the relation in (2.2.10) to obtain

d

dt

∫
R2d

|v−vc|2fdvdx = 2

∫
R2d

(v−vc)·(L(f)f)dvdx+2dσ

∫
R2d

|v−vc|2fdvdx.

(2.2.11)

Note that, by exchanging v and v∗, the first term on the right side of (2.2.11)

is rewritten as∫
R2d

(v − vc) · (L(f)f)dvdx

= −K
∫
R4d

ψ(|x− y|)(v − vc) · (v − v∗)f(y, v∗, t)f(x, v, t)dv∗dvdydx

= K

∫
R4d

ψ(|x− y|)(v∗ − vc) · (v − v∗)f(y, v∗, t)f(x, v, t)dv∗dvdydx

= −K
2

∫
R4d

ψ(|x− y|)|v − v∗|2f(y, v∗, t)f(x, v, t)dv∗dvdydx.

(2.2.12)

We combine (2.2.11) and (2.2.12) to obtain a dissipation estimate for F(f(t)):

d

dt

∫
R2d

|v − vc|2fdvdx

= −K
∫
R4d

ψ(|x− y|)|v − v∗|2f(y, v∗, t)f(x, v, t)dv∗dvdydx

+ 2dσ

∫
R2d

|v − vc|2fdvdx.

(2.2.13)

In (2.2.13), we now take the lower bound for ψ to derive the corresponding

12
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Gronwall’s inequality for F :

d

dt

∫
R2d

|v − vc|2fdvdx ≤ −2(Kψm‖f0‖L1 − dσ)

∫
R2d

|v − vc|2fdvdx

= −Km

∫
R2d

|v − vc|2fdvdx,

(2.2.14)

where Km := 2 (Kψm‖f0‖L1 − dσ) . Meanwhile, we take the upper bound for

ψ to derive

d

dt

∫
R2d

|v − vc|2fdvdx ≥ −2(KψM‖f0‖L1 − dσ)

∫
R2d

|v − vc|2fdvdx

= KM

∫
R2d

|v − vc|2fdvdx,

(2.2.15)

where KM := 2 (dσ −KψM‖f0‖L1). (2.2.14) and (2.2.15) lead to the desired

flocking estimate.

Remark 2.2.1. 1. The results in Theorem 2.2.1 suggest the possible existence

of a critical coupling strength Kc from the diffusing phase to the flocking phase

as we increase the coupling strength. In fact, for the all-to-all coupling case

ψ = 1, such a critical coupling strength Kc is exactly given by the value dσ
‖f0‖L1

,

and we have the following threshold phenomenon:

lim
t→∞
F(f(t)) =


∞ K < Kc, subcritical regime,

F(f0) K = Kc, critical regime,

0 K > Kc, supercritical regime.

This phenomenon is reminiscent of the existence of a critical coupling strength

from the incoherent state (disordered phase) to the partially ordered state in

Kuramoto synchronization [1].

2. Note that the asymptotic formation of flocking states containing the factor

δ(· − vc(0)) is mainly due to the nonuniform diffusion coefficients σ|v|2 in

(1.0.2). For the additive white noise case, the formation of flocking is not

13
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possible. This can be easily seen from the following kinetic CS-FP equation

from [6]:

∂tf + v · ∇xf +∇v · (L[f ]f) = σ∆vf. (2.2.16)

For the all-to-all coupling case ψ = 1 and suitable normalization conditions:∫
R2d

fdvdx = 1,

∫
R2d

vfdvdx = 0,

the linear alignment forcing term L[f ] becomes linearly damped:

L[f ](x, v, t) = −Kv.

Thus, the equation in (2.2.16) becomes a linear Vlasov–Fokker–Planck equa-

tion:

∂tf + v · ∇xf = ∇v · (Kvf + σ∇vf).

Then, it is easy to check that the above equation has a space-homogeneous

equilibrium f∞:

f∞(v) = e−
K
2σ
|v|2 , v ∈ Rd;

thus, there is no emergent velocity alignment for any positive K.

Lemma 2.2.2. Let f = f(x, v, t) be a classical solution to (1.0.2) that quickly

decays to zero at infinity and satisfies the finite second moments:∫
R2d

vfdvdx = 0 and

∫
R2d

(1 + |v|2)fdvdx <∞, t ≥ 0.

Then, we have

(i) ‖∇v · L[f ]‖L∞ ≤ dK‖ψ‖L∞‖f0‖L1 ,

(ii) ‖|v|f‖L1 ≤ e−
Kmt

2

√
‖f0‖L1‖|v|2f0‖L1 .

Here Km is a constant appearing in Theorem 2.2.1.

Proof. (i) For the first estimate, we use the definition of the linear operator

L[f ] in (1.0.2) and use Lemma 2.2.1 to obtain

|∇v · L[f ]| =
∣∣∣∣dK ∫

R2d

ψ(|x− y|)f(y, v∗, t)dv∗dy

∣∣∣∣
≤ dK‖ψ‖L∞‖f(t)‖L1 = dK‖ψ‖L∞‖f0‖L1 .

14
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(ii) We use the Cauchy–Schwarz inequality to obtain

‖|v|f‖L1 ≤
√
‖f‖L1‖|v|2f‖L1 ≤ e−

Kmt
2

√
‖f0‖L1‖|v|2f0‖L1 .

15



Chapter 3

The Cucker-Smale Model with

White Noise

In this chapter, we summarize the results of the CS model with additive noise

and multiplicative noise which appeared in [24] and [2], respectively.

3.1 The Additive Noise Case

The C-S flocking with additive noise is discussed in [24]. The dynamics of

N particles are described in terms of position and velocity, (xi(t), vi(t)) ∈
Rd × Rd, as follows:

dxi = vidt,

dvi =
K

N

N∑
j=1

ψ(|xi − xj|)(vj − vi)dt+
√
DdWi(t),

(3.1.1)

subject to deterministic initial data (xi(0), vi(0)), i = 1, ..., N. Here dWi(t) is

the d-dimensional Brownian motion satisfying 〈dW a(t)〉 = 0, 〈dW a
i (t)dW b

j (s)〉 =

δ(a − b)δ(i− j)d(t ∧ s), 〈·〉 : ensemble average. In this system, K is inter-

preted as a repulsive coupling constant if K < 0 and a attractive coupling

constant if K > 0. The concept of asumptotic flocking is expressed as

16
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Definition 3.1.1. [24] The system (3.1.1) exhibits a (time-asymptotic) flock-

ing if and only if {(xi, vi)}Ni=1 satisfy the two conditions:

i) For any 1 ≤ i, j ≤ N, the expectation differences of the pairwise

velocity asymptotically vanish, i.e.,

lim
t→∞
|〈vi(t)〉 − 〈vj(t)〉| = 0,

ii) For any 1 ≤ i, j ≤ N, the average diameter of a group is uniformly

bounded in t, i.e.,

sup
0≤t<∞

|〈xi(t)〉 − 〈xj(t)〉| <∞.

By setting the following notations as

xc :=
1

N

N∑
i=1

xi, vc :=
1

N

N∑
i=1

vi, x̂i = xi − xc, v̂i = vi − vc,

we will analyze the system both macroscopically and microscopically.

We notice that the macroscopic quantities(ensemble averages) satisfy dxc = vcdt

dvc =

√
D

N

∑N
i=1 dWi(t).

The main macroscopic analysis is the following:

Proposition 3.1.1. [24] Let (xc, vc) satisfy the above system of equations

and a ∈ 1, ..., d. Then we have

i) 〈vc(t)〉 = vc(0), var[vac (t)] =
Dt

N
,

ii) 〈xc(t)〉 = xc(0) + tvc(0), var[xac(t)] =
Dt2

2N
.

Remark 3.1.1. From the proposition, we find the average macroscopic ve-

locity converges to vc(0) as the number of agents increases.

vc(t)− vc(0)→ 0, a.s.

17
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The microscopic quantities(fluctuations), on the other hand, satisfy
dx̂i = v̂idt,

dv̂i =
K

N

N∑
j=1

ψ(|x̂i − x̂j|)(v̂j − v̂i)dt+
√
D

(
1− 1

N

)
dWi −

√
D

N

∑
i 6=j

dWj,

with the initial data (x̂i(0), v̂i(0)) and their zero sum constraint∑
x̂i(0) =

∑
v̂i(0) = 0, t ≥ 0.

The momentum is conserved. The authors in [24] provide the following propo-

sition:

Proposition 3.1.2. [24] Let (x̂i, v̂i) satisfy the above microscopic system of

equations when ψ ≡ 1. Let v̂ai and x̂ai be a-th components of each vector. Then

for 1 ≤ i, j ≤ N and 1 ≤ a ≤ d, the followings hold: for t ≥ 0,

i) 〈v̂ai (t)〉 = e−Ktv̂ai (0),

ii) var(v̂ai (t)) =
D

2K

(
1− 1

N

)
(1− e−2Kt),

iii) |〈v̂ai (t)〉 − 〈v̂aj (t)〉| = e−Kt|〈v̂ai (0)〉 − 〈v̂aj (0)〉|,

iv) 〈|v̂ai (t)− v̂aj (t)|2〉 = e−2Kt|v̂ai (0)− v̂aj (0)|2 +
D

K
(1− e−2Kt).

From this proposition, we find the variance of the velocity perturbation does

not disappear as time goes to ∞. In the next theorem, the flocking estimate

in all-to-all interaction case (ψ ≡ 1) is covered.

Theorem 3.1.1. [24] Assume (x̂i, v̂i) be a solution to the above microscopic

system of equations when ψ ≡ 1. Then we obtain,

i) lim
t→∞
|〈v̂i(t)〉 − 〈v̂j(t)〉| = 0, sup

0≤t<∞
|〈x̂i(t)〉 − 〈x̂j(t)〉| <∞,

ii) limt→∞ P(|v̂i(t)− v̂j(t)|2 > ε) ≤ D

Kε
, for any ε > 0.
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The authors in [24] try to extend this result to radially symmetric com-

munication weight case when ψ has a nonnegative lower bound condition.

Using energy estimates, the following theorem is derived.

Theorem 3.1.2. [24] Let(xi, vi) be a solution to the microscopic system with

a nonnegative communication weight ψ(r), which is nonincreasing in r ∈ R
and uniformly bounded below by ψ∗ ≥ 0 for any t > 0. Let us define X and

V as X (t) :=
∑N

i=1 ‖xi(t)‖2, V(t) :=
∑N

i=1 ‖vi(t)‖2.Then (X ,V) satisfies

dX ≤ 2
√
X
√
Vdt, t > 0,

dV ≤ −2Nψ(2X )Vdt+ dD

(
1− 1

N

)
dt

+
√
D

N∑
i=1

vi ·

[(
1− 1

N

)
dWi −

√
D

N

∑
j 6=i

dWj

]
.

Moreover,

〈V(t)〉 ≤ 〈V(0)〉e−2Nψ∗t +
dD

2Nψ∗

(
1− 1

N

)
(1− e−2Nψ∗t).

Remark 3.1.2. Unless D = 0, the asymptotic flocking is not guaranteed.

However, this theorem implies the uniform boundedness for the variance of

fluctuations

lim
t→∞

V ar(vai (t)) ≤
dD

2Nψ∗
,

where vai is the a-th component of vi.

3.2 The Multiplicative Noise Case

The C-S flocking with multiplicative noise is discussed in [2]. The dynamics

of N particles are described in terms of position and velocity, (xi(t), vi(t)),

as follows:
dxi = vidt, t > 0,

dvi =
K

N

N∑
j=1

ψ(|xi − xj|)(vj − vi)dt+D(vi − ve)dW (t),
(3.2.2)

19



CHAPTER 3. THE CUCKER-SMALE MODEL WITH WHITE NOISE

with a d−dimensional constant state ve. Here dW (t) is the one-dimensional

Brownian motion satisfying 〈dW (t)〉 = 0, 〈dW (t)dW (s)〉 = δ(t − s), 〈·〉 :

ensemble average. In this system, K is interpreted as a repulsive coupling

constant if K < 0 and a attractive coupling constant if K > 0. The definition

of the strong stochastic flocking is expressed as

Definition 3.2.1. [24] The system (3.2.2) exhibits an asymptotic strong

stochastic flocking if and only if {xi, vi}, i = 1, ..., N satisfy the two

conditions:

1. For any 1 ≤ i, j ≤ N, the pairwise velocity differences asymptotically

vanish, i.e.,

lim
t→∞
|vi(t)− vj(t)| = 0, a.s.

2. For any 1 ≤ i, j ≤ N, the diameter of a group is uniformly bounded in

t, i.e.,

sup
0≤t<∞

|xi(t)− xj(t)| <∞, a.s.

We notice that the macroscopic quantities(ensemble averages) satisfy{
dxc = vcdt

dvc = D(vc − ve)dW (t).

The main macroscopic analysis is as follows:

Proposition 3.2.1. [2] Let (xc, vc) satisfy the above system of equations.

Then there exists T > 0 such that

i) 〈vc(t)− ve〉 = 0, 〈xc(t)− xc(0)〉 = vc(0)t,

ii) |vc(t)− ve| = |vc(0)− ve| exp {−(D2/2)t+DW (t)},

iii) |xc(t)− xc(0)− tve| ≤ C|vc(0)− ve|, where C = C(T,D).

From the proposition, we figure out the ensemble average of velocity goes to

zero in time, and the distance between xc(t) and xc(0) + tve does not blow

up at any t > 0.
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The microscopic quantities(fluctuations), on the other hand, satisfy
dx̂i = v̂idt, t > 0,

dv̂i =
K

N

N∑
j=1

ψ(|x̂i − x̂j|)(v̂j − v̂i)dt+Dv̂idW (t),

with zero sum constraint∑
x̂i =

∑
v̂i = 0, t ≥ 0.

The authors of [2] also provide the corresponding proposition as follows:

Proposition 3.2.2. [2] Let (xc, vc) satisfy the above microscopic system of

equations. Let vai and xai be a-th components of each vector. Then for 1 ≤
i, j ≤ N and 1 ≤ a ≤ d, the followings hold:

i) 〈v̂ai (t)〉 = e−Ktv̂ai (0), V ar(v̂ai (t)) = e−2Kt(eD
2t − 1)(v̂ai (0))2,

ii) |〈v̂ai (t)〉 − 〈v̂aj (t)〉| ≤ e−Kt|〈v̂ai (0)〉 − 〈v̂aj (0)〉|,
〈|v̂ai (t)− v̂aj (t)|2〉 ≤ e−(2K−D

2)t|v̂ai (0)− v̂aj (0)|2.

From this proposition, we find the velocity perturbation exponentially dimin-

ishes in time provided that K > D2

2
.

Theorem 3.2.1. [2] Suppose the coupling constant K and noise coefficient

D satisfy K >
D2

2
, and let (x̂i, v̂i) be a solution to the above microscopic sys-

tem with bounded initial data. Then the asymptotic strong stochastic flocking

occurs. To be more specific,

i) limt→∞ |v̂i(t)− v̂j(t)| = 0, sup0≤t<∞ |x̂i(t)− x̂j(t)| <∞, and

ii) limt→∞ P(|v̂i(t)− v̂j(t)|2 > ε) = 0, for any ε > 0,

hold.

In the next theorem, under radially symmetric communication weight

ψ with nonnegative lower bound condition, the asymptotic strong stohastic

flocking of (xi, vi) is derived.
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Theorem 3.2.2. [2] Let(x̂i, v̂i) be a solution of the microscopic system with

a nonnegative communication weight ψ(r), which is nonincreasing in r ∈ R
and bounded below by ψ̄∗ ≥ 0. Then the asymptotic strong stochastic flocking

occurs:

i) limt→∞ |vi(t)− vj(t)| = 0, for any 1 ≤ i, j ≤ N,

ii) sup0≤t<∞ |xi(t)− xj(t)| <∞, for any 1 ≤ i, j ≤ N .
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Chapter 4

Wellposedness of the Cucker-

Smale-Fokker-Planck Equation

In this chapter, we aim to prove the global existence of classical solution to

the CS-FP equation. We first present a priori Hk
α−estimates and then show

the local existence of the solution to extend the argument to the global sense.

Furthermore, the estimates of a solution to the Cucker-Smale-Mckean-

Vlasov equation will be also discussed. The contents of this chapter are based

on a joint work with Ha, S-Y, Noh, S-E, and Xiao, Q-H [20].

4.1 Estimates of Classical Solutions

In this section, the global existence of classical solutions to the Cauchy prob-

lem of the CS-FP equation with vc = 0 will be mainly verified. Consider the

Cauchy problem as follows:
∂tf + v · ∇xf + divv(L[f ]f) = σ∆v(|v|2f), x, v ∈ Rd, t > 0,

L[f ](x, v, t) = −K
∫
R2d

ψ(|x− y|)(v − v∗)f(y, v∗, t)dv∗dy,

f(x, v, 0) = f0(x, v).

(4.1.1)
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We begin this section by recalling the definition of a classical solution to

(4.1.1).

Definition 4.1.1. Let f = f(x, v, t) be a classical solution in Rd × Rd × I,

for an interval I ⊂ (0,∞), of (4.1.1) with a nonnegative datum f0 if and

only if the following conditions hold.

1. f is continuous in Rd×Rd×I and continuously differentiable once with

respect to (x, t) and continuously differentiable twice with respect to v.

2. For all x, v ∈ Rd and t ∈ I,

(y, v∗)→ ψ(|x− y|)(v − v∗)f(y, v∗, t) ∈ L1(Rd × Rd).

3. f satisfies the equation in (4.1.1) in a pointwise sense and f |t=0 = f0.

Let us now define a function space in which we will look for a classical

solution. For T > 0, we set

Xk,α(T ) :=

{
f ∈ C(0, T ; (Hk

α ∩ L1
2)(R2d)) : sup

t∈[0,T )
(||f(t)||Hk

α
+ ||f(t)||L1

2
) <∞

}
.

The global existence of classical solutions is one of the main results in

this thesis. This is described as follows:

Theorem 4.1.1. Let T ∈ (0,∞) be a given constant. We assume that the

initial datum f0 satisfies

f0 ∈ Hk
α ∩ L1

2(R2d), for some positive constants k > 2 + d and α >
d+ 2

2
.

Then, there exists a unique global classical solution to the Cauchy problem in

(4.1.1) in the function space Xk,α(T ).

Remark 4.1.1. The standard Sobolev imbedding theorem implies that

||f(t)||Hk <∞, k > 2 + d =⇒ ||f(t)||C2 <∞

holds. The unique solution in Theorem 4.1.1 is a classical solution we look for.

In the next two subsections, we exhibit a priori estimates and the local

existence to prove Theorem 4.1.1.
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4.1.1 A priori Estimates

In this subsection, we study the a priori Hk
α− estimates for the solution to the

Cauchy problem in (4.1.1). For simplicity, we introduce simplified notation

for the L2
x,v-norm as follows:

‖g‖ := ‖g‖L2 , ‖g‖α := ‖g‖L2
α
.

Lemma 4.1.1. (Zeroth-order estimate) Let a constant T ∈ (0,∞] be given.

We denote f ∈ Xk,α(T ) as a classical solution to (4.1.1) in [0, T ). There is

a constant C0 = C0(d,K, σ, α, ‖ψ‖L∞ , ‖f0‖L1) satisfying

‖f‖2α + σ

∫ t

0

‖|v|∇vf(s)‖2αds ≤ C0e
C0t‖f0‖2α, t ∈ [0, T ).

Proof. In the first chapter, we defined ‖f‖α as

‖f‖2α =

∫
R2d

(1 + |v|2)α|f |2dvdx.

We recall the CS-FP equation (4.1.1) in [0, T ) as follows:

∂tf + v · ∇xf +∇v · (L[f ]f) = σ∆v(|v − vc|2f), x, v ∈ Rd, 0 < t < T,

L[f ](x, v, t) = −K
∫
R2d

ψ(|x− y|)(v − v∗)f(y, v∗, t)dv∗dy,

subject to an initial datum

f(x, v, 0) = f0(x, v),

∫
R2d

f0 = 1.

We now present the estimate in two cases.

Case 1 (α = 0): Multiplying (4.1.1) by 2f , we obtain

∂t
(
f 2
)

+∇x ·
(
vf 2
)

+∇v ·
[
f 2L[f ]− 2σf∇v(|v|2f)

]
+ 2σ|v|2|∇vf |2

= f 2∇v · L[f ]− 4σfv · ∇vf

(4.1.2)
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from (4.1.1). Applying the Cauchy–Schwarz inequality and the result in

Lemma 2.2.2(i) to the integration of (4.1.2) with respect to (x, v), an in-

equality is derived as follows:

d

dt
‖f‖2 + 2σ‖|v|∇vf‖2 ≤

∫
R2d

f 2|∇v · L[f ]|dvdx+ 4σ

∫
R2d

|fv · ∇vf |dvdx

≤ dK‖f0‖L1‖ψ‖L∞‖f‖2 + σ‖|v|∇vf‖2 + 4σ‖f‖2.

Furthermore, the Gronwall’s inequality for ‖f‖2 yields

d

dt
‖f‖2 + σ‖|v|∇vf‖2 ≤ ((dK‖f0‖L1‖ψ‖L∞ + 4σ)t) ‖f‖2, t ∈ (0, T ),

which implies

‖f(t)‖2 ≤ ‖f0‖2e(dK‖f0‖L1‖ψ‖L∞+4σ)t. (4.1.3)

Case 2 (α > 0): Let us now consider the weighted estimate. We, in this case,

multiply (4.1.2) by (1 + |v|2)α, so that the following is acquired:

∂t
[
(1 + |v|2)αf 2

]
+ 2σ|v|2(1 + |v|2)α|∇vf |2 + 8σα|v|2(1 + |v|2)α−1f 2

+∇x ·
[
v(1 + |v|2)αf 2

]
+∇v ·

{
(1 + |v|2)α

[
Kf 2L[f ]− 2σf∇v(|v|2f)

]}
= (1 + |v|2)αf 2∇v · L[f ] + 2α(1 + |v|2)α−1f 2v · L[f ]

−4σ(1 + |v|2)α−1[1 + (1 + α)|v|2]fv · ∇vf.

Integrating the above equality with respect to (x, v) and using the simplified

notation for ‖f‖α, we derive the following inequality:

d

dt
‖f‖2α + 2σ‖|v|∇vf‖2α + 8σα‖|v|f‖2α−1

≤ K‖f‖2α‖∇v · L[f ]‖L∞ + 2Kα

∫
R2d

(1 + |v|2)α−1f 2|v · L[f ]|dvdx

+ 4σ(1 + α)‖f‖α‖|v|∇vf‖α
=: J11 + J12 + J13.

(4.1.4)
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(Estimates of J1i, i = 1, 2, 3): From the result in lemma 2.2.2 (i) and the

Cauchy-Schwartz inequality, we derive

J11 + J13 ≤ K‖ψ‖L∞‖f0‖L1‖f‖2α + σ‖|v|∇vf‖2α + 4σ(1 + α)2‖f‖2α. (4.1.5)

In order to deal with the second term J12, we combine the definition of L[f ],

Lemma 2.2.2 and (4.1.3), so that we obtain the following estimate:

J12 = 2Kα

∫
R2d

(1 + |v|2)α−1f 2v ·
[∫

R2d

ψ(|x− y|)(v∗ − v)f(y, v∗, t)dv∗dy

]
dvdx

≤ 2Kα

∫
R2d

(1 + |v|2)α−1f 2|v|
[∫

R2d

ψ(|x− y|)|v∗|f(y, v∗, t)dv∗dy

]
dvdx

≤ 2Kα‖ψ‖L∞‖f‖
2α−1
α

α ‖f‖
1
α‖|v|f‖L1

≤ 2Kα‖ψ‖L∞
√
‖f0‖L1‖f‖

2α−1
α

α

[√
‖|v|2f0‖αL1e

−Kmt
2 ‖f‖

] 1
α

≤ 2Kα‖ψ‖L∞
√
‖f0‖L1

(
‖f‖2α + ‖|v|2f0‖αL1‖f0‖2e(dK‖f0‖L1‖ψ‖L∞+4σ−αKm)t

)
,

(4.1.6)

where we used (4.1.3) and the generalized Hölder’s inequality in the last line.

To complete the estimate, we gather (4.1.5) and (??) in (4.1.4) to acquire

d

dt
‖f‖2α + σ‖|v|∇vf‖2α
≤
[
4σ(1 + α)2 +K‖ψ‖L∞(‖f0‖L1 + 2α

√
‖f0‖L1)

]
‖f‖2α

+2Kα‖ψ‖L∞
√
‖f0‖L1‖|v|2f0‖αL1‖f0‖2e(dK‖f0‖L1‖ψ‖L∞+4σ−αKm

2
)t.

Using the Gronwall’s inequality and choosing proper C0 lead to the desired

result. Here C0 may depend on K, σ, d, α, ‖ψ‖L∞ , and ‖f0‖L1 .

Lemma 4.1.2. (First-order estimate) Let a constant T ∈ (0,∞] be given.

Denote f ∈ Xk,α(T ) as a classical solution to (4.1.1)-(5.1.3) in the time inter-

val [0, T ). Then, there is a constant C1 = C1(K, σ, d, α, ‖ψ‖L∞ , ‖ψ′‖L∞ , ‖f0‖L1 ,

‖|v|2f0‖L1) satisfying

‖∇xf‖2 + ‖∇vf‖2 +σ

∫ t

0

(
‖|v|∇v∇xf‖2α + ‖|v|∇2

vf‖2
)

(s)ds ≤ C1e
C1t‖f0‖2H1 ,

for t ∈ (0, T ).
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Proof. Case 1 (estimate of ∇xf): First, we take the spatial gradient ∇x to

(4.1.1) to obtain the following partial differential equation:

∂t∇xf +∇x · (v∇xf) +∇v · (L(f)∇xf) +∇v · ((∇xL(f))f) = σ∆v(|v|2∇xf).

(4.1.7)

Using the dot product, we multiply the above relation in (4.1.7) by 2∇xf

and acquire

∂t
(
|∇xf |2

)
+ 2σ|v|2|∇v∇xf |2 +∇x ·

(
v|∇xf |2

)
+∇v ·

(
|∇xf |2L[f ]− 2σ∇v

(
|v|2∇xf

)
· ∇xf

)
−∇v ·

{
2K

[
f∇xf ·

∫
R2d

v∇xψ(|x− y|)f(y, v∗, t)dv∗

]
dy

}
= |∇xf |2∇v · L[f ]− 4σ∇xf · (v · ∇v)∇xf

− 2K∇v∇xf ·
[
f

∫
R2d

v∇xψ(|x− y|)f(y, v∗, t)dv∗dy

]
− 2K∇xf ·

∫
R2d

(∇vf · v∗)∇xψ(|x− y|)f(y, v∗, t)dv∗dy.

(4.1.8)

We integrate (4.1.8) over (x, v) ∈ R2d and apply Lemma 2.2.2 to derive

d

dt
‖∇xf‖2 + 2σ‖|v|∇v∇xf‖2

≤ ‖∇v · L[f ]‖L∞‖∇xf‖2 + 4σ‖∇xf‖‖|v|∇v∇xf‖

+ 2K‖ψ′‖L∞‖f0‖L1

∫
R2d

|v|f |∇v∇xf |dvdx

+ 2K‖ψ′‖L∞‖|v|f‖L1

∫
R2d

|∇vf · ∇xf |dvdx

=: J21 + J22 + J23 + J24.

(4.1.9)

Using the result in Lemma 2.2.2 (i) and the Cauchy–Schwarz inequality, we

verify that

J21 ≤ K‖ψ‖L∞‖f0‖L1‖∇xf‖2,

J22 ≤
σ

2
‖|v|∇v∇xf‖2 + 8σ‖∇xf‖2.

(4.1.10)
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For J23, Young’s inequality with p = q = 2 is applied to obtain

J23 ≤
σ

2
‖|v|∇v∇xf‖2 +

2K2‖ψ′‖2L∞‖f0‖2L1

σ
‖f‖2. (4.1.11)

For J24, Lemma 2.2.2 (ii) is used in order to find

J24 ≤ K‖ψ′‖L∞
√
‖f0‖L1‖|v|2f0‖L1e−

Kmt
2 (‖∇xf‖2 + ‖∇vf‖2). (4.1.12)

We put (4.1.10), (4.1.11), and (4.1.12) altogether into (4.1.9) and acquire

d

dt
‖∇xf‖2 + σ‖|v|∇v∇xf‖2 ≤

(
‖∇xf‖2 + ‖∇vf‖

)
×
{
K‖ψ‖L∞‖f0‖L1 + 8σ +K‖ψ′‖L∞

√
‖f0‖L1‖|v|2f0‖L1e−

Kmt
2

}
+

2K2‖ψ′‖2L∞‖f0‖2L1

σ
‖f‖2.

(4.1.13)

Case 2 (estimate of ∇vf): Analogous to the Case 1, the partial differential

equation for ∂vif is derived as

∂t (∂vif) + ∂xif +∇x · (v∂vif) +∇v · (∂vi (L[f ]f)) = σ∆v

(
∂vi
(
|v|2f

))
.

(4.1.14)

After we multiply (4.1.14) by 2∂vif , integrate over R2d, and sum up from

i = 1 to i = d, we obtain

∂t‖∇vf‖2 +
d∑
i=1

∫
R2d

2(∂vif)(∂xif)dvdx

= −
d∑
i=1

∫
R2d

2(∂vif)∇v(∂vi(L[f ]f))dvdx

+
d∑
i=1

∫
R2d

2σ(∂vif)∆v

(
∂vi(|v|2f)

)
dvdx =: −J31 + J32.

(4.1.15)
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(Estimate of J31): We can notice the integrand of J31 can be simplified as

2(∂vif)
(
L[f ] · ∇v(∂vif) + (∂vif)∇v · L[f ] + ∂viL[f ] · ∇vf

)
= L[f ] · ∇v(|∂vif |2) + 2|∂vif |2∇v · L[f ] + 2(∂vif)(∂viL[f ]) · ∇vf

= ∇v ·
(
|∂vif |2L[f ]

)
+ |∂vif |2∇v · L[f ] + 2(∂vif)(∂viL[f ]) · ∇vf.

(4.1.16)

Using (4.1.16) and Lemma 2.2.2, we find

|I31| ≤ ‖∇vf‖2‖∇v · L[f ]‖L∞ + 2‖∇v · L[f ]‖L∞‖∇vf‖2

≤ 3dK‖ψ‖L∞‖f0‖L1‖∇vf‖2.
(4.1.17)

(Estimate of J32): We use integration by parts technique over and over to

acquire

I32 = −2σ
d∑
i=1

∫
R2d

∇v(∂vif) · ∇v

(
∂vi(|v|2f)

)
dvdx

= −2σ
d∑
i=1

∫
R2d

∇v(∂vif) ·
(
∇v(2vi)f + 2vi∇vf + 2v∂vif + |v|2∇v∂vif

)
dvdx

= −2σ
d∑
i=1

∫
R2d

2(∂2vif)f +∇v(∂vif) ·
(
2vi∇vf + 2v∂vif + |v|2∇v∂vif

)
dvdx

= −2σ
d∑
i=1

∫
R2d

−2(∂vif)2 +∇v(∂vif) ·
(
2vi∇vf + 2v∂vif + |v|2∇v∂vif

)
dvdx

≤ 4σ‖∇vf‖2 + 8σ‖∇vf‖‖|v|∇2
vf‖ − 2σ‖|v|∇2

vf‖2.
(4.1.18)

Replacing (4.1.15) by (4.1.17) and (4.1.18), we find

d

dt
‖∇vf‖2 + 2σ‖|v|∇2

vf‖2

≤ ‖∇vf‖2 + ‖∇xf‖2 + (3dK‖ψ‖L∞‖f0‖L1 + 4σ)‖∇vf‖2 + 8σ‖∇vf‖‖|v|∇2
vf‖

≤ σ‖|v|∇2
vf‖2 + (1 + 3dK‖ψ‖L∞‖f0‖L1 + 20σ)‖∇vf‖2 + ‖∇xf‖2.
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This implies

d

dt
‖∇vf‖2 + σ‖|v|∇2

vf‖2

≤ (1 + 3dK‖ψ‖L∞‖f0‖L1 + 20σ)‖∇vf‖2 + ‖∇xf‖2.
(4.1.19)

Using Lemma 4.1.1 and a suitable constant C1, we get the desired estimate.

With analogous estimates to Lemma 4.1.1 or Lemma 4.1.2, higher-order

estimates can also be acquired. Putting all the estimates together, we obtain

a priori Hk
α−estimates as follows:

Proposition 4.1.1. (A priori Hk
α estimates) Let a constant T ∈ (0,∞] be

given. Let f ∈ Xk,α(T ) be a classical solution to (4.1.1) in [0, T ). Then, for

an integer k in the range of 0 to N , there is constants {Ck}Nk=0 such that

Ck = Ck(K, σ, d, α, ‖ψ‖L∞ , . . . , ‖ψ(k)‖L∞ , ‖f0‖L1 , ‖|v|2f0‖L1) satisfying

‖f‖2Hk
α
≤ Cke

Ckt‖f0‖2Hk
α
, t ∈ [0, T ).

4.2 A Local Existence Result

In this section, we approach the local existence of (4.1.1) by approximating

through known results. The local and global existence theory for Vlasov–

Fokker–Planck-type equations with constant diffusion coefficients is exten-

sively studied in many literatures [7, 16, 38, 42]. We begin this section by

introducing the idea of the local existence theory and compares our problem

with the standard Vlasov–Fokker–Planck equation with constant diffusion

coefficients. Notice a degenerate and variable diffusion coefficient term σ|v|2
in (4.1.1). This is a difficulty why the direct application of the standard ex-

istence theory [18] for parabolic equations does not work here.

We build approximate solutions {fn}∞n=0 using a successive iteration

scheme as follows. At n = 0, we initially put

f 0(x, v, t) := f0(x, v), x, v ∈ Rd, t > 0. (4.2.20)
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Next to the initial step, let us suppose the approximate solutions {fN−1}N≥1
be created. The N -iterated function fN is then set to be the unique solution

of the linear parabolic equation{
∂tf

N + v · ∇xf
N +∇v · (L[fN−1]fN) = σ∆v(|v|2fN),

fN(x, v, 0) = f0(x, v).
(4.2.21)

Granted that the unique solvability of the linear Vlasov–Fokker–Planck equa-

tion in (4.2.21) is widely verified, for example, in [7], we consider the well-

definedness of {fN} with (4.2.20) and (4.2.21) to be true without proof. To

sum up, the existence of a local solution in Xk(T ) is described as the follow-

ing:

Proposition 4.2.1. (Local existence of a classical solution) Let f0 be a non-

negative and sufficiently regular initial datum satisfying the following condi-

tion:

f0 ∈ (Hk
α ∩ L1

2)(R2d), α > 2 + d.

Then there are a positive constant C and a sufficiently small constant T∗ > 0,

which the Cauchy problem in (4.1.1) admits a unique solution f ∈ Xk,α(T∗),

such that

(i) f(x, v, t) ≥ 0, f(·, ·, t) ∈ L1
2(R2d), x, v ∈ Rd, 0 ≤ t < T∗,

(ii) sup
0≤t≤T∗

‖f(t)‖Hk
α
≤ C‖f0‖Hk

α
.

Proof. We provide a brief sketch of the proof in the following.

Step 1 Let us denote a sequence of the approximate solutions as {fN}∞N=0,

which is created by using the iteration scheme in (4.2.20)–(4.2.21). Let an

integer N ≥ 0 and a small constant ε > 0 be given. For each N and ε,

we include a viscosity term on the right side of the equation (4.2.21) and

construct

∂tf̃
N + v · ∇xf̃

N +∇v · (L[fN−1]f̃N) = σ∆v(|v|2f̃N) + ε(4xf̃
N +4vf̃

N),

f̃N(x, v, 0) = f0(x, v).
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From the maximum principle of the uniformly parabolic equation, the non-

negativity of the solution to the above equation can be shown. The limit

ε → 0 in this equation implies that the solution fN to (4.2.21) is nonnega-

tive, i.e., fN(x, v, t) ≥ 0 for x, v ∈ R2d, t > 0. Furthermore, Hk(R2d) ↪→ C1,2,1
x,v,t

for k > d+ 2 holds and the corresponding strong pointwise limit function of

fN also preserves the nonnegativity.

Step 2 We can claim that there exist positive constants t1 and t2 with

0 < t2 ≤ t1 such that

‖fN‖L1 = ‖f0‖L1 , sup
0≤t≤t1

‖|v|2fN(t)‖L1 ≤ 2‖|v|2f0‖L1 , N ≥ 0,

sup
0≤t≤t1

‖fN(t)‖Hk
α
≤ 2‖f0‖Hk

α
, and

sup
0≤t≤t2

‖(fN+1 − fN)(t)‖Hk
α
≤ 1

2
sup

0≤t≤t2
‖(fN − fN−1)(t)‖Hk

α
.

(4.2.22)

This is similar to Lemma 2.2.1, 2.2.2 and a priori estimates in Proposition

4.1.1.

Proof of claim (4.2.22): The approximate solution fn to (4.2.21) satisfy

‖fN‖L1 = ‖f0‖L1 ,

and

‖|v|2fN+1‖L1 ≤ e(2dσ+3K‖ψ‖L∞‖f0‖L1 )t‖|v|2f0‖L1

+K‖ψ‖L∞‖f0‖L1

∫ t

0

e(2dσ+3K‖ψ‖L∞‖f0‖L1 )(t−s)‖|v|2fN(s)‖L1ds.

Inductively, we derive the following inequality:

‖|v|2fN+1‖L1

≤ e(2dσ+3K‖ψ‖L∞‖f0‖L1 )t‖|v|2f0‖L1 +
∞∑
i=1

(K‖ψ‖L∞‖f0‖L1)i

i!
‖|v|2f0‖L1

≤
(
e(2dσ+3K‖ψ‖L∞‖f0‖L1)t + eK‖ψ‖L∞‖f0‖L1 t − 1

)
‖|v|2f0‖L1

≤ e(2dσ+4K‖ψ‖L∞‖f0‖L1 )t‖|v|2f0‖L1 .

Refer to the proof of Proposition 4.1.1 for noticing that L[fN−1] of (4.2.21)

is estimated by ‖fN−1‖L1 with ‖|v|2fN−1‖L1 which can be all uniformly esti-
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mated as shown. Repeatedly applying analogous computations to the proof

of proposition 4.1.1, we choose a positive constant t0 satisfying

‖fN(t)‖2Hk ≤ C̃ke
C̃kt‖f0‖2Hk

for any t with t < t0. In this inequality, the value of C̃k is depending on

K, σ, d, α, ‖ψ‖L∞ , . . . , ‖ψ(k)‖L∞ , ‖f0‖L1 , and ‖|v|2f0‖L1 . A small number t1 is

then decided such that

‖|v|2fN+1‖L1 ≤ 2‖|v|2f0‖L1 , ‖fN(t)‖Hk
α
≤ 2‖f0‖Hk

α

for any t ∈ [0, t1].

On the other hand, (fN+1 − fN) satisfies the following equation
∂t(f

N+1 − fN) + v · ∇x(f
N+1 − fN) +∇v · (L[fN−1](fN+1 − fN))

+∇v · (L[fN − fN−1]fN) = σ∆v(|v|2(fN+1 − fN)),

(fN+1 − fN)(x, v, 0) = 0.

(4.2.23)

We take a similar idea from the proof in Proposition 4.2.1 and derive this

estimate:

d

dt
‖(fN+1 − fN)‖2Hk

α
+ σ‖|v|∇v(f

N+1 − fN)‖2Hk
α

≤ C̄1‖(fN+1 − fN)‖2Hk
α

+C̄2‖fN‖Hk
α
‖(fN+1 − fN)‖Hk

α
‖(1 + |v|)(fN − fN−1)‖L1 ,

where constants C̄1 and C̄2 are chosen depending on K, σ, d, α, ‖ψ‖L∞ , . . . ,
‖ψ(k)‖L∞ , ‖f0‖L1 , and ‖|v|2f0‖L1 .

We note that for α > d+2
2

,

‖(1 + |v|)(fN − fN−1)‖L1

≤
[∫

Rd
(1 + |v|2)1−αdv

∫
R2d

(1 + |v|2)αdv|fN − fN−1|2dvdx
] 1

2

≤ C(α)‖fN − fN−1‖L2
α

(4.2.24)

holds.

From this result, we find

2
d

dt
‖(fN+1−fN)‖Hk

α
≤ C̄1‖(fN+1−fN)‖Hk

α
+C(α)C̄2‖fN‖Hk

α
‖(fN−fN−1)‖L2

α
.
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Taking (fN+1 − fN)(x, v, 0) = 0 and ‖fN(t)‖2
Hk ≤ eC̃kt‖f0‖2Hk into account,

this inequality implies

sup
0≤t≤t2

‖(fN+1 − fN)(t)‖Hk
α

≤ C(α)C̄2

2
sup

0≤t≤t2
e

(C̄1+C̃k)t

2

∫ t

0

e−
C̄1s

2 ds sup
0≤t≤t2

‖(fN − fN−1)(t)‖Hk
α

≤ C(α)C̄2

2
sup

0≤t≤t2
te

(C̄1+C̃k)t

2 sup
0≤t≤t2

‖(fN − fN−1)(t)‖Hk
α

≤ 1

2
sup

0≤t≤t2
‖(fN − fN−1)(t)‖Hk

α
.

Choosing 0 < t2 ≤ t1 sufficiently small, we can make

C(α)C̄2

2
t2e

(C̄1+C̃k)t2
2 ≤ 1

2
,

and this means the sequence {fN}∞N=1 is Cauchy in Hk
α for t ∈ [0, t2]. Com-

bined with the nonnegativity of {fN}∞N=1, this result suggests that the cor-

responding limit function f ∈ Xk,α(t2) satisfies f ≥ 0 since

Hk(R2d) ↪→ C1,2,1
x,v,t for k > d+ 2.

Furthermore, from Lemma 2.2.1 and Lemma 2.2.2, it follows that we obtain

‖f(t)‖L1 = ‖f0‖L1 and ‖|v|2f(t)‖L1 ≤ e−Kt
√
‖f0‖L1‖|v|2f0‖L1 , for t ≥ 0.

Thus, f(x, v, t) ∈ L1
2(R2d) for t > 0 and f(x, v, t) ∈ Xk,α(T∗) for T∗ = t2

hold.

4.2.1 Extention of Local Existence

So far, we make preparations to give the proof of our main theorem. Let T∞
be the maximal lifespan of a regular solution as follows:

T := {T ∈ (0,∞] : Cauchy problem in (1.0.2) admits a unique

global solution f ∈ Xk,α(T )},
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T∞ := sup T .

From Proposition 4.1.1, it brings that T0 ∈ T , i.e., the set T is nonempty;

thus, T∞ ≥ T0 holds.

We will now prove T∞ =∞.

Suppose not. If T∞ <∞ is satisfied, according to proposition 4.1.1, we have

‖f(T∞)‖Hk
α
<∞.

Therefore, the Cauchy problem in (1.0.2) with the initial datum f(T∞) can

be solved. In addition, we can apply the local existence result in Proposition

4.2.1 to see if there is a constant δ > 0 such that the Cauchy problem in

(1.0.2) is solvable even in the time interval [0, T∞ + δ). This contradicts the

maximality assumption in T∞. Thus, both T∞ = ∞ and the desired global

existence are obtained. This completes the proof of our main theorem.

Theorem 4.2.1. Let T ∈ (0,∞) be a positive constant and assume that the

initial datum f0 satisfies

f0 ∈ Hk
α ∩ L1

2(R2d), for some positive constants k > 2 + d, α >
d+ 2

2
.

Then, there exists a unique global classical solution to the Cauchy problem in

(4.1.1) in the function space Xk,α(T ).
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Chapter 5

The Cucker-Smale-Kuramoto

Model

In this chapter, we consider an ensemble of Cucker-Smale particles combined

with a periodic internal state. The Cucker-Smale-Kuramoto model(CSK model)

and The CSK model with a Hebbian coupling will be dealt with. The latter

model can be viewed as a special case for CSK model. Our model is basi-

cally created by combining the Cucker-Smale model and Kuramoto model

together, so that velocities, positions, and phases are affected by each other.

Before starting the first section, recall that the Kuramoto model is described

as follows: Let {θi(t)}Ni=1 be N− Kuramoto phase oscillators. The dynamics

are governed by

θ̇i = Ωi +
K

N

∑
j

sin (θj − θi),

where K and Ωi are a coupling coefficient and a natural frequency of i-th

oscillator, respectively. The contents of this chapter are based on the joint

work with Ha, S-Y, Noh, S-E, Park J-Y [19].
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5.1 The Cucker-Smale-Kuramoto Models

Let xi, vi and θi be the position, velocity and phase of the i-th particle, re-

spectively. In this setting, the coupled Cucker-Smale-Kuramoto model reads

as follows. 

dxi
dt

= vi, i = 1, ..., N, t > 0,

dvi
dt

=
K1

N

∑
j

ψ1(|xi − xj|, θi − θj)(vj − vi),

dθi
dt

= Ωi +
K2

N

∑
j ψ2(|xj − xi|) sin (θj − θi),

(5.1.1)

where K1 and K2 are coupling strengths and ψl, l = 1, 2 are defined as

ψ1(|xi − xj|, θi − θj) :=
cos(θi − θj)

(1 + |xi − xj|2)β1
, and

ψ2(|xi − xj|) :=
1

(1 + |xi − xj|2)β2
,

for some real number β1, and β2. Without loss of generality, we discuss all

the results in case that the average position and average velocity are zero,

i.e., ∑
i

Ωi = 0,
∑
i

xi = 0, and
∑
i

vi = 0.

We next introduce the other model. The CSK model with Hebbian Coupling

is a special case for the CSK model. We similarly assume that the velocity

interaction weight between C-S particles and the phase interaction weight are

given by the ansatz ψv(θj − θi, xj − xi) and ψθ(‖xj − xi‖), but the coupling

strength is not necessarily a constant. The coupling strength kij in phase
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dynamics is the Hebbian like adaptive law. The equation is expressed as

d

dt
xi = vi, t > 0, 1 ≤ i, j ≤ N,

d

dt
vi =

K

N

N∑
j=1

ψv(θj − θi, xj − xi)(vj − vi),

d

dt
θi = Ωi +

1

N

N∑
j=1

kijψθ(‖xj − xi‖) sin(θj − θi),

d

dt
kij = ε(α cos(θj − θi)− kij),

(5.1.2)

subject to initial data:

xi(0) = x0i , vi(0) = v0i , θi(0) = θ0i and kij(0) = k0ij. (5.1.3)

Here, ε and α are called learning rate and learning enhancement factor,

respectively. We consider that ψv(θ, x) and ψθ(r) are nonnegative functions

which are not increasing in the variables ‖x‖ and r, respectively.

Before closing this section, we recall the definition of synchronization.

Definition 5.1.1. Let θ(t) := (θ1(t), · · · , θN(t)) be a dynamic solution to a

system. Then we have the following solution concepts for synchronization:

1. The phase configuration θ(t) exhibits asymptotic complete synchroniza-

tion (ACS) if and only if the following two conditions hold:

sup
t≥0

max
1≤i,j≤N

|θi(t)− θi(t)| <∞, lim
t→∞

max
1≤i,j≤N

|θi(t)− θj(t)| = 0.

2. The phase configuration θ(t) exhibits asymptotic complete-frequency

synchronization (ACFS) if and only if the following two conditions hold:

sup
t≥0

max
1≤i,j≤N

|θi(t)− θi(t)| <∞, lim
t→∞

max
1≤i,j≤N

|θ̇i(t)− θ̇j(t)| = 0.

3. The phase configuration θ(t) exhibits asymptotic practical synchroniza-

tion (APS) if and only if the following condition holds:

lim
km→∞

lim sup
t→∞

max
1≤i,j≤N

|θi(t)− θj(t)| = 0,
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5.2 Frameworks

In this section, we briefly introduce the assumptions for the following sections

and the main results.

The first set of assumptions which will be brought up whenever we deal

with (5.1.1) is given as

(A1) 0 < D(θ0) < D∞ < π
2
,

(A2) There exists x∗ such that

K1 cosD∞

2

∫ 2x∗

2‖x0‖
ψ(s)ds = ‖vi0‖, ψ(s) :=

1

(1 + s2)β1
,

(A3) K2 �
D(Ω)

D(θ0)ψ(x∗)
.

The following is the main theorem on the CSK model. The proof will be

provided later.

Theorem 5.2.1. (Flocking and Synchronization) Assume (A1)-(A3). Then

we have

(i) lim
t→∞
‖vi(t)− vj(t)‖ = 0, sup

0≤t<∞
‖xi(t)− xj(t)‖ <∞, 1 ≤ i, j ≤ N,

(ii) lim
0≤t<∞

‖θ̇i(t)− θ̇j(t)‖ = 0, lim
0≤t<∞

‖θi(t)− θj(t)‖ ≤
D∞D(Ω)

2K2 sinD∞ψ2(2x∗)
.

Another set of assumptions is regarding the CSK model with Hebbian

Coupling. In this thesis, we particularly deal with the system under the

settings:

ψv(θ, x) :=
cos(θ)

(1 + ‖x‖2)β1
, and ψθ(‖x‖) :=

1

(1 + ‖x‖2)β2
,

for some β1, β2 > 0.
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(B1)
α

ε
> km := min

i,j
Kij
θ (0) holds. We denote the number D∞ ∈ [0, π

2
) by

cosD∞ =
εKm

θ

α
,

(B2) There exists x∗ such that

K cosD∞

2
Ψ(2x∗) = ‖v0‖, where Ψ(l) :=

∫ l

2‖x0‖
ψ(s)ds =

∫ l

2‖x0‖

1

(1 + s2)β1
ds,

(B3) D(Ω) <
2kmD(Θ(0))ψθ(2x

∗) sinD∞

D∞
,

where km is the minimum value of kij .

Remark 5.2.1. Note that β1 <
1
2

guarantees the unconditional existence of

x∗ in (B2) due to the non-integrability of

ψ(s) =
1

(1 + s2)β1

over R+. In case of β1 ≥ 1
2
, such x∗ conditionally exists if we set K to be

sufficiently large.

Theorem 5.2.2. (Main Flocking and Synchronization) Suppose that the pa-

rameters ε, α and initial position and velocity (x0, v0), phase configuration

and coupling strength satisfy the framework (B1)− (B3). Then for any solu-

tion (x, v, θ) to (5.1.2) we have

(i) lim
t→∞

D(v(t)) = 0, sup
0≤t<∞

D(x(t)) <∞,

(ii) lim
0≤t<∞

max
i,j
‖θ̇i(t)− θ̇j(t)‖ = 0,

lim
0≤t<∞

max
i,j
‖θi(t)− θj(t)‖ ≤

D∞D(Ω)

2K sinD∞ψθ(2x∗)
,

for all 1 ≤ i, j ≤ N.
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5.3 Estimates in the CSK model

In this section, we presents flocking estimates in the CSK model (5.1.1). We

begin with the following proposition.

Proposition 5.3.1. Assume (A1)-(A3). Then a solution {(xi, vi, θi)}Ni=1 to

(5.1.1) satisfy∣∣∣ d
dt
‖x‖
∣∣∣ ≤ ‖v‖, d

dt
‖v‖ ≤ −K1 cos (D∞)ψ(2‖x‖)‖v‖,

d

dt
D(θ) ≤ D(Ω)− 2K2 sinD∞

D∞
ψ2(2‖x‖)D(θ), t > 0.

Proof. Applying the Cauchy-Schwartz inequality, we obtain∣∣∣∣ ddt‖x‖2
∣∣∣∣ =

∣∣∣∣∣
N∑
i=1

d

dt
‖xi‖2L2

∣∣∣∣∣ =

∣∣∣∣∣
N∑
i=1

2 < xi, vi >

∣∣∣∣∣ ≤ 2‖x‖‖v‖,

and

d

dt
‖v‖2 =

N∑
i=1

d

dt
‖vi‖2L2

=
2K1

N

N∑
j=1

N∑
i=1

〈vi, ψ1(|xi − xj|, θi − θj)(vj − vi)〉

≤ −2K1 cos (D∞)ψ(2‖x‖)‖v‖2.

In order to show the third inequality, we consider at most countable time

intervals (tk−1, tk) k = 1, 2, 3, ..., where 0 = t0 < t1 < t2 < t3 < ... such

that D(θ(t)) = θM(t) − θm(t) holds for some fixed indices M and m during

t ∈ (tk−1, tk).

d

dt
D(θ) = ΩM − Ωm

+
K

N

∑
j

{ψ2(|xj − x∗|) sin (θj − θM)− ψ2(|xj − x∗|) sin (θj − θm)}
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≤ D(Ω)− 2K2 sinD∞

D∞
ψ2(2‖x‖)D(θ).

We develop the argument from the proposition 5.3.1, so that ‖v‖ and

‖ω‖ (ω := θ̇) are shown to be decaying in time.

Proposition 5.3.2. Suppose that (A1)-(A3). For a solution (x, v, θ) = {(xi, vi,
θi)}Ni=1 to (5.1.1), we have

‖v(t)‖ ≤ ‖v0‖exp(−K1 cos (D∞)ψ(2x∗)t), t > 0,

‖ω(t)‖2 ≤ ‖ω0‖2exp
({
−2K2ψ2(2x∗) cosD∞ + εK2

(
−ψ′2

(
1

2β2 + 1

))}
t

)
+

K2

ε

(
−ψ′2

(
1

2β2 + 1

))
‖v0‖2exp(−2K2 cosD∞ψ(2x∗)t).

Proof. First inequality is easily obtained from Proposition 5.3.1 by applying

Gronwall’s inequality. In order to derive the second one, we calculate the

time derivative of ‖ω‖2 as follows.

d

dt

(1

2
‖ωi‖2

)
=

K2

N

∑
j

{
ψ′2(‖xj − xi‖)

(
xj − xi
‖xj − xi‖

· (vj − vi)
)

sin (θj − θi)ωi

+ ψ2(‖xj − xi‖) cos (θj − θi)(ωj − ωi)ωi
}
,

for i = 1, 2, ..., N. Summing these equations from i = 1 up to i = N , we

obtain

d

dt

(
1

2

∑
i

‖ωi‖2
)

=
K2

N

∑
i,j

{
ψ′2(‖xj − xi‖)

(
xj − xi
‖xj − xi‖

· (vj − vi)
)

× sin (θj − θi)ωi + ψ2(‖xj − xi‖) cos (θj − θi)(ωj − ωi)ωi
}

=
K2

2N

∑
i,j

{
−ψ′2(‖xj − xi‖)

(
xj − xi
‖xj − xi‖

· (vj − vi)
)

× sin (θj − θi) (ωj − ωi)− ψ2(‖xj − xi‖) cos (θj − θi)
× ‖ωj − ωi‖2

}
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≤ K2

2N

(
−ψ′2

(
1

2β2 + 1

))∑
i,j

[
‖vj − vi‖2

2ε
+
ε‖ωj − ωi‖2

2

]
− K2

2N
ψ2(2x∗) cosD∞‖ωj − ωi‖2.

By exchanging indices i ↔ j, the second equality is deduced. Young’s in-

equality and minimum and maximum values of ψ2, ψ
′
2, and cos(θ) yield the

last line. Using the result
∑

j vj =
∑

j ωj = 0, from the above relation, we

have the following inequality:

d

dt

(
1

2

∑
i

‖ωi‖2
)
≤ K2

2ε

[
−ψ′2

(
1

2β2 + 1

)]
‖v‖2

− K

2

[
2ψ2(2x∗) cosD∞ − ε

(
−ψ′2(

1

2β2 + 1
)

)]
‖ω‖2.

Applying the Gronwall’s inequality, we obtain

‖ω(t)‖2 ≤ ‖ω0‖2exp
({
−2K2ψ2(2x∗) cosD∞ + εK2

(
−ψ′2

(
1

2β2 + 1

))}
t

)
+

K2

ε

(
−ψ′2

(
1

2β2 + 1

))
‖v0‖2exp(−2K2 cosD∞ψ(2x∗)t).

We present a dissipation estimate for our models, so that the flocking estimate

is covered. Let us define a Lyapunov type functional as follows:

E(‖x‖, ‖v‖) := ‖v‖+
K cos (D∞)

2
Ψ(2‖x‖).

Lemma 5.3.1. Assume (A1)-(A3) hold, and let {(xi, vi)}Ni=1 be the global

smoooth solution to the system (5.1.1). Then we have

(i) E(‖x(t)‖, ‖v(t)‖) ≤ E(‖x0‖, ‖v0‖), t > 0,

(ii) ‖v(t)‖+
K cos (D∞)

2

∫ 2‖x(t)‖

2‖x0‖
ψ(s)ds ≤ ‖v0‖.
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Proof. Let Ψ be a potential function of ψ, i.e., Ψ(‖x‖) :=

∫ ‖x‖
2‖x0‖

ψ(s)ds. Using

the second inequality in proposition 5.3.1, we have

d

dt

[
‖v‖+

K cos (D∞)

2
Ψ(2‖x‖)

]
≤ −K cos (D∞)ψ(2‖x‖)‖v‖+

K

2
cos (D∞)ψ(2‖x‖)2‖v‖ ≤ 0.

Integration and (A2) yield

‖v(t)‖+
K cos (D∞)

2

∫ 2‖x(t)‖

2‖x0‖
ψ(s)ds ≤ ‖v0‖.

Proposition 5.3.3. Let us define

T := {t ∈ R+ | D(θ(t)) < D∞} and T∞ := sup
t∈R+

T .

Then T∞ =∞ holds.

Proof. First we claim that x∗ ≥ ‖x(t)‖ for t > 0. From the Lemma 5.3.1 and

(A2), we have

‖v(t)‖+
K cos (D∞)

2

∫ 2‖x(t)‖

2‖x0‖
ψ(s)ds ≤ ‖v0‖ =

K cosD∞

2

∫ 2x∗

2‖x0‖
ψ(s)ds.

Since ψ ≥ 0 and ‖v‖ ≥ 0 hold, the above implies ‖x(t)‖ ≤ x∗ for t > 0. In

addition, ψ(2‖x‖) ≥ ψ(2x∗) is derived because ψ is decreasing.

Suppose T∞ <∞. Combining the claim and proposition 5.3.1, we obtain

d

dt
D(θ) ≤ D(Ω)− 2K sinD∞

D∞
ψ2(2x∗)D(θ),

and applying Gronwall’s inequality to the above, we have

D(θ) ≤ D(θ0)e−
2Kψ2(2x∗) sinD∞

D∞ t +D(Ω)
(
1− e−

2Kψ2(2x∗) sinD∞
D∞ t

)
.

By the construction of T∞, the following is supposed to hold:

lim
t→T∞

D(θ(t)) = D∞.

However, (A3) and the previous inequality of D(θ) imply D(θ(T∞)) < D∞,

which is contradiction.
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Theorem 5.3.1. (Flocking and Synchronization) Assume (A1)-(A3). Then

we have

(i) lim
t→∞
‖vi(t)− vj(t)‖ = 0, sup

0≤t<∞
‖xi(t)− xj(t)‖ <∞,

(ii) lim
0≤t<∞

D(θ̇(t)) = 0, lim
0≤t<∞

D(θ(t)) ≤ D∞D(Ω)

2K sinD∞ψ2(2x∗)
,

for all 1 ≤ i, j ≤ N.

Proof. (i) From Proposition 5.3.2, we have

‖vi(t)− vj(t)‖ ≤
√

2‖v(t)‖ ≤
√

2‖v0‖exp(−K cos (D∞)ψ(2x∗)t).

(ii) It is easily obtained by combining the result in (i) with the following

inequality:

‖x(t)− xj(t)‖ ≤ ‖xi(0)− xj(0)‖+

∫ t

0

‖vi(s)− vj(s)‖ds.

(iii) From Proposition 5.3.2, for any integers i, j,

‖θ̇i(t)− θ̇j(t)‖ ≤
√

2‖θ̇(t)‖

≤
√

2

{
‖ω0‖2e−

{
2Kψ2(2x∗) cosD∞+εKψ′2

(
1

2β2+1

)}
t

+
K

ε

(
−ψ′2

(
1

2β2 + 1

))
‖v0‖2exp(−2K cosD∞ψ(2x∗)t)

} 1
2

.

(iv) Applying the Gronwall’s inequality to the third result in Proposition

5.3.1, we derive the inequality.

5.4 Estimates in the CSK model with Heb-

bian Coupling

In this section, we study the emergent phenomena of the coupled system

(5.1.2) using the Lyapunov functional approach initiated in [25].
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Lemma 5.4.1. Assume {kijθ,0}1≤i,j≤N in (5.1.2) is given as a symmetric ma-

trix and (B1) holds. Then kijθ (t) is symmetric for t ≥ 0. If ε > 0, α > 0,

{kijθ (0)}1≤i,j≤N are nonnegative and D(θ(t)) < D∞ < π
2
, then kijθ (t) is non-

negative and bounded below and above by the initial minimum and initial

maximum, respectively, for t > 0 and 1 ≤ i, j ≤ N .

Proof. Using the fact that cos θ is an even function, we derive the following

equality:
d

dt
(kij − kji) = −ε(kij − kji).

Solving the above first order linear ODE, we obtain

(kij − kji)(t) = (kij − kji)(0)e−εt = (k0ij − k0ji)e−εt = 0.

Thus, symmetricity of the initial condition for {Kij
θ,0}1≤i,j≤N implies the sym-

metricity of {Kij
θ (t)}1≤i,j≤N for any t ≥ 0.

By the previous lemma,

k̇ij = εα cos(θj − θi)− εkij ≥ εα cos(D∞)− εkij

Using Gronwall’s inequality, we obtain

kij(t) ≥ e−εtkij(0) +
α cos(D∞)

ε
(1− e−εt).

Let us define km and km as km := mini,j kij(0) and km := maxi,j kij(0). Under

the assumption (B1), the previous inequality yields

kij(t) ≥ e−εtkm + km(1− e−εt) = km, t > 0.

kij(t) is also bounded above because

k̇ij = εα cos(θj − θi)− εkij ≤ εα− εkij

implies

kij(t) ≤ e−εt(kij(0)− α) + α ≤ km.
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Remark 5.4.1. If εα < 0 holds, kij(t) is nonnegative for 0 < t < T0, for

some positive real number T0, and 1 ≤ i, j ≤ N . In this section, we will

assume {k0ij}1≤i,j≤N be given nonnegative and symmetric, and ε and α be

given positive.

Proposition 5.4.1. Suppose that the following conditions hold.

1. the natural frequencies and initial data satisfy

N∑
i=1

Ωi = 0,
N∑
i=1

θi(0) = 0and
N∑
i=1

vi(0) = 0

in (5.1.2).

2. the communication weight ψv(θ, x) is an even function in both θ and x.

3. The coupling strength matrix {kij} is symmetric. i.e., kij = kji holds

for 1 ≤ i, j ≤ N .

Then
N∑
i=1

θi(t) = 0 and
N∑
i=1

vi(t) = 0 hold, for t ≥ 0.

Proof. We calculate the time derivative of
N∑
i=1

θi(t) and
N∑
i=1

vi(t) as follows:

d

dt

N∑
i=1

vi(t) =
K

N

N∑
i,j=1

ψv(θj − θi, xj − xi)(vj − vi)

=
K

N

N∑
i,j=1

ψv(θi − θj, xi − xj)(vi − vj)

= 0,

the above second equality is obtained by interchanging i and j. Because ψv
is even, the time derivative of the velocity sum is zero. Likewise,

d

dt

N∑
i=1

θi(t) =
N∑
i=1

ωi +
1

N

N∑
i,j=1

Kij
θ ψθ(‖xj − xi‖) sin(θj − θi)
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=
1

N

N∑
i,j=1

Kji
θ ψθ(‖xj − xi‖) sin(θi − θj)

= 0.

Thus,
N∑
i=1

θi(t) =
N∑
i=1

θi(0) = 0

and
N∑
i=1

vi(t) =
N∑
i=1

vi(0) = 0.

For the rest of the part, we set the initial conditions as

N∑
i=1

ωi = 0,
N∑
i=1

θi(0) = 0 and
N∑
i=1

vi(0) = 0.

Proposition 5.4.2. Let (x, v, θ) = {(xi, vi, θi)}Ni=1 be the global smoooth so-

lution to the system (5.1.2). Assume (B1)-(B3) hold. Then the followings

hold:

(i)

∣∣∣∣ ddt‖x‖
∣∣∣∣ ≤ ‖v‖, d

dt
‖v‖ ≤ −K cos (D∞)ψ(2‖x‖)‖v‖,

(ii)
d

dt
D(θ) ≤ D(Ω)− 2km sinD∞

D∞
ψ2(2‖x‖)D(θ).

Proof. Applying the Cauchy-Schwartz inequality, we obtain

∣∣∣ d
dt
‖x‖2

∣∣∣ =
∣∣∣ N∑
i=1

d

dt
|xi|2

∣∣∣ =
∣∣∣ N∑
i=1

2〈xi, vi〉
∣∣∣ ≤ 2‖x‖‖v‖,

and

d

dt
‖v‖2 =

N∑
i=1

d

dt
‖vi‖2
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=
2K

N

N∑
j=1

N∑
i=1

〈vi, ψv(xi − xj, θi − θj)(vj − vi)〉

≤ −2K cos (D∞)ψ(2‖x‖)‖v‖2.

To show the third inequality, we consider at most countable time intervals

(tk−1, tk) k = 1, 2, 3, ..., where 0 = t0 < t1 < t2 < t3 < ... such that tn →∞
as n → ∞ and D(θ(t)) = θM(t) − θm(t) holds for some indices M and m

which are fixed during t ∈ (tk−1, tk). Then, we have

d

dt
D(θ) = ΩM − Ωm

+
1

N

∑
j

{
kMjψθ(‖xj − xM‖) sin (θj − θM)− kmjψθ(‖xj − xm‖) sin (θj − θm)

}
≤ D(Ω)− 2km sinD∞

D∞
ψ2(2‖x‖)D(θ)

holds.

We define a Lyapunov type functional as follows:

E(‖x‖, ‖v‖) := ‖v‖+
K cos (D∞)

2
Ψ(2‖x‖).

Lemma 5.4.2. Let (x, v, θ) = {(xi, vi, θi)}Ni=1 be the global smoooth solution

to the system (5.1.2). Suppose that the conditions (B1)-(B3) hold. Then we,

have

(i) E(‖x(t)‖, ‖v(t)‖) ≤ E(‖x0‖, ‖v0‖), t ≥ 0,

(ii) ‖v(t)‖+
K cos (D∞)

2
Ψ(2‖x(t)‖) ≤ ‖v0‖.

Proof. Using the second inequality in proposition 5.4.2, we have

d

dt

[
‖v‖+

K cos (D∞)

2
Ψ(2‖x‖)

]
50



CHAPTER 5. THE CUCKER-SMALE-KURAMOTO MODEL

≤ −K cos (D∞)ψ(2‖x‖)‖v‖+
K

2
cos (D∞)ψ(2‖x‖)2‖v‖

≤ 0.

Integration and (B2) yield

‖v(t)‖+
K cos (D∞)

2

∫ 2‖x(t)‖

2‖x0‖
ψ(s)ds ≤ ‖v0‖.

Proposition 5.4.3. Let us define

T :=
{
t ∈ R+ ∪ {0} | D(θ(t)) < D∞

}
and T∞ := sup T . Then T∞ =∞.

Proof. To begin with, we claim x∗ ≥ ‖x(t)‖ is true for any t > 0. Using the

Lemma 5.4.2 and (B2), we obtain

‖v(t)‖+
K cos (D∞)

2

∫ 2‖x(t)‖

2‖x0‖
ψ(s)ds ≤ ‖v0‖ =

K cosD∞

2

∫ 2x∗

2‖x0‖
ψ(s)ds.

Since ψ(s) and ‖v‖ are nonnegative, the second term in the left side does not

exceed ‖v0‖, which equals

∫ 2x∗

2‖x0‖
ψ(s)ds. Therefore, ‖x(t)‖ ≤ x∗ is true for

t > 0. In addition, ψ(2‖x‖) ≥ ψ(2x∗) holds for ψ being nonincreasing.

Let us suppose T∞ <∞. Combining the previous claim and proposition

5.4.2, we obtain

d

dt
D(θ) ≤ D(Ω)− 2km sinD∞

D∞
ψ(2x∗)D(θ).

By applying Gronwall’s inequality and (B3) to this, we get

D(θ) ≤ D(θ(0))e−
2kmψ(2x∗) sinD∞

D∞ t +D(Ω)
(

1− e−
2kmψ(2x∗) sinD∞

D∞ t
)
≤ D(θ(0)).

By the construction of T∞, the following is supposed to hold:

lim
t→T∞

D(θ(t)) = D∞.

However, the previous inequality of D(θ) implies D(θ(T∞)) < D∞. Since

D(θ(t)) is continous, there is δ > 0 such that [T∞, T∞ + δ) ⊂ T . This

contradicts to the assumption.
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Corollary 5.4.1. Let (x(t), θ(t)) be a solution to (5.1.2). Then for x∗ in

(B2), we have

‖x(t)‖ ≤ x∗, t ≥ 0.

Proof. From (5.4.2), we know

K cos (D∞)

2
Ψ(2‖x(t)‖) ≤ ‖v0‖ =

K cos (D∞)

2

∫ 2x∗

2‖x0‖
ψ(s)ds

holds. If ‖x(t)‖ > x∗, for some t > 0, the following is true:

K cos (D∞)

2

∫ 2x∗

2‖x0‖
ψ(s)ds ≤ K cos (D∞)

2

∫ 2‖x(t)‖

2‖x0‖
ψ(s)ds.

From the above results, we can show ‖v‖ and ‖θ̇‖ decaying in time.

Proposition 5.4.4. Assume (B1)-(B3). Then we have

‖v(t)‖ ≤ ‖v0‖exp(−K cos (D∞)ψ(2x∗)t)

‖θ̇(t)‖2 ≤ ‖θ̇0‖2exp
({
− 2Kψθ(2x∗) cosD∞ + εK

(
− ψ′θ

(
1

2β2 + 1

))}
t
)

+
K

ε

(
− ψ′θ

(
1

2β2 + 1

))
‖v0‖2exp(−2K cosD∞ψ(2x∗)t)

Proof. First inequality is easily obtained from Proposition 5.4.2 by applying

Gronwall’s inequality. In order to derive the second one, we calculate the

time derivative of ‖θ̇‖2 as follows. For i = 1, 2, ..., N,

1

2

d

dt
‖θ̇i‖2 =

1

N

∑
j

{[
k̇ijψθ(‖xj − xi‖) + kijψ

′
θ(‖xj − xi‖)

(
xj − xi
‖xj − xi‖

·(vj − vi)
)]

sin (θj − θi)θ̇i + kijψθ(‖xj − xi‖) cos (θj − θi)(θ̇j − θ̇i)θ̇i
}

=
1

N

∑
j

{[
ε(α cos (θj − θi)− kijθ )ψθ(‖xj − xi‖) + kijψ

′
θ(‖xj − xi‖)

×
( xj − xi
‖xj − xi‖

· (vj − vi)
)]

sin (θj − θi)θ̇i + kijψθ(‖xj − xi‖) cos (θj − θi)
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×(θ̇j − θ̇i)θ̇i
}
.

Summing these equations from i = 1 up to i = N , we obtain

d

dt

(1

2

∑
i

‖θ̇i‖2
)

=
1

N

∑
i,j

{ [
ε(α cos (θj − θi)− kijθ )ψθ(‖xj − xi‖) + kij

× ψ′θ(‖xj − xi‖)
( xj − xi
‖xj − xi‖

· (vj − vi)
)]

sin (θj − θi)θ̇i + kijψθ(‖xj − xi‖)

× cos (θj − θi)(θ̇j − θ̇i)θ̇i
}

=
1

N

∑
i,j

{[
ε(α cos (θj − θi)− kijθ )ψθ(‖xj − xi‖) + kijψ

′
θ(‖xj − xi‖)

×
( xj − xi
‖xj − xi‖

· (vj − vi)
)]

sin (θj − θi)(−θ̇j) + kijψθ(‖xj − xi‖)

× cos (θj − θi)(θ̇j − θ̇i)(−θ̇j)
}

=
1

2N

∑
i,j

{[
− ε(α cos (θj − θi)− kijθ )ψθ(‖xj − xi‖)− kijψ′θ(‖xj − xi‖)

×
( xj − xi
‖xj − xi‖

· (vj − vi)
)]

sin (θj − θi)(θ̇j − θ̇i)− kijψθ(‖xj − xi‖)

× cos (θj − θi)‖θ̇j − θ̇i‖2
}

≤ 1

2N

∑
i,j

{[
− ε(α cos (θj − θi)− kijθ )ψθ(‖xj − xi‖)− kijψ′θ(‖xj − xi‖)

×
( xj − xi
‖xj − xi‖

· (vj − vi)
)]

sin (θj − θi)(θ̇j − θ̇i)− kijψθ(‖xj − xi‖)

× cos (θj − θi)‖θ̇j − θ̇i‖2
}
.

By exchanging indices i ↔ j, the second equality is deduced. Young’s

inequality and minimum and maximum values of ψθ, ψ
′
θ, and cos(θ) yield

the last line. Using the result
∑

j vj =
∑

j θ̇j = 0, from the above relation,
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we have the following inequality:

1

2

d

dt

(∑
i

‖θ̇i‖2
)
≤ K

2ε

(
− ψ′θ

(
1

2β2 + 1

)
‖v‖2 − K

2

[
2ψθ(2x∗) cosD∞

− ε
(
− ψ′θ

(
1

2β2 + 1

))]
‖θ̇‖2.

Applying the Gronwall’s inequality, we obtain

‖θ̇(t)‖2 ≤ ‖θ̇0‖2exp
({
−2Kψθ(2x∗) cosD∞ + εK

(
−ψ′θ

(
1

2β2 + 1

))}
t
)

+
K

ε

(
− ψ′θ

(
1

2β2 + 1

))
‖v0‖2exp(−2K cosD∞ψ(2x∗)t).

Lemma 5.4.3. Let (x, v, θ) be a solution to (5.1.2) such that D(θ(t)) <

D∞ < π
2
. Then, we have

(i)
d

dt
‖θ‖ ≤ ‖Ω‖ − sinD∞

D∞
min
i,j

kij(t)ψθ(x
∞)‖θ‖, t > 0,

(ii)
d

dt
‖θ‖ ≥ −‖Ω‖ −max

i,j
kij(t)ψθ(0)‖θ‖.

Proof. By exchanging the indices i and j, we have

1

2

d

dt

N∑
i=1

‖θi‖2 =
N∑
i=1

θ̇iθi =
N∑
i=1

ωiθi +
1

N

N∑
i,j=1

kijψθ(‖xj − xi‖) sin (θj − θi)θi

=
N∑
i=1

ωiθi −
1

N

N∑
i,j=1

kijψθ(‖xj − xi‖) sin (θj − θi)θj

=
N∑
i=1

ωiθi −
1

2N

N∑
i,j=1

kijψθ(‖xj − xi‖) sin (θj − θi)(θj − θi).

The second equality in the above equation holds if the symmetricity of

{kijθ (0)}1≤i,j≤N is satisfied. For any θ̃ ∈ [0, D∞),
sin(θ̃)

θ̃
>

sinD∞

D∞
holds.
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Thus,

1

2

d

dt

N∑
i=1

‖θi‖2 ≤ ‖Ω‖‖θ‖ − sinD∞

D∞
min

1≤i,j≤N
kijθ (t)ψθ(‖xj − xi‖)‖Θ‖2.

Theorem 5.4.1. (Main Flocking and Synchronization) Suppose the param-

eters ε, α and initial position and velocity (x0, v0) and initial phase config-

uration and coupling strength satisfy the framework (B1) − (B3). Then for

any solution (x, v, θ) to (5.1.2) we have

(i) lim
t→∞

D(v(t)) = 0, sup
0≤t<∞

D(x(t)) <∞,

(ii) lim
0≤t<∞

max
i,j
‖θ̇i(t)− θ̇j(t)‖ = 0,

lim
0≤t<∞

max
i,j
‖θi(t)− θj(t)‖ ≤

D∞D(Ω)

2K sinD∞ψ2(2x∗)
,

for all 1 ≤ i, j ≤ N.

Proof. First, we can verify thatD(v(t)) = maxi,j |vi(t)−vj(t)| ≤ maxi,j |vi(t)|+
|vj(t)| ≤ 2‖V (t)‖ holds. Applying the proposition (5.3.2) to this inequality,

we obtain

D(v(t)) ≤ 2‖v0‖e−K cosD∞ψ(2x∗)t.

Letting t→∞, (i) is shown. The second result can be verified with the help

of the first result. For any i, j, xi(t) − xj(t) is expressed as xi(t) − xj(t) =

xi(0)−xj(0)+
∫ t
0
vi(s)−vj(s)ds. By the triangular inequality, |xi(t)−xj(t)| ≤

|xi(0)− xj(0)|+
∫ t
0
|vi(s)− vj(s)|ds holds. Hence,

D(x(t)) ≤ D(x(0)) +

∫ t

0

2D(v(s))ds

≤ D(x(0)) + 2‖v0‖1− e−K cosD∞ψ(2x∗)t

K cosD∞ψ(2x∗)

is true, and this implies (ii).
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5.5 Numerical Simulations

In this section, we provide several numerical simulations to system (5.1.2) in

order to supplement our results on the CSK model with Hebbian coupling.

We set

ψv(θj − θi, xj − xi) =
cos(θj − θi)

(1 + ‖xj − xi‖2)β1
,

ψθ(‖xj − xi‖) =
1

(1 + ‖xj − xi‖2)β2
, β1, β2 ≥ 0.

(5.5.1)

Under the ansatz (5.5.1), the system (5.1.2) with ε = 1 becomes

dxi
dt

= vi, t > 0, 1 ≤ i, j ≤ N,

dvi
dt

=
K

N

N∑
j=1

cos(θj − θi)
(1 + ‖xj − xi‖2)β1

(vj − vi),

dθi
dt

= Ωi + 1
N

N∑
j=1

kij
(1 + ‖xj − xi‖2)β2

sin(θj − θi),

dkij
dt

= ε(α cos(θj − θi)− kij),

(5.5.2)

For different choices of β1 and β2, we will investigate the dynamic features

of system (5.5.2). For simulations, we used the fourth-order Runge-Kutta

method and N = 100. In all simulations, we consider a planar case d = 2

and initial data is randomly drawn.

5.5.1 Natural Frequency

Initial position xi0 and velocity vi0 are chosen randomly from the box [−1, 1]×
[−1, 1] to satisfy zero sum conditions. To begin with, we check if the time

evolution of the system varies depending on the natural frequency Ωi.

Case 1: In this case, the initial natural frequencies are chosen 1 for the first half

of the group and −1 for the other half. In other words,

Ωi =

{
1, i = 1, ..., 50,

−1, i = 51, ..., 100.
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This is the case when D(θ(0)) > π
2

holds. We set the other parameters

as

K = 5, β1 = 0.1, β2 = 0.1, α = 5, ε = 1,

and conduct numerical analysis and display some features. As Figures

5.1-4 show, phases of the particles cluster as two distinct groups.
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Figure 5.1: Position and direction for

Ω = ±1
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Figure 5.2: Phase for Ω = ±1
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Figure 5.3: Average and Variance of

x(t) and v(t) for Ω = ±1
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Figure 5.4: kmax and kmin for Ω = ±1

Case 2:

Ωi ∈ U
(
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2
,
1

2

)
, i = 1, ..., 100.
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This is the case when the natural frequencies are chosen from the uni-

form distribution and the sufficient conditions hold. As time passes,

both synchronization and flocking occur. The results are visualized as

follows:
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Figure 5.5: Position and direction for

Ω ∈ U(−1/2, 1/2)
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Figure 5.6: Phase for Ω ∈
U(−1/2, 1/2)
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Figure 5.7: Average and Variance of

x(t) and v(t) for Ω ∈ U(−1/2, 1/2)

0 1 2 3 4 5 6 7 8 9 10

k
ij

2

2.5

3

3.5

4

4.5

5

5.5

6

Kmax

Kmin

Figure 5.8: kmax and kmin for Ω ∈
U(−1/2, 1/2)

Case 3:

Ωi = 0, i = 1, ..., 100.
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If the natural frequencies are identically zero, the system quickly reaches

the flocking and synchronization state. This lead kij(t) to approach some

constant number.
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Figure 5.9: Position and direction for

Ω = 0
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Figure 5.10: Phase for Ω = 0
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Figure 5.11: Average and Variance of

x(t) and v(t) for Ω = 0
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Figure 5.12: kmax and kmin for Ω = 0
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5.5.2 Intensity of Interaction

Case 1: The natural frequencies for oscillators are given as

Ωi =

{
1, i = 1, ..., 50,

−1, i = 51, ..., 100.

In this part, we first raise β1 to β1 = 0.5, make the other parameters

remain the same( K = 5, β2 = 0.1, α = 5, ε = 1) and conduct the

numerical analysis. After this, the value of β2 is changed into β2 = 0.5

with the other parameters fixed as K = 5, β1 = 0.1, α = 5, ε = 1 and

the analysis is repeated. This is the case when a long-range interaction is

replaced by a short-range interaction. The results regarding the change

of β1 are visualized as follows:
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Figure 5.13: Position and direction for

Ω = ±1
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Figure 5.14: Phase for Ω = ±1
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Figure 5.15: Average and Variance of

x(t) and v(t) for Ω = ±1
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Figure 5.16: kmax and kmin for Ω = ±1

The results regarding the change of β2 are visualized as follows:
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Figure 5.17: Position and direction for

Ω = ±1
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Figure 5.18: Phase for Ω = ±1
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Figure 5.19: Average and Variance of

x(t) and v(t) for Ω = ±1
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Figure 5.20: kmax and kmin for Ω = ±1

Case 2: In the case 2, the natural frequency for oscillators is picked from a

uniform distribution.

Ωi ∈ U
(
−1

2
,
1

2

)
In this part, we change β1 and β2 one by one and repeat the same pro-

cedure as Case 1. With more repeated numerical experiments, these re-

sults contributes to find out critical conditions for clustering, unflocking-

synchronization, and flocking-desynchronization. The results regarding

the change of β1 are visualized as follows:
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Figure 5.21: Position and direction for

Ω ∈ U(−1/2, 1/2)
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Figure 5.22: Phase for Ω ∈
U(−1/2, 1/2)
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Figure 5.23: Average and Variance of

x(t) and v(t) for Ω ∈ U(−1/2, 1/2)
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Figure 5.24: kmax and kmin for Ω ∈
U(−1/2, 1/2)

The results regarding the change of β2 are visualized as follows:
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Figure 5.25: Position and direction for

Ω ∈ U(−1/2, 1/2)
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Figure 5.26: Phase for Ω ∈
U(−1/2, 1/2)
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Figure 5.27: Average and Variance of

x(t) and v(t) for Ω ∈ U(−1/2, 1/2)
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Chapter 6

Conclusion

We begin the thesis with reviewing previous flocking models appearing

in other literatures and extended the stochastic Cucker-Smale model

to a mean-field kinetic model that leads us to derive the Cucker-Smale-

Fokker-Planck equation (CS-FP equation). For the main part, we prove

the wellposedness of the CS-FP equation by applying the Sobolev em-

bedding theorem to the energy estimates for a weak solution in an

admissible set. In addition, we deal with the Cucker-Smale-Kuramoto

model(CSK model) and verify sufficient conditions for occuring both

flocking and synchronization with the Lyapunov functional approach.

As a special case for the CSK model, the CSK model with the Hebbian

coupling is introduced, and its numerical simulations are covered. For

the Hebbian coupling case, the numerical results suggest clustering and

other nontrivial time evolution depending on the range of interaction

and the initial configuration.

For the future work in the CS-FP equation, the threshhold phenomena

of the energy functional depending of Kc need further be studied for

a general communication weight function ψ(s). For the future work in

the CSK model, the sufficient conditions need be eased and subdivided

so that conditions for the clustering, flocking-desynchronization and

unflocking-synchronization are completed.
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국문초록

이 논문에서는 퇴화 확산 계수가 관여된 쿠커-스메일-포커-플랑크형 방

정식을 다룬다. 쿠커-스메일-포커-플랑크 방정식은 확률 환경 하에서 무

한의 쿠커-스메일 플로킹 입자의 위치, 속도에 관한 분포함수의 편미분

방정식으로 표현된다. 본 연구에서는 분포함수의 고계 편미분 도함수에

대한 에너지 평가식을 유도하여 쏘볼레프 몰입정리를 적용하고, 균등

포물형 방정식으로 해를 근사함으로 초기 조건이 충분히 매끄럽게 주

어졌을때 쿠커-스메일-포커-플랑크 방정식의 해가 국소적으로 존재함을

증명하고, 이를 대역해로 확장한다.

다음으로 플로킹과 동기화를 연결지어 세운 쿠커-스메일-쿠라모토 모델

을 소개한다. 본 연구에서는 쿠커-스메일-쿠라모토 모델에서 플로킹과

동기화가 발생하는 충분조건을 리아프노프 범함수를 이용하여 확증하

고, 특별한 초기 조건에서의 모델의 양상을 수치적 계산 결과와 함께

제시한다.

주요어휘: 쿠커-스메일 모델, 플로킹, 쿠커-스메일-포커-플랑크 방정식,

스레쉬홀드 현상,쿠커-스메일-쿠라모토 방정식, 동기화 현상

학번: 2012-30868


	Chapter 1 Introduction
	Chapter 2 Preliminaries
	2.1 The Cucker-Smale Model
	2.1.1 The Vicsek Model
	2.1.2 The Cucker-Smale Model
	2.1.3 The Kinetic Cucker-Smale Model

	2.2 The Cucker-Smale-Fokker-Planck Equation

	Chapter 3 The Cucker-Smale Model with White Noise
	3.1 The Additive Noise Case
	3.2 The Multiplicative Noise Case

	Chapter 4 Wellposedness of the CS-FP Equation
	4.1 Estimates of Classical Solutions
	4.1.1 A priori Estimates

	4.2 A Local Existence Result
	4.2.1 Extention of Local Existence


	Chapter 5 The Cucker-Smale-Kuramoto Model
	5.1 The Cucker-Smale-Kuramoto Models
	5.2 Frameworks
	5.3 Estimates in the CSK model
	5.4 Estimates in the CSK model with Hebbian Coupling
	5.5 Numerical Simulations
	5.5.1 Natural Frequency
	5.5.2 Intensity of Interaction


	Chapter 6 Conclusion
	Bibliography
	Abstract (in Korean)


<startpage>10
Chapter 1 Introduction 1
Chapter 2 Preliminaries 5
 2.1 The Cucker-Smale Model 5
  2.1.1 The Vicsek Model 5
  2.1.2 The Cucker-Smale Model 6
  2.1.3 The Kinetic Cucker-Smale Model 7
 2.2 The Cucker-Smale-Fokker-Planck Equation 9
Chapter 3 The Cucker-Smale Model with White Noise 16
 3.1 The Additive Noise Case 16
 3.2 The Multiplicative Noise Case 19
Chapter 4 Wellposedness of the CS-FP Equation 23
 4.1 Estimates of Classical Solutions 23
  4.1.1 A priori Estimates 25
 4.2 A Local Existence Result 31
  4.2.1 Extention of Local Existence 35
Chapter 5 The Cucker-Smale-Kuramoto Model 37
 5.1 The Cucker-Smale-Kuramoto Models 38
 5.2 Frameworks 40
 5.3 Estimates in the CSK model 42
 5.4 Estimates in the CSK model with Hebbian Coupling 46
 5.5 Numerical Simulations 56
  5.5.1 Natural Frequency 56
  5.5.2 Intensity of Interaction 60
Chapter 6 Conclusion 65
Bibliography 66
Abstract (in Korean) 71
</body>

