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Abstract

Mathematical Analysis of
Multilinear Maps over the

Integers

Hansol Ryu

Department of Mathematical Sciences

The Graduate School

Seoul National University

Multilinear maps have lots of cryptographic applications. Until now, there are

three types of multilinear maps: the first is constructed using ideal lattices,

the second is defined over the integers, and the last is graph-induced one.

However none of them have reduction to well-known hard problems. More

serious matter is that they are all proven insecure when low-level encodings

of zero are provided .

Especially, for multilinear maps over the integers, construction and anal-

ysis are being repeated. At Crypto 2013, Coron, Lepoint, and Tibouchi

proposed a multilinear map using CRT (CLT13). However, it was revealed

to be insecure so-called CHLRS attack (CHL+15). After then, several at-

tempts have been made to repair the scheme, but quickly proven insecure by

extended CHLRS attack. The same authors revised their scheme at Crypto

2015 again.

In this thesis, we describe attacks against CLT15. Our attacks share the

essence of the cryptanalysis of CLT13 and exploits low level encodings of zero,

provided by a ladder, as well as other public parameters. As in CHL+15, this

i



ii

leads to finding all the secret parameters of κ-multilinear maps in polynomial

time of the security parameter. As a result, CLT15 is fully broken for all

possible applications, while the security of CLT13 is not known when low-

level encodings are not provided.

Key words: Multilinear maps, graded encoding schemes

Student Number: 2009-20267
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Chapter 1

Introduction

The cryptographic bilinear map has many applications, including tripar-

tite Diffie-Hellman [Jou00], and identity-based encryption [BF01]. Boneh and

Silverberg formalized the concept of multilinear map and described inter-

esting applications, including multipartite Diffie-Hellman and very efficient

broadcast encryption [BS03]. After that, there were many researches to apply

multilinear maps [RS09, PTT10] despite of absence of multilinear maps.

In 2013, Garg, Gentry, and Halevi proposed a multilinear maps from ideal

lattices(GGH13, for short) [GGH13]. It has similar features with somewhat

homomorphic encryption scheme, it is a “noisy” map. So it is little bit differ

from ideal multilinear map considered in [BS03], but it enables multipartite

Diffie-Hellman key exchange and many other applications. The security of

GGH13 is based on a new problem so the authors gave diverse analysis of it.

Nonetheless, now GGH13 suffers from the attacks [HJ15, CJL16, MSZ16].

We briefly describe the GGH13 multilinear map. It uses a polynomial

ring and has secrets g ∈ R and z ∈ R/qR for some integer parameter q.

The space of encoded values is a coset space R/I, where I = 〈g〉. Then the

encoding of e + I is c/z mod q, where c ∈ e + I and short. Since it is a kind
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CHAPTER 1. INTRODUCTION

of noisy map, only restricted number of multiplications are allowed, we say

κ. The addition and multiplication are defined well as long as the numerator

remains short.

GGH13 publishes a zero-testing parameter pzt = hzκ

g
mod q, where h

is not too large. Then multiplying with level-κ encoding gives small value

only when the encoded value is zero. Hence one can decide whether an en-

coding is zero, publicly. Using this property, one can solve some problems

on GGH13, such as Graded Decisional Diffie-Helman assumption (GDDH),

subgroup membership (SubM), and decisional linear (DLIN) problems. Ac-

tually, all the other attacks on GGH13 also probe for weak spots by using

this zero-testing parameter.

Shortly afterwards, Coron, Lepoint, and Tibouchi proposed another can-

didate of multilinear maps (CLT13, for short) [CLT13]. It is constructed over

the integers and gives the first implementation of multilinear maps [CLT13].

The most recent candidate, called GGH15, was suggested by Gentry, Gor-

bunov, and Halevi using a directed acyclic graph [GGH15].

In [CLT13], it was claimed that CLT13 is robust against a zeroizing at-

tack. Hence, CLT13 supports the GDDH, SubM, and DLIN problems are

hard in it, while GGH13 supports only the GDDH.

However, Cheon, Han, Lee, Ryu, and Stehlé proposed an attack, called

CHLRS, on the scheme [CHL+15], which runs in polynomial time and re-

covers all secrets. As in the zeroizing attack of GGH13, the attack utilizes

public low level encodings of zero, which allows an encoding to be generated

without the secret values being known. The core of the attack is to compute

several zero-testing values related to one another. Then, one can construct a

matrix, the eigenvalues of which consist of the CRT component of e, which

is e mod pi for some encoding e, where p1, · · · , pn are secret values of the

scheme. Then, it reveals all the secrets of the scheme.

In response, two attempts have been made to make CLT13 secure against

2



CHAPTER 1. INTRODUCTION

the CHLRS attack [GGHZ14, BWZ14]. However, both are shown to be in-

secure in [CGH+15]. At the same time, another fix of CLT13 was proposed

at Crypto15 by Coron, Lepoint, and Tibouch (CLT15, for short) [CLT15].

CLT15 is almost the same as the original scheme, except in the zero-testing

parameter and procedure. To prevent zero-testing values from being obtained

in CLT13, the authors did not publish the modulus x0 and performed zero-

testing in independent modulus N . They claimed that it is secure against a

CHLRS attack, because a zero-testing value of an encoding e depends on the

CRT components of e non-linearly.

We briefly introduce the CLT15 scheme. It is a graded encoding scheme

and its level-t encoding e is an integer satisfying e ≡ ritgi+mi

zt mod pi for

1 ≤ i ≤ n, where p1, · · · , pn are secret primes, z is a random invertible

integer in mod
∏

pi, (m1, · · · , mn) ∈ Zg1
×· · ·×Zgn

is a plaintext for secret

moduli g1, · · · , gn, and r1t, · · · , rnt are random noises. Then, it can be written

as
∑n

i=1[rit +mi/gi]pi
uit +atx0 for some integer at, where uit =

[
gi

zt

(
x0

pi

)−1]

pi

x0

pi

for 1 ≤ i ≤ n.

The zero-testing of level-κ encoding operates as follows. For a zero-testing

parameter pzt and a level-κ encoding e =
∑n

i=1[ri + mi/gi]pi
uiκ + ax0, which

is smaller than x0,

pzt · e ≡
n∑

i=1

[ri + mi/gi]pi
· vi + av0 mod N,

where vi = [pzt · uiκ]N and v0 = [pzt · x0]N . Note that vi’s are small as

compared to N for all 0 ≤ i ≤ n and the size of a depends on that of e.

Hence, the right hand side is small when all mi’s are zero. Therefore, it is

used to determine whether it constitutes an encoding of zero or not.

Since av0 exceeds N for a large e, the zero-testing is effective only when

the size of e is small. However, the size of the encodings is almost doubled

through multiplication and is too large to allow one to obtain a correct zero-

testing value. Accordingly, CLT15 publishes encodings of zero of various sizes

3



CHAPTER 1. INTRODUCTION

(called ladders) to reduce the size of the encodings. The ladders are of the

form Xj =
∑n

i=1 sijuiκ + qjx0, where 0 ≤ j ≤ M for some integers qj , and

for small integers sij , 1 ≤ i ≤ n, 0 ≤ j ≤M , and the size of Xj is about 2jx0.

For an encoding e larger than x0,one can obtain e′, an encoding of the same

plaintext, the size of which is reduced using a ladder. Then, it can be written

as e′ = e−∑M
j=0 bjXj , for some b0, · · · , bM ∈ {0, 1}.

The points of a CHLRS attack can be divided into two parts. The first is

that, for a level-κ encoding of zero e =
∑n

i=1[
rigi

zκ (x0

pi
)−1]pi

x0

pi
+ ax0,

pzt · e mod x0 =
n∑

i=1

riv̂i,

where v̂i is common to all the encodings in CLT13, holds over the inte-

gers. The second point is that the zero-testing value of a product of two

encodings is a quadratic form of some values related to each encoding. More

precisely, for two encodings e1 =
∑n

i=1[ ri1gi

zt (x0

pi
)−1]pi

x0

pi
+ a1x0 and e2 =

∑n
i=1[ ri2

zκ−t (
x0

pi
)−1]pi

x0

pi
+ a2x0, the product is e1e2 ≡

∑n
i=1[

ri1ri2gi

zκ (x0

pi
)−1]pi

x0

pi

mod x0. Therefore, the zero-testing value of e1e2 is

pzt · e1e2 mod x0 =
n∑

i=1

ri1ri2v̂i.

Let us look at CLT15 in these aspects. For a level-κ encoding of zero

e =
∑n

i=1 riuiκ + ax0, the zero-testing value of e is written as

pzt · e mod N =
n∑

i=1

rivi + av0,

for common vi’s, similar to CLT13. Let e1 be a level-t encoding of zero, e2

be a level-(κ − t) encoding, and e be a product of e1 and e2. Then, these

can be written as e1 =
∑n

i=1 ri1uit + a1x0, e2 =
∑n

i=1 ri2uiκ−t + a2x0, and

e =
∑n

i=1 ri1ri2uiκ + ax0, for some integers a, a1, a2, ri1, ri2, 1 ≤ i ≤ n, where

a is a quadratic form of a1, a2, ri1, ri2, 1 ≤ i ≤ n. Since the size of e is larger

than that of x0, we need to reduce the size of e to performzero-testing. Let e′

4



CHAPTER 1. INTRODUCTION

be a size-reduced encoding of e; then, it is of the form e′ = e−∑M
j=0 bjXj =

∑n
i=1(ri1ri2−

∑M
j=0 bjsij)uiκ + (a−∑M

j=0 bjqj)x0, for some b0, · · · , bM ∈ {0, 1}.
In this case, the zero-testing value gives

[pzt · e′]N =
[
pzt ·

(
e−

M∑

j=0

bjXj

)]

N

=
n∑

i=1

(
ri1ri2 −

M∑

j=0

bjsij

)
vi +

(
a−

M∑

j=0

bjqj

)
v0

=
n∑

i=1

(
ri1ri2

)
vi + av0 −

M∑

j=0

bj

( n∑

i=1

sijvi + qjv0

)
.

Therefore, if one has
∑n

i=1 sijvi+qjv0 for all j, one can compute
∑n

i=1(ri1ri2)vi+

av0 and follow a CHLRS attack strategy. We define a function φ such that

the above equation is written as

pzt · e′ mod N = φ(e)−
M∑

j=0

bj · φ(Xj). (1.0.1)

Note that φ(e) = [pzt · e]N , when e is a level-κ encoding of zero smaller than

x0. Since Xj’s are level-κ encodings of zero and the size of X0 is small, one

can obtainφ(X0) by the zero-testing procedure. φ(Xj) can be obtained induc-

tively, because the size-reduced Xj is a linear summation of X0, · · · , Xj−1, Xj .

When one has φ(Xj) in hand, it is easy to calculate φ(e) for a level-κ encoding

of 0 of arbitrary size using Equation (1.0.1).

We look into the exact expression of the φ-value over Q. By using (n + 1)

level-t encodings of zero and (n + 1) level-(κ − t) encodings, we constitute

matrix equations that consist only of a product of matrices. As in [CHL+15],

we have a matrix, the eigenvalues of which consist of the CRT components

of an encoding.

It needs only ladders and two level-0 encodings, and runs in polynomial

time. Therefore it is totally broken all possible applications in contrast with

CLT13 is still secure when no low-level encodings of zero are provided.

5



CHAPTER 1. INTRODUCTION

Currently, the construction and analysis of multilinear maps are being

repeated. As seen in the case of multilinear maps over the integers, simple

technical modification can not makes scheme secure without fundamental

understanding of attack. The construction of secure multilinear map only

can be started from deep perception of attacks and so it is meaningful to

examine cryptanlaysis of multilinear maps.

Organization of the Paper

In section 2, we give a description of multilinear map and graded encodings

schemes. We also introduce a multilinear map procedures and additional

problems related to multiinear maps. In section 3, we recall CLT13 multi-

linear map and explain zero-testing detailed. After that CHLRS attack will

be introduced. CLT15 multilinear map is also explained concentrated on the

difference with CLT13. In the last section, we introduce a cryptanalysis of

CLT15 multilinear map which takes polynomial time in security parameter.

6



CHAPTER 1. INTRODUCTION

Contributions

The thesis contains a joint work with Jung Hee Cheon and Changmin Lee [CLR15]

which appears in Eurocrypt 2016 as a merged paper [CFL+16].

List of Papers

• [CLR15] Jung Hee Cheon, Changmin Lee, and Hansol Ryu. Crypt-

analysis of the New CLT Multilinear Maps. IACR Cryptology ePrint

Archive, 2015:934.

• [CFL+16] Jung Hee Cheon, Pierre-Alain Fouque, Changmin Lee, Brice

Minaud, and Hansol Ryu. Cryptanalysis of the New CLT Multilinear

Map over the Integers. EUROCRYPT 2016, 509-536.
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Chapter 2

Introduction to Multilinear

Maps

At first, we define some notations to be used. After then, we give a brief

introduction to multilinear maps.

2.1 Notation

For a finite set S, we use s← S to denote the operation of uniformly choosing

an element s from S. For an integer p, Zp is a ring of integers modulo p, and

x mod p and [x]p denotes a number in Z∩
(
−p

2
, p

2

]
, which is congruent to x

modulo p. For x, y, p ∈ Z, x ≡ y mod p or x ≡p y means that x is congruent

to y modulo p.

We use lower-case bold letters to denote vectors whereas upper-case bold

letters are used to denote matrices. For an n× n square matrix M ∈ Rn×n,

we use (mij) to represent a matrix M , where mij is the (i, j)-th component of

M . Let MT be the transpose of M and ‖M‖∞ be the maxi
∑n

j=1 |mij | which

is the maximum of 1-norm of row vectors. We denote by diag(d1, · · · , dn) the

8



CHAPTER 2. INTRODUCTION TO MULTILINEAR MAPS

diagonal matrix with diagonal coefficients equal to d1, · · · , dn.

Chinese Remainder Theorem. Given n prime numbers p1, · · · , pn, define

p∗i as in [Hal15]:

p∗i =
∏

j 6=i

pj =
x0

pi
,

where x0 =
∏

1≤j≤n pi. For (x1, . . . , xn) ∈ Zn, let CRT(pi)(xi) denote the

unique integer in Z ∩ [0,
∏

pi) such that CRT(pi)(xi) mod pi = xi mod pi, as

per the Chinese Remainder Theorem.

It is useful to observe that for any (x1, . . . , xn) ∈ Zn:

CRT(pi)(xip
∗
i ) =

∑

i

xip
∗
i mod

∏

i

pi. (2.1.1)

9



CHAPTER 2. INTRODUCTION TO MULTILINEAR MAPS

2.2 Multilinear Maps and Graded Encoding

Schemes

Boneh and Silverberg introdeced cryptographic multilinear map [BS03], as

a natural generalization of bilinear maps. A multilinear map is defined as

follows.

Definition 2.2.1 (Multilinear Map [BS03]). Given κ+1 cyclic groups G1, · · · , Gκ,

GT of the same prime order p, a map e : G1×· · ·×Gκ → GT is a κ-multilinear

map iff it satisfies the following two properties:

1. For all a1, . . . , aκ ∈ Zp and {gi ∈ Gi}i=1,··· ,κ,

e(ga1

1 , · · · , gaκ

κ ) = e(g1, · · · , gκ)a1···aκ .

2. If {gi ∈ Gi}i=1,··· ,κ are all generators of their respective groups, then

e(g1, · · · , gκ) is a generator of GT .

This definition is slightly differ from [BS03], it gave the symmetric mul-

tilinear map which is the case G1 = · · · = Gκ. We follow the definition of

assymmetric multilinear map as in [Rot13, GGH13]. In their paper, Boneh

and Silverberg suggested applications which are one-round multipartite key

exchange and efficient broadcast encryption. Multilinear map has lots of ap-

plications, however the construction of multilinear map has not been made

after 10 years when it was suggested.

In 2013, Garg, Gentry and Halevi proposed a candidate multilinear maps

from ideal lattices [GGH13]. It has similar features as homomorphic encryp-

tion, it is a “noisy” multilinear map. The noise of an encoding increases

after operations, especially multiplicaion rapidly increases it. After GGH13,

several multilinear maps are suggested and all of them share the concept

of [GGH13]. It does not fit the exact definition of cryptographic multilinear

10



CHAPTER 2. INTRODUCTION TO MULTILINEAR MAPS

map, it is a somewhat relaxed version of multilinear map. So the authors sug-

gested a slightly different definition. whick called graded encoding system.

It has a graded structure and supports two kinds of operation, addition and

multiplication. Hence it is defined using a ring not a group.

Now we give a precise definition of κ-graded encoding system suggested

in [GGH13].

Definition 2.2.2 (Graded Encoding System [GGH13]). A κ-graded encoding

system consists of a ring R and a system of sets S = {S(α)
i ⊂ {0, 1}∗|α ∈

R, 0 ≤ i ≤ κ}, with the following properties:

1. For every fixed i, the sets S
(α)
i are disjoint

2. There is an associative binary operation ‘+’ and a self-inverse unary

operation ‘−’ on {0, 1}∗ such that for every α1, α2 ∈ R, every index

i ≤ κ, and every u1 ∈ S
(α1)
i , u2 ∈ S

(α2)
i , it holds that:

u1 + u2 ∈ S
(α1+α2)
i and − u1 ∈ S

(−α1)
i

where α1 + α2 and −α1 are addition and negation in R.

3. There is an associative binary operation ‘×’ on {0, 1}∗ such that for

every α1, α2 ∈ R, every i1, i2 such that i1 + i2 ≤ κ, and every u1 ∈
S

(α1)
i1

, u2 ∈ S
(α2)
i2

, it holds that u1 × u2 ∈ S
(α1·α2)
i1+i2

. Here α1 · α2 is the

multiplication in R, and i1 + i2 is the integer addition.

The main difference between the cryptographic multilinear map defined

in Def.2.2.1 and graded encoding system (Def.2.2.2) is that the encodings in

graded encoding system is randomized. For the same message α ∈ R, it can

be encoded in many ways. The set S
(α)
i is a set of encodings of a ring elemnet

α at level i.

Since the randomness of encodings, it is not trivial to check two encodings

encoded the same ring element or not. From this reason, it needs additional

procedure to decide equailty of encodings.

11



CHAPTER 2. INTRODUCTION TO MULTILINEAR MAPS

Another differenece is that intermediate level of encodings can be multi-

plied in contrast with only κ encodings can be coputed at the same time in

cryptographic multilinear map.

12



CHAPTER 2. INTRODUCTION TO MULTILINEAR MAPS

2.3 Multilinear Map Procedures

In this sectios, we introduce multilinear map procedure defined in [GGH13]

and [CLT13]. The goal of multilinear map is not to obtain a plaintext of

encoding. It only needs to obtain the same values in the end. The zero-

testing procedure enables to determine whether a top-level encoding is zero

or not. This means that we can decide two top-level encodings are in the

same set S(α)
κ for some α ∈ R or not, by additive homomorphic property.

Additional extraction procedure gives the same random string to encodings

of the same plaintext.

Similar in public key homomorphic encryption scheme, it needs re-rando-

mization procedure. However the users cannot encode plaintext α ∈ R di-

rectly, they just do several operations on random level-0 encodings without

knowing underlying plaintexts. The number of multiplications can not exceed

level-κ which is fixed in the beginning.

Instance Generation: (params, pzt)← InstGen(1λ, 1κ). The randomized in-

stance generation procedure takes as input the security parameter λ, the

multilinearity level κ, and outputs the public parameters (params, pzt),

where params is a description of a κ-graded encoding system as above,

and pzt is a zero-test parameter.

Ring Sampler: u ← samp(params). The randomized sampling procedure

takes as input the public parameters parmas and outputs a level-0 encoding

u ∈ S
(α)
0 for a nearly uniform α ∈ R. Note that u does not need to be

uniform in S
(α)
0 .

Encoding: u′ ← enc(params, u). The possibly randomized encoding proce-

dure takes as input the public parameters params, and a level-0 encoding

u ∈ Sα
0 for some α ∈ R, and outputs a level-1 encoding u′ ∈ S

(α)
1 .

Re-Randomization: reRand(params, i, u). The randomized rerandomization

13



CHAPTER 2. INTRODUCTION TO MULTILINEAR MAPS

procedure takes as input the public parameters params, a level i ≤ κ, and

a level-i encoding u ∈ Sα
i for some α ∈ R, and outputs another level-i

encoding u′ ∈ S
(α)
i of the same α. It satisfies that for any u1, u2 ∈ S

(α)
i ,

the output distributions of reRand(params, i, u1) and reRand(parmas, i, u2)

are nearly the same.

Negation: −u← neg(params, u). the negation procedure takes as input the

public parameters params, and a level-i encoding u ∈ S
(α)
i for some α ∈ R,

and outputs a level-i encoding u′ ∈ S
(−α)
i . We write u′ as−u as a shorthand

for applying these procedure.

Addition: u1 + u2 ← add(params, u1, u2). The addition procedure takes as

input the public parameters parmas, two level-i encodings u1 ∈ S
(α1)
i , u2 ∈

S
(α2)
i for some α1, α2 ∈ R, and outputs a level-i encoding u′ ∈ S

(α1+α2)
i .

We denote u′ as u1 + u2.

Multiplication: u′ ← mul(params, u1, u2). The multiplication procedure

takes as input the public parameters params, two encodings u1 ∈ S
(α1)
i , u2 ∈

S
(α2)
j of some α1, α2 ∈ R at levels i and j such that i + j ≤ κ, and outputs

a level-(i + j) encoding u′ ∈ S
(α1·α2)
i+j .

Zero-test: isZero(params, u). The zero-testing procedure takes as input the

public parameters params, and an encoding u ∈ S(α)
κ of some α ∈ R at

the maximum level κ, and outputs 1 if α = 0, 0 otherwise, with negligible

probability of error (over the choice of u ∈ S(α)
κ ).

Extraction: ext(params, pzt, u). The extraction procedure takes as input the

public parameters params, the zero-test parameter pzt, and an encoding

u ∈ S(α)
κ of some α ∈ R at the maximum level κ, and outputs s ∈ {0, 1}λ

such that:

1. For an α ∈ R and u1, u2 ∈ S(α)
κ , ext(params, pzt, u1) = ext(pp, pzt, u2).

14
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2. The distribution {ext(params, pzt, u) : α ← R, u ∈ S(α)
κ } is nearly

uniform over {0, 1}λ.

Note that only the same level encodings can be added and the multiplication

outputs encoding of increased level. The zero-testing can be done only for

top-level encodings.

15
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2.4 Related Problems

We introduce some additional problems related to multilinear maps. When

GGH13 was suggested, it looks hard that Subgroup Membership Problem

(SubM) and Decisional Linear Problem in GGH13. However after a whilw,

it has proven that they are not secure. When CLT13 and CLT15 was pro-

posed, they also look forward to support that problems so they have more

applications. Until now, there are no known reduction from the hardness of

these problems to the MDDH problem.

Let G = Zg1
× . . .× Zgn

and Gi be the subgroup of order gi obtained by

forcing the components of the other Zgj
’s to be zero. For index set I ⊆ [n],

we denote GI =
∏

i∈I Gi. We let enc1(t) denote a properly generated level-1

encoding of t ∈ G. For integers L, N > 0, we let Rki(Z
L×L
N ) denote the set of

L× L matrices over ZN of rank i. If N is a product of primes, we define the

rank of a matrix as the maximum of the ranks of the matrices obtained by

reduction modulo all the prime divisors of N .

Definition 2.4.1. (The Subgroup Membership Problem) SubM is as

follows. Given λ and κ, generate params and pzt using InstGen and {enc1(gi) :

i ∈ [ℓ]} where the gi’s are uniformly and independently sampled in a strict

subgroup GI of G, with ℓ sufficiently large so that the gi’s generate GI with

overwhelming probability. Given params, pzt, {enc1(gi) : i ∈ [ℓ]} and u =

enc1(m), determine whether m is sampled uniformly in GI or in G.

Definition 2.4.2. (L-Decisional Linear Problem) L-DLIN is as follows.

Given λ and κ, generate params and pzt using InstGen. Define N =
∏

i gi.

Given params and pzt, the goal is to distinguish between the distributions

{(enc1(mij))i,j}(mij)i,j←RkL−1(ZL×L
N

) and {(enc1(m′ij))i,j}(m′

ij
)i,j←RkL(ZL×L

N
).

Graded External DDH Problem (GHDH) is defined on asymmetric mul-

tilinear maps.

16



CHAPTER 2. INTRODUCTION TO MULTILINEAR MAPS

Definition 2.4.3. (Graded External DDH Problem) GXDH is as fol-

lows. Given λ and κ, generate params and pzt using InstGen. Given params,

pzt and enct(a), enct(b) and enct(c) with a, b ← G and for a given t ∈ [κ],

the goal is to decide whether c = a · b or c is uniformly and independently

sampled in G.

17



Chapter 3

Break and Repair: Two

Multilinear Maps over the

Integers

In this section, we introduce two multilinear maps over the integers.

The first one is suggested at Crypto 2013 by Coron, Lepoint and Ti-

bouchi. It has similar features with homomorphic encryptions over the in-

tegers such as [vDGHV10] and [CCK+13]. Especially, the ciphertext of

message (m1, · · · , mn) ∈ Zg1
× · · · × Zgn

is of the form

CRT(q0,p1,··· ,pn)(q0, r1g1 + m1, · · · , rngn + mn)

in [CCK+13], and a level-k encoding of (m1, · · · , mn) ∈ Zg1
× · · · × Zgn

is of

the form

CRT(p1,··· ,pn)((r1g1 + m1)/zk, · · · , (rngn + mn)/zk)

in [CLT13]. The correctness of these two schemes hold as long as each

rigi + mi does not go over pi, so both allow restricted number of multipli-

cations ([CCK+13] can support unrestricted number of multiplications with

18
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bootstrapping technique). The structure of encodings and addition, multipli-

cation process are quite similar.

The difference is here. Homomorphic encryption allows to decrypt only

with secret key. But the goal of multilinear map is not to recover a message,

it needs to decide whether encoded values are the same or not without secret

information. The zero-testing parameter is constructed to achieve this and

the additional structure of z enables to decide it only when the level is κ.

However, this causes a weakness of the scheme. Cheon, Han, Lee, Ryu and

Stehlé proposed a polynomial time attack, so called CHLRS attack [CHL+15].

Using the structural feature of zero-testing, one can find all the secrets of

CLT13 in polynomial time of security parameter.

After CHLRS attack, there are several attempts to make a scheme to be

secure [GGHZ14, BWZ14]. However they were proven insecure soon [CGH+15].

Around the same time, Coron, Lepoint and Tibouch proposed another fix of

the scheme [CLT15] which is called CLT15. To thwart CHLRS approach,

they modified the zero-testing to become a non-linear equation in secret pa-

rameters. Since CHLRS used the fact that the zero-testing value of encoding

of zero is written as a linear combination of secrets, CLT15 looks secure when

it was suggested.

We first introduce CLT13 multilinear map, and then explain how to an-

alyze it. After that, we give a description of CLT15 construction and how to

compensate the defect CLT13.
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3.1 The CLT13 Multilinear Map and CHLRS

Attack

3.1.1 The CLT13 Multilinear Map

We introduce Coron et al.’s first construction, CLT13 multilinear map. The

scheme relies on the following parameters.

λ: the security parameter

κ: the multilinearity parameter

ρ: the bit length of the randomness used for encodings

α: the bit length of the message slots

η: the bit length of the secret primes pi

n: the number of distinct secret primes

τ : the number of level-1 encodings of zero in public parameters

ℓ: the number of level-0 encodings in public parameters

ν: the bit length of the image of the multilinear map

β: the bit length of the entries of the zero-test matrix H

Coron et al. suggested to set the parameters so that the following condi-

tions are met:

• ρ = Ω(λ): to avoid brute force attack (see also [LS14] for a constant

factor improvement).

• α = λ : so that the ring of messages Zg1
× . . .×Zgn

does not contain a

small subring Zgi
.
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• n = Ω(η · λ): to thwart lattice reduction attacks.

• ℓ ≥ n·α+2λ: to be able to apply the leftover hash lemma from [CLT13,

Le. 1].

• τ ≥ n · (ρ + log2(2n)) + 2λ: to apply leftover hash lemma from [CLT13,

Se. 4].

• β = Ω(λ): to avoid the so-called gcd attack.

• η ≥ ρκ + α + 2β + λ + 8, where ρκ is the maximum bit size of the

random ri’s a level-κ encoding. When computing the product of κ level-

1 encodings and an additional level-0 encoding, one obtains ρκ = κ ·
(2α + 2ρ + λ + 2 log2 n + 2) + ρ + log2 ℓ + 1.

• ν = η − β − ρf − λ− 3: to ensure zero-test correctness.

Instance generation: (params, pzt)← InstGen(1λ, 1κ). Set the scheme pa-

rameters as explained above. For i ∈ [n], generate η-bit primes pi, α-bit

primes gi, and compute x0 =
∏

i∈[n] pi. Sample z ← Zx0
. Let Π = (πij) ∈ Zn×n

with πij ← (n2ρ, (n + 1)2ρ) ∩ Z if i = j, otherwise πij ← (−2ρ, 2ρ) ∩ Z. For

i ∈ [n], generate ~ri ∈ Zn by choosing randomly and independently in the half-

open parallelepiped spanned by the columns of the matrix Π and denote by

rij the j-th component of ~ri. Generate H = (hij) ∈ Zn×n, A = (aij) ∈ Zn×ℓ

such that H is invertible and ‖HT‖∞ ≤ 2β, ‖(H−1)T‖∞ ≤ 2β and for i ∈ [n],
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j ∈ [ℓ], aij ← [0, gi). Then define:

y = CRT(pi)

(
rigi + 1

z

)
, where ri ← (−2ρ, 2ρ) ∩ Z for i ∈ [n],

xj = CRT(pi)

(
rijgi

z

)
for j ∈ [τ ],

x′j = CRT(pi)(x
′
ij), where x′ij = r′ijgi + aij

and r′ij ← (−2ρ, 2ρ) ∩ Z for i ∈ [n], j ∈ [ℓ],

(pzt)j =




n∑

i=1

[
hij · zκ · g−1

i

]

pi

·
∏

i′ 6=i

pi′




x0

for j ∈ [n].

Output params = (n, η, α, ρ, β, τ, ℓ, ν, y, {xj}, {x′j}, {Πj}, s) and pzt. Here s is

a seed for a strong randomness extractor, which is used for an “Extraction”

procedure.

Sampling level-zero encodings: e ← samp(params). For 1 ≤ j ≤ ℓ,

sample bj ← {0, 1} and compute e = [
ℓ∑

j=1
bj · x′j ]x0

Then e is an encoding of

message m with the distribution of ~m is statistically close to uniform over

the ring Zg1
× · · · × Zgn

.

Lemma 3.1.1. [CLT13] Let e ← samp(params) and write e ≡ rigi +

m mod pi. Assume ℓ ≥ nα + 2λ. The distribution of (params, m) is statisti-

cally close to the distribution of (params, m′) where m′ ← Zg1
× · · · × Zgn

.

Encodings at higher levels: ek ← enc(params, k, e). Note that y is a

level-1 encoding of 1. Hence by multiplying with y, we can raise the level of

encoding. Compute ek = [e · yk]x0
.

However, it is not secure when used in multipartie Diffie-Hellman key-

exchange, since the private encoding e can be recovered directly by computing

ek · y−k mod x0. Therefore we need re-randomization procedure to make an

encoding ek which is not depend on e.
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Re-randomizing level-1 encodings: e′ ← reRand(params, e). Let the

matrix Π = (̟i,j) ∈ Zn×n be a diagonally dominant matrix such that:

̟ij ← (n2ρ, (n + 1)2ρ) ∩ Z, if i = j,

← (−2ρ, 2ρ) ∩ Z, otherwise.

Using the matrix, we define level-one encoding of zero xj ’s:

1 ≤ j ≤ τ, xj = CRT(pi)

(
rijgi

z

)
,

where (r1j , · · · , rnj) is randomly and independently generated in the half-

open parallelipiped spanned by tge columns of Π.

For j ∈ [τ ], i ∈ [n], sample bj ← {0, 1}, b′i ← [0, 2µ)∩Z, with µ = ρ+α+λ.

Return e′ = [e +
∑

j∈[τ ] bj · xj +
∑

i∈[n] b′i · Πi]x0
. Then by the leftover hash

lemma over lattices, the distribution of e′ is independent of e.

Lemma 3.1.2. [CLT13] Let e← samp(params), e1 ← enc(params, 1, e), and

e′1 ← reRand(params, 1, e1). Write e′1 = CRT(pi)

(
rigi+mi

z

)
and r = (r1, · · · , rn).

Let the parameters be in as before, then the distribution of (params, r) is sta-

tistically close to the distribution of (params, r′) where r′ is randomly gener-

ated in the half-open parallelepiped spanned by the column vectors of 2µΠ.

Adding and multiplying encodings: Add(e1, e2)=[e1 +e2]x0
and Mul(e1,

e2)=[e1 · e2]x0
. The correctness holds as long as the numerator does not go

over pi.

Zero-testing: isZero(params, pzt, eκ) =? 0/1. Given a level-κ encoding e,

return 1 if ‖[pzt · e]x0
‖∞ < x0 · 2−ν , and return 0 otherwise.

Extraction: sk ← ext(params,pzt, eκ). To extract a random (pzt, c). Given

a level-κ encoding e, Compute MSBν([pzt · e]x0
).
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p1 p2 · · · pn−1 pn

hijp
∗
i

x0

[ri + mi/gi]pi

hijp
∗
i

ri

x0

Figure 3.1: Zero-testing of CLT13

Now we examine the zero-testing procedure. Since the multiplication of

the zero-testing vector and encoding is defined modulo x0, the CRT repre-

sentation is convenient. Using the equation 2.1.1, we can rewrite zero-testing

vector as follow:

(pzt)j =
∑

1≤i≤n

[
hijz

κ

gi

]

pi

· p∗i mod x0

= CRT

(
hijz

κ

gi
p∗i

)

Then, for a top-level encoding e = CRT(pi)((ri + mi · g−1
i ) · gi/zκ),

(pzt · e)j mod x0 = CRT(pi)(hij(ri + mi · g−1
i )p∗i )

=
∑

1≤i≤n

hij [ri + mi · g−1
i ]pi

p∗i mod x0
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Hence, if mi = 0, 1 ≤ i ≤ n, then the following holds over the integers:

(pzt · e)j mod x0 = CRT(pi)(hijrip
∗
i )

=
∑

1≤i≤n

hijrip
∗
i < x0 · 2−ν ,

so ‖pzt · e mod x0‖∞ < x0 · 2−ν .When there is an i with mi 6= 0, by the

construction of matrix H , one can show that ‖pzt · e mod x0‖∞ ≥ x0 · 2−ν+2,

and so the correctness of zero-testing is obtained.

Optimizations. Coron et al. noticed that the size of public parameters is

too large. For example, the size of public parameter is larger than 1 TB when

λ = 80. So they suggested three heuristic optimizations.

1. Non-uniform sampling: take ℓ = 2λ and publish small number of x′j ,

level-0 encodings of random messages.

2. Quadratic re-randomization: store ⌊√n⌋ random encodings of level-0

and ⌊√n⌋ level-1 encodings of zero. Combine pairwise to generate n

level-1 encodings of zero.

3. Only 1 zero-testing parameter: use single integer pzt.

These optimizations make sampling is not uniform, and randomization be-

comes heuristic only. In the case of zero-testing, an encoding of zero gives a

small value when multiplied with zero-testing integer, but the converse does

not hold anymore.

3.1.2 Zeroizing Attacks on CLT13

In this section, we introduce how to cryptanalyze CLT13 multilinear map.

In [CLT13], it was claimed that CLT13 is robust against a zeroizing attack

in [GGH13]. The idea of zeroizing attack in [GGH13] is that to compute
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many zero-testing values of encodings of zero and make a non-trivial ideal

generated by a secret of zero-testing parameter. However, it becomes a triv-

ial ideal Z when the attack is employed to CLT13. Hence, CLT13 supports

the Graded Decisional Diffie-Helman assumption (GDDH), subgroup mem-

bership (SubM), and decisional linear (DLIN) problems are hard in it, while

GGH13 supports onlythe GDDH.

The attack is proposed by Cheon, Han, Lee, Ryu, and Stehlé, called

CHLRS attack [CHL+15]. It uses many low-level encodings of zero, and finds

all secrets in polynomial time of security parameter. As in the zeroizing at-

tack of GGH13, the attack utilizes public low level encodings of zero, which

allows an encoding to be generated without the secret values being known.

The core of the attack is to compute several zero-testing values related to one

another. Then, one can construct a matrix, the eigenvalues of which consist

of the CRT component of x, which is x mod pi for some encoding x, where

p1, · · · , pn are secret values of the scheme. Then, it reveals all the secrets of

the scheme. However, it is not adapted when no low-level encodings of zero

are provided such as in iO application.

Shortly after that, Coron et al. suggested an extension of CHLRS at-

tack [CGH+15]. It is applied when orthogonal encodings are provided, which

are well-separated sets of encodings which can make top-level encodings of

zero. It can be applied to a matrix variant of GGH13, and some variants of

CLT13 [BWZ14, GGHZ14].

Now, we explain the attack procedure. Let a be a level-s encoding, b be a

level-t encoding andc be a level-(κ − s− t) encoding of zero. Then they can
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be written as follows:

a = CRT(pi)

(
ai

zs

)
,

b = CRT(pi)

(
bi

zt

)
,

c = CRT(pi)

(
rigi

zκ−s−t

)
,

and the product of these three encoding is

abc mod x0 = CRT(pi)

(
aibiri

gi

zκ

)
.

Hence the zero-testing value of this product gives the below equation which

holds over the integers,

pzt · abc mod x0 =
∑

1≤i≤n

aibirihip
∗
i ,

and it can be expressed using the product of matrices.

(
a1 . . . an

)




r1

. . .

rn







h1p∗1
. . .

hnp∗n







b1

...

bn




The point is that hip
∗
i ’s are independent of encodings a, b, and c. Hence by

fixing c and varying a and b, we can construct an n-dimensional square matrix

which can be expressed as a product of matrices.

Suppose we have three sets of encodings, denoted by A = {a1, · · · , an}, B =

{b1, · · · , bn}, and C = {c0, c1}. Each set has encodings of the same level such

that the product of any ai, bj(i, j ∈ [n]), and cσ(σ ∈ {0, 1}) is a level-κ en-

coding. We also assume that cσ are encodings of zero. Then we can write
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each encodings as follows:

aj = CRT(pi)

(
aij

zs

)
, 1 ≤ j ≤ n,

bj = CRT(pi)

(
bij

zt

)
, 1 ≤ j ≤ n,

cσ = CRT(pi)

(
riσgi

zκ−s−t

)
, σ ∈ {0, 1},

and the zero-testing value of aibjc0, 1 ≤ i, j ≤ n gives the following equation:

W0 =




ai,j




T 


r10

. . .

rn0







h1p
∗
1

. . .

hnp∗n







bi,j




= AT R0 P B

(3.1.1)

Then by repeating the same procedure using c1 instead of c0, we may have

W1 = AT · R1 · P · B. Then we may invert the matrix W0 over Q (whp)

and compute below

W−1
0 ·W1 = B−1 ·R−1

0 ·R1 ·B

= B−1 · diag(r11/r10, · · · , rn1/rn0) ·B,

since diagonal matrices are commutative. By computing eigenvalues of W−1
0 ·

W1, we obtain relatively prime integers u1 and u0 satisfying u1/u0 = ri1/ri0

for some i. Note that u1c0− u0c1 ≡pi
(u1ri0gi− u0ri1gi)/zκ−s−t ≡pi

0. There-

fore computing gcd(x0, u1c0 − u0c1) gives pi and this reveals all the secrets

immediately.

It needs sufficiently many low-level random encodings and only two low-

level encodings of zero. As pointed in [CHL+15], the conditions are achieved

when it is used in one round multi-party Diffie-Hellman. Note that one of

the set A and B can be substituted as {(pzt)j}.
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This attack heavily relies on the accessibility of low-level encodings of

zero. What if we use a non-zero encoding cσ instead of encoding of zero? As

in previous, we compute the zero-testing values of aibjcσ, 1 ≤ i, j ≤ n. Since

it is not an encoding of zero, the equation (3.1.1) holds in mod x0 not over

the integers. So it can be rewritten as

W0 = c0pzt




a1

...

an




(
b1 . . . bn

)
mod x0.

Therefore it is not a full rank matrix in mod x0 and it looks hard to obtain

any information about secrets.
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3.2 The CLT15 Multilinear Map

In this section we introduce the CLT15 multilinear map. As seen 3.1.2, a

weak point of CLT13 is that the zero-testing value of an encoding of zero,

can be decomposed as a product of matrices over the integers. To overcome

this, CLT15 added a new type noise, in order to the zero-testing value can

be expressed an affine matrix equation only.

CLT15 retained the structure of encodings from CLT13. The main differ-

ence is zero-testing procedure, it is conducted in some independent modulus

N . By using the independent modulus N and keeping x0 secret, two kinds of

new noises are added when adapt CHLRS attack. So it looks hard to apply

the attack and secure. The optimized implementation of CLT15 is compara-

ble to CLT13 in the aspect of timing and the size of public parameters.

The scheme relies on the following parameters.

λ: the security parameter

κ: the multilinearity parameter, i.e., the proposed map is κ- linear

ρ: the bit length of the initial noise usedfor encodings

α: the bit length of the primes gi

η: the bit length of the secret primes pi

n: the number of distinct secret primes

γ: the bit length of encodings (= nη)

τ :the number of level-1 encodings of zero in public parameters

ℓ: the number of level-0 encodings in public parameters

ν: the bit length of the image of the multilinear map
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β: the bit length of the entries of the zero-test matrix H

Coron et al. suggested setting the parameters according to the following

conditions.

• ρ = Ω(λ): to avoid a brute force attack on the noise

• α = λ : to prevent a situation wherethe order of message ring Zg1
×

. . .× Zgn
has a small prime factor.

• n = Ω(ηλ): to thwart lattice reduction attacks

• ℓ ≥ nα + 2λ: to apply the leftover hash lemma from [CLT15]

• τ ≥ n(ρ+log2(2n))+2λ: to apply the leftover hash lemma from [CLT15]

• β = 3λ: as a conservative security precaution

• η ≥ ρκ + 2α + 2β + λ + 8, where ρκ is the maximum bit size of the

noise ri of a level-κ encoding. When computing the product of κ level-1

encodings and an additional level-0 encoding, one obtains ρκ = κ(2α +

2ρ + λ + 2 log2 n + 3) + ρ + log2 ℓ + 1

• ν = η − β − ρf − λ− 3: to ensure correctness of zero-testing.

The constraints are the same as in [CLT13]; the condition that differs is β.

Instance generation: (params, pzt) ← InstGen(1λ, 1κ). Set the scheme pa-

rameters as explained above. For 1 ≤ i ≤ n, generate η-bit odd primes pi

and α-bit primes gi, and compute x0 =
n∏

i=1
pi. Generate a random prime

integer N of size γ + 2η + 1 bits. Using LLL algorithms in dimension 2,

special pairs of nonzero integers (αi, βi)
n
i=1 are chosen to satisfy |αi| < 2η−1,

|βi| < 22−η · N , βi ≡ αiu
′
ip
−1
i (mod N), where u′i =

[
gi

zκ
(pi
∗)−1

]

pi

· pi
∗. Fi-

nally, generate ~H = (hij) ∈ Zn×n such that ~H is invertible and ‖ ~HT‖∞ ≤ 2β,
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‖( ~H−1)T‖∞ ≤ 2β and for 1 ≤ i ≤ n, 1 ≤ j ≤ ℓ, mij ← [0, gi) ∩ Z. Then,

define

y = CRT(pi)

(
rigi + 1

z

)
,

xj = CRT(pi)

(
rijgi

z

)
, for 1 ≤ j ≤ τ,

x′j = CRT(pi)(r
′
ijgi + mij) for 1 ≤ j ≤ ℓ,

X
(t)
j = CRT(pi)


r

(t)
ij gi

zt


+ q

(t)
j x0 for 0 ≤ j ≤ γ + ⌊log2 ℓ⌋, 1 ≤ t ≤ κ,

Πj =
n∑

i=1

̟ijgi

[
z−1

(
x0

pi

)−1]

pi

x0

pi

+ ̟n+1,jx0 for 1 ≤ j ≤ n + 1, and

(pzt)j =
n∑

i=1

hijαip
−1
i (mod N) for 1 ≤ j ≤ n,

where ri, r′ij, r
(t)
ij ← (−2ρ, 2ρ)∩Z, q

(t)
j ← [2γ+j−1/x0, 2γ+j/x0)∩Z, and ̟ij ←

(−2ρ, 2ρ) ∩ Z if i 6= j, ̟ii ← ((n + 1)2ρ, (n + 2)2ρ) ∩ Z. Then, output

params = (n, η, α, ρ, β, τ, ℓ, µ, y, {xj}τ
j=1, {x′j}ℓ

j=1, {X
(j)
i }, {Πj}n+1

j=1 , s) and pzt.

In this paper, we used only one zero-testing parameter. Hence, hereafter, we

use a notation pzt =
n∑

i=1
hiαip

−1
i (mod N) instead of a vector (pzt)j , if no

confusion results.

Sampling level-0 encodings: c ← samp(params). Since the user does not

know pi, one cannot encode a vector ~m ∈ Zg1
× · · · × Zgn

.Hence, CLT15

provides level zero encodings {x′j} for sampling. A level zero encoding c is

computed as a random subset sum of {x′j}. Namely, for 1 ≤ j ≤ ℓ, sample bj

← {0, 1} and compute c =
ℓ∑

j=1
bj · x′j .

Encodings at higher levels: ck ← enc(params, k, c). Given a level-0 encod-

ing c, to obtain alevel-1 encoding c1 with the same plaintext as c, computec1 =

c · y. Since x0 is not given, a ladder of level-1 encodings of zero X
(1)
j is pro-

vided. Then, iteratively reduce the size of c1 to that of X
(1)
0 .
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In general, to obtain a level-k encoding, compute ck = c · yk and reduce

the size of ck after each multiplication by y using ladders {X(i)
j }

γ+⌊log2 ℓ⌋
j=0 for

levels i = 1, · · · , k.

Re-randomizing level-1 encodings: c′ ← reRand(params, c). For 1 ≤ j ≤
τ, 1 ≤ i ≤ n + 1, sample bj ← {0, 1}, b′i ← [0, 2µ) ∩ Z, with µ = ρ + α + λ.

Return c′ = c+
τ∑

j=1
bj ·xj +

n+1∑
i=1

b′i ·Πi.This procedure can be adapted to higher

levels 1 < k ≤ κ by publishing appropriate quantities in params.

Adding and multiplying encodings: For two encodings, the addition and

multiplication are performed in Z. After the arithmetic, reduce the size to

that of 2x0 using the ladder.

Zero-testing: isZero(params, pzt, e)
?
= 0/1. Given a level-κ encoding e, re-

turn 1 if ‖pzt · e (mod N)‖∞ < N · 2−ν , and 0 otherwise.

Extraction: sk ← ext(params,pzt, e). Given a level-κ encoding e, compute

the most significant ν bits of [pzt · e]N .

Now we take a closer look at zero-testing procedure. For the sake of

simplicity, we denote pzt as a specific (pzt)j for some j and omit the index

j. First, we remind that the zero-testing procedure of CLT13. For a level-κ

encoding e = CRT(pi)([ri + mi/gi]pi

gi

zκ ), the zero-testing value is

pzt · e mod x0 =
∑

1≤i≤n

hi[ri + mi/gi]pi
p∗i mod x0.

Since p∗i is small as pi than x0, [ri+mi/gi]pi
p∗i ≈ x0. Therefore hi[ri+mi/gi]pi

p∗i

goes over x0 if mi 6= 0, and hirip
∗
i ≪ x0 . Hence one can decide whether it is

an encoding of zero.

As we describe before, zero-testing of CLT15 executed in another modulus

N , however the principle is almost same. Let e be a level-κ encoding, then

e = CRT(pi)([ri + mi/gi]pi

gi

zκ ) + a′x0. To compare with encoding of CLT13,
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[ri + mi/gi]pi

vi

ri

N

Figure 3.2: Zero-testing of CLT15

it has additional term a′x0 since we can not reduce it using x0. We can

rewrite it as e =
∑

[ri + mi/gi]pi
ui + ax0, where ui = [gi/zκ(p∗i )

−1]pi
p∗i which

is independent of encoding. Then the zero-testing value can be written

pzt · e mod N =
∑

1≤i≤n

[ri + mi/gi]pi
vi + av0 mod N,

where vi = pzt · ui mod N and v0 = pzt · x0 mod N . The zero-testing vector

is constructed to satisfy vi is small as pi than N . Hence as similar in CLT13,

[ri + mi/gi]pi
vi ≈ N if mi 6= 0, and rivi ≪ N .

However, in this case, we need to consider the additional term, av0. To

identify zero, the size of av0 must be much smaller than N , hence the size of

a must be controlled. The following lemma gives more detailed explanation

on this.

Lemma 3.2.1 (Zero testing lemma). Let e be a level-κ encoding of zero

with e =
∑n

i=1 riu
′
i + ax0, (r1, · · · , rn, a ∈ Z). Then,

pzt · e mod N =
n∑

i=1

rivi + av0,

holds over the integers, if |a| < 22η−β−log2 n−1 and |ri| < 2η−β−log2 n−6 for

1 ≤ i ≤ n.
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Proof 1. By the construction of the zero-testing element, we have pzt · e ≡
n∑

i=1
rivi + av0 (mod N). It is sufficient to show that the right hand side is

smaller than N/2. For 1 ≤ i ≤ n,

vi ≡
n∑

j=1

hjαjp
−1
j u′i ≡ hiβi +

∑

j 6=i

hjαj

[
gi

zκ
(pi
∗)−1

]

pi

x0

pipj
mod N,

and therefore, |vi| < 2γ+η+β+4 for 1 ≤ i ≤ n. Moreover, v0 =
∑n

j=1 hjαj
x0

pj

and |v0| < n2γ+β−1.

The size of a is deeply related to the size of e. When e is large, the size

of a is close to e/x0. So we can control the size of a by reduce the size of

encoding e. From this reason, size-reduction must be done before performing

zero-testing. To reduce the size of encoding while hiding x0, CLT15 publishes

encodings of zero of increasing size. It is inspired from [vDGHV10] and called

a ladder.

More precisely, a ladder (X
(k)
j )0≤j≤γ′ are encodings of zero of each level

k ≤ κ,

X
(k)
0 < X

(k)
1 < · · · < X

(k)
γ′ , X

(k)
j ≈ 2jx0,

where γ′ = γ + ⌊log2 ℓ⌋. Using this ladder, we can reduce the size of encoding

e down to the size of X
(k)
0 without altering the encoded value.

CHLRS attack to CLT15 multilinear map

When CLT15 was suggested, it looks hard to apply CHLRS attack. We first

explain direct adaptations of CHLRS attack to CLT15 and why they did not

succeed. As in 3.1.2, suppose we have three encodings a, b and c where abc

is a level-κ encoding. We also assume that c is an encoding of zero. Then we
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can write each encodings as follows:

a = CRT(pi)

(
ai

zs

)
,

b = CRT(pi)

(
bi

zt

)
,

c = CRT(pi)

(
rigi

zκ−s−t

)
.

In CLT15, it is neccessary to reduce the size of encoding before conducting

a zero-testing. We define e′ be a size-reduced encoding of abc using ladders,

then

e′ = abc−
∑

1≤j≤γ′

bjX
(κ)
j

=
∑

1≤i≤n

(aibiri + si) · u′i + ax0,

where bj ∈ {0, 1} and si, a are some integers. Hence the zero-testing value of

e′ can be written as

pzt · e′ mod N =
∑

i

(aibiri + si)vi + av0. (3.2.1)

As similar in equation (3.1.1), we can construct a matrix equation using

different choice of a and b, then

Wc = X ×C × Y + S + A · v0.

Since it has two additional unknown matrices S and A, it looks hard to find

secret informations as before. Moreover, additional problems are expected to

being secure such as DLIN and SubM problems.
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Main Attack

In this section, we describe how to cryptanalyze CLT15 multilinear map.

To thwart CHLRS approach, additional noises are added in CLT15 multilin-

ear map by executing zero-testing in independent modulus. This causes two

kinds of noises: one is related to a secret modulus x0 and the other is caused

from ladders. Hence it looks robust to CHLRS approach.

Ironically, the starting point of our attack is there. From the equation ob-

tained from CHLRS approach to CLT15, we deduce integer equations from

zero-testing values of encodings of zero. To obtain a matrix equation as in

CLT13, we remove the effect of noises in two-steps. The first step is to elimi-

nate noise which comes from ladders. From this step, we gain equations over

the integers with one more variable to compared with CLT13. The second

step is to build an (n+1)-dimension matrix equation. By enlarging the dimen-

sion of matrix equation, we obtain matrix equation consists of multiplication

of matrices only.
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4.1 Computing φ-values

Let us remind the zero-testing value of encoding in CLT15. If e is an encoding

of zero, then it can be written as e =
∑

riui + ax0. Note that the size of ri

and ui are smaller than pi and x0, respectively. Hence the former term of

equation of e cannot be larger than n2η+γ . Therefore the size of a is heavily

depends on the size of the encoding. For exampls, the size of e is about 22γ

and so the size of a is close to 2γ when e is obtained from the multiplication

of two low-level encodings.

As we explained in Lemma 3.2.1, the zero-testing equation holds over the

integers only when the size of a is small. Suppose e is an encoding of zero of

large size. To obtain a meaningful result from zero-testing, we need to reduce

its size using ladders. Then the size-reduced encoding e′ can be written as

e′ = e−
γ′∑

j=0

bjX
(κ)
j

=
n∑

i=1

(
ri −

γ′∑

j=0

bjr
(κ)
ij

)
· ui +

(
a−

γ′∑

j=0

bja
(κ)
j

)
· x0,

where bj ∈ {0, 1} and X
(κ)
j =

∑
i r

(κ)
ij ui +

(κ)
j x0, a level-κ ladder. Now e′ satis-

fied the conditions in Lemma 3.2.1 and so we obtain the following equations:

pzt · e′ mod N = pzt ·
( n∑

i=1

(
ri −

γ′∑

j=0

bjr
(κ)
ij

)
· ui +

(
a−

γ′∑

j=0

bja
(κ)
j

)
· x0

)
mod N

=
n∑

i=1

(
ri −

γ′∑

j=0

bjr
(κ)
ij

)
· vi +

(
a−

γ′∑

j=0

bja
(κ)
j

)
· v0

=
n∑

i=1

rivi + av0 −
γ′∑

j=0

bj ·
( n∑

i=1

r
(κ)
ij vi + a

(κ)
j v0

)

Unlike the equation (3.2.1), we write the zero-testing value explicitly using

publicly computable bj ’s. If we have
∑n

i=1 rivi + av0, a new noise si in the
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equation (3.2.1) can be removed. To obtain the value, it needs to compute

each
∑n

i=1 r
(κ)
ij vi + a

(κ)
j v0, 0 ≤ j ≤ γ′.

We define a function φ which maps an encoding e =
∑n

i=1 riui + ax0 to

an integer
∑n

i=1 rivi + av0. Then the above equation can be rewritten as

pzt · e′ mod N = φ(e)−
∑

bj · φ(X
(κ)
j ). (4.1.1)

Hence if we have φ(X
(κ)
j )’s, then we can obtain φ(e) for large encoding.

At first, we give an exact description of φ. It is a map from the integer

to integer such that

φ : Z→ Z

x 7→
n∑

i=1

[
x · z

κ

gi

]

pi

vi +
x−∑n

i=1[x · zκ

gi
]pi

ui

x0
v0,

where vi = pzt · ui mod N(1 ≤ i ≤ n) and v0 = pzt · x0 mod N as before.

Note that, x ≡ ∑n
i=1[x · zκ

gi
]pi

ui (mod pj) for 1 ≤ j ≤ n. Hence x0 divides

x−∑n
i=1[x · zκ

gi
]pi

ui and the function is well-defined. One can easily check that

φ(e) =
∑

rivi + av0 for an encoding of zero e =
∑

riui + ax0.

When the encoding satisfies conditions in Lemma 3.2.1,φ-value equals

the zero-testing value. However they only equal in modulo N when the size

of encoding is large. So the first goal of our attack is to obtain φ-values of

encoding xcy where it is a level-κ encoding of zero as in CHLRS attack. That

means we remove one noise si in the equation (3.2.1).

Now we introduce a nice property of φ which says it is additive homo-

morphic.

Proposition 4.1.1. Let e1 and e2 be level-κ encodings of zero such that

ej ≡
rijgi

zκ
(mod pi) and |rij| < pi/2 for all 1 ≤ i ≤ n, j = 1, 2. Suppose

|ri1 + ri2| < pi/2 for all 1 ≤ i ≤ n, then

φ(e1 + e2) = φ(e1) + φ(e2).
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Proof 2. We note that ej · gi

zκ mod pi = rij. Hence φ(ej) =
∑n

i=1 rijvi + ajv0

for some integer aj, and (e1 + e2) · gi

zκ mod pi = ri1 + ri2 mod pi. From the

condition |ri1 + ri2| < pi/2, modulus reduction does not occur in the right

hand side. Therefore the third equality holds in the following equations:

φ(e1) + φ(e2) =
( n∑

i=1

ri1vi + a1v0

)
+
( n∑

i=1

ri2vi + a2v0

)

=
n∑

i=1

(ri1 + ri2) · vi + (a1 + a2) · v0

= φ
(
(ri1 + ri2) · ui + (a1 + a2) · x0

)
= φ(e1 + e2).

Note that the condition on rij also needs to correctness of the multilinear

map. Hence we may regard φ as an additive homomorphism.

Consider the zero-testing of encoding xcy. At first we multiply x with c

and reduce its size using level-(s + t) ladder. After that y is multiplied and

size-reduction is done. So it is of the form

(xc−
∑

j

bjX
(s+t)
j ) · y −

∑

j

b′jX
(κ)
j , (4.1.2)

and the zero-testing value can be written as follow using φ

pzt ·
(
(xc−

∑

j

bjX
(s+t)
j ) · y −

∑

j

b′jX
(κ)
j

)
mod N (4.1.3)

= φ(xcy)−
∑

j

bjφ(yX
(s+t)
j )−

∑

j

b′jφ(X
(κ)
j ). (4.1.4)

By computing φ(X
(κ)
j ) and φ(yX

(s+t)
j ), we can obtain φ(xcy). To do so,

we first compute φ-values of level-κ ladders. We already know φ-value of

the smallest ladder X
(κ)
0 by Lemma 3.2.1 since it is small and encoding of

zero. For the other ladders, the size condition on a, which means the size of

encoding is only a problem to adopt the Lemma.
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However this problem can be easily solved by size-reduction of ladder

themselves. For a ladder X
(κ)
k , we may reduce its size using X

(κ)
j , j < k. More

precisely,

X
(κ)
k −

∑

j<k

bjX
(κ)
j ,

satisfies conditions in Lemma 3.2.1 for properly chosen bj ∈ {0, 1}. Then the

following holds:

pzt · (X(κ)
k −

∑

j<k

bjX
(κ)
j ) mod N = φ

(
X

(κ)
k −

∑

j<k

bjX
(κ)
j

)

= φ(X
(κ)
k )−

∑

j<k

bjφ(X
(κ)
j ).

The first equality comes from Lemma 3.2.1 and the second equality holds by

Proposition 4.1.1. Note that the zero-testing value and coefficients bj ’s are

known values. Therefore using φ(X
(κ)
j ), j < k, we obtain φ-value of X

(κ)
k . This

procedure can be done from the known value φ(X
(κ)
0 ) = pzt · X(κ)

0 mod N ,

inductively. So we can compute φ-values of level-κ encodings less than X
(κ)
γ′ .

Note that the size of yX
(s+t)
j can be larger than the size of X

(κ)
γ′ . In this

case, we can reduce the size of X
(s+t)
j using X

(s+t)
k for k < j similarly. So it

can be obtained by induction.
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4.2 Computing Matrix Equation over Q

Now we can compute φ-values of large encodings of zero. As in CHLRS

attack, suppose we have three encodings x, y and c with y is an encoding of

zero.

x = CRT(pi)

(
xi

z

)
,

y = CRT(pi)

(
yigi

zκ−1

)
,

c = CRT(pi) (ci) .

Then xcy =
∑

xiriyiui+ax0 for some integer a. Hence we can obtain φ(xcy) =
∑

xiciyivi + av0 using φ-values of ladders. However CHLRS attack cannot

be applied yet since it has additional noise a. If we directly adopt CHLRS

approach, it only gives a matrix equation as like

Wc = X ×C × Y + A · v0

with unknown matrix A.

Our strategy is to chase the relation of a. Using this equation of a, we

remove non-linearity of matrix equation by raising the dimension of matrix.

For a notational convenience, we assume level of x, c, y be 1, 0 and κ − 1.

Then we may rewrite x and y as follow:

x = CRT(pi)

(
xi

z

)
= xi

[
z−1

]

pi

+ qipi for each i,

y = CRT(pi)

(
yigi

zκ−1

)
=

n∑

i=1

yi

[
gi

zκ−1

(
x0

pi

)−1
]

pi

· x0

pi
+ ax0,

for some qi, a ∈ Z. The multiplication of x and c can be written as

xc = xici[z
−1]pi

+ q′ipi,
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where q′i = (xc− xici[z
−1]pi

)/pi. Then we express xcy as follow:

xc · y

= (xici[z
−1]pi

+ q′ipi) ·
( n∑

i=1

yi

[
gi

zκ−1

(
x0

pi

)−1
]

pi

· x0

pi

+ ax0

)

=
n∑

i=1

(
xiciyi

[
z−1

]

pi

[
gi

zκ−1

(
x0

pi

)−1
]

pi

· x0

pi
+ yi

[
gi

zκ−1

(
x0

pi

)−1
]

pi

q′ix0

)
+ (xc)(ax0).

Note that [z−1]pi

[
gi

zκ−1

(
x0

pi

)−1
]

pi

=

[
gi

zκ

(
x0

pi

)−1
]

pi

+sipi for some integer si.

Let us define θi =

[
gi

zκ−1

(
x0

pi

)−1
]

pi

, then [z−1]pi
θi

x0

pi

= ui + six0. Hence the

above can be written

xc · y

=
n∑

i=1

(xiciyiui + xiciyisix0 + yiθiq
′
ix0) + xca · x0

=
n∑

i=1

xiciyiui +
n∑

i=1

(xiciyisi + yiθiq
′
i)x0 + xca · x0.

Therefore

φ(xcy) =
n∑

i=1

xiciyi · vi +
n∑

i=1

(xiciyisi + yiθiq
′
i) · v0 + xca · v0.

By plugging q′i = (xc− xici[z
−1]pi

)/pi into the equation, we obtain

φ(xcy) =
n∑

i=1

yi(vi + siv0 −
θiv0

pi

[z−1]pi
)cixi +

n∑

i=1

yi
θiv0

pi

cx + av0cx

=
n∑

i=1

yiwicixi +
n∑

i=1

yiw
′
icx + av0cx,

where wi = vi + siv0 − θi

pi
[z−1]pi

v0 and w′i = θiv0

pi
. It can be written (over Q)
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as follows:

φ(xcy) =
(

y1 y2 · · · yn a

)




w1 0 w′1

w2 w′2
. . .

...

wn w′n

0 v0







c1x1

c2x2

...

cnxn

cx




.(4.2.1)

Since piwi = pi(vi + siv0)− θi [z−1]pi
· v0 ≡ −θi [z−1]pi

· v0 6≡ 0 (mod pi) wi is

not a zero. Therefore v0
∏n

i=1 wi 6= 0 and so the matrix in Equation (4.2.1) is

non singular.

By applying Equation (4.2.1) to various x, y, we have linear matrix equa-

tion. Taking for 0 ≤ j, k ≤ n,

xj = CRT(pi)

(
xij

z

)
,

yk =
n∑

i=1

yikθi
x0

pi
+ akx0,

so that the dimension of matrix be n + 1, then

Wc =




y10 · · · yn0 a0

. . .
...

y1n · · · ynn an







w1 0 w′

1

w2 w′

2

. . .
...

wn w′

n

0 v0







c1 0

c2

. . .

cn

0 c







x10 · · · x1n

. . .
...

xn0 xnn

X0 · · · Xn




= Y W diag(c1, · · · , cn, c) X.

Note that wi and w′i are regardless of any encodings.

We do the same procedure for the same xj , yk and for c = 1which is a

level-0 encoding of (1, · · · , 1). Then we have matrix W1 which splits into

(n + 1)-dimension matrices as follow:

W1 = Y ×W × diag(1, · · · , 1)×X

= Y ×W ×X.
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As we mentioned before, W is non-singular. Furthermore Y and X also non-

singular matrices with high probability. So we can compute W−1
1 Wc over Q,

then

W−1
1 Wc = (Y W X)−1 · Y W diag(c1, · · · , cn, c)X

= X−1diag(c1, · · · , cn, c)X.

It is a similar matrix with diag(c1, · · · , cn, c), hence they have the same eigen-

values ci and c. Hence we get ci and then c− ci is a multiple of secret pi.

We repeat the same procedure for another level-0 encoding c′ = CRT(pi)(c
′
i)

and construct a matrix Wc′. Similarly, compute W−1
1 Wc′ and get c′i. Observe

that

gcd(c− ci, c′ − c′i) = pi,

and so we get secret modulus pi and it reveals all the other secrets.

Attack Complexity

To compute φ(xcy), we first compute φ(X
(κ)
j ), 0 ≤ j ≤ γ′. It is conducted

by O(γ2)-times comparisons and subtractions of (γ + γ′)-bit integers and

(γ′ + 1)-times zero-testing. Hence its computational cost is Õ(γ2) by using

fast Fourier transform.

Inversion and multiplication of (n + 1)-dimension matrices, and compu-

tation of eigenvalues and greatest common divisor takes Õ(nωγ)-bit compu-

tation with ω ≤ 2.38. There is one more to consider. We want to W1 be a

full rank matrix. Note that the rank of a matrix M ∈ Zd×d can be coputed

in time Õ
(
dω log ‖ ~M‖∞

)
[Sto09]. Hence the total complexity of our attack

is Õ(2(γ + log ℓ)(nω log N)) = Õ(κω+4λ2ω+6) which is a polynomial time in

security parameter.
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국문초록

다중선형함수는다양한암호학적응용이가능하다.지금까지제안된다중

선형 함수는 세 가지의 종류가 있다. 처음 제안 된 다중 선형 함수는 아이디얼

격자를 이용하여 설계되었고 두 번째는 정수 위에서 정의 되었다. 마지막으로

방향성이있는그래프를이용하여정의된다중선형함수가있다.그러나이들

은 모두 안전성 기반 문제가 암호학적으로안전한 문제로 환원되지 못했을 뿐

아니라 낮은 레벨의 0의 인코딩이 공개되는 경우 안전하지 못함이 밝혀졌다.

그중에서도정수위에서정의된다중선형함수의경우설계와분석이반복

되고있다.코론,르퐁,티부시는 2013년크립토에서처음으로중국인의나머지

정리를 이용한 다중 선형 함수를 제안하였다. 그러나 2015년 유로크립트에서

이 함수가 안전하지 않음이 밝혀졌고 그 후 이를 안전하게 변형하기 위한 다

양한 노력이 있었다. 하지만 대부분의 변형 된 함수 역시 안전하지 못하였다.

그러던 중 원 저자들은 공격을 피하기 위한 기법을 추가한 다중 선형 함수를

설계하였고 이는 안전할 것으로 기대되어 2015년 크립토에서 발표되었다.

우리는 이 학위 논문에서 코론 등이 2015년 크립토에서 제안한 다중 선형

함수의 분석 방법을 소개한다. 이 방법은 먼저 제안된 코론 등의 다중 선형

함수의 분석 방법과 핵심을 공유하며 우리는 공개 파라미터를 이용하여 함수

의 비밀 정보를 다항식 시간 안에 찾을 수 있다. 코론 등이 처음 제안한 다중

선형 함수는 낮은 레벨의 0의 인코딩을 공개하지 않는 프로그램 난독화 등에

사용될때의안전성이아직알려지지않았다.하지만새로제안된함수의경우

곱하기를 위해 추가된 사다리가 낮은 레벨의 0의 인코딩의 역할을 하므로 이

함수가 사용될 수 있는 모든 응용에서 안전하지 않다.

주요어휘: 다중 선형 함수, 그레이디드 인코딩 스킴

학번: 2009-20267
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