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Abstract

American options are type of options that can be exercised anytime dur-
ing their life. Therefore, the valuation of such options is usually classified
as optimal stopping problems or free boundary problems. I derive the ana-
lytic pricing formulas and integral equations of American chained options,
Russian options with finite time horizon, American floating strike lookback
options, and American maximum quanto options. To verify the derived pric-
ing formula and the integral equation satisfied by the free boundary are
correct, we numerically solve the derived integral equations using recursive
integration method or simple iterative method.

Key words: Option pricing, Path-dependent option, American option, In-
tegral equation, Free boundary problem, Mellin transform
Student Number: 2009-22894
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Chapter 1

Introduction

This thesis is organized as follows. In chapter 2, we consider the pricing
of American chained knock-in options. We prove mathematically that the
value of knock-in American chained barrier options are expressed in terms of
the value of knock-in American options by using reflection principle of Brow-
nian motions. That is, we derive the integral equation satisfied by American
chained barrier options. This leads to more accurate valuation of Ameri-
can chained barrier options. Our method is also useful for valuing European
chained options as well.

In chapter 3, we deals with the analytic valuation of Russian option
with finite time horizon. We derive analytic solution for the inhomogeneous
Black-Scholes equation with mixed boundary conditions by using Mellin
transform approach. Mixed boundary condition usually arises in the op-
tion pricing problem when the underlying asset involves maximum process.
We formulate Russian options as a PDE with mixed boundary conditions
and obtain the integral equation satisfied by Russian option values by using
the analytic formula we derived. We get numerical solutions for the inte-
gral equation by applying recursive iteration method, Also, we present the
computational speed and accuracy of recursive integration by comparing its
numerical results with some of existing methods in the literature.

In chapter 4, we presents our study of American floating strike lookback
options written on dividend-paying assets. The valuation of these options
can be mathematically formulated as a free boundary inhomogeneous Black-
Scholes PDE with a Neumann boundary condition, which we, by using a
Mellin transform, convert into a relatively simple ordinary differential equa-
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tion with Dirichlet boundary conditions. We then use these results to derive
an integral equation that can be used to calculate the price of American
floating strike lookback options. In addition, we also used Mellin transforms
to derive the closed-form of the perpetual case.

In chapter 5, we derive analytic pricing formula for American exchange
rate quanto lookback options which apply the value of realized maximum
exchange rate until maturity. We first formulate two dimensional inhomoge-
neous Black-Scholes PDE with mixed boundary conditions whose solution is
the value of American maximum exchange rate quanto lookback options. To
solve the formulated PDE, we apply the double Mellin transform techniques
to get an analytic solution for a general two-dimensional inhomogeneous
Black-Scholes PDE with mixed boundary conditions. Using the analytic so-
lution, we finally derive the pricing formula for American maximum ex-
change rate quanto lookback options and the integral equation satisfied by
the free boundary of such options. To verify that our theoretically derived
integral equation is indeed correct, we solve the derived equation numerically
using ’extended simple iterative method’ and compare this solution with a
benchmark solution which is obtained by modified binomial tree method. We
also plot the free boundary and value of American quanto lookback options
with different parameters such as domestic/foreign risk-neutral interest rate,
volatility, dividend yield.



Chapter 2

Chained knock-in barrier
option

Barrier options are one of the most popular path-dependent derivatives in
various markets, particularly in OTC markets and FX markets, since barrier
options are cheaper and they are more liquid than vanilla options. Therefore,
many people have researched on barrier options so far. Reiner and Ruinstein
[61] derived a formula for barrier options. Rich [62] also got the value of
barrier option under mathematical framework.

As barrier options have become popular, a variety of new barrier options
which consist of more complicated contract emerged. For example, Ger-
man and Yor [21] derived the price of double barrier options using Laplace
transforms. Heynan and Kat [26] studied partial barrier options as well. Es-
pecially, we note the paper by Jun and Ku [39] which handle a special type
of barrier option with two barrier levels. Different from usual double barrier
options, the second barrier level for this option is activated only when the
underlying asset hits the first barrier level. Therefore, option is worthless if
it does not cross two barrier levels in a specific order. These kind of options
were first treated by Pfeffer [60] and Li [55], and extended more generally
by Jun and Ku. This types of options have recently become popular in the
Japanese over-the-counter equity and foreign exchange derivative markets.

Jun and Ku named such options as chained barrier options and studied
on pricing them when two barrier levels are given by exponential functions
of time [40]. Furthermore, in [41], they approximated the value of American
chained barrier options using the approximation method of Ingersoll [28§],
which is based on constant exercise policies of barrier options.
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2.1 Preliminaries

The usual assumptions for the Black-Scholes option pricing framework are
adopted in this work. The stock price S; is assumed to follow the risk neutral
process

ClSt = (T’ — Q)Stdt + O'Stth (211)

where r is the risk-free interest rate, o and ¢ are the volatility and dividend
yields of S, respectively, and W; is a one-dimensional standard Brownian
motion on a filtered probability space (€2, () ,IP), where (F;),~, = I is the
natural filtration generated by Wj. -

Consider a knock-in American call option where the knock-in trigger
clause entitles the holder to receive an American call option with strike
price K when underlying asset S passes the threshold level D. Then, in view
of optimal stopping problems, the value C'A;4(t, S, K, D) of the American
knock-in call option with expiration 7" is expressed by

CAia(t,S,K,D) = sup E‘P[67T<T7t)(ST - K)+1{lnin0§7§7 s,<p} | St = 9] (2.1.2)

t<7<T

under the risk-neutral measure P. Similarly, the value of PA;,(t,S, K,U)
of the American knock-in put option with expiration 7" is given by

PA4(t,S,K,D) = sup EP[eﬂ(T*”(K — ST)+1{mmOSVS, s,<p} | St = 9] (2.1.3)

t<r<T

Dai and Kwok [10] proved the following theorems.

Theorem 2.1.1 (The value of American knock-in barrier options)

(1) (American down-and-knock-in barrier call options : C'4;4)

Let CEi4(t, S, K, D) and C' A;4(t, S, K, D) denote the pricing function
of the European down-and-knock-in barrier call options and Amer-
ican down-and-knock-in barrier call options, respectively, both with
down-and-in barrier D, strike price K and expiration 7. For D <
K max (1,r/q),

CAi4(t, S, K, D)
2(r—q) —1
2

= (Z) ’ [CA(t, I:J() — CE(t, 1?:,1() (2.1.4)

+ CEj(t,S, K, D)
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where CE(t, S, K) and CA(t, S, K) are the pricing functions of Euro-
pean vanilla call options, American vanilla call options, respectively,
both with strike price K and expiration 7' .

Especially, if D < K, C'A;; can be simplified as follows.

Q(T;‘Z)_l 9

CAid(t,S,K,D)—<g> ’ C’A(t,%,K) (2.1.5)

(2) (American up-and-knock-in barrier put options : PA;,)

Let PE;4(t, S, K,U) and PA;4(t, S, K,U) denote the pricing function
of the European up-and-knock-in barrier barrier put option and Amer-
ican up-and-knock-in barrier put option, respectively, both with up-
and-in barrier U, strike price K and expiration T'. For U > K min (1,7/q),

PAid(ta Sa K> U)
2(r—q) -1

_(Y) ~ PA(t,U—,K)—PE(t,U—,K) (2.1.6)
(5) 7 [paefs .

+PEid(tvsv K> U)

where PE(t,S, K) and PA(t, S, K) are the pricing functions of Euro-
pean vanilla put options, American vanilla put options, respectively,
both with strike price K and expiration 7.

Especially, if U > K, PA;, can be simplified as follows.

2(r—q) _

PA(t, S, K,U) = (g) PA(t, %,K) (2.1.7)

In [10], Dai and Kwok analyzed the value of knock-in put options PA;,
according to the value of U and K (for put options). They showed that for
U < K min(1,r/q), there is no analytic formula for PA;; as (2.1.6) in The-
orem 2.1.1.

Therefore, in this chapter, we assume that U > K min(1,7/q) (for put op-
tion) and D < K max(1,7/q) (for call option).
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2.2  Analytic Valuation of Chained American Bar-
rier Options

In this section, we derive mathematically that knock-in American chained
barrier options are expressed in terms of knock-in American options.

In [41], Jun and Ku obtained the value of American chained knock-in
put options using approximation method introduced in [28]. But this method
works only for U > K. We derive the analytic formula for American chained
knock-in options using Theorem 2.1.1 and the relation of PA;; and PAg;,.
Our formula works for a wide range, U > K min(1,7/q).

For S; defined in (2.1.1), we have

Sy = Sp exp(put + oWy) (2.2.1)

o2

where p=r —q— 5.

We fix an upper barrier U(> Sp) and a down barrier D(< Sp). For

convenience, we also define a function g(z) := L log(z/Sy) for z > 0 and let
u:=g(U), d:=g(D) and L; := g(S).

2.2.1 Crossing a single barrier

In this subsection, we consider the pricing formula for knock-in European
and American chained barrier options which are activated when the state
variable S hits the upper barrier U or the lower barrier D. The following
theorem 2.2.1 is the pricing formula for down-and-knock-in European and
American chained barrier options, and we state analogous formula for up-
and-knock-in chained barrier options in corollary 2.2.2

Remark The chained down(up)-and-knock-in barrier European call options
are denoted by CEy;4(C Eg;,) and means that the lower(upper) barrier level
D(U) activates only when the underlying asset hits the upper(lower) bar-
rier level U (D) first. The same notation is used for the chained put options,
PEuidvadiu-

We proved the relation of chained options and the knock-in options via
the following theorem. To the best of our knowledge, there are no papers
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which states the relation of American chained options and American knock-
in options.

Theorem 2.2.1 Let us consider the chained down-and-knock-in European(C E;4)
and

American(C Ay;q) call options expiring at T" with strike price K(> D), which

are activated at time 7, = min{t > 0| S; = U}.

For tg < 7y,
2p
U\ U?
CEuid(t()aStoaKa U7 D) = () CEid(thiva D)
Sty Sty
. (2.2.2)
u
U\ U?
CAuid(t0>StoaK7 U7D) = <> CAid(t0a77K7 D)
i Sie

Proof First, we consider the chained down-and-knock-in European call
option(C'Ey;q)-

For tg < 7, under the risk-neutral measure P,

CEuid<t07 Sto7 K7 U7 D)
= e "I EPI(ST — K) " Limin., < r 8,<D, 7u<T, 8v,=U} | Fto]

= "I BP((Soe™ — K) M 1 min,, <o Ly <d, ru<t, Loy =uy | Fio]

where the second equation follows from Girsanov’s theorem which asserts
that Ly .= W+ gt is a standard Brownian motion under () measure, defined
by

dQ _ —twr—itT (2.2.3)

Then,
CEuid(t07 Stoa K? Ua D)
u 12
:EQ[(SQBULT _ K)-‘re(,WT'i‘z o2 Tl{minTugng Lo<d, 7u<T, Lo, =u} | J—_-to]

2
© _1p
Wiy =3 ozto

T—to) o=

x e~ (

J'A! _CI:I_ 1_-_15 =]
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For 0 <t < T, let us define a process L; defined by the formula

. (L t <
Li=4" = Tu (2.2.4)
2u— Ly t> 7y,

By reflection principle, L; is a standard Brownian motion under () measure.

Now note that 2u — d > wu, {f”v‘ maXr, <y<T fw >2u—d, 7, < T} =

{INW| MaXg<<T Ew > 2u — d}. Therefore,

CEuid(t()v StU7K7 U7D)

o(2u—L L (ou—L 7lﬁT
=E?[(Sqe (2u—L7) _ K)+ea( T)-3% 1{maxmgg L, >2u—d, r<T} | }‘to(] |
s 2.2.5
o(2u—L _Bfn_1uip
:EQ[(S(J(B (2u—Lr) _ K)Jre cLlr—33 l{maxogng L >2u—d} | fto}

2
2 1
« e~ T(T—to) o2 =5 Wio =3 Ezto

Let us again defined an equivalent probability measure P by setting

2

aP _ —lp-itT (2.2.6)

dQ
so that the process W; := L; + Et,t € [0,T] follows a standard Brownian
motion under P.

CEuid(th Stov Ka Uv D)

:EP[(SOeQUueHT-'rU(_WT) — K)+1{mino§7§T (H’Y+U(*Ww)ga(d*2u)} | ‘T-tl)]

- 2
I _lp-
Lig—3 o2 to

2
T—to) 22 = EWig—§ 510~

x e e e

:EP[(SOeQO'ueHT-FO'(_WT) — K)J’_l{minogng (,LL’)/-‘:-(T(—W—Y)SU(d—QU)} | fto]

7T(T7t(]) — 70
e (So) (S)

The last equality follows from the stock price process (2.2.1) and the defini-
tion of u.

Now define new process V; for 0 <t < T as follows.

Vi = SerUUe“HU(_Wt) (2.2.7)
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For M; := ut + o(—W,), by Ito’s formula,

~ 1 ~
dv, = SOeQUueuH-J(—Wt) ~dM,; + 5SOe?aue;ut-i-a(—l/Vt) . (th)Z

o (2.2.8)
:%-(u-dt—ath)+§W-a2-dt
Then, V; satisfies following SDE :
AV, = (r — Q)Vidt + oVid(— W) (2.2.9)

where —W; is a standard Brownian motion under P measure.

By definition of L; and f)t,

. Wi+ 22t t<m,
A =7 (2.2.10)
2u — Wy t> Ty

Since ty < Ty,

U\?2 U?
_ —pto—oWiy _ Y~ 2.2.11
Vi 50< So> e 0 o ( )

Therefore,

2
o2

e "I BP (v — K) " minge, <z v, <0} | Fio]

CEuid(th Stoa Ka Ua D) = <U)
(2.2.12)

v
=

)
IS

Sty
— (YN cma U i D)
- Sto id\t0, Sto’ )

By (2.2.11), (2.2.12) and standard theory of optimal stopping problem,

CAuid(to, Sty, K, U, D)

= sup eir(TitO)EP[(S‘r - K)+1{111in7“<,y<7. S,<D, 7,<7, S;,=U} | ‘Fto]
to<7T<T -
U\ s
= Sup <S> B_T(T_tO)EP[(VT - K)+1{mino<,y<7. V—ySD} | fto]
to<7<T to T
2p

(2.2.13)

U \-? U?
— CAiq(to, —,K,D
<St0) d( ‘ Sto )
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Hence, we have proved the desired result.
O

The following corollary can be obtained by using similar techniques in The-
orem 2.2.1.

Corollary 2.2.2 Consider the chained up-and-knock in European(P Egy;,,)
and American(PAg;,,) put options expiring at 7" with strike price K(< U)
which are activated at time 74 = min{¢t > 0| S; = D}. Then, for ty < 74,

D\~ D?
PEdiu(t(]aStovK’U’D) = <> PEiu(t()aiaK’D)
Sty Sty
. (2.2.14)
D\ o2 D?
PAdiu(t07StoaKaU7D): o PAiu(thiaKaD)
S, Sto

2.2.2 Crossing two barriers

This subsection addresses a knock-in European and American chained bar-
rier option activated in the event that the underlying asset hits the down-
stream barrier D followed by reaching the upstream barrier U, or vice versa.

Remark The chained down(up)-and-knock-in barrier European call options
crossing two barriers are denoted by CFEgy;q(CFEyiqy) and means that the
last lower(upper) barrier level D(U) activates only when the hits the barrier
D(U) followed by reaching the barrier U (D). The same notation is used for
the chained put options, PFEguid, PEydiu-

Theorem 2.2.3 Consider the chained down-and-knock-in European(C Egy;4)
and American(C Agyiq) call options expiring at T" with strike price K(> D),
activated at time

Tagy = min{t > 74| Sy =U, 7y =min{t > 0| S, =D, D < Sp}}.

For tg < 74,

Q.Q‘g

Sl

U 2
CEduid(th Stm K> U7 D) = <D> CEid(th <> St07 K> D)

(2.2.15)

Clm‘_g')

U 2
OAid(t(]v <> St()’ K7 D)

U
CAdUid(t()?StO)K, U, D) = <D> D

10



CHAPTER 2. CHAINED KNOCK-IN BARRIER OPTION

Proof First, we consider the chained down-and-knock-in European call

option(C Egy;q)-

For ty < 74,, under the risk-neutral measure P,

CEduid(t07 Stoa K7 Ua D)

= e " EP(St — K) Lpin,, <ycr 812D, rau<T, 81y =D, Sry =0} | Fio

_ —r(T—t P oL +
= e T EP[(Soe™ ™ — K) " Umin,, < cr Lo<d, rau<T. Lry=d, Loy, =u} | Fro]

2
_ oL + EWr+itsT
= E9[(Soe”" ™ — K)Fer VTt e o M i L <d ran<T Ly=d, Loy, =u) | Fro)
du ST v d d

2
% e—r(T—tg)e—gwtO —%Z—zto

where the process L; and measure @) are defined in (2.2.3), respectively.

For 0 <t < T, let us define a process L; defined by the formula

A Ly t<T1q
Ly =
2d — Ly t>Tq

(2.2.16)

By the virtue of reflection principle, L is a standard Brownian motion under

() measure.

CEduid(t07 Stg 5 K7 U7 D)

B

=E°[(Spe’lr — K)Tev

2
o o= T(T—t0) g = £ Wiy — % L5t

_EQ[(SperPd-Lr) _ gyt ek (d-Lr)- 3Ty

2
1
> e—r(T—to)e—fwto -3 Z—ztg

2
Wr+i T
27 Umin,,, < < Lo <d, 7au<T, Lry=d, Lry, =u} | Fio]

{max,, <~<r ﬁ«,Zd, Tau<T, i“fdu =2d—u} | ]:tO]

Here, we apply the reflection principle again. Let us introduce a process

Gy, t € [0,T], defined by

Ly t < Tau
Gy = )
2(2d — u) — Lt t > Ty

11

(2.2.17)
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Then,

CEduid(t07 Sto7 K7 U’ D)

2
o o(2(u—d)+G + . £G —lp_T
= EQ[(Spe BlumdtCr) _ ) teoGrma o Limin,, <y<r G,<3d—2u, 70, <T, G, =2d—u} | Fto]

o o T(T—t0) o 2 (u—d) ,— £Wio— § L3 t0
By the assumption D < Sy < U, d = %log(s%) <0<u= %log(s%), which
in turn yields 0 > 2d — u > 3d — 2u.

Also, one can easily show that G, > 3d — 2u in (0, 74,) since Ly > d for
0<t<Ttgand Ly <u for 7qg < 74y.

i < - < = i < - .
Thus, {G,| Tdungn'yngT G, <3d—2u, 1q, <T} ={G,] OISr}ylgT G, < 3d—2u}

Hence,
CFEaquia(to, Sty K,U, D)
I _lﬁ
:EQ[(SOeU(Q(u_d)+GT) _ K)+6;GT 2 Ule{minogng G, <3d—2u} | ]:to]

2
24 1
« e*T(T*to)e%(u*d)e*%Wto*52%750

Let us again an equivalent probability measure P* by setting

* 2
dP _ egaT_%%T
dQ

so that the process H; = Gy — £t, t € [0,T] is a Brownian motion under P*
measure.

(2.2.18)

CEduid(t07 Stoa Ka Ua D)

—gF [(Soea(Z(u—d)-‘rHT-i-%T) _ K)+1{minogng(H~,+§"/)S3d—2U} | ]:to]

o o= (T—t0) 2 (u—a)
For t € [0,T], define a process Z; as
Zy = Spe2o(umdenttot (2.2.19)

By using Ito’s formula and proceeding as in (2.2.8), we can derive the fol-
lowing SDE satisfied by Z, :

dZt = ('I’ — Q)tht + O'thHt (2220)

12
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where H; is a standard Brownian motion under P* measure and

OEduid(t07 Sto 5 K7 U7 D)

U\ % . (2.2.21)
_ <D> e—r(T—to)EP [(ZT _K)+1{minogng 2,<D} |]_-t0}
For ty < 74,
U\? U\?
iy = <D> Speltio Wiy — (D) S, (2.2.22)

Similar to (2.2.12) and (2.2.13),

2
o

=

|

Sl

U 2
CEduid(th Stoa K> U> D) = <D> CEid(t(]a () Stm K> D)

(2.2.23)

Clm‘_g’)

U 2
CAid(t(]v <> Stoa K7 D)

U
CAdUid(tO?StO)K, U, D) = <D> D

|

The following corollary can be obtained by using similar techniques in the-
orem 2.2.3.

Corollary 2.2.4 Consider the chained up-and-knock in European(PFE,4;,,)
and American(PA,q;,) put options expiring at T" with strike price K(< U)
activated at time
Tud = min{t > 7, | Sy =D, 7, =min{t >0|S; =U, U > Sp}}. Then, for
to < Tu,

D\ # D?
PEyqiu(to, Sty, K, U, D) = (U) PEiu(to,ﬁSto,K, D)
(2.2.24)

¥
=

|

D\~ D?
PAudiu(t07St07K7 Ua D) - ﬁ PAiu(t07WStoaK7 D)

Remark 2.2.5
By using European barrier formulas in [25, Huang p.152-153] and relations
in Theorem 2.2.1 and Theorem 2.2.3, we can obtain the results of [39].

13



CHAPTER 2. CHAINED KNOCK-IN BARRIER OPTION

2.3 Numerical results

In this section, we compute the value of American knock-in chained barrier
options by making use of recursive integration method [27].

For U > K min(1,7/q), by using theorem 2.1.1 and corollary 2.2.2, the value
of American chained up-and-in put option PAg;,(t, Sy, K, U, D) is expressed
by

PAdiu(taSt7K7 UyD)

2(r—a) 4
U o2 Uzst U2St
_<D> {PA(t, st K) = PE(t, =5t K) 2.3.1)
2(r—a)
D o2 D?
— PE(t,—, K,
+(3) ot o KT)

By the integral equation representation of the value of American options in
[43], the American put PA(t, s, K) in (2.3.1) can be decomposed as follows.

PA(t, S, K)
T
=PE(t,S,K) + / {rKe*T@*fw(fd(g —t, ) + /€ —t) —gSe ¢
¢ Sp(8)
S
XN (—d(€ —t, %))} dg (2.3.2)
= Ke "IN (—d(T —t, %) —oVT —t) — Se "IN (—d(T — t, %))
+f ' [rKe*T“*“Mfd(a =) o VE— D) — gSe MEIN (—d( — 1, <o) | de
¢ S5(6) S5(8)
1 —q+ 5o)t
where d(t,z) = oge + (r \/{? L) and S;(t) is the optimal stopping
g
time of American put option and is the solution of the integral equation
K—8,(t) =
Ke " TN (—d(T — 1, S’i?)) VT —8) — Se 1T ON(—d(T — ¢, 2 ;If) )) (233)
T (et Sp(t) —qle—t Sy (t)
K (€1 —d(€& — P 4 — q(§—1) —d(¢ — P d
o [ e Nt~ G + oV ED) — SO (e~ SE | ae

14



CHAPTER 2. CHAINED KNOCK-IN BARRIER OPTION

Hence,
PAdiu(t7 St7 K7 U7 D)
2(r—q)
(YY) - o /T rKe "CTON(—d(€ —t U5, Y+ oE—t) — qU Spe 9=
D : " D2S3(8) D2 (2.3.4)

2(r—q)
U>S, D\ = ' D?
XN(—d(g—t,Wz(é_))} dg) (St> PEzu(t,?t,KyU)

Also in [25], the price formula for European up-and-knock-in put options

are given as follows.

1) U > K,
PE;(t, S, K,U)
U 2(7‘;‘1) 1 - U2 U'2 T
g —r(T—t - —t
= (E) {Ke (T=0) pr (fd( —t, StK)er/ﬁ) -5 T 935

N (—d(T - S?;)ﬂ

(2) Otherwise,
PE;.(t, S, K,U)

=Ke "I~ t>/\/( d(T —t,—=)+oVT ) See”"TTON <*d(T*ta?)>
Ke "(T—1) Pt T — S, —q(T—t) ( _ 7)
N( t,=5) + oV ) + Sie N\ —dT =, 77) (2.3.6)
( 1 2
U —r(T—t) .U U” —ar—)
+(S) [K N( A=t FovT = ) 5.°

N (—d(T— ‘) S%))]
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CHAPTER 2. CHAINED KNOCK-IN BARRIER OPTION

Table 2.1: Comparison of American chained put option PAy;, with varying
S and K, option parameter: T = 0.5, U = 105, D = 95, »r = 0.05, ¢ =

0, c=0.3
S K Jun& Ku  Recursive Benchmark
(100) Integration (Monte Carlo)
Method
95 1.5138 1.5169 1.5188
97.5 1.9503 1.9531 1.9699
96 100 2.4670 2.4730 2.4400
102.5 3.0732 3.0830 3.0531
105 3.7747 3.7888 3.7686
95 1.2575 1.2572 1.2600
97.5 1.6317 1.6328 1.6418
98 100 2.0812 2.0846 2.0604
102.5 2.6131 2.6197 2.6260
105 3.2334 3.2441 3.2050
95 1.0399 1.0389 1.0522
97.5 1.3609 1.3609 1.3698
100 100 1.7503 1.7519 1.7632
102.5 2.2150 2.2190 2.2426
105 2.7616 2.7688 2.7339
95 0.8576 0.8561 0.8714
97.5 1.1319 1.1310 1.1463
102 100 1.4676 1.4679 1.4624
102.5 1.8720 1.8740 1.8939
105 2.3515 2.3560 2.3535
95 0.7053 0.7036 0.7164
97.5 0.9389 0.9375 0.9482
104 100 1.2273 1.2266 1.2218
102.5 1.5575 1.5782 1.5634
105 1.9965 1.9990 2.0296
RSME | 1.72566-02  1.9428¢-02
CPU time | 1.3254e-01  6.74800-02
16
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Table 2.2: Comparison of American chained put option PAg;, with varying

U and D, option parameter: T'= 0.5, S =100, r =0.05, ¢ =0, 0 = 0.3

Jun& Ku  Recursive Benchmark
U D (100) Integration (Monte Carlo)
Method
91 1.6270 1.6279 1.6456
93 2.3508 2.3559 2.3232
101 95 3.2754 3.2868 3.2221
97 4.4148 4.4336 4.3007
99 5.7743 5.7997 5.5791
91 1.1373 1.1363 1.1600
93 1.6890 1.6903 1.6780
103 95 2.4152 2.4207 2.4029
97 3.3358 3.3476 3.2997
99 4.4636 4.4826 4.4202
91 0.7808 0.7791 0.8034
93 1.1922 1.1914 1.1694
103 95 1.7503 1.7519 1.7632
97 2.4782 2.4842 2.4800
99 3.3946 3.4068 3.4294
91 0.5267 0.5251 0.5506
93 0.8272 0.8256 0.8389
105 95 1.2471 1.2464 1.2648
97 1.8108 1.8127 1.8144
99 2.5400 2.5465 2.5248
91 0.3494 0.3481 0.3802
93 0.5643 0.5626 0.5927
107 95 0.8739 0.8723 0.9034
97 1.3016 1.3012 1.3057
99 1.8706 1.8728 1.8706
RSME | 5.11550-02  5.84720-02
CPU time | 1.30520-01  9.08840-02
17



CHAPTER 2. CHAINED KNOCK-IN BARRIER OPTION

From (2.3.3), (2.3.4), (2.3.5) and (2.3.6), we can obtain analytic formula of
American chained knock-in put options.

To sum up, detailed methods for getting analytic formula of American
chained options are as follows.

Algorithm : Numerical Method for American chained option PAg;,.

Step 1: By using recursive integration method, calculate the free boundary S, ()
of American put option in (2.3.3).

Step 2: For numerical solution S} (t) in Step 1, calculate value of American

put option PA in (2.3.2).

Step 3: Using approximate solution PA obtained in Step 2 and formula (2.3.5),
(2.3.6), calculate American chained put option P Ag;,,, numerically.

We compare our results with those of Jun and Ku [41] in Table 2.1 and with
those of Monte Carlo simulation in Table 2.2 For the computation, the data
were collected from [41]. Table 2.1 compares option value by fixing two bar-
rier levels as U=105 and D=95 while varying S and K. Table 2.2 represents
the behavior of option values according to various barrier levels U and D,
while holding S and K to 100.

As you can see from RMSE and CPU times in Table 2.1 and Table 2.2,
the valuation with analytic formula using recursive iteration method is an
efficient method to use in real computations.

95 96 97 98 99 100 101 102 103 104 105 90 91 92 93 94 95 96 97 98 99 100
S

(a) Value change of PAg;,, with respect to (b) Value change of PAg;, with respect to
S for D =95 D for S =100

Figure 2.1: Values of PAg;, for T = 0.5, r =0.05, ¢ =0, 0 =0.3
Figure 2.1-(a) shows how the value of knock-in American chained bar-

rier put options(PAg;,) with two fixed barrier levels changes as the value
of underlying asset varies. In the figure, the option price decreases as stock

18



CHAPTER 2. CHAINED KNOCK-IN BARRIER OPTION

15 L L L L L L L L L , 05 L L n L L L L L ,
0 91 o2 93 94 9% 9% 97 % 9 100 90 o1 %2 9 94 9% 9% 97 98 99 100
s D

(a) Value change of PAg;,, with respect to (b) Value change of PAg;, with respect to
S for D =95 D for S =100

Figure 2.2: Values of PAgy;, for K =100, T'= 0.5, ¢ =0.02, 0 = 0.3

price increases, while it increases as the strike price increases. Figure 2.1-
(b) represents a graph of option prices according to two barrier levels U
and D, while holding S and K to 100. It is worth notable that the option
price increases as D increases, and it decreases as U increases. These are
due to the fact that larger D implies high possibility of activating options
and larger U implies small chance of knock-in. In Figure 2.2, the behavior
of PAg;, versus the value of underlying asset S, lower barrier D with differ-
ent interest rate are shown. Figure 2.2-(a) shows the option value decreases
as the underlying asset or interest rate increases. Figure 2.2-(b) represents
that the option value increases as lower barrier D moves upward. In Figure
2.3, we plot the option value with different dividends ¢. The option value
becomes large with larger dividends. In Figure 2.4, we plot the case when
Kmin(1,r/q) < U < K, which was not dealt within [41].

2.4 Summary

We have presented the analytic price formulas for knock-in American chained-
barrier options under the Black-Scholes pricing framework. The chained-
barrier option is a type of barrier options where monitoring of other barrier
activates at a time when the underlying asset first hits a specific barrier line.
In this paper we show how to price knock-in chained-barrier options utiliz-
ing a knock-in American barrier option formula, using the reflection princi-
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95 9 o7 9 9 100 101 102 108 104 105 % o1 2 93 o4 9 9% 9/ 9 99 100
s D

(a) Value change of PAg;,, with respect to (b) Value change of PAg;, with respect to
S for D =95 D for S =100

Figure 2.3: Values of PAg;, for K =100, T'= 0.5, » = 0.05, 0 = 0.3

ple. This formula enables fast and accurate valuation of knock-in American
chained-barrier options. Also, we provide some numerical solutions and plots
of the value of knock-in American chained-barrier options
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PAyi,
/
/

2
90 91 92 93 94 95 96 97 98 99 100 80 81 82 83 84 85 86 87 88 89 90
S D

(a) Value change of PAg;, with respect to (b) Value change of PAg;, with respect to
S for D =91 D for S =100

Figure 2.4: Values of PAg;, for K =100, T'= 0.5, » = 0.05, ¢ = 0.06, 0 =
0.3
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Chapter 3

Russian option with finite
time horizon

A Russian option is a kind of path-dependent American option which entitles
the holder to either buy or sell the underlying asset at the best price at which
it is traded during the life of the option. Because American option holders
can exercise their rights at any instant before maturity, the valuation of such
options is usually classified as optimal stopping problems or free boundary
problems. In addition, the value of these options contains an additional
early exercise premium compared to European type options. A considerable
amount of research has been conducted on options which combine features
of American options with those of path-dependent options. For example,
Dai and Kwok studied American floating lookback options [12], and Lai and
Lim researched American fixed strike options [52].

The Russian option was introduced by Shepp and Shiryaev in [63] and
can be considered a type of perpetual American fixed strike lookback op-
tion. Ekstrom analyzed the regularity of the free boundary of Russian op-
tions with a finite time horizon and derived partial differential equations
(PDEs) satisfied by these options [15]. Peskir drew out integral equations
satisfied by Russian options with finite maturity using a stochastical local
time-space formula [59]. An integral equation was first used to solve option
pricing problems in the valuation of American options. Kim, [43], was the
first to derive the integral equations satisfied by the value of American op-
tions, which are known to have no closed form solutions. In general, it is
not possible to solve such integral equations analytically; instead, numerical
methods have to be found that would allow the solutions to be approximated.
To date, there have been various numerical approaches. Huang et al. used
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CHAPTER 3. RUSSIAN OPTION WITH FINITE TIME HORIZON

recursive integration methods [27], and Ju [38] utilized the multipiece expo-
nential function method to solve such integral equations numerically. The
interested reader can refer to [34], [51], which contain numerous approaches
for solving American option problems from basic finite difference methods
to methods using binomial trees. In this chapter, we use the recursive itera-
tion method proposed by Huang et al. [27] to obtain the numerical solution
of the integral equation satisfied by Russian options, which we derive in
subsequent sections.

A Russian option with a finite time horizon can be formulated into a
parabolic PDE with mixed boundary conditions. Kimura [45], instead of
solving the PDE directly, expressed the solution using a Laplace transform.
In this chapter, we derive integral equations satisfied by Russian options
with a finite time horizon by solving the parabolic PDE directly using Mellin
transform techniques. The Mellin transform is a type of integral transform
and can be considered as a two-sided Laplace transform. Especially, it con-
verts a Black-Scholes type PDE into a simple ordinary differential equation
(ODE). Therefore, the use of the inverse Mellin transform enables the an-
alytical representation of the value function of Russian options to be easily
obtained. For this reason, the Mellin transform is widely used in option pric-
ing. To list some examples, Panini first introduced option pricing using the
Mellin transform [56],[57], whereas Yoon and Kim obtained the closed solu-
tion for vulnerable options using double Mellin transforms [69]. Jeon et al.
[30] drew a pricing formula for the path-dependent option with two under-
lying assets and Jeon et al. derived integral equations satisfied by American
floating strike lookback options [29].

3.1 Model Formulation: Free Boundary Problem

The usual assumptions for the Black-Scholes option pricing framework are
adopted in this work. Let (S;),~, denote the price of an underlying asset of
a Russian option under a risk-neutral probability measure P. The stochastic
dynamics of S; is described by

dSy = (r — q)Sudt + oSy dWy, So=s (3.1.1)

where r > 0 is the risk-free interest rate, ¢ > 0 is the continuous dividend
rate, and ¢ > 0 is the constant volatility of S;. W, is a one-dimensional stan-
dard Brownian motion process on a filtered probability space (2, Fi>o,P),
where Fi>9 = F is the natural filtration generated by (W:):>0. For the pric-

23



CHAPTER 3. RUSSIAN OPTION WITH FINITE TIME HORIZON

ing process (St)¢>0, we define the maximum process as

My = (oax Sy) v m (3.1.2)

where m > s > 0 are given and fixed.

Consider a Russian option with a given finite time horizon 7" > 0. In the
absence of arbitrage opportunities, the value R(t,s,m) is a solution of the
optimal stopping problem

R(t,s,m)= sup E[e "M, |Sy=s,My=m] (3.1.3)

OSTt ST—t
where 7; is the stopping time of the filtration F and the conditional expecta-
tion is calculated under the risk-neutral probability measure P. The random

variable 7; € [0,T — t] is considered an optimal stopping time if it is able to
provide the supremum value of the right hand side of (3.1.3).

Solving the optimal stopping problem (3.1.3) is equivalent to finding the
points (¢, Sy, M) for which early exercise before maturity would be optimal.
Let

D={(t,s,m) €[0,T —t] x (0,m] x Ry} (3.1.4)

Then, domain D of the pricing model can be divided into two regions: the
stopping region S = {(t,s,m) € D | 0 < s < s*(t,m)}, and the continuation
region S¢ = {(t,s,m) € D| s*(t,m) < s < m}. Here, s*(¢,m) is termed the
free boundary or early exercise boundary and is given by

s*(t,m) =inf {s € [0,m] | (¢,s,m) € SC}

The linear complementarity formulation which governs R(t, s, m) is given
by

LR(t,s,m) <0, R(t,s,m)>m

3.1.5
[LR(t,s,m)]- (R(t,s,m)—m)=0, m>s>0, 0<t<T ( )
with auxiliary conditions
OR
Tt 5,5) =0
am (5% (3.1.6)
R(T,s,m) =m.
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The operator L is defined by

0o 1 0? 0
L= = 1 Zg2s2 2 —)s— — 7. 3.1.7
8t+208882+(r q)sé)s r ( )
Furthermore, by the standard argument using Feynman-Kac formula,
the optimal stopping problem (3.1.3) can be reduced to a free boundary
problem. For the free boundary s*(¢, m), this problem is equivalent to solving

the following PDE:
LR(t,s,m) =0, s*(t,m)<s<m

with boundary condition (3.1.6). Those who are interested in the theories
regarding to the optimal stopping problem and the free boundary problem
can refer to [58].

At the free boundary s = s*(¢,m), arbitrage arguments show that the
option price R(t, s, m) satisfies the smooth pasting condition.

lim OR =0

sds*(t,m) ds (318)
lim R(t,s,m)=m

ss* (t,m)

By changing the variables # := s/m and R(t,xz) = R(t,s,m)/m, the
dimension of the above formulation can be reduced by one.

Then, we can rewrite the linear complementary form (3.1.5) as

LR(t,z) <0, R(t,z)>1

_ _ 3.1.9
[CR(t,z)] - (R(t,x) —1) =0, 0<z <1, 0<t<T. ( )
Further,

_ OR 1 0’R OR
LR(t,x) = s 50%2? +(r— q)x% —rR=0, 2*(t)<z<1,(3.1.10)
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where x*(t) = 5(t,m)/m (€ [0,1]), with auxiliary conditions:

R(T,z) =1,

hf% R(t,z) =1,

lim 28 _ 0, (3.1.11)
zlr* ox

lim <R — 8R> =0

11 ox

In terms of the value function R(t,z), the stopping region S is defined by

S:={(t,z)| 0<t<T,0<z<a*(t)}
={(t,z) |R(t,z)=1,0<t<T,0<z <1}

and the continuation region S¢ is given by

C={(t,x)| 0<t<T,a*(t)<z<1}
={(t,z) | R(t,z)>1, 0<t<T,0<z<1}.

Therefore, the value R(t,z) is the solution of the following inhomoge-
neous Black-Scholes equation:

_ OR 1 , ,0°R OR
LR(t, ) = —-+ 50 2 2@+(r—q)x%—r}2:§(t’m), (3.1.12)

where

((t,x) = {_T for 0<=<a'(f) (3.1.13)

0 for z*(t) <z <1
with a mized boundary condition in (3.1.11) and domain
{(t,z) |0<t<T, 0<x<1}
3.2 Inhomogeneous Black-Scholes Partial Differ-
ential Equation: Mixed Boundary Problem

We formulated the inhomogeneous Black-Scholes PDE with mixed boundary
conditions regarding the value function of Russian options with a finite time
horizon in section 3.1. In this section, we solve the inhomogeneous mixed
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boundary Black-Scholes PDEs by extending the idea of Buchen [4], which
was used to solve the homogeneous case. Our new methodology makes pos-
sible for valuing options with complicated mixed boundary conditions.

For the PDE operator £ defined in (3.1.7), consider the following mized
boundary condition PDE problem:

ov 0'2 282 ov
= 4 - _ 3.2.1
LV (to) = -+ oz T = =1V =[f(tx) (3.2.1)
with boundary condition
V(T ) = h(x)
ov (3.2.2)
1 1
=V
with domain {(¢,2) |0 <t < T, 0 < z < 1} and we assume that h(x), f(t, )

@
dx

,x— exist in

are smooth functions and that Mellin transforms of h, f,z ¥
x

the proper domain.

For arbitrary smooth function U(t,z), define the differential operator
H[-] as follows:

ou

H[U(t’ x)] = m%(tv fL‘) - U(ta 'T) (323)
From (3.2.1),
0,2 21/
o2
- m;gt ] D 8;55[2‘/] (r— Q)x(%;iy] —rH[V]
=H[f(t, )]

and

HV (T, z)] = H[h(x)]

(gv (t,1) — V(¢ 1)> =H[V(t,1)] =0.
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Let
P(t,x) :==H[V(,x)], ¢(x) :=H[h(2x)], x(t,2) := H[f({,2)]

Then, PDE problem (3.2.1) with boundary condition (3.2.2) is converted
to

LP(t,z) = x(t,x)
P(T,x) = ¢(x) (3.2.4)
P(t,1)=0

with domain {(¢,2) |0 <t <T, 0 <z <1}.
The following theorem enables us to obtain the solution of PDE (3.2.4)

Theorem 3.2.1 (Inhomogeneous Black-Scholes PDE problem with Dirich-
let boundary condition)
The solution P(t,z) of PDE (3.2.4) is given by

(1—k2)
P(t,z) = P(t,7) - <1> P L, (3.2.5)

x x

where P(t,z) is the solution of PDE LP(t, ) = x(t,2)1{,<1y with P(T,z) =
() acry (b = 257).

Proof To solve PDE (3.2.4), we consider an unrestricted domain PDE
problem:

LP(t,z) = x(t,2)1 ey (3.2.6)

P(T,x) = ¢(x)1{z<1

with domain {(t,2) |0 <t <T,0 <z < co}.

Denote P(t,w) as the Mellin transform of P(t,z). Then, by the inverse
Mellin transform,

ctico
P(t,z) = / P(t,w)z™"dw. (3.2.7)

—100
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Then, PDE (3.2.6) is changed by the following ODE:

W1, w) + 5o? QP w) = 11, ) (3.2:8)

Q(w) = w? + w(l — ko) — ki,

where X is the Mellin transform x(t,7)1,<1y and k1 = %, ko = @.
The inhomogeneous ODE (3.2.8) yields
A 1.2 ~ T 1.2
P(t,w) =z QWIT=1) g (4) f/ ez QM=) 5y w)dn. (3.2.9)
t
and
_ 1 c+1i00 19 .
P(t,x) :,/ 27 QU)(T=) g (1) 2™ dw
2m c—100
. (3.2.10)
1 ct+ioco  pT 1 9
- 5= / 27 QW=D 4 (n w)z ™ dndw
2mi c—ioco Jit
where ¢ is the Mellin transform of (7)1 gy
In addition, to calculate (3.2.10), let us consider
1 etioo lchQ(w)t —w
B(t,z) = — ez x”Ydw. (3.2.11)
2m c—100

Because 65‘72@(“’)@7’5), d(w), and x(n, w) are the Mellin transforms of B(t, z),
(7)1z<1), and x(n, ¥)1{y<13, respectively, by using the Mellin convolution
in Proposition A.1.1 in Appendix A.1, we obtain

_ o0 1
Plta) = [ o0 e Bl 1. )i

T
_/t /0 X(nau)l{u<1}6(n_t,a)adud’l’],
where
5 1-ko 1 9
B(t7x) = 6_%{(1_2162)2-#161}75& exp _1( ng) ) (3‘2.13)
oV 27t 2 0%t
29
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11—k \2 1-—
2 <w+ k2) —( k2)2—k‘1

1
Because Q(w) = 2 , we obtain

2 2

Q(w) = Q(k2 =1 —w)

and by the properties of the Mellin transform and direct computation,

B(t,z) = 27k B(¢, l). (3.2.14)
Xz

From (3.2.14), it leads to

k)5, L < 1 _ 1.1
PP ) = [T BT — )

u u

T (3.2.15)
= (1—k2) 1.1
_/ / x(n, w)ut """ 1513 B(n — t, =) —dudn.
t Jo u'u

_ _ 1
Denote P*(t,z) := z1=*2) P(¢, E)
Then by (3.2.15), P*(¢,z) is the solution of the following PDE:

EP*(t737) = X(t7x)x(1ik2)1{x>1}

. 1 B
PH(T, ) = ¢(2)a 1™ gy

Let P(t,x) = P(t,x) — P*(t,), then P(t, ) satisfies the following equa-
tions:

LP(t2) = x(t0) L gecr) — (D)2 oy,
P(T, ) = (o)L pary — 6()2 1y,
and P(t,1) = P(t,1) — P(¢,1) = 0.
Hence, the solution of PDE (3.2.4) is given by

P(t,z) = P(t,z) — 25 pe, 1)
e

30

.-';r'\-\.-'! -k::l - 1_] ."‘.l'l



CHAPTER 3. RUSSIAN OPTION WITH FINITE TIME HORIZON

Theorem 3.2.2 (Inhomogeneous Black-Scholes PDE problem with mixed
boundary condition)

The solution V (¢, z) of PDE (3.2.1) with boundary condition (3.2.2) satisfies
the following PDE:

1 1 (k2—1)
LV (t,x)=f(t, x)l{m<1} + f(¢, ;) (1}) 1{x>1}

x 1 1 (k2+1)
/1 f(t, ;) <y> dy| liz>13

1 (k2—1)
V(T <oy +0) (3) L

x 1 1 (k2+1)
/1h(y> (y) dy| Liz>1}-

Proof For P(t,z) defined in Theorem 3.2.1 and H[-] defined in (3.2.3),
define

+ (ko + 1)z

+ (k2 + 1)z

V(t,z) =H '[Pt 2)]
(i.e., H[V(t,z)] = P(t,x)).
Then,

P(t,1) = H[V(t,1)] = g‘;(t, 1) - V(t1) =0 (3.2.16)

and
V(t,2) = KU [P(t,2)] = HOUP(L o)) - HO [P (1 o),
where P(t,z) and P* = z(1=%2) p(¢, 1) are defined in Theorem 3.2.1.
By the properties of the Mellin transform in Appendix A.1 and the def-
inition of H, M (H'[U(x)];w) = —(w + 1)M,(U(x);w) for any function
U(x).

Therefore, for V(t,x) := H™YP(t,z)] and V*(t,z) := H L [P*(t,x)] =
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H 2R P(t, )

V(t,w) = —(w+1)P(t,w)

. . (3.2.17)
V*(t,w) = —(w+ 1)P*(t,w),

where P,P*, V, and V* are Mellin transforms of P,P*, V, and V*, respec-
tively.

By Theorem 3.2.1, P(t,z) is the solution of the following PDE:

EP(ta':U) = X(ta$)1{$<1}
P(T,z) = ¢(2)1{z<y

and

dpP

% (1 w) + 50" Qw) Plt,w) = X(t,w),

2

where P and g are the Mellin transforms of P(t, ) and X(t, 7)1y, TE-
spectively.

Since P(t,w) = —(w + 1)V (t,w) and X(t,w) = —(w + 1) f(t,w),

(1) + 5 QUu)V (1) = ftw),

where f is the Mellin transform of f(t,2)1z1y. Hence,

LV(t,x) = f(t, 7)1 ey (3.2.18)

Similarly, P*(t,r) satisfies the PDE:

_ 1 .
Lp (t,l’) = X(t’ g)x(l k2)1{:v>1}
_ 1 .

PH(T,x) = ¢(=)a ™y
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CHAPTER 3. RUSSIAN OPTION WITH FINITE TIME HORIZON

and

dP* 1 )
W(t,w) + §U2Q(w)P*(t,w) = X(t, ks — 1 — w).

Since X(t, ko —1 —w) = —(kg — 1 —w + 1) f(t, ko — 1 — w),

av-
dt

(t,w) + %UQQ(w)V*(t, W) = —F(t ks —1—w) + 2 f g py =1 — )

w+1

By the inverse Mellin transform,

3 1 1 (k2—1)
ﬁV*(t’ l‘) = f(ta 7) <> 1{a:>1}

x T

1

— (ko + 1)36/1 <y> f(t, ;)dy “Lypsty-

Therefore, since V (t,z) = V(t,z) — V*(t, ),

1 (k2—1)
£Vt =ftoteen + 6D (5] T

. L/ (et (3.2.19)
w10 (3] an| 1y
1 AN
The same procedure enables us to obtain
1 (k2—1)
V) h@ien + 1) (1) Ly
(3.2.20)

+ (ko + 1)z

T 1 1 (k2+1)
=) (= dy| 17,1y
/ <y><y) vl Loy

By (3.2.18) and (3.2.19), we have proved the desired result.
d
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CHAPTER 3. RUSSIAN OPTION WITH FINITE TIME HORIZON

3.3 Integral Equation of Russian Options with Fi-

nite Time Horizon: Premium Decomposition
The value of an American type option with an early exercise policy can be
decomposed into two parts: the value of the European type option and the
early exercise premium. In this section, we first decompose Russian options
in the same way using the solution of the mixed boundary problem derived
in section 3.2, and then we derive the integral equation satisfied by the free
boundary of Russian options.

By Theorem 3.2.2, the value function R(t,z) is the solution of the following
PDE:

_ 1 (k2*1)
£R(t= l‘) :C(t7 x)1{1<1} + C(t7 E) (gj) 1{m>1}

T 1 1 (k2+1)
R dy| 1,
/1 ¢( y) (y) Y| Lie>1y

B (k2—1)
R(T,x) =11y + (:C) 151y

z /1 (ka+1)
/ (y> W\ L

where ((t,7) = —r1{;g=()) is defined in (4.2.13).

(3.3.1)
+ (ko + Dz

(3.3.2)

Define R(t,x) = Rp(t,z) + Re(t, z), where Rg(t,x) and R.(t,z) satisfy the
following PDEs, respectively.

ﬁRE (t, Ji) =0

B (k2—1)
Rp(T,z) =1iz<1y + (x) 151y

z /1 (k2+1)
/1 <y> dy| Liz>1y

(3.3.3)

+ (ko + 1Dz
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and

_ 1 (k2—1)
£R€<t7x) :C(t>$)]—{z<1} + C(ta ) (I’) 1{I>1}

x
T (k2+1)
1. /1
£ (= dy| 1.,
/1 ¢ y)<y> y] te=1)

Here, it should be noted that Rg(t,z) is the price of a European Russian
option with a finite time horizon and R, is the early exercise premium of a
Russian option with a finite time horizon.

+ (k‘g + 1)33

R.(T,z) =0

Then, Rp(t,z) and R.(t,x) are given by

B 00 1 (k2—1)
RE(t, z) :/0 liucry + Lius1y <u> + (k2 + Du

z, 1

1 1 (k2*1)
// ( uliu<ay + ¢, )1{u>1}(u> + (k2 + 1)u

. . . (ot 1) (3.3.5)
X l/l C(%;) (y> dy] 1{u>1}> B(n —t, *) dUdU

The analytical representations of the solutions Rg(t, z) and R(t,x) admit
different forms, depending on whether r # ¢ or r = q.

u (k2+1)
PO

3.3.1 Caseof r#gq

From (3.3.4) and (3.3.5),

B = 1) b 1 ka+1
Ri(t,2) = /0 L +1pen (1) =04 ) (07 =) Ly

2

1
— f )—du
u u
ot a) = 1 1 1 [ 2
=)= t /o tu<es ) ¥ Hu> = <n)}< ) ~ +k2)
. 1
_[,C 77 k2u] 1{u> z*l(n)}> B(T] —t, E)Edudn
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CHAPTER 3. RUSSIAN OPTION WITH FINITE TIME HORIZON

Lemma 3.3.1 For B(t,z) defined in (3.2.13) with ky = 2§, ky = Arq)

o2

b
/ u *B(T —t, f)ldu
0 u u

xT
—log = 2(T — ¢)(i=ka
o 502<Tt>{<1‘;“2>2+k1<1‘2’“2+a>2w( gy oI -9(H*+a)

=T e

(o)
/ u_aB(T—t,E)ldu
b u u

= ﬁc_o‘e_%UZ(T—t){($)2+k1_(%_‘_a)z}j\/ (

By Lemma 3.3.1,

_ 1 1 (k2—1) 1
Rp(t,z) =e "T=IN (=d_(T — t,z)) — kfe—NT—t) <) N (—d (T —t, x))

2

+(1+ ki)xe_Q(T_t)N (de (T —t,z))
2

Re(t,z) = /t s (d_ (n—t, :C“”En))) dn

1 1\ T (r—8) 1
N el —r(n- —d (p—t —
k2 () | reron < Y ’w*(n)x)) i

T
e / ra (n)*2e"1ON (d (5 — b, 2 (1)) di

where

do(T — t,2) = 085 (rgz/zic%)(T —t) (3.3.6)
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CHAPTER 3. RUSSIAN OPTION WITH FINITE TIME HORIZON

By the smooth pasting condition of (3.1.11), at the free boundary x = z*(t),

1 1 (k2*1)
1=e""T=ON (=d_(T — t,2*(t))) — —e "7~ (t))
X

ko (
x N (d_ (T —t, ml(t))) +(1+ é)x*(t)e*‘ﬂT*t)N (dy (T —t,z*(t)))
T
refr(nft) o - SC*(t)
Jr/t N( d_(n—t, () )) dn (3.3.7)
L1 N\ 1
wm) [ (e @
T
+(1+ k%)fv*(t)/t ra* (n)F2e” 1IN (dy(n — t, 27 (n)2* (t))) d.

3.3.2 Caseofr=gq

Since ko = 0, by (3.3.4) and (3.3.5),

_ OO 1
RE(ta IE) :/O (1{u<1} +u- 1{u>1} + ulog U]-{u>l}) B(T -, %)Edu

T 0o
Re(t,x) ZT/ / (1{u<:c*(77)} +u-ly,o 1y + [ulogu—loga™(n)ul
t 0 x*(n)

z, 1
Loys o }) B(n —t, E)Edudn.

z*(n)

Lemma 3.3.2 For B(t, z) defined in (3.2.13) with k1 = % and ko = 0 (i.e.,
r= Q)a

e 1
/ uloguB(T—uf)fdu
b u u

T
log = + o2(T —
:meT(Tt><1ogg;+02(T_t))N(ogb+”( t))

2 oVT —t
x 2
log - + & (T —t)
+xe T DoyT —t-n ( b * )
oVT —t
37
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CHAPTER 3. RUSSIAN OPTION WITH FINITE TIME HORIZON

where n is the probability density function of the standard normal distri-
bution.

Proof By the definition of B(¢, x),

1
_o%i1 x? 1 (log z)?
B(t,x)=¢e lathilt 2 oy {—
(@) oV 2t P12 o

Then, by using Lemma 3.3.1,
e x. 1
/ uloguB(T —t,—)—du
b u u
:/ u(logm—logE)B(T—t,E)fdu
b u u’u
%
oo 2 oo EAW
zlogg;/ UB(Tftyf)ldnfxe*%{%ﬂﬁ}t/ glog“PE%
b uou b

1 (log%)* 1
X exp {2 o?(T —t) }udu

: ex
2 o\27(T—t) J-wo P
. 2
e (T-1) log 5 o? 1 q—i—"—z(T—t)
- +—(T—1t)) -exp{ —= | —2—= d
o/ 2m(T —t) J—oo (q 2( )> P72 ovVT —t 1
log - +
2 d
o T(T1) <logx—|— o (T t)) N b

log = + (T — t)
og — + Z-(T —
+xe " T Ve/T —¢t.n ( b 2 ) .

x
log—+ % (T —t
=zlogz e TN by ( : ze T !
ovVT —1t o/ 2n(T —t)
/1"%? g+ 2@ -1\ .
X cexp{ —= | —2—-—"
oo ¢ exp 2 ovT —t ¢
x
log — 4+ Z-(T —t)
=zlogz e "TON b 2
ovT —1t
. 2
g e e Frraray
x z
2 ovT —t 1
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By Lemma 3.3.1 and Lemma 3.3.2, we can obtain

RE(ta .’E)
1 2

= e TT=ON (d 0T —t, )) + ze” (T <10gx +1+ %(T - t))
x

x N (2T —t,z)) + ze " T DoyT —t-n(d°(T - t,z))

R.(t,x)
-/ e (d (1, xi’”)) i

T
+ / re” "D L zo/p—1t-n (d°(n—t,2*(n)z)) dn
¢

2

T
+ / rae ") (logw +loga*(n) + 1+ %(n - t)) N (d°(n —t,a*(n)x)) dn,
t

where

logz + % (T — t)
doUT —t,z) = gg\ﬂ% . (3.3.8)

Then, at x = 2*(¢) and the smooth pasting condition (3.1.11),
1
_ —r(T—t) 0 _
l1=e N (d (T —t, x*(t)))
2

+ z*(t)e 7T (log ¥ (1) + 1+ %(T — t)) N (AT —t,2*(t)))

a*(t)

+2*()oVT —t-e 7T tp (d 0T —t, L ))
T (3.3.9)
+ /t re "0 (o —t-n (d%(n—t,z*(n)x*(t)) dn

T 2
+ / ra*(t)e =Y <log z*(t) + logz™(n) + 1+ %(7) - t))
t

T *
x N (d 0(77 —t, x*(n)oj*(t))) dn + /t re "= Af <d 0(1] —t, Z*((”Z)) )> dn.

From Case 3.3.1, Case 3.3.2, and =z = 2, z*(¢t) = &n;m), we obtain the

m’?
integral equation of a Russian option with a finite time horizon.
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Theorem 3.3.1 [Premium decomposition of Russian option with
finite time horizon)]

The price R(t,s,m) of a Russian option with a finite time horizon defined
in (3.1.3) is expressed by

R(t,s,m) := Rg(t,s,m) + Re(t,s,m),

and Rg(t,s,m) and R.(t,s, m) is given by

(1) r#q

Rg(t,s,m)

TN (g (T — . 5N Ly (D m

- N( d-(T t’m)> er (5) N( d-(T~t, 5)>
1.s S
1\s —ar- . 5

P ) e N(d+(T t,m))

Re(tasam)

T
= RAGAY (—d —t,— ) d
re -n s n
/ 0t )
1 /my(ke—1) T m2
(= —r(n—t) —d_(n—t d
ko ( s ) /t re N ( (=, s*(n,m)s)> g
T * k2 *
+ (]_+ i)i/ r S (n’m) e*Q(W*t)N d+(77*t, S (nvm)s) d’l]
ko'm J, m m?2
and the free boundary s*(¢) satisfies the following integral equation:

1 :e—r(T—t)N <_d_ (T _ t, s* (ta m) ))
m

e (Y (g )

k/’g t, m

T *
—|—/ re "= N (—d_ (n—t, s(t,m))> dn
t 5*(777 m)

1 m (ka—1) T m2
I R —r(n—t) _ T S
b <s*<t,m>) / re N ( d-(n t’s*(mm)s*(tﬂ)d”

(14 Ly Em) /tT r (W)k =100 A7 <d+(n g, S m)sT(tm)

ko m m m2
1.8 _ . s*(t,m)
14+ — )2 e—a(T—1) T _ ¢ 2\
4 ) a0 (- g, )

40
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(2) r=g¢q
RE(tasam)
—r(T—1) 2
_ —r(T—t) op_s M se”" loo > +14+ 2 (7
€ N(d( t’s))+ m Ogm+ +2< )

Se—r(T—t)

N (a0 1, 2)) + VT =t (aT—t,2))

Re(t7 57 m)
T *
— / re THN <d O(p—t, ", m))> dn
t S
T s s*(n,m)s
+/ re T Zo/n—t-n (do(n —t, ’2)> dn
¢ m m
T * 2
+ / r 2 emrn=t) (log Sy log s (n,m) +1+ U—(n - t)>
. om m m

2
x N <d0(n—t,s*(;7r;2m)5)> dn

and the free boundary s*(t) is the solution of the integral equation:

1= TN (dO(Tft, m ))

s*(t,m)
* * 2 *
4 Em) <log Shm) gy ”—(T-t)) N (dO(T—t, i (t’m))>
m m 2 m
+M€_T(T_t)0' /T—t-n<d0(T—t, S*(t7m))>
m m
T * * *
—r(n—t) . S (ta m) 4. 0 _ S (777 m)s (t7 m)
—|—/t re o oy/n—t-n (d (n—t, — ) | dn

2

T * * *
/ S U] (t,m) e =Y <log stm) +log 2 (n,m) +1+ i(n - t))
t m m m 2

_|_

x N (d“(n —t, W)) dn,

T *
—r(n—t) 0/, 4 8 (n,m)
+/t re TN/ <d (n—t, s (t,m) )) dn

where ky = Z(ZEQ) and d+(T —t,x), d.(T — t,z) are defined in (3.3.6) and
(3.3.8), respectively.
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Theorem 3.3.2 For r,q > 0 and the free boundary z*(t) defined in
(3.1.11), we have

tlggx (t) =1.

Proof Since x*(t) < 1 for all ¢, it is clear that *(T'—) < 1. Let *(T—) < 1,
then there exist x such that z € (z*(T—),1) and (T'—, z) belong to contin-
uation region S¢ defined in section 3.1. In addition, R(T—,z) = 1.

For (T—, x),

_ 25
OR 10.2x287R(T_7x)+(r-q)x%(T—’x)—TR(T—,{L‘) =7r>0.

E(T_’x) D) Ox?

Therefore, for some point (¢, z) in the continuation region S¢, R(t,z) < 1.
However, this is a contradiction for (t,z) € S¢. Hence, z*(T—) = 1.
O

3.4 Valuing Russian Options: Perpetual Case

In this section, we derive the closed form solution for the value of perpetual
Russian options using the Mellin transform representation of the value of
Russian options with a finite time horizon, which was derived in section 3.3.

Note that at any given time ¢, an infinite amount of time remains until
maturity, and therefore the free boundary for a perpetual Russian option is
constant. Let the free boundary of a perpetual Russian option be s%_.

Theorem 3.4.1 For g > 0, the price Ry (s,m) of a perpetual Russian
option is given by

B mﬁl s:o 52_ mBs 820 B1 .
Rm(s’m)_ﬁl—&(«‘i) 51—52<S> 87 %

and s’ is the free boundary of the perpetual Russian option

S

e <62(1+51))L321ﬁl

B1(1+ B2)
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where 81 and s are the two real roots of the quadratic equation

w? + (1 —k)w—k1 =0, ki =

Proof From (3.3.3), R.(t, ) is the solution of the PDE

_ 1 1 (k2—1)
LR() =t e + 60 D) () Ly

T 1 1 (k2+1)
/1C(t,y) <y> dy| 1>y

Define R.(t,z), R%(t,x), and R2(t, z) such that R.(t,z) = RL(t,z)+R2(t, z)+
R3(t,r) and satisfies the following PDEs, respectively.

+ (k‘z + 1)$

R.(T,z) =0.

ﬁRé(t,l’) = C(t7x)1{x<1}a Ré (Ta .’L‘) =0

_, 1 /1) K1) _
LR:(t,x) = ((t,—) <> 1psy, Re(T,x)=0

X X

and

LRIt x) = (k2 + 1)z

xX 1 1 (k'2+1) _
[ C(tv ;) () dy 1{:1:>1}7 RS(T,I‘) =0.

Y
Since ((t,7) = —rl{zcze()}, the Mellin transform of ((¢,z) is ((tw) =
—r .
w

Then, for Re(w) > 0, by the inverse Mellin transform,

B 1 c1+i0o T ® ()W
R(t,x) = 3 / v /t rue%‘”@(w)(”*“dndw (3.4.1)

1—100 w

d D1l 1 c1+1i00 T
i(t,gv) =—— x“’l/ m?*(t)we%"QQ(w)(”*t)dndw.
t

2mi c1—100
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Let 31 and $32 be solutions of Q(w) = w? + w(1 — k) — k; defined in
(3.2.8). If B < [, then it is easy to show that for » > 0, 8; < —1 and
B2 > 0. Hence, for 51 < Re(w) < B2, Re(Q(w)) < 0.

Let 0 < Re(c1) < B2, then

dR! ky [t 1 far \vH 1
() = — dw
dx 2mi J, ¥ T (w— B1)(w — B2)

1—100 o]

as T — oo.

By the residue theorem,

dR! ky [etico ] 1
a7 = o N T TR
X T c1—ico Ty (W 1)(w 2 (3‘4.2)
k1
xk, B2 — P11

Similarly, for Re(w) < kg — 1,

_ 1 €2+100 T *(1\ka—1—w
R2(t,x) = / x_w/ rLe%UQQ(w)("_t)dndw. (3.4.3)
C; t

270 J oy ioo ke —1—w

D2 c2+100 T * ko—1—w
ddRe (t, .f) = —2L l'_w_l / Tuj;:(t);G;UQQ(w)(n_t)dndw.
Xz Uy t 2 — 1 —wWw

Cc2—100

For B1 < Re(ca) < ko — 1, letting T — oo,

D2 co+1i00 * ko—1—w
i (x) = kl/ zv ! wa”(t) dw.
dz 270 J ey —ivo (ke — 1 —w)(w — B1)(w — P2)
Hence,
dR2 kl co+1i00 wr* ko—2—2w
‘(a2 = 5 | = du
dx 270 Jey—ivo (k2 =1 —w)(w — B1)(w — B2) (3.4.4)
=k le;kz_Q_wl

(B — P2) (ks —1 — B1)
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Finally, for Re(w) < min{k2 — 1, —1},

1 c3+1i00 .Z‘*(t)kz_l_w

S
Ri(t,x) = (w+1) (ke —1—w)  (3.4.5)

T
x_“’/ r(ke + 1)
t

e37°Q(w)(n—1) dndw

2mi c3—100

dR3 1 cgtico _q T wax*(t)kz—1-w
ta) =— w ky + 1
iz b7 2m'/63m * /t ik + ) T e = 1= w)

X e%UQQ(w)(”_t)dndw.

For 81 < Re(c3) < —1, letting T' — oo,

dRZ) 1 c3+i00 w1l (t)k)g—l—w
dz () = —ki(ka + 1)% /Cs_iOo (w0 + 1)k — T — w)(w = Br)(w — BQ)dw.
Then,
D3 c3+i00 * ko—2—2w
dR; () = _L/ k1 (ke + Dwx*(t) duw
da 277 ey ioe (0 + D)z — 1 —w)(w — B1)(w — Bs)
s (3.4.6)
= ky(ka+ 1) Brg, BT
e (1+B1)(k2 =1 = B1)(B1 — B2)
From section 3.3, it is easy to verify that
9Rp (t,z) =0, as T — o0 (3.4.7)
ox
by the smooth pasting condition,
OR
im — =0. 4.
xggl*w o (t,z) =0 (3.4.8)
Therefore, by (3.4.2)~(3.4.8) and 51 + B2 = k2 — 1, 81 - B2 = —k1,
1
= (B2 54
Br(1+ f52)

Since z}, = %, the free boundary of a perpetual Russian option is given
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by

B1(1+ 52)

For the same reason, from (3.4.1), (3.4.3), and (3.4.5),

_ kl c1+1i00 g w 1
Ri(z) = ——= x V== dw.
)= omi foie © w = B0 = Ba)
* B2
e -
! B2(B2 — Br)
_ Ky c2+1i00 - z* (k1—1—w)
R%(z) = —— xv 0 dw.
) = o Sy G T—w)(w = B0(w = )

— —p1
M e 1= B (B = Ba)

_ kl(l —I—kg) c3+i00 w :L,Zo(lﬂ—l—w)
)= ——= x
27 /63_2-00 (w4 1)(ka — 1 —w)(w — B1)(w — B2
z* (k2—1-p1)

(1+B1)(k2 — 1= B1)(B1 — B2)

)dw.

= (1 + k‘Q)kill‘_Bl
Moreover,
Tlgrolo Re(t,z) =0; (3.4.12)

By using (3.4.9),(3.4.11), and (3.4.12), we obtain
3 B B at, B2 - Bs (x:o>ﬂ1
R(x)_ﬂ1—ﬁ2<x> Pr—P2 \ = '

Therefore, for s > s, the value of a perpetual Russian option is given
by

_omB (s5\* . mp (Szo>ﬁ1 3.4.13
Rw(87m)_51—52<3> fr—P2 \ s ' (8:4.13)
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3.5 Numerical Results

In this section we approximate the value of Russian options by numeri-
cally solving the integral equation satisfied by the free boundary, which was
derived in section 3.4. There is a variety of numerical algorithms for solv-
ing the integral equation which appears in American type option problems.
Here, we use the recursive integration method, which was first introduced
by Huang et al. [27]. We first explain how to apply the recursive integra-
tion method for solving our integral equation. In subsequent subsections, we
analyze the results qualitatively and quantitatively. For quantitative anal-
ysis, we use binary tree model with number of timesteps n = 10000 as a
benchmark. Laplace-Carlson transform method is also introduced to com-
pare results quantitatively. The results of each method is then compared
with the benchmark.

3.5.1 Recursive Integration Method for Russian Option with
Finite Time Horizon

We first convert the integral equations (3.3.7),(3.3.8) for the free boundary
x*(t), into more convenient form. By letting 7 = T — ¢, { = n —t and
y*(t) := x*(T —t), we have

(1) r#4q
. . 1 . f 1 \%P 1
1=e "N (=d_(1,y"(7))) — k—26 (y*(T)) N (—d_ (r, = (7')))
HL+ " ()TN (de (7 (7))
T (g e VD)
+ [T ( a6 05 )) d (3.5.1)

&) L (e )

Ha+ D () [y (= BTN a6y (7 - Oy (1) de
2 0
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+y*(t)e T <logy*(7') +1+ 27’) N (7, y* (7))

+y*(r)e "To/T - n(d O(r, y* (1))

T 3.5.2
+ [Tre e VE (@0 (- () de (352
T 0,2
- / ry*(r)e”" <10gy*(7) +logy™(r =€) +1+ 25>
0
0 * - * T —ré 0 y* (T — g) >
N (@6 (- ) de+ [ reren (a0 LI Yas
with y = 2059 and du (t, ) = gzt (r=a£%) o,y 082+ 5t

oVt ’ Y
For i =1,2, define Fi(1,y*(7)) and G;(7,&,y*(7),y* (1 —&)) as when r # ¢,

(k2—1)
Fi(r,y" (1)) = e "N (—d_(7,y*(7))) — Lo ( 1 )

1 N .
N (_d<T, y (T)>) (L4 (DTN (@ (7))

y (1)
y*()> (3.5.3)

(5 T)(kz N (-6 )

1L D (O (7= O N (@l (7 = Oy (7))

Cr(r .y (7). (7 — €)) 1= re TSN (—d G

and when r = ¢,

* =e 7 O, —— e ™ (logy* (T 0—27'
Fa(ry () = N (06— ) 0 (logy () + 1+ )
< N (405" (7)) 3" ()T oV (4 ()

Gl .37 (1) 4" (7 — ) 1= re €y (7) 0B m (4.0 (r — €y (7))

srer (a0 )

+ry*(r)e "t (log Y (r) +logy (T — &) + 1+ 02€> N (d°&y* (= y* (1)) -

(3.5.4)
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Then, integral equations (3.5.3),(3.5.4) are expressed by

1 = Fi(ry" (1)) + /0 G 6y (), (r — €)de (3.5.5)

To solve the integral equation (3.5.5), we apply the recursive iteration method,
which is frequently used for solving integral equation. The procedures are
as follows.

We divide the interval [0,7] into n subintervals with end points 75, j =
0,1,2,...,n, where 79 = 0,7, = 7 and A7 = Z. Let y}“ denote the numerical

n
approximation to y*(7;), 7 =0,1,...,n.

For 7 = 71, by the trapezoidal rule, integral equation (3.5.5) is approxi-
mated by

1= Fy(r,y7) + - [Gi(T1, 70,41, y1) + Gi(T1, 71, 91, vo)] - (3.5.6)
Since y is known to be 1 by theorem 3.3.2, the only unknown in (3.5.6)
is yi. We can solve nonlinear equation (3.5.6) by utilizing the numerical
root-finding method such as the bisection method. Similarly, for 7 = 7o, we
have

. AT % x %
1=F;(m2,y5) + oy (Gi(T2, 70,95, y3) + 2Gi(T2, T1, Y5, Y1) (3.5.7)

+G'L(T27 T2, y;7 y;)}

Since y7 is known from previous step, equation (3.5.7) can be solved for y3
by the same procedure. Hence, for y;;, k = 2,3,...n, recursively, y; is the
solution of the following integral equation,

k—1
* At %% * %
1:E(Tk7yk)+ 9 Gi(Tk7TO>yk7yk)+22Gi(7—k7’rk—jaykayj) (358)
= ..

+Gi(7—k7 Tk, yZ> yé)}
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Now from the values of {y}}" ,, R(t,z) can be approximated by

_ A
R(7,7) ~ Ry(7,7) :=Fi(1,2) + —= [Gi(Tn, 70,2, 4
n—1 (3.5.9)

+2 Z Gi(Tn; Tn—jvxay;) + Gi(Tn7Tn7$ayS)
j=1

For sufficiently large number of subintervals n, the approximated free bound-
ary y; converges to y*(7) and therefore R,, converges to R as well.

Furthermore, we can accelerate the convergence of recursive integration
method.by applying the Geske and Johnson formula [22] using a three-point
Richardson extrapolation scheme

9R3 — 8Rs + Ry
5 .

R~

(3.5.10)

where R;, i = 1,2,3, is the price of an i-times exercisable Russian option.
Since the value of R(t,s,m) is mR(t, =), this enables us to obtain the price
of a Russian option with a finite time horizon numerically.

To sum up, we implement the recursive integration method according to the
following procedure.

Algorithm : Recursive Integration Method for Russian option.

Step 0: Set (n+ 1) to be the number of time nodes dividing the interval [0, 7]
into n equal subintervals.

Step 1: Approximate optimal stopping boundary y* (7).

Step 1-1: For y; = 1, obtain i in equation (3.5.6) using numerical root-finding

method(e.g, bisection method).

Step 1-2: Calculate y; (i = 2,3,...,n), by solving nonlinear equation (3.5.8),
recursively.

Step 2: Approximate to value of R(t,z) Russian option with finite time horizon.

Step 2-1: For {y; }i=, in Step 1-2, calculate n-times exercisable Russian option

R, (t,z) in (3.5.10)

Step 2-2: Calculate R(t, z) using the Geske and Johnson extrapolation scheme
in (3.5.10).
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3.5.2 Results : Qualitative analysis

The price of Russian options are plotted in Fig 3.1(a) and Fig 3.1(b) accord-
ing to their maturity. Fig 3.1(a) exhibits the relation between stock prices
and option prices when m held constant. Fig 3.1(b) shows the relation be-
tween option prices and the maximum value of stock prices when s are held
constant. It is easily seen that option values increase as the time to maturity
is extended. Furthermore, in Fig 3.1, the value function is constant while ini-
tial stock prices are less than or equal to the free boundary, after which the
value increases. Especially, in Fig 3.1(b), the value increases linearly beyond
the free boundary. The option price as a function of the interest rate and
value of the free boundary, respectively, is plotted in Fig 3.2. The decrease
in the option price as the interest rate increases is obvious, and the exercise
region shrinks. Fig 3.3 shows the relation between the dividend rate and the
free boundary. As in the case of interest rates, the option price and exercise
region decrease as the dividend rate increases. Fig 3.4 shows a plot of the
option price and free boundary versus volatility. As expected, our results
show that the value of Russian options and the exercise region of the free
boundary both increase as the volatility increases.

3.5.3 Results : Comparison with Other Methods

In this subsection, we compare our numerical results for the value of Russian
options with those of two other methods; binomial tree model(BTM) and
Laplace-Carlson transform(LCT) method. We first give a brief introduction
of these two frequently used methods.

BTM is one of the most popular pricing method for vanilla options. It is
first proposed by Cox, Ross, and Rubinstein in 1979 [8]. Although the model
is very simple and easy to implement, it enables us to solve a variety of op-
tion pricing problems numerically. The original BTM model assumes that
time is discretized by tg =0, t; = At, ..., t, = nAt = T with At = L. For
each time, the underlying asset has only two possible moves. It can move up

o1
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Figure 3.1: Values of R(t,s,m) (r =0.03, ¢ =0.03, 0 =0.2)

by a factor of w > 1 with a probability p or move down by a factor of d < 1
with a probability 1—p. Therefore the price of underlying asset will either be
uSy or dSy at next period if the current price of underlying asset is Sy. The
factors u,d are usually calculated as u = e”m, d = e—oVht by using the
assumption that S follows log-normal distributAion of variance o2At . The
r— t
risk-neutral probability p is given by p = 0% d. Note that at time ¢;
there are j 4 1 possible values for the underlying asset S; according to the
number of ups £ = 0,...,j. We denote such possible stock price at time t;
with k ups as 5’;C = uFd’=*Sy. Given that the payoff at maturity V¥ is known,
we can obtain the option price at current time by recursively discounting
the option price at succesive time using V]k = TA [pvjlfl1 +(1- p)V}’fH]
For Russian options, careful consideration should be given to apply BTM
for valuation. Since Russian options are path-dependent options, the payoff
at maturity is determined not from the price of underlying asset but from the
path underlying asset has taken. Therefore we need to compute the payoff
in each path. In our computation, we use Forward Shooting Grid(FSG) al-
gorithm, which is an application of BTM for path-dependent options. Those
who are interested in the details of FSG can refer to [1]. One can also doubt
the convergence of BTM for path-dependent options. However, the results
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Figure 3.2: Values of R(t, s, m) and free boundary s*(¢t,m) (7 =5, ¢ =0.03,

o = 0.3, and m = 100)

of Jiang and Dai [35] assures that BTM converges for these options as well.

LCT method([45],[46],[47],[48]) is also frequently used for valuing Amer-
ican path-dependent options. It utilizes Laplace-Carlson method, a variant
of traditional Laplace transform, to convert PDE satisfied by Russian op-
tions into ODE. The method gives formula for transformed option values and
the original values are obtained by inverting them using Gaver-Stehfest algo-
rithm. The algorithm produces a double sequence G}, such that the diagonal
component G, = G} converges to the Russian option value as n — co. The
method accelerate its convergence by using n-point Richardson extrapola-

) - n (_1)(n—k)kn )
tion scheme, G,, = Z mGk. As suggested and computed in [47],

k=1
we choose n = 4 for fast and efficient computations. For recursive iteration

method, the results of n = 3 are not significantly different from those of
n = 4. Therefore we suggest to use n = 3 for computational efficiency.

For each numerical experiments we choose BTM using FSG with n =
10,000 as a benchmark result and consider it as a exact value of Russian
options since the convergence of BTM model is guaranteed. As we have
different form of integral equation whether » = ¢ or not, we first consider
two cases,r = ¢ = 0.05 and r = 0.05,¢ = 0.03. Also, we investigate the
option value when there are no dividends, i.e. r = 0.05,¢ = 0. Each of re-
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Figure 3.3: Values of R(t, s, m) and free boundary s*(t,m) (7 =5, r = 0.03,
o = 0.3, and m = 100)

sults are summarized in Table 3.1, 3.2, 3.3. Column 5,6 show the numerical
results using binomial tree with N = 150, 500. Column 7 reports the results
of LCT with n = 4, and column 8 shows the results of recursive iteration
method with 3-point Richardson extrapolation. The accuracy of a method
is measured by its root of the mean squared error(RSME), as shown in the
second-to-last row. The CPU time in seconds is also shown in the last col-
umn.

Table 3.1, 3.2, 3.3 indicates that the recursive iteration method is better
method in many ways. First of all, RMSE of recursive iteration method is
much smaller than that of other methods in all cases. Second, the results of
recursive iteration method are stable. You can see that some results of LCT
when s/m = 0.8 seem to be running away from the Benchmark. Recursive
iteration method does not exhibit such a behavior. Although recursive it-
eration method takes longer time than LCT, it just take less than 0.3s on
average, and it is much faster than widely-used BTM. These reasons illus-
trate that the recursive iteration method can be a better tool for valuing
Russian options.
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Table 3.1: Russian option values R(t,s,m)/m with dividends (r =
0.05, ¢ = 0.05)
o T(yr) s/m Benchmark Binomial  Binomial LCT Recursive
(150) (500) Iteration
Method
0.2 0.0833 1 1.0428 1.0408 1.0418 1.0427 1.0432
0.9 1.0000 1.0000 1.0001 0.9998 1.0000
0.8 1.0000 1.0000 1.0000 1.0000 1.0000
0.3333 1 1.0797 1.0755 1.0776 1.0789 1.0804
0.9 1.0106 1.0094 1.0100 1.0084 1.0106
0.8 1.0000 1.0000 1.0000 1.0000 1.0000
0.5833 1 1.1004 1.0947 1.0978 1.0989 1.1011
0.9 1.0221 1.0199 1.0210 1.0194 1.0221
0.8 1.0000 1.0000 1.0000 1.0000 1.0003
0.3 0.0833 1 1.0667 1.0634 1.0650 1.0667 1.0671
0.9 1.0061 1.0056 1.0058 1.0053 1.0061
0.8 1.0000 1.0000 1.0000 1.0000 1.0000
0.3333 1 1.1287 1.1220 1.1254 1.1280 1.1298
0.9 1.0428 1.0397 1.0412 1.0412 1.0430
0.8 1.0055 1.0047 1.0051 0.9412 1.0057
0.5833 1 1.1661 1.1569 1.1616 1.1646 1.1675
0.9 1.0711 1.0661 1.6860 1.0688 1.0715
0.8 1.0179 1.0159 1.0169 1.0129 1.0180
0.4 0.0833 1 1.0908 1.0865 1.0887 1.0911 1.0915
0.9 1.0185 1.0172 1.0179 1.0181 1.0187
0.8 1.0005 1.0004 1.0004 1.0094 1.0007
0.3333 1 1.1795 1.1702 1.1749 1.1791 1.1811
0.9 1.0826 1.0773 1.0799 1.0815 1.0833
0.8 1.0259 1.0236 1.0248 1.0235 1.0259
0.5833 1 1.2351 1.2222 1.2287 1.2339 1.2372
0.9 1.1285 1.1202 1.1243 1.1266 1.1296
0.8 1.0554 1.0508 1.0532 1.0522 1.0555
RSME 4.854e-03  2.399e-03  1.259e-02  7.232e-04
CPU time 3.454e-01  1.288e+01  5.000e-03  2.794e-01
56
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Table 3.2: Russian option values R(t,s,m)/m with dividends (r =
0.05, ¢ = 0.03)
o T(yr) s/m Benchmark Binomial  Binomial LCT Recursive
(150) (500) Iteration
Method
0.2 0.0833 1 1.0437 1.0416 1.0427 1.0436 1.0440
0.9 1.0001 1.0001 1.0001 1.0001 1.0013
0.8 1.0000 1.0000 1.0000 1.0000 1.0000
0.3333 1 1.0832 1.0789 1.0811 1.0823 1.0839
0.9 1.0121 1.0108 1.0115 1.0098 1.0121
0.8 1.0000 1.0000 1.0000 1.0000 1.0000
0.5833 1 1.1065 1.1007 1.1037 1.1049 1.1073
0.9 1.0255 1.0232 1.0244 1.0227 1.0255
0.8 1.0000 1.0000 1.0000 0.9997 1.0005
0.3 0.0833 1 1.0675 1.0643 1.0658 1.0676 1.0680
0.9 1.0064 1.0058 1.0061 1.0056 1.0064
0.8 1.0000 1.0000 1.0000 1.0000 1.0000
0.3333 1 1.1324 1.1257 1.1291 1.1317 1.1335
0.9 1.0452 1.0421 1.0436 1.0437 1.0454
0.8 1.0062 1.0053 1.0058 0.9560 1.0064
0.5833 1 1.1727 1.1635 1.1681 1.1712 1.1742
0.9 1.0761 1.0709 1.0735 1.0737 1.0765
0.8 1.0203 1.0181 1.0192 1.0160 1.0203
0.4 0.0833 1 1.0917 1.0874 1.0896 1.0920 1.0924
0.9 1.0190 1.0176 1.0183 1.0185 1.0191
0.8 1.0005 1.0004 1.0005 1.0099 1.0007
0.3333 1 1.1834 1.1740 1.1788 1.1830 1.1850
0.9 1.0855 1.0802 1.0828 1.0844 1.0863
0.8 1.0275 1.0251 1.0263 1.0250 1.0275
0.5833 1 1.2421 1.2292 1.2357 1.2409 1.2444
0.9 1.1342 1.1258 1.1357 1.1323 1.1354
0.8 1.0592 1.0544 1.0568 1.0559 1.0592
RSME 4.902e-03  2.432e-03  9.961e-03  8.010e-04
CPU time 3.253e-01  1.254e+01  5.000e-03  8.778e-02
o7
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Table 3.3: Russian option values R(t,s,m)/m with no dividends (r =
0.05, ¢ =0)
o T(yr) s/m Benchmark Binomial  Binomial LCT Recursive
(150) (500) Iteration
Method
0.2 0.0833 1 1.0450 1.0429 1.0440 1.0499 1.0453
0.9 1.0002 1.0001 1.0001 1.0010 1.0014
0.8 1.0000 1.0000 1.0000 1.0000 1.0000
0.3333 1 1.0887 1.0844 1.0865 1.0878 1.0894
0.9 1.0146 1.0132 1.0139 1.0122 1.0145
0.8 1.0000 1.0000 1.0000 1.0000 1.0000
0.5833 1 1.1162 1.1105 1.1134 1.1145 1.1172
0.9 1.0314 1.0288 1.0301 1.0283 1.0313
0.8 1.0005 1.0003 1.0004 0.9989 1.0084
0.3 0.0833 1 1.0688 1.0657 1.0673 1.0689 1.0693
0.9 1.0068 1.0062 1.0065 1.0060 1.0068
0.8 1.0000 1.0000 1.0000 0.9999 1.0000
0.3333 1 1.1381 1.1314 1.1348 1.1374 1.1393
0.9 1.0491 1.0458 1.0474 1.0475 1.0493
0.8 1.0075 1.0065 1.0070 1.0092 1.0076
0.5833 1 1.1831 1.1738 1.1785 1.1815 1.1845
0.9 1.0839 1.0785 1.0812 1.0815 1.0845
0.8 1.0242 1.0218 1.0230 1.0198 1.0242
0.4 0.0833 1 1.0931 1.0888 1.0910 1.0933 1.0938
0.9 1.0196 1.0182 1.0190 1.0192 1.0198
0.8 1.0006 1.0005 1.0005 1.0099 1.0008
0.3333 1 1.1894 1.1800 1.1847 1.1890 1.1909
0.9 1.0901 1.0846 1.0873 1.0890 1.0909
0.8 1.0299 1.0274 1.0286 1.0274 1.0299
0.5833 1 1.2531 1.2401 1.2467 1.2519 1.2554
0.9 1.1432 1.1345 1.1389 1.1413 1.1445
0.8 1.0654 1.0600 1.0625 1.0617 1.0652
RSME 2.484e-05  6.150e-06  7.173e-06  2.968e-06
CPU time 3.413e-01  1.303e+01  5.000e-03  1.4544e-01
58
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3.6 Summary

In conclusion, we described a general method for valuing options with finite
maturity, which usually can be mathematically formulated as the free bound-
ary inhomogeneous Black-Scholes PDE with mixed boundary conditions af-
ter a suitable change of variables. The main idea of our approach was to con-
vert the given PDE into the relatively simple ODE using Mellin transforms.
After solving the ODE with some analytical manipulations, we inverted the
ODE solutions to obtain the general solutions for the Black-Scholes equation
with a mixed boundary condition using inverse Mellin transforms.

As an illustration of our method, we yielded the integral equation sat-
isfied by the value function of Russian options by applying our anlaytic
formula for the inhomogeneous Black-Scholes PDE with mixed boundary
conditions. We then valued perpetual (infinite time horizon) Russian op-
tions using Mellin transforms as well as basic complex analysis theories.

Furthermore, we numerically solved the derived integral equations using
recursive integration methods, and presented the varying option price and
free boundary according to the chosen parameters. Our numerical results
confirm that the integral equation we derived is correct. Also, we compared
our recursive integration method to some existing American path-dependent
option valuation techniques such as binary tree model and Laplace-Carlson
transform method. By comparing RMSE and computational time of the re-
sults, we concluded that our method is accurate and efficient forcomputing
Russian option values with finite time horizon.

In conclusion, our Mellin transform based pricing techniques are dis-
tinguished from traditional methods in that our approaches not only give
us a value of Russian options but also give a analytical representation for
the solution of general inhomogeneous Black-Scholes equation with mixed
boundary conditions. To the best of our knowledge, there have been no
approaches which give an analytic representation of the solution of inho-
mogeneous Black-Scholes equation with mixed boundary conditions. Since
we analytically present the general solution of Black-Scholes equation with
mixed boundary conditions, our methodology can be applied to solve free
boundary problems for a variety of option pricing problems.
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Chapter 4

American floating strike
lookback option

Lookback options are path-dependent options with payoffs depending on
the maximum or the minimum of the underlying asset price during the
lifetime of the option. A popular form of lookback options in the insurance
field is equity-indexed annuities (EIA), although other kinds of lookback
options are also traded worldwide in the exchange market (refer to [20],[54]
for further details on the subject and related topics.) Various researchers
have published results relating to the pricing of European lookback options;
for example, Goldman et al. [2e] and Conze and Viswanathan [7] derived
the exact formula for the value function of European lookback options and
Dai et al. [11] presented a formula for quanto lookback options regarding
two underlying assets.

As American option holders can exercise their options at any instant
before expiry, the early exercise policy should be considered when valuing
American options. This is the reason why problems involving American op-
tions are usually referred to as optimal stopping problems or free boundary
problems. Regarding American option theories, Kwok [58] gave an elaborate
description, whereas Peskir and Shiryaev [58] established a number of the-
ories related to optimal stopping problems. Furthermore, Kim [43] derived
an integral equation satisfied by American options, because the closed-form
solution of the American option did not yet exist at the time.

American lookback options can be thought of as a combination of Amer-
ican options and lookback options. Therefore, they have the properties of
both of these types of options. Especially, valuing them requires a solution
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for the free boundary problems, an approach which is similar to the val-
uation of other American options. In addition, the presence of a lookback
state variable results in a Neumann boundary condition. American look-
back options can be divided into two categories: American fixed lookback
options and American floating strike lookback options. Both of these types
of options solve the same partial differential equation (PDE), but their pay-
off functions are different. There is also a relationship between American
fixed strike lookback options and Russian options, where the latter could
be considered a kind of perpetual version of the former. Anyone interested
in Russian options can refer to [15],[59],[63]. The distinctive property of
American floating strike lookback options is the homogeneity of their value
functions. Such homogeneity makes it possible to reduce the dimension of
the problem by one; thus, the structure of American floating strike lookback
options is relatively simpler than that of the usual American fixed strike
options. We focus on American floating strike options in this chapter.

American floating strike lookback options have been studied previously.
For example, Yu et al. studied the exercise boundary of American floating
strike lookback options [70], and Dai and Kwok characterized the optimal
stopping region of American lookback options [12],[13]. Lai and Lim [53]
proposed a way to calculate the value of American floating strike lookback
options by using a numerical approach known as the Bernoulli walk ap-
proach. Kimura performed a premium decomposition for American floating
lookback options employing Laplace transforms [48]. Finally, we remark that
Dai succeeded in obtaining a closed-form solution of American options [9].

In this work, our approach was to mainly use the Mellin transform,
which is a type of integral transform that can be considered a two-sided
Laplace transform. Especially, a Mellin transform is widely used in solving
option problems because it can be used to convert a Black-Scholes PDE
into a simple ordinary differential equation (ODE). Remarkable results have
been achieved by following the approach based on the Mellin transform;
for example, Panini and Srivastav priced European, American, as well as
perpetual American options using Mellin transforms [56],[57], respectively.
Frontczak [18] defined a modified Mellin transform and used it to derive
an integral equation satisfied by an American call option. Yoon and Kim
obtained a closed form of vulnerable options using double Mellin transforms
[69]. Yoon also obtained a solution for European options with a stochastic
interest model [68]. Jeon and Yoon [31] and Buchen [4] analyzed the pricing
of lookback type options with Mellin transform techniques. In addition, Jeon
et al.[30] derived a semi-closed form solution of vulnerable lookback options
by utilizing double Mellin transforms.
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CHAPTER 4. AMERICAN FLOATING STRIKE LOOKBACK OPTION

4.1 Model formulation

Let Sy denote the underlying asset of the floating strike lookback option
under a risk-neutral probability measure P.

dS; = (’l“ — (])Stdt + oS dWy (T > q)

where r(> 0) is the riskless interest rate, o and ¢(> 0) are the volatility
and dividend yield of X, respectively, and W; is a one-dimensional stan-
dard Brownian motion on a filtered probability space (€,(F)i>0,P), where
(Ft)t>0 = F is the natural filtration generated by F.

For the process (S¢)i>0, define the minimum process as

my = min S, t>0
0<~<t
Consider an American floating strike lookback call option with a given finite
time horizon T" > 0. The payoff at maturity is given by (Sp — my). In the
absence of arbitrage opportunities, the value C(t, Sy, m;) is a solution of an
optimal stopping problem (see [67])

C(t,s,m) = sup E|e " (S, —m;)| S =s,m =m (4.1.1)
T€[t,T]

where 7 is the stopping time of the filtration F and the conditional expec-
tation is calculated under the risk-neutral probability measure P.

It is known that the optimal stopping problem (4.1.1) can be reduced to
a free boundary problem.
Define the differential operator £ by

01 ,, P
L=gt0sgat sy —r

Then, the free boundary problem can be written in a linear complementary
form (see [51] and [66]) as

LC(t,s,m) <0, C(t,s,m) >S5 —m,

(LC(t,s,m)) (C(t,s,m)—(s—m))=0, s>m >0, 0<t<T, (4.1.2)
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together with auxiliary conditions

C(T,s,m)=s—m
aC (4.1.3)

The free boundary of problem (4.1.1) is given by the critical stock price
s*(t,m) (This is termed the early exercise boundary). Arbitrage arguments
show that the option price C(t, s,m) must also satisfy the ”"smooth pasting
conditions” at s*(t,m).

l%\n} C(t,s,m) = s*(t,m) —m

aC (4.1.4)

m
and
= t
Clt, ) = C(jm) (4.1.6)
Then, we can rewrite the linear complementary form (4.1.2) as
LCO(t,x) <0, Clt,r) >1—x, (41.7)
(LC(t,2)) (Ct,z)—(1—2))=0, 0<z<1,0<t<T, o
with auxiliary conditions:
CT,z)=¢(x)=1-z
oC
lim — =0
ggffll ox
lim C(t,2) = 1= 2 (1 (4.1.8)
oC
lim — = -1
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where the critical value is z* = & and the operator L is given by

01, , 9
L=gtar v gatla—rrg —q

Hence, solving the optimal stopping problem (4.1.1) is equivalent to finding
the points (¢, x*(t)). Let

D={(t,z) |0<t<T,0<x<1}

and let S and S¢ denote the stopping region and continuation region, re-
spectively. In terms of the value function C(¢,z), the stopping region S is
defined by

S={(t,z)eD|C(t,x)=1—2z}
={(t,z) |0<x<z*(t),0<t<T}

The continuation region S¢ is given by

SC={(t,x)eD|C(t,x)>1—x}
={(t,z) |2"(t) <z <1,0<t<T}

Hence, the value function C (¢, ) satisfies the following inhomogeneous Black-
Scholes PDE :

A o1 20 SR
LC(t,x) = ¢ 702;32% +(q— r)x% —qC = f(t,z) (41.9)

where

re—q for 0<z<ax*(t)

(4.1.10)
0 for z*(t) <z <1

f:f(t,x):{

with Neumann boundary conditions in (4.1.8).

In the following section, we exhibit the closed-form representation of the
solution of the general inhomogeneous Black-Scholes PDE with Dirichlet
and Neumann boundary conditions. The application of such a closed-form
formula to (4.1.9) leads to a representation of the value function C(t,x).
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4.2 Inhomogeneous Black-Scholes equation with
Neumann boundary condition

Although Buchen already analyzed real option problems with Neumann
boundary conditions using a Mellin transform [4], he used a homogeneous
Black-Scholes equation. In this section, we extend his idea to the inhomoge-
neous case, with the aim of converting an inhomogeneous Black-Scholes PDE
with Neumann boundary conditions into an inhomogeneous Black-Scholes
PDE with Dirichlet boundary conditions. We subsequently use these results
to solve the reduced equation with the aid of Mellin transform techniques
(the definition and properties of the Mellin transform are summarized in the
appendix of this paper.)

Define the PDE operator Lpg as

01, ., 9
Lps =g, +50 0 g5+ a—rrg-—q

Consider the following Neumann boundary condition PDE problem :

Lps P(t,x) = h(t,x), P(T,z)=g(x)
OP (4.2.1)
g(t, 1)=0

on domain {(t,2) |[0<t<T,0<z < 1}.

We assume that h(t,z),g(z) are smooth functions and Mellin transforms

of h,g, xd—, xd—g are well-defined in proper domains, respectively.
x  dx

Let V(t,x) = xg];(t,a:), Y(t,x) = x%(t, z) and ((z) = x@(x), then

Ox dx
PDE (4.2.1) is converted to

Lps V(t, ‘T) = w(t7 $)
V(t,1) =0 (4.2.2)
V(T,z) = ((x)

on domain {(t,z) |0 <t <T,0<z <1}
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To solve PDE (4.2.2), we consider an unrestricted inhomogeneous PDE

Lps Qt,x) = (t,2) sy (4.2.3)
Q(T,x) = ((x)1{z<1y ;

on domain {(¢t,z) |0 <t <T,0 <z < oo}.

Then, we can define Q(¢, w) the Mellin transform of Q(t, z).

Q@wOZAmQ@wﬁ“ww

From PDE (4.2.3), Q(t,w) satisfies the following ODE

C;? ( o w(w +1)—(¢—r)w— Q> Q = zﬁ(t,w) (4.2.4)

where Q and ¢ are the Mellin transforms of Q(¢,z) and (¢ 7)1ipcqy, TE-
spectively.

Let A(w) = w? + w(1 — kg) — k1 where k; = 29 g, — 2(q—r)

g2 o2

Then,

A 1,2 o T, A
Ot w) = b7 “>”%kw»—/ AAWOD G wydy  (4.2.5)
t

where ((w) is the Mellin transform of C(2)Lpeny

By the inverse Mellin transform,

L[ 12 A)T-0 ()5
mez./ AT AT )

27 io

e (4.2.6)
70'2 7 —w
‘/" A@G-0.4 (. )z dndu

271'1 —ico

To compute (4.2.6), let
1 et ,
B(t,x) = / e27 AWt y=w gy, (4.2.7)
c—100
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Then,

c+1i00 2 1

B(t,z) = e~ T2 Hmn L / JELIPNRCESE
2mi J,

)ty .
—100

According to the property of the Mellin transform in the Appendix A.1

1—ko
o f(1=k 2 log z)?

— S L L (log 4.2.8

Blt,) = e =1 o 27Ttexp{ 2 o2 ( )

Because eT FAw)(T-1) , C(w), and ¢ (n, w) are the Mellin transforms of B(T —
t, ) ,((2)1{p<ny, and Y(n,)11,<1), respectively, according to the Mellin
convolution property in the Appendix A.1,

Q(t,x) / C(u 1{u<1}8( x)ldu

(4.2.9)
/ / 90, 0L ey B — 1, )~ dudy

The following lemma is essential in that it provides a tool for the domain
extension of the PDE (4.2.2).

Lemma 4.2.1 For B(t,x) defined in (5.2.7),

Bt,z) = 20*) B, L) (4.2.10)

T

Proof See the proof of Theorem 3.2.1 in Section 3.2.
O

Using Lemma 4.2.1, we can prove the following theorem which extends the
solution of the PDE (4.2.2) to [0,7") x [0, c0)

Theorem 4.2.1 (Inhomogeneous Black-Scholes equation with Dirich-
let condition)

In the domain {(t,z) |0 <t <T,0 <z < oo}, V(t,x) the solution of PDE
(4.2.2) is given by

V(t,z) = Q(t, ) — R0, é) (4.2.11)
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where Q(t,z) defined in (4.2.3) is expressed by
o z. 1

Qt.) = [ ey BT 1.5 du
0 u u

T proo r 1
- / / 1/}(777 u)l{u<l}B(T —t, 7)7dUdn
t 0 u u

Proof See the proof of Theorem 3.2.1 in Section 3.2.
O

Note that we extended the domain of the PDE (4.2.2) to non-negative real
numbers using Theorem 4.2.1. Therefore, we can apply Mellin transforms
to the extended PDE, which would enable us to obtain the representation
for the solution of an inhomogeneous Black-Scholes PDE with Neumann
boundary conditions.

Theorem 4.2.2 (Inhomogeneous Black-Scholes equation with Neu-

mann boundary conditions)
P(t,x), the solution of PDE (4.2.2), satisfies the following PDE:

1, 1\ %
LpsP(t,z) =h(t, x)1{$<1} + h(t, ;) (x> lesny

xT (k2*1)
1. /1 1
+k1/ht,(> —dy| 14,
(2 )[1 ( y) y y Y| Ha>1}

1 (k2*1)
PIT8) =gMacny +0(0) (1) Ty

x 1 1 (k2_1) 1
(= Sdy| 1,
/1 g(y) (y) ;| a1y

with the domain {(t,z) |0 <t <T,0 <z < c0}.

+ (kg — 1)

Proof By Theorem 4.2.1, on domain {(¢,2)|0 <t < T,0 < z < 0o}, Q(t, x)
satisfies the following PDE:

)$(1_k2)1{x>1}

SR

£BSV(t7 l’) = Q/)(ta x)]-{x<1} - ¢(t7
(4.2.12)

~

I, -
V(T,ZL‘) = <($)1{x<1} - C(E)x(l 2 1{x>1}
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Define
1 c+i00 . 1
H(t,x) = —— V(t,w)—x "dw
21 Jo—ioo w
~V(t
i.e.,H(t,x) is the inverse Mellin transformation of ¢, w)
w

Clearly, —wH (t,w) = V(t,w). According to the property of the Mellin
transform,

0
x%H(t, z)=V(t,x).

Because V (t,1) =0,

1- %H(t 1) = 0. (4.2.13)

Similarly, by (4.2.4),

T+ (570t + ) = (= w =) V=it w) — btk — 1 - 0)

where V (¢, w) is the Mellin transform of V (¢, x).
From —wH (t,w) = V (t,w),

dH

- (10 w(w+1) - (q—r)w—q) H]

= —wh(t,w) + (ks — 1 — w)h(t, ks — 1 — w)

where h is Mellin transform of h(t, 7)1y

Hence,

(4.2.14)
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By the inverse Mellin transform of both sides of (4.2.14),

(k2—1)
1
Lps H(tv x) :h(ta x)l{w<1} + h(tv ;) <.Z‘> 1{;c>1}

ey G (4.2.15)
o[ () 1]
(k2 — 1) : (y) ; y {>1}
By the same procedure,
11\ kY
H) =gy +a) (1) 1o
(4.2.16)

+ (k2 — 1)

xT (k2*1)
1 1 1
Y Zdy| 1pae.
/1 g(y) (y> Y y] {e>1}

By (4.2.13), (4.2.15), and (4.2.16), P(t,x), which is the solution of PDE
(4.2.1), satisfies

1 (k2*1)
LpsP(t,z) =h(t, 1‘)1{:1:<1} + h(t, 5) <> 1oy

X
v 1\ (kD) g
o[ (1) L,
(ko )[1(1/)2/ ;Y| Ly

1 1 (k2—1)
P =@y +90) (3 ) Loy

v 1 /1\"
(= “dy| 14,
[0 (5) T a1

with the domain {(t,z) |0 <t <T,0 <z < c0}.

+ (k2 — 1)

O

From Theorem 4.2.2, we define the absorbing Neumann boundary oper-
ator 7T as follows:

Definition 4.2.1 Let U(t,x) be any function of ¢ and x. Then, the image
of the absorbing Neumann boundary operator of U with respect to x =1 is
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defined to be the function

4.3 Integral equation representation of American
floating strike lookback option

The value of American type options is usually decomposed into the European
option value and the early exercise value terms. Numerous approaches and
considerable effort have been devoted to obtaining the value of American
options. For example, . Kim demonstrated the inclusion of early exercise
premium terms in the integral equation [43], Lai and Lim derived the integral
equation representation of American floating strike options using reflection
Brownian motion [53], and Kimura performed a premium decomposition
using Laplace transforms [54].

In this section, we derive an integral equation satisfied by American
floating lookback options using our approach involving a PDE based on a
Mellin transform, as described in section 4.2.

By Theorem 4.2.2, the solution C(t,z) of the PDE (4.1.9) satisfies the
following PDE when absorbing the Neumann boundary condition:
A oC

)
LC(t,x) = — + ~0” 200

C 1P 2% e~ Tl (48

ox

where 7T is the absorbing Neumann boundary operator in Definition 4.2.1
and

re—q for 0<z<az*(t)
0 for z*(t) <z <1

f:f(t’x):{
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with auxiliary condition

C(T,z) = Tlo(x)]
lim C(t,x) =1 — z*(t) (4.3.2)

xtTa*

in domain {(t,z) |0 <t <T,0 < x < c0}.

Let
C(ta l’) = OE(tv SL’) + C’P(tv :L‘)

where Cg(t,z) and Cp(t,z) satisfy following PDEs :

ECE(t, .%') =0
Cp(T,z) = Tlp(x)] (4.3.3)
and
LCp(t,x) =T[f(t,z)], Cp(T,z)=0 (4.3.4)

Define Cg(t, s,m) = sCg(t, =) and Cp(t,s.m) = sCp(t, ).

Clearly, C(t,s,m) = Cg(t,s,m)+Cp(t,s,m) and Cg(t, s,m) is the value
of the European lookback call option with terminal payoff (S; — m;). We
rewrite the value of C'g(t, s, m), which was obtained by Kimura and can be

found in [54], to obtain,

CEg(t,s,m)

_ —q(T—%) +5 7 _ —r(T—t) (5 p_

=se / N(dl (m7T t)) me N(dl (m7T t)) (435)
o’s —r(T—t) MDD M —q(T—t) 4,8

s e NG (2T - ) - T INaf (27 - 0))

where N is the standard cumulative normal distribution and

FEET 1) = — {log§+ (r—g+ %UQ)(T - t)} . (4.3.6)
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Therefore,
(jE(t7x>
—e 1T (@t (L T — 1)) — e TN (LT 1))
T xr
2 20r—q) 4.3.7
tap (e N @ T ) 430

1
—e TN (—d* (=, T — t))} .
x
The following lemma is useful for the derivation of the integral equation
representation of American lookback options.

Lemma 4.3.1

1—kg

! z 1 o e 2
/ UfD‘B(nft,*)fdn =1 %27 (n=t){(352) 2 k1 — (2522 +a)?}
0 u u

x
—log = +0?(n — 1) (452 +a)
><N< A 2

o\/n—t

/ u”*B(n —t E)ldn = 3P (={(FF2) ki — (52 +a)’}
A 7'lL u

oy (logA —o?(n—t)(5k +a))

oyn—t

2 2(q—r
o-ig)kQZ( )

where k1 = =

Now, we state the theorem regarding the price of an American lookback
option as follows.

Theorem 4.3.1 (Premium decomposition of American floating
strike lookback option)

The price of an American floating strike lookback call option, as defined in
(4.1.1), is

C(t,s,m) = Cg(t,s,m)+ Cp(t,s,m),
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where

Crlt,s,m) =se 1 TN (d] (=
_i {e_T(T_t)(i)k;/\/'(df(%)) — E_Q(T_t)-/\/—(—df(%))}

kz m

m

) = me " TON(d ()

and

Cp(t,s,m)

T
. —r(n—t) - s _
= —r m/t e T Af (d (3*(77,m)’77 t)) dn

r-s [T rmy\kz —r(n—t) _ m?
N Tg/t (?) ¢ N(d (s-s*(n,m)’n_t)> dn
1 T m2 k2 m2
(1 — — —Q(W—i)<7> <_ Y (L )d
" kQ)/t ‘ s*(n,m) A (8-8*(n,m) n=h) ) dn

T 2 k2—1 2
+ s/ e*q("*“( m ) /\/(—d+ L — —t)d 4
1 t 3*(777m) (35*(77»7”) K ) g

For the free boundary of American floating lookback option s*(t,m), we de-
fine z*(t) =

—— . Then x* satisfies the following integral equation.
s*(t, m)

1—z"(t)
= Cp(t,z* () — r/t z*(t)e TN (d*(‘”*(") n— t)> dn

(1)’
+ q/tT e 9=t N <d+(i:((7z)) n— t)) dn

_ 1?2 /t x*(t)*lﬂe_r(”—t)/\[ (d_ (l’*(n)x*(t),n _ t)) dT}
-t kiz)/t e 0" ()N <—d+(m,n - t)> dn

T
4 —q(n—t), * (kz—l)N (_d+ 1 ,n—t ) dn.
af e e ") M

where ky = @, d* is defined in (4.3.6) and Cg(t,z) is defined in
(4.3.7)

Proof By (4.3.1),
flt,z) = (re — @) Lpear(1))
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In PDE (4.3.4), Cp(t, ) is expressed by
Cp(t,$) = Il + IQ —+ Ig,

where

T 0o
z, 1

(k2—1)
1 z. 1
/ / f(n 1{u>1} (u) B(n—t,a)adudn
(ka—1)
1 1 1 . 1
I3(t, :z—k;—l/ / / , — () —dy| LyusB(n —t, —)—dud
3(t, 7) (k2 )t ollf(ny)y yy{>1}(77 u)u n

By using Lemma 4.3.1,

Il(t QL'

/ / Fm,u)lpucy B —t*) dudn

t

T *(n)
/ / (ru— )8y — 1, =)~ dudy

T y= (n) x (n) z 1
r/ —t = dudn—i—q/ / (n—t,=)—dudn
0 uu

r/the tw< ~( *(n),n—t)> dn+q/t e~ 1= N <d+(x*x(n),n—t)> dn.

1 (k2 1)
From Ir(t,z) = () Li(t,—),

Iy(t,x) = —r /tT <1> - e TN (d™(z*(n)z,n — 1)) dn

X

T 1 (k2—1)
b [ e <x> N (d* (@ (), = 1)) di.
t
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Because f(t,

r
) = <§ - q)l{y> *(n)} and

1 (1 (k2=1) 4 .
/ [/ Tt Ty <y> dy] Lws1yBln —t, g)ﬂd“
1 (k2—1) 1 .
:/0 [/Qf( )(y) ydy] 1{u> *()}B( n—t, 7)Edu

z*(n)

o u (k2—1)
1
-/ [/ (G- 6) 1‘@1 Bn = )y
*1( =l Y Yy Yy U u
z*(n) z*(n)

Q| =

=

00 w2 uf(k271) x*(n)kz w*(n)(lw*l) r 1
= —~ - B(n—t,=)=du.
/*1()|: " kg ta kQ—l tr k‘g q k‘g—l :| (77 7’LL)’U,U
= (n
Hence,

(k2—1)
k2—1// V £ () ldy] 1us13B(n —t,g)%dudn

/ / {krl e qu e B L g () )
2

x B(n —t, E)EdUdn
1 T
=7r(l— k—) / a k2o (=t £ (d~(z*(n)z,n — 1)) dn
2 Jt
T
—q/t wm Ve a=O N (dF (@ (n)x,n — 1)) dn
—rt= o [ e en (<t )
ko™ Jy z*(n)z’

T 1
—|—q/ e~ 1=t gx () k2= D \f (—d+ n—t ) dn.
t (n) (x*(n)x n—t))dn
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Therefore,
ép(t,$)
T -t —,z"(n) E—— + 2" (n)
:—r/ ze " N(d (96,77—25)>d77—i-q/1t e N(d (x,n—t)>d77
t
T
r ke —r(r— s
5 a™R2e "IN (7 (2% )z, — t)) dn (4.3.8)
—r(1- ) /Tqu)x*(n)’fW(—d*( ! n—t>)dn
k2" Ji z*(n)z’

T
+q/ e 10D () k2N (d+( ! ,nt)> dn.
t z*(n)z

By (4.3.2), the critical value of x*(t) satisfies the following integral equation.

= Cp(t,a"(t) —r /t D a0 (d—(ii((’z)) e t)) dn
+q /tT Y (d*(x*(n) - t)) dn

z*(t)
T

— = [ @t TTON (d (@ ()t (1), n — 1)) dy

—r(l—-) /tT e 10D (n)F2 N <_d+(1f"(77)1:c*(t)’77 - t)) dn
+4q /tT eIt () (k2= Af <_d+(:1:*(77)1:1:*(t)’ n— t)) dn.

From x*(t) = , we obtain the desired result.

a

_m__
s*(t;m)

Remark 4.3.1 In fact, f(¢, ) is not differentiable at x = z*(¢). But, by Ap-
pendix C.4 in [17], there exist sequences { f,,(t,z)} € C* ((0,T) x (1,1 — 1))
such that f, — f a.e. and f, — fin L' ((0,T) x (0,1)) as n — oo. There-
fore, by applying Theorem 4.2.2 to a smooth sequence of functions { f,, (¢, z)}
and letting n — oo, we obtain the same result for f(t,x) as well.
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CHAPTER 4. AMERICAN FLOATING STRIKE LOOKBACK OPTION

4.4 Perpetual American floating strike lookback
option

In this section, we derive the closed-form expressions of a perpetual Ameri-
can lookback call option using a Mellin transform and elementary complex
analysis.

Theorem 4.4.1 (Free boundary of perpetual American floating
strike lookback call option)
If T — oo, we denote s%_(m) as the free boundary of the perpetual American

lookback call option. Then, z}_ = ST satisfies

ﬁ (1 + /\2)%':0 — A2
Ao (1 + )\1)%20 — /\17

fL’Zo()\Z_Al) -

where A1, Ay are the two roots of the equation %2>\2 + (%2 —(g—1)—q=0

Proof InPDE (4.3.4), let Cp(t,x) := CL(t,z)+ C%(t,z) + C3(t,x), where

(k2—1)
LO3(tx) = f(t. ) <) Lor, CA(Ta) =0, (44.2)

and

x (k2*1)
£C(tx) = (ko — 1) [ [ e (s) ydy] Loty CH(T,2) = 0. (443)

From PDE (4.4.1),

dC 1 S
dTl + (202w(w+ 1) —(qg—r)w-— Q> 1= f(tw),
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where Ci(t,w) is the Mellin transform of Ch(t, z) and
f(t,w) = / f(t,z)at da
0

z*(t)
= / (rz — ¢z tdx
0

ra*(t)w ! gzt ()
w4+ 1 w

and by the inverse Mellin transform
. S T ras (et gz (n)”
Ch(t,x) =— - -
pit,) 2m'/c_m v /t { w1 w }

X eéou(w)m_ﬂdndw

(4.4.4)

and

801 1 c+ioo e T rw . w . w
T I B P VR U
c—100 t

x €27 AWM= gy,
where Re(w) > 0 and

Aw) = w? +w(l — k) — ky
:(wf)\l)(’lU*)\Q), )\1 <>\2

Then, it is easy to verify that if ¢ > 0,
A< —1, Aoy > 0.

Letting T" — oo,

~1 c+1i
8CP . 1 Oox_w_ /oo |: rw o wHl qxiow:| 6%02A(w)(n—t)dndw
t

or  2mi
(a:;o ) (wtd) rw <$Zo>(w+1)]
q - dw.
T ¥, w+1l\ =z

1 c+to0 ) 1
Note that at any time ¢, there is infinite time to maturity, and therefore
the free boundary of the perpetual American lookback call is constant, i.e.,

—

c—1i00

T2 J, e 02 A(w)

m
S (t) = S for all t. Hence, z%, = o is constant, too.
[e.e]
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In addition, it is necessary that Re(A(w)) < 0 to ensure that (4.4.5)
holds as T" — oo. Hence, 0 < Re(w) < Ag.

Then,
80]13 (x* )_L /c-‘rioo kl 1
ox % 2mi J i (w— A1) (w — Xo) a%,
1 c+1i00 w
— (k1 — ko) — dndw.
(k= k2)5 /C_m (w — A1) (w — M) (w+ 1)

Because 0 < Re(w) < Ag, by application of the residue theorem,

80113 kl 1 )\2

— () =—————= + (k1 — k2 . (4.4.6)
ox ( OO) Tk ()\2 — )\1) ( )()\2 - )\1)(1 + )\2)
_ 1 /1) %)
In case of C%, the Mellin transform of f (¢, —) <> is f(t, ka—1—w)
' \z
and
. Tx*(t)(kQ_w) qz* (t)(kg—l—w)
tka—1—w)= -
f( 2 w) k‘z —w ]{22 —1—-w
with Re(w) < kg — 1.
Similarly, as T — oo,
B c+ioco T * (ka—w) * (ka—1—w)
C]zp(t,l’) — L xfw/ re (77) . qr (77)
270 Je—ioo ¢ ko —w ke —1—w (4.4.7)
x €27 AWM= gy
and
867(123 :i etuee w1l /OO rw " (k2—w) quw o* (ko—1—w)
ox 27 Jo_iso ke —w ™ (ke —1—w) =
x €27 AWM= gy
1 fetice g g (wtl) w w
— il * (ke—l-w) _ * (k2—w)
- 2mi /C,ioo o2 A(w) {qu—w—lxoo rkg—wxoo }dw
80
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CHAPTER 4. AMERICAN FLOATING STRIKE LOOKBACK OPTION

with \; < Re(w) < ko — 1.

By application of the residue theorem,

o902 . 1 c+ioco wr* (k2 —2—2w)
P(at) = kg [ =
Oox 270 Jo—ing (W —=A1)(w— A2) (k2 — 1 —w)
1 C+’iOO wm* (k2—1—2w)
— (k1 — k 7/ o0 dndw (4.4.8)
S e P (I W] (TR W 1y L

Azt (k2—2—2X1)
)

=k =) (k2 —1—Ny) (k1 = k2)

)\137* (k2—1—2X1)
o

(A1 = A2) (k2 — A1)

_ ko—1
In case of C%, the Mellin transform of (ko—1) [flm ft, %) <%>( Y % y] sy
is —Mf(t, ky — 1 —w) and

w

B N o o Ol

w w(ks — w) e w(ky — 1 —w)

with Re(w) < 0.
Similarly,

c+ioo

°F =5 v ! r(l - k2)x*(77)(k2_w) _ q(1 — ky)a* ()R>t 7)
Cp(t,l') T omi c—ioo /t l: w(kQ — w) w(k2 1 w) :| (4.4.9)

~ e%rrzA(w)(n—t)dndw

and as T — oo,

86}33 1 oo x—w—l /OO |:7"(1 - k2) # (ko—w) —q (1 - k2)
t

—_— — x
N o0
Ox 218 J oo ko —w

* (kQ—l—’U})
(hy —1—w) "™ ]
x 37 A=) gy

N A O ) P L. VR G R Ul
270 Joino 02 A(w) (k2 —=1—w) =

x (k2—w)
[— Tho ] dw

with A\ < Re(w) < min{0, ks — 1}.
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By application of the residue theorem,

~3
O (a3.)
Bk [ ag e
I /H-oo (W —A)(w— o) (k2 —1—w)

(ky — ko)(1 — ky) [eti® g (ka=1-2w) ; (4.4.10)
_ 27 /c—ioo (w — i) (w — Aa) (ka2 — w) w

g+ (ka=2-2X1) o (am1-22p)

=ki(1— ko) o0 — (1 — ko) (k1 — ko) o0

(A1 = A2) (k2 — 1= A1) (A1 = A2) (k2 — A1)

By (4.3.5) and x = &,

s
CE(t, .’)3)
1

1
:eiq(Tit)N(d-li_(Ea T - t)) - xeir(Tit)N(dl_(ga T— t)) (4.4.11)

2 2(r—q) _ _ _ 1
+2(T”_ . {eT(Tt)x = N(dy (x,T —t)) —e 9" tW(df(x,Tt))}

By performing a computation, it is not hard to show that

—8CE —+0 as T — oo. (4.4.12)
ox

By applying ”smooth pasting conditions”,

oC
lim — =—1 (4.4.13)
z—a*(t) Ox
and (4.4.6),(4.4.8),(4.4.10),and (4.4.12),
kl 1 )\2 Alliz;o(k27272>\l)
1= - _
el vens v I GO s wey w1 vy v BN Sy v (e
Azt (F2=1-201) « (ka—2—2X1)
— (k) Oa =)k =) Fa(l = k2) M —xa)(k2 —1— A1)

a:;o(k27172>‘1>

— k)= b e e — )
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CHAPTER 4. AMERICAN FLOATING STRIKE LOOKBACK OPTION

Using A1 + A9 = ko — 1 and A Ao = —k1, we obtain

o+ Geman) _ AL (L A2)25 — A
ee Ao (1—{—)\1)1‘;0—)\1,

(4.4.14)

which is the critical value of an American floating strike lookback call option
derived by Dai [9].
O

We can also prove the following theorem using Theorem 4.4.1

Theorem 4.4.2 (Price of perpetual American floating strike call
option)

The closed-form price formula of the perpetual American lookback call op-
tion is given by

C(s,m) = sAy (%)M + sAy <%>/\1 . S > Sk

where

(1+)\1) -\ _(1+)\2)* — A9

A
e e (M = Ag)az, ™0

and A1, A2, and x5 are defined in Theorem 5.4.1.

Proof By (4.44),

c+ioco T * w—+1 * w
Cp(t,z) = L :c“’/ [m (n) _ a2 (n) ] e%"QA(w)("*t)dndw
t

27 Je—ioo w+1 w

with 0 < Re(w) < As.

Letting T' — oo, then

B 1 c+ioo o) * w41 * W
Cplr) = —5 x_w/ [mm o } 27 A0 dydu
T Je—ioo ‘ w+1 w
1 2 c+i00 * * \ W
72“ xk <£L’OO> dw
" 2rio emico (W4 1) (w—A)(w—A2) \ =z
1 2 c+100 1 * w
_ 7% <x°°> dw.
27102 Joioo W(w — A1) (w—A2) \ z
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By application of the residue theorem,

* 0\ A2
Cp(z) = 1t A)re = b <$°°> :

4.4.15
(/\2 — /\1) X ( )
By (4.4.7),
Ch(t,x) = — 1 cHiee o /T ra*(n) k=) _ qa* (n)k2—1-w)
P 270 J o ioo ¢ ko —w ko —1—w
X e%UQA(w)("_t)dndw
with A — 1 < Re(w) < kg — 1.
Letting T" — oo, then
1 ctioco o0 [ oy (k2 —w) qx* (k2—1—w) L
2 - —w o) _ o 50°A(w)(n—t)
CPo)=—55 ) @ /t l ks — w ke —1—w |© dndw
1 2r c+ioo T* (k2 —2w) T* w
=—— x© T ) g
2mi 02 /C_ioo (k2 —w)(w — A1) (w — A2) ( x ) v
1 2q c+ioco :L'* (k2—1—2w) x* w
_ - A e S dw.
27 o2 /c,im (k2 — 1 —w)(w— A1) (w—Ag) < x > v
By application of the residue theorem,
= - 1‘1‘)\1)1'* +)\1 zk M Ao—\
C2(z) = = S o0 x Qe=) 4.4.16
P(x) ()\1 _ )\2) T Too ( )
By (4.4.9),
Bt = b [ [ [ gk 1
o 2 Jo—io ¢ w(ky — w) w(ky — 1 —w)

x €27 AWM= gy

with Re(w) < min{0, ka — 1}.
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Letting T' — o0, then

_L c+1i00 - /oo 7“(1 _ kZ)xzo(k’z—w) B q(1 — k2)$;o(k2—1—w)
2700 J o—ioo ¢ w(ky — w) w(ky — 1 —w)
% e%GQA(w)(n—t)dndw
1 2r /c+ioo (1 _ k,2)l,:;o(k2—2w) :L';o w p
= w
27102 Joljoo w(ky —w)(w — A1) (w—A2) \ =

1 2 c+ico (1 _ kQ)x:o;o(kgflwi) (x)&,)wdw

T

271 02 Joljoo W(ka — 1 —w)(w — A1) (w — A2)

By application of the residue theorem,

ooy O M) =M (2NN L e (4417
CP(IL‘) — )\1()\1 — )\2) - Lo . ( S )

By Theorem 4.4.1 and (4.4.15),(4.4.16),and (4.4.17)

Cp(z) = (1+ M)z — M <$§<>>A2 4 At d)as =X <$&>Al ,

()\2 — )\1) T ()\1 — )\2) x
From (4.3.5),
Cp(t,z) -0 as T — oo; (4.4.18)
therefore,
N B N T £ N P S e VR TN
) =Crln) = (A2 = A1) v ) T . ) A9

Because x = ™, we obtained the desired result.

4.5 Summary

This paper describes our examination of the valuation of American floating
strike lookback options written on dividend-paying assets. Usually, the val-
uation of American options is equivalent to solving a free boundary problem
of the inhomogeneous Black-Scholes PDE. However, in the case of American
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floating strike lookback options, the Neumann boundary condition should be
considered due to the existence of the lookback state variable. Therefore, our
examination started with an analysis of the inhomogeneous Black-Scholes
PDE with a Neumann boundary condition. The analysis consisted of two
steps.

We first converted the PDE with a Neumann boundary condition into
the same PDE with a Dirichlet boundary condition by changing the variables
such that they were particularly apt to accommodate the properties of the
Mellin transform.

The second step consisted of extending the domain of the given PDE.
Whereas the Mellin transform is defined on the domain, the given PDE
involving the value function is defined only on the domain, and we used a
scaling and reflection method to introduce the absorbing Neumann boundary
operator. We then used this operator to extend the PDE onto the domain.
Using these two steps, we derived the integral equation satisfied by American
floating strike lookback options, after which we also derived the closed form
of the value of perpetual American options.

In conclusion, we proposed an approach based on the Mellin transform
for solving inhomogeneous Black-Scholes PDEs with a Neumann boundary
condition. As a result of the general applicability of our methodology, we
expect this approach to be useful for solving a variety of option problems.
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Chapter 5

American maximum
exchange rate quanto
lookback option

Quanto options stand for ”quantity-adjusting options”, in which the op-
tions’ payoff is both affected by domestic and foreign currency. There are
various kinds of quanto options depending on the purpose and they are one
of the most popular options. Kwok and Wong [50] studied the payoff for var-
ious kinds of quanto options. Especially we note Dai et al. [11] research on
American maximum exchange quanto lookback options which take account
of maximum exchange rate.

In this chapter, we draw analytic pricing formula for exchange rate
quanto lookback options where exchange rate is applied to the maximum
value until maturity. In particular, we studied American maximum exchange
rate quanto lookback options of which option holders are free to exercise op-
tions prior to their expiration date. Such options are not easy to deal with,
since they are multi asset options and they have characteristics of Ameri-
can options as well as lookback options. Although Dai et al.[11] proved the
various properties for the free boundary of American exchange rate quanto
lookback options, they didn’t obtain analytic pricing for such options. To the
best of our knowledge, there has been no research which draw an analytic
formula American exchange rate quanto lookback options.

A lookback option is a path-dependent option, which means that payoff
of the lookback option depends on the maximum or minimum of an un-
derlying asset. Lookback options are traded on the market with a variety of
form, such as dynamic fund protection(Gerber and Shiu [19]), turbo warrant
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options(Wong and Chan [67]). Therefore, there have been lots of researches
for pricing lookback options. Analytic formula for the European lookback
option is derived by Goldman et al.[23], Conze and Viswanathan [7] and
pricing formula for European quanto lookback options with two underlying
assets was derived by M.Dai and Y.Kwok [11].

An American option can be mathematically seen as an optimal stop-
ping problem in that option holders can exercise options at any time up to
the option’s expiration. Kim [43] derived the integral equation satisfied by
the American option at the very first. Since then, researchers have started
to research on various American options. Especially, Russian options have
been intensively studied since they are typical example of American look-
back style options. Shepp and Shiryaev [63] investigated pricing formula for
perpetual Russian options, and after that Ekstrom [15] and Peskir [58] ex-
tended formula to Russian options with finite time horizon. Dai and Kwok
[13] analyzed the optimal stopping boundary for American floating strike
lookback options, and Lai and Lim [52] drew the integral equations satisfied
by American fixed strike lookback options.

There are lots of options involving two underlying assets. For example,
vulnerable options(Johnson and Stulz [36]) consider the default risk of op-
tion holders and writers. Also, maximum options (Johnson [37]) take payoff
function equal to the maximum payoff of two underlying assets, and spread
options (Carmona and Durrleman [5]) have the payoff given by a function
of the difference of two underlying assets. Different from a single asset, in
multi asset pricing, additional difficulty and complexity of analysis arises
due to the correlation between underlying assets. Broadie and Detemple
[3] explored the property of free boundary in American options with multi
underlying assets.

In this chapter, the main tool for deriving formula is the double Mellin
transform technique. The Mellin transform is a type of integral transfor-
mation and can be seen as a two-sided Laplace transform. In particular,
it converts a Black-Scholes PDE into a simple ODE. Therefore it is suit-
able for option pricing and has been widely used. To list some examples,
Panini and Srivastav [56] derived the integral equation satisfied by the value
of American options. Jeon et al. [32] handled valuing Russian options with
finite maturity using the Mellin transform. Also, there has been researches
regarding the double Mellin transform, which is a two-dimensional version
of the usual Mellin transform. Yoon and Kim [69] priced vulnerable options
using the double Mellin transform, and Jeon et al. [33] derived the ana-
lytic solution for the general two-dimensional Black-Scholes equation with
time-dependent coefficients using the double Mellin transform.
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Many researches have focused on numerically solving the integral equa-
tion for American options. For single asset problems, Huang et al. [27] pro-
posed the recursive integration method to numerically solve the integral
equation derived by Kim [43]. Ju [38] used multipiece exponential method,
which involves the approximation of free boundary by exponential functions.
Also, Kim et al.[44] suggested an iterative algorithm called a simple iterative
method’ to solve the integral equation, and the algorithm is very effective
in the view of computational efficiency, accuracy, and convergence speed.

For multi-asset problems, however, the free boundary depends on not
only time but also other state variables. Therefore, solving the integral equa-
tion involving such free boundary becomes much more complicated, and ac-
tually there are few known algorithms for solving such integral equations.
Chiarella [6] suggested such an algorithm for American spread call options
written on two underlying assets.

The Black-Scholes equation with mixed boundary conditions frequently
arises in option pricing problems involving the maximum or minimum pro-
cess for underlying asset. For a single asset problem, Jeon et al. [32] drew
out a general solution for one-dimensional Black-Scholes PDE. This chap-
ter extends the result of Jeon et al. [32] to two-dimensional option pricing
problems.

5.1 Model Formulation : Free boundary problem

In this chapter, the usual assumptions of the Black-Scholes environment are
adopted. Let F; denote the exchange rate at time ¢, which means that F;
represents the domestic price at time ¢ of one unit of foreign currency. Let
St be the foreign currency price at time t. Let rq and ry be the constant
domestic and foreign riskless interest rates, respectively. Then, the stochastic
dynamics of S; and F; are described by

dS; = 64Sdt + 0,S;dWd

. (5.1.1)
dFt = (Td — Tf)Ftdt + O‘thde

where o, oy are the volatility of Sy and F;, respectively. wé, W]‘f are stan-

dard Brownian motion under the domestic risk neutral measure Q¢ and
dWdeW]‘f = pdt. By using Quanto Prewashing Technique introduced
by Dravid et al.[14] ,

o4 =Try—q—posos
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where ¢ is the dividend yield of the foreign asset S; in foreign world.

For the exchange rate process, define the maximum process of F; as

My = max F,, t>0
0<~y<t
Consider the American maximum exchange-rate quanto lookback call
option, whose terminal payoff function in the domestic currency world is
given by
My - (Sp— K)*

where K is the strike price in foreign currency and 7T is the expiration date
of call options and (z)* := max(z,0).

In the absence of arbitrage opportunities, the value C(t,s, f,m) of an
optimal stopping problem given by

C(t,s,f,m)= sup E e_rd(T_t)MT(ST ~K)" | S;=8F =f M = m]
t<r<T

where 7 is the stopping time of the filtration F generated by (W¢, W]‘Z)
and E is conditional expectation calculated under the domestic risk neutral
measure Q%.

By standard technique of optimal stopping problem (also known as the
variational inequalities),

min{£ C, C—m-(s— K)t} =0
gi(t,s,m,m) =0, C(T,s,m,f)=m-(s—K)* (5.1.2)
s>0,0< f<m, 0<t<T,

The partial differential equation operator £ is defined by

o 2 52 2 82

(o f 0 0
L=—+ = + f28f2+paofsfaaf+§d +(ra—rp)fz —ral

2
ot 27 95 of

where 7 is identity operator.

Let
R=A{(t,s, f,m) €0, T] x Ry x [0,m] x Ry}
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be the whole region. and let S and S denote the stopping region and contin-
uation region, respectively. Then, in term of the value function C(t, s, f,m),
the stopping region § is defined by

8:{(t787f7m) ‘ C(t,s’f,m):m(s_K)“F}
The continuation region S¢ is the complement of S in R,
SY = {(t,s, f,m) | C(t,s, f,m) >m(s — K)*}

The boundary that separates S form S¢ is referred to as the free bound-
ary, is given by

S*(t7 f?m) = Sup{s e Ry | (t,s,f,m) € 80}7 te [OaT]

According to Dai et al. [11], similar to American type call options, the stop-
ping region and the exercise region of C' correspond to s > s*(t, f,m) and
s < s*(t, f,m), respectively. In terms of free boundary s*(t, f,m), the con-
tinuation region S¢ can be expressed by

SY={(t,s,f,m)|0<s<s*t fm)}
Also, at the free boundary s = s*(t, f,m),
C(t,s*(t, fym), fym) =m(s*(t, fym) — K)

oC (5.1.3)

g(t’ S*(t7f7m)7f7 m) =m

The boundary condition (5.1.3) is called the smooth pasting condition.

We introduce a new change of variables

_f
z = —
m
and transformed value function
t
Vit,s, z) = 70( .5, f,m)

m
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Then we can rewrite the variational inequalities (5.1.2)
min{L V, V- (s—K)"} =0

(?/(t, s,1) =V(t,s,1), V(T,s,2)=(s— K)+
z

§>0,0<2<1,0<t<T,
Further, for 0 < €*(t, 2) := s*(¢, f, m)

2

LV (t,s,2)= (“)t+ 5 8 82 f af2+pgsaf5fa o7 +dss 5.1
oV o
+ (ra — Tf)faff —rqV =
with auxiliary conditions:

V(T,s, z) =a(s) = (s — K)*
Vit e*(t,2),2) =€ (t,2) — K
P etz =1 (5.1.5)
ov

a(tv S, ]-) = V(t’ S, 1)

In terms of the value function V (¢, s, z), the stopping region S is given
by

S:={(t,5,2)|0<t<T,e*(t,2) < s}

={(t,s,2) | V(t,;s,2) =s— K, 0<t<T,0<s<o0, 0<z<1}

and the continuation region S¢ is given by

O ={(t,s,2) |0 <t <T,e*(t,2) > s}
={(t,s,2) | V(t,s,2) > (s—K)", 0<t<T,0<s<o0, 0<2z<1}

Overall, the value function V(t,s,z) satisfies the following PDE with
boundary conditions (5.1.5) :

v o £+ﬂ282 +005282V+5d38—v+(r fr-)za—v—r
ot T2 sz T o7 gar TPOsOsStg gy T o ram )2 mralg )
= B(t,s,2)
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where
6(15, S, Z) = (_(Td - 5?) "S+Tq- K)l{sze*(tz)}
and on domain {(¢,5,2) |0<t<T,0<s<o0, 0<z<1}

Therefore, the value of American maximum exchange rate quanto options
satisfy two-dimensional inhomogeneous Black-Scholes equation (5.1.6) with
mixed boundary conditions (5.1.5).

5.2 Derivation of analytic solution for two-dimensional
inhomogeneous Black-Scholes PDE

In section 5.1, we saw that the price of American maximum exchange rate
qunato lookback options are formulated into two-dimensional inhomoge-
neous Black-Scholes PDE with mixed boundary conditions on restricted
domain. In this section, we derive the analytic solution for two-dimensional
inhomogeneous Black-Scholes PDE on restricted domain. During the deriva-
tion, we mainly use the double Mellin transform, whose basic definition and
properties are summarized in the appendix A.2.

5.2.1 Two-dimensional Inhomogeneous Black-Scholes parabolic
PDE on Unrestricted Domain

In this subsection, we apply the Mellin transform approach to derive the
analytic solution of two-dimensional inhomogeneous Black-Scholes PDE on
unrestricted domain. Using the double Mellin transform, we convert the
given PDE into a relatively simple ODE whose solution can be explicitly
represented. Having found the transformed solution, we invert it to get the
original solution by using inverse double Mellin transform and convolution
property of the Mellin transform.

Define the two-dimensional Black-Schoels PDE operator £ as

9 o ,02 o, 02 0?2
L=_2+ 22 — + Eny— + pogoy

0 0
ot 9 a.%'Q 8y2 +rer— + Tyy(?iy —rZ

vy 0xdy Ox
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Consider the following two-dimensional inhomogeneous PDE problem

LV (t,x,y) = f(t,z,y)
V(T,z,y) = h(z,y) 20

with domain {(¢,z,y) |0<t<T, 0<z < o0, 0 <y < oo}

Let V(t,aj*, y*) is the double Mellin transform of V (¢, z,y). Then, by PDE
(5.2.1),

av N
o TAESYIV = [t ety
o2 9 (5.2.2)
T2 w2, Oy a2 o2 Ty 4
A(a;*,y*) = ?xx* + 9 -y +pa$aya: T (ry — ?)3; — (T'y — E)y —r

The solution of (5.2.2) is

T
V(t,a",y") = ha®,y*)erE T _ / A )0=0) f 5 4y
t

By inverse double Mellin transform,

co+ioco c1+ioco A
V(t,x,y) / A(w YT =" =" do* dy*
27”’ Co—100 c1—100
catico  peptioco A .. . . (523)
_/ (/ / (0, 2,y )e A ) =0 = = dx*dy*) dn
t Cco—100 c1—100

To compute (5.2.3), let us consider

co+1i00 cl+zoo .
Gzt z,y) / T=0) =2 =Y da* dy* (5.2.4)
27” Cco—100 c1—100
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In Yoon and Kim [69],

Ge(r,a,y)
(72 2
PIxOyT _ _ _ u POy

1< 5 (ke — 1) (Ty 2>T+ ou lnx> (ai(k’w—l)Q n >

=exXpy —35 - r|T
— 2)52
2 (1—p2)o2r 8
ﬂzrz;;y‘r(k171)7 Ty7§)7'+p:;l Inz 1 me \2 7;( Iny >2
1—ky PRps) ’ 675(”1ﬁ e Z\oyVa-o2r

zzhy (=p2)o2r

o217 oy /21(1 = p?)T

where k, = 2r, /02, k, = 2@/05.

Let us call Gz(t,x,y) Green function of Blak-Scholes PDE operator
L. By the double Mellin convolution property in Appendix A,

00 00 Ty
Vit = h T—t,— =
( 7':U7y) 0 0 (’LL,U)) gﬁ( ’U,U})

1
U
T 00 o]
r y. 11
— ~(n—t, —, >)——dudwd
/t/o ; f(nyusw) Ge(n —t, =)~ —dudwdn

5.2.2 Two-dimensional inhomogeneous Black-Scholes parabolic

PDE : Dirichlet Boundary Conditions

In this subsection, we derive the analytic solution of two-dimensional in-
homogeneous Black-Scholes PDE with Dirichlet boundary conditions. The
spatial domain of PDE is restricted to the strip, which means one of the spa-
tial variable is restricted to a finite interval. We use the method of reflection
to extend the spatial domian of PDE into unrestricted domain, and then
we apply the results of section 5.2.1. Solving the Black-Scholes PDE with
Dirichlet boundary conditions is closely related to the valuation of pricing
barrier options, and it also enables to derive a closed form solution of Euro-
pean external barrier options(Kwok et al. [49]).

For two-dimensional PDE operator £ defined in Section 5.2.1, consider the
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following PDE problem :
(

on domain {(¢t,z,y) |0<t<T,0<z <00, 0 <y<1}.

To solve (5.2.5), we consider unrestricted domain PDE :

LV (t,x,y) = (t,x,y)l{y<1}

_ (5.2.6)
( ,1’,y) = (xay)]‘{y<l}
By Section 5.2.1,
z y. 11
)1 Z oI\
V(t,z,y) / / (u, w) g1y G2(T b w)uwdudw

///f Vpwery Goln—t, % 9 L dudwa
n,u, W) {w<1} Y2£\1] W W uw uawan

Lemma 5.2.1 For green function Gz(t,z,y) defined in Section 5.2.1,

2pog 1

Get,z,y) =y ™Gty v , ;)

Proof. The proof is similar to the proof of Lemma 2.1.1.
O

Theorem 5.2.2 (Two-dimensional inhomogeneous Black-Scholes PDE
with Dirichlet boundary conditions)
The solution V (¢, z,y) of PDE (5.2.5) satisfies the following extended PDE:

2pox

_ — 1
EV(t7$7y) :f(t7$7y)1{y<1} - yl_kyf(tvy v, ;)1{y>1}

2p0g

B _ 1
V(T,z,y) =h(z,y) 1<y — ¥ "h(y” ﬂfv;)l{yﬂ}
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Proof. By Lemma 5.2.1, V(t,z,y) of (5.2.6) is given by

V(t,z,y)
v\ R yy mte w11
/ / h(u, w)1gy<1y (E) GF(T —t, (w) . y)uwdudw
T e (9 m (2 5 5
] 0 0 n,u,w {w<1} w L ) w u v uw uawan
and it leads to
yIm T (L y 2”?’35 1)
11
L=ky fy (0 1 £ 02 2 dud
/ / ) {w>1} gﬁ( uvw)uw uaw
/ / / 1=ky £ ( -2z u, )1 Grln—t,= g)lldudwd
77, {w>1} Y2\ uvw ww n
— _ _ 2pog
Then, V*(t,z,y) = y" RV (t,y v x,%) is the solution of following
PDE:
AY Tk 1—-k —2poe 1
LV (t,x,y) =Y yf(tay v, ;)1{y>1}
2poy 1

VAT, a,y) =y Mh(y v a, 5)1{y>1}

We define V (¢, 2,y) = V(t,z,y) — V*(t,2,y). Then

2pog

_ _ - 1
ﬁV(t,J},y) = f(t,:c,y)l{y<1} - yl kyf(tay v, ;)1{y>1}

_ 2pox 1
V(T,z,y) = h(z,y) 1<y —y' ™h(y” v a, )1{y>1}

and V(t,z,1) = V(t,x,1) — V*(t,z,1) = 0.
Hence, V(t,x,y) is the solution of PDE (5.2.5) and given by

2pog

. I 1
Vit,z,y) = V(t,z,y) —y "V (t,y o wvg)

97

-';r'h.-l! 'Cl:l' 1_]| Bl



CHAPTER 5. AMERICAN MAXIMUM EXCHANGE RATE QUANTO
LOOKBACK OPTION

5.2.3 Two-dimensional inhomogeneous Black-Scholes parabolic
PDE : Mixed Boundary Conditions

In this subsection, we derive an analytic solution of mixed boundary problem
for two-dimensional inhomogeneous Black-Scholes PDE. Using differential
operators, we convert the PDE with mixed boundary conditions using dif-
ferential operators into the PDE with Dirichlet boundary conditions, whose
analytic solution is derived in section 5.2.2. Then we apply the theories in
section 5.2.2 to derive an analytic solution of mixed boundary problem for
two-dimensional inhomogeneous Black-Scholes PDE. The derived solution
will be of great importance in section 5.3, where we derive analytic formula
for pricing American maximum exchange rate quanto lookback options.

For the PDE operator £ defined in Section 5.2.1,

LV (t,z,y) = % %iQEQ (21‘2/ + %f,yz B;y‘?/ + PUmUny% + m:rg—‘; .
+Tyy%—‘y/—7“v=f(t,x,y) ;
with boundary conditions
V(T,z,y) = h(z,y)
g‘y/(t, z,1)=V(t,x,1) (5.2.8)

with domain {(¢,z,y) |0<t<T,0<z <00, 0 <y<1}.

We define differential Operator D[] as follows :

Then,

Let P(t,z,y) = DV(t,z,y)], qlz,y) = Dlh(z,y)] and &(t,2,y) =

ZP(t,x,y) = f(t,ﬂ?,y)

Plt.a,1) =0 (5.2.9)
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with domain {(¢,z,y) |0<t<T,0<z <00, 0 <y <1}

By Theorem 5.2.2, the solution P(¢,x,y) of PDE (5.2.9) is expressed by

_ _2p0z ]

P(t,z,y) = P(t,z,y) — yl_kyP(t,y v o, g)

where P(t,z,y) satisfies following PDE:

LP(t,x,y) = &(t, 2, y) L1y (5.2.10)

P(T,Cﬂ,y) = Q(:an)l{y<1}

with domain {(¢,z,y) |0<t<T, 0<z < o0, 0 <y < co}.

Let ‘_/(t,:v,y) = D_I[P(t,m,y)], V*(t,x,y) = D_l[P*(t,x,y)]. Then

V(t’x7y) = V(tw,y) - V*(t7$7y)

By inverse double Mellin transform,

~ ~

P*(t’ x*,y*) — _(1 + y*)V*(t, x*,y*)

where V, P, V*, P* are double Mellin transform of V, P, V*, P*, respectively.

From (5.2.10),

d]f) % % * %\ P F * ok
E(tﬁ[; Y )—FA(JJ Y )Pzg(tax Y )

where ¢ is the double Mellin transform of & (t,7,9)1{y<1}- By definition of
P7 g(t7 x’ y)7

dv k% % K\ T R * %k
%(tax 'Y )+"4($ Y )V:f(t,ilf Y )
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where f is the double Mellin transform of f (t,7,y)1fy<1;- Hence,

EV(t,Qj‘,y) = f(tvxay)l{y<1} (5211)
By Section 5.2.2, P* is the solution of following PDE :

— — 2poyx

) B . 1
LP (t,l’,y):yl kyg(tvy v x, )1{y>1}

Y
2p0x

_ L 1
PHT,z,y) =y Mgy v IR OSY

Also,
dP* R . 2
E (2%, y") + Ala®, g ) P =t at, —yt — L 4k — 1)
dt Oy
and

Since P*(t,aj*,y*) =—(1+ y*)V*(t,a:*,y*),

(t,x*,y*)—I—A(aﬁ*,y*)V*

dt
(1—y* — 2%0* 4k, — 1) 9
= 1” - Y ftz*, —y* — psz*+ky_1)
Ty , . Ty , (5.2.12)
r * * POz y+ * * POz
= flt,a*, —y — L g, 1 t - ky — 1
f(am7 y O'ym + Yy )+1+y*f(ax? y o_y + Yy )
- T - T .
oy 1+y*" 2777 4 o Y

Lemma 5.2.3 Let Q(z,y) is the double Mellin transform of Q(z,y),

i.e.lQ(x*,y*) = Myy(Q(z,y);2*,y*). Then, inverse Mellin transform of
N ¥ ok 2p0x % o : .
T y*Q(az , =Y oy T k, — 1) is given by

_ 1 2po vo_ _2p00 1
1 x« _ox  “PY%x o« _ _ (14ky) - -

k 1)) = y t v d
Mz <1+y*Q(x, Yy ¥+ ky )) y/o U Qt,u x,u) u

Oy
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Proof.
_ 1 - _ 2pos
M 1 *, ok * k _ 1
oy <1+y*Q(w Y ay + )>
catioo /cl+zoo Q * 25’%1‘* +ky - 1) —z* *y*d *du*
- x=" y~Y dx*dy
277@ Cco—100 c1—100 1+y

co+i00 c1+ioco 2
A * * POz z* —y* *
— -y = —a" 4+ ky -1 ) Yd
~ 2mi ; 1+y (27m/c G * v )y Y

C2—100 1—1200 UZI
Since,
My (1+ ) Z-,I {y>1}
1 Cl-'rlOO A 2 . .
( Qz", —y* — P +ky— 1" dx*)
7T c1—100 UZ/
Oy

_ 2p0g 1

Yyl k) i
Qty )

and by Mellin convolution property of single variable,

— 1 A * * 2p Oz z*

Oy

Also, by properties of Mellin transform in Appendix A.2,

— r* YR ] * 2p *
Mt (Tt v = 250 oy - )

0 -1 1 A * * 2paz *
= —Tr— -y — -1 2.1
:L‘ax./\/lxy <1 e (x*,—y o + ky )) (5.2.13)

a Yy _ 2pog 1
— .2 wu—(tky) o =
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Lemma 5.2.4 Consider the following PDE problem :

2p0g

_ Y - 1
EQ(t,x,y) = yl{y>1}/1 u_(1+ky)£(tau 7T, E)du

(5.2.14)

Then, the solution Q(t,z,y) of PDE (5.2.14) is given by

_ 2pog 1

Yy
Aty =y [ a P
0

where P(t, z,y) satisfies LP(t, z,y) = &(t, , Y)1y<1yand P(T,z,y) = q(z,y)11y<1y-

_2pox

1
Proof. Let P*(t,xz,y) =y P(t,y  °v x,—). Then, by Section 5.2.2,
Yy

P D* 1-k — 2202 1
LpP (t,x,y) =Y yf(t,y v T, g)]‘{y>l}
By double Mellin transform,
dpP* fe 2 2
+ Ay P = €t~y — T k- 1)
dt oy

where P* and £ are the double Mellin transform of P* (t, 2, y) and £(t, 2, y)L{y<1}s
respectively.

By Lemma 5.2.3,

Hence

Qt,z*,y*) = _1+y*P t,x

By Lemma 5.2.3, we have proved the desired result.
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By Lemma 5.2.3 and (5.2.12), (5.2.13),

. _ 2pog 1

LV*(ta,y)=—y M flt,y o %y

Yy
— (ky + 1)y1{y>1}/ w R f (™, =) du (5.2.15)
1

iy>1y

2 . 2004 _ 2pox
_ POz Z‘yl{y>1} / " (1+ky+ iy )fl(t7 u f,,y x, 7)du
Uy 1 u

In (5.2.15), by integral by parts,

_2p00 ]

_ 2pog 1 v X
:_yl_kyf(tvy v $,*)+f<t,$(},1)+/ U’_kyg (f(tvu Y 1'7)) du
Yy 1 5 u

" (5.2.16)

_ 2pog 1 2 . 2004 _ 2pos 1
=— yl_k”f(t,y CH x, =)+ f(t,z,1) — ﬂx/ u Rt e )fx(t,u o x, —)du
y Uy 1 u

b [Ny D
' U 2 U x,u U
From (5.2.11),(5.2.15) and (5.2.16),

— y — =
EV(t,I,y) :f(tvxay)l{y<1} + yf(t»177 1)1{y>1} + yl{y>1}/ u7(1+ky)f(t7u v X, E)du
1

v _ 2pog 1
—yl{y>1}/ ” (ky+2)fy(t7u oy x’ﬂ)du
1

By same procedure,

_ 2000 ]

Y
V(T 2,y) =h(z,9)Liy<ry + yh(z, D11 + vl / w TR =) du
1

_ 2000 ]

y
7y1{y>1}/1 ui(ky+2)hy(u 7y x,a)du

Hence, we proved the following Theorem.

Theorem 5.2.5 (Two-dimensional inhomogeneous Black-Scholes PDE

with mixed boundary conditions)
The solution V(¢,z,y) of PDE (5.2.8) with operator (5.2.7) satisfies the
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following extended PDE:

_ v _ 2000 1
EV(t,.’I},y) :f(t7xay)1{y<1} + yf(t,(,& 1)1{y>1} + yl{y>1} / U (1+ky)f(t7u vz, E)du
1

_2p00 ]

Yy
—yl{y>1}/ u—(ky+2)fy(t’u oy x’ﬂ)du
1

_ 2000 ]

Yy
V(T,Ji,y) :h($,y)1{y<1} + yh(IIZ, 1)1{y>1} + yl{y>1}/ u7(1+ky)h(u vz, E)du
1

Y
—yl{y>1}/1 uf(ky+2)hy(u ﬁx,a)du
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5.3 Analytic Pricing of American Maximum Exchange-
Rate Quanto Lookback Options

In section 5.1, we derived the Black-Scholes PDE with mixed boundary con-
ditions satisfied by the value of American maximum exchange rate quanto
options. Using the technique developed throughout the section 5.2 to solve
Black-Scholes PDE with mixed boundary conditions, we now derive analytic
formula for American maximum exchange rate quanto options.

Since a(s) = (s — K)T and B(t,5,2) = (—(ra = 6%) - s + 74+ K)Lgsex(z,2)) in
(5.1.6), by Theorem 5.2.5, the value function V' (¢, s, z) satisfies the following
PDE :

EV(t, S, Z) :B(tv S, Z)]-{z<1} + Zﬁ(tv S, 1)1{z>1}

z _ 2pos 1
+Zl{z>1}/ u7(1+kf)ﬂ(t7u of S’E)du
1

V(T7 S, Z) :a(s)l{z<1} + ZOZ(S)]_{Z>1}

_ 2pos

—|—z1{z>1}/ uw TR (w75 s)du
1

where kf = 2(rq — rf)/aj%.

Let
Vt,s,z) = VEg(t,s,z) + Vp(t, s, 2)

where Vg (t, s, z) and Vp(t, s, z) satisty following PDEs:

LVg(t,s,z) =0
VE(T, s,2) =a(s)1i.<1y +Zza(8)1{z>1} (5.3.1)
+ zl{z>1}/1 uw R (0 3 s)du
and
LVp(t,s,z) =B(t,s,2)1{zc1y + 28(t, 5, 1)1 51y
+ 2105 /1 w O By~ o s, %)du (5.3.2)

Vp(T,s,z) =0

Define Cg(t, s, f,m) = m-Vg(t, s, %), Cp(t,s, f,m) =m-Vp(t,s, %) Then,
Cg is the value of the European maximum exchange rate quanto lookback
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options with terminal payoff m - (s — K)* and Cp(t,s, f,m) is the early
exercise premium of American maximum exchange rate quanto lookback
options. Clearly,

C(t,s,f, m) = CE(t,s,f,m) + Cp(t,s,f,m)

We decompose the value of American maximum exchange rate quanto op-
tions into their European part and the early exercise premium part as above.
Now we derive the analytic solution for each part separately.

5.3.1 European Maximum Exchange Rate Quanto Lookback
Options

Theorem 5.3.1 The price of European maximum exchange rate quanto
lookback option, Cg(t, s, f,m), is given by

Cr(t,s, f,m)
— mse%”*ég)f./\/'g (d1( K) + os\/T, —da(T, i) POs\/T, p)

—Km-e "N, (d1(T, %): —da (T, %)a *P)

+ sfe” " N2 (d1 (7, %)

+ (Us + PUf)\ﬁ: dQ(T7 %) + (pO's + O—f)\/F7 P)

(5.3.3)

—Kf-e TN, (dl( +P0f\ﬁ7d2(77£)+afﬁ7p>

S
7—7?)

2,;0

f/m
+f/ u” (kD) [se_(Td_‘sg)TNz (d1(7, Y 7 %)+ oo/, —da(T, 7)—pcrsf P)
0

_ 2pos
s o5 1
—Ke "Ny <d1(7', v e 5),—d2(7’,u),—p)] du

log s + (6;1 — §
o5Vt

N3 is the bivariate normal cumulative distribution defined by

log z + (Td_'rf —g—f>t

)t
s da(t,z) = i

where 7 =T —t and di (¢, s) =

e 2(1 ) (p +q272ppq)dpdq

Na(z1,22,p) = 27T\/lfi/ /

Proof. 1In (5.3.1), let Vg(t, s, 2) = VA(t,s,2) + VA(t,s,2) + V2(t,s,2) and
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Vi, V2 and V3 satisfy

LVA(t,s,2) =0, VA(T,s,2) = a(s)licny
LVA(t,s,2) =0, VA(T,s,z) = za(s)lgs1)

2pog

LVE(t,s,2) =0, VA(T,s,z2) = zl{z>1}/ uw D a(u 7 s)du
1

Then, by double Mellin transform approach in Section 5.2.1,

VE t S, Z / / 1{w<1}gL( t, )
// u-GL(T ,tf i lldudw K// Gr(T — E i)lldudw
"uww uw

where G is green function of Black-Scholes PDE operator L.

11
,i — —dudw
w’uw

:\%

By Section 5.2.1, for PDE operator £ defined (5.1.6), green function G is
given by

Ge(r,z,y) =

o2 o 2
<p 20s (ks—l)—<7'd—7“f—7f)7'+%lnx> (Ug(k5_1)2+r)T
- d

8

(5.3.4)

o2 2
M(ks_n_(rd_rf_%)ﬁ%tm e -3 Iny
_E( NG (1—p2)r

1—ks (l,pz)(,?, e e

o v osV2rT  op/2n(1 = p?)T
where kg := 269/02.

Let =T —t.

By Lemma B.1 in Appendix B,

Hence,
Vi(t, s, z) = sef(”%g)i/\/z (dl (7, %) + 0s\/T, —d2(T, 2) — pos\/T, fp)

) (5.3.5)
— K- eirdT./\/’2 (dl (T7 ?)7 _d2(77 Z)’ _p)
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Similarly,
VE(t, s, z)
s z,11
u)l T—-t,—, —)——dud
/ / {’U>1}gL( 7uaw)uw uaw
1 Rl hae s z,11
= - K LG (T —t.2 Zy==
wdudw . v-Gr( t,u,w)uwdud(l5.3.6)

/ / woGu(T 1,2, )2
= sze ‘”/\/2( 1(7’,?)4-( s+ po VT, do (T, 2) + (p0s+0f)xﬁ,p)
— K- ze TN, (dl(T, ?) + pog/T,do(T,2) + Ufﬁ,/))
By Lemma 5.2.4 in Section 5.2,

Vi(t,s, z)

z _(1 . 1 _ 2pos 1
= z/ w”TROVE( W T s, = )du
o u

_ 2pos
— —(ra—s4H)T ? 7(1+kf2§7;s> u °f s _ l
= zse /o u No | di(r, e )+ os/T, —da(T, u) (5.3.7)

—pos\/T,—p) du

z O'f
— Ke_Tde/ u” ORI N, (ch (7, u S), —da (T, l), —p) du
o K U

By (5.3.5),(5.3.6) and (5.3.7),

K) + oo\/T, —d2(T, 2) — pas\ﬁ,—ﬂ)
—K-e "N, (dl(T, ?)7 —da(T, 2), _P)

+sze TN, ( (7, =) + (05 + pos)V/T d2(772)+(00s+0f)\ﬁvp)

— K 2e 1N, (da (7, 52) + po /7o da(,2) + 01T )

Vil(t,s,z) = se” ("4~ DTN (dl(T,

'K
(7,

_”fs

200
ra_ Z _(l4kp+2e9s 1
+ zse (ra 63)7—'/ u s+ A of )N2 <d1(7-7u K )"V‘Us\/;a _d2(7-,a)_pa's\/7i7 _P) du
0

_ 2pos

z Uf 1
— Ke 474 / u” TR A, (dl(q-, u 7 s), —da(1, =), —p) du
o U

Since Cg(t,s, f,m) =m - Vg(t,s, %), we have showed desired result.

O

We note that the formula we derived for European maximum exchange
rate quanto options in theorem 5.3.1 is exactly the same as the one derived
in Dai et al. [13], which utilized the joint density function of the extreme
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values and the terminal values of stock price and exchange rate.

5.3.2 American Maximum Exchange Rate Quanto Lookback
Options

Dai et al. [11] proved several properties for the free boundary of American
maximum exchange rate quanto lookback options. However, there are no
known analytic formulas for the free boundary so far. In this subsection, we
derive the analytic representation of early exercise premium for American
maximum exchange rate quanto lookback options using the double Mellin
transform techniques. We also draw the integral equation satisfied by the
free boundary.

Theorem 5.3.2 (Premium decomposition of American maximum exchange
rate quanto lookback options)

The price C(t,s, f,m) of the American maximum exchange rate quanto
lookback option defined in Section 5.1 is given by

C(t,s, f,m) =Cg(t,s, f,m)+ Cp(t,s, f,m)

where Cg(t, s, f,m) defined in Theorem 5.3.1 and Vp(t, s, z) = Cp(t, s, f,m)/m
(z = f/m) is given by

Ve (t, s, z)

T 1 —(rg—84)(n—1)
_ _ sd 67*’ I
-t [ [ (0~ 1 s D)y

1 g=ra(n=1) P
v [ -t E
+ (rg — 6%)sz - /t IEAERIVA (dl( (; 1)) (05 + pos)\/n —t,da(n —t,2)
+(pos +op)\/n—t, p) dn (5.3.8)
—rgKz- /T LRV (dl( ( +P0f\/777 do(n—t,2) +op/n—t, p) dn

_ 2pos

d z
—(1+ky +2P<"3)6*(rd 55)(n—t) w °f s 1
— —t, ——, — )dwdud
Td SZIU/F J/ﬁ ./(z qbl (n ) & (77710) ) ww ) wauarn

_ 2pos

z —rq(n—t) o
—rqK - z/ / / u*(”kf)ei%(n —t, y’ i)dwdudn
t Jo Jo w e (n,w) " uw

and the free boundary €*(t,z) = s*(t, f,m) satisfies the following integral
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equation.
e (t,z) — K
(62N (0 ) 4 o () - po/F )

€*(t, z)

e (N

+ e (t, 2)ze” TN, (dl(T, E*(It(’z)) + (05 + pos)V/T,d2(7, 2) + (pos + op)V/T, P)

_ *(t
— K- ze TfTNQ (dl(T7 ‘ (I(ZZ)) +po—f\/;a dQ(Ta Z) +Uf\/7ivp)

_ 2pos
. _ _ , z ko, 2pos of *t, 1
+ €' (t, 2)ze (ra—63) / n (ks +7es )Nz (d1(7’,uKE(Z))+Us\E, _d2(T’E)
0

—pos\/T, — ) du
_ 2pos
z {Tf *
— Kze "7 . / u” TTFONG (dl(T, uie(th))’ —da(T, l)a P) du
0 K U

1 o= (ra=6H)(n—1t) *(4 (5.3.9)
+(ra—24 tz/ / 1(7]—t76(’z)7i)dwm]

e (n,w) w

s / /1 o ra(n— t)q52 L e*(( )) 2 dwdn

+(ra— 89e (t,2)z / =90 ”NQ( W=t
t
+(pos +o5)\/n —t, p) dn
T
—sz/ *’f<"*”N2<d1( :(( )+ pogy/n—t,da( —t72)+af\/77—t,p>dn

(25 0 53)(n—t)
raahe e [ [0 [Tt et

* t )

€ (t,
s t,da2(n —t,
ey 1)) (05 + pos)v/n 2 z)

_ 2pos

u 7f e*(t,Z) L
X ¢1(n —t, ) =) dwdudn
2p0s
T 2z pl —ra(n—t) ST €
_rdKz-/ / / u_(1+kf)67¢2(77_t7u*76(t72)’i)ddedn
t Jo Jo w e*(n, w) uw
where
btz y) : e—%(da(t,mposﬂ)z/\[ di(t,x) + osVE(1 — p*) — p-da(t,y)
1\b 4y =
\/ﬁ V=07
o S (d2(tv) di(t,z) — p- da(t,y)
ta,y) = w 7
o2t 2y) = =7 ( D)
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and 7 =T —t, dy(-,-), da(-,-) are defined in Theorem 6.3.1.

Proof. 1In (5.3.2), let Vp(t,s, z) = VA(t,s,2) + VA(t,s,2) + V3(t,s,2) and

Vl;l,, VE,, VS are solution of following PDEs.

LVA(t,s,2) = B(t, s, 2) 11y, VA(T, s, 2) =0,
Evlg(ta S, Z) = Z/B(ta S, 1)]-{z>1} V]g(T7 S, Z) =0

2p0s

o — 1
)=y [ BT s D, VAT 2) =0
1

LVA(t, s,z
By Section 5.2 and direct computation,

Vi(t, s, 2)
s z.11

)1 t,—, —)——dudwd

// / B(n,u,w)liwery - Go(n — uw)uwuwﬁ

11
/ // —(ra =09 - u+r4-K)-Ge(n— i i)f—dudwdn
(77711) ’lL w uw

Td—5d/ // u-Gr(n t2,
*(n,w) ‘u’

s z.1

_TdK'/ / / gﬁ(n_t7777)7
t 0 e (n,w) u wu

Using Lemma B.2 in Appendix B,

11
/ / / u-Ge(n f i)f—dudwdn
() " w uw

7‘ 6
/ / a—05)(n—1) 16 L(d2(n—t,2)+pos/n—t)

ory/2m(n—t)

di(n—1t, =oy) tosvn—t—p(da(n—t,2) + posy/n— 1t
><J\/< (9,0) g ) dwdn
I—p
and
T 1 [e'e]
11

/ / / Qg(n—tf,i)f—dudwdn

*(nw) u w uw

RS
—_
=8
[\v]
3
g |n

/ / e—Ta(n—t 1 e_%(d"’(n_tvui;))z.j\/’ d1(77 t { )) dwdy
o/ 2m(n —t) V1= p?

M E-t]) @



CHAPTER 5. AMERICAN MAXIMUM EXCHANGE RATE QUANTO
LOOKBACK OPTION
where d;(t,x) and da(t,y) are defined in Theorem 5.3.1.

Hence,

1 ] T 1 ,—(ra—6%)(n—t) s z
VBl 2) = ra= 0 [ [ o b s S
w e nw) w5 10y

1 g—ra(n t)
—rqK - / / —t, i , i)dwdn
e*(n,w)” w

where
*%(dg(ty +P0's\/ d t + oy H1 — 2 Cdo(t

1 (t,2,y) == ° N( 1, 7) 0\[§1 2; p-da(t,y)
—l(d2(ty))
e t7 ) P dZ(t y)

tv ) = N
palti ) opV2mt ( 1—0?)
Since,

s z,11
V2 11 L
5,8, 2) / /0 / w - B(n,u, 1)1ys1y - Ge(n — o w)uwdudwdn

11
_/ / / (_(Td_ég)'U+Td'K)'w'gc(n—t,f,i)f—dudwdn
t 1 €*(n,1) u w uw

by using Lemma B.1 in Appendix B,

VA(t, s, 2)
T S
= (ra—63)sz - / e 1IN, (dl(n —t, m) + (05 + poy)vn —t,dz(n — t,2)
t )
+(pos + o)V —t,p)dn
T
—raKz- / e TN <d1(n —t, e*(n%) +pop/n—tda(n —t,2) + opv/n — 1, p) dn
t )
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Also, by Theorem 5.2.4 in Section 5.2,
Vi(t, s, 2)

:z/ RV, U_Q?;Ss l)du

_ 2n<r —(ra—62)(n—t)
rd—édsz/ / / (1+ky+2222) e~ (470 )70
_ 2pos

u °f s
’e*(m )uw

(5.3.11)

X ¢1(n — — )dwdudn

—ra(n—t) — 202
—rqK - z/ / / S T L d2(n ,Lu’i)dwdudn
e*(n,w) uw

By (5.3.10), (5.3.11) and (5.3.12),
Ve (t, s, z)

T 1 —(ra—88)(n—t)
— _ ¢ e - 5 ANadwd
(Td s)s/t /0 w ¢1(7] ’ 6*(77,11])’ ’LU) wan

T 1 e*”‘d("]*t) s 2
*mK'/ / ———¢2(n—t, ——, —)dwdn
t 0 w € (777 w) w

T

+(rd75;i)sz~/ P2 VA (dl(nft, *(S 1)) (o5 + pog)/m—t,da(n—t,2)
t e\,

+(pos +of)\/n— t,p) dn

T
—rgKz- / e YA, (dl( ( )+ pos/n—t,da(n—t,z)+op/n p> dn

2pos

—(1tky 2pc' —(T‘cl—‘S )(n—t) "oy 1
(ra = &5)sz- / // e it = )dwdudy
e*(n,w) uw

2p0s

z —rq(n—t) T oy 1
—raKz- / / / u_(1+kf)67¢2(77 —t, u*is’ — )dwdudn
t Jo Jo w e (n,w) " uw

By smooth pasting condition in (5.1.3),

€(t,z) — K =Vo(t, e (t,2),z) + Vp(t, €' (t, 2), z)

we have proved the Theorem 5.3.2.
O

Therefore, we derive the analytic formula for American maximum exchange
rate quanto options. Now, we state important two properties of the free
boundary of such options without proof. Those who are interested in proof
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can refer to Dai et al. [13].

Theorem 5.3.3 (Properties of the free boundary €*(¢, z))

(1) At time close to expiry, t — T,

max (1, 7"d—6g) K fOI' rq > 58

+o0 for rq < ¢

(T ,z) =

(2) €*(t,z) is monotonically increasing with respect to z and monotonic
decreasing with respect to t.

5.4 Numerical Results

In this section, we present numerical solutions for the integral equation
(5.3.9) satisfied by the free boundary of American maximum exchange quanto
options. Since the free boundary €*(¢, z) depends on two variables ¢ and z,
numerical algorithms for solving the integral equation (5.3.9) have large
time complexity. There has been numerical approaches for solving the inte-
gral equation with two underlying assets. For American spread call options,
Charella [8] suggested a numerical method which approximate log €*(¢, z) to
a(t) + b(t)z. However, In Dai et al. [11], the free boundary for American
maximum exchange rate qunato options does not behave like exponential
functions of z variable. Therefore Charella’s numerical approximation in [§]
is not possible for our case. Instead, we extend the idea of simple iterative
method proposed by I.LKim et al. [44] to solve the integral equation (5.3.9)
numerically. Then using the free boundary solution and adding the option
valuation formula (5.3.3) and (5.3.8) together, we compute the desired op-
tion values.

5.4.1 An iterative method

In this subsection, we first describe an iterative method for solving the in-
tegral equation (5.3.9) involving the free boundary of American maximum
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exchange quanto options. As mentioned earlier, there is a simple iterative
method for the valuation of American options proposed by I.Kim et al. [44],
which dealt with solving the integral equation when the free boundary only
depends on a single variable. Extending I.Kim’s idea, we develop the itera-
tive method for the integral equation which depends on two variables.

Algorithm : Iterative method for valuing American quanto lookback options

Step 0: Discretize the domain of free boundary {(7,2)[0 <7< T,0 < z <1}
Set n 4+ 1 and m + 1 to be the number of nodes for time to expiration
and for z-variable,
respectively.

Step 1: Approximate free boundary €* (7, z) by solving the integral equation
using an iterative method.

Td
Td — 5?
Step 1-2: Set the value {B};}o<i<n,0<j<m(k = 1,2,3...) as the right hand side

of the integral equation (5.3.9) computed from the set of old data

Step 1-1: Set the value B?J- = K max (1, ) for0<i<n,0<j<m.

{BY; "Y<izno<jzm.
Step 1-3: Repeat Step 1-2 until sufficient accuracy for the free boundary
is obtained. Take B}, as an approximation of €* (7, 2;).

Step 2: Approximate the value of American maximum exchange rate quanto
lookback option C(t, s, f,m)

Step 2-1: Compute the European term (5.3.3) with given parameters.

Step 2-2: Compute the early exercise premium term (5.3.8) with the free
boundary data €¢*(7;, z;) gotten in step 1.

Step 2-3: Compute C(t, s, f,m) by adding two terms in step 2-1, 2-2.

The algorithm consists of the following steps. We first discretize the domain
of free boundary {(7,2)|0 <7 < T,0 <2z < 1}. Set n+ 1 and m + 1 to be
the number of nodes for time to expiration and for z-variable, respectively.
We begin with the grid function BZQJ = K max <1, rdridéd

S
initial guess for the free boundary. Then we use {ng}ogign,ogjgm to the
right hand side of the integral equation (5.3.9) to get an updated grid func-
tion {Bil,j}ogign,ogjgm‘ For this update, we have to compute the integral
terms on right hand side of the equation (5.3.9). Any method of numerical
integration is possible, e.g. the trapezoid rule. we suggest that due to the
sensitivity of the integrand, the space grid for numerical integration should
be sufficiently small in a neighborhood of w = z. Updating process is re-
peated until sufficient convergence is obtained.

which is an

115



CHAPTER 5. AMERICAN MAXIMUM EXCHANGE RATE QUANTO
LOOKBACK OPTION

To obtain option values, we proceed with the following two steps. We
first compute the European term (5.3.3) with given state variables. Then we
compute the early exercise premium term (5.3.8) using the free boundary
data gotten by an iterative method. During the computation, all terms in-
volving numerical integration can be safely treated with the trapezoid rule
again.

5.4.2 Forward shooting grid method for two-state model

In this section, we explain a numerical method for valuing American max-
imum exchange rate quanto lookback option. The method is the extension
of the forward shooting method for a single asset suggested by Baraquand
et al. [1] to two assets. From (5.1.1), we have over [t,t + At],

InS(t+ At) = In S(t) + &(t)

In F(t + At) = In F(t) 4+ &4(1) (5.4.1)

052
2

where &, is a normal random variable with mean (52 - ) At and variance

o2 At, &£r is a normal random variable with mean (T‘d A ‘7752) At and

variance aszt. Also, the correlation between &, and & is p.

Following the same process in Kamrad et al. [42], we approximate the
joint bivariate normal processes {&s,£¢} by a pair of joint discrete random
variables {¢7, {$} with the following discrete distribution.

€ ¢} Probability

vs vy P1
Vs  -Uf b2
Vs -Uf p3
“Us Uy 2
0 0 D5

Table 5.1:  Joint discrete random variables {£7, ¢} .
where v, = Asos VAL and vy = AoV At, and Zi:ﬂ’k =1.

For the convergence of the discretized distribution to the true distribu-
tion as At — 0, the first and second moment generating functions for the
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joint discrete random variables {&s, {7} should be equal to the true moment
generating functions. This yields four equations as follows.

2
E[£2] = vs(p1 +p2 — p3s — pa) = (52’ - 0; > At

042
E [6F] = vp(p1 — p2 —ps +pa) = (Td —TEe ) At (5.4.2)

Var [£] = v2(p1 + p2 — p3 — pa) = 0° At + O(At)
Var [£}] = v}(p1 — pa — p3 +pa) = o7 * At + O(At)

The four equations above are not indepedent, which means we need
another equation for p1, po, p3, ps4 to determine their values. By considering
the covariance term, we can get a new equation for pi, p2, p3, p4.

E [£2¢4] = vsv(p1 — p2 + p3 — pa) = posogt + O(At) (5.4.3)

From (5.4.2),(5.4.3) and >.7_, pr = 1, the solution is

1] At (64 — o, Tq—Tf— 0f>

L[ L a=ri=of\ b
4 | A A O of A
1| VAL 5?—05 rd—rf—af2 p

P2 =~ 72"1‘ — 13
4 | A A O of A
1] VAL 8¢ — o Tq—Tf—0f>

3=~ |+ _ _ a7y f +% (5.4.4)
4 | A A O oy A
1[1 At 60 —02 rg—rp—o?

pi L[ L VAL 80l oy e
4 | A A O oy A

1
pg,:l—ﬁ, where A= Xs=Af >1

Note that for any value of A > 1 generates an admissible probability set
{pi}1<i<s. Kamrad et al. [42] reported that the accuracy and convergence
speed for discrete bivariate model varies with the parameter A, but the
results are quite satisfactory for A that force ps to be near 1/5.

Now, we explain how FSG method can be applied to value our American
maximum exchange rate quanto lookback options. We discretize the time by
to = 0,t1 = At,...,ty = NAt = T. From (5.4.1), the value of underlying
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asset s(resp. f) can move up by a factor of ug = e’\as‘/E(resp. up = e)“’fm)
or they can move down by a factor of 1/ug (resp. 1/uy) at each node of the
tree. Using this, we can quantize all possible states for two underlying assets
s, f and the path-dependent maximum exchange rate m as follows.

When evolved with n < N timesteps, the possible state for s and f
are given by s; = so-ul (-n < i < n), f; = fo-u; (—n < j < n).
Similarly, the possible state for m is given by my = mq - ulfc (0 <k <mn).Let

Tk denote the value of American maximum exchange rate quanto lookback
options with s = s;, f = f;, m = my,. We first initialize all values of i DY
7;19 = max(m, fi) - max(s; — K,0), which is the exact payoff of maximum
exchange rate quanto option when the option holder decides to exercise the

option at such node of the tree.

After the initialization, we proceed from the maturity back in time to
decide the value of American maximum exchange rate quanto option. Using
the approximated discrete distribution in Table 5.1 with the probability

(5.4.4), we can get the expected payoff VZY; x by discounting the possible
payoff at time n 4 1 as follows.

Crn __—rqAt n+1 n+1 n+1

ij,k = € |:p1‘/i+1,j+1,max(]'+l,k) + P2Vl 51 max(i—1.k) +p3Vi—1,j—1,max(j—1,k€ 15)

5.4.5
n+1 n+1

+p4‘/ifl,j+1,max(j+1,k) +p5Vz‘,j,k]

Then the maximum of expected payoff Vznjk and the current payoff

ffz’;k is the value of Vf;k This process is repeated until we reach to n = 0.

5.4.3 Implications

In this section, we solve the integral equation (5.3.9) numerically using the
iterative method described in section 5.4.1. Also, we compare solutions with
the benchmark solutions which are computed by using the forward grid
shooting method described in section 5.4.2.

We simulate the following four different state variables.

Case 1 and 2 deal with the situation where the domestic risk-netural
interest rate rq equals the foreign risk-netural interest rate ry, while case 3
and 4 deal with the situation where the domestic risk-netural interest rate
rq is less(resp. greater) than the foreign risk-netural interest rate r¢. We also
simulate the case of no dividends in case 3. For each given parameters, by
Theorem 5.3.3, there is an admissible range of p for the free boundary of
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Case {f s K rq Ty q os o chosen p value admissible range of p(>)
1 1 1 0.05 0.05 0.02 0.2 0.2 0.5 -0.5
2 1 1 0.05 0.05 0.02 0.2 0.2 0.8 -0.5
3 1 1 0.01 0.05 0 0.4 0.4 0.5 0.25
4 1 1 0.05 0.01 0.02 0.2 0.2 -0.1 -1

Table 5.2: Parameter values for numerical simulations.

options to be exist.

For each case, the iterative method computes the value function V' (¢, s, z)
at each grid point (t;, z;) € [0,1] x [0, 1]. Since the free boundary €*(t, z) is
sensitive near z = 1, we used adaptive grid for z-variable. For our simulation
we use 30 x 46 adaptive grid system, where the regular grid with At = 1/30
is used for ¢ variable, and the adaptive grid with Az = 0.1 for 0 < z < 0.6,
Az = 0.01 for 0.6 < z < 1 is used for z variable. To demonstrate the
accuracy of the iterative method, we compute benchmark solutions using
forward grid shooting binary tree method for z = % equal to 0.9,1, and for
t = 0.1,0.5,1. The following Table 5.3~5.6 summarizes the option values for
case 1~A4.
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T f/m Binomial Binomial Binomial Iterative
(100) (500) (1500)  Method

0.1 1 0.02744  0.02750  0.02752  0.02754
0.9 0.02576  0.02578  0.02578  0.02579

0.5 1 0.06724  0.06753  0.06763  0.06776
0.9 0.06156  0.06174  0.06180  0.06194

1 1 0.10093  0.10154  0.10175  0.10204

0.9 0.09198  0.09233  0.09248  0.09279

Table 5.3: American quanto lookback option values C(t,s, f,m)/m with
s=1,K=1,rg=ry=0.05 ¢q=0.02, 05, =07 =0.2 and p = 0.5.

T f/m Binomial Binomial Binomial Iterative
(100) (500) (1500) Method

0.1 1 0.02722 0.02727 0.02729 0.02735
0.9 0.02524 0.02526 0.02527  0.02531

0.5 1 0.06606 0.06634 0.06644  0.06659
0.9 0.05992 0.06012 0.06020 0.06038

1 1 0.09850 0.09908 0.09929 0.09952
0.9 0.08904 0.08951 0.08968 0.08997

Table 5.4:  American quanto lookback option values C(t,s, f,m)/m with
s=1,K=1,rg=r;=0.05 ¢q=0.02, 0 =07=0.2and p=0.8.
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T f/m Binomial Binomial Binomial Iterative
(100) (500) (1500) Method

0.1 1 0.05605 0.05626 0.05634  0.05668
0.9 0.05148 0.05160 0.05164 0.05184

0.5 1 0.14123 0.14239 0.14280 0.14370
0.9 0.12820 0.12909 0.12941 0.12998

1 1 0.21672 0.21928 0.22017 0.22177

0.9 0.19626 0.19833 0.19907  0.20018

Table 5.5: American quanto lookback option values C(t,s, f,m)/m with
s=1,K=1,r4=0.01, ry =0.05, ¢ =0, 05, =0y = 0.4 and p = 0.5.
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T f/m Binomial Binomial Binomial Iterative
(100) (500) (1500) Method

0.1 1 0.02595  0.02601  0.02602  0.02610
0.9 0.02488  0.02489  0.02489  0.02494

0.5 1 0.05960  0.05985  0.05993  0.06006
0.9 0.05557  0.05567  0.05570  0.05574

1 1 0.08549  0.08598  0.08615  0.08624

0.9 0.07898  0.07923  0.07932  0.07929

Table 5.6: American quanto lookback option values C(t,s, f, m)/m with
s=1,K=1,r3=0.05 r; =0.01, ¢ =0.02, 05 =0y =0.2 and p = —0.1.

From Table 5.3~5.6, the option value calculated from binomial tree
model with forward shooting grid method increases as the tree depth be-
comes large. Since it is known that the binomial tree model with forward
shooting grid method converges to a correct option value as the tree depth
goes to infinity, we use the solution from Binomial tree model with tree
depth n = 1500 as a benchmark. In all cases, the relative error between the
iterative solution and the benchmark are less than 0.73% (this maximum er-
ror occurs when T' = z = 1, most sensitive grid points), which demonstrates
the accuracy of the iterative method.

The following Figure 5.1 presents a surface plot of option values C(t, s, f, m)/m

for K =1,T7=0.51in a domain 0.5 < s<1,0.5< f/m < 1.

From Figure 5.1, it is apparent that the option value increases as the price
of underlying asset increases. Also, it can be observed that the option value
increases as the current exchange rate is close to the realized maximum ex-
change rate.

The following Figure 5.2 presents a plot of free boundary s*(7, f,m) ver-
sus f/m for three different time to maturity on an interval 0.5 < f/m < 1.

From Figure 5.2, we can observe the followings. First, the free boundary
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increases as f/m increases. Second, the free boundary increases as the time
to maturity increases. Finally, the critical value of f/m for which the free
boundary starts to increase rapidly decreases as the time to maturity in-
creases. All of these observations are reasonable since the higher value of
f/m means it is much likely to have a higher value of exchange rate later
on. Therefore, the option holder restrain from exercising the option prema-
turely.
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m .
$ 105 1 s 105 fim

(a) rq =7y = 0.05, ¢ =0.02, 05 =05 = (b) 7¢ =7y = 0.05, ¢ = 0.02, 05 =05 =
0.2 and p = 0.5. 0.2 and p = 0.8.

£ 005
\ 0.04

< 003

(¢) ra = 0.01, ry = 0.05, ¢ = 0, 05 = (d) 7¢ = 0.05, 7y = 0.01, ¢ = 0.02, 05, =
oy =0.4 and p=0.5. of =0.2and p=—0.1.

Figure 5.1: option values C(t, s, f,m)/m for K =1, T =0.5
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Figure 5.2: free boundary of s*(¢, f,m) for K = 1.
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5.5 Summary

In this chapter, we provide an analytic formula for American maximum ex-
change rate quanto lookback options. The option value can be formulated
into a solution of two dimensional inhomogeneous Black-Scholes equation
with mixed boundary conditions. Our approach is to solve general two di-
mensional inhomogeneous Black-Scholes equation with mixed boundary con-
ditions using double Mellin transform techniques. Also, we draw out integral
equations for the free boundary of American maximum exchange rate quanto
lookback options. We verify that the derived integral equation is correct by
numerically solving the equation using an iterative method and comparing
the result with a solution from standard binomial tree method.

The iterative method used in this chapter has many advantages. it is
very simple and it enables us to solve very complicated integral equations
numerically. However, it is computationally expensive and there is no theory
for the convergence of the method. We will continue to research on improving
computational efficiency as well as developing mathematical theories for our
method.

Mixed boundary problems frequently arise in option pricing problems
involving maximum or minimum process of underlying assets. Especially for
multi-asset pricing, presence of the correlation between underlying assets
makes the option pricing problem more complex, therefore it is not easy
to derive analytic pricing formula in general. However, our Mellin transform
based methodology is distinguished from existing methods in that it gives an
analytical representation for the solution of general inhomogeneous Black—
Scholes equation with mixed boundary conditions. Since we theoretically
present the general solution of Black—Scholes equation with mixed bound-
ary conditions, our methodology is advantageous to derive analytic pricing
formula for a variety of option pricing problems.
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Appendix A

Basic Properties of Mellin
Transforms

We summarize the definition and basic properties of the Mellin transform for
those who are unfamiliar with the Mellin transform. Also, Most properties
of the double Mellin transform are almost same as those of the single Mellin
transform. Those who are interested in the Mellin transform can refer to
Bertrand et al. [2], Erdlyi et al. [19], Sneddon [74], for further details.

A.1 Properties of Mellin transform

Definition A.1.1 (Definition of Mellin transform and inverse Mellin trans-
form)

Let g(x) be a locally integrable function on (0,00). Then, the Mellin trans-
form M(g(z),w) of g(x) is defined by

My (g(z);w) := g(w) = /000 g(x)x¥ tdx, weC (A.1.1)

and if this integral converges for a < Re(w) < b and a < ¢ < b, then the
inverse of the Mellin transform is given by

c+ico
o) = M; @) = 5 [ gw)edw. (A1:2)

211 — 00

Proposition A.1.1 (Convolution property of Mellin transform)
Let g(z) and h(z) be locally integrable functions on (0,00). For a < w < b,
let the Mellin transform §g(w) and h(w) exist. Then, the Mellin convolution
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is given by the inverse Mellin transform of §(w)h(w) as follows:

1 c+i00 R
g(x) Vh(x): = o | gw)h(w)z™dw, a<c<b

[ et

Proposition A.1.2 (Inverse Mellin transform of exponential function)
For o with Re(a) > 0, let §(w) = e®(®+5)* Then, the inverse Mellin trans-

(A.1.3)

form of g(x) is given by

1
M;l (g(w),;p) = i(ﬁa)_%lﬁe—i(log@?

Proposition A.1.3 (Basic Properties of Mellin transform)
Suppose that there exists a Mellin transform of g(z) and let §(w) be the

Mellin transform of g(x).

(1) For constant a, M(z%g(x);w) = §(w + );

(2) For constant «,

(3) For positive integer n,
M 2y (@);w | = (—w)"g(w)
2\ (75, ) 9@hw) = (—w)jw

and
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(4) For constant «, 3, define

¢ for <«
g(x) =
0 for >«

Then,

where Re(w) > —Re(f).
A.2 Properties of double Mellin transform

Definition A.2.1 (Definition of double Mellin transform and inverse double
Mellin transform)

Let g(x,y) be locally integrable function on Ry x Ry. Then the double
Mellin transform M, (g(x,y),z*,y*) of g(z,y) is defined by

Moy (g(z,y), 2", y") / / (z,y)x" ~ yy*_ldardy, x5yt € A.2.1)

and if this integral converges for a; < Re(z*) < by, az < Re(y*) < be, then
for a1 < c¢1 < by, ag < ca < by, the inverse double Mellin transform is given
by

—1/A * * 1 c2tico e1tico P 3 *\ —x* —y* * *
fan) = MG ) = gz [ [ aat ey e (A22)
co—100 c1—100

Proposition A.2.1 (Convolution property of Double Mellin transform)
Let f(z,y) and g(z,y) be locally integrable functions on Ry x R,. For a; <
Re(z*) < by, ay < Re(y*) < by, let the double Mellin transform f(z*,y*)
and g(x*,y*) exist. Then, the double Mellin convolution is given by the
inverse double Mellin transform of f(z*,y*) - §(z*, y*) as follows:

fz,y) vV g(z,y) : / / flu,w) -
9.

Proof. See Hassan and Adam [29]

)——dudw (A.2.3)

11
uw

@\a
g |=

O]
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For positive integer n,

My (< 0 )nf(:c,y),fﬁ*w*) = (=2 ") (A.2.4)

"
M (@(jy) f(x,y),x*,y*> =~y )
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Some useful lemmas

Lemma B.1 For constant A, B>0and 7 =T — ¢,

T 11 oy x
/ / Ge(r ' % ww dudw =e™"" N> (dl(Taz)v_cb(Tv%)?_p)

E g ll — —(r—re)T _ o

/ / u- gL‘, ' w)uw dudw =ze NQ (dl(T7A)+Uwf dQ(TvB) pCfx\f, P)
Ty, ~(r=ry)

[ Gern 2 ) i =y NG () + o o) + i)

1 =Ty —T Op O T
/ / ww - Gz (T % %)a dudw =zye™"TTT TV TPIEIYT AL, (dl(T7%)+(O’I+p0y)\/;,d2(T

+(pos + Uy)\ﬁv p)

where N3 is bivariate normal cumulative distribution and

0,2
logy + (ry — 7”) t

log x + (r,; — é)t
, d
( i

dl(tml') = o \/i 2 t7y) =

Proof. The computations are approximately the same as Theorem 1 in
Yoon and Kim (2015). By using changes of variables and the methods of
undetermined coefficients, we derive the desired results. ]

Lemma B.2 For any real number a,b and —1 < p <1,

a—p-q
”(@N(m) dgq

where n is the probability density function of the standard normal distri-
bution and N is the cumulative standard normal distribution.

b
e 2(1 pZ)(p +q QPPQ)dpdq_/

—00

=N
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