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Abstract

In this dissertation, we mainly focus on a kinetic Cucker—Smale—Fokker—
Planck (CS-FP) type equation with a degenerate diffusion coefficient. The
CS-FP equation is described in a differential equation for a probability distri-
bution function f of the infinitely many Cucker—Smale flocking particles in a
random environment. We will present a priori estimates for proving the global
existence of classical solutions to the CS-FP equation. The global existence of
classical solutions under a given sufficiently smooth initial datum will be ob-
tained by applying sobolev embedding theorem to the a priori estimates and
iterating the solutions of uniformly parabolic equations which approximates
the CS-FP equation. We also present the Cucker-Smale-Kuramoto model
which describes flocking and synchronization coupled phenomena. Sufficient
conditions for the asymptotic flocking and synchronization will be derived
with the Lyapunov functional approach. We provide the numerical compua-
tions for a special case to suggest the future works on clustering.

Key words: Cucker-Smale Model, Flocking, Cucker-Smale-Fokker-Planck
equation, Threshold phenomena, Cucker-Smale-Kuramoto equation, Synchro-

nization
Student Number: 2012-30868
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Chapter 1

Introduction

The collective behaviour among species on the earth, such as a swarm of
insects, a flight of birds, a school of fish, are often observed. Such groups
display arranged formations surprisingly in order and they travel without
scattering as if there are some governing rules. We call such phenomenon as
flocking. Flocking can be more precisely defined as a phenomenon in which
self-propelled particles organize into an ordered motion with only limited
environmental influences and simple rules. Flocking has drawn attention to
many mathematicians. Taking interactions into account, we now have sev-
eral models that intuitively make sense and fit into the phenomena. Flocking
is expected to be further applied to develop unmanned vehicles and sensor
networks etc. In this dissertation, the derivation of flocking model will be
discussed first and current and future work will be introduced. We mainly
take the Cucker and smale [13, 14)’s flocking model and its modified models.
The Cucker-Smale model(CS model) is a time-continuous first-order ODE
system with position and velocity variables. In this model, each agent is re-
garded as a point particle, so the volume is neglected. The time derivatives
of velocity variables in this dynamical system are expressed as an average
value of the other particles’ relative velocities multiplied by the communica-
tion weight coefficients, which depends on the distance of a pair of particles.
The communication weight tends to increase when two particles are located
close.
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The dynamics in which multiplicative noise is grafted onto the C-S model
(2.1.2) is rewritten[2] as follows :

dz! = vldt, t>0, 1<i<N,

4 KX S 4 1.0.1
dvi = N Z Y(|og — wi])(v] — v)dt + V20 (vf — vt)dB. 0
j=1

In case that the number of CS particles is large enough, the kinetic mean-
field model corresponding to (1.0.1), called the Cucker-Smale-Fokker-Planck
model(CS-FP model), for the one-particle distribution function is used to
further study its dynamics. The CS-FP model is described as follows. Let
f = f(z,v,t) be the one-particle distribution function of the CS ensemble.
The evolution of the kinetic density function f is governed by the following
Cauchy problem for the kinetic CS-FP equation:

Of +v-Vof + V- (LIfIf) = cAu(Jv —v°]2f), x,v€ R >0,

(1.0.2)
LlfGe 0 t) = =K [ 0l =y = 0,0, hdvedy,
]RQ
subject to suitable initial datum
f(ﬂf,U,O) = f0($7v)7 fO = 17 (103)

R2d

where K and o are nonnegative constants that represent the coupling strength
and noise strength of noise in a random environment, respectively. v¢ is de-
fined as the average velocity, i.e.,

o Jp2a vfdvdz
T Ja fduda

Note that v¢ is a conserved quantity along the dynamics in (1.0.2)—(5.1.3).
It will be shown.

ve(t)

The main purpose of this thesis is to classify the large-time dynamics of
the CS-FP equation in (1.0.2) depending on the relative ratio between the
coupling strength K and the diffusion coefficient o.

2



CHAPTER 1. INTRODUCTION

There have been a lot of literatures that dealt with the flocking phe-
nomena: the global existence theories of classical solutions, measure-valued
solutions, weak solutions and their flocking estimates in [25, 27, 31, 32], the
rigorous mean-field limit from the particle system [8, 25|, coupling with fluid
equations [3, 4, 9, 10], and the macroscopic C-S model and its asymptotic
justification [21, 22, 30].

In this thesis, we present the analysis of the CS-FP model and other
flocking dynamics in the following order: First, we introduce the a priori
asymptotic dynamics of (1.0.2) under an assumption of the positivity and
boundedness of the communication weight . To measure the degree of ve-
locity alignment, we use the velocity variance of the kinetic density function
f, so that the velocity variance decay implies the formation of velocity align-
ment. In the course of the proof for Theorem 2.2.1, we derive an identity
representing the competition between the velocity alignment forcing and the
nonuniform diffusion. Thus, we have two dichotomies of the large-time be-
havior of the velocity variance.

Second, we present the global existence of classical solutions to the ki-
netic mean-field equation in (1.0.2). In Theorem 4.1.1, we show that the CS-
FP equation admits a global smooth solution for an H* (k > d+2, o > %)—
initial datum with finite mass and energy. The smallness of the initial datum
is not needed in the a priori estimate. Of course, we cannot expect a uniform
bound for the H*-norm of f because we have the formation of the velocity
alignment for K > o, which reflects the unlimited growth of the H%-norm

of f.

The thesis after the introduction is organized as follows. In Chapter
2, we briefly discuss the flocking models. In Chapter 3, the Cucker-Smale
model with white noise is introduced. In Chapter 4, we present the global
H* solvability of the CS-FP equation in (1.0.2)—(5.1.3) in a suitable admis-
sible function space using the energy method. In Chapter 5, we present the
Cucker-Smale model coupled with phase interaction. Numerical experiments
are included to supplement the future works. Finally, Chapter 6 is devoted
to a summary of our main results.
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Notations for the CS-FP Equation: For a measurable function u =

u(x,v) in the phase space R?*?, we set

ol o= 00+ Pl ol = [+ ) fPdude, a2 0
[ull3e = llull?z + D N0idull7z, k€ NU{0}.
1<i+j<k
For v = 0, we denote [|ul?,, := Hu”i]{;
Notations for the CSK Equation: Forx = (z1,--- ,zy), v = (v1, -+ ,0n),
0= (61, ,0n) and w = (wy, -+ ,wn), We set
1
el = (0 i) D(x) == max_[lv; — ]
=t 1<igen W
D(v) =maxig < [lvi—vill,  D(0) ==  Jpax 16:(¢) — 0; ()1,
D(w)  =maxij<n [|wi — wj.
4
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Chapter 2

Preliminaries

In this chapter, we present Cucker-Smale flocking models from microscopic
to macroscopic scales [15] and relavent results from previous literatures. We
also consider how to transform the CS model with random communication
into a stochastic model with multiplicative noise.

2.1 The Cucker-Smale Model

2.1.1 The Vicsek Model

Vicsek et al presented a simple phase transition model in [43]. The model is
motivated from the effort to understand self-ordered behaviour of biological
systems such as clustering, migration, and various pattern formations. The
basic rule of the model is that at each time step the velocity of each particle
driven with a constant absolute velocity is updated according to the average
direction of the neighboring particles’ moves with some random perturbation
added. In this context, its neighborhood particles within radius r are involed
in the interaction.

The numerical simulations of the Vicsek model is conducted in [43] under
these conditions: i) Initially, NV particles are randomly distributed in the cell(a
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square shaped cell of length L with periodic boundary).

ii) All the particles have the same absolute velocity value.

iii) The initial moving direction @ of each particle is randomly distributed,
and, at each time step, the moving direction and position are updated in the
following manner:

{xi(t +1) ) zv;(t) +vi(t)At, (2.1.1)

(1)), + A9,

where (6(t)), represents the average direction of the velocities of particles
within a neighborhood of radius r» and A# is chosen from a continuous uniform

distribution with a finite support [—3, Z]. By changing three free parameters
such as a density p = %, noise 7, and a velocity size |v|, Vicsek et al presents

orderedness for particles.

2.1.2 The Cucker-Smale Model

Felipe Cucker and Steve Smale suggested a Newton type microscopic model
for an interactive multiple number of particle system which present a flocking
phenomenon in their works [14]. Motivated by the work of Vicsek et al in
[43] , Cucker and Smale worked on sufficient conditions for an asymptotic
flocking in terms of interaction coefficients and initial configuration, and they
showed a rigorous flocking estimates. The Cucker-Smale model(C-S model)
is described as the system of ODEs for N —particles:

dx;
L, t>0,i=1,.., N,

i "t (2.1.2)
= (e — wil) (s — v,

where K and 9(s) = B > 0 represent a nonnegative coupling

—,
(14 s%)z
strength and a communication weight reflecting the intensity of communica-

tion, respectively. We recall the definition of flocking:
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Definition 2.1.1. [2, 27] Let B = {(x;,v;)}, be a solution to the deter-
ministic system (2.1.2). Then, the system B exhibits global (or mono-cluster)
flocking if and only if it satisfies the following two conditions.

1. The spatial diameter of B is uniformly bounded, 1i.e.,

oglfoolg?gf\f llzj(t) — xi(t)] < oo. (2.1.3)

2. The velocity diameter of B tends to zero asymptotically, i.e.,

lim max ||v;(t) —vi(t)| =0, (2.1.4)

t—00 1<i,j<N

where | - | is the standard €y-norm in RZ.

Remark 2.1.1. when the conditions in (2.1.3) and (2.1.4) hold for a stochas-
tic interacting system almost surely, the system is said to be presenting the
strong stochastic flocking.

For an all-to-all case, the communication weight is ¢ = 1,i.e., 8 = 0. The
C-S model has been extensively studied in many literatures [13, 14, 25, 27, 2,
17, 24] etc, and in [...] it is verified that the threshold between a conditional
and unconditional flocking is 5 = 1. Under v is a long range interaction, i.e.,
B < 1, flocking unconditionally occurs no matter how scarce the given initial
configuration is.

2.1.3 The Kinetic Cucker-Smale Model

As N grows sufficiently large, i.e., the CS system (2.1.2) is rewritten as a
partial differential equation for f = f(z,v,t), a one particle distribution
function, described as:

. d
{ Of +v-Vof +V, - (F(f)f) =0, z,0eR’ t>0, (2.1.5)

F(f)(x,v,t) = =K [poa (|2 —y])(v —v.) f(y, vs, t)dvydy.
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Let us denote fN = fN(xy,...,xn,v1, ..., 0N, 1) by the N—particle prob-
ability density function. The density function fV does not change its value
by interchanging any two space-phace arguments, i.e., for any j and &

TN @y oy Thy oy Vg ooy Uy ey £) = N oy Ty ooy Ty ooy Uy ey Uy ey 1)

holds. In [15], the time evolution of f¥ is written in a form of Liouville
equation as follows:

N 1 N N
OF D v VN 5 D Vi (Z ¥ — i) (0 — m-)fN) -

We set the marginal distribution f~ = fN(xl,vl,t) as

~

fN(xb/Ul)t) :/ fN(xl,a:,,vl,v,,t)da:,dv,,
R2d(N-1)

with (z_,v_) := (x9, ..., TN, Vg, ..., vy). We then obtain the kinetic C-S equa-
tion by integrating the above Liouville type equation with respect to (z_,v_)
and taking the mean-field limit N — oc.

The communication between particles can also be affected by their sur-
roundings. The roles of the environment can be subtle to be accurately mea-
sured. Using the stochastic noise, not only we take the environmental effect
into account, but also we present its indeterministic feature. Let x; and v; be
the position and velocity, respectively, of the i-th particle in R?. Recall the
CS flocking model:

dx;

CZ — v, t>0, 1<i<N,
d’UZ‘ K il -

B S e — )y )

After Cucker and Smale’s seminal works in [13, 14], further extensions
of the CS model in (2.1.2) have been attempted in [8, 11, 12, 23, 24, 26]. Let
us now consider the case that the Gaussian white noise is involed in % , so
that it is rewritten as

V20

Uiy —ail) = ol —ml) + —=m (2.1.6)
v .. ——
deterministic random noise
8
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with the d-dimensional Gaussian white noise 1, = (1}, ..., n?) satisfying
(dn)) =0, (dni,dnl)=0d;d(tNs), 1<i,j<N,ts>0.
Combined with the random communication part in (2.1.6), the C-S model in
(2.1.2) turns into the stochastic CS model with multiplicative noise [2]:
dx; = v;dt, t>0, 1<i<N,

N
= e 2ol =)y e VB~ ), (2:1)

where the average velocity v, is defined as

1
Ve 1= szj.
j=1

Note that system in (2.1.7) conserves the total momentum. Hence, if asymp-
totic flocking occurs in the sense of Definition 2.1.1, then the flocking velocity
is given by the initial average velocity v§, as in the original CS model [25, 27].
It is well known [2, 17, 24] that noise can stabilize and destabilize determin-
istic dynamical systems depending on its type. For example, additive noise
destabilizes flocking states in the C-S model, whereas multiplicative noise can
stabilize flocking states (see [2, 12, 24]). For the reader’s interest, we quote
the stabilization result of multiplicative noise in C-S flocking without proof.

Remark 2.1.2. [f the conditions in (2.1.3) and (2.1.4) hold a.s. for a stochas-
tic interacting system, then we say that strong stochastic flocking occurs.

2.2 The Cucker-Smale-Fokker-Planck Equa-
tion
In this subsection, we study the estimates for the conservation laws and

the exponential flocking estimate in (1.0.2). Recall that the kinetic CS-FP
equation is written as follows:

{ atf+v'vzf+vv'(L[f]f):O_Av(’v_vc‘2f)7 .T,UERd, t>07
L[f](x,v,t) = _KIRM ¢(|$ - y|)(v - U*)f(%v*vt)dv*dya

9
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subject to an initial datum

f(z,v,0) = fo(x,v), fo(z,v)dzdv = 1.

R2d

Lemma 2.2.1. (Conservation laws) Let f = f(x,v,t) be a smooth solution
to the CS-FP equation (1.0.2)—(5.1.3) which vanishes at infinity and has the
finite first moments, i.e.,

/ (14 |v]) fo(z,v)dvdx < 400, t>0.
R2d

Then, the total mass and total momentum are conserved:

d d
7 Rvax 0, 7 Rmvax 0 t>0

Proof. The equation in (1.0.2) can be written in a divergent form:
Of + Vs - (0f) + V, - [L[f]f — oV, (jv — v*]2f)] = 0. (2.2.8)

In order to obtain the conservation of mass, we integrate (2.2.8) with respect
to (x,v). For the conservation of momentum, we first multiply the CS-FP
equation(1.0.2) by v, so that we find the local balanced law for v f:

0f)+ Vi (0@ V) 4V, - [v@ (LIIf) = o0 @ U, (jo = ve)
= L(f)f = oVulo = o f).

By integrating the above the relation (2.2.9) with respect to (z,v) and as-
signing the definition of L(f), i.e.,

(2.2.9)

[ L fduds = <k [ be=al)0-0.) £, ) v, Odudv.dyds =0
R2d R4d
to the relation, we derive the conservation of total momentum. O

We define a functional F(f) so that the velocity variance of the kinetic
density function f is measured:

F) = [ o= vl pvds = [

’U - UC(0)|2dedI,
R2d

10



CHAPTER 2. PRELIMINARIES

where v.(t) = v.(0), t > 0 due to the conservation of momentum. Note that
the zero convergence of F(f(t)) as t — oo is interpreted as the formation of
velocity alignment in probability. The connection between the zero conver-
gence of F(f(t)) and the probabilistic velocity alignment is easily shown by
the Chebyshev inequality as the following: let us define f(t) as a probability
density function in (x,v). For any £ > 0, we have

F(F(t) = / o 1) dud
> — (0 2fd d
/;)—Uc(0)|>6‘v U( )’ var

> &2 fdvdz = *P[|v — v.(0)| > €].

N |[v—ve(0)|>e
This yields the following inequality:
1
lim P[lv —v.(0)] > €] < = lim L(f(¢)) = 0.

t—o0 g4 t—oo

The first main result in this thesis is the asymptotic threshold phenomenon
of F depending on the relative strengths between K and o.

Theorem 2.2.1. Suppose that the communication weight function v is pos-
itiwe and bounded below and above, i.e., there exists positive constants 1y
and v, satisfying

Um <Y(s) <Yur, 5 2>0.
In addition, let f = f(z,v,t) be a classical solution to (1.0.2) which quickly
vanishes at infinity and satisfies the finite second moments

/ (1+ [v)*) f(z,v,t)dvdr < o0, t>0.
R2d

i) For K > , there is a positive constant K, == 2 (K| fol|11 — do)

do
V| foll 1

which satisfies
F(f(1) < F(fo)e ™', t>0.

i) If K < , there is a positive constant Ky := 2 (do — K| follzr)

do
Y| foll e
which satisfies

F(f(t) > Ffo)e" ™, t>0.

11
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Proof. First, let us multiply (1.0.2) by |v — v¢|* in order to obtain

Ao — v Pf) + Ve - (oo — o)
£, ([o = oPLU)S — ol — o PDullo — o7 f) + 20(0 — o) — )
= 20 — ) - (L()) + 2dolo — oS,
(2.2.10)

We then integrate the relation in (2.2.10) to obtain

d
— |v—v°]2 fdvdr = 2/

dt Jgoa de(v—vc>-(L(f)f)dvda:+2do/ lv—v°|* fdvdz.

R2d
(2.2.11)
Note that, by exchanging v and v,, the first term on the right side of (2.2.11)
is rewritten as

o= @ pdvda
& [ wlle = o) = ) (0 = )00 o0, )y

=K | ¢(z—y])(vi —0°) - (v—0.) f(y, 00 t) f(z,0,)dv.dvdydz

R4d
K
= _E / ¢(|x - y|)’U o U*|2f(y7 U, t)f(x,v,t)dv*dvdydx
R44d
(2.2.12)
We combine (2.2.11) and (2.2.12) to obtain a dissipation estimate for F(f(t)):

a
dt R2d

— K / O(le = yDlo = v 2f (s ve, ) f (2,0, ) dvodvdyds— (2.2.13)
R4d

lv — v fdvdx

+ 2da/ v — v.|* fdvdz.
R2d

In (2.2.13), we now take the lower bound for 1 to derive the corresponding

12

&

| &1
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Gronwall’s inequality for F:

d
— |v — v 2 fdvdr < —2(Kt,||follr — do) / v — v.|? fdvda
dt R2d R2d

=—Kp, v — v.|? fdvd,
R2d
(2.2.14)

where K,,, :== 2 (K| fol|z1 — do) . Meanwhile, we take the upper bound for
1 to derive

d

— |v — v|? fdvdz > —2(Ku|| follr — da)/ v — v,|? fdvdx
dt R2d R2d

= KM/ lv — v,|? fdvdz,
R2d
(2.2.15)

where Ky =2 (do — K| follz1)- (2.2.14) and (2.2.15) lead to the desired
flocking estimate. [l

Remark 2.2.1. 1. The results in Theorem 2.2.1 suggest the possible existence
of a critical coupling strength K. from the diffusing phase to the flocking phase
as we increase the coupling strength. In fact, for the all-to-all coupling case
W =1, such a critical coupling strength K. is ezactly given by the value —22—

llfoll 1’
and we have the following threshold phenomenon: ’

00 K < K., subcritical regime,
1tlim F(f(t)) =4 F(fo) K=K, critical regime,
0 K > K., supercritical regime.

This phenomenon is reminiscent of the existence of a critical coupling strength
from the incoherent state (disordered phase) to the partially ordered state in
Kuramoto synchronization [1].

2. Note that the asymptotic formation of flocking states containing the factor
§(- — v%(0)) is mainly due to the nonuniform diffusion coefficients olv|* in
(1.0.2). For the additive white noise case, the formation of flocking is not

13
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possible. This can be easily seen from the following kinetic CS-FP equation
from [6]:
Of+v-Vof + V- (L[flf) = cA,f. (2.2.16)

For the all-to-all coupling case v = 1 and suitable normalization conditions:

fdvdx =1, / vfdvdr =0,
R2d

R2d

the linear alignment forcing term L[f] becomes linearly damped:
LIf)(@,v,8) = — K.

Thus, the equation in (2.2.16) becomes a linear Vlasov—Fokker—Planck equa-
tion:

atf+v'vmf:vv’(KUf+vaf>'

Then, it is easy to check that the above equation has a space-homogeneous
equilibrium f.:
K
foolv) = 72w e RY,

thus, there is no emergent velocity alignment for any positive K.

Lemma 2.2.2. Let f = f(z,v,t) be a classical solution to (1.0.2) that quickly
decays to zero at infinity and satisfies the finite second moments:

/ vfdvde =0 and / (14 |v]*) fdvdx < 0o, t>0.
R2d R2d
Then, we have

(@) [1Vo- Lif]ll e < dE][9 ][l follt,
(i0) ol flle < e 2 folla vl foll o

Here K, is a constant appearing in Theorem 2.2.1.

Proof. (i) For the first estimate, we use the definition of the linear operator
L[f] in (1.0.2) and use Lemma 2.2.1 to obtain

902181l = |4 [ e = s o)y
<K 0l |0 = A [l ol

14

&

| &1



CHAPTER 2. PRELIMINARIES

(ii) We use the Cauchy—Schwarz inequality to obtain

_Kmt
Mol fllze < V1Al Dl < e 2 foll v foll e

15
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Chapter 3

The Cucker-Smale Model with
White Noise

In this chapter, we summarize the results of the CS model with additive noise
and multiplicative noise which appeared in [24] and [2], respectively.

3.1 The Additive Noise Case

The C-S flocking with additive noise is discussed in [24]. The dynamics of
N particles are described in terms of position and velocity, (z;(t),v;(t)) €
R?¢ x R, as follows:

dl’i = Uidt,

K (3.1.1)
dvi = ;w(\xi — ;) (v; — v;)dt + V' DdW;(t),

subject to deterministic initial data (x;(0),v;(0)), ¢ = 1, ..., N. Here dW;(t) is
the d-dimensional Brownian motion satisfying (dW*(t)) = 0, (dW(t)dW}(s)) =
d(a—0)5(i — j)d(t N's), (-) : ensemble average. In this system, K is inter-
preted as a repulsive coupling constant if K < 0 and a attractive coupling
constant if K > 0. The concept of asumptotic flocking is expressed as

16



CHAPTER 3. THE CUCKER-SMALE MODEL WITH WHITE NOISE

Definition 3.1.1. [24] The system (3.1.1) exhibits a (time-asymptotic) flock-

ing if and only if {(xs,v;)}Y., satisfy the two conditions:

i) For any 1 < 1,57 < N, the expectation differences of the pairwise
velocity asymptotically vanish, i.e.,

lim (v (£)) = (v;(£))] = 0,

t—o00

ii) For any 1 < i,j < N, the average diameter of a group is uniformly
bounded in t, i.e.,

sup |(w;(t)) — (x;(t))] < oo,

0<t<o0

By setting the following notations as

N N
1 1
xc::ﬁ Elxz‘, Ve ::N ‘El% Ti = Tj — Tey, Vi = Vi — Vg,
1= 1=

we will analyze the system both macroscopically and microscopically.

We notice that the macroscopic quantities(ensemble averages) satisfy

dxr,. = v.dt
VD
dv, = ~ SOV dW(1).

The main macroscopic analysis is the following:

Proposition 3.1.1. [24] Let (x.,v.) satisfy the above system of equations
and a € 1,...,d. Then we have

i) {uelt)) = v0), warlo(t)] = 3.
i) (xc(t)) = x:(0) + tv.(0), wvar[xi(t)] = 12)—;[2

Remark 3.1.1. From the proposition, we find the average macroscopic ve-
locity converges to v.(0) as the number of agents increases.

ve(t) —ve(0) = 0, a.s.

17



CHAPTER 3. THE CUCKER-SMALE MODEL WITH WHITE NOISE

The microscopic quantities(fluctuations), on the other hand, satisfy

K N
dﬁi:N;¢(|9§i—:ﬁj| 0;)dt + VD (1——) dW——;dWJ,
= 17])

with the initial data (#;(0),?;(0)) and their zero sum constraint

D 200 =) #(0)=0, t>0.

The momentum is conserved. The authors in [24] provide the following propo-
sition:

Proposition 3.1.2. [2/] Let (&;,v;) satisfy the above microscopic system of
equations when ) = 1. Let 0 and & be a-th components of each vector. Then
for1<i,7 <N and1 < a <d, the followings hold: fort > 0,

From this proposition, we find the variance of the velocity perturbation does
not disappear as time goes to co. In the next theorem, the flocking estimate
in all-to-all interaction case (¢) = 1) is covered.

Theorem 3.1.1. [2/] Assume (Z;,0;) be a solution to the above microscopic
system of equations when v = 1. Then we obtain,

) I |00) ~ (O =0, swp (0} ~ {25(0)] < oc,
- X A D
i) limy_o P(|0:(t) — 0;(8)]? > ) < Ko for any ¢ > 0.

18
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CHAPTER 3. THE CUCKER-SMALE MODEL WITH WHITE NOISE

The authors in [24] try to extend this result to radially symmetric com-
munication weight case when 1 has a nonnegative lower bound condition.
Using energy estimates, the following theorem is derived.

Theorem 3.1.2. [24] Let(x;,v;) be a solution to the microscopic system with
a nonnegative communication weight 1(r), which is nonincreasing in v € R
and uniformly bounded below by ¥, > 0 for any t > 0. Let us define X and

Voas X(t) = SN Nlz(t)|?, V) =N, vs(0)||?. Then (X, V) satisfies
dx < 2V/xVvdt, t>0,
4V < —2N2X)Vdt +dD (1 - N) di

[ e P

JF#i

—i—\/_ZvZ

Moreover,

dD 1
t < 0 —2Nyt 1—- — 1 — —2Nyt ]
VO) < VO™ 4 5 (1= ) (1= e
Remark 3.1.2. Unless D = 0, the asymptotic flocking is not guaranteed.
However, this theorem implies the uniform boundedness for the variance of
fluctuations

Jim Var(vi(t)) < gx-

where v is the a-th component of v;.

3.2 The Multiplicative Noise Case

The C-S flocking with multiplicative noise is discussed in [2]. The dynamics
of N particles are described in terms of position and velocity, (x;(t), v;(t)),
as follows:

dx; :vzdt t >0,

Vi= N Z¢ |5 — 24]) v;)dt + D(vi — v )dW (1), (3.2.2)

19



CHAPTER 3. THE CUCKER-SMALE MODEL WITH WHITE NOISE

with a d—dimensional constant state v.. Here dW (t) is the one-dimensional
Brownian motion satisfying (dW (t)) = 0, (dW(t)dW(s)) = 6(t —s), (-) :
ensemble average. In this system, K is interpreted as a repulsive coupling
constant if K < 0 and a attractive coupling constant if K > 0. The definition
of the strong stochastic flocking is expressed as

Definition 3.2.1. /2] The system (3.2.2) exhibits an asymptotic strong
stochastic flocking if and only if {z;,v;},i = 1,...,N satisfy the two
conditions:

1. Forany 1 <1i,5 < N, the pairwise velocity differences asymptotically
vanish, i.e.,
li (1) —v;(t)| =0, a.s.
tH&’”l(t) vi(t)] =0,a.s

2. Forany 1l <1,7 < N, the diameter of a group is uniformly bounded in
t, v.e.,

sup |xi(t) — x;(t)] < o0, a.s.
0<t<o0o

We notice that the macroscopic quantities(ensemble averages) satisfy

dr. = v.dt
dv. = D(ve — ve)dW (t).

The main macroscopic analysis is as follows:

Proposition 3.2.1. [2] Let (z.,v.) satisfy the above system of equations.
Then there exists T' > 0 such that

1) (ve(t) =ve) =0, (we(t) = 2(0)) = ve(0),
i) |ve(t) = ve| = [ve(0) — ve| exp {—(D?/2)t + DW (1)},

iii) |z.(t) — x:(0) — tve| < Clve(0) — ve|, where C = C(T, D).

From the proposition, we figure out the ensemble average of velocity goes to
zero in time, and the distance between x.(t) and z.(0) + tv. does not blow
up at any t > 0.

20
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The microscopic quantities(fluctuations), on the other hand, satisfy
di; = ddt, 1> 0,

N
K e :
dv; = N '2:1 (|2 — 25])(05 — 03)dt + Doy dW (1),

with zero sum constraint
=) 0;=0, t>0.
The authors of [2] also provide the corresponding proposition as follows:

Proposition 3.2.2. [2] Let (z.,v.) satisfy the above microscopic system of
equations. Let v{ and x¢ be a-th components of each vector. Then for 1 <
1,7 < N and 1 < a < d, the followings hold:

i) (0 (t) = e M0p(0),  Var(og(t)) = e ("™ — 1)(2£(0))*,

07 (1)) = (e5()] < e‘Kt!<@§(0)> (03 (0)1,
(t) — 05 ()*) < e=CE=PIa2(0) — 05 (0) .

From this proposition, we find the velocity perturbation exponentially dimin-

ishes in time provided that K > %2.

Theorem 3.2.1. [2] Suppose the coupling constant K and noise coefficient
2

D satisfy K > —, and let (z;,0;) be a solution to the above microscopic sys-

tem with bounded initial data. Then the asymptotic strong stochastic flocking
occurs. To be more specific,

i) imy oo [05(t) — 0;(£)] = 0,  SUPgcieoe [T3(t) — 25(1)| < 00, and
i) limy o0 P(|0:(t) — 9;()|> > €) = 0, for any e > 0,
hold.

In the next theorem, under radially symmetric communication weight
1 with nonnegative lower bound condition, the asymptotic strong stohastic
flocking of (z;,v;) is derived.
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Theorem 3.2.2. [2] Let(;,0;) be a solution of the microscopic system with
a nonnegative communication weight (r), which is nonincreasing in v € R

and bounded below by 1, > 0. Then the asymptotic strong stochastic flocking
0CCuUTS:

i) limy o0 |0i(t) — v;(1)] = 0, for any 1 <i,j <N,

i) SUPg<icoo |Ti(t) — 5(t)| < 00, for any 1 <i,j < N.
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Chapter 4

Wellposedness of the Cucker-
Smale-Fokker-Planck Equation

In this chapter, we aim to prove the global existence of classical solution to
the CS-FP equation. We first present a priori H*—estimates and then show
the local existence of the solution to extend the argument to the global sense.

Furthermore, the estimates of a solution to the Cucker-Smale-Mckean-
Vlasov equation will be also discussed. The contents of this chapter are based
on a joint work with Ha, S-Y, Noh, S-E, and Xiao, Q-H [20].

4.1 Estimates of Classical Solutions

In this section, the global existence of classical solutions to the Cauchy prob-
lem of the CS-FP equation with v“ = 0 will be mainly verified. Consider the
Cauchy problem as follows:

Ouf +v - Vof +divy(LIf]f) = o Au([v]*f), z,v€R?, ¢ >0,
L), v0,1) = —K / (= )0 = 02) (g, 0 vy, (4.1.1)
f(z,v,0) = fo(z,v).
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CHAPTER 4. WELLPOSEDNESS OF THE CS-FP EQUATION

We begin this section by recalling the definition of a classical solution to
(4.1.1).

Definition 4.1.1. Let f = f(x,v,t) be a classical solution in RY x R? x I,
for an interval I C (0,00), of (4.1.1) with a nonnegative datum fy if and
only if the following conditions hold.

1. f is continuous in R xR? x I and continuously differentiable once with
respect to (x,t) and continuously differentiable twice with respect to v.

2. For allz,v € R and t € I,
() = Y(lr =y —v) f(y, v, ) € LR x RY).
3. [ satisfies the equation in (4.1.1) in a pointwise sense and fl|i—o = fo.

Let us now define a function space in which we will look for a classical
solution. For T > 0, we set

tel0,T)

Xpo(T) = {f € C(0,T; (Hy N Ly)(R*) = sup ([F(O)]ax +11fB)]|y) < OO}-

The global existence of classical solutions is one of the main results in
this thesis. This is described as follows:

Theorem 4.1.1. Let T' € (0,00) be a given constant. We assume that the
initial datum fy satisfies

d+2
fo € H* N Ly(R*),  for some positive constants k > 2 +d and a > %

Then, there exists a unique global classical solution to the Cauchy problem in
(4.1.1) in the function space Xy o(T).

Remark 4.1.1. The standard Sobolev imbedding theorem implies that
fOllae <00, k>2+d = |[[f(#)|lcz < o0

holds. The unique solution in Theorem 4.1.1 1s a classical solution we look for.

In the next two subsections, we exhibit a priori estimates and the local
existence to prove Theorem 4.1.1.

24



CHAPTER 4. WELLPOSEDNESS OF THE CS-FP EQUATION

4.1.1 A priori Estimates

In this subsection, we study the a priori HX— estimates for the solution to the
Cauchy problem in (4.1.1). For simplicity, we introduce simplified notation
for the L2 -norm as follows:

gl :=Ngllz2;  llglla = llgllz-

Lemma 4.1.1. (Zeroth-order estimate) Let a constant T € (0, 00| be given.
We denote f € Xpo(T) as a classical solution to (4.1.1) in [0,T). There is
a constant Cy = Cy(d, K, 0, a, |||z, || foll1) satisfying

t
1£11a + 0/ oI Vuf(s)llads < Coc™ | foll2, ¢ €0,7).
0
Proof. In the first chapter, we defined || f]|, as

1= [+ b2y v
RQd
We recall the CS-FP equation (4.1.1) in [0,T) as follows:

Of +v-Vof + V- (LIfIf) = cAy(Jv — )2 f), z,0veR? 0<t<T,
L[f]($’v7t) = _K\/dewux - y|)(’U - 'U*)f(y,’U*,t)dU*dy,

subject to an initial datum

f(:L‘,U,()):fO(JZ,U), Jo=1

R2d

We now present the estimate in two cases.

Case 1 (a = 0): Multiplying (4.1.1) by 2f, we obtain

O (f2) + Vo (uf?) + Vo [S2LI) = 20/ Vu([0]2)] + 2010V f 2

= 2V, - Lf] — 4o fv- V. f
(4.1.2)
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from (4.1.1). Applying the Cauchy—Schwarz inequality and the result in
Lemma 2.2.2(i) to the integration of (4.1.2) with respect to (x,v), an in-
equality is derived as follows:

d
G420l 9f 2 < [ P9, Lifllduds 4t [ (f0- 9, fldvda
R2

- R2d

K| foll o [z I £1° + o l[[o[ Vo I* + 4ol 1%

IN

Furthermore, the Gronwall’s inequality for || f]|* yields

d
Z P +olllolVof[I* < (@R foll i [¥lle + 40)) [ fI, ¢ € (0,7T),

which implies
LA < || ol @il ozt (4.13)

Case 2 (a > 0): Let us now consider the weighted estimate. We, in this case,
multiply (4.1.2) by (1 + |v[*)®, so that the following is acquired:

0, [(1+ [0])* 2] + 20 02(1 + [0V, 2 + 8oalof?(1 + [v]?)* f2
+Va - [0+ )] + Vo - {1+ o) [K LI = 20V ([0 £)] }
= (L+[o])*f*Vy - L] + 20(1+ [0]*)* 7 f*v - L[]
—do(1+ o) 1+ (1 +a)uPfv- Vo f.

Integrating the above equality with respect to (z,v) and using the simplified
notation for || f||., we derive the following inequality:

d
ZIIG + 20 ([l Vo flls + Boalllol flla-

< K|fIEIVs - LIf]l = + 2Ka / (14 [o?)*" 2o - L[f]|dvdz

R2d

+4o(1+ )| fllalllvIVoflla

=: Ju + T2 + Js.
(4.1.4)

26



CHAPTER 4. WELLPOSEDNESS OF THE CS-FP EQUATION

(Estimates of Jy;, i = 1,2,3): From the result in lemma 2.2.2 () and the
Cauchy-Schwartz inequality, we derive

T+ Jis < K[l foll 11l + olllo[ Vo 12 + 4o (1 + a)*[| fl5- (4.1.5)

In order to deal with the second term Jj2, we combine the definition of L[f],
Lemma 2.2.2 and (4.1.3), so that we obtain the following estimate:

Tis = 2Ka/ (14 [o2) 1 20 [/ Wl — ) (0, — v)f(y,v*,t)dv*dy] dvdz
R2d R2d

< 2Ka / (1+ Jof2)2= 2o [ / W(la — y|)lv*|f(y,v*7t)dv*dy] duvds
R2d R2d
2a—1

1 1
< 2Kal[yp|lpe | flla* [[fII=[lo]f] 22

1
2a-1 _ Kmt a
< 2Kallg v/ Tfollr 1 la ™ [\/leRfolzie 5 1171]

< 2K/ Tfoller (11 + o folg l foPellus olie ottty
(4.1.6)

where we used (4.1.3) and the generalized Holder’s inequality in the last line.
To complete the estimate, we gather (4.1.5) and (?7?) in (4.1.4) to acquire

NI + oV 12

< |10+ a)? + K|l (follo + 20/ Tholln) | 112
+2K e[| o /[l oll o [0l follga | fo [P M ollza Wllaos st =5,

Using the Gronwall’s inequality and choosing proper Cj lead to the desired
result. Here Cy may depend on K, 0,d, «, ||| =, and || fol|z:. H

Lemma 4.1.2. (First-order estimate) Let a constant T € (0,00] be given.
Denote f € Xy, o(T) as a classical solution to (4.1.1)-(5.1.3) in the time inter-
val [0,T). Then, there is a constant Cy = Cy(K, o, d, o, ||| pe, ||| <, || foll L1
vl foll 1) satisfying

t
IVef I+ IV f |2 + 0 / (Ne190 V2 fI2 4+ Il V2112 ) (s)ds < Cre| ol 3,
fort e (0,T).
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Proof. Case 1 (estimate of V,f): First, we take the spatial gradient V, to
(4.1.1) to obtain the following partial differential equation:

(4.1.7)
Using the dot product, we multiply the above relation in (4.1.7) by 2V, f
and acquire

O (IVaf?) + 20 0|V Vi f1P + Vo - (v]Vo f)

v, {2K [fvxf e - yl)f(y,v*,t)dv*] dy}
= Vo fV, - LIf] — 40V, f - (v V) Vo f (4.1.8)
2609, |1 [ oVt = Do )]

= 2KV [ [ (Vo -v) Va(lz = y) f(y, va, t)dv.dy.

R2d

We integrate (4.1.8) over (z,v) € R?*? and apply Lemma 2.2.2 to derive

d
ZIVa P + 2|0V Ve I
< |IVo - LIflll= Vo fII? + 40| Vo f [0V Ve f]

oK =l ol /

[v| fIV, V. fldvdz (4.1.9)
R2d

+ 2K ool [V - Vs lduds
R2d
= JIn + Jo2 + Jo3 + Joa.

Using the result in Lemma 2.2.2 (i) and the Cauchy—Schwarz inequality, we
verify that

I < K|[¢llzes | foll oo [V f11%,

- (4.1.10)
Tz < ZN0IV. VoS | + 80V S
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For [J»3, Young’s inequality with p = ¢ = 2 is applied to obtain

21| (|20 ML fol s
o

o
Tos < SV VafI* + £ (4.1.11)

For Jo4, Lemma 2.2.2 (i7) is used in order to find

Tor < K| |/ foll TP follcre 55 (IVaF 1P + Vo f17). (4.1.12)

We put (4.1.10), (4.1.11), and (4.1.12) altogether into (4.1.9) and acquire

d
SIS+ oV VeI < (19212 + 1V, /1)
Kmt

x { KNl follzs + 80 + K1 oo/ TRl TP Follre™ % |
2Ky 3 1 foll3
+ A

(4.1.13)

Case 2 (estimate of V, f): Analogous to the Case 1, the partial differential
equation for 0,, f is derived as

°f))-

(4.1.14)

After we multiply (4.1.14) by 20, f, integrate over R?*! and sum up from
1 =1 to i = d, we obtain

VLS + Z /R 20y, f)(8y, f)dvd
=3 [ 20N Tl v (1115

+Z/ 20 (0 ) Ay (0, (V] f)) dvda =: —T31 + Tso.

29

___;rx_-l! k CI.'II

1_'_] |

el



CHAPTER 4. WELLPOSEDNESS OF THE CS-FP EQUATION

(Estimate of J31): We can notice the integrand of J3; can be simplified as

200 ) (LU} Vo(@uf) + @uf)Vo - LI + 00 LIf] - Vo f)
LUf1 - Vo100 ) + 2100, f PV, - LU + 200 )0 L) - Vof

= Vo (|00 fPLIf) + 100, f1*V o - LIf] 4 2(00, ) (00, LISf]) - Vo f-
(4.1.16)

Using (4.1.16) and Lemma 2.2.2, we find

| Zat| < NVuf PV - LUfllzee + 20V - L{f]ll = Vo £

(4.1.17)
< BdK ||| e || foll 12 | Vo 17

(Estimate of J32): We use integration by parts technique over and over to
acquire

132_—202 V(0o f) - Vo (0, ([0 f)) dvda

R2d

:—202 Vo0, )+ (Vo(20) f + 20:V o f + 200,, f + |v]*V 0y, f) dvda

R2d

2 Z / D+ Vo0 f) - (200f + 200, f + [0V,00 f) dvdi

—20 Z / =200, f)* + V(0 f) - (2uiVuf + 200y, f + [0]*V,0y, f) dvda
i—1 RQd

< 4o[[VofII* + 8ol Vu fII[o[VEFI = 20l V3 1%
(4.1.18)

Replacing (4.1.15) by (4.1.17) and (4.1.18), we find

d

SV I + 201l V2 1|

<NV + VeI + GAK el follos + 40) IV |2 + 8T f o] 72
< ool VI + (U 3K [ | foll + 200) IV f I + 1V .
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CHAPTER 4. WELLPOSEDNESS OF THE CS-FP EQUATION

This implies

d
ZIVu P+ olllol Vo f1P
< (L4 3dE |9 || foll o + 200) [ Vo fI* + IV £

(4.1.19)

Using Lemma 4.1.1 and a suitable constant C}, we get the desired estimate.
O

With analogous estimates to Lemma 4.1.1 or Lemma 4.1.2, higher-order
estimates can also be acquired. Putting all the estimates together, we obtain
a priori HX—estimates as follows:

Proposition 4.1.1. (A priori H* estimates) Let a constant T € (0, 00] be
given. Let f € Xy o(T') be a classical solution to (4.1.1) in [0,T). Then, for
an integer k in the range of 0 to N, there is constants {Cy}r_, such that
Cp = Ck(K7 0,d,a, “wHL"Ov R Hw(k)HL‘X’v HfOHLl? |||U|2f0HL1) satisfying

113 < Croe™ || foll3,  t €[0,7).

4.2 A Local Existence Result

In this section, we approach the local existence of (4.1.1) by approximating
through known results. The local and global existence theory for Vlasov—
Fokker—Planck-type equations with constant diffusion coefficients is exten-
sively studied in many literatures [7, 16, 38, 42]. We begin this section by
introducing the idea of the local existence theory and compares our problem
with the standard Vlasov—Fokker—Planck equation with constant diffusion
coefficients. Notice a degenerate and variable diffusion coefficient term o|v|?
in (4.1.1). This is a difficulty why the direct application of the standard ex-
istence theory [18] for parabolic equations does not work here.

We build approximate solutions {f"}>2, using a successive iteration
scheme as follows. At n = 0, we initially put

oz, v,t) = folx,v), z,veRY t>0. (4.2.20)
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Next to the initial step, let us suppose the approximate solutions { f¥ 1}y,
be created. The N-iterated function f¥ is then set to be the unique solution
of the linear parabolic equation

{ath + 0 Vo fN 4+ Vo - (LYY) = oA (JoP ), (4.2.21)

fN(J},U,O) = fO(va)'

Granted that the unique solvability of the linear Vlasov—Fokker—Planck equa-
tion in (4.2.21) is widely verified, for example, in [7], we consider the well-
definedness of {f} with (4.2.20) and (4.2.21) to be true without proof. To
sum up, the existence of a local solution in X (T") is described as the follow-
ing:

Proposition 4.2.1. (Local existence of a classical solution) Let fo be a non-
negative and sufficiently reqular initial datum satisfying the following condi-
tion:

fo€ (HENLHR™), a>2+d.

Then there are a positive constant C and a sufficiently small constant T, > 0,
which the Cauchy problem in (4.1.1) admits a unique solution f € Xy (1),
such that

(i) flz,v,t) >0, f(,t) € Ly(R*), zoveR!, 0<t<Ts,
(@) sup || f()|lux < Cll foll -
0<t<Tyx

Proof. We provide a brief sketch of the proof in the following.

Step 1 Let us denote a sequence of the approximate solutions as { f}35_,,
which is created by using the iteration scheme in (4.2.20)—(4.2.21). Let an
integer N > 0 and a small constant ¢ > 0 be given. For each N and e,
we include a viscosity term on the right side of the equation (4.2.21) and
construct

OFN + 0 Vo N+ V, - (LI = A ([P FY) + (D0 Y + 2, FY),
N, 0,0) = fol,v).
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CHAPTER 4. WELLPOSEDNESS OF THE CS-FP EQUATION

From the maximum principle of the uniformly parabolic equation, the non-
negativity of the solution to the above equation can be shown. The limit
¢ — 0 in this equation implies that the solution f¥ to (4.2.21) is nonnega-
tive, i.e., f¥(z,v,t) > 0 for x,v € R*, ¢ > 0. Furthermore, H*(R??) — C’;szi

for £ > d 4+ 2 holds and the corresponding strong pointwise limit function of
N also preserves the nonnegativity.

Step 2 We can claim that there exist positive constants t; and t, with
0 < t9 < t; such that

1A e =1 follee,  sup ([P f¥ @)l < 20l foll, N >0,
0<t<ty

N
su t <2 , and
1 _
sup [|(fY7 = fO Ol < 5 sup (Y = S5y
0<t<tz 0<t<t2

This is similar to Lemma 2.2.1, 2.2.2 and a priori estimates in Proposition
4.1.1.
Proof of claim (4.2.22): The approximate solution f" to (4.2.21) satisfy

1A e = N follza,

and

H\U|2fN+1HL1 < 6(2d‘7+3K”¢”L°°||f0||L1)tH‘/U‘ZfOHLI

t
e e (AP
0

Inductively, we derive the following inequality:
Hof? |z

0 7
< et 3Kl p 2 fy |0+ 3 (KIWIILf;Hfolhl) ol foll
7!
=1

< (e(2d0’+3KH¢HLw||fo||L1)t + eKl¥lizeellfoll it _ 1) |HU|2f0HL1

eZdoHAKIWllLoe I Foll L)t 142 fo | 1

IN

Refer to the proof of Proposition 4.1.1 for noticing that L[f"¥~!] of (4.2.21)
is estimated by || fV 7Yz with ||[v]?f¥ 71|z which can be all uniformly esti-
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CHAPTER 4. WELLPOSEDNESS OF THE CS-FP EQUATION

mated as shown. Repeatedly applying analogous computations to the proof
of proposition 4.1.1, we choose a positive constant ¢, satisfying

LAY Ol < Cre® N foll e

for any ¢ with ¢ < t,. In this inequality, the value of Cj is depending on

K,0,d,a, ¢l e, s [0 ]| oes | foll o, amd [[Juffoll i A small mumber #, s
then decided such that
w2 A e < 200l foll AN @ e < 20| foll

for any t € [0, ¢,].
On the other hand, (fN¥*! — f) satisfies the following equation
3t(fN+1 _ fN) Lo Vx(fN—H _ fN) 4 Vv . (L[fN—l](fN-i—l _ fN))
+V, (LY = YY) = oA (WP (Y = 1Y),
(fY* = M) (z,v,0) = 0.

(4.2.23)
We take a similar idea from the proof in Proposition 4.2.1 and derive this
estimate:
d

I = PO + oWl Vo (P = £
< G = )1
+Co LN el = Y s L+ )Y = YD),

where constants C; and Cs are chosen depending on K, o,d,a, ||[¢|/z,. ..,

168 zoo, | follor, and [[[v]? foll -
We note that for a > %,

I+ DY = D)

< V (1+|v|2)1—adv/ (14 v do| fN — 1 Pdoda ’ (4.2.24)
R4

R2d

< C@) Y = e

holds.
From this result, we find

Q%H(fN“—fN)HHg < Cill(F =P s +C @) CollF ¥ L Y =) e -

34

&

| &1

1V



CHAPTER 4. WELLPOSEDNESS OF THE CS-FP EQUATION

Taking (fN* — fN)(x,0,0) = 0 and ||fN(1)]% < || fol| % into account,
this inequality implies

sup [[(fY = F7) ()]

0<t<to
C(a)C (C1+C}) L
< (2)C sup elzkt/ 670716[5 sup H(fN—fol)(t)HHk
2 o<i<ts 0 0<t<ts “
C(a)Cy (C1+Cp)t _
< A% Gy 15 s (Y~ )0
0<t<ts 0<t<t2
1 _
< 3 s 1Y = POl
0<t<ts

Choosing 0 < to < t; sufficiently small, we can make

C(a)02t26(51+§k)t2 17
2 2

IN

and this means the sequence {fV}%_, is Cauchy in H* for t € [0,t,]. Com-
bined with the nonnegativity of {fN}%_,, this result suggests that the cor-
responding limit function f € X ,(t2) satisfies f > 0 since

HAR*) — CL2) for k> d+ 2.

x,v,t

Furthermore, from Lemma 2.2.1 and Lemma 2.2.2, it follows that we obtain

If e = follr and (ol (&)l < e N follalllv? foll 1, for ¢ > 0.
Thus, f(z,v,t) € LA(R?*) for t > 0 and f(z,v,t) € Xpo(T)) for T, = t,
hold. OJ
4.2.1 Extention of Local Existence

So far, we make preparations to give the proof of our main theorem. Let T
be the maximal lifespan of a regular solution as follows:

T := {T €(0,00] : Cauchy problem in (1.0.2) admits a unique
global solution f € &} o(T)},
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T := supT.

From Proposition 4.1.1, it brings that T, € T, i.e., the set T is nonempty;
thus, T, > Tp holds.

We will now prove T, = o0.

Suppose not. If T, < oo is satisfied, according to proposition 4.1.1, we have

1 (Too )y < 00

Therefore, the Cauchy problem in (1.0.2) with the initial datum f(7,) can
be solved. In addition, we can apply the local existence result in Proposition
4.2.1 to see if there is a constant 6 > 0 such that the Cauchy problem in
(1.0.2) is solvable even in the time interval [0, T, + d). This contradicts the
maximality assumption in T,,. Thus, both T, = oo and the desired global
existence are obtained. This completes the proof of our main theorem.

Theorem 4.2.1. Let T € (0,00) be a positive constant and assume that the
initial datum fo satisfies

d+2
fo € H N LYR*),  for some positive constants k > 2 +d, o > %

Then, there exists a unique global classical solution to the Cauchy problem in
(4.1.1) in the function space Xy o(T).
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Chapter 5

The Cucker-Smale-Kuramoto
Model

In this chapter, we consider an ensemble of Cucker-Smale particles combined
with a periodic internal state. The Cucker-Smale-Kuramoto model(CSK model)
and The CSK model with a Hebbian coupling will be dealt with. The latter
model can be viewed as a special case for CSK model. Our model is basi-
cally created by combining the Cucker-Smale model and Kuramoto model
together, so that velocities, positions, and phases are affected by each other.
Before starting the first section, recall that the Kuramoto model is described
as follows: Let {6;(t)}Y; be N— Kuramoto phase oscillators. The dynamics
are governed by
0, = Q; + %Zsin (6; — 6,),
j

where K and §2; are a coupling coefficient and a natural frequency of i-th
oscillator, respectively. The contents of this chapter are based on the joint

work with Ha, S-Y, Noh, S-E, Park J-Y [19].
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CHAPTER 5. THE CUCKER-SMALE-KURAMOTO MODEL

5.1 The Cucker-Smale-Kuramoto Models

Let z;,v; and 6; be the position, velocity and phase of the i-th particle, re-
spectively. In this setting, the coupled Cucker-Smale-Kuramoto model reads

as follows.
(dl'i :’Ui’izl,...,N,t>O,
! K
V; 1
7 N gj Uiz — x5, 0; — 0;)(v; — i), (5.1.1)
do; K5 .
& :Qi+ﬁ§ i Vol — i) sin (0; — 6;),

where K, and K, are coupling strengths and ¢;, [ = 1,2 are defined as

cos(6; — 0;)

O (P
? J
1

ba(las —a5]) =

B and

T+ o — ;P

for some real number 3, and (5. Without loss of generality, we discuss all
the results in case that the average position and average velocity are zero,

ZQZZO, Z.TZ:O, and ZUZZO

We next introduce the other model. The CSK model with Hebbian Coupling
is a special case for the CSK model. We similarly assume that the velocity

ie.,

interaction weight between C-S particles and the phase interaction weight are
given by the ansatz 1, (6; — 0;, x; — x;) and Yy(||z; — z;]|), but the coupling
strength is not necessarily a constant. The coupling strength £;; in phase
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CHAPTER 5. THE CUCKER-SMALE-KURAMOTO MODEL

dynamics is the Hebbian like adaptive law. The equation is expressed as

(4 = t>0 1<ij<N
Exi = U, > (2W) )
d
%'Ui NZ%; — O, x5 — i) (v; — vi),
p (5.1.2)
P Ui N;k‘iﬂe(\m — x]|) sin(0; — 6;),
d

L Ekw = Ef(Oé COS(@j - 91) — k?m’),

subject to initial data:
2;(0) =2, 0'(0)=v], 6;(0)=6) and kY(0) = k. (5.1.3)

Here, ¢ and a are called learning rate and learning enhancement factor,
respectively. We consider that 1,(0, x) and 1,(r) are nonnegative functions
which are not increasing in the variables ||z|| and r, respectively.

Before closing this section, we recall the definition of synchronization.
Definition 5.1.1. Let 0(t) := (01(t), -+ ,0n(t)) be a dynamic solution to a
system. Then we have the following solution concepts for synchronization:

1. The phase configuration 0(t) exhibits asymptotic complete synchroniza-

tion (ACS) if and only if the following two conditions hold:

SUp max, 0:(t) — 6:()] < oo, lim max [0:(¢) —6;(t)| = 0.

2. The phase configuration 0(t) exhibits asymptotic complete-frequency
synchronization (ACFES) if and only if the following two conditions hold:

sup max ]9() 0;(t)| < o0, lim max 10;(t) — 6;(t)] = 0.

t>0 1<i,j t—00 1<4,5<

3. The phase configuration 0(t) exhibits asymptotic practical synchroniza-
tion (APS) if and only if the following condition holds:

lim lim sup max 6;(t) — 6;(t)] =0,

km—00  tyoo  154,5<
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5.2 Frameworks

In this section, we briefly introduce the assumptions for the following sections
and the main results.

The first set of assumptions which will be brought up whenever we deal
with (5.1.1) is given as

(A1) 0 < D(0°) < D* < %,

(A2) There exists x, such that

K cos D>®  [2% L0 o 1
2 oy s =Tl w0 = e
D(Q)

) 1 > By

The following is the main theorem on the CSK model. The proof will be
provided later.

Theorem 5.2.1. (Flocking and Synchronization) Assume (Al)-(A3). Then
we have

(i) Jim [lo;(t) = v; () =0, sup |lz;(t) —z;(t)] < o0, 1<4,5 <N,

0<t<o0o
B . , D*D(9)

Another set of assumptions is regarding the CSK model with Hebbian
Coupling. In this thesis, we particularly deal with the system under the
settings:

cos(0) 1

(0, x) == Wa and p([|z|)) == W’

for some 1, B2 > 0.
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CHAPTER 5. THE CUCKER-SMALE-KURAMOTO MODEL

(B1) % > Ky, 1= rerEn K}7(0) holds. We denote the number D> € [0, 5) by
Km
cos D*® = o ,
a

(B2) There exists x, such that

K cos D>

5 U(2z,) = Hv0||7 where U(l) := / W(s)ds :/2 1

2[|=1]

_ 2k, D(©(0))1)p(22*) sin D>

(83) D(©) L ,

where k,, is the minimum value of k;; .

Remark 5.2.1. Note that p; < % guarantees the unconditional existence of
Ty in (B2) due to the non-integrability of

1

T

over Ry. In case of B, > %, such x, conditionally exists if we set K to be
sufficiently large.

Theorem 5.2.2. (Main Flocking and Synchronization) Suppose that the pa-
rameters €, a and initial position and velocity (z°,v°), phase configuration
and coupling strength satisfy the framework (B1) — (B3). Then for any solu-
tion (x,v,0) to (5.1.2) we have

(i) lim D(v(t)) =0, sup D(a(t)) < oo,

0<t<oco

(ii) lim max]|di(t) - 6,(0)] =0,

0<t<oco i,j

. D>D(S2)
1 0;(t) — 0;(1)]| < ,
0<icne I%?XH () = 6:0 < 2K sin D®1)y(2x,)
foralll1 <i,j <N.
41
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CHAPTER 5. THE CUCKER-SMALE-KURAMOTO MODEL

5.3 Estimates in the CSK model

In this section, we presents flocking estimates in the CSK model (5.1.1). We
begin with the following proposition.

Proposition 5.3.1. Assume (Al)-(A3). Then a solution {(z;,v;,0;)}Y, to
(5.1.1) satisfy

d d

_ e < 00

gﬂxM < Il ol < —Hscos DIl
S1n

SD(B) < D(Q) - IR (2] D), t> 0.

Proof. Applying the Cauchy-Schwartz inequality, we obtain

N

d
ZEHI’M% =

=1

N

Z2<[L’i,’l}i >

=1

< 2f|z{[[ll;

and

N
d 2 d 2
Sl = > il

=1

:%ZZ%W%MH 0)(v; = )

Jj=1 =1

—2Ky cos (D)p(2]|z]|)[v]*

IN

In order to show the third inequality, we consider at most countable time
intervals (ty_1,tx) k = 1,2,3,..., where 0 =ty < t; < ty < t3 < ... such
that D(6(t)) = 0p(t) — 0,,(t) holds for some fixed indices M and m during
t € (thor,tr):

d

ZDO)=q, —Q
dt (0) = Qs — O,

+% Z {Wa(|zy — 2]) sin (0; — Onr) — o[y — 2.]) sin (05 — 0,) }
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2Ky sin D™

< D) - =222

ba(2[|[) D(6)-

]

We develop the argument from the proposition 5.3.1, so that ||v|| and
lw|| (w:=0) are shown to be decaying in time.

Proposition 5.3.2. Suppose that (Al)-(A3). For a solution (z,v,0) = {(z;, v;,
0:) 1Y, to (5.1.1), we have

[0 < I0llerp(— Ky cos (D®)(2e)e), 0,
o < oflPeap ({ ~2Kavntzn) cos 0= + ekt (44 () ) 1)

202 + 1

K2 ( 1y (2521‘1‘ 1)) |0°||Pexp(—2 K5 cos D>(2z,)t).

+

Proof. First inequality is easily obtained from Proposition 5.3.1 by applying
Gronwall’s inequality. In order to derive the second one, we calculate the
time derivative of ||wl||? as follows.

d 1 K. =T .
GGIal?) = 525 ety -l (222 (- ) ) sin 6, 00

J oy — i
+ alllz; — i) cos (6 — ) (w; — il |,

for « = 1,2,..., N. Summing these equations from ¢ = 1 up to i = N, we
obtain

d 1 2 o KQ . Ly — T Av: — s
@<§;n%n) = S s = (= - w)

1’7]

x - sin (6 — B0)s + Ul — il cos (6 — 6wy — wi)es
- B vty -l (2 - )

2N 07 |$j — .I'lH
sin (0 — 0;) (w; — w;) — Ya(||z; — 2;]|) cos (0; — 0;)
ij _%”2
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.2 ]2
C B (L VY[l el il
IN 26, +1) ) 4 2¢ 2

—  —=1y(27,) cos D ||w; — wi®.

By exchanging indices ¢ <+ j, the second equality is deduced. Young’s in-
equality and minimum and maximum values of g, 1), and cos(f) yield the
last line. Using the result } . v; = > w; = 0, from the above relation, we
have the following inequality:

d (1 ) K[, (1 ,
E(ﬁgjnwm) < 2 |-ut ()|
K

- 5 vz cos e —e (—usig ) )| e

Applying the Gronwall’s inequality, we obtain

WO < 1 eap ({_QKzsz(Qm*) c0s D% + ek, (—w; <2621+ 1)) } t)

K 1
T (“”5 (m)) o0 |Peap(~21, cos D*4(2.)t).

]

We present a dissipation estimate for our models, so that the flocking estimate

is covered. Let us define a Lyapunov type functional as follows:

K cos (D>
(D),

E(lll o]} = [loll + 5

2l ]})-

Lemma 5.3.1. Assume (Al)-(A3) hold, and let {(x;,v;)}, be the global
smoooth solution to the system (5.1.1). Then we have

(i) E(l=@I @) < E°I] 1), ¢ >0,

.. K cos (DOO) 2|zl o
1) [lv(t)|| + ———= s)ds < |[v”]].
() o+ =57 [ s < o)
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lll

Proof. Let U be a potential function of ¢, i.e., U(||z||) := (s)ds. Using
2[|20]]
the second inequality in proposition 5.3.1, we have

Lo+ P g |
< K cos (D®)2lel o] + & cos (D¥)u2l 2] < 0.

Integration and (A2) yield

K cos (D) (20
e+ =252 [ s <

Proposition 5.3.3. Let us define
T:={teR, | D) <D*} and T :=supT.

teRL

Then T = oo holds.

Proof. First we claim that x, > ||z(t)]| for ¢ > 0. From the Lemma 5.3.1 and
(A2), we have

K cos (D) [2l=@I K cos D>® [
ool + KT oy < oty = KSPT T isyas
2[|=0]| 2[|]|
Since ¢ > 0 and ||v]| > 0 hold, the above implies ||z(t)|| < . for ¢ > 0. In
addition, ¢(2]|z||) > ¥ (2x,) is derived because v is decreasing,.

Suppose T < oo. Combining the claim and proposition 5.3.1, we obtain

2K sin D
5—1%(2@)0(9),

and applying Gronwall’s inequality to the above, we have

d
—D(0) < D(Q) —
£D(0) < D(9)
D(6) < D(E")e " F 4 D(Q) (1 - e HE),
By the construction of T°°, the following is supposed to hold:
lim D(6(t)) = D*.

However, (A3) and the previous inequality of D(#) imply D(6(T)) < D>,
which is contradiction. O
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Theorem 5.3.1. (Flocking and Synchronization) Assume (Al)-(A3). Then
we have

(i) T Joi(t) — oy (8)]] = 0, sup [lzi(t) — ;1) < oo,

0<t<o0o

(i) Yim D) =0, lim D)) < ngflO;Zﬁ)(zx*)

foralll1 <i,5 <N.

Proof. (i) From Proposition 5.3.2, we have
loi(t) = v (Ol < V2[o(t)[| < V2[[°llexp(— K cos (D*)y(2z.)1).
(i) It is easily obtained by combining the result in (i) with the following

inequality:

o) = 50 < 1:0) = 2,0 + [ is) = (5.
(iii) From Proposition 5.3.2, for any integers i, j,

l6:t) = 6;0)1 < V2090

< \/§{Hw0||26{2K1/12(2m*)cosD°°+sKw’2<2B21+1)}t

K 1 :
+ - (—wé <252 n 1)) |0°||*exp(—2K cos D“@D(Zx*)t)} :

(iv) Applying the Gronwall’s inequality to the third result in Proposition
5.3.1, we derive the inequality. O

5.4 Estimates in the CSK model with Heb-
bian Coupling

In this section, we study the emergent phenomena of the coupled system
(5.1.2) using the Lyapunov functional approach initiated in [25].
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Lemma 5.4.1. Assume {ké{Q}lgi,jSN in (5.1.2) is given as a symmetric ma-
triz and (B1) holds. Then ky () is symmetric fort > 0. Ife > 0, a > 0,
{k7(0)}1<ij<n are nonnegative and D(6(t)) < D® < 5, then ki (t) is mon-
negative and bounded below and above by the initial minimum and initial
maximum, respectively, fort >0 and 1 <1i,57 < N.

Proof. Using the fact that cos# is an even function, we derive the following

equality:
d
= (Kig = kji) = —e(kij — kji)-

Solving the above first order linear ODE, we obtain
(kij - kb)(t) = (]{Zl] - k:j')(O)e_at = (k‘% - k?i)e_d =0.

Thus, symmetricity of the initial condition for { Ky }1<; j<n implies the sym-
metricity of { K (t)}1<ij<n for any t > 0.
By the previous lemma,

ky = eacos(d; —6;) — cki; > eavcos(D®) — eky

Using Gronwall’s inequality, we obtain

a cos(D>)

kij(t) > e *'ki;(0) + .

(1—e .

Let us define k,,, and k,, as k,, := min; ; k;;(0) and k,, := max; ; k;;(0). Under
the assumption (B1), the previous inequality yields

kij(t) > ek + k(1 — ™) = ky,, t>0.
k;;(t) is also bounded above because
ifij = &« COS(@j — 01) — Skfij S EQ — 8]{3,']‘

implies
kij(t) < e ' (ki(0) — a) + a < k.
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Remark 5.4.1. If ea < 0 holds, k;j(t) is nonnegative for 0 < t < Ty, for
some positive real number Ty, and 1 < 1,7 < N. In this section, we will
assume {k:%}lsi’jéj\/’ be given nonnegative and symmetric, and € and a be

grven positive.

Proposition 5.4.1. Suppose that the following conditions hold.

1. the natural frequencies and initial data satisfy

N N N
> Q=0 6;(0) =0and Y v;(0) =0
=1 =1 =1

in (5.1.2).
2. the communication weight 1,(0, ) is an even function in both 6 and .

3. The coupling strength matriz {k;;} is symmetric. i.e., ki; = kj; holds
for1<14,7 <N.

N

N
Then Z@i(t) =0 and Zvi(t) =0 hold, fort > 0.
i=1

i=1

N N
Proof. We calculate the time derivative of Z 6;(t) and Z v;(t) as follows:
i=1

=1
N N
d K
7 D ui(t) = N D (0 — b5y — ) (0 — )
i=1 ij=1
N
K
= N Z Vo(0; — 05, i — ) (v — vy5)
ij—1
-0

the above second equality is obtained by interchanging i and j. Because v,
is even, the time derivative of the velocity sum is zero. Likewise,

d N N 1 N -
- Yooty = D wit ~ > K bg(||x; — wil|) sin(0; — 6)
=1 =1 i,7=1
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N
1
= NZ Kj'o(llj — i) sin(6; — ;)

I
o

Thus,

and

Zv»(t) = Z%‘(O) =

=1 =1

~

For the rest of the part, we set the initial conditions as

N

N N
D wi=0,> 6;(0)=0and Y v;(0) =0
=1 =1

i=1

Proposition 5.4.2. Let (z,v,0) = {(z;,v;,0;)}X, be the global smoooth so-
lution to the system (5.1.2). Assume (B1)-(B3) hold. Then the followings
hold:

W) | el <

<|lvll, Zllvll < =K cos (D=)y(2l[z[)]lv]l,

2k,, sin D>

e V2 2llzl)D(O).

(i) 2D(0) < D() -

Proof. Applying the Cauchy-Schwartz inequality, we obtain

‘dt”x” ‘ ’Zdtm ‘_‘22%“

< 2[|z{][ll;

and
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- % ZZ@“wv(ﬁi - xj,ei - ej)(vj - U1)>

j=1 i=1

< —2K cos (D) 2|z ()]

To show the third inequality, we consider at most countable time intervals
(tp—1,tk) k=1,2,3,..., where 0 = tg < t; <ty < t3 < ... such that ¢, — oo
as n — oo and D(0(t)) = 0y (t) — 0,,(t) holds for some indices M and m
which are fixed during ¢ € (t4_1,%;). Then, we have

D) = an -0,

dt
1
t¥ Z {kao(llz; — znll) sin (6; — Oar) — Kmytbo([|2; — @ml]) sin (6; — 6,0) }

2k, sin D>

< D(©) - =228

ba(2]]|) D(6)

holds. [l

We define a Lyapunov type functional as follows:

(el Il = ol + P oy,

Lemma 5.4.2. Let (z,v,0) = {(x;,v;,0;) }}, be the global smoooth solution
to the system (5.1.2). Suppose that the conditions (B1)-(B3) hold. Then we,
have

(i) Elz@ 1 [lo@N) < E2°(L [10°l), ¢ =0,

K cos (D) "

5 @ll=@)1) < 101

(i) [lo@)]| +
Proof. Using the second inequality in proposition 5.4.2, we have
d K cos (D)
Il + === (2]}
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CHAPTER 5. THE CUCKER-SMALE-KURAMOTO MODEL

— K cos (D=)p2[|lz|)[v]l + %COS (D=) 2l ])2]v]

<
<0.

Integration and (B2) yield

K cos (D™ 2[|a(#)]]
o)+ 2 [ sy < o)

Proposition 5.4.3. Let us define
T:={teR,U{0} | D(0(t)) <D}
and T :=supT. Then T = oo.

Proof. To begin with, we claim x, > ||z(t)|| is true for any ¢t > 0. Using the
Lemma 5.4.2 and (B2), we obtain

K cos (D) [2=® K cos D> [
ool + 2P T s < 0 = P [ g
2||0|| 2||z0]|

Since ¢ (s) and ||v|| are nonnegative, the second term in the left side does not

&%

exceed [|v°]|, which equals (s)ds. Therefore, ||z(t)|| < . is true for
2[|0||

t > 0. In addition, ¥ (2||z||) > ¥ (2z.) holds for 1) being nonincreasing.
Let us suppose T < oo. Combining the previous claim and proposition
5.4.2, we obtain

d 2k,, sin D>

ED(Q) < D(Q) — Do ¥(2z,)D(0).

By applying Gronwall’s inequality and (B3) to this, we get
D(Q) < D(Q(O))e_ 2km¢(25>&)>sinD°°t i D(Q) (1 B 6_2km¢(2§;ggsinD°° t) < D(Q(O))
By the construction of T°°, the following is supposed to hold:

tkl;noo D(0(t)) = D*=.

However, the previous inequality of D(#) implies D(6(T*)) < D>. Since
D(6(t)) is continous, there is § > 0 such that [T°°,7°° + §) C 7. This
contradicts to the assumption. O
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Corollary 5.4.1. Let (x(t),0(t)) be a solution to (5.1.2). Then for x* in
(B2), we have
|lz(t)| <z, t>0.

Proof. From (5.4.2), we know

*

K cos (D) K cos (D®) [*

S v al) < 100 = 52 [ ws
2||=°]]

holds. If ||z(t)|| > «*, for some ¢ > 0, the following is true:

0o 2z* o0 2[jz ()|
K cos (D )/ ¢(s)d5<KCOS<D )/

< P(s)ds.
2 2120 2 22|

From the above results, we can show ||v| and ||| decaying in time.

Proposition 5.4.4. Assume (B1)-(B3). Then we have
@Il < [[v°llexp(—K cos (D>)eh(2w.)t)

18(8)]2 < 16°)2eap({ — 2K0y(2.) cos D + =K (— (2521+ 1) ) }t)

K
?< — g (2621+ 1) Yl [2eap(~2K cos D*4s(2.)1)

+

Proof. First inequality is easily obtained from Proposition 5.4.2 by applying
Gronwall’s inequality. In order to derive the second one, we calculate the
time derivative of ||@]|? as follows. For i = 1,2, ..., N,

1d l’j—l’i

el NXX{wwm o) + bl = ) (=
(v — vi)ﬂ sin (6 = 03)0, + kit — wil]) cos (6; — 6)(d; — 006, |

=—2X[am9—9>%WMm—mwwwm%—m>

x(ﬁLiiww_wﬂ$me 0.0: + kigto(|lz; — ] cos (6, — 0)

[ = i
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CHAPTER 5. THE CUCKER-SMALE-KURAMOTO MODEL

(6 — e‘i)e',.}.

Summing these equations from ¢ = 1 up to ¢ = N, we obtain
d 1 :
75 2 16:01%)
1
= = >~ { [e(acos (0; = 0) = kol — wil)) + ki
4,3

T; — X

< wpllles — il (= e - m-))} sin (6 — 6,6, + ko2 — 1))
J 7

x cos (0; — 6;) (8, — 91)91}

1 g

-~ { [5(04 cos (0; — 0;) — ko (llzy — i) + ki (|| — il])
4.J

X <—”Z : ZH . .('Uj —' vz)ﬂ sin (0; — Qi)(—éj) + ko (||z; — )
x cos (0; — 0:)(0; — 0:)(0;) |

1 .
=N 2 {[— e(acos (0; — 0;) — k) o(|lz; — i) — kip(lx; — x|
X <—H—Z : ZH (v — 'Uz)>:| sin (6; — 60;)(8; — 6;) — kijbo(||lz; — x4]])
x cos (6; — ‘9z)||9j _ 61H2}

1 .
< s S [~ elacos (6, - 0) — K la; - wil) ~ kil — )

Z?]

X <M (v; — vz)>] sin (0; — 0;)(0; — 6;) — ke (||z; — 24]])

[ = i

x cos (0; — 0,)]|6; — éi||2}.

By exchanging indices ¢ <+ j, the second equality is deduced. Young’s
inequality and minimum and maximum values of ¢y, ¢y, and cos(f) yield
the last line. Using the result > v; = > 6; = 0, from the above relation,
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we have the following inequality:

K, ,( 1 K _
th Z 16| < 2_5( — ¥y (m) v]|? — 3> [2w9(2x*) cos D

e NI

Applying the Gronwall’s inequality, we obtain

o1 < 1Pern( {-2rvnze) cos 0= e (—u (5557 ) ) )

26, +1

K 1
- €< — p (252 n 1> ) |0°||Pexp(—2K cos D>(2z,)t).

[]

Lemma 5.4.3. Let (z,v,0) be a solution to (5.1.2) such that D(0(t)) <
D> < %. Then, we have

sin DOo

(i) —H9H <1l - min ki (£)ye(2>) 16l ¢ >0,
. d
(10) 2101 = — 1] — max ki; (t)e (0)]|]]

Proof. By exchanging the indices ¢ and 7, we have

d N
=31l = Zee —szw S kvl — o) sn 6 — 60,
=1

1]1

N | —

= ;Wi i N Z kwwe H.’E] wzH)SIH(Q —6‘)9

2]1

N
= Y wib - ﬁ Z kijho(|lzj — 4]|) sin (6; — 0;)(0; — 6;).
i=1

ij=1

The second equality in the above equation holds if the symmetricity of
y ~ in(6 in D>
{kg (0) }1<ij<n is satisfied. For any 6 € [0, D>), smé( ) > Sull)oo holds.
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1d <, sin D> y )
2 2 MOlP < Qo] - —5— | min k7 Ovo(ll; — z()OI

oo 1<i,7<N
=1

]

Theorem 5.4.1. (Main Flocking and Synchronization) Suppose the param-
eters e, a and initial position and velocity (2°,v°) and initial phase config-
uration and coupling strength satisfy the framework (B1) — (B3). Then for
any solution (z,v,0) to (5.1.2) we have

(i) lim D(v(1)) = 0. sup D(x(1)) < oo,

0<t<o0o

(i) Tim max 6,(t) — 6;(0)] =0,

0<t<oo 14,j

D>D()
Oiltgloo %%XHQ( )= 0@l < 2K sin D®1)y(21,)’

foralll <i,5 <N.

Proof. First, we can verify that D(v(t)) = max; ; [v;(t)—v;(t)| < max; ; [v;(t)|+
lv;(t)] < 2[|[V(t)]| holds. Applying the proposition (5.3.2) to this inequality,
we obtain

D(’U(t)) < 2H00H€7KcosD°°1/)(2x*)t'

Letting ¢ — oo, (i) is shown. The second result can be verified with the help
of the first result. For any i, j, x;(t) — x;(t) is expressed as x;(t) — z;(t) =
2;(0) —z; (O)+f0t v;(s) —v;(s)ds. By the triangular inequality, |z;(t) —x;(t)| <
|2;(0) — 2;(0)] + f(f |vi(s) — v;(s)|ds holds. Hence,

D(z(t)) < D(:z:(O))—i—/O 2D(v(s))ds

e—K cos D>y (2x+)t

K cos D>®)(2x,)

< D((0) + 2" -
is true, and this implies (ii). O
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CHAPTER 5. THE CUCKER-SMALE-KURAMOTO MODEL

5.5 Numerical Simulations

In this section, we provide several numerical simulations to system (5.1.2) in
order to supplement our results on the CSK model with Hebbian coupling.
We set

cos(0; — 0;)
¢v(9j — O, x5 — T;) = ’ 2\61
A = ) ) Z O
wH(”x] z H) (1 + ij _ xi||2)’82 ﬁl 52
Under the ansatz (5.5.1), the system (5.1.2) with € = 1 becomes

¢ dx:

— = Nt>0, 1<ij<N,

dv; K cos(0; — 6;)

R Dl o T

" =t . (5.5.2)

S I § ) in(0; — 0,

dt iR Z (1 + [|z; — a]|?)P sin(0 — 0:),

7j=1

dkj y

kd_tj = ¢e(acos(d; —6;) — k¥),

For different choices of £, and [, we will investigate the dynamic features
of system (5.5.2). For simulations, we used the fourth-order Runge-Kutta
method and N = 100. In all simulations, we consider a planar case d = 2
and initial data is randomly drawn.

5.5.1 Natural Frequency

Initial position x;o and velocity v; are chosen randomly from the box [—1, 1] x
[—1,1] to satisty zero sum conditions. To begin with, we check if the time
evolution of the system varies depending on the natural frequency 2;.

Case 1: In this case, the initial natural frequencies are chosen 1 for the first half

of the group and —1 for the other half. In other words,

1, i=1,..,50,
le{ ’ .
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This is the case when D(6(0)) > 7 holds. We set the other parameters

as

K=5 B=01, 8,=01 a=5, =1,

and conduct numerical analysis and display some features. As Figures

5.1-4 show, phases of the particles cluster as two distinct groups.

position and direction

; ‘ ‘ -
8 © °® e 2
S
o b
6 o B O o ®
1} 0%9%% oy
4 o, ® ® oo
5] © ®
v ®Og® 20 °§°
®
. °
2 oo vy ® o
)
) B
0 ®. ® ®
N o ®
®
2 Dy o)
®
) ® >
L T Y
8 6 4 2 0 2 4 6

Figure 5.1: Position and direction for
Q=41

104 average and variance of x(t) and v(t)

Mean(V)
Mean(X) | ]
Var(V)
Var(x) | ]

value

time

Figure 5.3: Average and Variance of
x(t) and v(t) for Q = +£1
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Figure 5.2: Phase for 2 = +1

Figure 5.4: k,,.. and k,,;, for Q = £1

Q,eU (—1 1) ,i=1,...,100.
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Figure 5.5: Position and direction for Figure

This is the case when the natural frequencies are chosen from the uni-
form distribution and the sufficient conditions hold. As time passes,
both synchronization and flocking occur. The results are visualized as

follows:

position and direction
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180

210

240

Qe U(-1/2,1/2)
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25

0.5

%104 average and variance of x(t) and v(t)

5.6:
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90 4

0.8

0.6
30

/

0.2

300
270

Phase for € €

Mean(V)
Mean(X)

time

Var(V)
Var(x) | ]

—

Figure 5.7: Average and Variance of Figure 5.8: k.., and k,,;, for Q €

x(t) and v(t) for Q € U(—1/2,1/2)

Case 3:

U(-1/2,1/2)
0, =0,i=1,..,100.
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If the natural frequencies are identically zero, the system quickly reaches

the flocking and synchronization state. This lead k;j(t) to approach some

constant number.

Figure 5.9: Position and direction for

position and direction

Q=0

value

Figure 5.11: Average and Variance of

x10*

average and variance of x(t) and v(t)
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Figure 5.10: Phase for Q2 =0
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5.5.2 Intensity of Interaction

Case 1:

250
200
150
100

50

-50
-100

-150

-250 .

Figur

Q=41

The natural frequencies for oscillators are given as

1, i=1,..,50,
Qi = !
—1, i=>51,...,100.

In this part, we first raise 5, to 81 = 0.5, make the other parameters
remain the same( K =5, 2 = 0.1, a = 5, ¢ = 1) and conduct the
numerical analysis. After this, the value of 35 is changed into fs = 0.5
with the other parameters fixed as K =5, 51 =0.1, a =5, e=1and
the analysis is repeated. This is the case when a long-range interaction is
replaced by a short-range interaction. The results regarding the change
of 1 are visualized as follows:

position and direction
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e 5.13: Position and direction for Figure 5.14: Phase for Q — +1
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5 210° average and variance of x(t) and v(t)
Mean(V) 6
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K
25 var(v) | 5 Kx‘x
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Figure 5.15: Average and Variance of

Fi 16: k d ki for Q = 1
x(t) and v(t) for Q = +1 igure 5.16: kpqq and Ky, for

The results regarding the change of 35 are visualized as follows:
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Figure 5.19: Average and Variance of
x(t) and v(t) for Q = +1
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Figure 5.20: k4. and k,,;, for Q@ = £1

Case 2: In the case 2, the natural frequency for oscillators is picked from a

uniform distribution.

11
Qi ceU <—§,§>

In this part, we change [; and [ one by one and repeat the same pro-

cedure as Case 1. With more repeated numerical experiments, these re-

sults contributes to find out critical conditions for clustering, unflocking-

synchronization, and flocking-desynchronization. The results regarding

the change of 3, are visualized as follows:
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Figure 5.23: Average and Variance of Figure 5.24: k., and k,,;, for 2 €
U(-1/2,1/2)
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The results regarding the change of 5 are visualized as follows:
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Figure 5.27: Average and Variance of Figure 5.28: k.., and k,,;, for ) €
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Chapter 6

Conclusion

We begin the thesis with reviewing previous flocking models appearing
in other literatures and extended the stochastic Cucker-Smale model
to a mean-field kinetic model that leads us to derive the Cucker-Smale-
Fokker-Planck equation (CS-FP equation). For the main part, we prove
the wellposedness of the CS-FP equation by applying the Sobolev em-
bedding theorem to the energy estimates for a weak solution in an
admissible set. In addition, we deal with the Cucker-Smale-Kuramoto
model(CSK model) and verify sufficient conditions for occuring both
flocking and synchronization with the Lyapunov functional approach.
As a special case for the CSK model, the CSK model with the Hebbian
coupling is introduced, and its numerical simulations are covered. For
the Hebbian coupling case, the numerical results suggest clustering and
other nontrivial time evolution depending on the range of interaction
and the initial configuration.

For the future work in the CS-FP equation, the threshhold phenomena
of the energy functional depending of K. need further be studied for
a general communication weight function v (s). For the future work in
the CSK model, the sufficient conditions need be eased and subdivided
so that conditions for the clustering, flocking-desynchronization and
unflocking-synchronization are completed.
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