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Abstract

Geometric structures modeled after smooth
projective horospherical varieties of Picard

number one

Shin Young Kim

Department of Mathematical Sciences
The Graduate School

Seoul National University

Geometric structures modeled after homogeneous manifolds are studied to
characterize homogeneous manifolds and to prove the deformation rigidity of
them. To generalize these characterizations and deformation rigidity results to
quasihomogeneous manifolds, we first study horospherical varieties and geo-
metric structures modeled after horospherical varieties. Using Cartan geom-
etry, we prove that a geometric structure modeled after a smooth projective
horospherical variety of Picard number one is locally equivalent to the stan-
dard geometric structure when the geometric structure is defined on a Fano

manifold of Picard number one.
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Chapter 1

Introduction

Let M be a Fano manifold of Picard number one. An irreducible component
of the space of rational curves on M is called a minimal dominating component
if the subvariety IC, which consists of members that pass through x is nonempty
and projective for general point x € M. The tangent directions at x of members
of I, form a subvariety C, of PT, (M) which is called the variety of minimal
rational tangents at r. Many techniques can be used to study the projective
geometries of C, C PT,(M) which are believed to control the geometry of
the manifold M. In this paper, we study geometric structures modeled after
horospherical varieties which we expect to get from the variety of minimal
rational tangents.

When S is a rational homogeneous manifold of Picard number one, a pair

of the automorphism group of the variety of minimal rational tangent C, and
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the linear span D, of the cone (/3\3 C Ts(S) of Cs for s € S corresponds to a
geometric structure on S. Ngaiming Mok, Jun-Muk Hwang, and Jaehyun Hong
published significant works on the geometric structures modeled after S which
arise from the variety of minimal rational tangents. They published works on
Hermitian symmetric manifolds and homogeneous contact manifolds in papers
[7], [4], and [15], and on the other homogeneous manifolds associated with long

simple roots in paper [5].

Theorem 1.0.1 ([5], [7], [4] and [15]). Let S = G/P where G is a simple
Lie group and P is a maximal parabolic subgroup associated with a long root.
Let Cs C PT4(S) be the variety of minimal rational tangents at a base point
s € S. Let M be a Fano manifold of Picard number one and C, be the variety of
minimal rational tangents at a general point x € M associated with a minimal
dominating component K. Suppose that Cs C PT(S) and C, C PT,(M) are
isomorphic as projective subvarieties for a general point x € M. Then M is

biholomorphic to S.

It is natural to ask what happens when we replace rational homogeneous
manifolds with quasihomogeneous varieties, especially with smooth projective
horospherical varieties of Picard number one. A horospherical variety is a com-
plex normal algebraic variety where a connected complex reductive algebraic
group acts with an open orbit isomorphic to a torus bundle over a rational ho-

mogeneous manifold. Boris Pasquier classified smooth projective horospherical



CHAPTER 1. INTRODUCTION

varieties of Picard number one in his paper [18]. When a smooth projective
horospherical variety is homogeneous, it is isomorphic to one of quadrics Q*™,
Grassmannians Gr(i + 1, m + 2), and spinor varieties Spin,,, ; /P,,,. These
are all compact irreducible Hermitian symmetric manifolds, and the geometric
structures modeled after them were already studied in Theorem 1.0.1.

In this thesis, we will study geometric structures modeled after smooth

nonhomogeneous projective horospherical varieties of Picard number one.

Theorem 1.0.2. Let X be a smooth nonhomogeneous projective horospherical
variety of Picard number one. Let M be a Fano manifold of Picard number
one. Then any geometric structure on M modeled after X is locally equivalent

to the standard geometric structure on X.

We use Definition 4.3.2 for the definition of a geometric structure modeled
after X. We will prove the existence of Cartan connections (Theorem 4.2.2)
and use it to prove local equivalence of geometric structures modeled after
smooth nonhomogeneous projective horospherical varieties of Picard number
one.

Noboru Tanaka ([21]) and Tohru Morimoto ([16]) find the sufficient condi-
tions for the existence of Cartan connections, mainly for geometric structures
with certain symmetries, like geometric structures modeled after rational ho-
mogenous manifolds. We generalize these conditions for some quasihomoge-

neous manifolds cases including ours in Theorem 4.2.1. To prove the existence
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of Cartan connections associated with geometric structures modeled after X,
we need to study the Lie algebra aut(X) of the automorphism group of X. In
particular, it is important to know whether g satisfies the prolongation prop-
erty. When X is a rational homogeneous manifold, Keizo Yamaguchi shows
that g satisfies the prolongation property by proving that the Lie algebra co-
homology space HP!(m, g) vanishes, where m is a nilpotent subalgebra of g. In
this case, g is semisimple, and thus we can apply Kostant’s harmonic theory
on the Lie algebra cohomology spaces. However, in our case, g is not semisim-
ple and we cannot apply Kostant’s harmonic theory. In this direction, Collen
robles and Dennis The ([19]) compute Lie algebra cohomology spaces for some
cases, when g is not semisimple, by modifying Kostant’s harmonic theory. It
would be interesting if one can generalize Kostant’s harmonic theory fully to
the case when g is not semisimple. In this thesis, instead of generalizing the
whole theory, we reduce the vanishing of Lie algebra cohomology spaces to
the vanishing of Lie algebra cohomology spaces associated with the maximal
semisimple subalgebra of g, which now can be computed using Kostant’s har-
monic theory.

The thesis is organized as follows. In Chapter 2, we review the general
theory of Cartan connections. In Chapter 3, we study horospherical varieties.
When X is a smooth nonhomogeneous projective horospherical variety of Pi-

card number one, we also study the Lie algebra of the automorphism group
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of X, and varieties of minimal rational tangents of X. The vanishing of the
first generalized Spencer cohomologies of aut(X) is proved in Chapter 4. In
Chapter 4, we prove the existence of Cartan connections and the local flatness
of the geometric structures modeled after X, which proves Theorem 1.0.2.
We work over the complex number field C without any additional men-
tioning of a number field. All manifolds, Lie groups and Lie algebras will be
understood as complex manifolds, complex Lie groups and complex Lie alge-

bras.

&

| &1



Chapter 2

Geometric structures on filtered

manifolds

In this Chapter, we mainly follow the papers of Noboru Tanaka, Tohru Mori-

moto, and Keizo Yamaguchi([21], [16], and [23]) .

2.1 (Gy-structures on filtered manifolds

Definition 2.1.1. Let g be a Lie algebra. A gradation of g is a direct decom-
position g = P, 9, such that [g,, 8] C gp+4 for any p,q € Z. A fundamental
graded Lie algebra is a nilpotent graded Lie algebra m = @p <0 9p generated

by 9-1, that iS, gp = [gp+17g—1] for any p < —L

Definition 2.1.2. Let M be a manifold. A tangential filtration F' = {F?},cz_,
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on M is a sequence of subbundles F? = FPT M of the tangent bundle T'M of
M satisfying the following: i) FP* C F?; ii) F° = 0 and UF? = TM; and
iii) [FP, F?) C FPT for any p,q € Z<o where F* is the sheaf of sections of F".
A manifold M with a tangential filtration F' = {FP},cz_, on M is called a
filtered manifold and we denote a filtered manifold as (M, F).

The symbol algebra Symb, (F) = € Symb? (F) of F at x € M is given

PEZ<o
by Symb?(F) = FPTM/FPTTM with a natural bracket induced from the Lie
bracket of vector fields. Let m = @p <o 9p be a fundamental graded Lie algebra
with dim(m) = dim(M). A filtered manifold (M, F') is called regular of type m

if the symbol algebras Symb, (F') are all isomorphic to the given fundamental

graded Lie algebra m for all z € M.

Definition 2.1.3. Let (M, F) be a regular filtered manifold of type m. Let
(M, m) be the set of all isomorphisms r: m — Symb,(F) of graded Lie
algebras. Then its structure group Go(m) consists of all automorphisms of the
graded Lie algebra m = @, g, and Z := UenZ:(M, m) is a principal
Go(m)-bundle on M. This fiber bundle is called the frame bundle of (M, F).
Given a Lie subgroup Gy C Go(m), a Gy-structure on (M, F) is a Gy-subbundle
of the frame bundle Z. Two Gg-structures on (M, F) and (M, F3) are locally
equivalent if there exist two open subsets U; of My and Us of M, and a Gg-

bundle isomorphism over the open subsets U; and Us.

Definition 2.1.4. A differential system (M,D) on a manifold M is a sub-
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bundle D of the tangent bundle T'M of M. The subbundle D is completely
integrable if and only if [D, D] C D. For a non-integrable differential system
D, we consider the derived system 0D of D which is defined, in terms of sec-

tions, by
0D =D+ [D,D]

where D denotes the space of sections of D. Moreover, the k-th weak derived

systems O®) D of D are inductively defined by
OWD = 9=V p 4 [D, g% VD),

where 09D = D and 9®)D denotes the space of local sections of 0¥ D. A
differential system (M,D) is called regular if D~*+1) .= 9®) D is a subbundle
of T'M for every integer k > 1. For a regular differential system (M ,D) such
that D~* = T M, we define the associated graded Lie algebra m(z) at x € M,
which was introduced by Noboru Tanaka in [20]. We put g_;(z) = D~ !(z),

gp(z) = DP(z)/DP(z) (for p < —1) and

m(z) = @ g,().

p=—1

Then m(x) becomes a fundamental graded Lie algebra which we call the symbol
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algebra of (M,D) at x € M. If the symbol algebra m(z) is isomorphic to a
given fundamental graded Lie algebra m for each x € M, then we call (M,D)

a reqular differential system of type m.

Remark 2.1.5. Let (M, D) be a regular differential system of type m. A regular
tangential filtration (M, F') of type m derived from a regular differential system
(M, D) of type m is given by F? = DP for p < 0. We just denote (M, D) as a
regular filtered manifold of type m derived from a regular differential system
(M, D) of type m. A Gy-structure on a regular differential system (M, D) is a
Gy-subbundle of the frame bundle Z of the derived regular filtered manifold
(M, D).

2.2 Prolongations

Definition 2.2.1. Given a fundamental graded Lie algebra m = @p <0 9p>

there exists a unique graded Lie algebra g(m) = P, g,(m) such that

1. gp(m) =g, for p < 0.
2. if z € g,(m) for p > 0, satisfies [z, m] = 0, then z = 0.

3. g(m) is the largest graded Lie algebra satisfying conditions 1 and 2.

We call g(m) the universal prolongation of m. Let go C go(m) be a subalgebra.

Then the prolongation of (m,gg) is the largest graded Lie algebra g(m, go) =

@D, 9,(m, go) C g(m) such that P, _; g,(m, go) = m and go(m, go) = go-
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Definition 2.2.2. Let g = ®p€Z g, be a graded Lie algebra. Assume its
negative part m = @p <0 9p 1s a fundamental graded Lie algebra. Define the
coboundary operator 0: Hom(A%m,g) — Hom(A%"'m, g) as follows: for ¢ €

Hom(A%m, g),

q+1

Op(z1 N+ Nzgpr) = D> (=1 [z, 6(z0 Ao Ao A zgpn)]

=1
+ Y (D[ z] A2y AN A By A zgpa)

1<J

where Z; means skipping z;. We denote the induced cochain complex by (C'(m, g), 0)

and the derived space of cohomology by H(m,g).

Definition 2.2.3. The cochain complex (C(m, g),d) has the following bigra-

dation (Section 1 of [21] and Section 2.4 of [23]):

an(m7g) = @ HOIIl(/\?m, gj+P+lI—1)7

Jj<—q

where

Nm= P g AN,

i1+ tig=]

10
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the 7, are negative. The space of cohomology with the bigradation,
H(m,g) = @ H(m, g)
p

is called the generalized Spencer cohomology of (g, m).

The following is an effective way to show that a given graded Lie algebra

g = D,cz 9y is the prolongation of m (or of (m, go)).

Lemma 2.2.4 (Lemma 2.1 of [23]). Let g = D, c; 8, be a graded Lie al-
gebra such that m = ®p<0 gp 15 fundamental. Then g is the prolongation of

m (respectively of (m, go)) if and only if the following two conditions hold:
1. if z € g, for p >0, satisfies [z, m] =0, then z = 0.

2. HPY(m, g) =0 for p > 0 (respectively, p > 1).

2.3 Cartan connections

Definition 2.3.1. Let g be a Lie algebra and let fh C g be a Lie subalgebra.
Let H be a connected Lie group with Lie algebra h and let Ad: H — GL(g)
be the adjoint representation of H on g. A Cartan connection of type (g, H)
on a manifold M is a principal H-bundle 7: P — M with a g-valued 1-form

w on P such that

11
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1. w(z") = 2z for z € b, where 2T denotes the fundamental vector field on P

induced by z € b;

2. Rjw = Ad(h™')w for h € H, where R;,: P — P is the right action of

h € H on P;

3. the linear map w,: T,(P) — g is a vector space isomorphism for each

p€EP.

Two Cartan connections of type (g, H), denoted by pairs (Py,w;) on M;
and (Py,wq) on My, are locally equivalent if there exist two open subsets U; of
M, and U of M,, and a biholomorphic map ¢: Pi|y, — P»|y, descending to
Uy — Us such that ¢*wy = wy. A Cartan connection of type (g, H) is locally flat
if it is locally equivalent to the Cartan connection on the principal H-bundle
G — G/H with the Maurer-Cartan form on G, where G is a connected Lie
group with the Lie algebra g and an inclusion H C G as a closed subgroup of

G.

Let m be a fundamental graded Lie algebra. Let Gy be a Lie subgroup
of Go(m) and let go be the Lie algebra corresponding to Gy. Let g(m,go)
be the prolongation of the graded Lie algebra of (m,gg). Define h(m,gg) :=
D, 8(m, go)p, then g(m, go) = m & h(m, go).

Let 0 be a Lie group with m as its Lie algebra. The trivial subbundle

M x Gy of M x Go(m) is the standard Gy-structure on (9, m). From Theorem

12
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3.6.1 of [16], we obtain a principal H(m, Gp)-bundle P on 9t with a constant
structure function ¢ of P (which actually zero in this case, i.e., ¢ = 0), where
H(m,Gy) is a Lie group with its Lie algebra h(m, go), and the Lie subgroup
Gy is embedded in H(m,Gy) as a closed subgroup.

We define a subspace of Hom(A*m, g(m, go)) as
F* Hom(A’m, g(m, go)) == {ola(g; A g;) € €D a(m,go), for i, j < 0}.
p>itj+1

The following Theorem 2.3.2 gives us the sufficient condition of the exis-
tence of Cartan connections. For more details, see Chapters 2 and 3 of [16] and

Theorem 2.7 of [21].

Theorem 2.3.2 (Definition 3.10.1 and Theorem 3.10.1 of [16]). Let (M, F') be
a regular filtered manifold of type m, and let Gy be a Lie subgroup of Go(m) with
Lie algebra go. Suppose there exists a subspace W of F! Hom(A?m, g(m, go))

such that
1. Fl Hom(/\2m7 g(m7 gO)) =W aFl Hom(m7 g(ma 90))7
2. W is stable under the action of H := H(m,G).

Then for each Gg-structure on (M, F'), we can construct a principal H-bundle
P — M associated with the Gy-structure on (M, F) and obtain a Cartan con-

nection (P,w) of type (g(m, go), H). Two Gy-structures on (M, F') are (locally)

13
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equivalent when the associated Cartan connections of type (g(m,go), H) are
(locally) equivalent.

With the following conditions in Theorem 2.3.3, we see that there exists a
H-invariant subspace W of F' Hom(A%m, g(m, go)) such that

F'Hom(A’m, g(m, go)) = W @ OF* Hom(m, g(m, go)).

Theorem 2.3.3 (Proposition 3.10.1 of [16]). Let m be a fundamental graded
Lie algebra. Let Gy be a Lie subgroup of Go(m). Let go be the subalgebra of go(m)
corresponding to Go, g = g(m, go) the prolongation of (m, go), andh) = P,>, 9p
its non-negative part. Assume that the prolongation g is finite-dimensional and

that there exist a positive definite bilinear form

(,):gxg—R,

a mapping 7: h — g and a mapping 7o: Go — Go such that

1. (9p,84) =0 forp#gq

2. 7(g,) C 8y forp >0, and ([A,2],y) = (&, [(A),9]) for all 2,y € g and
A€eb

3. (ax,y) = (z,10(a)y) for z,y € g and a € Gy

14
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Then there exists a full functor from the category of Gg-structures of type m
to the category of Cartan connections of type (g, H), where H is the Lie group

with Lie algebra B.

2.4 Examples

Definition 2.4.1. Let g = ®pEZ g, be a semisimple graded Lie algebra. Then

there exists a unique element E € gy such that
g, ={X€g|[E,X]=pX} forpeZ.

The element E is called the characteristic element of g = € <7 8p-

Gradation and the root space decomposition Let g be a semisimple
Lie algebra with rank(g) = m. We take a Cartan subalgebra h and a set of
simple roots A = {ay,- -+, a,,} of g. Let ® be a set of roots of g relative to b.

The root space decomposition of g is

s=bhoPa.

acd

where g, = {X € g | [H,X] = a(H)X for all H € b} is the root space for

acd.

15
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We define the characteristic element E,, associated with o; as

1 if j=3i

0 if j#4,

O‘j(Eai) =

where «o; € A. Let I C {1,2,---,m} be a subset of positive integers. The
element £ = )., E,, is called the characteristic element E associated with
{ai}ier € A. Then we could construct a gradation g = ®p€Z g, which is called

a gradation associated with E as follows;

go=hd P sy

ae@é
o= EP oo
aE@I
gk = @ J-a <k>0)7
aeéz

where @ = {a € T|a(FE) = k}.
For examples, the gradation of (A4,,, {a;}) is sly11 = g-1 D go D g1 and the

gradation of (A, {ay,a0}) is sl 1 =g 2o+ 91+ go+ 91 + 0o

Lemma 2.4.2 (Lemma 3.8 of [23]). Let g = @,9, be a simple graded Lie
algebra and b be a Cartan subalgebra. Let /A be a simple root system such that
E ecbhand a(E) > 0 for any a € A. The graded Lie subalgebra m = @,.09,

satisfies @p = [@p+1,9-1] for p < —1, if and only if a(E) = 0 or 1 for any

16
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RAY

Assume the gradation of Lie algebra g = @pez gp is the gradation as-
sociated with E,, for a simple root «a;. Then, the subalgebra @p <o 8p is a

fundamental graded Lie algebra by Lemma 2.4.2.

Lemma 2.4.3 (From Theorem 5.32 of [23]). Let g = €D, 9, be a simple graded
Lie algebra such that the gradation @p g, s associated with E,, for a simple

root o, except when g = P, g, is isomorphic with (A, ar) or (Cp, an). Then
1. if z € g, for p >0, satisfies [z, m] =0, then z = 0.
2. HPY(m,g) =0 forp > 1.

In the above Lemma, the property HP!(m,g) = 0 for p > 1 is obtained

from Kostant’s harmonic theory, calculating Laplacian.

Theorem 2.4.4 (Theorem 5.32 of [23]). Let g = €D, g, be a simple graded Lie
algebra such that g, = [gp+1,8-1] forp < —1. Then g = €D, g,, is a prolongation

of m except for the following three cases.
1. g=9-1DgoDgi is of depth 1.

2. 9= _y<p<00p is a contact gradation (dimg 5 = 1).

8. 9= €D, 9y is isomorphic with (A, {am, a;}) (1 <i <m) or (Cr, {a1, am}).

Moreover g = @p g, 1s the prolongation of (m,go) except when g = G}p gp 1S

isomorphic with (Ap, ) or (Cy,, aq).

17



CHAPTER 2. GEOMETRIC STRUCTURES ON FILTERED
MANIFOLDS

Existence of Cartan connection

Proposition 2.4.5. Let g = @p gp be a simple graded Lie algebra associated
with a simple root «; except when g = @p g, 1s isomorphic with (Am, o) or
(Cpyv1). Let m = @p<0 g, and (M, D) be a regular differential system of type
m. Then there exists a Cartan connection of type (g, H) associated with a given
Go-structures on a reqular differential system (M, D) of type m such that two
Go-structures on (M, D) are (locally) equivalent when the associated Cartan

connections are (locally) equivalent.

Proof. The subalgebra m = EBp <0 8p of g is fundamental by Lemma 2.4.2 and
g = D, g, is the prolongation of (m, go) by Theorem 2.4.4. For a given Go-
structures of type m, we will apply Theorem 2.3.3 to get a Cartan connection
of type (g, H) where H is a Lie group with Lie algebra P ., g,- We need to
show that there exist 7, 79 and (-, -) satisfying the conditions of Theorem 2.3.3.

Let B(-,-) be the Cartan-Killing form on g. Let e, € g, be a nonzero

vector, there exists a vector e_, € g_, such that B(e,,e_) = 2/(a, ) and

[€a,€_a] == hq
[ha, €a] = 2€4
[ha,€_a] = —26_4.

Let 7: g — g be an automorphism of g such that 7(e,) = —e_, and

18
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T(ha) = —hg for any root a € ®. Let 19: Gy — G be an automorphism of Gy

corresponding to 7|4, : go — go. Define a symmetric bilinear form (-,-) on g by

(X,Y): =-B(X,7(Y)).

Then the symmetric bilinear form (-,-) is positive definite on g. Moreover,
(0:80) = 0 for p # q, 7(g,) C gy for p > 0, and ([A,2],9) = (&, [r(A), y])
for all z,y € g and A € b and (az,y) = (x,79(a)y) for x,y € g and a € Gy.
Hence, there exists a Cartan connection of type (g, H) associated with a given
Go-structure on a regular differential system (M, D) of type m such that two
Go-structures on (M, D) are (locally) equivalent when the associated Cartan

connections are (locally) equivalent. O

19



Chapter 3

Smooth horospherical varieties

of Picard number one

3.1 (G-varieties

Definition 3.1.1. An algebraic group G is an algebraic variety G with the

structure of a group, such that the multiplication map
w: GxG— G, (g,h) — gh
and the inverse map

G =G, g gt

20
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are morphisms of varieties.

Definition 3.1.2. A G-variety is an algebraic variety X equipped with an

action of the algebraic group G, where the action

a:GxX =X, (g,x)~gx

is a morphism of varieties.
Given a G-variety X and a point x € X, the orbit G.x C X is the set of all
g.xz, where g € G. The isotropy group G, C G is the set of those g € G such

that g.x = x.
Example 3.1.3. A torus 7' = (C*)" with self T-action is a T-variety.

Example 3.1.4. Let {ey, - ,ea,} be a basis of the vector space C*™. Let w

be the non-degenerate skew-form given by

w(ei, €j> = 5i,2m+17j7 for all 1 < Z,j < 2m.

The symplectic Grassmannian G, (k,2m) is

G,(k,2m): ={V|V c C*" dimV = k,V isotropic with respect to w}.

Then G, (k,2m) = Sp,,, /P is a projective Sp,,,-variety, where Py C Sp,,,

is the parabolic subgroup which stabilizes the subspace Ej = (e1,--- ,ex) of
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c?m,

3.2 Classifications

Let L be a connected reductive algebraic group.

Definition 3.2.1. 1. An L-homogeneous space X is called a horospherical
homogeneous space if X is isomorphic to a homogeneous space L/H
such that H contains a maximal unipotent subgroup U of L. Then X
is isomorphic to an n-dimensional torus (C*)"™ bundle over a rational

homogeneous space. We call X is of rank n.

2. An L-variety X is called a horospherical variety if X is the embedding of
a horospherical homogeneous spaces L/H, that is, X has an open L-orbit

which is isomorphic to L/H.

Example 3.2.2. Let B is the set of upper triangular matrices of SLy. The
homogeneous space SLs /B is a horospherical homogeneous space of rank 0,
which is isomorphic to the projective space P'. B contains U the set of upper
triangular matrices of SLy such that all diagonal components are the unit 1.
The homogeneous space SLy /U is a horospherical homogeneous space of rank
1, which is isomorphic to the space C*—{0}. The SLy-varieties C?, P> —{0}, P?,

blow-up of 0 in C? and blow-up of 0 in P? are horospherical varieties with one
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open SLy /U orbit for each. The SLy-variety P? is the unique smooth projective

horospherical variety of Picard number one among these SLo-varieties.

Example 3.2.3. Let {eg, e, ,ea,} be a basis of the vector space C*™T.

Let w be a skew-form given by

w(e;, ej) = 0iomi1—j, for all 1 < i, 5 < 2m.

Then w(eg,e;) = 0 for all 1 < j < 2m. The odd symplectic Grassmannian

Go(k,2m+1) is

Go(k,2m +1) .= {V|V c C*"*! dimV = k, V isotropic with respect to w}.

This could be realized as the closure of Sp,,,-orbit at e; A---Aeg_1 A (eg+ex);

Go(k,2m + 1) = Spyy, .ler A -+ Aer—1 A (eo + ex)] C P(AC*™H).

The isotropic subgroup of Sp,,, at e; A -+ Aeg_1 A (eg + €x) is Pr_1 N Py,
where P} C Sp,,, is the parabolic subgroup which stabilizes the subspace E; =
(€1, ,e) of C*"*1 The open Sp,,,-orbit is isomorphic to a C*-bundle over

SPam /(Pr—1 N Py), where C*-action is given by

Ales Ao Nery Aleo+ex)] = [er A= Ay A(eo + Aex)] € P(ATCPHY).
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The variety G, (k,2m + 1) is a horospherical Sp,,,-variety of rank 1.

Theorem 3.2.4 (Theorem 0.1 and Theorem 1.11 of [18]). Let X be a smooth
nonhomogeneous projective horospherical L-variety with Picard number one.
Let m; be a i-th fundamental weight of L-representation space. Then X is
horospherical of rank one and the automorphism group of X is a connected
non-reductive linear algebraic group G, acting with exactly two orbits. More-
over, X is uniquely determined by its two closed L-orbits Y and Z, which are
isomorphic to L/ P, and L/Pgs, respectively. The variety X = (L, o, B) is one

of the triples, with the group G, of the following list:
1. (B, Qm—1, ) for m >3 and (SOgp1 XC*) X V (7,)
2. (Bg,al,ag) and (SO7 XC*) X V(ﬂ'g)

3. (Cy i1, i) form > 2, i€ {1,...,m — 1} and ((Spy,, XC*)/{£1}) x
V(m)

4. (Fy, g, a3) where ag is a long root and (Fy x C*) x V(my)

O

. (Gg,ag,al) and <G2 X C*) X V(Ti‘l)

Here, P,, is the mazimal parabolic subgroup of L associated with the simple
root «;, and V(m;) is the irreducible L-representation with the highest weight

Ure
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For a given X = (L,«, f3), there are irreducible L-representations V' (m,)
and V' (mg). Let v, be the highest weight vector of V(m,) and vz be the highest
weight vector of V' (m5). X is the orbit closure of L.[v,+vs] C P(V(7,) @V (75))
(Section 1.3 of [18]). Hence, X has three orbits under the action of L: one open
orbit isomorphic to a torus C*-bundle over L/(P, N Ps), and two closed orbits
Y and Z which are isomorphic to L/P, and L/Pjs, respectively.

Let G be the automorphism group of X. According to Lemma 1.15 of [18],
the closed L-orbit Z is stable under the G-action. Let X be the blowing-up of
X along Z. Then G = Aut X. According to the proof of Lemma 1.17 of [18], X
is a projective bundle over the L-orbit Y and U C G acts on X by translation
on the fibers of X — Y = L/P,. And G = (L x C*)/C x U, where U is a

L-representation space and C' is a centralizer.

Example 3.2.5. From the result of I.Mihai in the paper [14], the automor-

phism group of the odd symplectic Grassmannian G, (k,2m + 1) is equal to

((Spyyy, xC7) {1} x V().
Let G = Aut(G,(k,2m + 1)). We also see that G act on G (k,2m + 1)

with two orbits

Xo = {VeG,(k,2m+1)leg e V}

X; = {VeG,(k,2m+1)ley ¢ V}.
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Moreover, X is a closed G-orbit isomorphic to the symplectic Grassman-
nian G,(k — 1,2m), where G,(k — 1,2m) is isomorphic to a closed Sp,,,-
orbit Spy,, /Px—1. The orbit X; is an open G-orbit isomorphic to the dual of
the tautological bundle over the symplectic Grassmannian G, (k,2m), where
the symplectic Grassmannian G, (k,2m) is isomorphic to a closed Sp,,,-orbit
SPosm / Pr-

In the list of above Theorem 3.2.4, the horospherical varieties (C,,, it 1, ;)
are the odd symplectic Grassmannian G, (i + 1,2m + 1) for m > 2, i €

{1,...,m—1}.

3.3 Lie algebras of the automorphism groups

Proposition 3.3.1. Let X = (L, a, 8) be a smooth nonhomogeneous projective
horospherical variety of Picard number one. Let g be the Lie algebra of the

automorphism group of X. Then, we have the followings:

1. The Lie algebra g is a semidirect product of (I+ C) and an irreducible |-

representation U where | is a semisimple Lie algebra, i.e., g = (I+C)>U.

2. There exist two irreducible L-representations V, and Vg such that | C
End(V,), C ~ CI C End(Vp), and U C End(V,, V). Hence, we regard

g as a Lie subalgebra via the inclusion i: g — gl(V) = EndV where
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V =V, ® Vs. In particular, we could write an element Z of g as

z el 0
Z = € End(V) = gl(V).
uelU ceCl

3. Let = be an operator on gl(V') given by z* = z' for z € gl(V'). Let T be
an operator defined by 7(z) = —z* for z € gl(V'). Let (.,.) be the Cartan-
Killing form on gl(V'). We define an inner product {-,-} by {z,y} =
(z,y") = —(2,7(y)) for z,y € gl(V). Then a restricted inner product

{-,-} is a positive definite Hermitian inner product on g.
Proof. 1. It is from Theorem 1.11 of [18].

2. Tt is from the proof of Theorem 1.1 of [18]. Since X is the orbit closure

of L.[ug +vg] CP(V(ma) ® V(7)) let V,, = V(7,) and Vi = V(7).

3. If we take two elements Z; and Zs in g,

z1 €1 0 Z5 €| 0
7= and Zo =
uleU 01€(C UQGU CQE(C
Then
2125 zZius
7.Z5=| 7 e

U125 UIUs + €165
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By page 271 of the book [11], we see

TradXadY =2nTr(XY) —27r(X)Tr(Y)

for X, Y € gl(V).

Since the semisimple Lie algebra [ in gl(V') is contained in s[(V') which

is the traceless subalgebra of gl(V),

{Zl, Zz} = 27’LTT’(Z1Z2*) — QTT'(ZI)TT(ZQ*)

= 2nTr(z120") + 2nTr(uius) + 2nanpey - ¢

where n = dim(V), n, = dim(V,) and ng = dim(Vjs). Hence, {-,-} is a
positive definite Hermitian inner product on g.

]

Remark 3.3.2. We rescale the Hermitian inner product on g divide by 2n for

n = dim(V') (respectively, rescale the Cartan-Killing form). That is,

nang

{Z1,Z5} = Tr(z12") + Tr(ujuy) + 1+ Cy.

Then for F;; € V. ®Vp which is zero except ¢j-component or if we write a unit
column vector e; in j-th entry, we see {E;;, Ex} = Tr(Ei;, Ef;) = dje; - e =

ik 0.
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3.4 Gradations

Let [ = €D, [, be a semisimple graded Lie algebra of rank(l) = m. We choose
a Cartan subalgebra h C [y and let A = {ay, -+, a,, } be the system of simple
roots of [ with respect to h. We will consider the Lie algebra [ which has a

gradation P, [, associated with «; as we see in section 2.4.

Example 3.4.1. Let L be a semisimple Lie group. Let P,, be a maximal
parabolic subgroup of L associated with a simple root «;. Let [ be the semisim-

ple Lie algebra of L. The Lie algebra [ has a gradation @, _, [, associated with

PEZ P
the root ;. The tangent space of the homogeneous space L/P,. at each point

is identified with @p <o Ip, which is a fundamental graded Lie subalgebra of [.

Proposition 3.4.2. Let X be a smooth nonhomogeneous projective horospher-
ical variety (L,a, ) of Picard number one. Let G = Aut(X) and let g =
(I+ C) > U be the corresponding Lie algebra. Then we could give a gradation
of 9 = €D, 9y such that the graded Lie algebra m = €D, @, is identified with
the tangent space of X at a point x where x is in the open G-orbit.

More precisely, let I, and Uy be eigenspaces that have eigenvalue k under

the action of Ex := E,. Then

w(U)
@ Lk and U= @B U
k=—pu(l) k=—n(U)

where p(l) and p(U) are the largest numbers among the nonzero eigenvalues
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of the action of Ex on | and on U, respectively. Now give the gradation on g

by shifting the above decompositions as follows:

gp = [ forp>1
g1 = [ +U_
do = ([0 + C) > U—,u(U)—i—l

Let I =@, ol and U- = U_ @ and let m = [ + U_. Also, let Usg =

U—u(U)—H + -+ UM(U)- Then

LX=m=I[+U_ =g,

p<0

Lemma 3.4.3. We decompose the space | (and U) to the eigenspaces Iy (and

Uy ) that have eigenvalue k under the action of Ex := E, as follows:

1. (Bm, Qm—1, ), m > 2 where U =V (my,); let Ex = E,, _, and then

1

o+ g+ 0+ + 1,

Ump +Umapy 4+ Unzy 4 Unn,

and dim U_mT—l = 2.
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2. (Bs,aq,a3) where U =V (m3); let Ex = E,, and then

Lo+lo+ 0, Uy +Us,

T2

and dimU_1 = 4.

N

3. (Cony Oy 1) where U =V (my); let Ex = E,,, and then

Lo+lo+h, Uy +Us,

T2

and dimU_1 = m.

NI

4. (Cryaipr,05), m>2,0=1,.... m—2whereU =V (m); let Ex = E,,,,

and then

[,2+[71+[0+[1+[2, U71+U0+U1,

and dimU_; =1+ 1.

5. (Fy, a9, a3) where ay is a long root and U = V(my); let Ex = E,, and

then

(g4l o+l +l+0 4+,

Uo+U_14+Uy+ U, + U,
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and dimU_y = 3.

6. (Ga, g, 1) where U =V (m); let Ex = E,, and then

o+ +lo+ G+, U+ U+ U,

and dimU_; = 2.
Furthermore, [, and Uy are irreducible ly-representations.

Proof. 1t was calculated with basis elements from [22] or [17]. O

Proof of Proposition 3.4.2. Let X be the blowing-up of X along Z. Since the
open G-orbit of X is isomorphic to the open G-orbit of X, it is enough to show
that T, X is identified with m = [_ 4+ U_ for any = which is in the open G-orbit
of X. Hence, we assume that z is in the open G-orbit of X.

Remember that G = (L x C*)/C x U, which is listed in Theorem 3.2.4,
where C acts trivially and X is a projective bundle over the L-orbit Y such that
U acts by translation on the fibers. So we choose E'y = FE, as the characteristic
element of [ associated with a root a.. The tangent directions of L-action at x
are naturally identified with [_, and the other tangent directions are contained
in U.

According to Lemma 3.4.3, U is an irreducible [p-module. We see that
[[_1, U] = Uk_1, and hence if the tangent space of X at z contains Uy, it must

contain Uy_;. We can easily check that the dimension dim X = dim L/(P, N
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P3) + 1 equals dim L/P, + dim U_ in all cases. Hence, the tangent space T, X

at x is identified with m = [_ + U_. O]

Lemma 3.4.4. Let g = @p g, be a graded Lie algebra given in Proposition
3.4.2.

1. m=€P, (9, is fundamental, i.e., g, = [gp+1,8-1] forp < —1.
2. if z € g, for p >0, satisfies [z,9-1] =0, then z = 0.

3. for any nonzero vector u € Uy, the dimension of the subspace [_1.u C U_

18 more than or equal to 2.

Proof. 1. We have a gradation of [ = ®p€Z [, associated with o, which satisfies
[, = [lp41, 1] for p < —1, and we have [U_,[;] = 0. Hence, m =P, g, is a
fundamental graded Lie algebra.

2 and 3. By Lemma 2.4.3, if z € €, [, then [z,g_1] = 0 implies 2 = 0.
We want to show that for z € Usy, if [z,[_1] = 0 then z = 0. Also, we want
to show that for any nonzero vector u € Uy, the dimension of the subspace
[_1.u C U_ is more than or equal to 2.

The action

[y xUy — U-

(lLu) = [Lu]=1lu
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and the actions

[,1 XUk — Uk,1

(Lu) — [Lu] =lu

are described as follows up to scalar, which is from weights and weight diagrams([3])
of the irreducible ly-representations [, and Uy. Let Rw(T") is the irreducible rep-

resentation of type T" with the highest weight w.

1. (B, ®m—1,m), m > 2 where U = V(m,,); Let Rmi(A;) = W be the
standard representation of A; with dimW = 2 and W* = W. Let
Rmy(A;—2) = @ be the standard representation of A,, o with dim @ =

m — 1. Then

(L1 = Rmi(An_2)* ® R2m(A))* = Q* @ Sym?* W*
U_ = Rmy(Ay)* = W*
Up = Rmi(Am2) @ Rm(A) = Q@ W
Ui = Rmy(A,2) @ R (Ay) = N2Q @ W

U2 = R?Tg(Am_Q) ® R7T1(A1) = /\SQ & w

For wy,wy € W such that W = (wy, we) and ¢ € @, the action [_; x Uy —
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U_ is given as

(Q*RSym’ W*) x (Qe W) — W*
(" @wi ©wy,q@wi) = ¢ (gJwy ©wi(wr) =w;

(" @w] Owl,qw,) — ¢ (Qw] ®w(w) = 2w;].

For wy,wy € W such that W = (wq,wy) and ¢, - qx € @, the action

[L1 X Ug_1 — Ug_ is given as

(Q*@Sym? W*) x (AN*QeW) — QW =QeW

(GTow Owy,q A Ag@w) — qi(q)g A Ag®w; ©ws(w)
= ¢(@)eN - Ngw;

(i @wi Owl,qi A Agp@wi) = qi(q)ge A A g ®w] ©wi(w)

= qla)eN-Ag 2w

2. (Bs,aq,a3) where U = V/(m3); Let W be the spin representation of By

with dim W =4 and W = W*. Let V be the standard representation of
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By with V* =V and dimV = 5. Then

[,1 = RTfl(BQ)* =V*
U_ = R’iTQ(BQ) =W*

Uo = RWQ(BQ) =W.

The action [_1 xUy — U_ is given by the following: for a basis {w, wq, w3, w4}

of W and a basis {vy, va,v3,v4,v5} of V, V¥ X W — W* is

* *
Up | Uy | Vg | Uy | U5

ws | wy | wy | - - wy
wy | Wy |- o lws | wy

3. (Cin, Oy 1) where U = V (my); Let W be the standard representation

of A,,—1 with dim W = m. Then

[_1 = R27T1 (Am—l)* = Sym2 W
U_ = R?Tl(Am,1>* =W

UO = R7T1(Am_1) =W.
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For the orthonormal basis w;, w;, w, € W, we see

Sym*W* x W — W+

(W O wj,wy) = (w] ©w))(wy) = djpw; + dpw;.

4. (Cpytiz1,a5), m>2,i=1,...,m — 2 where U = V(m); Let W be the
standard representation of A; with dim W = ¢ and let @) be the standard

representation of C,,_;_1; with dim () = 2m — 2i — 1. Then

(L1 = Rm(Ai)* @ Rmy(Cri)* = W* @ QF
U_ = Rﬂ'l(AZ)* =W*
Up = R'Nl(cm—i—l) = Q

U1 = R7T1(AZ) =W.

The action [_; x Uy — U_ is given as, for ¢ € ) and w € W,

W"'Q")xQ — W*

(w*®q",q) — wq(q).
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By the action [_; x U; — Uj is given as, for ¢ € ) and w € W,

Vo) xW — Q=@

*

(W ®q",w) — w(w)q".

5. (Fi, s, a3) where as is a long root and U = V(my); Let W be the stan-
dard representation of A; with dim W = 2 and W* = W and let V be

the standard representation of Ay with dim V' = 3. Then

L1 = R2m(A4) ® Rmi(A)) = Sym*V @ W
U = Rm(As) =V
Up = Rm(A2)* @ Rmy(A)* =V W*
Uy = RAd(A)
Us = Rmy(As) ® Rmy (A1) =V @ W

U3 = R71<A2)* =V
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By the action [y x Uy — U_, for vy,v9,v3 € V and w € W,

(Sym*Ve@W)x (V*@W*) — V
(11 OV @w,v] @W") = vy O (v])w(w") =2
(v OV @w, v W) — v @ vy(v])w(w") = vy

(11 QU3 @w,v] ®wW*) = v O vz(v))w(w”) = vs.

We have the embedding of the weight diagram of V* to the weight dia-

gram of Sym? V:

Under the identification of V* and a subspace of Sym? V by the embed-
ding of the weight diagram of V* to the weight diagram of Sym? V', for

V1, 02,v3 €V,

*
V1 © Vg = Vg

*
Ug@UgZUl

*
V3 O V1 = Uy,
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The action [_; x Uy — Uy is

(Sym?V @ W) x RAd(Ay) — V e W,

which reduces to

Sym?V x RAd(Ay) — V™.

The action [_; x Uy — Uj is

(Sym*V @W) x (Ve W*) — RAd(A),

which reduces to

Sym*V x V. — RAd(Ay).

The reduced action of [y x Uy — Uj is given as, for i # j # k,

Sym?V xV — RAd(A) CcV*eV
(UZ‘Q’UZ‘,U,‘) — 0

(Ui ® vy, Ui) — 5iijZ X v;.
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By the action [_1 x Us — Us, for vy, v9,v3 € V and w € W,

(Sym*VeW)xV* — VoW
(v OV ®w,v]) = v OV(])W=1v QW
(11 OV @w,v}) = V1 OV(v]) ®w = vy @ w

(v Vs @ w,v]) = v Ou3(v]) @ w = v3 R w.

6. (G, i, p) where U = V(my); Let W be the standard representation of

Ay with dim W = 2 and W* = W. Then

[_1 = R37T1(A1)* = Sym3 W+
U_ = R7T1(A1>* =W
UO = R27T1(A1> = Sym2 %74

U1 == R’/Tl(Al) =W.
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By the action [_1 x Uy — U_, for wy,wy € W,

Sym® W* x Sym?*W — W*
(W] O w; O wy,w; @wsg) — wiOw; O w)(w ®wy) = wj
(W] O w; O wy,w @wsy) — wiOw; O wy(w ®wy) =w,
(Wi @ wi Gwj,w; @wy) — w;Ow O w(w w)=w]

(W] @ w] Gwy,w @wy) — wOw;Ows(w ®w)=ws;.

By the action [_; x U; — Uy, for wy,w, € W,

Sym*W* x W — Sym?W* = Sym? W
(Wi Ow; O wi,w) — wyOw;®wy(w)=w]®w,
(W} O Owhun) = wOws O wwy) = wh O w}

*

(0] O wi @uf,w) WO w O wilw) = w] O w.

Hence, for z € Usy, if [2,[_1] = 0 then z = 0. And for a nonzero vector
u € Uy, the dimension of the subspace [_;.u C U_ is more than or equal to

2. U
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3.5 Varieties of minimal rational tangents

The two papers [8] and [9] are main references to get varieties of minimal
rational tangents of smooth nonhomogeneous projective horospherical varieties
of Picard number one. We see the paper [6] for basic concepts of varieties of

minimal rational tangents.

Lemma 3.5.1. Let X be a smooth nonhomogeneous projective horospherical

variety (L, o, B) of Picard number one. Let X, be the open Aut(X)-orbit.

1. (Bpm,am—1, ), m > 2 where U = V(m,); Let Rm(Ay) = W be the
standard representation of A; with dimW = 2 and W* = W. Let
Rmy(A—2) = Q be the standard representation of Ao with dim Q =

m — 1. Then

[_2 = RWQ(Am_Q)* = /\262>'<
[_1 = Rﬂ'l (Am_g)* X R27T1(A1>* = Q* X Sym2 W
U_ = Rm(A)* = W™,
The Chern number of T X, is 2 +m.

2. (Bs,aq,a3) where U = V(7s); Let W be the spin representation of Bs

with dimW =4 and W = W*. Let V' be the standard representation of
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By with V* =V and dimV = 5. Then

[,1 = RTfl(BQ)* =V*

U_ = R'/TQ(BQ) =W

The Chern number of T X, is 2+ 5.

3. (Cony iy 1) where U =V (my); Let W be the standard representation

of Ap_1 with dim W = m. Then

[,1 = R27T1(Am,1)* = Sym2 7%

U_ = R7T1(Am_1)* =W

The Chern number of T X, is 2 4+ m.

4. (Chyiv1,05), m>2,i=1,...,m—2 where U = V(my); Let W be the
standard representation of A; with dimW =1 and let Q) be the standard

representation of Cp,_;_1 with dim Q) = 2m — 21 — 1. Then

[_2 = R27T1 (Al)* = Sym2 W+
(L1 = Rm(A:)" @ Rm(Crpisn)" = W@ Q*

U_1 == R7T1(AZ) =W
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The Chern number of TX, is 2+ 2m — (1 + 1).

5. (Fy, ag, ag) where g is a long root and U = V (nry); Let W be the standard
representation of Ay with dimW = 2 and W* = W and let V be the

standard representation of Ay with dim'V = 3. Then

[,3 = Rﬂ'l(Al)* =W
[_2 = R27T1(A2)* = Sym2 %4
[_1 = R27T1(A2)* & R?Tl(Al)* = Sym2 Vv & w

U_ = R7T1<A2) =V*

The Chern number of T X, is 2 4 4.

6. (Go, s, 1) where U = V(mwy); Let W be the standard representation of

Ay with dimW = 2 and W* = W. Then

[,2 = RT('Q(Al)* = /\21/‘/v>k
[_1 = R37T1 (Al)* = Sym3 W

U_ = R7T1<A1) =W.

The Chern number of T X, is 2+ 2.

Proof. For a smooth nonhomogeneous projective horospherical variety X =

(L,a, 3), we can see g_ = [_ 4+ U_ as [p-representations as above decomposi-
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tions (Proposition 3.4.2). Let h(I) be a Cartan subalgebra of [ and let {v} be
a set of weights and roots of g_. We can calculate signature < v, o >= y(H,),
where H, € h(I) is the coroot of the simple root a. Let s, C g be the sub-
algebra isomorphic to sl such that s, N h([) = CH,. Let S, C G be the
Lie subgroup corresponding to Lie algebra s,. The orbit of 0 € G/H C X
under the subgroup S, C G action is a rational curve C,. By Grothendieck

theorem, the Chern number of T'X restricted to C,, is the sum of signatures

Do, <> O

Proposition 3.5.2. Let X be a smooth nonhomogeneous projective horospher-

ical variety (L, o, B) of Picard number one. Then the varieties of minimal ra-

tional tangents (VMRT) C, C P(T,X) at o € X are followings:

1. (B, 1, ), m > 2 where U = V(my,); Let Rmi(Ay) = W be the
standard representation of Ay with dimW = 2 and Rm(An_2) = Q
be the standard representation of A,,_o with dim ) = m — 1. Then the

variety of minimal rational tangents at o € X is the closure

lh-(¢g ®w? +w) C P(Q ® Sym?> W + W) =P(g_,)
of ly-orbit of ¢ ® w? + w, where q s a highest weight vector of Q and w
1s a highest weight vector of W. The dimension of VMRT is m.
2. (Bs,aq,a3) where U = V(7s); Let W be the spin representation of Bs
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with dim W = 4 and let V' be the standard representation with dimV = 5.

Then the variety of minimal rational tangents at o € X is the closure

lh.(v+w) CP(V+W)=P(g_,),

of lp-orbit of v+ w, where v is a highest weight vector of V and w is a

highest weight vector of W. The dimension of VMRT is 5.

3. (Cony iy 1) where U =V (my); Let W be the standard representation
of Ap_1 with dim W = m. Then the variety of minimal rational tangents

at o € X 1is the closure

lo.(w? +w) C P(Sym®> W + W) = P(g_,),

of ly-orbit w? + w, where w is the highest weight vector of W. The di-

mension of VMRT is m.

4. (Cpyaivr,05), m > 2,10 =1,....m—2 where U = V(my); Let W be
the standard representation of A; with dimW =i+ 1 and let Q) be the
standard representation of Cy,_;_1 with dim Q) = 2m — 2t — 2. Then the

variety of minimal rational tangents at o € X is the closure

h-(w ® ¢ +w? +w) CPW @ Q +Sym* W + W) =P(g_, +g-2),
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of lo-orbit of w®q+w?+w, where q is a highest weight vector of Q and w

is a highest weight vector of W. The dimension of VMRT is 2m— (i+1).

5. (Fy, ag, a3) where ag is a long root and U = V (my); Let W be the standard
representation of Ay with dimW = 2 and let V' be the standard repre-
sentation of Ay with dimV = 3. Then the variety of minimal rational

tangents at o € X is the closure

lh.(12@w+v) CPSym?’ VoW +V)=P(g_,),

of ly-orbit v*> ® w + v, where v is a highest weight vector of V and w is

a highest weight vector of W. The dimension of VMRT s 4.

6. (Ga,az, 1) where U = V(my); Let W be the standard representation of
Ay with dim W = 2. Then the variety of minimal rational tangents at

o € X 1is the closure
lo.(w3 +w) C P(Sym®* W + W) = P(g_1),

of ly-orbit w3+w, where w is a highest weight vector of W. The dimension

of VMRT 1s 2.

To prove this proposition, we need a lemma that follows;
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Lemma 3.5.3 (Lemma 1.4 of [9]). Let C' C M be a free rational curve on
complex manifold. Suppose there exists a point P € C' and an m-dimensional
family of deformations of C' fixing P such that the members of the family are

all distinct rational curves. Then —Ky; - C > 2+ m.

Proof of Proposition 3.5.2. By Lemma 3.5.3, the dimension of the variety of
minimal rational tangents at o € X is equal or less then the Chern number
minus 2. We have [(Ip + C) > Uy, U_] C U_, [(lo + C) > Uy, 1] C [ + U_,
[(Io + C) > Uy, [_5] C [ and [l; + Uy, [_5] C [_1 + U_. Hence, if there exist a
vector v € U_ such that dimension of the [y-orbit closure l[p.v C P(U_) is the
Chern number minus 2, then the variety of minimal rational tangents is that
[p-orbit closure lh.v C P(U_). Suppose not, and if there exist vectors v € U_
and w € [_; such that dimension of the lg-orbit closure ly.(v + w) € P(I_;+U_)
is the Chern number minus 2, then the variety of minimal rational tangents is
that [p-orbit closure m C P(I_; +U-). Continuing this until getting the
dimension of [p-orbit closure is Chern number minus 2. The conclusion follows

from Lemma 3.5.1. O

49



Chapter 4

Existence of Cartan connections

4.1 Prolongations

Let X be a smooth nonhomogeneous projective horospherical variety (L, «, /3)
of Picard number one. Let G = Aut(X) and let g = (I + C) > U be the
corresponding Lie algebra. By Proposition 3.4.2, we could give a gradation of
g = D, g, such that the graded Lie algebra m = P, _, g, is identified with

the tangent space of X at a point x where x is in the open G-orbit.
Proposition 4.1.1. Let g = (I+C)> U and m = [_ + U_. Assume that
1. For z € ls9g+ Uso, if [I-, 2] =0, than z = 0.

2. For any vector u € Uy, if the dimension of the subspace |_y.u C U_ 1s

less then or equal to 1, then u = 0.
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CHAPTER 4. EXISTENCE OF CARTAN CONNECTIONS

If HPY(1_,1) = 0 and HP*(I_,U) =0 for p > 0, then H”'(m,g) =0 for p > 0.

Proof. Let p € m" ® g be such that dp = 0. Write p = p; + pc + py, where

pEM®L pc €M ®C and py € m’ ® U. Then for any X', Y € [_ and

XY-YYU- € U_, we have

Thus

Ip(X'- + XUy 470

(X" + X )p(Y' +Y7) = (Y + Y7 )p(X + X77) — p([X'-, V)
because [ +U_,U_] =0

{X"pyc(Y'" +Y7) = Yopro(XE + X7) — pre((X-, Y]}
+{X"pc (Y + YY) =Y pue(XE + X9)

+ X pr (Y 4+ YY) = Yipp (XS + XY) — pu (X, Y] )

= X' p(YS +Y") = Yip (X + X)) = pi([X, Y]
= X0 p(Y' Y)Y (X + X
+X T pe (Y +Y7) =Y pe(XE + X7

+ X pu (Y + YY) = Yipy (XS + X7) — pu (X', Y5)

o1
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CHAPTER 4. EXISTENCE OF CARTAN CONNECTIONS

and

0 = pe([X",YH]). (4.1.2)

Put XU- =YU- =0 into (*) to get

Xop(Y5) = Yip(X5) — po([ X', Y]) = 0. (4.1.3)

Put Y- = 0 into (*) to get

X p(YU-) =0. (4.1.4)

Put Y- =0 and XY~ =0 in () to get

Xpp(V') = YU op(X) = Y pe(X) = 0. (4.1.5)

Put Y= =0 and X'- =0 in () to get

XU p(Y7) =Y pu(X7) + X pe (YY) = YPpe(XY-) = 0. (4.1.6)

Put XU- =YU- =0in () to get

XU pu(Y) = Y pu(X5) = (X, Y5]) =0, (4.1.7)
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In (4.1.4), since X'= € [_ is arbitrary, by the assumption 1, we have

P, (YY) =0, (4.1.8)

where p_, € @,5¢ lp-

In (4.1.6), by (4.1.8), we see

XY pe(YY) = YYpe(XY-) = 0. (4.1.9)

This is also valid for the two linearly independent vector XV~ and YV-.

Hence,

pe(X7) =0. (4.1.10)

Let 0;_ denote the restriction of 0 to AI’® g. Then, by (4.1.3) and (4.1.7),
we have O;_(pi+ pv)|i_ = 0.
By hypothesis, HP»'(I_,[) = 0 and H?'(I_,U) = 0. Then there is ¢ =

i + qu, where ¢ €  and gy € U such that

dqg= P +pu)l. (4.1.11)

We will show that d¢ = p; + py + pe. By (4.1.11), (4.1.2) and (4.1.10),

it suffices to show that dg(X"~) = (p + py)(XY-) for all XU~ € U_ and
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CHAPTER 4. EXISTENCE OF CARTAN CONNECTIONS

pe(X=) =0 for all X'- €.

In (4.1.5), we have

YPpe(X©) = X' pu(Y") = Y7 p(X"5)
= X"pu(Y") =YY X" g because p(X") = dgi(X")
= X'"py(YY) = XYY ¢ because [I_ + U_,U_] =0

= X" (pU(YUf) - YU*C][)-

For X'- € {X" € I_|pc(X"-) = 0},

0 = X“(pp(YY) =YY q). (4.1.12)

Since {X'= € [_1|pc(X") = 0} C [ is a hyperplane or [_, by the assump-

tion 2,

0 = (pe(Y") =YY q)|u,- (4.1.13)

Hence, for any X'- € [_;, we see

pe(X'-) = 0. (4.1.14)
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Equation (4.1.5) becomes

Xpu(Y9) =Y p(X5) = Y7 9g(X").

(4.1.15)

Write 0q = (9q)1+(0q)c+(0q)y where (0q); € I, (0q)c € C and (9q)y € U.

Then

dq(X") =X"q =X"q+X"q

dq(X7) =X"q =X"q.

Thus
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In particular, this implies

X" (0q)u(X7) = X"X"(q+qc)
= XY X" (g + qc) because [[_,U_] =0
= XU?XLQ[

= XY (9q)(X").

Hence, by (4.1.15),

X (0q)u(XY-) = X" py(XY-).

Since X' € [_ is arbitrary, by the assumption 1, we have

(00)v2o (X") = puo (XU7), (4.1.16)

where (aq>U20 € ®p20 Up and pUZO S @pZO Up'
It follows that dg>0 = p=o € @,=( 8- Therefore, H?!'(m,g) C m*; ® g,

vanishes for any p > 0. O
Lemma 4.1.17. H?'(1_,U) =0 for p > 0.

Proof. Let x, € I be the root vector associate with simple root a. Let o, be the
simple reflection associated with a. Let A be the highest weight of irreducible

representation U of [. Then —\ is the lowest weight of U. Let u_,, () € U be
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the weight vector of weight —o, ().

By Theorem 5.15 of [13], we have

HYI_,U) = H*,

where H¢ is the irreducible l;-module with lowest weight vector ¥ ® U_go(N)
of weight &, = —(04(A) + ).
Since 2} ® u_y,n) € 1, @ U_ and Hé = 1, @ U_ = HOY(I_,U), we see

HPY(1_,U) =0 for p > 0. O

Theorem 4.1.18. Let X be a smooth nonhomogeneous projective horospher-
ical variety (L,a, 8) of Picard number one. Let G = Aut(X) and let g =
(I+C) > U be the corresponding Lie algebra. By Proposition 3.4.2, we could
give a gradation of g = P, 8, such that the graded Lie algebra m = P, 9y
1s identified with the tangent space of X at a point x where x is in the open

G-orbit. Then g = €D, g, is the prolongation of (m,go).

Proof. By Theorem 2.4.3 and Lemma 4.1.17, 2, 3 of Lemma 3.4.4 and Proposi-
tion 4.1.1, for p > 0, HP'(m, g) = 0. Then, by 1, 2 of Lemma 3.4.4 and Lemma

2.2.4, g = @, 9, is the prolongation of (m, go). O
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4.2 Existence of Cartan connections

We will show the existence of Cartan Connections. Theorem 4.2.1 is general-
ization of Theorem 2.3.3 (when g = g). We will apply it to the Lie algebras of
the automorphism groups of smooth nonhomogeneous projective horospherical

varieties of Picard number one.

Theorem 4.2.1. Let m be a fundamental graded Lie algebra. Let Gy be a

Lie subgroup of Go(m) and let go be the Lie algebra corresponding to Gy. Let

g(m, go) = Dz 8i be the prolongation of (m, go) and h(m, go) = ;> 9i be its
non-negative part. Let H(m,Gy) be the Lie group with its Lie algebra h(m, go).
Assume the prolongation g(m, go) is finite-dimensional. We also assume that
there exists a graded Lie algebra g which contains g(m, go) as a Lie subalgebra,

an symmetric bilinear form (.,.) on g, and a map T: § — @ satisfying
1. the gradation of g(m, go) could be extended to g;

2. {.,.} := —(.,7.) is a positive definite Hermitian inner product on g(m, go)

3. 7(g(m, go)) is also graded Lie algebra and 7(g;) C §_; fori > 0;
4. {A, 2l yy = —{a, [7(A), ]} for Ac g, 2,y €5

5. there is 1o: Gy — Go such that (ax,y) = (z,79(a)y) for z,y € § and

CLEG()
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Then for each Gg-structure on (M, F) of type m, we can construct a Cartan
connection (P,w) of type (g(m,go), H(m,Gy)) so that two Gy-structures on
(M, F) are (locally) equivalent when the associated Cartan connections of type

(g(m, go), H(m, Gy)) are (locally) equivalent.

Proof. We simplify g = g(m, go), b = h(m, go), and H = H(m, Gy). For proof,
it is enough to show that there exists a subspace W of F* Hom(A?m, g), which
satisfies the conditions of Theorem 2.3.2.

We extend the Hermitian inner product {.,.} to Hom(A'm, g). We identify
Am’ and A'T(m) by defining a map n: A'm’ — A'7(m) C A'g such that
{n(f),7(2)} = =n(f),z) = —f(z) for f € AMm’ z € A'm. Let 0* be the formal
adjoint of 0 with respect to the extended Hermitian inner product {.,.} on
Hom(A'm, g).

Then we have the direct sum decomposition:

Hom(APm, g) =  Hom(A? 'm, g) @ Ker 0*.

Let us show that Ker 0* is an invariant subspace by the action of H. Let p
be the representation of H C G on Hom(A'm, g) and p, be the corresponding
adjoint representation of h C g on Hom(A'm, g). Since any element a € H is

written as

a = ag - exp(A)
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with ag € Gy, A € F'h := @, 9, it suffices to show that

(1) 90" o plag) = plag) o 0" for ag € Gy

(2) 0" 0 p(A) =p.(A)o 0" for A€ b.
Generally, we have
0o plag) = plag) o 0 for ay € Gy.
For the adjoint representation A of t + §o = D<o 8: on Hom(A'm, g), we see

0o A\B) =\(B)od for Be @i

1<0

Since 7(h) C €D, §i, for the adjoint representation A of 7(h) on Hom(A'm, g) =

ANT(m) ® g,

doA(B)=A(B)od for B €(h).
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It follows that for A € h and ¢, 1 € Hom(A'm, g),

{070 p(A)o, v} = {p.(A)g, 00}
= —{o,A(rA)9y}
= —{¢,0A7A)Y}
= {00, A7 A)} = {p.(A)070, ¥},

which shows (2).

Similarly, we can verify (1). So Ker 9* is an invariant subspace by the action
of H.

If we set W = Ker 0*NF! Hom(A?m, g), the proof is completed by Theorem

2.3.2. [l

Theorem 4.2.2. Let X be a smooth nonhomogeneous projective horospherical
variety (L, o, 8) of Picard number one. Let G = Aut(X) and let g = (I+C)>U
be the corresponding Lie algebra. As in Proposition 3.4.2, we give a gradation
on the Lie algebra g. H C G is the Lie subgroup associated with h = @z‘zo ;-
Let m = @p<0 g, and let Gy be the Lie subgroup of G corresponding to go.
Let (M, F) be a reqular filtered manifold of type m. Then, for a given Go-
structure on (M, F), there exists a Cartan connection of type (g, H) so that two
Go-structures on (M, F) are (locally) equivalent when the associated Cartan

connections of type (g, H) are (locally) equivalent.
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Proof. We will apply Theorem 4.2.1 to g = (I+ C) > U. By Lemma 3.4.4 (1),
m is a fundamental graded Lie algebra. By Theorem 4.1.18, the Lie algebra g
is the prolongation of (m, gg). Let g = gl(V') which contains g and g*. Now we
consider Proposition 3.3.1. The Cartan-Killing form on gl(V') is a symmetric
bilinear form (-, -) such that the restricted inner product {-, -} on g is a positive
definite Hermitian inner product. This proves condition 2. We could give a gra-
dation on gl(V') by the element Ex, since V' is a representation space of [. And
shift the gradation on V,®Vy and V,;®Vj to make it be the extended gradation
of the shifted gradation of U and U*, which proves condition 1. Then the shifted
gradation has also symmetry with respect to 7, which proves condition 3. More
precisely, we have 7(Fx) = —FEx and for z,y € g, [7(x),7(y)] = 7([z,y]).
Hence, from [E,7(z)] = —[7(E),7(2)] = —7([F, z]) = —it(2) for z € g;, we
have 7(g;) C g—; for ¢ > 0. Since the Killing-form on gl(V') itself is an ad-
invariant symmetric bilinear form (-,-), the remaining conditions 4 and 5 are

clear. O

4.3 Geometric structures modeled after horo-
spherical varieties

Let X = (L, a, ) be a smooth nonhomogeneous projective horospherical vari-

ety of Picard number one. Let g be the Lie algebra of the automorphism group
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of X. Let Xj be the open orbit of X with respect to G = Aut(X). We recall
from Proposition 3.4.2 that there is a gradation on g = ®pEZ g, such that
m= @Ko g, is fundamental and ¢ : T, Xy ~ m for a base point z € Xy. Let

Gy C Go(m) be the Lie subgroup corresponding to go.

Definition 4.3.1. Let (Xy, £) be the regular differential system of type m
derived from the subbundle F of T'X,, where F, corresponds to g_; under
the identification T, Xy ~ m for a base point x € X,. Let Z be the frame
bundle of (X, £). Then Z is isomorphic to G x g Go(m). The Gy-subbundle
P of X, which is isomorphic to Gg-subbundle G Xy Gy of G Xy Go(m), is
a Go-structure on (X, E). We call the Gy-structure on (X, F) the standard

geometric structures on X.

Since X is a Fano manifold, it is uniruled. By Theorem 1.12 of [18], the

closed G-orbit has a codimension of at least two.

Definition 4.3.2. Let M be a projective manifold. There is a subbundle D of
T (M), which is defined outside of a subvariety Sing(D) of M. Suppose there

exists a connected Zariski open subset M, of M — Sing(D) such that
1. Sing(D) has a codimension of at least two, and
2. (My, D) is a regular differential system of type m.

A Gy-structure on (Mg, D) is called a geometric structure on M modeled after

X.
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Two geometric structures of M; and M, modeled after X are locally equiv-
alent if the Gy-structure on ((M)g, D7) and the Gy-structure on ((Mz)og, Do)
are locally equivalent in the sense of Definition 2.1.3. A geometric structure
modeled after X is locally flat if it is locally equivalent to the standard geo-

metric structure on X.

The next proposition is proved in [10], getting the essence of Theorem 4.1

in [2].

Proposition 4.3.3 (Proposition 2.9 of [10]). Let M be a manifold. Assume
that there exists a non-constant holomorphic map f: P* — M such that f*T (M)
is a positive vector bundle, i.e., f*TI'(M) = O(a;) ® --- & O(a,) where a; > 1
and n = dim M. Let My C M be a connected Zariski open subset. Let H C G
be a closed connected subgroup of a connected Lie group G with Lie algebra g.

Then any Cartan connection on My of type (g, H) is locally flat.

Proof. Given a Cartan connection w on a principal H-bundle P — M,, we
can associate a principal G-bundle P — M, with an Ehresmann connection
@ as Section 3 of [2]. For a curve f: P! — M with positive f*T'(M), we see
f*K (@) = 0, where K (@) is the curvature of the connection @. We could see
the vanishing of that curvature along a curve with positive tangents in the
proof of Theorem 3.1 in the paper [1].

By assumption, there is a non-constant holomorphic map f: P! — M

such that f*T'(M) is a positive vector bundle. Then there exist a family of
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holomorphic maps

{fi: Pt — M|t € AF, fFT(M) positive},

parametrized by a polydisc A, for some k& > 0 such that the union of their
images Uycar f:(P!) contain a nonempty open subset U of M. For a nonempty
open set U N My, the curvature K (@) vanishes on U N M, as above, hence
vanishes on the whole space M,. Hence, @ is locally flat on M, which implies

w is locally flat on Mj. O]

The following is from Proposition 7.9 of [10], which is well-known from

Proposition I1.3.7 and Theorem IV.3.7 of [12].

Proposition 4.3.4. Let M be a uniruled projective manifold of Picard number
one. Then for any subvariety Z C M of codimension two, there exists f : P! —

M with f(PYYNZ =0 and f*T(M) is positive.

Theorem 4.3.5. Let X be a smooth nonhomogeneous projective horospherical
variety of Picard number one. Let M be a Fano manifold of Picard number
one. Then any geometric structure on M modeled after X is locally equivalent

to the standard geometric structure on X.

Proof. The variety X is a smooth nonhomogeneous projective horospherical
variety (L, c, ) of Picard number one. The Lie group G is Aut(X) and g is

the Lie algebra of G. Then there is a gradation of g = ®p€Z g, such that
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m = @, , 9, is fundamental and the tangent space T,X is isomorphic to
m for each x € Xy by Proposition 3.4.2. By Theorem 4.1.18, the graded Lie
algebra g = @pEZ g, is the prolongation of (m, gg).

Let M be a Fano manifold of Picard number one. M is a uniruled projective
manifold. Let Go-structure on (M, D) be a geometric structure on M modeled
after X where D is a subbundle of T'(M) with singularity Sing(D) and M, is
a connected Zariski open subset in M — Sing(D). Then the regular filtered
manifold (My, D) of type m admits a Cartan connection on M, of type (g, H)
by Theorem 4.2.2.

Since the subvariety Sing(D) has codimension of at least two in M, by
Proposition 4.3.4, there is a rational curve f: P! — M such that f(P') N
Sing(D) = 0 and f*T'(M) is positive. We apply Proposition 4.3.3 to My C
M — Sing(D); thus, the Cartan connection on M, of type (g, H) is locally flat.

To conclude, a geometric structure on M modeled after X is locally equiv-

alent to the standard geometric structure on X. O
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