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Abstract

Geometric structures modeled after smooth

projective horospherical varieties of Picard

number one

Shin Young Kim

Department of Mathematical Sciences

The Graduate School

Seoul National University

Geometric structures modeled after homogeneous manifolds are studied to

characterize homogeneous manifolds and to prove the deformation rigidity of

them. To generalize these characterizations and deformation rigidity results to

quasihomogeneous manifolds, we first study horospherical varieties and geo-

metric structures modeled after horospherical varieties. Using Cartan geom-

etry, we prove that a geometric structure modeled after a smooth projective

horospherical variety of Picard number one is locally equivalent to the stan-

dard geometric structure when the geometric structure is defined on a Fano

manifold of Picard number one.

Keywords : geometric structure · local equivalence · horospherical variety ·

Cartan geometry · prolongation
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Chapter 1

Introduction

Let M be a Fano manifold of Picard number one. An irreducible component K

of the space of rational curves on M is called a minimal dominating component

if the subvarietyKx which consists of members that pass through x is nonempty

and projective for general point x ∈M . The tangent directions at x of members

of Kx form a subvariety Cx of PTx(M) which is called the variety of minimal

rational tangents at x. Many techniques can be used to study the projective

geometries of Cx ⊂ PTx(M) which are believed to control the geometry of

the manifold M . In this paper, we study geometric structures modeled after

horospherical varieties which we expect to get from the variety of minimal

rational tangents.

When S is a rational homogeneous manifold of Picard number one, a pair

of the automorphism group of the variety of minimal rational tangent Cs and
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CHAPTER 1. INTRODUCTION

the linear span Ds of the cone Ĉs ⊂ Ts(S) of Cs for s ∈ S corresponds to a

geometric structure on S. Ngaiming Mok, Jun-Muk Hwang, and Jaehyun Hong

published significant works on the geometric structures modeled after S which

arise from the variety of minimal rational tangents. They published works on

Hermitian symmetric manifolds and homogeneous contact manifolds in papers

[7], [4], and [15], and on the other homogeneous manifolds associated with long

simple roots in paper [5].

Theorem 1.0.1 ([5], [7], [4] and [15]). Let S = G/P where G is a simple

Lie group and P is a maximal parabolic subgroup associated with a long root.

Let Cs ⊂ PTs(S) be the variety of minimal rational tangents at a base point

s ∈ S. Let M be a Fano manifold of Picard number one and Cx be the variety of

minimal rational tangents at a general point x ∈M associated with a minimal

dominating component K. Suppose that Cs ⊂ PTs(S) and Cx ⊂ PTx(M) are

isomorphic as projective subvarieties for a general point x ∈ M . Then M is

biholomorphic to S.

It is natural to ask what happens when we replace rational homogeneous

manifolds with quasihomogeneous varieties, especially with smooth projective

horospherical varieties of Picard number one. A horospherical variety is a com-

plex normal algebraic variety where a connected complex reductive algebraic

group acts with an open orbit isomorphic to a torus bundle over a rational ho-

mogeneous manifold. Boris Pasquier classified smooth projective horospherical

2



CHAPTER 1. INTRODUCTION

varieties of Picard number one in his paper [18]. When a smooth projective

horospherical variety is homogeneous, it is isomorphic to one of quadrics Q2m,

Grassmannians Gr(i + 1,m + 2), and spinor varieties Spin2m+1 /Pαm . These

are all compact irreducible Hermitian symmetric manifolds, and the geometric

structures modeled after them were already studied in Theorem 1.0.1.

In this thesis, we will study geometric structures modeled after smooth

nonhomogeneous projective horospherical varieties of Picard number one.

Theorem 1.0.2. Let X be a smooth nonhomogeneous projective horospherical

variety of Picard number one. Let M be a Fano manifold of Picard number

one. Then any geometric structure on M modeled after X is locally equivalent

to the standard geometric structure on X.

We use Definition 4.3.2 for the definition of a geometric structure modeled

after X. We will prove the existence of Cartan connections (Theorem 4.2.2)

and use it to prove local equivalence of geometric structures modeled after

smooth nonhomogeneous projective horospherical varieties of Picard number

one.

Noboru Tanaka ([21]) and Tohru Morimoto ([16]) find the sufficient condi-

tions for the existence of Cartan connections, mainly for geometric structures

with certain symmetries, like geometric structures modeled after rational ho-

mogenous manifolds. We generalize these conditions for some quasihomoge-

neous manifolds cases including ours in Theorem 4.2.1. To prove the existence

3



CHAPTER 1. INTRODUCTION

of Cartan connections associated with geometric structures modeled after X,

we need to study the Lie algebra aut(X) of the automorphism group of X. In

particular, it is important to know whether g satisfies the prolongation prop-

erty. When X is a rational homogeneous manifold, Keizo Yamaguchi shows

that g satisfies the prolongation property by proving that the Lie algebra co-

homology space Hp,1(m, g) vanishes, where m is a nilpotent subalgebra of g. In

this case, g is semisimple, and thus we can apply Kostant’s harmonic theory

on the Lie algebra cohomology spaces. However, in our case, g is not semisim-

ple and we cannot apply Kostant’s harmonic theory. In this direction, Collen

robles and Dennis The ([19]) compute Lie algebra cohomology spaces for some

cases, when g is not semisimple, by modifying Kostant’s harmonic theory. It

would be interesting if one can generalize Kostant’s harmonic theory fully to

the case when g is not semisimple. In this thesis, instead of generalizing the

whole theory, we reduce the vanishing of Lie algebra cohomology spaces to

the vanishing of Lie algebra cohomology spaces associated with the maximal

semisimple subalgebra of g, which now can be computed using Kostant’s har-

monic theory.

The thesis is organized as follows. In Chapter 2, we review the general

theory of Cartan connections. In Chapter 3, we study horospherical varieties.

When X is a smooth nonhomogeneous projective horospherical variety of Pi-

card number one, we also study the Lie algebra of the automorphism group

4



CHAPTER 1. INTRODUCTION

of X, and varieties of minimal rational tangents of X. The vanishing of the

first generalized Spencer cohomologies of aut(X) is proved in Chapter 4. In

Chapter 4, we prove the existence of Cartan connections and the local flatness

of the geometric structures modeled after X, which proves Theorem 1.0.2.

We work over the complex number field C without any additional men-

tioning of a number field. All manifolds, Lie groups and Lie algebras will be

understood as complex manifolds, complex Lie groups and complex Lie alge-

bras.

5



Chapter 2

Geometric structures on filtered

manifolds

In this Chapter, we mainly follow the papers of Noboru Tanaka, Tohru Mori-

moto, and Keizo Yamaguchi([21], [16], and [23]) .

2.1 G0-structures on filtered manifolds

Definition 2.1.1. Let g be a Lie algebra. A gradation of g is a direct decom-

position g =
⊕

p∈Z gp such that [gp, gq] ⊂ gp+q for any p, q ∈ Z. A fundamental

graded Lie algebra is a nilpotent graded Lie algebra m =
⊕

p<0 gp generated

by g−1, that is, gp = [gp+1, g−1] for any p < −1.

Definition 2.1.2. Let M be a manifold. A tangential filtration F = {F p}p∈Z≤0

6
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on M is a sequence of subbundles F p = F pTM of the tangent bundle TM of

M satisfying the following: i) F p+1 ⊂ F p; ii) F 0 = 0 and ∪F p = TM ; and

iii) [Fp,F q] ⊂ Fp+q for any p, q ∈ Z≤0 where F � is the sheaf of sections of F �.

A manifold M with a tangential filtration F = {F p}p∈Z≤0
on M is called a

filtered manifold and we denote a filtered manifold as (M,F ).

The symbol algebra Symbx(F ) =
⊕

p∈Z≤0
Symbpx(F ) of F at x ∈M is given

by Symbpx(F ) = F p
xTM/F p+1

x TM with a natural bracket induced from the Lie

bracket of vector fields. Let m =
⊕

p<0 gp be a fundamental graded Lie algebra

with dim(m) = dim(M). A filtered manifold (M,F ) is called regular of type m

if the symbol algebras Symbx(F ) are all isomorphic to the given fundamental

graded Lie algebra m for all x ∈M .

Definition 2.1.3. Let (M,F ) be a regular filtered manifold of type m. Let

Rx(M,m) be the set of all isomorphisms r : m → Symbx(F ) of graded Lie

algebras. Then its structure group G0(m) consists of all automorphisms of the

graded Lie algebra m =
⊕

p<0 gp and R := ∪x∈MRx(M,m) is a principal

G0(m)-bundle on M . This fiber bundle is called the frame bundle of (M,F ).

Given a Lie subgroup G0 ⊂ G0(m), a G0-structure on (M,F ) is a G0-subbundle

of the frame bundle R. Two G0-structures on (M1, F1) and (M2, F2) are locally

equivalent if there exist two open subsets U1 of M1 and U2 of M2, and a G0-

bundle isomorphism over the open subsets U1 and U2.

Definition 2.1.4. A differential system (M ,D) on a manifold M is a sub-

7
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bundle D of the tangent bundle TM of M . The subbundle D is completely

integrable if and only if [D,D] ⊂ D. For a non-integrable differential system

D, we consider the derived system ∂D of D which is defined, in terms of sec-

tions, by

∂D = D + [D,D]

where D denotes the space of sections of D. Moreover, the k-th weak derived

systems ∂(k)D of D are inductively defined by

∂(k)D = ∂(k−1)D + [D, ∂(k−1)D],

where ∂(0)D = D and ∂(k)D denotes the space of local sections of ∂(k)D. A

differential system (M ,D) is called regular if D−(k+1) := ∂(k)D is a subbundle

of TM for every integer k ≥ 1. For a regular differential system (M ,D) such

that D−µ = TM , we define the associated graded Lie algebra m(x) at x ∈M ,

which was introduced by Noboru Tanaka in [20]. We put g−1(x) = D−1(x),

gp(x) = Dp(x)/Dp+1(x) (for p < −1) and

m(x) =

−µ⊕
p=−1

gp(x).

Then m(x) becomes a fundamental graded Lie algebra which we call the symbol

8
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algebra of (M ,D) at x ∈ M . If the symbol algebra m(x) is isomorphic to a

given fundamental graded Lie algebra m for each x ∈ M , then we call (M ,D)

a regular differential system of type m.

Remark 2.1.5. Let (M,D) be a regular differential system of type m. A regular

tangential filtration (M,F ) of type m derived from a regular differential system

(M,D) of type m is given by F p = Dp for p < 0. We just denote (M,D) as a

regular filtered manifold of type m derived from a regular differential system

(M,D) of type m. A G0-structure on a regular differential system (M,D) is a

G0-subbundle of the frame bundle R of the derived regular filtered manifold

(M,D).

2.2 Prolongations

Definition 2.2.1. Given a fundamental graded Lie algebra m =
⊕

p<0 gp,

there exists a unique graded Lie algebra g(m) =
⊕

p∈Z gp(m) such that

1. gp(m) = gp for p < 0.

2. if z ∈ gp(m) for p ≥ 0, satisfies [z,m] = 0, then z = 0.

3. g(m) is the largest graded Lie algebra satisfying conditions 1 and 2.

We call g(m) the universal prolongation of m. Let g0 ⊂ g0(m) be a subalgebra.

Then the prolongation of (m, g0) is the largest graded Lie algebra g(m, g0) =⊕
p gp(m, g0) ⊂ g(m) such that

⊕
p<0 gp(m, g0) = m and g0(m, g0) = g0.

9
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Definition 2.2.2. Let g =
⊕

p∈Z gp be a graded Lie algebra. Assume its

negative part m =
⊕

p<0 gp is a fundamental graded Lie algebra. Define the

coboundary operator ∂ : Hom(∧qm, g) → Hom(∧q+1m, g) as follows: for φ ∈

Hom(∧qm, g),

∂φ(z1 ∧ · · · ∧ zq+1) =

q+1∑
i=1

(−1)i+1[zi, φ(z1 ∧ · · · ∧ ẑi · · · ∧ zq+1)]

+
∑
i<j

(−1)i+jφ([zi, zj] ∧ z1 · · · ∧ ẑi · · · ∧ ẑj · · · ∧ zq+1)

where ẑi means skipping zi. We denote the induced cochain complex by (C(m, g), ∂)

and the derived space of cohomology by H(m, g).

Definition 2.2.3. The cochain complex (C(m, g), ∂) has the following bigra-

dation (Section 1 of [21] and Section 2.4 of [23]):

Cp,q(m, g) =
⊕
j≤−q

Hom(∧qjm, gj+p+q−1),

where

∧qjm =
⊕

i1+···+iq=j

gi1 ∧ · · · ∧ giq ,

10
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the ik are negative. The space of cohomology with the bigradation,

Hq(m, g) =
⊕
p

Hp,q(m, g)

is called the generalized Spencer cohomology of (g,m).

The following is an effective way to show that a given graded Lie algebra

g =
⊕

p∈Z gp is the prolongation of m (or of (m, g0)).

Lemma 2.2.4 (Lemma 2.1 of [23]). Let g =
⊕

p∈Z gp be a graded Lie al-

gebra such that m =
⊕

p<0 gp is fundamental. Then g is the prolongation of

m (respectively of (m, g0)) if and only if the following two conditions hold:

1. if z ∈ gp for p ≥ 0, satisfies [z,m] = 0, then z = 0.

2. Hp,1(m, g) = 0 for p ≥ 0 (respectively, p ≥ 1).

2.3 Cartan connections

Definition 2.3.1. Let g be a Lie algebra and let h ⊂ g be a Lie subalgebra.

Let H be a connected Lie group with Lie algebra h and let Ad: H → GL(g)

be the adjoint representation of H on g. A Cartan connection of type (g, H)

on a manifold M is a principal H-bundle π : P → M with a g-valued 1-form

ω on P such that

11
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1. ω(z†) = z for z ∈ h, where z† denotes the fundamental vector field on P

induced by z ∈ h;

2. R∗hω = Ad(h−1)ω for h ∈ H, where Rh : P → P is the right action of

h ∈ H on P ;

3. the linear map ωp : Tp(P ) → g is a vector space isomorphism for each

p ∈ P .

Two Cartan connections of type (g, H), denoted by pairs (P1, ω1) on M1

and (P2, ω2) on M2, are locally equivalent if there exist two open subsets U1 of

M1 and U2 of M2, and a biholomorphic map φ : P1|U1 → P2|U2 descending to

U1 → U2 such that φ∗ω2 = ω1. A Cartan connection of type (g, H) is locally flat

if it is locally equivalent to the Cartan connection on the principal H-bundle

G → G/H with the Maurer-Cartan form on G, where G is a connected Lie

group with the Lie algebra g and an inclusion H ⊂ G as a closed subgroup of

G.

Let m be a fundamental graded Lie algebra. Let G0 be a Lie subgroup

of G0(m) and let g0 be the Lie algebra corresponding to G0. Let g(m, g0)

be the prolongation of the graded Lie algebra of (m, g0). Define h(m, g0) :=⊕
p≥0 g(m, g0)p, then g(m, g0) = m⊕ h(m, g0).

Let M be a Lie group with m as its Lie algebra. The trivial subbundle

M×G0 of M×G0(m) is the standard G0-structure on (M,m). From Theorem

12
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3.6.1 of [16], we obtain a principal H(m, G0)-bundle P on M with a constant

structure function ĉ of P (which actually zero in this case, i.e., ĉ = 0), where

H(m, G0) is a Lie group with its Lie algebra h(m, g0), and the Lie subgroup

G0 is embedded in H(m, G0) as a closed subgroup.

We define a subspace of Hom(∧2m, g(m, g0)) as

F 1 Hom(∧2m, g(m, g0)) := {α|α(gi ∧ gj) ⊂
⊕

p≥i+j+1

g(m, g0)p for i, j < 0}.

The following Theorem 2.3.2 gives us the sufficient condition of the exis-

tence of Cartan connections. For more details, see Chapters 2 and 3 of [16] and

Theorem 2.7 of [21].

Theorem 2.3.2 (Definition 3.10.1 and Theorem 3.10.1 of [16]). Let (M,F ) be

a regular filtered manifold of type m, and let G0 be a Lie subgroup of G0(m) with

Lie algebra g0. Suppose there exists a subspace W of F 1 Hom(∧2m, g(m, g0))

such that

1. F 1 Hom(∧2m, g(m, g0)) = W ⊕ ∂F 1 Hom(m, g(m, g0)),

2. W is stable under the action of H := H(m, G0).

Then for each G0-structure on (M,F ), we can construct a principal H-bundle

P →M associated with the G0-structure on (M,F ) and obtain a Cartan con-

nection (P, ω) of type (g(m, g0), H). Two G0-structures on (M,F ) are (locally)

13
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equivalent when the associated Cartan connections of type (g(m, g0), H) are

(locally) equivalent.

With the following conditions in Theorem 2.3.3, we see that there exists a

H-invariant subspace W of F 1 Hom(∧2m, g(m, g0)) such that

F 1 Hom(∧2m, g(m, g0)) = W ⊕ ∂F 1 Hom(m, g(m, g0)).

Theorem 2.3.3 (Proposition 3.10.1 of [16]). Let m be a fundamental graded

Lie algebra. Let G0 be a Lie subgroup of G0(m). Let g0 be the subalgebra of g0(m)

corresponding to G0, g = g(m, g0) the prolongation of (m, g0), and h =
⊕

p≥0 gp

its non-negative part. Assume that the prolongation g is finite-dimensional and

that there exist a positive definite bilinear form

(, ) : g× g→ R,

a mapping τ : h→ g and a mapping τ0 : G0 → G0 such that

1. (gp, gq) = 0 for p 6= q

2. τ(gp) ⊂ g−p for p ≥ 0, and ([A, x], y) = (x, [τ(A), y]) for all x, y ∈ g and

A ∈ h

3. (ax, y) = (x, τ0(a)y) for x, y ∈ g and a ∈ G0

14
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Then there exists a full functor from the category of G0-structures of type m

to the category of Cartan connections of type (g, H), where H is the Lie group

with Lie algebra h.

2.4 Examples

Definition 2.4.1. Let g =
⊕

p∈Z gp be a semisimple graded Lie algebra. Then

there exists a unique element E ∈ g0 such that

gp = {X ∈ g | [E,X] = pX} for p ∈ Z.

The element E is called the characteristic element of g =
⊕

p∈Z gp.

Gradation and the root space decomposition Let g be a semisimple

Lie algebra with rank(g) = m. We take a Cartan subalgebra h and a set of

simple roots 4 = {α1, · · · , αm} of g. Let Φ be a set of roots of g relative to h.

The root space decomposition of g is

g = h⊕
⊕
α∈Φ

gα,

where gα = {X ∈ g | [H,X] = α(H)X for all H ∈ h} is the root space for

α ∈ Φ.

15
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We define the characteristic element Eαi associated with αi as

αj(Eαi) =

 1 if j = i

0 if j 6= i,

where αi ∈ 4. Let I ⊂ {1, 2, · · · ,m} be a subset of positive integers. The

element E =
∑

i∈I Eαi is called the characteristic element E associated with

{αi}i∈I ⊂ 4. Then we could construct a gradation g =
⊕

p∈Z gp which is called

a gradation associated with E as follows;

g0 = h⊕
⊕
α∈Φ+

0

gα ⊕ g−α

gk =
⊕
α∈Φ+

k

gα

g−k =
⊕
α∈Φ+

k

g−α (k > 0),

where Φ+
k = {α ∈ Φ+|α(E) = k}.

For examples, the gradation of (Am, {αi}) is slm+1 = g−1⊕g0⊕g1 and the

gradation of (Am, {α1, α2}) is slm+1 = g−2 + g−1 + g0 + g1 + g2.

Lemma 2.4.2 (Lemma 3.8 of [23]). Let g = ⊕pgp be a simple graded Lie

algebra and h be a Cartan subalgebra. Let 4 be a simple root system such that

E ∈ h and α(E) ≥ 0 for any α ∈ 4. The graded Lie subalgebra m = ⊕p<0gp

satisfies gp = [gp+1, g−1] for p < −1, if and only if α(E) = 0 or 1 for any

16
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α ∈ 4.

Assume the gradation of Lie algebra g =
⊕

p∈Z gp is the gradation as-

sociated with Eαi for a simple root αi. Then, the subalgebra
⊕

p<0 gp is a

fundamental graded Lie algebra by Lemma 2.4.2.

Lemma 2.4.3 (From Theorem 5.32 of [23]). Let g =
⊕

p gp be a simple graded

Lie algebra such that the gradation
⊕

p gp is associated with Eαi for a simple

root αi, except when g =
⊕

p gp is isomorphic with (Am, α1) or (Cm, α1).Then

1. if z ∈ gp for p ≥ 0, satisfies [z,m] = 0, then z = 0.

2. Hp,1(m, g) = 0 for p ≥ 1.

In the above Lemma, the property Hp,1(m, g) = 0 for p ≥ 1 is obtained

from Kostant’s harmonic theory, calculating Laplacian.

Theorem 2.4.4 (Theorem 5.32 of [23]). Let g =
⊕

p gp be a simple graded Lie

algebra such that gp = [gp+1, g−1] for p < −1. Then g =
⊕

p gp is a prolongation

of m except for the following three cases.

1. g = g−1 ⊕ g0 ⊕ g1 is of depth 1.

2. g =
⊕
−2≤p≤2 gp is a contact gradation (dim g−2 = 1).

3. g =
⊕

p gp is isomorphic with (Am, {αm, αi}) (1 < i < m) or (Cm, {α1, αm}).

Moreover g =
⊕

p gp is the prolongation of (m, g0) except when g =
⊕

p gp is

isomorphic with (Am, α1) or (Cm, α1).
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Existence of Cartan connection

Proposition 2.4.5. Let g =
⊕

p gp be a simple graded Lie algebra associated

with a simple root αi except when g =
⊕

p gp is isomorphic with (Am, α1) or

(Cm, α1). Let m =
⊕

p<0 gp and (M,D) be a regular differential system of type

m. Then there exists a Cartan connection of type (g, H) associated with a given

G0-structures on a regular differential system (M,D) of type m such that two

G0-structures on (M,D) are (locally) equivalent when the associated Cartan

connections are (locally) equivalent.

Proof. The subalgebra m =
⊕

p<0 gp of g is fundamental by Lemma 2.4.2 and

g =
⊕

p gp is the prolongation of (m, g0) by Theorem 2.4.4. For a given G0-

structures of type m, we will apply Theorem 2.3.3 to get a Cartan connection

of type (g, H) where H is a Lie group with Lie algebra
⊕

p≥0 gp. We need to

show that there exist τ , τ0 and (·, ·) satisfying the conditions of Theorem 2.3.3.

Let B(·, ·) be the Cartan-Killing form on g. Let eα ∈ gα be a nonzero

vector, there exists a vector e−α ∈ g−α such that B(eα, e−α) = 2/(α, α) and

[eα, e−α] := hα

[hα, eα] = 2eα

[hα, e−α] = −2e−α.

Let τ : g → g be an automorphism of g such that τ(eα) = −e−α and

18
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τ(hα) = −hα for any root α ∈ Φ. Let τ0 : G0 → G0 be an automorphism of G0

corresponding to τ |g0 : g0 → g0. Define a symmetric bilinear form (·, ·) on g by

(X, Y ) : = −B(X, τ(Y )).

Then the symmetric bilinear form (·, ·) is positive definite on g. Moreover,

(gp, gq) = 0 for p 6= q, τ(gp) ⊂ g−p for p ≥ 0, and ([A, x], y) = (x, [τ(A), y])

for all x, y ∈ g and A ∈ h and (ax, y) = (x, τ0(a)y) for x, y ∈ g and a ∈ G0.

Hence, there exists a Cartan connection of type (g, H) associated with a given

G0-structure on a regular differential system (M,D) of type m such that two

G0-structures on (M,D) are (locally) equivalent when the associated Cartan

connections are (locally) equivalent.
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Chapter 3

Smooth horospherical varieties

of Picard number one

3.1 G-varieties

Definition 3.1.1. An algebraic group G is an algebraic variety G with the

structure of a group, such that the multiplication map

µ : G×G→ G, (g, h) 7→ gh

and the inverse map

ι : G→ G, g 7→ g−1

20



CHAPTER 3. SMOOTH HOROSPHERICAL VARIETIES OF PICARD
NUMBER ONE

are morphisms of varieties.

Definition 3.1.2. A G-variety is an algebraic variety X equipped with an

action of the algebraic group G, where the action

α : G×X → X, (g, x) 7→ g.x

is a morphism of varieties.

Given a G-variety X and a point x ∈ X, the orbit G.x ⊂ X is the set of all

g.x, where g ∈ G. The isotropy group Gx ⊂ G is the set of those g ∈ G such

that g.x = x.

Example 3.1.3. A torus T = (C∗)n with self T -action is a T -variety.

Example 3.1.4. Let {e1, · · · , e2m} be a basis of the vector space C2m. Let ω

be the non-degenerate skew-form given by

ω(ei, ej) = δi,2m+1−j, for all 1 ≤ i, j ≤ 2m.

The symplectic Grassmannian Gω(k, 2m) is

Gω(k, 2m) : = {V |V ⊂ C2m, dimV = k, V isotropic with respect to ω}.

Then Gω(k, 2m) = Sp2m /Pk is a projective Sp2m-variety, where Pk ⊂ Sp2m

is the parabolic subgroup which stabilizes the subspace Ek = 〈e1, · · · , ek〉 of

21



CHAPTER 3. SMOOTH HOROSPHERICAL VARIETIES OF PICARD
NUMBER ONE

C2m.

3.2 Classifications

Let L be a connected reductive algebraic group.

Definition 3.2.1. 1. An L-homogeneous space X is called a horospherical

homogeneous space if X is isomorphic to a homogeneous space L/H

such that H contains a maximal unipotent subgroup U of L. Then X

is isomorphic to an n-dimensional torus (C∗)n bundle over a rational

homogeneous space. We call X is of rank n.

2. An L-variety X is called a horospherical variety if X is the embedding of

a horospherical homogeneous spaces L/H, that is, X has an open L-orbit

which is isomorphic to L/H.

Example 3.2.2. Let B is the set of upper triangular matrices of SL2. The

homogeneous space SL2 /B is a horospherical homogeneous space of rank 0,

which is isomorphic to the projective space P1. B contains U the set of upper

triangular matrices of SL2 such that all diagonal components are the unit 1.

The homogeneous space SL2 /U is a horospherical homogeneous space of rank

1, which is isomorphic to the space C2−{0}. The SL2-varieties C2, P2−{0}, P2,

blow-up of 0 in C2 and blow-up of 0 in P2 are horospherical varieties with one
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open SL2 /U orbit for each. The SL2-variety P2 is the unique smooth projective

horospherical variety of Picard number one among these SL2-varieties.

Example 3.2.3. Let {e0, e1, · · · , e2m} be a basis of the vector space C2m+1.

Let ω be a skew-form given by

ω(ei, ej) = δi,2m+1−j, for all 1 ≤ i, j ≤ 2m.

Then ω(e0, ej) = 0 for all 1 ≤ j ≤ 2m. The odd symplectic Grassmannian

Gω(k, 2m+ 1) is

Gω(k, 2m+ 1) := {V |V ⊂ C2m+1, dimV = k, V isotropic with respect to ω}.

This could be realized as the closure of Sp2m-orbit at e1∧ · · ·∧ ek−1∧ (e0 + ek);

Gω(k, 2m+ 1) = Sp2m .[e1 ∧ · · · ∧ ek−1 ∧ (e0 + ek)] ⊂ P(∧kC2m+1).

The isotropic subgroup of Sp2m at e1 ∧ · · · ∧ ek−1 ∧ (e0 + ek) is Pk−1 ∩ Pk,

where Pl ⊂ Sp2m is the parabolic subgroup which stabilizes the subspace El =

〈e1, · · · , el〉 of C2m+1. The open Sp2m-orbit is isomorphic to a C∗-bundle over

Sp2m /(Pk−1 ∩ Pk), where C∗-action is given by

λ.[e1 ∧ · · · ∧ ek−1 ∧ (e0 + ek)] = [e1 ∧ · · · ∧ ek−1 ∧ (e0 + λek)] ∈ P(∧kC2m+1).
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The variety Gω(k, 2m+ 1) is a horospherical Sp2m-variety of rank 1.

Theorem 3.2.4 (Theorem 0.1 and Theorem 1.11 of [18]). Let X be a smooth

nonhomogeneous projective horospherical L-variety with Picard number one.

Let πi be a i-th fundamental weight of L-representation space. Then X is

horospherical of rank one and the automorphism group of X is a connected

non-reductive linear algebraic group G, acting with exactly two orbits. More-

over, X is uniquely determined by its two closed L-orbits Y and Z, which are

isomorphic to L/Pα and L/Pβ, respectively. The variety X = (L, α, β) is one

of the triples, with the group G, of the following list:

1. (Bm, αm−1, αm) for m ≥ 3 and (SO2m+1×C∗) n V (πm)

2. (B3, α1, α3) and (SO7×C∗) n V (π3)

3. (Cm, αi+1, αi) for m ≥ 2, i ∈ {1, . . . ,m − 1} and ((Sp2m×C∗)/{±1}) n

V (π1)

4. (F4, α2, α3) where α2 is a long root and (F4 × C∗) n V (π4)

5. (G2, α2, α1) and (G2 × C∗) n V (π1)

Here, Pαi is the maximal parabolic subgroup of L associated with the simple

root αi, and V (πi) is the irreducible L-representation with the highest weight

πi.
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For a given X = (L, α, β), there are irreducible L-representations V (πα)

and V (πβ). Let vα be the highest weight vector of V (πα) and vβ be the highest

weight vector of V (πβ). X is the orbit closure of L.[vα+vβ] ⊂ P(V (πα)⊕V (πβ))

(Section 1.3 of [18]). Hence, X has three orbits under the action of L: one open

orbit isomorphic to a torus C∗-bundle over L/(Pα ∩Pβ), and two closed orbits

Y and Z which are isomorphic to L/Pα and L/Pβ, respectively.

Let G be the automorphism group of X. According to Lemma 1.15 of [18],

the closed L-orbit Z is stable under the G-action. Let X̃ be the blowing-up of

X along Z. Then G = Aut X̃. According to the proof of Lemma 1.17 of [18], X̃

is a projective bundle over the L-orbit Y and U ⊂ G acts on X̃ by translation

on the fibers of X̃ → Y ∼= L/Pα. And G = (L × C∗)/C n U , where U is a

L-representation space and C is a centralizer.

Example 3.2.5. From the result of I.Mihai in the paper [14], the automor-

phism group of the odd symplectic Grassmannian Gω(k, 2m + 1) is equal to

((Sp2m×C∗)/{±1}n V (π1).

Let G = Aut(Gω(k, 2m + 1)). We also see that G act on Gω(k, 2m + 1)

with two orbits

X0 = {V ∈ Gω(k, 2m+ 1)|e0 ∈ V }

X1 = {V ∈ Gω(k, 2m+ 1)|e0 /∈ V }.
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Moreover, X0 is a closed G-orbit isomorphic to the symplectic Grassman-

nian Gω(k − 1, 2m), where Gω(k − 1, 2m) is isomorphic to a closed Sp2m-

orbit Sp2m /Pk−1. The orbit X1 is an open G-orbit isomorphic to the dual of

the tautological bundle over the symplectic Grassmannian Gω(k, 2m), where

the symplectic Grassmannian Gω(k, 2m) is isomorphic to a closed Sp2m-orbit

Sp2m /Pk.

In the list of above Theorem 3.2.4, the horospherical varieties (Cm, αi+1, αi)

are the odd symplectic Grassmannian Gω(i + 1, 2m + 1) for m ≥ 2, i ∈

{1, . . . ,m− 1}.

3.3 Lie algebras of the automorphism groups

Proposition 3.3.1. Let X = (L, α, β) be a smooth nonhomogeneous projective

horospherical variety of Picard number one. Let g be the Lie algebra of the

automorphism group of X. Then, we have the followings:

1. The Lie algebra g is a semidirect product of (l+C) and an irreducible l-

representation U where l is a semisimple Lie algebra, i.e., g = (l+C)�U .

2. There exist two irreducible L-representations Vα and Vβ such that l ⊂

End(Vα), C ' CI ⊂ End(Vβ), and U ⊂ End(Vα, Vβ). Hence, we regard

g as a Lie subalgebra via the inclusion i : g ↪→ gl(V ) = EndV where
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V = Vα ⊕ Vβ. In particular, we could write an element Z of g as

Z =

 z ∈ l 0

u ∈ U c ∈ CI

 ∈ End(V ) = gl(V ).

3. Let ∗ be an operator on gl(V ) given by z∗ = z̄t for z ∈ gl(V ). Let τ be

an operator defined by τ(z) = −z∗ for z ∈ gl(V ). Let (., .) be the Cartan-

Killing form on gl(V ). We define an inner product {·, ·} by {z, y} =

(z, y∗) = −(z, τ(y)) for z, y ∈ gl(V ). Then a restricted inner product

{·, ·} is a positive definite Hermitian inner product on g.

Proof. 1. It is from Theorem 1.11 of [18].

2. It is from the proof of Theorem 1.1 of [18]. Since X is the orbit closure

of L.[vα + vβ] ⊂ P(V (πα)⊕ V (πβ)), let Vα = V (πα) and Vβ = V (πβ).

3. If we take two elements Z1 and Z2 in g,

Z1 =

 z1 ∈ l 0

u1 ∈ U c1 ∈ C

 and Z2 =

 z2 ∈ l 0

u2 ∈ U c2 ∈ C

 .

Then

Z1Z
∗
2 =

 z1z
∗
2 z1u

∗
2

u1z
∗
2 u1u

∗
2 + c1c

∗
2

 .
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By page 271 of the book [11], we see

Tr ad X ad Y = 2nTr(XY)− 2Tr(X)Tr(Y)

for X,Y ∈ gl(V ).

Since the semisimple Lie algebra l in gl(V ) is contained in sl(V ) which

is the traceless subalgebra of gl(V ),

{Z1,Z2} = 2nTr(Z1Z2
∗)− 2Tr(Z1)Tr(Z2

∗)

= 2nTr(z1z2
∗) + 2nTr(u1u

∗
2) + 2nαnβc1 · c∗2

where n = dim(V ), nα = dim(Vα) and nβ = dim(Vβ). Hence, {·, ·} is a

positive definite Hermitian inner product on g.

Remark 3.3.2. We rescale the Hermitian inner product on g divide by 2n for

n = dim(V ) (respectively, rescale the Cartan-Killing form). That is,

{Z1,Z2} = Tr(z1z2
∗) + Tr(u1u

∗
2) +

nαnβ
n

c1 · c∗2.

Then for Eij ∈ V ∗α ⊗Vβ which is zero except ij-component or if we write a unit

column vector ei in j-th entry, we see {Eij, Ekl} = Tr(Eij, E
∗
kl) = δjlei · e∗k =

δikδjl.
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3.4 Gradations

Let l =
⊕

p∈Z lp be a semisimple graded Lie algebra of rank(l) = m. We choose

a Cartan subalgebra h ⊂ l0 and let 4 = {α1, · · · , αm} be the system of simple

roots of l with respect to h. We will consider the Lie algebra l which has a

gradation
⊕

p∈Z lp associated with αi as we see in section 2.4.

Example 3.4.1. Let L be a semisimple Lie group. Let Pαi be a maximal

parabolic subgroup of L associated with a simple root αi. Let l be the semisim-

ple Lie algebra of L. The Lie algebra l has a gradation
⊕

p∈Z lp associated with

the root αi. The tangent space of the homogeneous space L/Pαi at each point

is identified with
⊕

p<0 lp, which is a fundamental graded Lie subalgebra of l.

Proposition 3.4.2. Let X be a smooth nonhomogeneous projective horospher-

ical variety (L, α, β) of Picard number one. Let G = Aut(X) and let g =

(l + C) � U be the corresponding Lie algebra. Then we could give a gradation

of g =
⊕

p gp such that the graded Lie algebra m =
⊕

p<0 gp is identified with

the tangent space of X at a point x where x is in the open G-orbit.

More precisely, let lk and Uk be eigenspaces that have eigenvalue k under

the action of EX := Eα. Then

l =

µ(l)⊕
k=−µ(l)

lk and U =

µ(U)⊕
k=−µ(U)

Uk,

where µ(l) and µ(U) are the largest numbers among the nonzero eigenvalues
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of the action of EX on l and on U , respectively. Now give the gradation on g

by shifting the above decompositions as follows:

g−p = l−p for p > 1

g−1 = l−1 + U−µ(U)

g0 = (l0 + C) � U−µ(U)+1

gp = lp + U−µ(U)+p+1 for p ≥ 1.

Let l− =
⊕

p<0 lp and U− = U−µ(U) and let m = l− + U−. Also, let U≥0 =

U−µ(U)+1 + · · ·+ Uµ(U). Then

TxX ∼= m = l− + U− =
⊕
p<0

gp.

Lemma 3.4.3. We decompose the space l (and U) to the eigenspaces lk (and

Uk) that have eigenvalue k under the action of EX := Eα as follows:

1. (Bm, αm−1, αm), m > 2 where U = V (πm); let EX = Eαm−1 and then

l−2 + l−1 + l0 + l1 + l2,

U−m−1
2

+ U−m−1
2

+1 + · · ·+ Um−1
2
−1 + Um−1

2
,

and dimU−m−1
2

= 2.
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2. (B3, α1, α3) where U = V (π3); let EX = Eα1 and then

l−1 + l0 + l1, U− 1
2

+ U 1
2
,

and dimU− 1
2

= 4.

3. (Cm, αm, αm−1) where U = V (π1); let EX = Eαm and then

l−1 + l0 + l1, U− 1
2

+ U 1
2
,

and dimU− 1
2

= m.

4. (Cm, αi+1, αi), m > 2, i = 1, . . . ,m−2 where U = V (π1); let EX = Eαi+1

and then

l−2 + l−1 + l0 + l1 + l2, U−1 + U0 + U1,

and dimU−1 = i+ 1.

5. (F4, α2, α3) where α2 is a long root and U = V (π4); let EX = Eα2 and

then

l−3 + l−2 + l−1 + l0 + l1 + l2 + l3,

U−2 + U−1 + U0 + U1 + U2,
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and dimU−2 = 3.

6. (G2, α2, α1) where U = V (π1); let EX = Eα2 and then

l−2 + l−1 + l0 + l1 + l2, U−1 + U0 + U1,

and dimU−1 = 2.

Furthermore, lk and Uk are irreducible l0-representations.

Proof. It was calculated with basis elements from [22] or [17].

Proof of Proposition 3.4.2. Let X̃ be the blowing-up of X along Z. Since the

open G-orbit of X is isomorphic to the open G-orbit of X̃, it is enough to show

that TxX̃ is identified with m = l−+U− for any x which is in the open G-orbit

of X̃. Hence, we assume that x is in the open G-orbit of X̃.

Remember that G = (L × C∗)/C n U , which is listed in Theorem 3.2.4,

where C acts trivially and X̃ is a projective bundle over the L-orbit Y such that

U acts by translation on the fibers. So we choose EX = Eα as the characteristic

element of l associated with a root α. The tangent directions of L-action at x

are naturally identified with l−, and the other tangent directions are contained

in U .

According to Lemma 3.4.3, Uk is an irreducible l0-module. We see that

[l−1, Uk] = Uk−1, and hence if the tangent space of X at x contains Uk, it must

contain Uk−1. We can easily check that the dimension dimX = dimL/(Pα ∩
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Pβ) + 1 equals dimL/Pα + dimU− in all cases. Hence, the tangent space TxX

at x is identified with m = l− + U−.

Lemma 3.4.4. Let g =
⊕

p gp be a graded Lie algebra given in Proposition

3.4.2.

1. m =
⊕

p<0 gp is fundamental, i.e., gp = [gp+1, g−1] for p < −1.

2. if z ∈ gp for p ≥ 0, satisfies [z, g−1] = 0, then z = 0.

3. for any nonzero vector u ∈ U0, the dimension of the subspace l−1.u ⊂ U−

is more than or equal to 2.

Proof. 1. We have a gradation of l =
⊕

p∈Z lp associated with α, which satisfies

lp = [lp+1, l−1] for p < −1, and we have [U−, l−1] = 0. Hence, m =
⊕

p<0 gp is a

fundamental graded Lie algebra.

2 and 3. By Lemma 2.4.3, if z ∈
⊕

p≥0 lp, then [z, g−1] = 0 implies z = 0.

We want to show that for z ∈ U≥0, if [z, l−1] = 0 then z = 0. Also, we want

to show that for any nonzero vector u ∈ U0, the dimension of the subspace

l−1.u ⊂ U− is more than or equal to 2.

The action

l−1 × U0 → U−

(l, u) 7→ [l, u] = l.u
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and the actions

l−1 × Uk → Uk−1

(l, u) 7→ [l, u] = l.u

are described as follows up to scalar, which is from weights and weight diagrams([3])

of the irreducible l0-representations lk and Uk. Let Rω(T ) is the irreducible rep-

resentation of type T with the highest weight ω.

1. (Bm, αm−1, αm), m > 2 where U = V (πm); Let Rπ1(A1) = W be the

standard representation of A1 with dimW = 2 and W ∗ = W . Let

Rπ1(Am−2) = Q be the standard representation of Am−2 with dimQ =

m− 1. Then

l−1 = Rπ1(Am−2)∗ ⊗R2π1(A1)∗ = Q∗ ⊗ Sym2W ∗

U− = Rπ1(A1)∗ = W ∗

U0 = Rπ1(Am−2)⊗Rπ1(A1) = Q⊗W

U1 = Rπ2(Am−2)⊗Rπ1(A1) = ∧2Q⊗W

U2 = Rπ3(Am−2)⊗Rπ1(A1) = ∧3Q⊗W
...

For w1, w2 ∈ W such that W = 〈w1, w2〉 and q ∈ Q, the action l−1×U0 →
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U− is given as

(Q∗ ⊗ Sym2W ∗)× (Q⊗W ) → W ∗

(q∗ ⊗ w∗1 � w∗2, q ⊗ w1) 7→ q∗(q)w∗1 � w∗2(w1) = w∗2

(q∗ ⊗ w∗1 � w∗1, q ⊗ w1) 7→ q∗(q)w∗1 � w∗1(w1) = 2w∗1.

For w1, w2 ∈ W such that W = 〈w1, w2〉 and q1, · · · qk ∈ Q, the action

l−1 × Uk−1 → Uk−2 is given as

(Q∗ ⊗ Sym2W ∗)× (∧kQ⊗W ) → Q⊗W ∗ = Q⊗W

(q∗1 ⊗ w∗1 � w∗2, q1 ∧ · · · ∧ qk ⊗ w1) 7→ q∗1(q1)q2 ∧ · · · ∧ qk ⊗ w∗1 � w∗2(w1)

= q∗1(q1)q2 ∧ · · · ∧ qk ⊗ w∗2

(q∗1 ⊗ w∗1 � w∗1, q1 ∧ · · · ∧ qk ⊗ w1) 7→ q∗1(q1)q2 ∧ · · · ∧ qk ⊗ w∗1 � w∗1(w1)

= q∗1(q1)q2 ∧ · · · ∧ qk ⊗ 2w∗1.

2. (B3, α1, α3) where U = V (π3); Let W be the spin representation of B2

with dimW = 4 and W = W ∗. Let V be the standard representation of
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B2 with V ∗ = V and dimV = 5. Then

l−1 = Rπ1(B2)∗ = V ∗

U− = Rπ2(B2) = W ∗

U0 = Rπ2(B2) = W.

The action l−1×U0 → U− is given by the following: for a basis {w1, w2, w3, w4}

of W and a basis {v1, v2, v3, v4, v5} of V , V ∗ ×W → W ∗ is

v∗1 v∗2 v∗3 v∗4 v∗5

w1 w∗4 w∗3 w∗2 · ·

w2 w∗3 · w∗1 w∗4 ·

w3 w∗2 w∗1 · · w∗4

w4 w∗1 · · w∗3 w∗2

3. (Cm, αm, αm−1) where U = V (π1); Let W be the standard representation

of Am−1 with dimW = m. Then

l−1 = R2π1(Am−1)∗ = Sym2W ∗

U− = Rπ1(Am−1)∗ = W ∗

U0 = Rπ1(Am−1) = W.
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For the orthonormal basis wi, wj, wk ∈ W , we see

Sym2W ∗ ×W → W ∗

(w∗i � w∗j , wk) 7→ (w∗i � w∗j )(wk) = δjkw
∗
i + δikw

∗
j .

4. (Cm, αi+1, αi), m > 2, i = 1, . . . ,m− 2 where U = V (π1); Let W be the

standard representation of Ai with dimW = i and let Q be the standard

representation of Cm−i−1 with dimQ = 2m− 2i− 1. Then

l−1 = Rπ1(Ai)
∗ ⊗Rπ1(Cm−i−1)∗ = W ∗ ⊗Q∗

U− = Rπ1(Ai)
∗ = W ∗

U0 = Rπ1(Cm−i−1) = Q

U1 = Rπ1(Ai) = W.

The action l−1 × U0 → U− is given as, for q ∈ Q and w ∈ W ,

(W ∗ ⊗Q∗)×Q → W ∗

(w∗ ⊗ q∗, q) 7→ w∗q∗(q).
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By the action l−1 × U1 → U0 is given as, for q ∈ Q and w ∈ W ,

(W ∗ ⊗Q∗)×W → Q∗ = Q

(w∗ ⊗ q∗, w) 7→ w∗(w)q∗.

5. (F4, α2, α3) where α2 is a long root and U = V (π4); Let W be the stan-

dard representation of A1 with dimW = 2 and W ∗ = W and let V be

the standard representation of A2 with dimV = 3. Then

l−1 = R2π1(A2)⊗Rπ1(A1) = Sym2 V ⊗W

U− = Rπ1(A2) = V

U0 = Rπ1(A2)∗ ⊗Rπ1(A1)∗ = V ∗ ⊗W ∗

U1 = RAd(A2)

U2 = Rπ1(A2)⊗Rπ1(A1) = V ⊗W

U3 = Rπ1(A2)∗ = V ∗
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By the action l−1 × U0 → U−, for v1, v2, v3 ∈ V and w ∈ W ,

(Sym2 V ⊗W )× (V ∗ ⊗W ∗) → V

(v1 � v1 ⊗ w, v∗1 ⊗ w∗) 7→ v1 � v1(v∗1)w(w∗) = 2v1

(v1 � v2 ⊗ w, v∗1 ⊗ w∗) 7→ v1 � v2(v∗1)w(w∗) = v2

(v1 � v3 ⊗ w, v∗1 ⊗ w∗) 7→ v1 � v3(v∗1)w(w∗) = v3.

We have the embedding of the weight diagram of V ∗ to the weight dia-

gram of Sym2 V :

b
b b

- r b r
b

r
b

Under the identification of V ∗ and a subspace of Sym2 V by the embed-

ding of the weight diagram of V ∗ to the weight diagram of Sym2 V , for

v1, v2, v3 ∈ V ,

v1 � v2 = v∗3

v2 � v3 = v∗1

v3 � v1 = v∗2.
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The action l−1 × U1 → U0 is

(Sym2 V ⊗W )×RAd(A2) → V ∗ ⊗W,

which reduces to

Sym2 V ×RAd(A2) → V ∗.

The action l−1 × U2 → U1 is

(Sym2 V ⊗W )× (V ⊗W ∗) → RAd(A2),

which reduces to

Sym2 V × V → RAd(A2).

The reduced action of l−1 × U2 → U1 is given as, for i 6= j 6= k,

Sym2 V × V → RAd(A2) ⊂ V ∗ ⊗ V

(vi � vi, vi) 7→ 0

(vi � vj, vi) 7→ δijkv
∗
k ⊗ vi.
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By the action l−1 × U3 → U2, for v1, v2, v3 ∈ V and w ∈ W ,

(Sym2 V ⊗W )× V ∗ → V ⊗W

(v1 � v1 ⊗ w, v∗1) 7→ v1 � v1(v∗1)⊗ w = v1 ⊗ w

(v1 � v2 ⊗ w, v∗1) 7→ v1 � v2(v∗1)⊗ w = v2 ⊗ w

(v1 � v3 ⊗ w, v∗1) 7→ v1 � v3(v∗1)⊗ w = v3 ⊗ w.

6. (G2, α2, α1) where U = V (π1); Let W be the standard representation of

A1 with dimW = 2 and W ∗ = W . Then

l−1 = R3π1(A1)∗ = Sym3W ∗

U− = Rπ1(A1)∗ = W ∗

U0 = R2π1(A1) = Sym2W

U1 = Rπ1(A1) = W.
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By the action l−1 × U0 → U−, for w1, w2 ∈ W ,

Sym3W ∗ × Sym2W → W ∗

(w∗1 � w∗2 � w∗1, w1 ⊗ w2) 7→ w∗1 � w∗2 � w∗1(w1 ⊗ w2) = w∗1

(w∗1 � w∗2 � w∗2, w1 ⊗ w2) 7→ w∗1 � w∗2 � w∗2(w1 ⊗ w2) = w∗2

(w∗1 � w∗1 � w∗1, w1 ⊗ w1) 7→ w∗1 � w∗1 � w∗1(w1 ⊗ w1) = w∗1

(w∗1 � w∗1 � w∗2, w1 ⊗ w1) 7→ w∗1 � w∗1 � w∗2(w1 ⊗ w1) = w∗2.

By the action l−1 × U1 → U0, for w1, w2 ∈ W ,

Sym3W ∗ ×W → Sym2W ∗ = Sym2W

(w∗1 � w∗2 � w∗1, w1) 7→ w∗1 � w∗2 � w∗1(w1) = w∗1 � w∗2

(w∗1 � w∗2 � w∗2, w1) 7→ w∗1 � w∗2 � w∗2(w1) = w∗2 � w∗2

(w∗1 � w∗1 � w∗1, w1) 7→ w∗1 � w∗1 � w∗1(w1) = w∗1 � w∗1.

Hence, for z ∈ U≥0, if [z, l−1] = 0 then z = 0. And for a nonzero vector

u ∈ U0, the dimension of the subspace l−1.u ⊂ U− is more than or equal to

2.
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3.5 Varieties of minimal rational tangents

The two papers [8] and [9] are main references to get varieties of minimal

rational tangents of smooth nonhomogeneous projective horospherical varieties

of Picard number one. We see the paper [6] for basic concepts of varieties of

minimal rational tangents.

Lemma 3.5.1. Let X be a smooth nonhomogeneous projective horospherical

variety (L, α, β) of Picard number one. Let Xo be the open Aut(X)-orbit.

1. (Bm, αm−1, αm), m > 2 where U = V (πm); Let Rπ1(A1) = W be the

standard representation of A1 with dimW = 2 and W ∗ = W . Let

Rπ1(Am−2) = Q be the standard representation of Am−2 with dimQ =

m− 1. Then

l−2 = Rπ2(Am−2)∗ = ∧2Q∗

l−1 = Rπ1(Am−2)∗ ⊗R2π1(A1)∗ = Q∗ ⊗ Sym2W ∗

U− = Rπ1(A1)∗ = W ∗.

The Chern number of TXo is 2 +m.

2. (B3, α1, α3) where U = V (π3); Let W be the spin representation of B2

with dimW = 4 and W = W ∗. Let V be the standard representation of
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B2 with V ∗ = V and dimV = 5. Then

l−1 = Rπ1(B2)∗ = V ∗

U− = Rπ2(B2) = W ∗.

The Chern number of TXo is 2 + 5.

3. (Cm, αm, αm−1) where U = V (π1); Let W be the standard representation

of Am−1 with dimW = m. Then

l−1 = R2π1(Am−1)∗ = Sym2W ∗

U− = Rπ1(Am−1)∗ = W ∗.

The Chern number of TXo is 2 +m.

4. (Cm, αi+1, αi), m > 2, i = 1, . . . ,m− 2 where U = V (π1); Let W be the

standard representation of Ai with dimW = i and let Q be the standard

representation of Cm−i−1 with dimQ = 2m− 2i− 1. Then

l−2 = R2π1(Ai)
∗ = Sym2W ∗

l−1 = Rπ1(Ai)
∗ ⊗Rπ1(Cm−i−1)∗ = W ∗ ⊗Q∗

U−1 = Rπ1(Ai) = W ∗.
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The Chern number of TXo is 2 + 2m− (i+ 1).

5. (F4, α2, α3) where α2 is a long root and U = V (π4); Let W be the standard

representation of A1 with dimW = 2 and W ∗ = W and let V be the

standard representation of A2 with dimV = 3. Then

l−3 = Rπ1(A1)∗ = W

l−2 = R2π1(A2)∗ = Sym2 V

l−1 = R2π1(A2)∗ ⊗Rπ1(A1)∗ = Sym2 V ⊗W

U− = Rπ1(A2) = V ∗.

The Chern number of TXo is 2 + 4.

6. (G2, α2, α1) where U = V (π1); Let W be the standard representation of

A1 with dimW = 2 and W ∗ = W . Then

l−2 = Rπ2(A1)∗ = ∧2W ∗

l−1 = R3π1(A1)∗ = Sym3W ∗

U− = Rπ1(A1) = W.

The Chern number of TXo is 2 + 2.

Proof. For a smooth nonhomogeneous projective horospherical variety X =

(L, α, β), we can see g− = l− + U− as l0-representations as above decomposi-
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tions (Proposition 3.4.2). Let h(l) be a Cartan subalgebra of l and let {γ} be

a set of weights and roots of g−. We can calculate signature < γ, α >= γ(Hα),

where Hα ∈ h(l) is the coroot of the simple root α. Let sα ⊂ g be the sub-

algebra isomorphic to sl2 such that sα ∩ h(l) = CHα. Let Sα ⊂ G be the

Lie subgroup corresponding to Lie algebra sα. The orbit of o ∈ G/H ⊂ X

under the subgroup Sα ⊂ G action is a rational curve Cα. By Grothendieck

theorem, the Chern number of TX restricted to Cα is the sum of signatures∑
γ < γ, α >.

Proposition 3.5.2. Let X be a smooth nonhomogeneous projective horospher-

ical variety (L, α, β) of Picard number one. Then the varieties of minimal ra-

tional tangents (VMRT) Co ⊂ P(ToX) at o ∈ X are followings:

1. (Bm, αm−1, αm), m > 2 where U = V (πm); Let Rπ1(A1) = W be the

standard representation of A1 with dimW = 2 and Rπ1(Am−2) = Q

be the standard representation of Am−2 with dimQ = m − 1. Then the

variety of minimal rational tangents at o ∈ X is the closure

l0.(q ⊗ w2 + w) ⊂ P(Q⊗ Sym2W +W ) = P(g−1)

of l0-orbit of q ⊗ w2 + w, where q is a highest weight vector of Q and w

is a highest weight vector of W . The dimension of VMRT is m.

2. (B3, α1, α3) where U = V (π3); Let W be the spin representation of B2
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with dimW = 4 and let V be the standard representation with dimV = 5.

Then the variety of minimal rational tangents at o ∈ X is the closure

l0.(v + w) ⊂ P(V +W ) = P(g−1),

of l0-orbit of v + w, where v is a highest weight vector of V and w is a

highest weight vector of W . The dimension of VMRT is 5.

3. (Cm, αm, αm−1) where U = V (π1); Let W be the standard representation

of Am−1 with dimW = m. Then the variety of minimal rational tangents

at o ∈ X is the closure

l0.(w2 + w) ⊂ P(Sym2W +W ) = P(g−1),

of l0-orbit w2 + w, where w is the highest weight vector of W . The di-

mension of VMRT is m.

4. (Cm, αi+1, αi), m > 2, i = 1, . . . ,m − 2 where U = V (π1); Let W be

the standard representation of Ai with dimW = i + 1 and let Q be the

standard representation of Cm−i−1 with dimQ = 2m − 2i − 2. Then the

variety of minimal rational tangents at o ∈ X is the closure

l0.(w ⊗ q + w2 + w) ⊂ P(W ⊗Q+ Sym2W +W ) = P(g−1 + g−2),
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of l0-orbit of w⊗q+w2+w, where q is a highest weight vector of Q and w

is a highest weight vector of W . The dimension of VMRT is 2m−(i+1).

5. (F4, α2, α3) where α2 is a long root and U = V (π4); Let W be the standard

representation of A1 with dimW = 2 and let V be the standard repre-

sentation of A2 with dimV = 3. Then the variety of minimal rational

tangents at o ∈ X is the closure

l0.(v2 ⊗ w + v) ⊂ P(Sym2 V ⊗W + V ) = P(g−1),

of l0-orbit v2 ⊗ w + v, where v is a highest weight vector of V and w is

a highest weight vector of W . The dimension of VMRT is 4.

6. (G2, α2, α1) where U = V (π1); Let W be the standard representation of

A1 with dimW = 2. Then the variety of minimal rational tangents at

o ∈ X is the closure

l0.(w3 + w) ⊂ P(Sym3W +W ) = P(g−1),

of l0-orbit w3+w, where w is a highest weight vector of W . The dimension

of VMRT is 2.

To prove this proposition, we need a lemma that follows;
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Lemma 3.5.3 (Lemma 1.4 of [9]). Let C ⊂ M be a free rational curve on

complex manifold. Suppose there exists a point P ∈ C and an m-dimensional

family of deformations of C fixing P such that the members of the family are

all distinct rational curves. Then −KM · C ≥ 2 +m.

Proof of Proposition 3.5.2. By Lemma 3.5.3, the dimension of the variety of

minimal rational tangents at o ∈ X is equal or less then the Chern number

minus 2. We have [(l0 + C) � U0, U−] ⊂ U−, [(l0 + C) � U0, l−1] ⊂ l−1 + U−,

[(l0 + C) � U0, l−2] ⊂ l−2 and [l1 + U1, l−2] ⊂ l−1 + U−. Hence, if there exist a

vector v ∈ U− such that dimension of the l0-orbit closure l0.v ⊂ P(U−) is the

Chern number minus 2, then the variety of minimal rational tangents is that

l0-orbit closure l0.v ⊂ P(U−). Suppose not, and if there exist vectors v ∈ U−

and w ∈ l−1 such that dimension of the l0-orbit closure l0.(v + w) ⊂ P(l−1+U−)

is the Chern number minus 2, then the variety of minimal rational tangents is

that l0-orbit closure l0.(v + w) ⊂ P(l−1 +U−). Continuing this until getting the

dimension of l0-orbit closure is Chern number minus 2. The conclusion follows

from Lemma 3.5.1.
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Existence of Cartan connections

4.1 Prolongations

Let X be a smooth nonhomogeneous projective horospherical variety (L, α, β)

of Picard number one. Let G = Aut(X) and let g = (l + C) � U be the

corresponding Lie algebra. By Proposition 3.4.2, we could give a gradation of

g =
⊕

p gp such that the graded Lie algebra m =
⊕

p<0 gp is identified with

the tangent space of X at a point x where x is in the open G-orbit.

Proposition 4.1.1. Let g = (l + C) � U and m = l− + U−. Assume that

1. For z ∈ l≥0 + U≥0, if [l−, z] = 0, than z = 0.

2. For any vector u ∈ U0, if the dimension of the subspace l−1.u ⊂ U− is

less then or equal to 1, then u = 0.
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If Hp,1(l−, l) = 0 and Hp,1(l−, U) = 0 for p > 0, then Hp,1(m, g) = 0 for p > 0.

Proof. Let p ∈ m′ ⊗ g be such that ∂p = 0. Write p = pl + pC + pU , where

pl ∈ m′ ⊗ l, pC ∈ m′ ⊗ C and pU ∈ m′ ⊗ U . Then for any X l− , Y l− ∈ l− and

XU− , Y U− ∈ U−, we have

0 = ∂p(X l− +XU− , Y l− + Y U−)

= (X l− +XU−)p(Y l− + Y U−)− (Y l− + Y U−)p(X l− +XU−)− p([X l− , Y l− ])

because [l− + U−, U−] = 0

=
{
X l−pl+C(Y l− + Y U−)− Y l−pl+C(X l− +XU−)− pl+C([X l− , Y l− ])

}
+
{
XU−pl+C(Y l− + Y U−)− Y U−pl+C(X l− +XU−)

+ X l−pU(Y l− + Y U−)− Y l−pU(X l− +XU−)− pU([X l− , Y l− ])
}
.

Thus

0
(∗)
= X l−pl(Y

l− + Y U−)− Y l−pl(X
l− +XU−)− pl([X l− , Y l− ])

0
(♦)
= XU−pl(Y

l− + Y U−)− Y U−pl(X
l− +XU−)

+XU−pC(Y l− + Y U−)− Y U−pC(X l− +XU−)

+X l−pU(Y l− + Y U−)− Y l−pU(X l− +XU−)− pU([X l− , Y l− ])
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and

0 = pC([X l− , Y l− ]). (4.1.2)

Put XU− = Y U− = 0 into (*) to get

X l−pl(Y
l−)− Y l−pl(X

l−)− pl([X l− , Y l− ]) = 0. (4.1.3)

Put Y l− = 0 into (*) to get

X l−pl(Y
U−) = 0. (4.1.4)

Put Y l− = 0 and XU− = 0 in (♦) to get

X l−pU(Y U−)− Y U−pl(X
l−)− Y U−pC(X l−) = 0. (4.1.5)

Put Y l− = 0 and X l− = 0 in (♦) to get

XU−pl(Y
U−)− Y U−pl(X

U−) +XU−pC(Y U−)− Y U−pC(XU−) = 0. (4.1.6)

Put XU− = Y U− = 0 in (♦) to get

X l−pU(Y l−)− Y l−pU(X l−)− pU([X l− , Y l− ]) = 0. (4.1.7)
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In (4.1.4), since X l− ∈ l− is arbitrary, by the assumption 1, we have

pl≥0
(Y U−) = 0, (4.1.8)

where pl≥0
∈
⊕

p≥0 lp.

In (4.1.6), by (4.1.8), we see

XU−pC(Y U−)− Y U−pC(XU−) = 0. (4.1.9)

This is also valid for the two linearly independent vector XU− and Y U− .

Hence,

pC(XU−) = 0. (4.1.10)

Let ∂l− denote the restriction of ∂ to ∧l′−⊗g. Then, by (4.1.3) and (4.1.7),

we have ∂l−(pl + pU)|l− = 0.

By hypothesis, Hp,1(l−, l) = 0 and Hp,1(l−, U) = 0. Then there is q =

ql + qU , where ql ∈ l and qU ∈ U such that

∂l−q = (pl + pU)|l− . (4.1.11)

We will show that ∂q = pl + pU + pC. By (4.1.11), (4.1.2) and (4.1.10),

it suffices to show that ∂q(XU−) = (pl + pU)(XU−) for all XU− ∈ U− and
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pC(X l−) = 0 for all X l− ∈ l−1.

In (4.1.5), we have

Y U−pC(X l−) = X l−pU(Y U−)− Y U−pl(X
l−)

= X l−pU(Y U−)− Y U−X l−ql because pl(X
l−) = ∂ql(X

l−)

= X l−pU(Y U−)−X l−Y U−ql because [l− + U−, U−] = 0

= X l−(pU(Y U−)− Y U−ql).

For X l− ∈ {X l− ∈ l−1|pC(X l−) = 0},

0 = X l−(pU(Y U−)− Y U−ql). (4.1.12)

Since {X l− ∈ l−1|pC(X l−) = 0} ⊂ l−1 is a hyperplane or l−, by the assump-

tion 2,

0 = (pU(Y U−)− Y U−ql)|U0 . (4.1.13)

Hence, for any X l− ∈ l−1, we see

pC(X l−) = 0. (4.1.14)
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Equation (4.1.5) becomes

X l−pU(Y U−) = Y U−pl(X
l−) = Y U−∂ql(X

l−). (4.1.15)

Write ∂q = (∂q)l+(∂q)C+(∂q)U where (∂q)l ∈ l, (∂q)C ∈ C and (∂q)U ∈ U .

Then

∂q(X l−) = X l−q = X l−ql +X l−qU−

∂q(XU−) = XU−q = XU−ql.

Thus

(∂q)C = 0

(∂q)l(X
l−) = X l−ql

(∂q)l(X
U−) = 0

(∂q)U(X l−) = X l−qU

(∂q)U(XU−) = XU−ql.
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In particular, this implies

X l−(∂q)U(XU−) = X l−XU−(ql + qC)

= XU−X l−(ql + qC) because [l−, U−] = 0

= XU−X l−ql

= XU−(∂q)l(X
l−).

Hence, by (4.1.15),

X l−(∂q)U(XU−) = X l−pU(XU−).

Since X l− ∈ l− is arbitrary, by the assumption 1, we have

(∂q)U≥0
(XU−) = pU≥0

(XU−), (4.1.16)

where (∂q)U≥0
∈
⊕

p≥0 Up and pU≥0
∈
⊕

p≥0 Up.

It follows that ∂q≥0 = p≥0 ∈
⊕

p≥0 gp. Therefore, Hp,1(m, g) ⊂ m∗−1 ⊗ gp−1

vanishes for any p > 0.

Lemma 4.1.17. Hp,1(l−, U) = 0 for p > 0.

Proof. Let xα ∈ l be the root vector associate with simple root α. Let σα be the

simple reflection associated with α. Let λ be the highest weight of irreducible

representation U of l. Then −λ is the lowest weight of U . Let u−σα(λ) ∈ U be
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the weight vector of weight −σα(λ).

By Theorem 5.15 of [13], we have

H1(l−, U) = Hξσ ,

where Hξσ is the irreducible l0-module with lowest weight vector x∗α ⊗ u−σα(λ)

of weight ξσ = −(σα(λ) + α).

Since x∗α ⊗ u−σα(λ) ∈ l∗−1 ⊗ U− and Hξσ = l∗−1 ⊗ U− = H0,1(l−, U), we see

Hp,1(l−, U) = 0 for p > 0.

Theorem 4.1.18. Let X be a smooth nonhomogeneous projective horospher-

ical variety (L, α, β) of Picard number one. Let G = Aut(X) and let g =

(l + C) � U be the corresponding Lie algebra. By Proposition 3.4.2, we could

give a gradation of g =
⊕

p gp such that the graded Lie algebra m =
⊕

p<0 gp

is identified with the tangent space of X at a point x where x is in the open

G-orbit. Then g =
⊕

p gp is the prolongation of (m, g0).

Proof. By Theorem 2.4.3 and Lemma 4.1.17, 2, 3 of Lemma 3.4.4 and Proposi-

tion 4.1.1, for p > 0, Hp,1(m, g) = 0. Then, by 1, 2 of Lemma 3.4.4 and Lemma

2.2.4, g =
⊕

p gp is the prolongation of (m, g0).
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4.2 Existence of Cartan connections

We will show the existence of Cartan Connections. Theorem 4.2.1 is general-

ization of Theorem 2.3.3 (when g̃ = g). We will apply it to the Lie algebras of

the automorphism groups of smooth nonhomogeneous projective horospherical

varieties of Picard number one.

Theorem 4.2.1. Let m be a fundamental graded Lie algebra. Let G0 be a

Lie subgroup of G0(m) and let g0 be the Lie algebra corresponding to G0. Let

g(m, g0) =
⊕

i∈Z gi be the prolongation of (m, g0) and h(m, g0) =
⊕

i≥0 gi be its

non-negative part. Let H(m, G0) be the Lie group with its Lie algebra h(m, g0).

Assume the prolongation g(m, g0) is finite-dimensional. We also assume that

there exists a graded Lie algebra g̃ which contains g(m, g0) as a Lie subalgebra,

an symmetric bilinear form (., .) on g̃, and a map τ : g̃→ g̃ satisfying

1. the gradation of g(m, g0) could be extended to g̃;

2. {., .} := −(., τ.) is a positive definite Hermitian inner product on g(m, g0)

and {gi, gj} = 0 if i 6= j;

3. τ(g(m, g0)) is also graded Lie algebra and τ(gi) ⊂ g̃−i for i ≥ 0;

4. {[A, x], y} = −{x, [τ(A), y]} for A ∈ g, x, y ∈ g̃;

5. there is τ0 : G0 → G̃0 such that (ax, y) = (x, τ0(a)y) for x, y ∈ g̃ and

a ∈ G0
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Then for each G0-structure on (M,F ) of type m, we can construct a Cartan

connection (P, ω) of type (g(m, g0), H(m, G0)) so that two G0-structures on

(M,F ) are (locally) equivalent when the associated Cartan connections of type

(g(m, g0), H(m, G0)) are (locally) equivalent.

Proof. We simplify g = g(m, g0), h = h(m, g0), and H = H(m, G0). For proof,

it is enough to show that there exists a subspace W of F 1 Hom(∧2m, g), which

satisfies the conditions of Theorem 2.3.2.

We extend the Hermitian inner product {., .} to Hom(∧�m, g). We identify

∧�m′ and ∧�τ(m) by defining a map η : ∧� m′ → ∧�τ(m) ⊂ ∧�g̃ such that

{η(f), τ(z)} = −(η(f), z) = −f(z) for f ∈ ∧�m′ z ∈ ∧�m. Let ∂∗ be the formal

adjoint of ∂ with respect to the extended Hermitian inner product {., .} on

Hom(∧�m, g).

Then we have the direct sum decomposition:

Hom(∧pm, g) = ∂ Hom(∧p−1m, g)⊕Ker ∂∗.

Let us show that Ker ∂∗ is an invariant subspace by the action of H. Let ρ

be the representation of H ⊂ G on Hom(∧�m, g) and ρ∗ be the corresponding

adjoint representation of h ⊂ g on Hom(∧�m, g). Since any element a ∈ H is

written as

a = a0 · exp(A)
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with a0 ∈ G0, A ∈ F 1h :=
⊕

i>0 gi, it suffices to show that

(1) ∂∗ ◦ ρ(a0) = ρ(a0) ◦ ∂∗ for a0 ∈ G0

(2) ∂∗ ◦ ρ∗(A) = ρ∗(A) ◦ ∂∗ for A ∈ h.

Generally, we have

∂ ◦ ρ(a0) = ρ(a0) ◦ ∂ for a0 ∈ G0.

For the adjoint representation λ̃ of m̃ + g̃0 =
⊕

i≤0 g̃i on Hom(∧·m̃, g̃), we see

∂ ◦ λ̃(B) = λ̃(B) ◦ ∂ for B ∈
⊕
i≤0

g̃i.

Since τ(h) ⊂
⊕

i≤0 g̃i, for the adjoint representation λ of τ(h) on Hom(∧·m, g) =

∧·τ(m)⊗ g,

∂ ◦ λ(B) = λ(B) ◦ ∂ for B ∈ τ(h).
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It follows that for A ∈ h and φ, ψ ∈ Hom(∧�m, g),

{∂∗ ◦ ρ∗(A)φ, ψ} = {ρ∗(A)φ, ∂ψ}

= −{φ, λ(τA)∂ψ}

= −{φ, ∂λ(τA)ψ}

= −{∂∗φ, λ(τA)ψ} = {ρ∗(A)∂∗φ, ψ},

which shows (2).

Similarly, we can verify (1). So Ker ∂∗ is an invariant subspace by the action

of H.

If we set W = Ker ∂∗∩F 1 Hom(∧2m, g), the proof is completed by Theorem

2.3.2.

Theorem 4.2.2. Let X be a smooth nonhomogeneous projective horospherical

variety (L, α, β) of Picard number one. Let G = Aut(X) and let g = (l+C)�U

be the corresponding Lie algebra. As in Proposition 3.4.2, we give a gradation

on the Lie algebra g. H ⊂ G is the Lie subgroup associated with h =
⊕

i≥0 gi.

Let m =
⊕

p<0 gp and let G0 be the Lie subgroup of G corresponding to g0.

Let (M,F ) be a regular filtered manifold of type m. Then, for a given G0-

structure on (M,F ), there exists a Cartan connection of type (g, H) so that two

G0-structures on (M,F ) are (locally) equivalent when the associated Cartan

connections of type (g, H) are (locally) equivalent.
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Proof. We will apply Theorem 4.2.1 to g = (l + C) � U . By Lemma 3.4.4 (1),

m is a fundamental graded Lie algebra. By Theorem 4.1.18, the Lie algebra g

is the prolongation of (m, g0). Let g̃ = gl(V ) which contains g and g∗. Now we

consider Proposition 3.3.1. The Cartan-Killing form on gl(V ) is a symmetric

bilinear form (·, ·) such that the restricted inner product {·, ·} on g is a positive

definite Hermitian inner product. This proves condition 2. We could give a gra-

dation on gl(V ) by the element EX , since V is a representation space of l. And

shift the gradation on Vα⊗V ∗β and V ∗α⊗Vβ to make it be the extended gradation

of the shifted gradation of U and U∗, which proves condition 1. Then the shifted

gradation has also symmetry with respect to τ , which proves condition 3. More

precisely, we have τ(EX) = −EX and for x, y ∈ g, [τ(x), τ(y)] = τ([x, y]).

Hence, from [E, τ(z)] = −[τ(E), τ(z)] = −τ([E, z]) = −iτ(z) for z ∈ gi, we

have τ(gi) ⊂ g̃−i for i ≥ 0. Since the Killing-form on gl(V ) itself is an ad-

invariant symmetric bilinear form (·, ·), the remaining conditions 4 and 5 are

clear.

4.3 Geometric structures modeled after horo-

spherical varieties

Let X = (L, α, β) be a smooth nonhomogeneous projective horospherical vari-

ety of Picard number one. Let g be the Lie algebra of the automorphism group
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of X. Let X0 be the open orbit of X with respect to G = Aut(X). We recall

from Proposition 3.4.2 that there is a gradation on g =
⊕

p∈Z gp such that

m =
⊕

i<0 gp is fundamental and ι : TxX0 ' m for a base point x ∈ X0. Let

G0 ⊂ G0(m) be the Lie subgroup corresponding to g0.

Definition 4.3.1. Let (X0, E) be the regular differential system of type m

derived from the subbundle E of TX0, where Ex corresponds to g−1 under

the identification TxX0 ' m for a base point x ∈ X0. Let R be the frame

bundle of (X0, E). Then R is isomorphic to G ×H G0(m). The G0-subbundle

P of R, which is isomorphic to G0-subbundle G ×H G0 of G ×H G0(m), is

a G0-structure on (X0, E). We call the G0-structure on (X0, E) the standard

geometric structures on X.

Since X is a Fano manifold, it is uniruled. By Theorem 1.12 of [18], the

closed G-orbit has a codimension of at least two.

Definition 4.3.2. Let M be a projective manifold. There is a subbundle D of

T (M), which is defined outside of a subvariety Sing(D) of M . Suppose there

exists a connected Zariski open subset M0 of M − Sing(D) such that

1. Sing(D) has a codimension of at least two, and

2. (M0, D) is a regular differential system of type m.

A G0-structure on (M0, D) is called a geometric structure on M modeled after

X.

63



CHAPTER 4. EXISTENCE OF CARTAN CONNECTIONS

Two geometric structures of M1 and M2 modeled after X are locally equiv-

alent if the G0-structure on ((M1)0, D1) and the G0-structure on ((M2)0, D2)

are locally equivalent in the sense of Definition 2.1.3. A geometric structure

modeled after X is locally flat if it is locally equivalent to the standard geo-

metric structure on X.

The next proposition is proved in [10], getting the essence of Theorem 4.1

in [2].

Proposition 4.3.3 (Proposition 2.9 of [10]). Let M be a manifold. Assume

that there exists a non-constant holomorphic map f : P1 →M such that f ∗T (M)

is a positive vector bundle, i.e., f ∗T (M) ∼= O(a1)⊕ · · · ⊕ O(an) where ai ≥ 1

and n = dimM . Let M0 ⊂ M be a connected Zariski open subset. Let H ⊂ G

be a closed connected subgroup of a connected Lie group G with Lie algebra g.

Then any Cartan connection on M0 of type (g, H) is locally flat.

Proof. Given a Cartan connection ω on a principal H-bundle P → M0, we

can associate a principal G-bundle P̃ → M0 with an Ehresmann connection

ω̃ as Section 3 of [2]. For a curve f : P1 → M with positive f ∗T (M), we see

f ∗K(ω̃) = 0, where K(ω̃) is the curvature of the connection ω̃. We could see

the vanishing of that curvature along a curve with positive tangents in the

proof of Theorem 3.1 in the paper [1].

By assumption, there is a non-constant holomorphic map f : P1 → M

such that f ∗T (M) is a positive vector bundle. Then there exist a family of
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holomorphic maps

{ft : P1 →M |t ∈ 4k, f ∗t T (M) positive},

parametrized by a polydisc 4k, for some k > 0 such that the union of their

images ∪t∈4kft(P1) contain a nonempty open subset U of M . For a nonempty

open set U ∩ M0, the curvature K(ω̃) vanishes on U ∩ M0 as above, hence

vanishes on the whole space M0. Hence, ω̃ is locally flat on M0, which implies

ω is locally flat on M0.

The following is from Proposition 7.9 of [10], which is well-known from

Proposition II.3.7 and Theorem IV.3.7 of [12].

Proposition 4.3.4. Let M be a uniruled projective manifold of Picard number

one. Then for any subvariety Z ⊂M of codimension two, there exists f : P1 →

M with f(P1) ∩ Z = ∅ and f ∗T (M) is positive.

Theorem 4.3.5. Let X be a smooth nonhomogeneous projective horospherical

variety of Picard number one. Let M be a Fano manifold of Picard number

one. Then any geometric structure on M modeled after X is locally equivalent

to the standard geometric structure on X.

Proof. The variety X is a smooth nonhomogeneous projective horospherical

variety (L, α, β) of Picard number one. The Lie group G is Aut(X) and g is

the Lie algebra of G. Then there is a gradation of g =
⊕

p∈Z gp such that
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m =
⊕

i<0 gp is fundamental and the tangent space TxX0 is isomorphic to

m for each x ∈ X0 by Proposition 3.4.2. By Theorem 4.1.18, the graded Lie

algebra g =
⊕

p∈Z gp is the prolongation of (m, g0).

Let M be a Fano manifold of Picard number one. M is a uniruled projective

manifold. Let G0-structure on (M0, D) be a geometric structure on M modeled

after X where D is a subbundle of T (M) with singularity Sing(D) and M0 is

a connected Zariski open subset in M − Sing(D). Then the regular filtered

manifold (M0, D) of type m admits a Cartan connection on M0 of type (g, H)

by Theorem 4.2.2.

Since the subvariety Sing(D) has codimension of at least two in M , by

Proposition 4.3.4, there is a rational curve f : P1 → M such that f(P1) ∩

Sing(D) = ∅ and f ∗T (M) is positive. We apply Proposition 4.3.3 to M0 ⊂

M −Sing(D); thus, the Cartan connection on M0 of type (g, H) is locally flat.

To conclude, a geometric structure on M modeled after X is locally equiv-

alent to the standard geometric structure on X.
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국문초록

준동형다양체의 기하구조

일반적으로 동질다양체의 기하구조의 연구를 통해 동질다양체의 요건

이나 변형불변성을 증명한다. 이와같이 다양체를 특정하거나 다양체의 변

형불변성을 증명하는 문제를 준동질다양체로 확장하기 위해, 우선 호로스

피리컬다양체와 호로스피리컬다양체를 모델로 한 기하구조를 연구한다. 본

논문에서는 카르탄기하를 이용하여 피카드 수가 1이고 특이점이 없는 프로

젝티브호로스피리컬다양체를모델로한모든기하구조가 (피카드수가 1인

파노다양체위에서는)표준기하구조와국소적으로동일하다는것을보인다.

호로스피리컬다양체를모델로한기하구조와연관된카르탄커넥션의의

존재성을 증명하기 위해, 코스탄트의 하모닉이론과 호로스피리컬 다양체에

에 작용하는그룹의 리대수(세미심플이 아닌)를 연구한다. 이러한 세미심플

이 아닌 리대수에 대한 코스탄트 하모닉이론을 완전히 일반화하는 것도 흥

미롭다.이논문에서는,코스탄트하모닉이론을완전히일반화하는것대신,

리대수안에포함되는가장큰세미심플리대수에연관된코호몰로지공간이

없음을 보인다.

주요어 :기하구조 ·국소적동일성 ·호로스피리컬다양체 ·카르탄기하 ·연장

학 번 : 2007-20269
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