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Abstract

Analytic Tools for White-box Cryptography

and Lattice Based Cryptography

Chung Hun Baek

Department of Mathematical Sciences

The Graduate School

Seoul National University

In crypto world, the existence of analytic toolbox which can be used as

the measure of security is very important in order to design cryptographic

systems. In this thesis, we focus on white-box cryptography and lattice based

cryptography, and present analytic tools for them.

White-box cryptography presented by Chow et al. is an obfuscation tech-

nique for protecting secret keys in software implementations even if an adver-

sary has full access to the implementation of the encryption algorithm and

full control over its execution platforms. Despite its practical importance,

progress has not been substantial. In fact, it is repeated that as a proposal

for a whitebox implementation is reported, an attack of lower complexity is

soon announced. This is mainly because most cryptanalytic methods target

specific implementations, and there is no general attack tool for white-box

cryptography. In this thesis, we present an analytic toolbox on white-box

implementations of the Chow et al.’s style using lookup tables. Our toolbox

could be used to measure the security of white-box implementations.

Lattice based cryptography is very interesting field of cryptography nowa-

days. Many hard problems on lattice can be reduced to some specific form

of the shortest vector problem or closest vector problem, and hence related

to problem of finding a short basis for given lattice. Therefore, good lattice
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reduction algorithm can play a role of analytic tools for lattice based cryptog-

raphy. We proposed an algorithm for lattice basis reduction which uses block

reduction. This provides some trade-off of reduction time and quality. This

can gives a guideline for the parameter setting of lattice based cryptography.

Key words: White-box cryptography, SPN structure, Lattice based cryp-

tography, Lattice reduction algorithm, Block LLL algorithm

Student Number: 2007-20276
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CHAPTER 1. INTRODUCTION

Traditionally, the security of cryptographic algorithms is studied in the

black-box model—the end points are trusted and the attacker only has ac-

cess to the input/output of the algorithm. Under this model, cryptographic

schemes are designed to prevent attackers from obtaining secret informa-

tion using only the input/output values of algorithm without any knowl-

edge of its internal information. In the real world, however, untrusted hosts

may access unapproved contents illegally, malicious software in user de-

vices may access the memory used to execute a cryptographic algorithm,

or internal information may be leaked during the process of communica-

tion. Actually, many attacks have been proposed, such as side channel at-

tacks [GMO01, Koc96, KJJ99, Nov02, QS01], which extract secret informa-

tion by access to the internal states in the implementation of algorithm. The

concept of white-box cryptography has been proposed to enhance security of

cryptosystems under such hostile environment.

The white-box cryptography is defined as an obfuscation technique which

gives a secure software implementation, by Chow et al. in 2002. Its goal

is to prevent attackers, who have full access to the implementation, from

extracting secret key information. In the past, hardware such as smart cards

and trusted platform modules were used to protect internal information. Such

hardware is costly and difficult to be replaced by a new one when a flaw is

discovered. White-box cryptography is a means of protecting the internal

information of the software implementation, and hence, considered one of

the tools to supplement the security of devices.

Many commercial products can use white-box cryptography. One of the

main applications is in the digital rights management on the commercial de-

vices, such as a PC, a mobile device, or a set-top box for video-on-demand.

Nowadays, unlike the past when that commercial contents were delivered in

the material form such as CD or DVD, the contents are transmitted to per-

sonal devices through the network due to the advance of the communication

technology. In this environment, illegal access to the contents and leakage

of them are much easier and hence the copyright protection of the contents
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CHAPTER 1. INTRODUCTION

become more important. The contents should be provided in encrypted form

with decryption process which allows to be decrypted in only permitted de-

vices. If an illegal user access them on the network and obtains the decryption

key for the content, she can use it in other devices and distribute illegal copies

of the content. White-box cryptography aims to prevent attackers from ob-

taining the decryption key even though attackers have full access decryption

process.

The first proposals to implement cryptographic primitives in white-box

cryptography were made by Chow et al., who presented a white-box AES im-

plementation [CEJO03] and a white-box DES implementation [CEJvO03] in

2002. They are based on the basic strategy: the whole cipher is decomposed

into round functions and the round functions are represented by summa-

tion of lookup tables with small size. Although Chow et al.’s implementa-

tions have been broken with complexity 214 for DES [WMGP07] and 222 for

AES [LRM+14], their strategy provided a framework, called “CEJO frame-

work”, for designing white-box implementation of using table lookups. Most

white-box implementations after Chow et al.’s proposal follow the CEJO

framework: Xiao and Lai [XL09] proposed white-box AES implementation us-

ing wider linear encodings than Chow et al.’s. Karroumi [Kar11] modified the

algebraic operations in each AES round function using dual representations

of the AES cipher and presented a white-box AES implementation. However

all of these have been broken in the sense that the secret key can be recov-

ered in the lower complexity than their claimed security when the full lookup

tables are given (complexity of 232 and 222, respectively [MRP13, LRM+14]).

On the other hand, research for white-box cryptography has been pro-

ceeded in various ways: Some security notions for white-box cryptography

have been studied in [DLPR14, SWP09, Wys09]. Independently, Biryukov

et al. [BBK14] proposed a new symmetric ASASA-based block cipher with

secret S-boxes satisfying white-box security notion, whereas previous works

focused on proposing white-box implementation of the existing cipher which

is well-known and secure.

3



CHAPTER 1. INTRODUCTION

As we can see from previous implementations, it is very difficult to de-

sign a white-box implementation with a security level similar to the black-box

model. Hence, the practical objective of white-box implementations is to in-

crease the complexity of cryptanalysis. All of the implementations mentioned

above suffered unpredicted attacks soon after their designs were announced.

This is mainly because there are no standard attack tools such as differential

cryptanalysis and linear cryptanalysis for block ciphers.

Lattice based cryptography is very interesting field of cryptography nowa-

days. There are many hard problems on lattices which have been used as a

based problem for public key cryptography such as Ajtai-Dwork cryptosys-

tem [AD97], Goldreigh-Goldwasser-Halevi cryptosystem [GGH97], NTRU

[HPS98], LWE based cryptosystem and Gentry’s fully homomorphic encryp-

tion [Gen09]. Lattice is also used as a cryptanalytic tool for public key cryp-

tosystem such as lattice attacks on knapsack cryptosystem and Coppersmith’

method for RSA [Gal12]. Additionally, Lattice is used for many applications

or security analysis.

Many hard problems on lattice can be reduced to some specific form of

the shortest vector problem or closest vector problem, and hence related to

problem of finding a “good” basis for given lattice. The meaning of “good”

basis varies with the use of the basis, but it usually means short and close

to orthogonal. Lattice basis reduction algorithms provide solutions that are

required for the shortest vector problem or closest vector problem with some

approximate factor, and the relation between running time of the algorithm

and approximate factor is used for security analysis of lattice based cryptog-

raphy. Therefore, good lattice reduction algorithm can play a role of analytic

tools for lattice based cryptography.

There are many lattice basis reduction algorithms. The best known lat-

tice basis reduction algorithms are LLL algorithm , HKZ algorithm and BKZ

algorithm. The LLL lattice basis reduction algorithm [LLL82] is a polyno-

mial time lattice reduction algorithm invented by Arjen Lenstra, Hendrik

4



CHAPTER 1. INTRODUCTION

Lenstra and László Lovász in 1982. LLL algorithm is well-analyzed, but the

quality of output of the algorithm is not high and hence is not enough to be

used widely as an analytic tools of lattice based cryptography. HKZ lattice

basis reduction algorithm is an exponential time lattice reduction algorithm

proposed by Korkine and Zolotarev. HKZ algorithm provides the exact solu-

tion, but the running time is too long and the complexity is high, and hence

we can use this algorithm for high dimensional lattice. BKZ lattice basis re-

duction algorithm [Sch87] proposed by Schnorr in 1987 algorithm provides

some trade off between the approximate factor and the running time of the

algorithm. The outputs of high quality and various estimation results with

various block size and dimension. However, The estimation results are from

several experiments or many assumptions and hence does not give theoretic

bounds. Therefore, we need to get a new lattice basis reduction algorithm

such that is well-analyzed and provides various outputs of high-quality ac-

cording to the conditions.

1.1 Contributions

Throughout this paper, we focus on white-box implementations of substitution-

linear transformation (SLT) ciphers following CEJO framework. Let E =

M ◦ S be the round function of an SLT cipher on n bits, where M is an in-

vertible linear map and S is a concatenation of S-boxes on m bits with a fixed

key. We define the input encoding as f = A ◦P , where A is an invertible lin-

ear map and P is a concatenation of small nonlinear permutations. If we let

g be the input encoding of the next round, then the encoded round function

F of E is of the form F = g−1 ◦ E ◦ f = QBSAP , where B is an invertible

linear map and Q is a concatenation of small nonlinear permutations.

Our contributions are as follow. We present an analytic toolbox for

white-box implementations of SLT ciphers in the CEJO framework. Our tool-

box consists of several algorithms to recover nonlinear and affine encodings

used in this model.

5



CHAPTER 1. INTRODUCTION

First, by adopting the Biryukov–Shamir technique [BS01], we show that

the nonlinear part Q can be removed up to an affine transformation in

O
(

n
mQ

23mQ

)
when Q = (Q1, · · · , Qn/mQ) and each Qi is a nonlinear bijec-

tion on mQ bits. For example, the nonlinear encoding in the Chow et al.’s

implementation can be removed in 218 bit operations, whereas it takes 229 bit

operations using Billet et al.’s attack [BGEC05]. While Billet et al.’s method

is only available when the input size of the S-boxes is the same as the input

size of the encodings, ours can be efficiently applied when m 6= mQ.

Second, when F = B◦S◦A for affine mappings A,B, it is affine equivalent

to S. Hence we can apply the affine equivalence algorithm in [BCBP03], which

has a complexity of O(n322n). We improve this algorithm for the case where

S consists of small S-boxes of size m. According to our specialized affine

equivalence algorithm (SAEA), if the F−1 oracle is given, we can find A and

B in O
(
n
m
·mA

323m
)
, where mA is the smallest integer p such that A (or its

similar matrix obtained by permuting rows and columns) is a block diagonal

matrix with p× p matrix blocks. In fact, mA is the minimal block size when

considering A as a block diagonal mapping. When F−1 oracle is not given,

SAEA requires O
(
min

{
n
m
·mA

m+3 · 22m, n · logmA · 2mA/2
})

, including the

complexity of inverting F , to recover the affine encodings.

Our attack is universal in the sense that all known implementations based

on the CEJO framework are susceptible to them. Furthermore, they could

play a role of estimating the security of possible white-box implementation

designs.

We propose a new design for a white-box implementation whose

security level is close to that of the original cipher. Most variants of Chow

et al.’s implementation [Kar11, XL09] attempted to increase the security

by introducing new affine encodings. According to our toolbox, however,

for any affine encoding the complexity for finding the secret key is upper

bounded by the minimum of O
(

22m

m
· nm+4

)
and O

(
n log n · 2n/2

)
, which is

much lower than 2n. This provides a negative perspective on secure white-box

implementations of SLT ciphers using table lookups.

6



CHAPTER 1. INTRODUCTION

Our new approach is to use the encryption of multiple plaintexts: For

AES-128, we consider the concatenation of two AES-128 ciphers. Let E be a

round function of AES-128 and F = g−1 ◦ (E,E) ◦ f be the encoded round

function on 256 bits. Then we can take mA = 2n > n and hence accomplish

higher security, up to 2110 for mA = 256 and m = 8. This approach can be

applied to any SLT cipher with mA = tn for suitable t ∈ N and then the

security level is large up to
(
2·4m
m
nm+4

)
· tm+4. Therefore, this provides a new

approach for the design of a secure white-box implementation, regardless of

the block length of the original cipher. One shortcoming of this approach is its

large storage requirement. However, this is compensated by the use of special

sparse encodings. We give an instance with storage requirements of about 16

MB and 64 MB for a single round when mA = 128 and 256, respectively,

in Section 3.4. Our design does not have a security reduction to well known

problems and needs to be scrutinized to get a confidence. However, it is still

worthy in that it explains why the previous design trials have been failed

and how to overcome this barrier in the current state. We expect our work

inspires further research to design a secure white-box implementation.

On the other hands, the goal of lattice basis reduction is to find a good

basis from a given lattice basis. The meaning of “good” basis varies with

the use of the basis, but it usually means short and close to orthogonal. To

obtain a new lattice basis reduction algorithm, we need to make the purpose

of it clear. Our purpose of lattice basis reduction is to get cryptanalysis of

lattice based cryptosystems and analyze them using the reduction.

We try to get a new lattice basis reduction algorithm that is well-analyzed

and provides various outputs of high-quality according to the conditions. We

focus on the Babai’s nearest plane algorithm for closest vector problem. We

proposed an algorithm for lattice basis reduction which uses block reduction.

We can consider β-dimensional projection instead of 1-dimensional projection

in Babai’s nearest plane algorithm. For this we use the concept of Voronoi

cell of the lattice and the covering radius of the lattice.

This provides some trade-off of reduction time and quality. If n = βk, β-

7



CHAPTER 1. INTRODUCTION

block LLL reduction algorithm gives the solution with approximate factor of

2
k
2 , which is better than LLL reduction algorithm with approximate factor of

2
n
2 . We can get various outputs of high quality according to the block size β

as BKZ reduction algorithm. Furthermore, we can follow the way of analysis

of the LLL reduction algorithm and so our algorithm is more easy to analyze

than BKZ reduction algorithm. This can give a guideline for the parameter

setting of lattice based cryptography.

1.2 Organization

In Chapter 2, we introduce the basic concept of white-box cryptography and

previous works. Also we introduce basic lattice theory and LLL algorithm.

We propose attack tools that can be applied to a white-box implementation

in Chapter 3. An approach to the design of a white-box implementation

based on the result of our toolbox and some instance of the design approach

are also given there. Our new lattice basis reduction algorithm using block

reduction is presented in Chapter 4. Some applications and comparisons will

be provided there. We conclude the paper in Chapter 5.
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CHAPTER 2. PRELIMINARIES

2.1 SLT Cipher

A substitution-linear transformation (SLT) cipher defined in [MGH09] is a

type of iterated cipher with a couple of substitution layers and linear trans-

formation layers. SLT cipher can be considered a general form of cipher using

substitution-permutation network (SPN)∗, because permuting bits is a linear

transformation. More precise definition of SLT cipher is as follows.

Definition 2.1.1. The SLT cipher E is defined as follows. It consists of

R rounds for some R ≥ 1. For each r = 1, · · · , R, the r-th round function

E(r)(x1, · · · , xk) is a bijective function on n bits, where n = k ·m and xj is

an m-bit value for each j and consists of the following three operations:

1. XOR-ing round key XOR the r-th round key K(r) = (K
(r)
1 , · · · , K(r)

k )

of n bits to the input (x1, · · · , xk). This outputs yi = xi ⊕K(r)
i for all

i = 1, · · · , k.

2. Substitution Compute zi = S
(r)
i (yi) for all i = 1, · · · , k, where each

S
(r)
i is an invertible S-box on m bits in the i-th round.

3. Linear transformation For z = (z1, · · · , zk), compute M (r)z where

M (r) is an n × n invertible matrix over GF(2). This n-bit value is the

output of the r-th round function.

Note that operation 1,2 realize confusion and operation 3 realizes diffusion.

∗A SPN is a type of iterated cipher with a couple of substitutions and permutation on
bits.

10



CHAPTER 2. PRELIMINARIES

2.2 White-box Implementations

In the black-box model, it is assumed that the encryption algorithm is exe-

cuted in trusted platforms. Hence, an adversary cannot observe the internal

behavior of the encryption process, but can only the external values, such as

the plaintext/ciphertext of the encryption algorithm. However, these models

are theoretical, and the leakage of secret information can occur in practical

implementations. In gray-box models, adversaries can access more informa-

tion about the internal details of the encryption algorithm. This information

includes side channel information related to runtime, power consumption,

and fault analysis, which can be leaked by partial access.

In the white-box model, however, it is assumed that the adversary has

full access to the implementation of the encryption algorithm and full control

over its execution platforms. In this context, the main objective of the ad-

versary is to extract the secret key. That is, the purpose of secure white-box

implementations is to prevent the encryption key from being revealed even

when internal algorithm details are completely visible in the untrusted plat-

form, and the adversary has full access to the execution of the encryption

algorithm.

One approach for secure white-box implementation of a block cipher is

to give a table of all input/output values of the encryption. In this case, the

security of the implementation of an algorithm is equivalent to the security of

the encryption in the black-box model, and hence depends on the security of

the encryption scheme itself, regardless of implementations. Unfortunately,

such an implementation is not practical, because the storage requirements

of the table are prohibitive. For example, the size of the input/output table

of AES-128 is 2128 × 128 = 2102 GB. Chow et al. suggested a white-box

implementations with an implementable table size for AES [CEJO03].

11



CHAPTER 2. PRELIMINARIES

2.2.1 Chow et al.’s implementation

In the Chow et al.’s implementation, the basic approach for reducing the

table size is to decompose the table into small tables with a composition

that composition is equivalent to the original input/output table. The most

important factor in the table size is the size of the input affecting each S-

box, because the S-boxes cannot be decomposed into smaller parts. In AES,

one S-box in a single round is influenced by only 8 input bits, but in more

than two rounds, each S-box is influenced by all input bits. Hence, Chow et

al. decomposed the whole AES cipher into round functions, and represented

these as the composition of small tables whose inputs are those corresponding

to each S-box.

Because the round key can be exposed if the input/output values of a

single round are provided, the input/output tables of each round must be

obfuscated by input/output encoding functions. For equivalence with the

original AES, the input encoding of the i-th round is offset by the output

encoding of the previous round, as in Fig 2.1 (where E(i) is the i-th round

function, f (i) is an input encoding function of the i-th round, and Min/Mout

are external input/output encodings for security supplement).

The strategy used in the Chow et al.’s implementation can be summarized

as follows:

1. The cipher is decomposed into round functions and the round functions

are obfuscated by input/output encodings.

2. Each round function is decomposed into a network of lookup tables

whose inputs are those corresponding to each S-box.

This strategy provided a framework for designing white-box implementation

of block cipher using table lookups. We call it “CEJO framework”.

In Chow et al.’s implementation, the encodings composed of nonlinear

mappings and linear mappings are used. To prevent an increase in the size of

the input that affects each S-box, Chow et al. used 8-bit encodings whose size

are the same as that of the size of the S-boxes. A more precise description of

12



CHAPTER 2. PRELIMINARIES

Mout ◦ E(r) ◦ f (r)︸ ︷︷ ︸
table

◦ (f (r))−1 ◦ E(r−1) ◦ f (r−1)︸ ︷︷ ︸
table

◦ · · · ◦ (f (1))−1 ◦Min︸ ︷︷ ︸
table

= Mout ◦ E(r) ◦ · · · ◦ E(2) ◦ E(1) ◦Min

Figure 2.1: The basic strategy of in the CEJO framework

the encoded round function is as follows. Each encoded round function on 128

bits is composed of four parallel subround functions on 32 bits. In the Chow

et al.’s implementation, the subround function F on 32 bits has the form F =

QBMSAP , where P,Q are concatenations of 4-bit nonlinear permutations,

A,B are block diagonal linear mappings with block size 8, S is the bytewise

operation of S-boxes, and M is the Mixcolumns operation on 32 bits. Note

that an AddRoundKey operation can be merged to the nonlinear encoding P .

Because the block size of the encodings is 8 which is the same as the input size

of the S-boxes, the ShiftRows operation can be omitted in the round function.

(Thus, we consider the encoded round function as a concatenation of four

parallel subround functions.) Hence, F can be represented by the summation

of four 8-bit to 32-bit lookup tables. For the “summation” of these tables,

twenty-four 8-bit to 4-bit XOR tables are required additionally.†

2.2.2 BGE Attack

BGE attack [BGEC05] exploited that the input encoding size is the same as

that of the S-box in the Chow et al.’s implementation. It consists of three

steps. First, they recover the nonlinear parts of the encodings. As the Chow

et al.’s implementation only uses input encoding on 8 bits (composition of

8-bit mixing bijection and two 4-bit nonlinear encodings), it is easy to ob-

tain the bijective subfunction of F on 8 bits by fixing three bytes of the

input. Using this property, the BGE attack can recover nonlinear parts of

the encodings (up to affine) in 224 time. In the second step of the attack, the

†As each output value is transformed by a nonlinear encoding, the output values can-
not be added directly. Therefore, we need an “XOR table” to perform decoding-XOR-
reencoding.
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relations between input/output of the table are found using a property of the

Mixcolumns operation. Finally, the round key can be found using the result

of the second step. The dominant part of this attack’s complexity is in the

first step, and the total complexity of recovering a 128-bit AES key is 230.

2.2.3 Michiels et al.’s Cryptanalysis for SLT cipher

The CEJO framework can be applied for designing white-box implementa-

tion of any other ciphers, such as a generic class of substitution-linear trans-

formation (SLT) ciphers. Michiels et al. [MGH09] considered the white-box

implementation of SLT ciphers based on the CEJO framework and presented

the associated cryptanalysis.

Michiels et al.’s use input encodings whose input size is the same as the

input size of the S-boxes, as for the original Chow et al.’s implementation.

This means the first step of the BGE attack is available to recover the non-

linear parts of the encodings. However, because Michiels et al.’s setting is

not only defined on AES, but on any SLT cipher, the other steps of the BGE

attack that use the property of AES are not available. Instead, Michiels et

al. transformed the encoded round function into a block diagonal mapping

whose block size is the same as that of the S-boxes, and recovered the affine

encoding of each block using an affine equivalence algorithm [BCBP03]. The

reason for transforming the encoded round function into a block diagonal

mapping is that the input encodings still have an input size that is the same

as that of the S-boxes.

14
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2.3 Lattice Basis Reduction

Lattice is one of the most important primitives of modern cryptography.

In this section, we introduce basic lattice theory and some important re-

sults of lattice theory related to cryptography. In particular, we introduce

the Lenstra-Lenstra-Lovasz (LLL) Algorithm, which is one of the most

important algorithms dealing with the geometry of numbers, and has appli-

cations to cryptanalysis, complexity, and number theory.

2.3.1 Lattice

Lattices are discrete subgroups of Rm. A lattice L is represented by a basis,

i.e., a set of linearly independent vectors b1, · · · , bn in Rm such that L is

equal to the set L(b1, · · · , bn) = {∑n
i=1 xibi | xi ∈ Z} of all integer linear

combinations of the bi’s.

Definition 2.3.1. A lattice L ⊆ Rm is a discrete additive group. A set L is

• discrete if ∀x ∈ L ∃δ > 0 such B(x, δ) ∩ L = {x};

• additive group if x, y ∈ L =⇒ x+ y, x− y ∈ L.

Definition 2.3.2. A basis for L is a set B = {b1, · · · , bn} ⊆ Rm×n of linearly

independent vectors such that L(B) = {Bx | x ∈ Zn}. The integer n is called

the dimension of L.

There are some propositions about lattice basis.

Proposition 2.3.1.

1. L is a lattice if and only if L = L(B) for some basis B.

We define an important invariant of lattices.

Definition 2.3.3. The determinant (or index) of a lattice L is | det(B)|
for any basis B of L.

This is well-defined since changing basis requires elementary row opera-

tions on the matrix B, the composition of which is a unimodular matrix with

determinant ±1.

15
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Problems related to lattices. An easy problem is the following: given

x and L, is x ∈ L? This can be solved easily using linear algebra. Once we

start asking about the geometry of our lattice, questions get harder. A hard

question is: how close is x to L? Or, find the closest point in L to x. Another

hard problem is the smallest vector problem (SVP).

Definition 2.3.4. The Shortest Vector Problem(SVP) is the compu-

tational problem: given a basis B, find v ∈ L(B) − {0} which minimizes

‖v‖2.

Definition 2.3.5. The Closest Vector Problem(CVP) is the computa-

tional problem: given a basisB and a vector x, find v ∈ L(B) which minimizes

‖v − x‖2.

2.3.2 LLL Algorithm

The goal of lattice reduction is to find bases consisting of reasonably short

and nearly orthogonal vectors. Lattice reduction algorithms have many ap-

plications, notably public key cryptanalysis where they have been used to

break special cases of RSA, DSA, and many lattice based encryptions. There

are roughly two types of lattice reduction algorithms:

The LLL algorithm is an approximation algorithm for the SVP. It finds

v′ ∈ L(B)− {0} that satisfies

‖v′‖2 ≤ 2n‖v‖2

in polynomial time, where v is the smallest vector. There is a randomized

algorithm that approximates within a factor of 2n/ logn. Solving the SVP

exactly is NP-hard. In fact, finding a 2log1−ε n-approximation is NP-hard.

The problem of
√
n-gap SVP (a promise problem where there is a “gap”

between two given lattices, and you must distinguish between the two) is

in the intersection NP ∩ coNP, which suggests that it may be easier than

the exact SVP problem. Many cryptography applications assume that nc-

16
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approximation for the gap-SVP requires super-polynomial time, for c > 1

(say, c = 10).

Before we cover the actual LLL algorithm, we show Gauss’ algorithm for

solving the SVP in dimension 2.

Gauss’ Algorithm. Input: a, b ∈ Z2

1. i← arg minj ‖b− ja‖

2. b← b− ia

3. If ‖b‖ ≤ 1√
3
‖a‖, swap a and b and go to 1, else output arg min{‖a‖, ‖b‖}.

The running time is polynomial in the bit length of (a, b) since each swap

reduces the sum of the bit lengths of a and b by a constant. Now we show

that the algorithm gives us the correct answer.

Proof. Let v = ia+ jb be the smallest vector. Write b = b∗+α · a, for α ∈ R,

where b∗ ⊥ a and |α| < 1
2
. Then

‖v‖2 = j2‖b∗‖2 + (i+ αj)2‖a‖2 ≥ j2‖b∗‖2

and so ‖v‖ ≥ j‖b∗‖. We claim that ‖b∗‖ > 1
2
‖b‖. This implies that ‖v‖ > j

2
‖b‖

which implies that j < 2, so j ∈ {0, 1} If j = 0, then i = 1 and v = a,

otherwise j = 1 and i = 0 so v = b. Now we prove the claim. We have that

‖b‖ > 1√
3
‖a‖ and ‖b‖2 = ‖b∗‖2 + α2‖a‖2 with |α| < 1

2
. Therefore,

‖b∗‖2 = ‖b‖2 − α2‖a‖2

> ‖b‖2 − 3α2‖b‖2

>
1

4
‖b‖2.

The LLL algorithm is similar to Gauss’ algorithm. The motivation is to

define b∗i to be bi minus the projection of bi to span(b1, . . . , bi−1), so
∏

i b
∗
i =

det(B). Let µij ∈ R be the coefficients such that bi =
∑

j≤i µijb
∗
j , µii = 1.

17



CHAPTER 2. PRELIMINARIES

LLL Algorithm.

1. “Orthogonalize”: make sure |µij| ≤ 1
2
, for j < i (takes time

(
n
2

)
)

2. “Swap”: if there is i such that swapping bi and bi+1 reduces b∗i by a 3
4

factor, then swap, else return b1.

Claim 2.3.1. ‖b1‖ ≤ 2n minj ‖b∗j‖, and therefore ‖b1‖ ≤ 2n‖SVP‖ since

‖SVP‖ ≥ minj ‖b∗j‖ .

Proof. Since ‖b∗i+1‖ ≥ 1
2
‖b∗i ‖, by induction ‖b1‖ = ‖b∗1‖ ≤ 2n‖bi‖ for any

i.

Claim 2.3.2. The running time of LLL is polynomial in n and the bit lengths

of the bi.

Proof. (Sketch) Define

φt =
n∑
i=1

(n+ 1− i) log ‖b∗1‖ after t swaps

and it happens that φt+1 ≤ φt − C for some constant C > 0.

18
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Algorithm 1 LLL Algorithm

Input: Given basis b1, · · · , bn.
Output: LLL reduced basis b1, · · · , bn.
Compute b∗1, · · · , b∗n.
i← 2

while i ≤ n do
for j = i− 1 to 1 do

size reduce bi w.r.t. bj
end for
if 2‖b∗i ‖2 ≥ ‖b∗i−1‖2 then

i = i+ 1
else

Swap bi with bi−1 and size reduce for changed part.
i = max{2, i− 1}

end if
end while
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3.1 General Model for CEJO framework

In the Chow et al.’s implementation and Michiels et al.’s modification, the

reason for using the input encodings whose input size is the same as that of

the S-boxes is to maintain the number of input bits affecting the S-boxes.

However, this leads to weakness against BGE attack and Michiels et al.’s

cryptanalysis. Therefore, the next step is to extend the form of the encodings

for CEJO framework to satisfy both practical and security aspects.

Consider a white-box implementation of an SLT cipher, which follows

the CEJO framework. Let E = M ◦ S be a round function of the SLT

cipher on n = km bits, where M is a linear layer of the SLT cipher and S

is a concatenation of S-boxes S1, · · · , Sk on m bits.∗ Let f and g be input

and output encoding functions, respectively, which are bijections on n bits.

Clearly, g is the inverse function of the input encoding function of the next

round. Thus, the encoded round function F is defined as F = g ◦ E ◦ f . We

first consider an extended form of the encoding at f = A ◦ P , where A is

an invertible linear map on n bits and P is a nonlinear permutation. In the

CEJO framework, the table size is mainly determined by the size of input

affecting each S-box. Therefore, if A and P are arbitrary bijective linear and

nonlinear mappings, respectively, the table size would be huge. Hence, we

consider a special mappings that ensure the white-box implementation with

reasonable size.

Let A =


A1

...

Ak

, where Aj is the j-th horizontal strip of size m × n,

and let P be a concatenation of nonlinear bijective encodings P1, · · · , PkP on

mP bits, where n = kP ·mP . The output of fj = Aj ◦ P is the input of Sj,

and hence the net input† size of fj determines the table size related to Sj.

The net input size of fj is related to the net input size of Aj, and the net

input size of Aj is the number of nonzero columns in Aj. Therefore, if we can

∗For a fixed key, the adding key operation can be merged with the nonlinear permuta-
tion or the S-box.
†The net input of a function is the part that really affects the output of the function.
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Figure 3.1: Original encodings and extended encodings for the CEJO frame-
work

ensure a small number of nonzero columns in Aj, the table size will be small.

Furthermore, since these net input bits are affected by the corresponding Pjt ,

we should aim for few Pjt , each with a small number of input bits. Therefore,

P should be a concatenation of small nonlinear permutations, and A should

be an invertible linear map, where each Aj has a small number of nonzero

columns.

Since the output encoding is the inverse of the input encoding of the

next round, we can write the output encoding g as g = Q ◦ B, where Q is a

concatenation of small nonlinear permutations and B is an invertible linear

map. Thus, the encoded round function is of the form F = QBMSAP . For

simplicity, we write BM as B, because B,M are invertible linear maps, and

M is known, i.e., we let F = QBSAP .

We may consider the case f = P ◦ A, where the encoded round function

is of the form F = BQMSPA. In this case, since the n × n linear map B

follows the Q layer, the XOR tables should decode the encoding BQ, rather

than Q. This will make the size of XOR tables huge, and hence we must

decompose F into two parts after the Q layer. That is, we let F = G◦H and

make input/output tables of G and H, where G = B◦Q1 and H = Q2MSPA

with Q = Q1◦Q2. However, if we combine H with G from the previous round,

the function is of the form Q′MSP ′, because the linear mappings A and B

(from the previous round) will be canceled out. Since this is covered by the

case f = A ◦ P , we do not consider it further in this paper. Similarly, for a

composition of more than two encodings, we just consider the case f = A◦P
as a generalized form of the encoding.
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Remark 3.1.1. In practice, mP cannot be much larger than m, because

the use of a nonlinear encoding of size mP induces the use of a 2mP -bit to

mP -bit XOR table. Hence, the choice of mP is limited. However, we need

not be restricted to mP | m or m | mP . The nonlinear encodings of the P

layer do not need to be aligned with the S-boxes because two different fj

can share some input bits and input encodings. For example, let n = 192,

m = 8, mP = 6, and A be a block diagonal linear mapping with block size

8. For all j = 1, · · · , 24, the number of net input bits of fj is 12. f1, f2 share

the same input bits corresponding to P2 and f2, f3 share the same input bits

corresponding to P3. The tables related to each S-box are 12-bit to 192-bit

tables and the total table size (including XOR tables) for a round is about

4.4 MB.

Notation

In the remainder of this paper, we define E = M ◦ S to be a round function

of the SLT cipher with block size n, where M is a linear mapping on n bits

and S is a layer of k S-boxes on m bits. We let F = QBSAP be the encoded

round function of E, where P,Q are layers of small nonlinear permutations,

A,B are layers of linear mappings on n bits, and each Aj has a small number

of nonzero columns (Aj is the j-th m × n horizontal strip of A). Note that

B contains M .

We also define variables for the input size of the mappings. For the en-

coded round function F = QBSAP on n bits, we let P,Q be layers of kP

nonlinear bijective encodings on mP bits and kQ nonlinear bijective encod-

ings on mQ bits, respectively. Furthermore, if A is a block diagonal map

consisting of mixing bijections on each block, then we write mA to denote

the size of the blocks and kA for the number of blocks (i.e., n = k · m =

kP ·mP = kQ ·mQ = kA ·mA).
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3.2 Attack Toolbox for White-Box Implemen-

tation

In white-box cryptography, the attacker’s objective is to extract the secret

key information. Most block ciphers have key schedules, and so cryptanalysis

focuses on recovering one round key. In order to extract the secret key, we

find the encodings of consecutive two round functions. Using the relation

between the output encodings and the input encodings of the consecutive

two rounds, the secret key can be extracted efficiently. Therefore, the goal of

this section is the extraction of the secret encodings used to obfuscate in the

implementation.

We introduce general tools to recover encodings in F = QBSAP as de-

fined in the previous section. We first recover nonlinear parts of encodings

up to affine transforms and then we can let F = B ◦ S ◦ A, where A, B

are invertible affine maps. Next, we propose attack tools to find A and B in

general cases.

3.2.1 Recovering Nonlinear Encodings

Usually, recovering nonlinear parts of encoding is very difficult, but in white-

box implementations it is easier because only small nonlinear encodings are

used. Billet et al. [BGEC05] presented a method to recover nonlinear parts

of the encoding in Chow et al.’s implementation [CEJO03] in 23m steps.

Billet et al. applied this method to only the case that the size of encoding

blocks is the same as the size of S-boxes, more precisely, lcm(mP ,mA,mQ) =

m, where lcm means the least common multiple. Actually, in Chow et al.’s

implementation [CEJO03] the size of the S-boxes and the mixing bijections

is 8 and the size of the nonlinear encodings is 4. The BGE attack can be

easily extended to the case that lcm(mP ,mA,mQ) divides m by regarding
m
mP

encodings in layer P , m
mA

mixing blocks in layer A and m
mQ

encodings in

layer Q as a single encoding in the P , A, Q layers, respectively.

How about the case that lcm(mP ,mA,mQ) does not divide m? In this
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case, also the BGE attack can be applied to the implementation if lcm(mP ,mA,mQ,m) <

n, by considering lcm(mP ,mA,mQ,m) as the size of encodings in the P , A, Q

and S layers. The complexity of this attack is 23lcm(mP ,mA,mQ,m), and no longer

depend only m. For example, consider the case that n = 192,mP = mQ = 6

and mA = m = 8, the BGE attack has complexity 275. This gives the follow-

ing theorem which is extended version of the BGE attack.

Theorem 3.2.1. Let F = QBSAP be an encoded round function of white-

box implementation as defined in Section 2.2. If l = lcm(mP ,mA,mQ,m) <

n, then one can recover a nonlinear part Q (up to affine transformation) in

time n
l
· 23l.

In this subsection, we introduce a more efficient tool to recover nonlinear

parts of encodings for the latter case, which is based on the multiset attack

of Biryukov and Shamir [BS01]. Using this tool, we can recover nonlinear

parts of encodings efficiently even if the size of linear mixing bijections is

larger than the size of the S-boxes or the layer of the nonlinear encodings

is not aligned with the layer of the S-boxes. This is first approach which

provides a link between the technique in [BS01] and cryptanalysis of white-

box implementation.

In order to explain this tool, we will use the multiset properties as in

[BS01]. For more general attack, we add a subscript to each property symbol

to denote the size of input. For a multiset M of m-bit values (m > 1), the

multiset properties are defined as follows:

• M has property Cm (constant) if it contains only numbers of a single

m-bit value.

• M has property Pm (permutation) if it contains all numbers of the 2m

possible values exactly once.

• M has property Em (even) if each value occurs an even number of times

or does not occur.

• M has property Bm (balanced) if the XOR of all the values is 0m.
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We extend this notation to denote combined properties. First, we define a

projection map πI : {0, 1}n → {0, 1}τ by πI(x1, · · · , xn) = (xi1 , · · · , xiτ ), for

index set I = {i1, · · · , iτ} ⊆ {1, · · · , n}. We say a multiset M of n-bit values

has property Pk2mCn−2km, if π{2im+1,··· ,2im+2m}(M) has property P2m for each

i = 0, · · · , k − 1 and π{2km+1,··· ,n}(M) has property Cn−2km.

Now let us consider how the multiset properties are transformed by an

affine mapping, in the following two lemmas.

Lemma 3.2.1. Let A : Zn2 → Zm2 be an affine mapping and I = {i1, · · · , iτ} ⊆
{1, · · · , n} with τ ≥ m > 1. For a multiset M of n-bit values, a multiset

A(M) has property Pm or Em if πI(M) has property Pτ and π{1,··· ,n}\I(M)

has property Cn−τ .

Proof. We may assume that A is linear, because an addition by a constant

preserves property Pm or Em when M has an even number of elements.

Let A =
[
a1 · · · an

]
with column vectors ai’s and A∗ =

[
ai1 · · · aiτ

]
.

Then we have A(M) = {A∗(x′) + b | x′ ∈ πI(M)} for some constant vector

b ∈ Zm2 . It is enough to show that the multiset A∗(πI(M)) has property

Pm or Em.

If τ = m and A∗ has rank m, then the multiset A∗(πI(M)) of m-bit

values has property Pm. Otherwise, the size of the kernel of A∗ is 2τ−rank(A
∗)

and hence the number of preimage of y ∈ A∗(πI(M)) is 2τ−rank(A
∗). Since

2τ−rank(A
∗) is even, the multiset A∗(πI(M)) has property Em. It follows that

A∗(πI(M)) has property Pm or Em.

Lemma 3.2.2. Let A : Zn2 → Zm2 be an affine mapping. For a multiset M

of n-bit values, the multiset A(M) of m-bit values has property Bm if M has

property Bn and the size of M is even.

Proof. We can write A(x) = L(x) + b for some linear mapping L from n bits

to m bits and a m bits value b. Then

∑
y∈A(M)

y =
∑
x∈M

(Lx+ b) = L

(∑
x∈M

x

)
+
∑
x∈M

b = 0
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since the multiset M has property Bn and the size of M is even.

Using these lemmas, we obtain the following theorem, a generalized ver-

sion of the result in [BS01]. This attack tool which can remove the nonlin-

earity of encodings is more efficient than Billet et al.’s attack.

For description of the theorem, we provide some definitions. We say a

function f : Zu2 → Zv2 with u ≥ v is balanced if every output occurs 2u−v

times. We define F i,α : Zi·mP2 → Zn2 as F i,α(x) := F (α1, x, α2) where α =

(α1, α2) and α1 ∈ Zt·mP2 , α2 ∈ Zn−(i+t)·mP2 for some 0 ≤ t ≤ kP − i and

F i,α
j := πj◦F i,α, where πj is a projection onto the j-th block of layerQ. Lastly,

we define a set of functions Λi,j = {F i,α
j | α ∈ Zt·mP2 ×Zn−(i+t)·mP2 for some 0 ≤

t ≤ kP − i}.

Theorem 3.2.2. Let F = QBSAP be a round function of white-box im-

plementations and Λi,j be a set of functions defined above where i = d m
mP
e.

Assume the probability that a function in Λi,j is not balanced is at least p > 0

for each j. If lcm(mP ,mA,mQ) does not divide m, then one can recover non-

linear part Q (up to affine transformation) using 2i·mP+mQ · O(1/p) chosen

plaintexts in about O(kQ · 23mQ) bit operations.

Proof. Let α be an (n − i ·mP )-bit value. For some t, take Mα to be a set

with property CtmPP(i·mP )C
kP−(i+t)
mP such that π{1,··· ,t·mP ,(i+t)mP+1,··· ,n}(x) = α

for each x ∈Mα.

The property CtmPP(i·mP )C
kP−(i+t)
mP is preserved by the layer P , and thus

output multiset has also property CtmPP(i·mP )C
kP−(i+t)
mP . Since A can be divided

into k affine mappings from n-bit to m-bit and i ·mP ≥ m, this property is

transformed by the layer A into the multiset with property (Pm or Em)k by

Lemma 3.2.1. Since the property (Pm or Em)k is preserved after layer S, the

multiset after layer S has the property Bkm and this property is equivalent to

property Bn. By Lemma 3.2.2, the property Bn is transformed by the layer B

into the multiset with property B
kQ
mQ by dividing B into kQ affine mappings

from n-bit to mQ-bit.
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Figure 3.2: The relations between multiset properties on QBSAP

Now, consider the j-th nonlinear bijective encoding Qj in the layer Q and

define Fj = πj ◦F , where πj is a projection onto the j-th block. Then we get

a homogeneous equation

∑
x∈Mα

Q−1j (Fj(x)) = 0mQ

and since we know the values of Fj(x) for all x ∈ Mα, this equation is a

homogeneous equation of the unknowns Q−1j (y)’s for all y through mQ-bit

values, i.e., ∑
y

cα,y ·Q−1j (y) = 0mQ

where cα,y is the number of x ∈Mα satisfying Fj(x) = y.

Since the number of unknowns is 2mQ , we need more than 2mQ equations.

If we use different constant α at the part correspond to property C from

CtmPP(i·mP )C
kP−(i+t)
mP , we are likely to get a different homogeneous equation of

Q−1j (y)’s. By the assumption, we can obtain 2mQ equations from 2mQ ·O(1/p)

multisets, then we can solve the system of equations by Gaussian elimination.

We can do this process for all j’s and hence we need O(kQ23mQ) bit operations

with 2i·mP+mQ · O(1/p) chosen plaintexts to recover the layer Q up to affine

transformation.

The BGE attack take 23lcm(mP ,mA,mQ,m) bit operations, but our attack

tool only takes 23mQ bit operations. Reconsider example for n = 192,mP =

mQ = 6 and mA = m = 8. In this case, our attack tool reduces the complexity

from 275 to 223 to remove the layer Q up to affine transformation. Therefore,
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our attack tool is useful for removing the non-linear encodings in white-box

implementation, whether the nonlinear encodings and the S-boxes are aligned

or unaligned.

Remark 3.2.1. To apply the method in Theorem 3.2.2, we require suffi-

ciently many homogeneous equations of the form
∑

x∈Mα
Q−1j (Fj(x)) = 0mQ .

It is related to the probability p because if F i,α
j is balanced, the equation is

a trivial equation. By the nonlinearity of S-boxes, if F i,α
j is related to more

than 2 S-boxes, F i,α
j is likely to be not balanced. So, we have to take care of

choosing multiset of plaintexts, so that F i,α
j is related to more than 2 S-boxes

and we note that if lcm(mP ,mA,mQ) does not divide m, F i,α
j is related to

more than 2 S-boxes. However, in the case that mA, mP and mQ are equal

to m, we can acquire only trivial equation, and hence we cannot use this

method. Nevertheless, we can also recover the nonlinear parts of the encod-

ings because the BGE attack can be applied to this case (the BGE attack has

same complexity as the method in Theorem 3.2.2). Therefore, the toolbox to

recover the nonlinearity of the encodings should include both methods with

same complexities, considering all the cases.

Actually, we cannot recover Q exactly because we cannot get a system of

equation with full rank of 2mQ , but we can recover Q up to affine transform.

Furthermore, we can recover P by attack for the previous round. Therefore,

if we assume kP = kQ, we can recover all nonlinear part of encoding of a

round function in 2kQ · 23mQ steps.

Applications

In Chow et al.’s implementation [CEJO03], the input bit size of the lin-

ear encodings and the S-boxes is 8 and the size of input/output nonlinear

encodings is 4: In our notations, m = mA = 8 and mP = mQ = 4. Thus,

applying the result of Theorem 3.2.2, we can recover the nonlinear encodings

in 2kQ · 23mQ = 2 · 32 · 23·4 = 218 time and the complexity is much less than

Billet et al.’s [BGEC05], 229. The only thing to be careful about is to take

multiset of plaintexts. We have to take multiset of plaintexts, so that the
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Figure 3.3: Affine equivalence problem and specialized affine equivalence
problem

function is related to two S-boxes, for example, the multiset of plaintexts of

size 128-bit values that has the property C4P8C
29
4 .

3.2.2 Affine Equivalence Algorithm with Multiple S-

boxes

We say that two bijections F and S are linear/affine equivalent if there exist

linear/affine mappings A,B such that F = B ◦ S ◦ A. The linear/affine

equivalence problem is to find invertible linear/affine mappings A and B such

that F = B ◦ S ◦ A for given nonlinear bijections F and S.

Biryukov et al. [BCBP03] proposed algorithm for solving the linear equiv-

alence problem for arbitrary permutations over Zn2 with complexity O(n32n).

For the affine equivalence algorithm, they proposed the concept of the rep-

resentatives for the linear equivalence classes of permutations and solved the

affine equivalence problem in O(n322n) time.

In this subsection, we consider the case that the nonlinear mapping S

consists of k invertible S-boxes Si’s which map from Zm2 to Zm2 , where n =

km, as shown in Fig. 3.3. The problem may be considered to be a specific

case of [BCBP03] and so called the specialized affine equivalence problem.

The following theorem says the problem can be solved more efficiently when

compared with the affine equivalence problem.

Theorem 3.2.3. Let F and S be two permutations on n bits where S =

(S1, · · · , Sk) with nonlinear permutations Si on m bits for i = 1, · · · , k. As-

sume that we can easily access the inversion of F . Then, we can find all affine

mappings A and B such that F = B ◦ S ◦A in time O(kn323m) if they exist.
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Proof. First, we assume that F and S are linear equivalent. Suppose that A

and B are invertible linear mappings over Zn2 with F = B ◦ S ◦ A. Let us

consider A and B−1 to be partitioned into k horizontal strips of size m× n.

Denote the i-th strip of A and B−1 by Ai and Bi respectively. That is,

A =


A1

...

Ak

 and B−1 =


B1

...

Bk

 . (3.2.1)

If one can obtain two sets {x1, x2, · · · , xn} and {Bi ◦ F (x1), Bi ◦ F (x2), · · · , Bi ◦ F (xn)}
such that {F (x1), F (x2), · · · , F (xn)} is linearly independent, then one can

find Bi from

Bi =

[
Bi ◦ F (x1) Bi ◦ F (x2) · · · Bi ◦ F (xn)

][
F (x1) F (x2) · · · F (xn)

]−1
,(3.2.2)

where we consider Bi ◦ F (xj) and F (xj) as column vectors for 1 ≤ j ≤ n.

Hence, the main strategy is to find two sets {x1, · · · , xn} and {Bi ◦ F (x1), · · · , Bi ◦ F (xn)}
such that {F (x1), · · · , F (xn)} is linearly independent in order to recover Bi.

Suppose that we have two sets {x1, · · · , x`} and {y1 = Bi ◦ F (x1), · · · , y` = Bi ◦ F (x`)}
such that {x1, · · · , x`} is linearly independent. For any x =

∑`
j=1 bjxj (bj ∈

{0, 1}), we can compute y = Bi ◦ F (x) from y1, · · · , y` by

y = Si ◦ Ai(x) = Si

(∑̀
j=1

bjAi(xj)

)
= Si

(∑̀
j=1

bjS
−1
i (yj)

)
. (3.2.3)

Since F is a nonlinear bijection, we can obtain another vector x such that

F (x) /∈ Z2F (x1) + · · ·+ Z`F (x`) with high probability. (Assuming F is ran-

dom bijection, at least one of {F (x) | x ∈ Z2x1 + · · · + Z2x`} does not

belong to Z2F (x1) + · · · + Z2F (x`) with probability 1 −
(

2d`
2n

)2`−`
where

d` = dim〈{F (x1), · · · , F (x`)}〉.)
On the other hand, suppose that we have two sets {F (x1), · · · , F (x`)}

and {y1 = Bi ◦ F (x1), · · · , y` = Bi ◦ F (x`)} such that {F (x1), · · · , F (x`)} is
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linearly independent. For any x′ = F−1(
∑`

j=1 b
′
jF (xj)) (b′j ∈ {0, 1}), we can

compute y′ = Bi ◦ F (x′) from y1, · · · , y` by

y′ = Bi ◦ F
(
F−1

(∑̀
j=1

b′jF (xj)

))
=
∑̀
j=1

b′jBi ◦ F (xj) =
∑̀
j=1

b′jyj. (3.2.4)

Since F−1 is a nonlinear bijection then we can obtain a new vector x′ such

that x′ /∈ Z2x1 + · · ·+Z2x` with high probability by assuming F−1 is random

bijection.

Set x0 = 0, y0 = Bi ◦ F (x0), x1 = F−1(0) with F (x1) = 0. Then we have

y0 = Si ◦ A(x0) = Si(0), y1 := Bi ◦ F (x1) = 0. We need to make an initial

guess y2 := Bi ◦ F (x2) for some x2 ∈ {0, 1}n\{x0, x1} to generate another

vectors. Note that x1, x2 are linearly independent. If we set x3 = x2 + x1,

then F (x3) does not belong to Z2F (0) + Z2F (x2) because F is nonlinear

and x3 /∈ {x0, x1, x2}. By repeating above process in the equation (3.2.3) and

(3.2.4) several times, we can successfully obtain n vectors whose F values are

linearly independent. For each successful guessing, we get an m × n linear

mapping Bi. We check whether the mapping S−1i ◦Bi ◦F is linear and reject

the incorrect guesses. This process requires n3 operations for each guessing,

and thus the complexity becomes kn32m to find full matrix B.

Now, let us consider the affine equivalence problem. An affine case is very

similar to the linear case. Since an affine mapping is the composition of a

linear map and a translation, we can write

Bi ◦ F (x) + bi = Si (Ai(x) + ai) ,

for m × n linear mappings Ai, Bi and the m-bit constant vectors ai, bi for

i = 1, · · · , k.

For each pair (ai, bi) ∈ Zm2 ×Zm2 , we follow the above process with inputs

F (x) and Si(x+ai)+bi and then we can solve the affine equivalence problem.

Therefore, the total complexity is O(kn323m) by additionally choosing two

m-bit constant vectors.
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We call the algorithm in the Theorem 3.2.3 the specialized affine equiv-

alence algorithm (SAEA). While the affine equivalence algorithm has the

complexity O(n322n) to find the affine mappings A,B, the SAEA has only

complexity O(kn323m). This algorithm gives that the dominant parts of the

complexities depend on m, not on n even though A and B are random affine

mapping over Zn2 . Therefore, the SAEA is more efficient whenever S is a

concatenation of several S-boxes as in the white-box implementation.

Without the oracle of the invese of F The SAEA requires several

evaluations of F−1 in equation (3.2.4) and so we can not apply the SAEA

directly when the oracle of inversion of F is not given. In that case, we can

use only the property in the equation (3.2.3). We have to guess about logmA

vectors, instead of one vector, to obtain mA linearly independent vectors,

which results in complexity

O
(
kn32m(logmA+2)

)
= O

(
knm+322m

)
for finding the affine encodings. On the other hand, we can use the rela-

tion (3.2.4) if we evaluate the required inverse value of F . Using a meet-in-

the-middle attack (MITM), one inverse evaluation of F has a time complexity

of O(n2n/2) and memory requirement of O(n2n/2), which can be reduced to

O(n2n/4) using a dissection-type technique [DDKS12](See the next subsec-

tion). Because the SAEA requires about log n evaluations of F−1, its com-

plexity is

O
(
n
m
· n323m + log n · n · 2n/2

)
which is dominated by the complexity of inversion when n > 6m. Therefore,

the SAEA complexity is

O
(
min

{
n
m
· nm+3 · 22m, n

m
· n323m + n · log n · 2n/2

})
if the oracle of inversion of F is not given.
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Meet in the middle attack for inverting F In order to use the SAEA,

several number of evaluation of F−1 are required, so we need to check the

complexity to compute the inverse of F . As in Section 3.2.2, we let F be

a bijection on n bits. For simplicity, we assume F (x) =
∑k

j=1 Fj(xj) for

Fj : Zm2 → Zn2 , where x = (x1, · · · , xk) and xj’s are m-bit values with n = km.

A trivial approach to invert F is the exhaustive search, which takes 2n time

complexity. One can improve it using the meet-in-the-middle (MITM) attack:

By combining functions, we let F (x) = G1(x1, · · ·xb k2c)+G2(xb k2c+1, · · · , xk).
For y ∈ Zn2 , one can make a table of ⊕y ◦G1, sort it by the output values, and

compare it with the value of G2. Then one can evaluate F−1(y) in O(n2n/2)

time complexity with O(n2n/2) memory. The size of required memory for the

MITM attack is quite large to implement - for example, 238 GB are required

for n = 128. We provide another method requiring smaller memory while

maintaining asymptotic time complexity.

For convenience of notations, we let F (x) =
∑4

j=1 Fj(xj) where x =

(x1, x2, x3, x4) and each xj is an m0-bit value with m0 = n
4
. For a function f

whose value is on n bits, f̃ denotes the projection of f on the first m0 bits.

To evaluate F−1(y) for any n-bit value y, we perform the following steps:

1. Guess m0-bit value z̃ for F̃1(x1) + F̃2(x2).

2. Perform the MITM attack using F̃1(x1) + F̃2(x2) = z̃ and store the list

L =
{

(x1, x2, F1(x1) + F2(x2) + y) | F̃1(x1) + F̃2(x2) = z̃
}

for the result of the MITM attack.

3. Perform the MITM attack using F̃3(x3) + F̃4(x4) = ỹ + z̃, where ỹ is

the first m0-bit of y.

4. For each (x3, x4) satisfying F̃3(x3) + F̃4(x4) = ỹ + z̃, compare F3(x3) +

F4(x4) with the values in L.

Both the average number of elements in L and the number of (x3, x4) satis-

fying F̃3(x3) + F̃4(x4) = ỹ + z̃ are 2n/4. For one guessing of n
4
-bit value, we
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perform 3 times of MITM attacks on the sets with 2n/4 cardinality. Therefore,

we can evaluate F−1(y) in O(n2n/2) time complexity with O(n2n/4) memory.

For the case of n = 128, the required memory is 64 GB, which is practical to

implement.

Comparing an ASA attack [4] with the SAEA In [BS01], Biryukov

and Shamir show that the 3-layered ASA scheme in which each S-layer con-

tains invertible S-boxes and each A-layer contains an invertible affine map-

ping is susceptible to a chosen-ciphertext attack if S-layers consist of smaller

S-boxes. One may attempt to apply the ASA attack to the SAE problem since

an instance function F = BSA of the SAE problem has the ASA structure.

However, there is a difference between ASA attack and our SAEA: The SAEA

targets at finding {B,A} tuples with BSA = F for given S and F . However,

the ASA attack find {B, S,A} tuples with BSA = F for a given F . The

solution S is only affine equivalent to the original S. The ASA attack cannot

be applied for recovering of the encodings in the white-box implementation.

When A is split When we use the SAEA for the white-box implementa-

tion, we can reduce the complexity for the case where input encoding A is of

some special form.

For convenience, let A and B be linear. Let’s consider A ∈ (Z2)
n×n as

a Ã ∈ (Zm×m2 )k×k, where n = km. If Ã is block-diagonal map, then we can

perform separately the above attack on each block. If the size of the each

block of block-diagonal map Ã is ki with
∑

i ki = k, Ai ∈ Zkim×kim2 is i-th

block of A and Bi ∈ Zn×kim2 is i-th vertical strip of B correspond to Ai, we

can find maps of the form Fi = Bi ◦ (S, · · · , S) ◦ Ai, where (S, · · · , S) is

concatenation of ki S-boxes. Since image of Fi has rank ki, we can find a

ki× n matrix Ci satisfying that Ci ◦Fi is bijective. Then we obtain bijective

maps of the following form:

F̃i = B̃i ◦ (S, · · · , S) ◦ Ai

35



CHAPTER 3. ANALYTIC TOOLS FOR WHITE-BOX
CRYPTOGRAPHY

where B̃i = Ci ◦ Bi. Thus we can recover the encodings in complexity∑
i ki(kim)323m, less than kn323m.

More generally, if Ã can be split into two or more bijective map, that is,

A is split as defined in section 3.2.2, we can apply the above argument to Ã.

In detail, in the case that (Ã)i,j = 0m×m for (i, j) ∈ [k1 + 1, k1 + k0]× ([1, k] \
[k2 + 1, k2 + k0]) or (i, j) ∈ ([1, k] \ [k1 + 1, k1 + k0]) × [k2 + 1, k2 + k0] fore

some k0, k1, k2 with k1 + k0, k2 + k0 ≤ k,

i.e., Ã is the form of


∗ 0 ∗
0 A∗ 0

∗ 0 ∗

, one can obtain a bijective map on

Zk0m2 using small submatrix, A∗ in the above.

Applications In Xiao and Lai’s implementation [XL09], they use only the

linear mappings for input/output encoding. The input bit size of the input

encodings is twice of the input bit size of the S-boxes. By fixing input value

on all but 2 bytes as a constant, one can obtain the bijection map F on 16

bits of the following form:

F = B ◦ (S, S) ◦ (⊕K′ ,⊕K′′) ◦ A

where A, B are linear invertible maps on 16 bits. Then F is affine equivalent

to (S, S) with linear map B and affine map (⊕k′ ,⊕k′′) ◦ A.

By applying the extended affine equivalence algorithm, we can recover one

part of the secret encoding in n
m
n322m = 229 steps for m = 8 and n = 16. This

result is coincident with the result of Mulder et al. [MRP13], 2n32n = 229

steps. However, our attack tool has some potential advantages over Mulder

et al.’s: (1) First, as n is larger than twice of m, i.e., n = km with k > 2, our

attack has less complexity than Mulder et al.’s. For the case of m = 8 and

n = 4m = 32, the complexity to recover one part of the secret encoding is
n
m
n322m = 233 using our attack tool, while 2n32n = 248 using Mulder et al.’s

method. (2) One additional advantage of our attack is that if we set A and

B to be affine mappings instead of linear mappings to increase security, our
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tool can be applicable to the scheme while Mulder et al.’s method cannot.

For the affine case with same n and m, one can recover a secret encoding in
n
m
n323m = 237 using our tool.
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3.3 Approaches for Resisting Our Attack Tools

There have been many proposals for a new white-box implementation, but

none appear to require more than 232 complexity to recover the whole se-

cret key. Hence, the urgent subject of white-box cryptography is to design a

white-box implementation of higher security with reasonable storage. In this

section, we explore why previous white-box implementations can be attacked

with low complexity, and investigate several approaches that may overcome

this barrier. Note that we consider an SLT-type block cipher of n-bit inputs

with m-bit S-boxes.

Recall that mA is the size of the minimized blocks of block diagonal affine

encodings. More precisely, consider the affine encoding of the form ⊕a ◦ A,

where A is an invertible matrix in Rk×k with R = Zm×m2 and a is an n-bit

value. Let k0 be the smallest integer such that there exist two permutation

matrices P1 and P2 ∈ Zkm×km2 satisfying P1AP2 =

[
A1 0

0 A2

]
for some

A1 ∈ Rk0×k0 . We define mA = k0 ·m.

3.3.1 Limitation of White-Box Implementation

Putting the above theorems together, we can summarize our attacks in the

following theorem:

Theorem 3.3.1. (Main Theorem) For i = 1, 2, 3, F (i) = Q(i) ◦ B(i) ◦
S(i) ◦ ⊕K(i) ◦ A(i) ◦ P (i), bijections on n bits and S(i), a concatenation of
n
m

nonlinear bijections on m bits are given where K(i) are secret keys of

n bits, P (i) and Q(i) are concatenations of n
mQ

nonlinear bijection on mQ

bits, and A(i) and B(i) are invertible linear mappings on n bits, satisfying

Q(i) ◦ P (i+1) = id = B(i) ◦ A(i+1).

Then, one can find K(2) in time

O

(
3

n

max(mQ,m)
· 23max(mQ,m) + 2

n

m
· lcm(mA,mQ)323m

)
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with O
(

2n log(lcm(mA,mQ))

lcm(mA,mQ)

)
calls of (F (i))−1 oracle, or in time

O

(
3

n

max(mQ,m)
· 23max(mQ,m) + 2

n

m
· lcm(mA,mQ)m+322m

)
without using (F (i))−1 oracle, where mA is the size of minimized blocks of

A(i)’s as difined above.

Proof. Note that m|mA by definition of mA. Since lcm(mA,mQ)|m implies

l = lcm(mA,mQ,m) = m, one can recover Q(i) (up to affine transformation)

in time O( n
max(mQ,m)

· 23max(mQ,m)) by Theorem 3.2.1 and Theorem 3.2.2 and

also can recover P (1) and P (2) from P (1) = (Q(0))−1 and P (2) = (Q(1))−1.

Now, for i = 1, 2, the nonlinear effects of P (i) and Q(i) can be removed in

F (i) and hence F (i) can be considered F (i) = B̃(i) ◦S(i) ◦⊕K(i) ◦ Ã(i) for some

affine mappings Ã(i) and B̃(i) on n bits. Note that Ã(i) can be considered

block diagonal affine mappings with block size l = lcm(mA,mQ). Therefore,

one can apply SAEA to each block of size l. When SAEA is applied to block

of size l, it needs log l calls of (F (i))−1 oracle or to guess about logmA vectors,

instead of one vector, without using (F (i))−1 oracle. It follows that one can

recover Â(i) = ⊕K(i) ◦ Ã(i) and B̃(i) in time O( n
m
· l323m) with n

l
log l calls of

(F (i))−1 oracle or O( n
m
·l32m(log l+2)) = O

(
n
m
· lm+322m

)
without using (F (i))−1

oracle.

From the relation between P (2) and Q(1), one can find K(2) by computing

Â(2) ◦ B̃(1)(0) = ⊕K(2) ◦ A(2) ◦B(1)(0) = K(2). 2

All of the previous white-box implementations have common features: For

n = 128,m = 8, (1) they use affine/linear encodings with mA ≤ 16, and (2)

they do not use nonlinear encodings, or use nonlinear encodings with only

mQ = 4. In these case, lcm(mA,mQ) ≤ 16, and so one can easily compute

the inverse. By the result of Theorem 3.3.1, all previous implementations can

be broken in less than 241 time without using a specific attack.

To increase the complexity, we need to increase lcm(mA,mQ). Increasing

mQ results in large storage requirements for the XOR table; e.g., one XOR
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table requires 8 for mQ = 16. Another approach is to increase mA. We may

try to increase mA up to n. When mA = n ≤ 128 and m = 8, the complexity

is at most 250 if the F−1 oracle is given, where F is an encoded round function.

3.3.2 Perspective of White-Box Implementation

In reality, however, the oracle of F−1 is not provided, and so we focus on

this case. By Theorem 3.3.1, when mA = n, the complexity of the SAEA is

O
(
n
m
·mA

m+322m
)
, which is a polynomial of mA with degree m+ 3. On the

other hand, we could also use the SAEA by evaluating the required inverse

values of F . Using a meet-in-the-middle attack (MITM), one inverse evalua-

tion of F has a time complexity of O(mA2mA/2) and memory requirement of

O(mA2mA/2), which can be reduced to O(mA2mA/4) using a dissection-type

technique [DDKS12] (See Appendix ??). Because the SAEA requires about

logmA evaluations of F−1, its complexity is

O
(
n
m
·m3

A23m + n
mA
· logmA ·mA · 2mA/2

)
which is dominated by the complexity of inversion whenmA > 6m. Therefore,

when mA = n = 128 and m = 8, the SAEA complexity is

O
(
min

{
n
m
·mA

m+3 · 22m, n · logmA · 2mA/2
})

= 274.

A security level of 74 bits is higher than that of previous implementa-

tions [CEJO03, Kar11, XL09], but is not sufficient considering the security

level of the original cipher. This limitation arises because the complexity is

heavily dependent on mA, but mA cannot exceed n. We must therefore exam-

ine another approach to further increase the security level of the white-box

implementation.

Let us consider the case whereby we encrypt messages that are longer

than the cipher’s block length or multiple messages. We investigate an ap-

proach in which multiple plaintexts are simultaneously encrypted by one
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Figure 3.4: The hard-to-invert encoded round function with mA = 2n

white-box implementation. Then, we can take mA larger than n, such as

mA = 2n, 3n, · · · , and hence the security level can be improved over that

stated above. For example, the complexity of the SAEA can be large up to

2109 when mA = 2n, n = 128, and m = 8. However, this approach may lead to

large storage requirement. To overcome this problem, we use special “sparse

unsplit” encodings, as shown in Fig 3.4. In the next section, we present an in-

stance of this white-box implementation for concatenations of AES-128 using

sparse unsplit encodings that are bijections on mA = 256.
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3.4 A Proposal for a White-Box Implemen-

tation of the AES Cipher

We propose a white-box implementation for concatenation of two AES using

table lookups. The AES consists of 10 rounds and the round function of AES

is made of the four steps: SubBytes(SB), ShiftRows(SR), MixColumns(MC),

and AddRoundKey(ARK). Each step is a bytewise operation on the 16 bytes.

For efficiency, we set the round function AES(r) of AES as follows:

AES(r) =

MC ◦ SR ◦ SB ◦ ARK, if r = 1, · · · , 9
SR ◦ AK ◦ SB ◦ ARK, if r = 10

.

Input and Output Encodings We use sparse unsplit encodings as input

encodings like in equation (3.4.5) to reduce the storage: Let Ar ∈ Z256×256
2

be an invertible linear map such that Ari,j is the zero matrix for all (i, j) 6=
(i, i), (i, i + 1) and (32, 1), where Ari,j is (i, j)-th block of Ar when Ar is

partitioned into 1024 blocks Ari,j of size 8× 8 for i, j = 1, · · · , 32. We define

an input encoding A(r) of r-th round of the form ⊕ar ◦Ar for a 256-bit value

ar = (ar1, · · · , ar32) where ari ’s are 8-bit values. That is,

A(r)(x) =


Ar1,1 Ar1,2 0 0 · · · 0

0 Ar2,2 Ar2,3 0 · · · 0
...

...
...

...
. . .

...

Ar32,1 0 0 0 · · · Ar32,32




x1

x2
...

x32

⊕

ar1

ar2
...

ar32

 (3.4.5)

for x = (x1, · · · , x32) ∈ {0, 1}256 with 8-bit values xi’s.

For the input encoding A(r+1) of the (r+1)-th round, we define the output

encoding B(r) of r-th round by B(r) = (A(r+1))−1 ◦ (MC ◦ SR,MC ◦ SR), for

r = 1, · · · , 9, where (MC ◦SR,MC ◦SR) is a concatenation of MC ◦SR on 128

bits. In general, the inversion (Ar)−1 has no sparse characteristics despite the

sparse structure of Ar. (One can easily check it using Gaussian elimination.)

Therefore, the output encoding B(r) has no specific structure. Note that
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nonlinear encodings of small size are used in the white-box implementation in

general and the complexity of removing the nonlinear encodings is not higher

than the complexity of finding the affine encodings. We have no consideration

for the nonlinear encodings in this section.

Then, the encoded round function F (r) of AES(r) is defined by F (r) =

(A(r+1))−1 ◦ (AES(r),AES(r)) ◦ A(r) = B(r) ◦ (S, · · · , S) ◦ ⊕(Kr,Kr) ◦ A(r) for

r = 1, · · · , 9, where S is the S-box function on 8 bits in the SubBytes step

and Kr is the secret key of r-th round on 128 bits in the AddRoundKey step.

Since the final round of AES is slightly different from the other rounds, the

encoded round function of final round will be discussed later.

Construction of Lookup Tables Let Br
i be a linear mapping from 8

bits to 256 bits for i = 1, · · · , 32 and br be a 256-bit value vector such that

B(r)(x) = [Br
1| · · · |Br

32](x)⊕br for any 256-bit value x. Choose 256-bit random

value bri for each i = 1, · · · , 31, and let br32 := br ⊕ br1 ⊕ · · · ⊕ br31.
Now, each 16-bit to 256-bit table F

(r)
i , depicted in Fig 3.5, is defined as

follows:

F
(r)
i =


⊕bri ◦Br

i ◦ S ◦ ⊕Kr
i ⊕ari ◦ (Ari,i, A

r
i,i+1), if 1 ≤ i ≤ 16

⊕bri ◦Br
i ◦ S ◦ ⊕Kr

i−16⊕ari ◦ (Ari,i, A
r
i,i+1), if 17 ≤ i < 32

⊕br32 ◦Br
32 ◦ S ◦ ⊕Kr

16⊕ar32 ◦ (Ar32,32, A
r
32,1), if i = 32

where Kr = (Kr
1 , · · · , Kr

16) is the r-th round key for Kr
i ∈ {0, 1}8. The affine

mapping ⊕ar
i
◦ (Ari,i, A

r
i,i+1) from Z16

2 to Z8
2 is inserted before S ◦ ⊕Kr

i
and the

affine mapping ⊕bri ◦ Br
i from Z8

2 to Z256
2 is inserted after the S-box part.

Then the encoded round function F (r) of AES(r) can be expressed as a sum

of F
(r)
i ’s:

F (r)(x1, x2, · · · , x32) = F
(r)
1 (x1, x2)⊕ F (r)

2 (x2, x3)⊕ · · · ⊕ F (r)
32 (x32, x1)

for r = 1, · · · , 9 and 8-bit values xi’s. Therefore, the encoded round function

F (r) can be implemented using thirty-two 16-bit to 256-bit lookup tables,
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Figure 3.5: The lookup tables of F
(r)
i and T

(r)
i

instead of implementing a 256-bit to 256-bit table of huge size. However,

since F
(r)
i (x, 0) = ⊕bri ◦Br

i ◦S ◦⊕Kr
i ⊕ari ◦Ari,i(x) is a 8 bit-to-128 bit function

for 8-bit value x, it can be transformed to a bijection on 8 bits by some

projection. Then, it is affine equivalent to S, Hence, the affine equivalent

algorithm of [BCBP03] can be applied to each F
(r)
i (x, 0) and it has only 225

complexity to recover affine mappings. To prevent the individual attack, we

modify the functions F
(r)
i ’s. We replace F

(r)
i by T

(r)
i : Z16

2 → Z256
2 such that

T
(r)
i (x, y) =

F
(r)
i (x, y)⊕ h(r)i (x)⊕ h(r)i+1(y), if i 6= 32

F
(r)
32 (x, y)⊕ h(r)32 (x)⊕ h(r)1 (y), if i = 32

for any random function h
(r)
i from Z8

2 to Z256
2 and 8-bit values x, y. The

resulting lookup table T
(r)
i is depicted in Fig 3.5. Then, if we set x33 := x1,

32∑
i=1

T
(r)
i (xi, xi+1) =

32∑
i=1

F
(r)
i (xi, xi+1) = F (r)(x1, · · · , x32)

for 8-bit valued xi’s. Furthermore, since the functions h
(r)
i have no certain

structure unlike F
(r)
i , we cannot extract encodings from T

(r)
i ’s using the affine

equivalence algorithm.

Therefore, we can express the encoded round function F (r) as a sum of

16-bit to 256-bit lookup tables T
(r)
i ’s without revealing F

(r)
i ’s.
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External Encoding Tables Let Min and Mout be random affine functions

on 256 bits. Then, external input encoding function F (0) is defined by F (0) =

(A(1))−1 ◦Min and the encoded round function of the final round is defined

by F (10) = Mout ◦ (AES(10),AES(10)) ◦ A(10), where AES(10) = ⊕K11 ◦ SR ◦
(S, · · · , S) ◦ ⊕K10 .

Since the external input encoding function F (0) is an affine function on

256 bits, it is implemented using a matrix of size 256 × 256 and a vector

of length 256 bits. The external output encoding function F (10) is split into

thirty-two 16-bit to 256-bit lookup tables T
(10)
i by the above design technique.

Security Analysis Since the encoded round function F (r) is a bijection

on 256 bits, computing the inverse value of F (r) is not an easy task for

r = 1, · · · , 10. Therefore, we count the complexity of computing the inverse

of F (r) in the cryptanalysis of our proposed white-box implementation using

SAEA. The hardness of inverting F (r) for r = 1, · · · , 10, which has sparse

unsplit encodings can be considered as a special version of sparse subset sum

problem (SSSP) used in [CNT12, GH11, SV14] to design fully homomorphic

encryptions.

If Ar is a block diagonal matrix (i.e., all off-diagonal blocks Arij (i 6= j)

are zero matrices), then F (r) is expressed by the summation of the F
(r)
i ’s,

where F
(r)
i is a function from Z8

2 to Z256
2 . For a given 256-bit value y and

sets {(x, F (r)
i (x)) ∈ Z8

2 × Z256
2 | x ∈ {0, 1}8}32i=1, computing (F (r))−1 of y is to

find the 8-bit values xi such that y =
∑32

i=1 F
(r)
i (xi) = F (r)(x1, · · · , x32).

It is equivalent to a variant of the SSSP problem to finding the coeffi-

cients δi,x, such that

y =
32∑
i=1

∑
x∈{0,1}8

δi,x · F (r)
i (x),

where

δi,x ∈ {0, 1},#{x ∈ {0, 1}8 | δ1,x = 1} = · · · = #{x ∈ {0, 1}8 | δ32,x = 1} = 1.

45



CHAPTER 3. ANALYTIC TOOLS FOR WHITE-BOX
CRYPTOGRAPHY

In this case, if we regard F (r) as a bijection on mA bits, this SSSP

can be solved in Õ(2mA/2) time with Õ(2mA/4) memory using a variant of

Schroeppel–Shamir algorithm [SS79]. This is the same complexity as for the

proposed MITM attack. However, the presented implementation uses an un-

split encoding that is not a block diagonal mapping. As a result, the 8-bit

value xi is used as the input value of several T
(r)
j ’s, and the computation of

(F (r))−1 is slightly different from that in the SSSP. Using the unsplit encoding

instead of a block diagonal encoding makes the computation of (F (r))−1 from

the subfunctions T
(r)
j more difficult. Therefore, computing (F (r))−1 from the

subfunctions T
(r)
j seems as difficult as in the SSSP, and the subfunctions T

(r)
j

do not help determine the inverse of F (r).

More generally, if we use sparse unsplit input encodings that are affine

mappings on mA bits, then the complexity of extracting the secret key in the

proposed implementation is

O
(
min

{
mA

12 · 214, 2mA · logmA · 2mA/2
})

for mA = 128, 256, 384, · · · . Table 3.1 presents the security level and storage

requirements of the proposed implementation for mA = 128, 256, 384. The

attack complexity can be up to 2110 and 2117 when mA = 256 and 384,

respectively, which is quite close to the original 128-bit security level. This

shows that sparse unsplit input encodings that have a multiple input size of

the cipher’s block length may be a useful way of designing a secure white-box

implementation.
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mA

Security Storage

min
{
mA

12 · 214, 2mA · logmA · 2mA/2
}

mA
8
·mA · 216 bits

128 2mA · logmA · 2mA/2 = 275 16 MB × (# of rounds)

256 mA
12 · 214 = 2110 64 MB × (# of rounds)

384 mA
12 · 214 = 2117 144 MB × (# of rounds)

Table 3.1: The security and storage of the proposed white-box AES implementa-

tion for mA = 128, 256, 384
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The goal of lattice basis reduction is to find a good basis from a given

lattice basis. The meaning of “good” basis varies with the use of the basis, but

it usually means short and close to orthogonal. To obtain a new lattice basis

reduction algorithm, we need to make the purpose of it clear. Our purpose of

lattice basis reduction is to get cryptanalysis of lattice based cryptosystems

and analyze them using the reduction.

The best known lattice basis reduction algorithms are LLL algorithm

and BKZ algorithm. LLL algorithm is polynomial time algorithm and well-

analyzed, but the quality of output of the algorithm is not high and hence is

not enough to be used widely as an analytic tools of lattice based cryptogra-

phy. BKZ algorithm provides outputs of high quality and various estimation

results with various block size and dimension. However, The estimation re-

sults are from several experiments or many assumptions and hence does not

give theoretic bounds. Therefore, we try to get a new lattice basis reduc-

tion algorithm such that is well-analyzed and provides various outputs of

high-quality according to the conditions.

To explain our algorithm, we first define some modular operations for

lattice.

Definition 4.0.1. Let v, b,∈ Rn be vectors. Then v mod b is a vector in Rn

such that v mod b = v−cb for some c ∈ Z and satisfying ‖v mod b‖ ≤ ‖v−xb‖
for all x ∈ Z.

More generally, let L be a lattice in Rn. Then v mod L is a vector in Rn

such that v mod L = v−w for some w ∈ L and satisfying ‖v mod L‖ ≤ ‖v−z‖
for all z ∈  L.

Here, we also introduce the definition of the Voronoi cell and covering

radius.

Definition 4.0.2. Let L be a lattice and p ∈ L be a lattice point. Voronoi

cell V(p) is the set in span(L) satisfying V(p) = {x | ‖x − p‖ ≤ ‖x − y‖ for

all y ∈ L}.
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Definition 4.0.3. Let L be a lattice. The covering radius ρ(L) is the maxi-

mum distance dist(x, L) where x ranges over the span(L).

ρ(L) = max
x∈span(L)

{dist(x, L)}.

By the definition of mod L operation, v mod L is a vector in the Voronoi

cell in L and mod L operation transfer v to a point in Voronoi cell in L.

Also, by the definition of the covering radius, The maximum length of vectors

in the Voronoi cell centered 0 is the covering radius of L. Hence, For any v,

‖v mod L‖ ≤ ρ(L).

Remark 4.0.1. There can be more than 1 vector satisfying conditions in the

definition. For clear definition, if more than 1 vector satisfy the condition,

we choose v mod L as follows.

For a vector v ∈ Rn, let iv be the coordinate such that i-th coordinate

values of v are negative for all i < iv and iv-th coordinates value of v is not

negative. Also, let jv be the largest coordinate of v such that i-th coordinate

values of v are not negative for all iv ≤ i ≤ jv. Then, we choose v mod L

such that iv mod L is minimal. If several candidates have same the minimal

iv, then we choose the vector with maximal jv from the candidates. Then by

the symmetric property of the Voronoi cell of the lattice, v mod L is uniquely

determined.
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4.1 Nearest Plane Algorithm

Let L be a full rank lattice given by an (ordered) basis {b1, · · · , bn} and let

{b∗1, · · · , b∗n} be the corresponding Gram–Schmidt basis. Let w ∈ Rn. Babai

presented a method to inductively find a lattice vector close to w [Bab85].

Note that the vector v ∈ L output by Babai’s method is not guaranteed to

be such that ‖w − v‖ is minimal.

We now describe the method with Figure 4.1. For the induction, we let

L = Ln, w = wn. Define Un−1 = span{b1, · · · , bn−1} and let Ln−1 = Ln∩Un−1
be the sublattice spanned by {b1, · · · , bn−1}. The idea of the nearest plane

method is to find a vector yn ∈ Ln such that the distance from wn to the

plane Un−1 + yn is minimal. One can easily find that yn = bcneb∗n satisfies the

condition when wn =
∑n

i=1 cnb
∗
n. Then one can sets w′n to be the orthogonal

projection of w onto the plane Un−1 + yn. Let wn−1 = w′n − yn ∈ Un−1.

Inductively, One can do this process in the lower dimensional lattice, i.e., one

can get yi ∈ L for target vector wi and lattice Li. The solution to the original

instance of the CVP is v =
∑n

i=1 yi.

The following two theorems give result about quality of the output of the

algorithm.

Theorem 4.1.1. Let {b1, · · · , bn} be LLL-reduced (with respect to the Eu-

clidean norm, and with factor δ = 3
4
). If v is the output of Babai’s nearest

plane algorithm on input w then

‖w − v‖2 ≤ 2n − 1

4
‖b∗n‖2.

Proof. Since v =
∑n

i=1 yi and ‖w′i − wi‖ ≤ 1
2
‖b∗i ‖,

‖w − v‖2 = ‖w −
n∑
i=1

yi‖2 = ‖wn −
n∑
i=1

(w′i − wi−1)‖2

= ‖
n∑
i=1

wi − w′i‖2 ≤
n∑
i=1

1

4
‖b∗i ‖2
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Figure 4.1: Babai’s Nearest Plane Algorithm

Since {b1, · · · , bn} is LLL-reduced, ‖b∗i ‖2 ≤ 2‖b∗i+1‖2, and hence we obtain

‖w − v‖2 ≤ 2n−1
4
‖b∗n‖2.

Theorem 4.1.2. If the {b1, · · · , bn} is LLL-reduced (with respect to the Eu-

clidean norm, and with factor δ = 3
4
), then the output of Babai’s nearest

plane algorithm on input w ∈ Rn is a vector v such that

‖v − w‖ < 2n/2‖u− w‖

for all u ∈ L.

Proof. We prove this result by induction.

For n=1, v is the closest vector and so the result holds.

Let n ≥ 2 and u ∈ L be the closest vector to w. We can consider two

cases.

If u ∈ Un−1 +yn, then ‖u−w‖2 = ‖u−w′n‖2 +‖w′n−wn‖2 and so u is also

the closest vector to w′n. Also, u − yn is the closest vector to wn−1 ∈ Un−1.
Since

∑n−1
i=1 yi is the output of the nearest plane algorithm on wn−1, by the
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induction hypothesis

‖
n−1∑
i=1

yi − wn−1‖ < 2(n−1)/2‖u− yn − wn−1‖.

Therefore,

‖v − w‖2 = ‖
n−1∑
i=1

yi + (yn − w′n) + w′n − wn‖2 = ‖
n−1∑
i=1

yi − wn−1‖2 + ‖w′n − wn‖2

< 2n−1‖u− w′n‖2 + ‖w′n − wn‖2

< 2n‖u− w‖2.

Now, Consider the case that u 6∈ Un−1+yn. Then we have ‖u−w‖ ≥ 1
2
‖b∗n‖.

By Theorem 4.1.2,

‖v − w‖ ≤
√

2n − 1

2
‖b∗n‖2 < 2n/2‖u− w‖.

This completes the proof.

It is known that Babai’s nearest plane algorithm provides better out-

put than Babai’s rounding technique. Actually, w − v of Babai’s rounding

technique corresponds to a point in the parallelepiped centered at origin by

b1, ·, bn. However, w − v of Babai’s nearest plane algorithm corresponds to

a point in the parallelepiped centered at origin by b∗1, ·, b∗n, i.e., the product

of (−1
2
, 1
2
]b∗i ’s. Since the maximum length of vectors in the parallelepiped by

b∗1, ·, b∗n is shorter than that in the parallelepiped by b1, ·, bn, Babai’s near-

est plane algorithm provides better output than Babai’s rounding technique.

Note that w−v in exact algorithm for CVP correspond to a point in Voronoi

cell.

To obtain better output, the shape of region that (w−v)’s correspond to is

close to the Voronoi cell V(O) in L. We can consider β-dimensional projection

instead of 1-dimensional projection in Babai’s nearest plane algorithm. In

other words, To find a vector y in β-dimensional orthogonal projection space
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Figure 4.2: β-block Nearest Plane Algorithm

to U such that distance between w and U + y is minimal.

To explain this, we give some notations for sublattice. Let n = βk

and Li = L(b(i−1)β+1, · · · , biβ) for i = 1, · · · , k. For convenience, we let

L = L(L1, · · · , Lk) = L(b1, · · · , bn). We define the map πi as the orthog-

onal projection map onto span(L1, · · · , Li−1). In particular, we define L∗i =

πi(Li). It will play a role as b∗i of Gram-Schmidt algorithm. Lastly, we define

di = ‖w′i − wi‖ in the nearest plane algorithm.

We now describe the new method with Figure 4.2. For the induction, we

let w = wk and define Uk−1 = span{L1, · · · , Lk−1}. The basic idea of the new

algorithm is similar to Babai’s nearest plane method. It is to find a vector

yk ∈ Lk such that the distance from wk to the plane Uk−1 + yk is minimal.

Then one can sets w′k to be the orthogonal projection of w onto the plane

Uk−1+yk. Let wk−1 = w′k−yk ∈ Uk−1. Inductively, One can do this process in

the lower dimensional lattice, i.e., one can get yi ∈ Li for target vector wi and

lattice Li. The solution to the original instance of the CVP is v =
∑k

i=1 yi.

For each i = 1, · · · , k, w′i is the closest vector of wi in L∗i and hence wi−w′i
corresponds to a point in the Voronoi cell centered at 0 in L∗i . Therefore, w−v

54



CHAPTER 4. NEW LATTICE BASIS REDUCTION ALGORITHM

in our β-block nearest plane algorithm corresponds to a point in the product

of Voronoi cell in L∗i . (Note that for the β = 1, (−1
2
, 1
2
]b∗i is the Voronoi cell

in L(b∗i ).) Also, one can easily show that

‖w − v‖2 =
k∑
i=1

‖wi − w′i‖2 =
k∑
i=1

d2i ≤ ρ(L∗i )
2.
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4.2 Blockwise LLL Algorithm

If we use β-block nearest plane algorithm instead of original nearest plane

algorithm, we can obtain more close vector v to target vector w than the

output of the Babai’s nearest plane algorithm. That is because the vectors in

k product of β-dimensional Voronoi cells have smaller maximum length than

the vectors in n product of 1-dimensional Voronoi cells, that is the product

of (−1
2
, 1
2
]b∗i ’s.

In the nearest plane algorithm, if we use LLL reduced basis for L with

factor δ = 3
4
, one can obtain a vector v such that ‖v−w‖ < 2n/2‖u−w‖ for

all u ∈ L. Then for the case of the β-block nearest plane algorithm, how can

we obtain such results? In other words, which basis can we use with β-block

nearest plane algorithm to get better factor of quality than 2n/2? For this,

we propose a new lattice basis reduction algorithm which can reduce basis

by block.

In the LLL algorithm, LLL reduced basis satisfies two conditions: size

reduced and Lovasz condition. These conditions are related to the length of

basis vectors. However, in the case of block reduction, it is difficult to compare

size of blocks by the lengths of basis vectors. We need some measure for the

block reduction instead of the length of the basis vectors.

One of natural candidate of measure is the covering radius of sublattices.

In fact, 1
2
‖b∗i ‖ is the covering radius of L(b∗i ). Also, size reduction in LLL

algorithm can be regarded as a transform to (−1
2
, 1
2
]b∗i , Voronoi cell in 1-

dimensional lattice. We define β-LLL reduced basis using the concept of

Voronoi cell and covering radius of lattice. Recall the definition of mod L in

Definition 4.0.1 - v mod L is a vector in Rn such that v mod L = v − w for

some w ∈ L and satisfying ‖v mod L‖ ≤ ‖v − z‖ for all z ∈  L.

Definition 4.2.1. We call b1, ·, bn is β-LLL reduced basis if it satisfies the

following conditions.

• (β-size reduced) For all basis of Li, their L∗j -component is not larger

thanρ(L∗j) when 1 ≤ j < i ≤ k. i.e., if b is a basis of Li and b =
∑i

j=1 b
′
j
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where b′j ∈ span (L∗j), then b′j is in V(O) in L∗j .

• (β-Lovasz condition) For 2 ≤ i ≤ k,

ρ(L∗i )
2 ≥ 1

2
ρ(L∗i−1)

2.

Now we present β-block LLL algorithm which output β-LLL reduced basis

for given basis as shown in Algorithm 2.

Now we prove the theorems about the quality of the output of the algo-

rithm.

Theorem 4.2.1. Let {b1, · · · , bn} be β-LLL-reduced where n = βk. If v is

the output of β-nearest plane algorithm on input w then

‖w − v‖2 ≤ (2k − 1)‖ρ(L∗k)‖2.

Proof. Since v =
∑k

i=1 yi and ‖w′i − wi‖ ≤ ‖ρ(L∗i )‖,

‖w − v‖2 = ‖w −
k∑
i=1

yi‖2 = ‖wk −
k∑
i=1

(w′i − wi−1)‖2

= ‖
k∑
i=1

wi − w′i‖2 ≤
n∑
i=1

‖ρ(L∗i )‖2

Since {b1, · · · , bn} is β-LLL reduced, ‖ρ(L∗i )‖2 ≤ 2‖ρ(L∗i+1)‖2, and hence we

obtain ‖w − v‖2 ≤ (2k − 1)‖ρ(L∗k)‖2.

Theorem 4.2.2. Let {b1, · · · , bn} is β-LLL reduced where n = βk. If there is

a constant c such that cλ1(L
∗
i ) ≥ λβ(L∗i ) for all i = 1, · · · , k, then the output

of β-nearest plane algorithm on input w ∈ Rn is a vector v such that

‖v − w‖ < c
√
β2k/2‖u− w‖

for all u ∈ L.
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Proof. We prove this result by induction.

For k=1, v is the closest vector and so the result holds.

Let k ≥ 2 and u ∈ L be the closest vector to w. We can consider two

cases.

If u ∈ Uk−1 +yk, then ‖u−w‖2 = ‖u−w′k‖2 +‖w′k−wk‖2 and so u is also

the closest vector to w′k. Also, u − yk is the closest vector to wk−1 ∈ Uk−1.
Since

∑k−1
i=1 yi is the output of the nearest plane algorithm on wk−1, by the

induction hypothesis

‖
k−1∑
i=1

yi − wk−1‖ < c
√
β2(k−1)/2‖u− yk − wk−1‖.

Therefore,

‖v − w‖2 = ‖
k−1∑
i=1

yi + (yk − w′k) + w′k − wk‖2 = ‖
k−1∑
i=1

yi − wk−1‖2 + ‖w′k − wk‖2

< c
√
β2k−1‖u− w′k‖2 + ‖w′k − wk‖2

< c
√
β2k‖u− w‖2.

Now, Consider the case that u 6∈ Uk−1 + yk. Let u′ be a projection of w

to the plane containing u. Then u′ − w is not in the Voronoi cell in L∗k and

we have

‖u− w‖ ≥ 1

2
λ1(L

∗
k) ≥

1

2c
λβ(L∗k) ≥

1

c
√
β
ρ(L∗k).

By Theorem 4.2.1,

‖v − w‖ ≤
√

(2k − 1)‖ρ(L∗k) < c
√
β2k2‖u− w‖.

This completes the proof.

One can apply the analysis about the number of steps in LLL algorithm

to our algorithm. This implies the dominant complexity of this algorithm is

2β. Compare to the result in Theorem 4.1.2, Our algorithm provides trade-off

between reduction complexity and the output quality. Therefore, One can get

58



CHAPTER 4. NEW LATTICE BASIS REDUCTION ALGORITHM

various analytic results for lattice based cryptosystem using our algorithm

with various β.
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Algorithm 2 β-block LLL Algorithm

Input: Given basis b1, · · · , bn.
Output: β-LLL reduced basis b1, · · · , bn.
Let Li = L(b(i−1)β+1, · · · , biβ).
i← 2

while i ≤ k do
for j = i− 1 to 1 do

β-size reduce Li w.r.t. Lj
end for
if 2ρ(L∗i )

2 ≥ ρ(L∗i−1)
2 then

i = i+ 1
else

Swap Li with Li−1 and β-size reduce for changed part.
i = max{2, i− 1}

end if
end while
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Chapter 5

Conclusions

In this paper, we proposed a general analytic toolbox for white-box imple-

mentation, which can efficiently extract the secret encodings used to obfus-

cate in the implementation when its design follows CEJO framework. With

our toolbox, it is very easy to evaluate the asymptotic complexity of any

white-box implementation of SLT ciphers which follows CEJO framework,

and all previous designs belong to this model. Hence, our toolbox could be

used to measure the security of white-box implementations.

Another advantage of our toolbox is that we can remove insecure designs

at an early stage, and concentrate on more plausible approaches. We showed

that the input size of the encodings is the most important factor in the

security of a white-box implementation. In this sense, we presented a white-

box implementation that uses sparse unsplit input encodings with an input

size that is a multiple of the block length. This not only produces high level

of security, but also has reasonable storage requirements.

On the other hand, we proposed an algorithm, block LLL algorithm, for

lattice basis reduction which uses block reduction. This provides some trade-

off of reduction time and quality of the output. Our algorithm can get various

outputs of higher quality than of LLL reduction algorithm according to the

block size β as BKZ reduction algorithm. Also, our algorithm is more easy

to analyze than BKZ reduction algorithm because one can use the method
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of analysis in LLL reduction algorithm. This can gives a guideline for the

parameter setting of lattice based cryptography.
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Matthieu Rivain. White-Box Security Notions for Symmetric

Encryption Schemes. In Tanja Lange, Kristin Lauter, and Petr
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국문초록

암호학에서 암호 분석 도구의 존재는 암호 시스템 설계 상의 안전성을 측정할

수 있는 척도가 된다는 면에서 매우 중요하다. 본 논문에서는 특별히 화이트

박스 암호와 격자 기반 암호에 대한 분석 도구를 제시한다.

Chow 등에 의해 제안된 화이트 박스 암호 기술는 공격자가 암호화 알고리

즘의 구현 과정에 완전히 접근할 수 있고 그 실행 플랫폼을 완전히 제어할 수

있다고 하더라도 소프트웨어 구현의 비밀키를 보호할 수 있는 난독화 기술이

다. 화이트 박스 암호 기술은 공격자의 힘이 커지고 다양해지는 현대 사회에

실제적으로 꼭 필요한 암호 기술이지만 그 중요성에 비해 발전 속도는 그리

빠르지않다.실제로화이트박스구현이제안되면그때마다낮은공격량으로

그것을공격하는공격방법이바로제안되는일들이반복되어왔다.그이유는

보통 암호 시스템을 설계할 때 기존의 알려진 공격들에 안전하도록 설계를

하는데 화이트 박스 암호에서 제안되는 대부분의 공격 기법들은 일반적인 공

격 기법이 아닌 특정 구현에만 적용되는 방법들이기 때문에 설계하는 암호의

안전성을 예측하기 어렵기 때문이다. 본 논문에서는 Chow 스타일의 테이블

검색을이용한화이트박스암호에대한일반적인공격방법을제시한다.제안

되는 공격 기법은 화이트 박스 암호의 안전성을 예측하는 분석도구로 사용될

수 있을 것이다.

격자기반암호는현대암호학에서가장흥미있고각광받고있는암호로서

양자 컴퓨팅 환경의 발전과 더불어 그 중요성이 더욱더 커지고 있다. 대부

분의 격자를 기반으로 한 암호학적 난제들은 특정한 형태의 짧은 벡터 문제

(Shortest Vector Problem)나 가까운 벡터 문제(Closest Vector Problem)로

환원이 되는데 이 문제들의 어려움은 격자가 주어졌을 때 길이가 짧은 기저를

찾는문제를푸는어려움과관련이있다.따라서좋은격자기저축소알고리즘

은 격자 기반 암호의 분석도구로서 역할을 할 수 있다. 본 논문에서는 기존의

LLL 알고리즘을 개선한 블록 단위의 격자 기저 축소 알고리즘을 제안한다.

제안되는 알고리즘은 기저 축소 시간과 축소된 기저의 품질 간에 트레이드오

프를제공하며따라서격자기반암호의파라미터설정에가이드라인으로서의

역할을 할 수 있을 것이라고 예상할 수 있다.



주요어휘: 화이트박스 암호, SPN 구조, 격자 암호, 격자 기저 축소 알고리즘,

블록 LLL 알고리즘

학번: 2007-20276


	CHAPTER 1 Introduction
	1.1 Contributions
	1.2 Organization

	CHAPTER 2 Preliminaries
	2.1 SLT Cipher
	2.2 White-box Implementations
	2.2.1 Chow et al.'s implementation
	2.2.2 BGE Attack
	2.2.3 Michiels et al.'s Cryptanalysis for SLT cipher

	2.3 Lattice Basis Reduction
	2.3.1 Lattice
	2.3.2 LLL Algorithm


	CHAPTER 3 Analytic Tools for White-box Cryptography
	3.1 General Model for CEJO framework
	3.2 Attack Toolbox for White-Box Implementation
	3.2.1 Recovering Nonlinear Encodings
	3.2.2 A�ne Equivalence Algorithm with Multiple S-boxes

	3.3 Approaches for Resisting Our Attack Tools
	3.3.1 Limitation of White-Box Implementation
	3.3.2 Perspective of White-Box Implementation

	3.4 A Proposal for a White-Box Implementation of the AES Cipher

	CHAPTER 4 New Lattice Basis Reduction Algorithm
	4.1 Nearest Plane Algorithm
	4.2 Blockwise LLL Algorithm

	CHAPTER 5 Conclusions
	Abstract (in Korean)


<startpage>11
CHAPTER 1 Introduction 1
 1.1 Contributions 5
 1.2 Organization 8
CHAPTER 2 Preliminaries 9
 2.1 SLT Cipher 10
 2.2 White-box Implementations 11
  2.2.1 Chow et al.'s implementation 12
  2.2.2 BGE Attack 13
  2.2.3 Michiels et al.'s Cryptanalysis for SLT cipher 14
 2.3 Lattice Basis Reduction 15
  2.3.1 Lattice 15
  2.3.2 LLL Algorithm 16
CHAPTER 3 Analytic Tools for White-box Cryptography 20
 3.1 General Model for CEJO framework 21
 3.2 Attack Toolbox for White-Box Implementation 24
  3.2.1 Recovering Nonlinear Encodings 24
  3.2.2 A�ne Equivalence Algorithm with Multiple S-boxes 30
 3.3 Approaches for Resisting Our Attack Tools 38
  3.3.1 Limitation of White-Box Implementation 38
  3.3.2 Perspective of White-Box Implementation 40
 3.4 A Proposal for a White-Box Implementation of the AES Cipher 42
CHAPTER 4 New Lattice Basis Reduction Algorithm 48
 4.1 Nearest Plane Algorithm 51
 4.2 Blockwise LLL Algorithm 56
CHAPTER 5 Conclusions 61
Abstract (in Korean) 69
</body>

