

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

이학박사학위논문

Analyses of the Perfect
Distinguished Point Tradeoff and Its

Parallel Treatment
(중복제거테이블을이용한특이점절충기법과그의

병렬처리에대한분석)

2016년 2월

서울대학교대학원

수리과학부

이가원

Analyses of the Perfect
Distinguished Point Tradeoff and Its

Parallel Treatment
(중복제거테이블을이용한특이점절충기법과그의

병렬처리에대한분석)

지도교수홍진

이논문을이학박사학위논문으로제출함

2015년 10월

서울대학교대학원

수리과학부

이가원

이가원의이학박사학위논문을인준함

2015년 12월

위 원 장 (인)

부위원장 (인)

위 원 (인)

위 원 (인)

위 원 (인)

Analyses of the Perfect
Distinguished Point Tradeoff and Its

Parallel Treatment

A dissertation

submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

to the faculty of the Graduate School of
Seoul National University

by

Ga Won Lee

Dissertation Director : Professor Jin Hong

Department of Mathematical Sciences
Seoul National University

February 2016

c© 2016 Ga Won Lee

All rights reserved.

Abstract

Analyses of the Perfect Distinguished Point Tradeoff
and Its Parallel Treatment

Ga Won Lee

Department of Mathematical Sciences

The Graduate School

Seoul National University

In a recent paper, the performances of three major time memory tradeoff algo-

rithms, namely, the classical Hellman tradeoff and the non-perfect table versions

of the distinguished point(DP) and the rainbow table tradeoff methods, were an-

alyzed and compared against each other. The analysis was accurate in the sense

that the extra costs of resolving false alarms were not ignored, and the perfor-

mance comparison was fair in the sense that both the online complexity and the

pre-computation cost were taken into account and the techniques for optimizing

storage size were taken into account. Based on this paper, another recent paper

analyzed a DP variant, which treats the non-perfect DP tables in parallel, and

compared its performance with those of the previous three tradeoff algorithms.

In this thesis, we analyze the performances of three more tradeoff algorithms and

compare them with the aforementioned four algorithms. The algorithms newly

considered here will be the perfect table versions of the DP, rainbow table, and

parallel DP tradeoff methods.

The performance of an algorithm cannot be represented by a single numeric

value and algorithm preferences will depend on the available resources and vari-

ous situations faced by the tradeoff algorithm implementer. Hence, we will present

the performances of the tradeoff algorithms as curves providing the full range of

options made available by the algorithms, so as to allow for the implementers to

make their choices. However, our comparisons show that, under typical situations,

the perfect table parallel DP tradeoff algorithm is more likely to be preferable over

i

ii

the other DP algorithm variants and that the perfect rainbow table method is su-

perior to the other tradeoff algorithms.

On the other hand, yet another recent paper notes that the perfect rainbow

table method is widely implemented in practice to process its pre-computation

tables in a serial manner, rather than in parallel, as was originally proposed by

the algorithm designers. This is because, even though the parallel treatment of the

pre-computation tables would be more efficient in theory, the size of tables are too

large to be fully loaded into fast main memory in real-world applications such as

password recovery and this affects the real-world performances of the algorithms

negatively. Following the approach of the paper, we give the optimal physical

wall-clock online execution times for the practically used serial perfect rainbow

and the perfect table versions of the DP and rainbow tradeoffs that treat their

pre-computation tables in parallel. This is done with various realistic password

spaces and at various high success rate requirements, under a specific limitation

on the size of available storage. Unlike any theoretical approach to the tradeoff

algorithms, the physical online execution time includes the time taken for loading

the pre-computation tables from disk to fast memory and the time taken by table

lookups.

We find that, in contrast with the software developers’ intuition, the serial

perfect rainbow tradeoff algorithm is inferior to the two algorithms that treat their

tables in parallel, when their optimal physical online times are compared under

reasonable assumptions and settings. Our simplified conclusions are that, for the

larger of the two search spaces we dealt with, the parallel version of the perfect

rainbow table method gives the shortest wall-clock online time, and that, for the

smaller search space, when restricted to the same amount of pre-computation, the

perfect parallel DP tradeoff is faster than the other algorithms.

Key words: time memory tradeoff, distinguished point, rainbow table, perfect

table, algorithm complexity

Student Number: 2011-30898

Contents

Abstract i

1 Introduction 1

2 Preliminaries 7

2.1 Algorithm Clarification, Terminology, and Notation 7

2.1.1 Four Versions of the DP Tradeoff 8

2.1.2 Non-perfect and Perfect Rainbow Tradeoffs pR, p̄R 19

2.1.3 Perfect Rainbow Tradeoff, Used in Practice s̄R 25

2.1.4 Other Conventions and Comments 27

2.2 Storage Optimization Techniques 28

2.3 Previous Results . 29

2.3.1 Analyses of the Original DP and Parallel DP Tradeoffs . . 30

2.3.2 Analysis of the Non-perfect Rainbow Tradeoff 31

3 Perfect Table Tradeoff Algorithms 33

3.1 Analysis of the Perfect DP Tradeoff 33

3.1.1 Online Efficiency . 33

3.1.2 Storage Optimization . 46

3.1.3 Experiment Results . 50

3.2 Analysis of the Perfect Rainbow Tradeoff 56

3.2.1 Online Efficiency . 56

iii

CONTENTS

3.2.2 Storage Optimization . 60

4 Perfect Parallel DP Tradeoff 65

4.1 Online Efficiency . 65

4.2 Storage Optimization . 72

4.3 Experiment Results . 75

5 Comparisons Focused on Theoretical Complexities 85

5.1 Method of Comparison . 86

5.2 Comparison of DP Variants . 88

5.3 p̄D vs. Rainbow . 92

6 Practice-Oriented Comparison 100

6.1 Additional Costs for the p̄D and p̄R Tradeoffs 102

6.2 Analysis of the s̄R Tradeoff . 103

6.3 Expressions for the Physical Online Time 104

6.4 How to Minimize the Physical Online Time 106

6.5 Comparisons . 107

7 Conclusion 116

A Practical System Constants τF , τL, and τH 123

A.1 τF . 123

A.2 τL . 125

A.3 τH . 126

Abstract (in Korean) 129

Acknowledgement (in Korean) 131

iv

Chapter 1

Introduction

Cryptanalytic time memory tradeoff is a tool for quickly inverting a one-way

function, utilizing some pre-computed data specific to the one-way function. It

is widely used to recover passwords from known password hashes. A tradeoff

algorithm consists of two parts, the pre-computation and online phases. In the

pre-computation phase, which is performed before any inversion target, such as a

password hash, is given, a massive amount of one-way function iterations is per-

formed and a digest of the pre-computed data is stored, which is referred to as the

pre-computation tables. When an inversion target is given, the algorithm performs

further computations related to the target, in order to return the correct inverse of

the given target with a pre-fixed probability of success, utilizing the pre-computed

data, and this process is referred to as the online phase.

Time memory tradeoff was first introduced by Hellman [13] and many vari-

ations of Hellman’s original tradeoff algorithm are available today. The most

widely known and used tradeoff algorithms are the distinguished point variant [10,

11] and the rainbow table method [24]. We will refer to these algorithms as the DP

tradeoff and the rainbow tradeoff, respectively. Both of these algorithms have two

subversions that treat the non-perfect tables and perfect tables. Each of them can

also be further split into two subversions that process their (non-perfect or perfect)

tables in serial and in parallel. Parallel processing of DP tables was mentioned

1

CHAPTER 1. INTRODUCTION

in [10, 11, 26] and it is widely known that processing small numbers of rainbow

tables in parallel can reduce the total combined processor time [24]. Analysis of

the DP tradeoff which processes non-perfect DP tables in parallel was presented

in the previous work [16], which concluded that parallel processing of the non-

perfect DP tables is better than its serial processing, but that both fall behind the

non-perfect rainbow tradeoff.

An ultimate common goal for analyses of tradeoff algorithms is to compare

the algorithm performances against each other so as to determine which tradeoff

is superior to the others. In doing this, choosing a reasonable and fair method of

comparison is very important. We will take two different approaches in comparing

the tradeoff algorithms, and brief explanations of these are given below.

The first method of tradeoff comparison that we take was recently suggested

by [18]. Existing analyses [6, 8, 12, 13] show that most tradeoff algorithms satisfy

a tradeoff curve of the form

T M2 ≈ N2,

where T M2

N2 is some numeric value, referred to as the time memory tradeoff coeffi-

cient, that is neither very large nor close to zero. Here, T is the online execution

time, M is the storage size required to store the pre-computation tables, and N is

the size of the space that the one-way function acts on. The work [18] calculated

the accurate formulas for the tradeoff coefficients of the classical Hellman, non-

perfect (serial) DP, and non-perfect (parallel) rainbow tradeoffs and found that all

of them may be expressed as functions of two variables, the success rate and a

certain algorithm parameter. The online behavior of each tradeoff algorithm can

be presented as the tradeoff curve, represented by (T , M)-pair options, and the

options are made by the time memory tradeoff coefficient which can be computed

from a fixed success rate requirement and algorithm parameters. In other words,

one can make a trade-off between the online execution time T and the required

online memory M from the time memory tradeoff coefficient, determined by the

success rate and algorithm parameter. Thus, the tradeoff coefficient T M2

N2 can be

2

CHAPTER 1. INTRODUCTION

accepted as a measure of how efficient a tradeoff algorithm is, with a smaller co-

efficient indicating a more efficient algorithm.

However, for a fixed success rate, algorithm parameters that lead to a smaller

tradeoff coefficient usually calls for a larger pre-computation effort. Hence, one

must work with further tradeoffs between the online efficiency and pre-computation

cost, at any fixed success requirement. Thus, it is hard to clarify what it means to

select the parameters achieving the optimal performance of a tradeoff algorithm.

The work [18] let the algorithm implementers make the final judgment in

choosing a tradeoff algorithm and the appropriate balance between pre-computation

cost and online efficiency based on their requirements, such as success rate, online

efficiency, and available pre-computation and online resources. At a fixed success

rate, the secondary tradeoffs between the tradeoff coefficient and pre-computation

cost can be presented as a curve for each algorithm. Thus, at a common success

rate, algorithm comparison can be made by plotting those curves on a plane, after

certain precautions are made to account for differences in the number of bits re-

quired to record each table entry by the algorithms. Then, the tradeoff implementer

can choose an algorithm together with the online efficiency and pre-computation

cost pair, provided by that algorithm, based on his or her circumstances and re-

quirements.

Analyses presented in [16, 18, 21] did not deal with the perfect serial DP, per-

fect parallel DP, and perfect parallel rainbow tradeoffs. Here, we compute the time

memory tradeoff coefficients together with other necessary information to plot the

graphs for these three tradeoffs. Our simplified conclusion is that at most success

rates, the perfect parallel DP tradeoff outperforms the other three DP tradeoffs,

namely, the non-perfect serial DP, non-perfect parallel DP, and perfect serial DP

tradeoffs, in typical situations. Similarly, when the perfect parallel DP tradeoff

is compared with the non-perfect and perfect parallel rainbow tradeoffs, we can

essentially conclude that, in typical cases, the perfect parallel rainbow tradeoff is

likely to be preferable over the other two tradeoffs. However, as mentioned above,

3

CHAPTER 1. INTRODUCTION

the favored tradeoff algorithm may be different for each implementer’s situation.

Let us next discuss our second approach to algorithm performance compar-

ison, the one that is based on the physical wall-clock online execution times of

the tradeoff algorithms. The previous analyses for the parallel versions of trade-

off algorithms [16, 18] had ignored the costs of lookups to the pre-computation

tables, under assumption that all of the pre-computation tables reside in fast main

memory. However, to find the pre-image of a password hash created from a rea-

sonably long real-world password, the search space size N is required to be so

large that loading all the pre-computation tables into fast main memory and treat-

ing them in parallel is typically impossible. For this reason, as was noted by the

recent work [21], even though the parallel processing of rainbow tables is widely

considered to be more efficient than its serial processing in theory [24], real-world

implementations of the rainbow tradeoff [1,3] treat the pre-computation tables se-

rially.

In our practical comparison of the parallel versions of the perfect DP and per-

fect rainbow tradeoffs with the serial version of the perfect rainbow tradeoff, we

assume that all tradeoffs execute their online phases with the pre-computation ta-

bles initially located on the slow long-term storage. Also, the effort of loading

table entries into fast memory taken by the serial perfect rainbow tradeoff and

the time taken by the parallel perfect DP and rainbow tradeoffs in accessing the

tables are no longer ignored. Taking these factors into account, we present the

explicit physical online execution times for the above mentioned three tradeoff

algorithms, combining constants concerning the speeds of the one-way function

computations, loading of tables, and table lookups that are set to realistic figures

through our test measurements.

We could conclude from the formulas that, for the two parallel tradeoffs under

consideration at a fixed success rate, each storage size M determines a minimum

physical online time and that this minimum time becomes smaller as the storage

size M is increased. On the other hand, for the serial perfect rainbow tradeoff, there

4

CHAPTER 1. INTRODUCTION

exists an M value that provides the minimum physical online time, so that, once

the available storage size reaches this M value, the physical online time cannot

be improved further. We will refer to the shortest physical online time for each

tradeoff algorithm as the optimal physical online time.

When realistic search spaces and a 4 TB hard disk drive for pre-computation

table storage are assumed, at high success rates, such as 99.9%, 99%, and 90%, the

optimal online time of the serial perfect rainbow tradeoff is much larger than those

of the two parallel tradeoffs under consideration. Comparing the perfect parallel

DP and the perfect parallel rainbow tradeoffs against each other, we could see that,

for the larger of the two search spaces we dealt with, the perfect rainbow tradeoff

has a smaller optimal physical online time and even achieves this with a lower

pre-computation cost. However, when a smaller, but still realistic, search space is

assumed, the perfect parallel DP tradeoff requires shorter time in performing the

online phase than the perfect rainbow tradeoff, under the same pre-computation

investment.

The rest of this thesis is organized as follows. In the next chapter, we fix the

terminology, clarify the exact versions of the algorithms and the storage optimiza-

tion techniques we will be dealing with, and review existing analyses of the non-

perfect DP and non-perfect rainbow tradeoffs. In Chapter 3 and Chapter 4, the

execution behaviors of the perfect serial DP, perfect parallel rainbow, and perfect

parallel DP tradeoffs are analyzed. The analyses include the computations of the

expected online time complexities that do not ignore the effects of false alarms

and the time memory tradeoff coefficients. Storage optimization techniques are

also discussed for each tradeoff algorithm and the correctness of our theoretical

developments is also verified through experiments. The analysis for the perfect

parallel rainbow tradeoff is totally based on previous results and contains no new

ideas. The results of Chapter 3 were previously published through [22]. In Chap-

ter 5, we review the method of tradeoff comparison that was suggested in [18] and

compare the four DP variants against each other. After this, the most powerful

5

CHAPTER 1. INTRODUCTION

DP tradeoff, the perfect parallel DP tradeoff, is compared against the non-perfect

parallel and perfect parallel rainbow tradeoffs. Chapter 6 is devoted to computing

the optimal physical online times for the parallel perfect DP, parallel perfect rain-

bow, and the serial perfect rainbow tradeoffs. To do this, we compute the expected

number of table lookups for the perfect parallel DP and perfect rainbow tradeoffs,

review existing analysis of the serial perfect rainbow tradeoff, and then express

and find the minimum of the physical online time for each tradeoff algorithm.

Combining realistic constants, the optimal physical online times for the tradeoffs

are computed and compared against each other, at various situations. Finally, all

the results are summarized in Chapter 7. Appendix contains descriptions and re-

sults of our measurements done to decide the realistic constants that were used in

our practical comparisons.

6

Chapter 2

Preliminaries

2.1 Algorithm Clarification, Terminology, and No-

tation

This section aims to make this paper self-contained, but the reader may still find it

helpful to refer to [18] for more detail. The work [18] also clarifies many obscure

technical details that are not discussed elsewhere in the related literature, which

should be of interest to the mathematically oriented cryptographers.

Throughout this paper, the function F : N →N will always act on a search

space N of size N. In practical applications, the function F is the specific one-

way function to be inverted, which has a co-domain that is much larger than the

domain. However, any theoretical analysis of the tradeoff algorithms will treated

it as a random function with matching domain and co-domain, and we will do the

same throughout this work. The symbol p will be used in this thesis to denote the

unknown answer that is to be recovered by a tradeoff algorithm, and the inversion

target will be denoted by h = F(p). The reader could think of these two as the

password to be recovered and the password hash given as the inversion target. As

is customary with cryptology papers, the symbol logn will denote log2 n.

7

CHAPTER 2. PRELIMINARIES

2.1.1 Four Versions of the DP Tradeoff

To setup any variants of the DP tradeoff, one first fixes positive integer parame-

ters m, t, and `. The integers must be chosen to satisfy the matrix stopping rule

mt2 ≈N and the relation `≈ t. Theoretical analyses of the DP tradeoff often focus

on the choice of m≈ t ≈ `≈ N
1
3 , because this choice minimizes the overall com-

plexity, defined as the sum of the online time and storage complexities. This set

of parameters, with a lot of flexibility allowed for the approximate conditions, is

being assumed when we refer to the DP tradeoff executed in a typical environment.

Once the parameters are fixed, one chooses a certain characteristic that is sat-

isfied by a random element of N with probability 1
t . This distinguishing property

must be extremely easy to check for elements of N . Any element of N satis-

fying the distinguishing property is called a distinguished point (DP). A typical

approach is to set t to a power of 2 and to define all points of N with log t leading

zeros as DPs. Next, bijections rdi : N →N (i = 1, . . . , `) are fixed to define the

i-th colored one-way functions Fi = rdi ◦F . The reduction functions rdi are cho-

sen so that they require negligible resources to compute. A typical approach is to

have each reduction function XOR a fixed constant to its input, with the constants

chosen to be distinct for each i. Finally, another positive integer →m0, that is corre-

lated to m (and t) in a manner to be explained below for each tradeoff algorithm,

is fixed.

Original DP tradeoff D We shall refer to the DP variant of the Hellman’s orig-

inal algorithm [10, 11] as the original DP tradeoff D.

The pre-computation and online phase of the original DP tradeoff are given

by Algorithm 1 and Algorithm 2, respectively. Further details will be explained

below, together with the terminology and notation to be used in this work.

The integer →m0 of Algorithm 1 must be set so that each table DTi is expected

to contain m entries. According to [18], →m0 ≈m is appropriate when a sufficiently

large chain length upper bound is used.

8

CHAPTER 2. PRELIMINARIES

Algorithm 1: Pre-computation phase of D and pD

for i = 1, . . . , ` do
DTi← /0; // DP table

for j = 1, . . . , →m0 do
Choose spi

j ∈N ; // starting point

tp← Fi(sp
i
j);

while tp is not a DP do // generate pre-computation chain
tp← Fi(tp);

end
epi

j← tp; // ending point

Append (spi
j,ep

i
j) to DTi;

end
Sort DTi according to the ep’s;
Record result to disk as DTi;

end

Algorithm 2: Online phase of D
for i = 1, . . . , ` do

op← rdi(h) = Fi(p);
while op is not a DP do // generate online chain

op← Fi(op);
end
Search for op among the ep’s of DTi;
if Matches are found then

for each pair of (spi
j,ep

i
j)’s in DTi with a common epi

j==op do
tpnew← Fi(sp

i
j);

while [tpnew != rdi(h)] and [tpnew is not a DP] do
// regenerate pre-comp chain

tpold← tpnew;
tpnew← Fi(tpold);

end
if F(tpold) == h then // answer found

return tpold as answer and terminate;
end

end
end

end

9

CHAPTER 2. PRELIMINARIES

The table DTi = {(spi
j,ep

i
j)}

→m0
j=1 produced by Algorithm 1 is called the i-th

non-perfect DP table. For a non-perfect DP table, any collection of starting point

and ending point pairs could share common ending point. Namely, a non-perfect

DP table is not necessarily free of duplicates among its ending points.

A series of elements from N , obtained through iterated applications of F , or

some Fi, that ends at its first occurrence of a DP is a DP chain. Since a DP oc-

curs with probability 1
t , the expected length of a randomly generated DP chain

is t. Each series of points spanning from a spi
j to the corresponding epi

j is a pre-

computation DP chain, and the first part of Algorithm 2 generates an online DP

chain. We take the convention that an online chain starts from the unknown an-

swer p, rather than from the inversion target h or rdi(h).

The collection of all pre-computation DP chains corresponding to a pre-computation

DP table is a DP matrix. The use of the terms table and matrix in this thesis are

not interchangeable, and the reader should exercise care to distinguishing the two.

The matrices corresponding to DTi will be referred to as the non-perfect DP matrix

DMi.

As the online chain corresponding to a pre-computation table is generated, the

chain will either reach a DP that does not reside in DTi or merge into (greater than

or equal to) one of the pre-computation chains of DMi. Because the function Fi that

is being iterated is not injective, the discovery of op == epi
j does not guarantee

that the answer p to the inversion problem will be recovered through the regener-

ation of the corresponding pre-computation chain that starts from spi
j, and these

instances are called false alarms. Any ending point match op == epi
j is an alarm,

and the bottom half of Algorithm 2 works to resolve this alarm.

To summarize, the non-perfect DP tradeoff which treat its pre-computation

tables in a serial manner will be referred to as the original DP tradeoff D, and

the non-perfect DP tradeoff will be also used to represent the original DP tradeoff.

10

CHAPTER 2. PRELIMINARIES

Parallel DP tradeoff pD We shall refer to the original DP tradeoff that processes

non-perfect DP tables in parallel as the parallel DP tradeoff pD, analyzed in the

previous work [16], and we will use the formulas of [16] when comparing per-

formances of tradeoff algorithms. The specific version of the pD tradeoff, treated

in [16] is described below.

The pre-computation and online phases of the pD tradeoff are given by Algo-

rithm 1 and Algorithm 3, respectively. As for the original DP tradeoff, ~m0 ≈ m

when a sufficiently large chain length upper bound is used , because the parallel

DP tradeoff shares the pre-computation phase with the original DP tradeoff. Same

terminology and notation related to the pre-computation phase will be used, such

as a non-perfect DP table DT, a non-perfect DP matrix DM, and pre-computation

DP chain. Also, since online phase is slightly different with the original DP trade-

off when treating pre-computation tables, the terminology, such as online chain,

alarm, and false alarm, is maintained. Further details and certain tweaks to the

algorithms that should be assumed will be explained below.

The work [14, 26] suggested that all the pre-computation tables be processed

in parallel, rather than sequentially, during the online phase. Parallel processing

causes the shorter online chains to be treated before the longer ones, and since the

online phase is likely to terminate with the correct answer before any of the pre-

computation tables are fully processed, this leads to a larger portion of the online

computation being spent on processing the shorter chains. Since shorter chains

are less likely to induce false alarms, this has a positive effect of reducing the cost

of dealing with alarms. Predicting its positive effect had shown in the previous

work [16].

Let us explain details of Algorithm 3. The number of DP tables is roughly of

N
1
3 order, which is likely to be larger than the number of available processors, im-

plying that each processor will be assigned to multiple tables. In such a situation,

we require each processor to work with its share of assigned tables in a round-

robin fashion. A processor should process a single iteration for a table and then

11

CHAPTER 2. PRELIMINARIES

Algorithm 3: Online phase of pD
for i = 1, . . . , ` do // Initialize every online chain

opi← rdi(h) = Fi(p);
end
repeat

for i = 1, . . . , ` do
if opi is a DP then

Search for opi among the ep’s of D̄Ti;
if Matches are found then

for each pair of (spi
j,ep

i
j)’s in DTi with a common epi

j==opi
do

tpnew← Fi(sp
i
j);

while [tpnew != rdi(h)] and [tpnew is not a DP] do
// regenerate pre-comp chain

tpold← tpnew;
tpnew← Fi(tpold);

end
if F(tpold) == h then // answer found

return tpold as answer and terminate;
end

end
end

end
else

opi← Fi(opi);
end

end
until All opi’s meet DPs;

12

CHAPTER 2. PRELIMINARIES

move onto the next table it was assigned, rather than take the approach of fully

processing one table and then fully processing its next assigned table.

We have partially clarified how DP should be parallelized, but there still is

an issue concerning the resolving of false alarms. Consider, for the moment, a

fully parallel system, where all the DP tables are distributed to different proces-

sors. When a processor encounters an alarm, it will regenerate a pre-computation

chain, during which time period other processors will continue with their respec-

tive online chain iterations. By the time the alarm is resolved, many of the other

processors would have reached the end of the online chain creation. This shows

that the approach trying to have more time spent on short online chains fails in the

fully parallel environment.

Fortunately, each processor is likely to be assigned multiple tables in practice.

We assume that each processor is made to resolve any alarm that it encounters,

before processing any more online chain iterations. Then, since each processor

will be struggling to resolve its share of alarms, further iterations of the online

chains are effectively postponed until many of the alarms are resolved. If a set of

tables allocated to a certain processor rarely produces alarms, online chain iter-

ations for this set of tables will proceed faster than those of other sets of tables,

but the overall behavior will be as if the online chain iterations were delayed until

current alarms are resolved.

During analysis of algorithm treating pre-computation tables in parallel, when

counting the total function iterations, we shall take the simplified view that the

i-th online chain iterations for all tables are executed simultaneously and that the

(i+ 1)-th simultaneous iterations are executed only after all alarms encountered

at the i-th iterations are resolved. This view correctly reflects the parallelization

details discussed so far.

We also assume that Algorithm 3 is slightly modified so as to incorporate

the online chain record technique [14, 26]. While generating an online chain, one

keeps track of not just the current foremost point tpnew of the chain, but keeps

13

CHAPTER 2. PRELIMINARIES

a record of all the generated intermediate points. When resolving an alarm, one

compares the current end of the regenerated pre-computation chain against the

complete online chain, rather than just the reduced inversion target point rdi(h),

so that one may stop the pre-computation chain regeneration at the exact position

of chain merge, rather than at the ending point DP. Thus, online chain record will

surely increase the efficiency of the tradeoff algorithm.

Perfect DP tradeoff D̄ We shall refer to the DP tradeoff which treats perfect DP

tables in a serial manner as the perfect DP tradeoff D̄.

The pre-computation and online phases of the perfect DP tradeoff, in their

rudimentary forms, are given by Algorithm 4 and Algorithm 5, respectively. Fur-

ther details and certain tweaks to the algorithms that should be assumed will be

explained below, together with the terminology and notation to be used in this

paper.

Algorithm 4: Pre-computation phase of D̄ and p̄D

for i = 1, . . . , ` do
TDTi← /0; // temporary DP table

for j = 1, . . . , →m0 do
Choose spi

j ∈N ; // starting point

tp← Fi(sp
i
j); len j← 1;

while tp is not a DP do // generate pre-computation chain

tp← Fi(tp); len j← len j +1;
end
epi

j← tp; // ending point

Append (spi
j,ep

i
j, len j) to TDTi;

end
Sort TDTi according to the ep’s;
for each group of (sp,ep, len)’s in TDTi with a common ep do
// remove ep collisions

Discard all triples except for the one with the largest len;
end
Remove all len information from TDTi and record result to disk as D̄Ti;

end

14

CHAPTER 2. PRELIMINARIES

Algorithm 5: Online phase of D̄
for i = 1, . . . , ` do

op← rdi(h) = Fi(p);
while op is not a DP do // generate online chain

op← Fi(op);
end
Search for op among the ep’s of D̄Ti;
if op == epi

j then
tpnew← Fi(sp

i
j);

while [tpnew != rdi(h)] and [tpnew is not a DP] do
// regenerate pre-comp chain

tpold← tpnew;
tpnew← Fi(tpold);

end
if F(tpold) == h then // answer found

return tpold as answer and terminate;
end

end
end

For the perfect DP tradeoff, the integer →m0 of Algorithm 4 must be set so that

each table D̄Ti is expected to contain m entries having no common ending points.

The appropriate value for →m0 is given later in the next chapter by Lemma 3.2,

as a function of m and t. An alternative method is to modify the algorithm to

incrementally add more starting points until the number of distinct ending points

reaches m, but we will not treat this approach.

The table D̄Ti produced by Algorithm 4 is called the i-th perfect DP table and

the larger auxiliary table DTi = {(spi
j,ep

i
j)}

→m0
j=1 is referred to as the non-perfect

DP table, corresponding to the perfect table D̄Ti. Note that, even though any col-

lection of starting point and ending point pairs that contains no duplicates among

its ending points could be called a perfect table and any similar collection that is

not necessarily free of duplicates could be called a non-perfect table, our refer-

ence to perfect and non-perfect DP tables in this paper will almost always be to

the tables D̄Ti and DTi that result from an execution of Algorithm 4. We will not be

15

CHAPTER 2. PRELIMINARIES

discussing properties of perfect DP tables created in any other manner.

Analogous to the previous two DP tradeoffs, the matrix corresponding to D̄Ti

be referred to as the perfect DP matrix D̄Mi. Likewise, the collection of approxi-

mately ~m0 chains corresponding to DTi is the non-perfect DP matrix DMi, corre-

sponding to the perfect DP matrix D̄Mi.

It is helpful to visualize a DP matrix as a directed graph with arrows repre-

senting the actions of the one-way function. With this view, one may state that a

non-perfect DP matrix contains many chains that merge into each other and that

a perfect DP matrix is free of chain merges. The chains are usually visualized

as having been laid out in the horizontal direction with arrows point from left to

right, so that a perfect DP matrix contains m rows of various lengths that do not

merge into each other with the starting points on the left and the ending points on

the right.

The collision removal process of Algorithm 4 discards all chains except for the

longest one from each group of merging chains found in a non-perfect DP matrix.

Retaining the longest chain [10, 11] is the standard approach, as this is expected

to be beneficial to the success rate of the online phase. A merge of chains of equal

length is a rare event that need not be considered during our analysis.

It may safely be said that the original and perfect DP tradeoff algorithms share

the common online phase. When alarm occurs, perfect table guarantees that a

single pre-computation chain regeneration is necessary to verify the alarm, as can

be seen in Algorithm 5, because D̄T contains the only one corresponding entry that

has same ending point with the online DP chain. From this point of view, one can

expect that use of perfect tables bring positive effect on online performance of the

tradeoff algorithm.

In addition, as for the parallel DP tradeoff, the online chain recording tech-

nique to reduce the effort of resolving alarms is utilized when analyzing the online

complexity of the perfect DP tradeoff, which will be presented in Section 3.1

16

CHAPTER 2. PRELIMINARIES

Perfect Parallel DP tradeoff p̄D The parallel version of the perfect DP tradeoff

will be referred to as the perfect parallel DP tradeoff p̄D. The pre-computation

and online phases of the perfect parallel tradeoff are given by Algorithm 4 and

Algorithm 6, respectively. As previous two DP tradeoffs, the online chain record-

ing technique is applied to the online phase for reducing a number of chain walk

steps when resolving alarms.

Algorithm 6: Online phase of p̄D
for i = 1, . . . , ` do // Initialize every online chain

opi← rdi(h) = Fi(p);
end
repeat

for i = 1, . . . , ` do
if opi is a DP then

Search for opi among the ep’s of D̄Ti;
if opi == ep

i
j then

tpnew← Fi(sp
i
j);

while [tpnew != rdi(h)] and [tpnew is not a DP] do
// regenerate pre-comp chain

tpold← tpnew;
tpnew← Fi(tpold);

end
if F(tpold) == h then // answer found

return tpold as answer and terminate;
end

end
end
else

opi← Fi(opi);
end

end
until All opi’s meet DPs;

As with the perfect DP tradeoff, the parallel DP tradeoff and the p̄D tradeoff

share the identical online phase except a number of the pre-computation regener-

ation to resolve a single alarm.

17

CHAPTER 2. PRELIMINARIES

Note that a recent talk [26] announced the p̄D tradeoff as the ”New World

Champion” of tradeoff algorithms, based on experimental results. Thus, it is mean-

ingful that the performance of the p̄D tradeoff is analyzed and compared against

the well-known most efficient tradeoff algorithm, the rainbow table method, to

verify the claim.

The terminology and notation of the perfect DP tradeoff, such as the perfect

DP table D̄T, its corresponding non-pefect DP table DT, perfect DP matrix DM, and

its corresponding non-perfect DP matrix D̄M will be used identically, because the

p̄D tradeoff treats perfect DP tables produced by the identical pre-computation

phase with the perfect DP tradeoff.

Any implementation of the DP tradeoff will introduce an upper bound t̂ on the

lengths of pre-computation and online chains to deal with chains falling into

loops [10, 11]. That is, the while-loop of Algorithm 1 and Algorithm 4, the first

while-loop of Algorithm 2 and Algorithm 5, and repeat-loop of Algorithm 3 and

Algorithm 6 need to be augmented with another condition to prevent occurrences

of infinite loops. A lower bound ť can also be used [25, 27] to discard short pre-

computation chains that contribute little to the search space coverage. In this pa-

per, no lower bound and a sufficiently large upper bound, such as t̂ = 15t, on the

chain lengths are assumed. This simplifies our theoretical developments by en-

suring that the possibility of an online chain not meeting the chain length bound

conditions will be negligible, and also by allowing us to ignore the effects of dis-

carding long or short pre-computation chains.

In the rest of this paper, we will mostly be focusing on a single DP matrix or ta-

ble. This is only natural, as no argument can be specific to a reduction function rdi.

Hence, the table index i will be dropped from all notation and the simplified sym-

bols D̄T, DT, D̄M, and DM will be used. Likewise, the iteration function Fi will be

written simply as F . The k-times iterated composition F ◦ · · ·◦F of function F (or

Fi) will be written as Fk.

18

CHAPTER 2. PRELIMINARIES

We will use the notation Xmsc =
mt2

N to represent the matrix stopping rule for

each DP tradeoff algorithm, referred to as the matrix stopping constant. It should

be careful that when dealing with the perfect table variant equivalent of D̄msc =

mt2

N or p̄Dmsc =
mt2

N , the corresponding non-perfect variant equivalent of Dmsc =
~m0t2

N will be used, because a perfect matrix contains the information about the

associated non-perfect matrix having ~m0 entries before chain removal process of

Algorithm 4.

The coverage rates Dcr and D̄cr of a non-perfect DP matrix DM and a perfect DP

matrix D̄M, are defined to be the expected number of distinct nodes |DM| and |D̄M| in
the non-perfect DP matrix and the perfect DP matrix, divided by mt, respectively.

More precisely, only the points that are used as inputs to the one-way function

are counted, so that the ending point DPs are excluded in the count |DM| and |D̄M|.
Therefore, Dcr

mt
N and D̄cr

mt
N are the success probability associated with a single

non-perfect table and a single perfect DP table, respectively.

Note that Hellman’s original matrix stopping rule was mt2

N = 1 and that the

matrix stopping rule used in this work is equivalent to requiring D̄msc ≈ 1. This

condition is a rough bound on how large a pre-computation matrix can become

before additional pre-computation quickly becomes inefficient in covering more

answers and can be understood as a rule for when to stop the creation of a pre-

computation matrix.

2.1.2 Non-perfect and Perfect Rainbow Tradeoffs pR, p̄R

In the following two sections, the exact versions of the rainbow tradeoff are treated

in this work will be made more explicit. For any rainbow table variant, one starts

by fixing positive integers m and t, satisfying the matrix stopping rule mt ≈N, and

a small positive integer `. The parameters m, t, and ` correspond to the expected

number of entries to be stored in each rainbow table, the length of a rainbow

pre-computation chain, and the number of tables, respectively. One should note

that the matrix stopping rules for the rainbow and DP tradeoffs are different from

19

CHAPTER 2. PRELIMINARIES

each other. A typical environment for the rainbow tradeoff would call for param-

eters m ≈ N
2
3 , t ≈ N

1
3 , and a small `, such as 2, or 3, where we allow for a lot

of flexibility with the approximations. The rainbow tradeoff requires t reduction

functions for each table, so that they are written as rdi,k : N →N (i = 1, . . . , `,

k = 0, . . . , t − 1). The reduction function rdi,k defines the k-th colored one-way

function Fi,k = rdi,k ◦F for the i-th rainbow table.

Algorithm 7: Pre-computation phase of pR
for i = 1, . . . , ` do

RTi← /0;
for j = 1, . . . ,m do

Choose spi
j ∈N ; // starting point

tp← spi
j;

for k = 0, . . . , t−1 do // generate pre-computation chain

tp← Fi,k(tp);
end
epi

j← tp; // ending point

Append (spi
j,ep

i
j) to RTi;

end
Sort RTi according to the ep’s ;
Record RTi to disk; // non-perfect rainbow table

end

The rudimentary forms of the pre-computation and online phases of the non-

perfect rainbow tradeoff and those of the perfect rainbow tradeoff [24] are given

by Algorithm 7, Algorithm 8, Algorithm 9, and Algorithm 10, respectively.

In the case of the perfect rainbow tradeoff, another positive integer m0, that

needs to be chosen in a manner to be described following, is fixed. The integer m0

of Algorithm 9 must be set so that each table R̄Ti is expected to contain m entries.

The appropriate value for m0 is revealed later by Lemma 3.8. As with the DP

tradeoff, one could modify the algorithm to incrementally add more starting points

until the number of distinct ending points reaches m, but we will not consider such

an approach.

20

CHAPTER 2. PRELIMINARIES

Algorithm 8: Online phase of pR
for s = t−1, . . . ,0 do

for i = 1, . . . , ` do
opi← rdi,s(h) = Fi,s(p);
for k = s+1, . . . , t−1 do

// generate length-(t− s) online chain

opi← Fi,k(opi);
end
Search for opi among the ep’s of R̄Ti;
if Matches are found then

for each pair of (spi
j,ep

i
j)’s in RTi with a common epi

j==op do
tp← spi

j;
for k = 0, . . . ,s−1 do // regenerate pre-comp chain

tp← Fi,k(tp);
end
if F(tp) == h then // answer found

return tp as answer and terminate;
end

end
end

end
end

21

CHAPTER 2. PRELIMINARIES

Algorithm 9: Pre-computation phase of p̄R and s̄R

for i = 1, . . . , ` do
RTi← /0;
for j = 1, . . . ,m0 do

Choose spi
j ∈N ; // starting point

tp← spi
j;

for k = 0, . . . , t−1 do // generate pre-computation chain

tp← Fi,k(tp);
end
epi

j← tp; // ending point

Append (spi
j,ep

i
j) to RTi;

end
Sort RTi according to the ep’s; // non-perfect rainbow table

R̄Ti← /0;
for each group of (sp,ep)’s in RTi with a common ep do //

// remove ep collisions

Append any one pair to R̄Ti;
end
Record R̄Ti to disk; // perfect rainbow table

end

22

CHAPTER 2. PRELIMINARIES

Algorithm 10: Online phase of p̄R
for s = t−1, . . . ,0 do

for i = 1, . . . , ` do
opi← rdi,s(h) = Fi,s(p);
for k = s+1, . . . , t−1 do

// generate length-(t− s) online chain

opi← Fi,k(opi);
end
Search for opi among the ep’s of R̄Ti;
if opi == ep

i
j then

tp← spi
j;

for k = 0, . . . ,s−1 do // regenerate pre-comp chain

tp← Fi,k(tp);
end
if F(tp) == h then // answer found

return tp as answer and terminate;
end

end
end

end

23

CHAPTER 2. PRELIMINARIES

The tables RTi produced by Algorithm 7 is called the i-th non-perfect rainbow

table. The tables R̄Ti and RTi produced by Algorithm 9 are called the i-th per-

fect rainbow table and non-perfect rainbow table, corresponding to the perfect

rainbow table R̄T, respectively. As with the DP tradeoff, although the usual defi-

nitions of perfect and non-perfect tables cover more general tables, we will deal

exclusively with rainbow tables produced by Algorithm 9 in this paper.

Each series of t + 1 elements spanning from a spi
j to the corresponding epi

j

is a pre-computation rainbow chain, and the first part of Algorithm 8 and Algo-

rithm 10 generates a length-(t − s) online rainbow chain. Note that, as with the

DP tradeoff, we are following the convention that an online chain starts from the

unknown answer p, rather than from h or rdi,s(h). An online rainbow chain of

length (t− s) for the i-th rainbow table must start with an application of Fi,s and

end with the application of Fi,t−1.

The collection of all pre-computation chains corresponding to RTi, produced

by Algorithm 7, is the non-perfect rainbow matrix RMi. The collection of all pre-

computation chains corresponding to R̄Ti, produced by Algorithm 9, is the perfect

rainbow matrix R̄Mi. This is expected to contain m chains, each of length t, with

none of these merging into each other. Likewise, the collection of m0 chains corre-

sponding to RTi, produced by Algorithm 9, is the non-perfect rainbow matrix RMi

corresponding to the perfect rainbow matrix R̄Mi. As with the DP tradeoff, the

reader should be careful to distinguish a rainbow table from a rainbow matrix in

reading this paper.

Unlike the DP tradeoff case, pre-computation chains of the rainbow tradeoff

are identical in their lengths, and the method of choosing which chain to retain

during the ending point collision removal process is irrelevant to our analysis and

algorithm performance. Thus, the collision removal [24] process of Algorithm 9

does not specify for any specific method to be used in selecting the chain to be

retained in the perfect matrix.

Those not familiar with the DP and rainbow tradeoffs should note that there

24

CHAPTER 2. PRELIMINARIES

are big differences between their online phases. First of all, each iteration of the

outermost loop appearing in the rainbow tradeoff online phase creates a new on-

line chain for each table, so that t online chains could be created for each table in

the worst case. This is in contrast with the DP online phase which creates just one

online chain for each pre-computation table. The second significant difference is

in the order of table treatment. The DP online phase firstly choose method to treat

the pre-computation tables, between serial or parallel manner, but the rainbow

online phase treats the small number of tables in parallel [24]. During our theo-

retical analysis, we make the further simplification that all ` tables are processed

in parallel, during each iteration of the outermost loop. The final large difference

concerns the length of the regenerated pre-computation chain. As with the DP

tradeoff, chain merges lead to false alarms during the online phase of the rain-

bow tradeoff. To resolve an alarm, the DP tradeoff treated in this paper, which

uses the online chain record technique, regenerates the pre-computation chain up

to the point of chain merge. On the other hand, the rainbow tradeoff regenerates

the pre-computation chain to a a length that is pre-determined by the length of the

online chain.

The notation pRmsc =
mt
N will be used for the non-perfect rainbow tradeoff and

this will be refer to as matrix stopping constant. The notation p̄Rmsc =
mt
N will

be used for the perfect rainbow tradeoff and in this case, the non-perfect rainbow

tradeoff analog of pRmsc =
m0t
N will also be used.

2.1.3 Perfect Rainbow Tradeoff, Used in Practice s̄R

Let us now describe another version of the perfect rainbow tradeoff algorithm that

would seem the most reasonable way to implement the rainbow tradeoff idea. The

algorithm will be referred to as the s̄R (serial rainbow) tradeoff in this book.

Each perfect rainbow matrix consists of m non-merging pre-computation chains

of length t. A total of ` pre-computation tables are prepared during the pre-computation

phase, as was Algorithm 9. As in the parallel version of the perfect rainbow trade-

25

CHAPTER 2. PRELIMINARIES

off p̄R, a notation s̄Rmsc =
mt
N will also be used to refer the matrix stopping con-

stant of the s̄R tradeoff, assumed to be not too close to either 0 or 2 in the sense as

explanation behind Lemma 3.8.

Algorithm 11: Online phase of s̄R
for i = 1, . . . , ` do

for s = t−1, . . . ,0 do // generate all online chains at once

opt−s← rdi,s(h) = Fi,s(p);
for k = s+1, . . . , t−1 do // length-(t− s) online chain

opt−s← Fi,k(opt−s);
end

end
for j = 1, . . . ,m do

for s = 1 . . . , t do
if ops == ep

i
j then

tp← spi
j;

for k = 0, . . . , t− s−1 do
// regenerate pre-comp chain

tp← Fi,k(tp);
end
if F(tp) == h then // answer found

return tp as answer and terminate;
end

end
end

end
end

Details of the online phase algorithm for the s̄R tradeoff are given by Algo-

rithm 11. In short, the multiple pre-computation tables are processed serially, one

after another, and all t online chains for any one pre-computation table are gener-

ated at once before any table searches are performed.

In practice, each pre-computation table is divided into sub-tables that can be

fully loaded into fast system memory and the online chains are checked for col-

lisions against these sub-tables rather than against one pre-computation chain at

a time. This is the algorithm referred to as PrRb (practical rainbow) and ana-

26

CHAPTER 2. PRELIMINARIES

lyzed in [21]. As was discussed there, it is advisable to divide each table into

sufficiently many sub-tables, and, in such a case, the theoretically analyzed be-

havior of Algorithm 11 is very close to that of the sub-tables version. We choose

to work with Algorithm 11, which may be viewed as having divided each table

into m sub-tables, since it is more suitable for theoretical discussions. To the best

of our knowledge, the rainbow tradeoff algorithms implemented by both the Rain-

bowCrack Project [3] and the online phase program rcracki mt [4] for use with

the tables from Free Rainbow Tables [1] are essentially this algorithm.

Assuming the pre-computation table is much larger than what can be loaded

into the system memory, the approach taken by s̄R may be considered as being

efficient in that no part of the pre-computation table is loaded into memory more

than once. In fact, since loading tables from disk to system memory is such a slow

process, most programmers will immediately reject the suggestion to interleave

the generation of online chains with searches to the very large tables, as is done

by Algorithm 10, the online phase of the p̄R tradeoff.

2.1.4 Other Conventions and Comments

To reduce confusion, in this work, the word efficiency is always associated with an

algorithm’s competitiveness in the use of the online resources, whereas the ability

to balance the online efficiency, the pre-computation cost, and sometimes also the

success rate, against each other, is referred to with the word performance.

The approximation (1− 1
b)

a ≈ e−
a
b , which is valid when a = O(b), is used fre-

quently throughout this work without any explanation. A more precise statement

of this approximation may be found in [18, Appendix A]. Infinite sums are also

frequently approximated by appropriate definite integrals throughout this thesis.

Both kinds of approximations will be very accurate whenever we use them, as

long as a reasonable set of parameters is used with the tradeoff algorithm, and

they will be written as equalities rather than as approximations.

For both the DP and rainbow tradeoffs, the parameter t is very roughly of N
1
3

27

CHAPTER 2. PRELIMINARIES

order in any practical situation, and we will often ignore approximations that are

of 1+O
(1

t

)
order multiplicative factors and write these as equalities.

Applications of the perfect table technique to the DP and rainbow tradeoffs

are expected to increase both the online efficiency and the pre-computation cost.

Hence, it is not clear if the benefits of using perfect tables and its parallel treatment

outweigh its drawback. Providing information that can be used to settle this ques-

tion is one of the objectives of this work. Truncation of ending points must also

be used carefully, since the storage reduction is associated with an increase in on-

line time. However, all other techniques we are employing are only advantageous,

when used appropriately in any practical situation. Details of those techniques we

applied are discussed in the next section.

2.2 Storage Optimization Techniques

There are some known techniques to reduce the number of bits required to store

a single table entry of pre-computation table. In this section, the techniques taken

into account, when analyzing the DP and rainbow variants, that are clarified in

Section 2.1.1 and Section 2.1.2.

Let us consider about the DP variants. Firstly, the starting points {spi
j}
→m0
j=1 for a

pre-computation matrix must be chosen to be distinct. We specify more concretely

that, within each table, sequential starting points [6, 9, 10] are to be used. Then,

each starting point can be recorded in log →m0 bits, which should be much smaller

than the logN bits required to record a random element of N .

The fact that every ending point satisfies the distinguishing property implies

that certain parts of the ending points are redundant. These parts are not recorded

to the pre-computation table to save log t bits of storage per ending point [9]. In

addition, the ending points are further truncated to a certain length before being

written to storage [8, 9]. Since some ending point information is lost by the trun-

cation, only probable matches can then be announced during the online phase,

28

CHAPTER 2. PRELIMINARIES

and this will increase the frequency of false alarms. However, this side effect of

truncation can be maintained at a manageable level by controlling the degree of

truncation. When dealing with non-perfect DP tables, it is verified that close to

log t bits from each ending point can be truncated with minimal effect on the on-

line running time [18]. Details for the perfect DP case are discussed in this work.

Note that, since the pre-computation table is sorted on the ending points, some

of the most significant bits of the ending points will be increasing almost pre-

dictably throughout the table. This observation is the basis of the index file tech-

nique [9], which allows the removal of close to logm further bits of storage per

truncated ending point without any loss of ending point information. We assume

that this storage reduction technique is also used in recording the pre-computation

tables.

Techniques for reducing the number of bits allocated to each table entry of

the rainbow tradeoff that will be considered in this paper are all of those that

were previously explained for the DP tradeoff, except for the one involving the

definition of a DP. Sequential starting points [6, 9, 10] are used, so that only logm

or logm0 bits for non-perfect or perfect table are needed to record each starting

point, respectively. Ending points of non-perfect rainbow tables can be truncated

so that slightly more than logm bits remain without visible side-effects on the

online running time [18]. Details for the perfect rainbow case are also discussed

in this work. Finally, the index file technique [8, 9] is also applied, so that about

logm further bits per each truncated ending point can be removed with no loss of

information.

2.3 Previous Results

The original DP and non-perfect rainbow tradeoffs were analyzed in [18]. As a its

following work, the parallel DP tradeoff was also analyzed in [16]. In this section,

we quickly review results from [18] and [16] that are required in this paper and

29

CHAPTER 2. PRELIMINARIES

introduce some more notation.

2.3.1 Analyses of the Original DP and Parallel DP Tradeoffs

In order to produce a single non-perfect DP table, having m non-necessarily dis-

tinct entries, →m0 ≈m starting distinct starting points are needed, when sufficiently

large chain length bound t̂ is used, which we already assumed at the algorithm

clarification in Section 2.1.1.

As defined previously, given a non-perfect DP matrix, its coverage rate is de-

fined to be the number of distinct nodes that appear among the DP chains as in-

puts to the one-way function F , divided by mt. Note that the DPs ending each

pre-computation chain are not counted in this definition. The expected coverage

rate of a non-perfect DP matrix generated from →m0 ≈ m random distinct starting

points can be computed through the formula

Dcr =
2√

1+2Dmsc +1
, (2.1)

where Dmsc =
mt2

N . In particular, the coverage rate can be seen as a function of the

single variable Dmsc, rather than the separate parameters m, t, and N.

Let Dpc =
mt`
N be the pre-computation coefficient so that DpcN is the pre-computation

cost. It is not difficult to show that the probability of success for the DP tradeoff

can be expressed as Dps = 1− e−DpcDcr . If we rewrite this equation in the form

Dpc =−
ln(1−Dps)

Dcr
=−

ln(1−Dps)

2
(√

1+2Dmsc +1
)
, (2.2)

we can see that, under a fixed requirement on the success rate of the DP trade-

off, the pre-computation coefficient Dpc is a function of the matrix stopping con-

stant Dmsc. Remark that, for identical matrix stopping constant Dmsc =
mt2

N = pDmsc,

the original DP and parallel DP tradeoff algorithms agree the same coverage rate

Dcr, pre-computation coefficient Dpc, and success probability Dps, since they share

30

CHAPTER 2. PRELIMINARIES

the same pre-computation phase which produce non-perfect DP tables by fixed

matrix stopping rule. Also, a useful formula is that when visualizing a non-perfect

DP matrix as having been aligned at the ending points, the number of distinct

points found in a column of distance i from the ending points is expected to be

←mi = Dcr m
(

1− 1
t

)i−1
. (2.3)

Finally, the time memory tradeoff curve for the original and parallel DP trade-

offs are given by T M2 = DT M2N2 and T M2 = pDT M2N2, where the tradeoff coef-

ficients are

DT M2 =
(

2+
1

Dmsc

) 1
D3

cr
Dps
{

ln(1−Dps)
}2 (2.4)

and

pDT M2 =
(ln(1−pDps)

pDps

∫ 1

0
(1−pDps)

1−u lnudu+
1

pDmsc

) 1
D3

cr
pDps

{
ln(1−pDps)

}2
,

(2.5)

respectively. Note that T is the number of F-iterations to be required during the

online phase and M is the number of pre-computation table entries to be stored.

When placed under a fixed success rate requirement Dps, DT M2 can also be seen as

a function of Dmsc, through a substitution of (2.1) and so can pDT M2 .

[18] also utilized the storage optimization techniques as explained in Section

2.2 to analyze tradeoff algorithms. As a result, slightly more than logm bits are

enough to store a single table entry (sp,ep) of a non-perfect DP table.

2.3.2 Analysis of the Non-perfect Rainbow Tradeoff

The pre-computation coefficient pRpc, which means that pRpcN F-iterations are

required during the pre-computation phase, and the success probability for the

non-perfect rainbow tradeoff are written as the forms

pRpc = pRmsc` (2.6)

31

CHAPTER 2. PRELIMINARIES

and

pRps = 1−
(2

2+pRmsc

)2`
, (2.7)

respectively, where pRmsc =
mt
N and ` is the number of tables.

From (2.6) and (2.7), one can easily see that the pre-computation coefficient

can be regarded as a function of the matrix stopping constant pRmsc, when a suc-

cess probability is fixed.

The time memory tradeoff curve for the non-perfect rainbow tradeoff is given

by T M2 = pRT M2N2, where the tradeoff coefficient is

pRT M2 =
`3

(2`+1)(2`+2)(2`+3)

{(2`−1)+(2`+1)pRmsc}(2+pRmsc)
2

−4{(2`−1)+ `(2`+3)pRmsc}
(

2
2+pRmsc

)2`

 .

(2.8)

When placed under a fixed success rate requirement pRps, this can also be seen as

a function of pRmsc through a substitution of (2.7).

Finally, only slightly more than logm bits are needed to store a single table

entry of a non-perfect rainbow table, as a result of the storage optimization.

32

Chapter 3

Perfect Table Tradeoff Algorithms

In this chapter, analyses of the perfect DP and perfect rainbow tradeoff will be

presented. All of the results were previously published in [22].

3.1 Analysis of the Perfect DP Tradeoff

In this section, we provide a full analysis of the perfect DP tradeoff that uses a

sufficiently large upper bound on the chain length. A more clarified description of

the perfect DP tradeoff that is being treated in this work was given in Section 2.1.1.

3.1.1 Online Efficiency

We will present formulas describing the success probability, pre-computation cost,

and tradeoff coefficient of the perfect DP tradeoff. The discussion will require

previous results concerning the non-perfect DP tradeoff.

Let us visualize a non-perfect DP matrix with the ending points aligned in a

single column. Some of the rows (pre-computation chains) will be merging into

each other. Let us use ←mk to denote the number of distinct points expected in its

column that is k iterations away from the ending points in a non-perfect DP matrix.

In particular, ←m0 denotes the number of distinct ending points and this is also the

33

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

number of independent or non-overlapping rows of the non-perfect DP matrix.

Lemma 3.1. The number of distinct ending points in a non-perfect DP matrix

may be approximated by the number of its distinct points that are a single iteration

away from the ending point DPs. More precisely, we have ←m0 =
←m1
{

1+O
(1

t

)}
.

Proof. By the definitions of ←m0 and ←m1, ←m0 can be interpreted as the expected size

of F-image produced from ←m1 inputs. Recall that we are treating F as a random

function and note that the set of DPs is of size N/t. Viewing this situation as that

of making ←m1 independent random choices from the set of all DPs, the fraction of

the DP space that is not hit by any of the ←m1 choices becomes
(
1− 1

N/t

)←m1 , and

the expected size of the image set can be written as

←m0 = (N/t)
{

1−
(

1− 1
N/t

)←m1
}
.

After expanding the ←m1-th power to write

←m0 =
N

t

{
1−1+

←m1 t
N
−
(←m1

2

)(t
N

)2
+

(←m1

3

)(t
N

)3
−·· ·

}
=
←m1−

(←m1

2

)(t
N

)
+

(←m1

3

)(t
N

)2
−·· · ,

we can recall the condition mt2 ≈ N and note ←m1 = Θ(m) to observe
←m1t
N � 1 and

claim
←m0 =

←m1 +
←m1 O

(←m1 t
N

)
=
←m1

{
1+O

(1
t

)}
.

Thus, we may approximate ←m0 with ←m1, for any realistic value of t. In fact, we

had explicitly stated in Section 2.1.4 that any approximation of 1+O
(1

t

)
order

multiplicative factor would be ignored and written as an equality.

Recalling the previous results, presented in Section 2.3.1, we can rewrite (2.3)

as
←mk = |DM|

(
1− 1

t

)k−1 1
t
, (3.1)

34

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

for k ≥ 1. Here, the |DM| denotes the number of distinct points expected in a non-

perfect DP matrix, as defined before. To be more precise, the |DM| used here counts

the points that were used as inputs to the iterating function during the non-perfect

DP table creation, so that the starting points are included and the ending points

are excluded.

It is also already known from (2.1) that a single non-perfect DP matrix created

with →m0 starting points is expected to contain

|DM|= 2→m0 t
1+
√

1+2Dmsc
(3.2)

distinct points, where Dmsc =
→m0t2

N is the matrix stopping constant for the corre-

sponding non-perfect DP matrix. The reader should be careful to distinguish the

symbol →m0 from the previously used symbol ←m0. The information, which has been

obtained, will be used to find out relations between a perfect DP matrix and its

corresponding non-perfect DP matrix. As a beginning of those, the expected num-

ber of starting points required to produce a perfect DP matrix which consists of m

entries.

Lemma 3.2. A non-perfect DP matrix created with →m0 randomly generated start-

ing points is expected to contain 2→m0
1+
√

1+2Dmsc
distinct ending points, where Dmsc =

→m0t2

N . Conversely, given m, one must generate →m0 =
(
1+ D̄msc

2

)
m chains, where

D̄msc =
mt2

N , in order for m to be the expected number of chains contained in the

corresponding perfect DP matrix.

Proof. Ignoring 1+O(1
t) multiplicative factor of the statement in Lemma 3.1, we

may even write ←m0 =
←m1. Recalling from (3.1) that ←m1 = |DM|1t and combining this

with (3.2), we arrive at

←m0 =
←m1 =

|DM|
t

=
2→m0

1+
√

1+2 →m0t2/N
,

which is the first claim.

35

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

As for the second claim, given m, replacing ←m0 of the above relation by m, it

suffices to solve for →m0 from the equation

m =
2→m0

1+
√

1+2 →m0t2/N
.

Recalling the notation D̄msc =
mt2

N , we can rewrite this in the form

1+

√
1+2D̄msc

→m0

m
= 2

→m0

m

and again into the form

1+2D̄msc

→m0

m
=
(

2
→m0

m
−1
)2

.

Solving this quadratic equation in
←m0
m and discarding the meaningless solution

←m0
m = 0, we find

→m0

m
= 1+

D̄msc

2
,

which is the second claim.

Note that the first claim of this lemma gives a simple formula to express the

number of chains remaining after the removal of merges, which many previous

works [27] had attempted to find.

Throughout this thesis,

→m0 =
(

1+
D̄msc

2

)
m (3.3)

will always denote the number of starting points that are required to create a per-

fect DP table that is expected to contain m ending points. This is the value of →m0

that should be used by Algorithm 1, given the algorithm parameters m and t.

By multiplying t2

N to both sides and recalling the definitions Dmsc =
→m0t2

N and

36

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

D̄msc =
mt2

N , we can rewrite the above as

Dmsc =
(

1+
D̄msc

2

)
D̄msc.

Viewing this as a quadratic equation concerning the indeterminate D̄msc, we can

solve for D̄msc to obtain

D̄msc =
√

1+2Dmsc−1. (3.4)

This can be used to convert any formula given in terms of D̄msc into one given in

terms of Dmsc. Also one can state that (3.4) presents the relation between a perfect

DP matrix and its corresponding non-perfect DP matrix.

In addition, when a DP matrix is created from →m0 starting points, where →m0 is

as given by (3.3), it contains

|DM|= mt (3.5)

distinct points, used as the inputs to the one-way function. That is, given the per-

fect table parameters m and t, the corresponding non-perfect DP matrix, which

must be created from →m0 starting points with →m0 as given by (3.3), is expected to

cover mt distinct points.

Note that by combining (3.1) and (3.5), we obtain the useful formula

←mk = m
(

1− 1
t

)k−1
. (3.6)

The pre-computation phase of a perfect DP tradeoff requires →m0t` iterations

of the one-way function. We define the pre-computation coefficient for the perfect

DP tradeoff to be D̄pc =
→m0t`
N , so that the cost of pre-computation becomes D̄pcN.

The following statement is a direct consequence of Lemma 3.2 or (3.3).

Proposition 3.1. The pre-computation coefficient of the perfect DP tradeoff is

D̄pc =
(

1+
D̄msc

2

)mt`
N

.

37

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

By the definition of the coverage rate, which was given at the end of Sec-

tion 2.1.1, a single perfect DP matrix contains the correct answer p to the given

inversion target h = F(p) with probability mt D̄cr
N . Thus, the success probability of

the complete perfect DP tradeoff may be stated as

D̄ps = 1−
(

1− mt D̄cr

N

)`
= 1− exp

(
− mt`

N
D̄cr

)
, (3.7)

where we are relying on the approximation stated in Section 2.1.4 for the second

equality, and we can combine this with Proposition 3.1 to claim the following.

Proposition 3.2. The success probability of the perfect DP tradeoff is

D̄ps = 1− exp
(
−

2 D̄pc D̄cr

2+ D̄msc

)
.

We have computed expressions for D̄pc and D̄ps that do not involve →m0. Some

technical lemmas need to be prepared first to obtain such an expression for D̄cr.

Given a function F : N →N and a non-negative integer k, we define Dk(F)

or Dk to be the set of elements of N that are k-many F-iterations away from

their closest DPs. In particular, D0 is the set of DPs. It is clear that {Dk(F)}∞
k=0

becomes a partition of N , and that we can expect the sizes of these subsets to be

|Dk|= N
(

1− 1
t

)k 1
t
, (3.8)

for a random function. Note that the above argument ignores the possibility of

encountering loops, but this can be justified since mt2 ≈ N implies t �
√
N and

the rho length of a random walk initiated from a random point is expected to be

of
√
N order.

Lemma 3.3. Let F : N →N be chosen uniformly at random from the set of all

functions acting on N and let us fix a set D ⊂ Dk(F) for some k ≥ 1. Then the

38

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

expect sizes of its iterated images under F will satisfy

|F i(D)|

N(
(

1− 1
t

)
)k−i 1

t

= 1− exp

− |F i−1(D)|

N(
(

1− 1
t

)
)k−i 1

t

 ,

for each i = 1, . . . ,k.

Proof. As a trivial generalizing of the argument in the proof of Lemma 3.1, for

a random function F : A →B defined on finite sets and a subset C of the do-

main A , the image size of C is expected to be

|F(C)|= |B|
{

1−
(

1− 1
|B|

)|C |}
= |B|

{
1− exp

(
− |C |
|B|

)}
,

assuming |C | = O(|B|). The claim is now a direct consequence of the set sizes

given by (3.8). Note that, since |D j| ≤ |D j−1|, we need not worry about the |C |=
O(|B|) condition.

It is possible to work out the iterations expressed by this lemma and write

down each iterated image size as a closed-form formula.

Lemma 3.4. Let F : N → N be a random function and let D ⊂ Dk(F), for

some k ≥ 0. When |D|= O(m), the size of the i-th iterated image of D under F is

expected to be

|F i(D)|= 2|D|
2+ D̄msc

|D|
m e

k
t (1− e−

i
t)
,

for each 0≤ i≤ k.

Proof. Let us temporarily introduce the notation fi =
|F i(D)|

N(1− 1
t)

k−i 1
t
, and rewrite Lemma 3.3

as

fi = 1− exp
{
−
(

1− 1
t

)
fi−1

}
=
(

1− 1
t

)
fi−1−

1
2

(
1− 1

t

)2
f 2
i−1 + · · · .

39

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

The condition |D|= O(m) implies |F i(D)|= O(m), so that fi = O
(m
N/t

)
= O

(1
t

)
,

and we can state

fi− fi−1 =−
1
t

fi−1−
1
2

f 2
i−1 +O

(f 2
i−1

t

)
.

Noting that f 2
i−1
t is of strictly smaller order than fi−1

t +
f 2
i−1
2 , we can ignore the final

term. Recall that the Euler method allows for the solution of a ordinary differen-

tial equation with a given initial value to be approximately expressed as an itera-

tive sequence. Applying this in the reverse direction, we can solve the differential

equation

f ′(x) =−1
t

f (x)− 1
2

f (x)2

associated with the above difference equation, with the initial condition f (0) =

f0 =
|D| t
Ne−

k
t
, to obtain

fi =
2|D| t

2Ne
i−k

t +(e
i
t −1)|D| t2

.

Recalling the definition of fi, we can state

|F i(D)|=
2N(
(

1− 1
t

)
)k−i|D|

2Ne
i−k

t +(e
i
t −1)|D| t2

=
2Ne

i−k
t |D|

2Ne
i−k

t +(e
i
t −1)|D| t2

,

and a direct simplification of this equation, using the notation D̄msc =
mt2

N , results

in our claim.

The previous two lemmas were prepared to support the next lemma, which

gives the probability for a single chain not to merge into a set of chains. This

information will be used to derive the coverage rate D̄cr of a perfect DP matrix.

Lemma 3.5. Let F : N → N be a random function and let D ⊂ Dk(F), for

some k. When |D|= O(m), the probability for a random point x∈Dk(F) to satisfy

Fk(x) 6∈ Fk(D) is {
1+

D̄msc

2
|D|
m

(
e

k
t −1

)}−2
.

40

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

Proof. Since the starting point itself and each subsequent iterations of the random

function must not contain in the iterated image sets, the probability in question is

k

∏
i=0

(
1− |F

i(D)|
|Dk−i|

)
=

k

∏
i=0

(
1− |F i(D)|

N(1− 1
t)

k−i 1
t

)
=
(

1− |D| t
Ne−

k
t

) k

∏
i=1

(
1− |F i(D)|

N(1− 1
t)

k−i 1
t

)
.

Here, the first equality is based on (3.8). By applying Lemma 3.3 to the product

of k terms, we can write

k

∏
i=1

(
1− |F i(D)|

N(1− 1
t)

k−i 1
t

)
=

k

∏
i=1

exp
(
− |F i−1(D)|

N(1− 1
t)

k−i 1
t

)
= exp

(
−
(

1− 1
t

) k−1

∑
i=0

|F i(D)|
N(1− 1

t)
k−i 1

t

)
.

Since we are given the condition |D| = O(m), we can apply Lemma 3.4, or the

last equation in its proof, and compute the sum inside the exponential function as

k−1

∑
i=0

|F i(D)|
N
(
1− 1

t

)k−i 1
t

=
k−1

∑
i=0

2|D| t
2Ne

i−k
t +(e

i
t −1)|D| t2

=
k−1

∑
i=0

2|D| t
2N
t e

i−k
t +(e

i
t −1)|D| t

1
t
.

Viewing this as the left Riemann sum of the function Φ(u) := 2|D| t
2N
t eu− k

t +(eu−1)|D| t
on the interval [0, k

t], we can approximate this with the definite integral

∫ k/t

0

2|D| t
2N
t e−

k
t eu +(eu−1)|D| t

du = 2ln
{

1+
|D| t2

2N
(
e

k
t −1

)}
.

By substituting the sum back into the exponential function, we get

k

∏
i=0

(
1− |F

i(D)|
|Dk−i|

)
=
(

1− |D| t
Ne−

k
t

)
exp
(
−
(

1− 1
t

)
2ln
{

1+
|D| t2

2N
(
e

k
t −1

)})
=
(

1− |D| t
Ne−

k
t

){
1+

D̄msc

2
|D|
m

(
e

k
t −1

)}−2(1− 1
t)
.

The
(
1− 1

t

)
term appearing in the exponent is insignificant and the condition

41

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

|D|= O(m) allows us to ignore the first product term, which is of 1−O
(1

t

)
order.

We have arrived at the claimed formula.

With the help of the technical lemmas that have been obtained, we can finally

present the coverage rate of a perfect DP matrix.

Proposition 3.3. The coverage rate of a perfect DP matrix is

D̄cr =
2

D̄msc
ln
(

1+
D̄msc

2

)
.

Proof. Let us consider a non-perfect DP matrix before the chain removal process

to produce a perfect DP matrix. A chain of the non-perfect DP matrix survives

through the collision removal process if and only if it does not merge into another

chain of length longer than or equal to its length. To be more precise, according

to Lemma 3.5, the probability for a chain of length k in a non-perfect DP matrix

to remain in the perfect matrix is

{
1+

D̄msc

2

←mk

m

(
e

k
t −1

)}−2
.

The expected number of chains that are of length k is →m0
(
1− 1

t

)k−1 1
t , before

the removal of merges, and each chain of length k contains information of k points,

used as inputs to the one-way function. Since chains in a perfect DP matrix do not

have common points with each other, the number of distinct points in the perfect

DP table except DPs is

∞

∑
k=1

k · →m0

(
1− 1

t

)k−1 1
t
·
{

1+
D̄msc

2

←mk

m

(
e

k
t −1

)}−2
.

The coverage rate of the perfect DP matrix can thus be given by

D̄cr =
1

mt
→m0

(
1− 1

t

)−1 ∞

∑
k=1

k
t
· e−

k
t ·
{

1+
D̄msc

2
e−

k
t

(
1− 1

t

)−1(
e

k
t −1

)}−2
,

42

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

where we have used (3.6) to remove the ←mk term. After ignoring the insignificant

(1− 1
t)
−1 terms, we rewrite the above as

D̄cr =
→m0

m

∞

∑
k=1

k
t
· e−

k
t ·
{

1+
D̄msc

2
(
1− e−

k
t
)}−2 1

t

and interpret this as a definite integral to compute the coverage rate as

D̄cr =
→m0

m

∫
∞

0
ue−u

{
1+

D̄msc

2
(
1− e−u)}−2

du =
→m0

m
ln
(
1+ D̄msc

2

)
D̄msc

2

(
1+ D̄msc

2

) .
It now suffices to recall Lemma 3.2 or (3.3) to arrive at the claimed formula.

Let us briefly discuss the average chain length of a perfect DP matrix. By

definition, it is the number of distinct points in a perfect DP matrix divided by the

number of its distinct ending points, and according to the above lemma, it can be

written as a formula

|D̄M|
m

=
mtD̄cr

m
= t

2
D̄msc

ln
(

1+
D̄msc

2

)
. (3.9)

It is easy to check that this value is always smaller than the average chain length t

before the removal of chain merges. Even though we are keeping the longest chain

from among any set of merging chains, the longer chains are more likely to merge

into one another and be discarded.

The information which we have gathered so far can be also applied to analyze

the parallel version of the perfect DP tradeoff, which will be presented in Chap-

ter 4, because these two DP variants share their pre-computation phase and the in-

formation related to a perfect DP matrix does not depend on how pre-computation

tables are treated.

Unlike other results of this work, our next claim is mostly based on experimen-

tal evidences, rather than on purely theoretical arguments. Note that the processing

of a perfect DP table can bring about at most one alarm, which requires the partial

43

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

regeneration of a single pre-computation chain. We will later show in Section 3.1.3

that, for a sufficiently wide range of D̄msc of interest, the value computed through

the formula

t× 1+0.577 D̄msc

1+0.451 D̄msc
(3.10)

agrees accurately with the experimentally obtained average number of one-way

function iterations required for this single pre-computation chain regeneration to

resolve an alarm.

Let us clarify that we are not claiming formula (3.10) to be correct in any

theoretical sense. Our only claim here is that formula (3.10) predicts the average

cost of resolving each alarm with accuracy that is more than sufficient for most

practical purposes.

Proposition 3.4. The online processing of a single perfect DP table is expected

to require

t× 1+0.577 D̄msc

1+0.451 D̄msc

D̄msc

1+ D̄msc
. (3.11)

invocations of the one-way function in relation to the resolving of a possible alarm.

Proof. Since amount of F-invocations to resolve an alarm is already obtained, we

only need to compute the probability of encountering an alarm when working with

a perfect DP table.

An online chain will merge into a perfect pre-computation matrix D̄M if and

only if it merges into the corresponding non-perfect pre-computation matrix DM.

Since we already know from (3.5) that the number of elements contained in DM

as mt, the probability of encountering an alarm can be stated as

∞

∑
i=0

(
1− 1

t
− mt

N

)i mt
N

=
mt
N

1
t +

mt
N

=
D̄msc

1+ D̄msc
.

The claimed expected cost of dealing with a possible alarm can be reached by

multiplying this probability with the work factor (3.10).

44

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

Having obtained the cost of dealing with alarms, the online complexities of

the perfect DP tradeoff can be presented as a time memory tradeoff curve and its

tradeoff coefficient is stated as below.

Theorem 3.1. The time memory tradeoff curve for the perfect DP tradeoff is

T M2 = D̄T M2N2, where the tradeoff coefficient is given by

D̄T M2 =
(

1+
1+0.577 D̄msc

1+0.451 D̄msc

D̄msc

1+ D̄msc

) D̄ps
{

ln(1− D̄ps)
}2

D̄msc D̄3
cr

.

Proof. Since a single perfect DP matrix contains the correct answer to a given

inversion problem with probability mt D̄cr
N by the definition of a coverage rate, the

probability for the i-th DP table to be processed during the online phase executed

for a single inversion target is
(
1− mtD̄cr

N

)i−1, since each pre-computation table is

processed one by one. The online processing of each table is expected to require

t invocations of the one-way function for the online chain generation and the ex-

pected number of iterations required to resolve the alarm that could occur is given

by Proposition 3.4. Hence, the number of one-way function iterations expected

during the online phase of the perfect DP tradeoff is

T =
`

∑
i=1

(
1− mtD̄cr

N

)i−1(
1+

1+0.577 D̄msc

1+0.451 D̄msc

D̄msc

1+ D̄msc

)
t

=
1−
(
1− mtD̄cr

N

)`
mtD̄cr
N

(
1+

1+0.577 D̄msc

1+0.451 D̄msc

D̄msc

1+ D̄msc

)
t

=
D̄ps

D̄mscD̄cr

(
1+

1+0.577 D̄msc

1+0.451 D̄msc

D̄msc

1+ D̄msc

)
t2,

where the final equality relies on (3.7) or Proposition 3.2.

On the other hand, since each pre-computation table contains m entries and

there are ` tables, the storage complexity of the perfect DP tradeoff is M = m`.

The time memory tradeoff curve for the perfect DP tradeoff is obtained by

combining the complexities T and M as follows:

45

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

T M2 =
D̄ps

D̄mscD̄cr

(
1+

1+0.577 D̄msc

1+0.451 D̄msc

D̄msc

1+ D̄msc

)
(mt`)2

=
D̄ps

D̄mscD̄cr

(
1+

1+0.577 D̄msc

1+0.451 D̄msc

D̄msc

1+ D̄msc

){ ln(1− D̄ps)

D̄cr

}2
N2.

The second equality here is obtained through another application of (3.7).

Let us clarify that both Proposition 3.4 and Theorem 3.1 depend on the empiri-

cal result (3.10). Both claims should be understood as providing practical formulas

that can be used in practice to predict the behavior of the perfect DP tradeoff. They

should not be taken as results that are theoretically correct in any sense.

3.1.2 Storage Optimization

An analysis of the perfect DP tradeoff would not be complete without a discussion

of the storage optimization techniques.

Dealing with the storage size of the starting points is quite straightforward.

One requires log →m0 bits of space for every starting point, and (3.3) implies that

this will be one or two bits more than logm for parameters of interest. Hence,

one may safely claim that the number of bits required to store a single starting

point for a perfect DP tradeoff is very close to that required for the non-perfect

DP tradeoff, when comparable parameters are used by the two algorithms.

As for record of an ending point, since every ending point is a DP, it suffices

to consider truncations of just the DPs, rather than the general points of the search

space N . We will refer to the set of all possible truncated points as the truncated

space and refer to the surjective map which sends each DP to its truncated form

as the truncation map. A typical truncation map with a truncated space of size r

simply retains logr bits of the ending point that are unrelated to the DP definition.

To effects of ending point truncation on the perfect DP tradeoff is slightly dif-

ferent from that on the non-perfect DP tradeoff, which was treated in [18]. The

46

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

truncation may cause two non-merging pre-computation chains to become indis-

tinguishable at the ending points and cause more chains to be discarded during

the pre-computation phase. However, the following lemma shows that these fur-

ther collisions can mostly be avoided by recording slightly more than logm bits.

Lemma 3.6. Consider a truncation map with a truncated space of size r that

is much smaller than the DP space. When m = O(r) distinct ending point DPs

are truncated, we can expect to obtain r
{

1−exp(−m
r)
}

distinct truncated ending

points. Conversely, when r > m, one must expect to truncate r ln
(r

r−m

)
DPs in

order to collect m distinct truncated points.

This lemma is a trivial consequence of treating the truncation process as the

random selection of points from a pool of r-many points and the aimed number

of points as its image size. More precisely, the first claimed formula is trivially

obtained in the same sense with the proofs of Lemma 3.1 and Lemma 3.3. The

converse claim is an easy calculation of this.

Let us consider a specific example. When the truncated space is of size r =

25m, it suffices to truncate 32m ln
(32

31

)
= 1.01596m DPs in order to obtain m

distinct truncated ending points. Combining this information with Proposition 3.1,

one can claim that, an increment of the required starting points by the ending

point truncation, which leads to growth of the total pre-computation time, can be

controlled within 3.1% at least, by recording just 5+ logm bits of each ending

point. Note that this is not 1.596% and only claimed approximately, because the

variable m appears not only in the mt`
N term of Proposition 3.1, but also inside

the D̄msc
2 term. To be more precise, the rate of increase in the pre-computation cost,

caused by retaining only 5 + logm bits of each ending point, can be stated as
(2+1.01596D̄msc) 1.01596

2+D̄msc
, where D̄msc =

mt2

N . In any case, the effects of ending point

truncation on the collision of ending points can be maintained at an ignorable level

by retaining a little more than logm bits of information through the truncation

process. Note that by ignoring the ending point collisions induced by truncations,

47

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

we are also ignoring their effects on the pre-computation time and also on the

coverage rate, or, equivalently, the success probability.

We now need to discuss the effects of truncation on the online time. The ter-

minating DP of the online chain must be searched for among the truncated ending

points, so we have the possibility of truncation-related false alarm and then regen-

erating the pre-computation chain to resolve this alarm.

Lemma 3.7. Consider a truncation map with a truncated space of size r. Assume

that the truncated space is much smaller than the DP space and that r has been

chosen to be large enough for the occurrences of indistinguishable ending points

caused by truncations to be sufficiently limited. Then the number of extra one-way

function invocations induced by truncation-related alarms is expected to be

t
m
r

2
D̄msc(1+ D̄msc)

ln
(

1+
D̄msc

2

)
,

for each fully processed perfect DP table.

Proof. Let us compute the probability for an online chain to become a DP chain

of length i and not merge into the perfect DP matrix, but have a truncated ending

point that coincides with a truncated ending point in the perfect DP table. For

this event to occur, the online chain must be created in the following manner:

(1) The first i nodes of the online chain, starting from the correct pre-image of

the inversion target, must be chosen among the non-DPs that do not belonging to

the corresponding non-perfect DP matrix DM; (2) The final point must be chosen

among DPs that are different from the m ending points in the perfect DP table;

(3) Furthermore, the final point also must be chosen so that its truncated online

ending point matches one of the m truncated ending points. The processes (2)

and (3) are not quite independent, but since the number of DPs is much greater

than the number of ending points, i.e., N
t � m, the dependence can be ignored.

48

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

Thus, the probability we seek is

(
1− 1

t
− |DM|

N

)i(1
t
− m

N

)m
r
≈
(

1− 1
t
− |DM|

N

)i 1
t

m
r
=
(

1− 1+ D̄msc

t

)i 1
t

m
r
,

where we have used m
N = O(1

mt) = o(1
t) for the approximation and (3.5) for the

final equality. Thus, the probability for the online processing of a perfect DP table

to cause a truncation-related alarm is given by

∞

∑
i=1

(
1− 1+ D̄msc

t

)i 1
t

m
r
=

1− 1+D̄msc
t

1+D̄msc
t

1
t

m
r
≈ 1

1+ D̄msc

m
r
.

Notice that how likely a pre-computation chain is to be involved in a truncation-

related alarm is independent of its length. Hence, the number of iterations required

to regenerate the pre-computation chain involved with such a truncation-related

alarm is expected to be the average chain length of the perfect DP matrix, which

is given by (3.9). Thus, the cost of resolving alarms that are induced by truncation

is
1

1+ D̄msc

m
r

t
2

D̄msc
ln
(

1+
D̄msc

2

)
,

for the full processing of a single perfect DP table.

The normal one-way function iterations required to generate the online chain

and deal with a possible alarm while processing a single perfect DP table was

stated during the proof of Theorem 3.1 to be

(
1+

1+0.577 D̄msc

1+0.451 D̄msc

D̄msc

1+ D̄msc

)
t. (3.12)

If we assume that sufficient information is left after the ending point truncation

so that the number of indistinguishable ending points are kept small enough to be

ignored, then, with parameters satisfying D̄msc = 2, the expected numbers of nor-

mal iterations and truncation-related iterations become 1.75499t and 2
6 ln(2)m

r t =

0.231049m
r t, respectively. For example, with r = 25m, the ending point trunca-

49

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

tion increases the number of one-way function iterations by a mere 0.231049 1
32 t

1.75499 t ≈
0.41%. The following can be stated for the general situation.

Proposition 3.5. Suppose that the online phase of a perfect DP tradeoff imple-

mentation that stores each ending point in full requires T iterations of the one-way

function to complete. Consider a truncation map for which the truncated space is

of size r = 2εm. If ε is large enough for the occurrences of indistinguishable end-

ing points caused by truncations to be ignored, then the implementation with the

ending point truncation requires

2ln
(
1+ D̄msc

2

)
D̄msc(1+ D̄msc)

(
1+ 1+0.577 D̄msc

1+0.451 D̄msc

D̄msc
1+D̄msc

) T
2ε

additional iterations of the one-way function to complete.

For parameters satisfying D̄msc = 2, the above is 0.231049
1.75499

T
2ε = 0.131652 T

2ε . This

implies that, for parameters of interest, a small ε is enough to keep the negative

effects of ending point truncation on the online time to a reasonably small level.

Let us summarize the situation concerning the storage of each perfect DP table

entry. The starting point can be stored using slightly more than logm bits. Ending

point DPs can be truncated so that a little more than logm bits of information is

retained with very little negative effect on the success probability, pre-computation

cost, and online time. The index file technique can be used to remove almost

logm further bits per ending point without any loss of information. In conclusion,

storage of each starting point and ending point pair requires a little more than

logm bits. Therefore, the perfect DP tradeoff requires the same amount of bits to

record each table entry as those for the original and parallel DP tradeoffs.

3.1.3 Experiment Results

We have verified the correctness of major parts of our complexity analysis with

experiments. For the first two sets of our experiments, the one-way function was

50

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

Table 3.1: The number of DP chains before and after removal of chain merges and
the coverage rate of the perfect DP matrix. (N= 240; t̂ = 15 t).

m t D̄msc
→m0 used test m theoretical D̄cr test D̄cr

2000 214 0.48828 2488 2000.88 0.89475 0.89302
4000 214 0.97656 5953 3996.01 0.81433 0.81412
6000 214 1.46484 10394 5996.79 0.75028 0.74934

10000 213 0.61035 13051 10005.45 0.87274 0.87319
20000 213 1.22070 32207 20001.52 0.78062 0.78079
30000 213 1.83105 57465 30003.72 0.70997 0.71020

instantiated with the key to ciphertext mapping, under a randomly fixed plaintext,

of the block cipher AES-128. Freshly generated random plaintexts were used to

create different one-way functions that were required for repetitions of the same

test. Bit-masking of ciphertexts to 40 bits and its zero-extension to 128-bit keys

were used to restrict the search space to a manageable size of N= 240.

The first experiment was designed to verify Lemma 3.2 and Proposition 3.3

simultaneously. Recall that Lemma 3.2 related the number of starting points to

the number of distinct ending points in a non-perfect DP matrix and that Proposi-

tion 3.3 presented the coverage rate of the perfect DP matrix.

After fixing suitable parameters m and t, we first computed the →m0 value,

as specified by (3.3). We generated chains from →m0 distinct starting points and

recorded their terminating DPs, together with their respective chain lengths. A

small number of chains that extended beyond the moderately large chain length

bound of t̂ = 15 t were discarded during this process. After dealing with chain

merges by retaining only the information corresponding to the longest chain among

any set of merging chains, the number of remaining DPs was counted. Next, the

lengths of the surviving chains were added together and taken as the number of

distinct entries in the perfect DP matrix. The obtained count of matrix entries, di-

vided by mt, is our test D̄cr value. The whole process was repeated 200 times for

each choice of parameter set and the obtained values were averaged.

The test results are summarized in Table 3.1, together with the integer →m0

51

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

values we have used and the theoretically computed coverage rates. In each row,

the reported number of distinct ending points that resulted from our theoretically

computed →m0 starting points is very close to the targeted m value, in spite of the

small number of test repetitions. It can also be seen that our theory was able to

predict the coverage rates accurately.

Even though this test gives some confidence as to the correctness of our theory,

let us present another test that makes sure that our accurate predictions of the

coverage rate did not result from some lucky averaging effect that conveniently

hid logical errors in our lower level arguments.

Recall that the proof of Proposition 3.3 relied heavily on our ability to write

the probability for a random chain of length k not to merge into any of the chains in

a non-perfect DP matrix that are longer than k. More specifically, this probability

was taken to be {
1+

D̄msc

2
(
1− e−

k
t
)}−2

(3.13)

and was interpreted as the probability for a chain in a non-perfect DP matrix to

survive through the process of removing chain merges.

To test this core logic, we first generated multiple non-perfect DP matrices,

discarding the small number of chains reaching the length bound of t̂ = 15 t.

Then, for each 1 ≤ k < t̂, we counted and recorded the total number of chains

of length k found among these matrices. Next, we removed merges from each of

the DP matrices to create multiple perfect DP matrices and, once again, recorded

the number of chains of each length. We took the ratio of the two chain counts, for

each length k, as our test value of the probability for chains of length k to survive

through the chain merge removal process. Note that this ratio of counts cannot be

computed separately for each DP matrix and then later averaged over multiple DP

matrices, since the number of chains of any given length is likely to be very small

and often zero for any single DP matrix.

The test results are provided by Figure 3.1. The probability (y-axis) for chain

survival through the chain merge removal process is given for each chain length

52

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

•••
•••••••••••••••••••••
•••••••••••
••••••••
••••••
••••••••••••••••••••••

•••••
•
••••••••••
•••••••
•
••••
•••••••
••••••••
•

••
••
••••••••••••
•
••
•••••••
•
•
•
•
•
••
•

•
••
••
••••••••••
••••
••••
••••••
••••••
••
•

•
•••••
•

••
••
•
•••

•

•
•
•

0 t 2t 3t 4t 5t
len0.0

0.2

0.4

0.6

0.8

1.0
prob

••
•••••••••••••••••
••••••••••••••
••••••••••••••••••••••••••••

•
••••
••••••••••••••••••
••••
•
••••
••••
••••
•
•••
••••
••••
•••
•••••
••••••••••••••
•••••••••
•••••••••••
••••••••••
•
•••••••
•
••••••
•••
••••••••••••••••
•
•
•
•
•
•
••••••
••
•
•
•
••••••
•
•
•••
••••
•••
••
•
••
••
••
•••
••
••
•

0 t 2t 3t 4t 5t
len0.0

0.2

0.4

0.6

0.8

1.0
prob

•••
•
•••••••••••••••••••••
••••••••••••••••••••••••••••••••

••••••••
•••••••••••
•••
•••
•••••••••••••••
•••
••••••••••
•••••
•
••
•
•
•••••••
•••
••
••••••••••
••••••••••
•
•••
••••••••
••••
•••••••••
••••••
•••••••••
•
•••••
•••
••••••
•••
••••••

0 t 2t 3t 4t 5t
len0.0

0.2

0.4

0.6

0.8

1.0
prob

•••
•
•••••••••••••••••••••••

••••••••••••••••••••
•••
••••••••••••••••••••••••••

•••••••••••••••••••
••••••••••••••••••••••••••••

•••••••••
•••••
•
•••••••••••••••••
••
•
•
•••
•
•
•••••
•
•••••
•••••••••
•
•
••
•
•••••
•
••••••••
••••••••••••••
••
••
•
•••••
•••••
•••
•
•
•
•••
•
•

0 t 2t 3t 4t 5t
len0.0

0.2

0.4

0.6

0.8

1.0
prob

Figure 3.1: The probability for DP chains of each length to survive through the
treatment of merging chains in a non-perfect DP matrix. (test: dots; theory: line;
N= 240; t̂ = 15 t).

(x-axis). The lines correspond to our theory, as given by (3.13), and the dots repre-

sent the count ratios obtained through tests. Even though our chain length bound

was t̂ = 15 t, we have displayed the data only for chain lengths less than approxi-

mately 5t. Furthermore, in each box, we only plotted approximately 500 dots that

are equally spaced in terms of chain length values, since densely packing all 5t

dots into each box made the graphs harder to comprehend.

The experimental data agrees well with our theory in all the boxes. Notice that

the test results are less reliable at the large chain lengths. This is because longer DP

chains appear less frequently and these large chain length data were obtained from

a smaller number of chains. A much larger number of DP matrices would need to

be generated to obtain meaningful test values at lengths much larger than 5t.

Our final experiment measured the cost of regenerating the pre-computation

chain for each online chain that produces an alarm. For this purpose, a slightly

53

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

• • •

• • •

• ••
• • •

• • •
• • •

0.0 0.5 1.0 1.5 2.0 2.5

1.00t

1.05t

1.10t

1.15t

Figure 3.2: The number of one-way function iterations required to resolve each
alarm for the perfect DP tradeoff, plotted in relation to the D̄msc value for the
parameters that were used. (test: dots; theory: line; N= 248; t̂ = 15 t).

modified version of the MD5 hash function that accepts inputs of fixed 48-bit

length was used as the one-way function. Recall that MD5 operates iteratively on

512-bit segments of its input. Since the length of our inputs was fixed, rather than

conforming precisely to the length-related padding scheme specified for MD5, we

placed the 48-bit input at the least significant end of a 512-bit block and filled the

remaining 464 bits with zeros, before applying the usual 4-round/64-step opera-

tions of the MD5. Likewise, the least significant 48 bits of the 128-bit MD5 output

were taken as the output of our one-way function. Note that this modified version

of the MD5 function will be also used for all experiments in Section 4.3

For each choice of →m0 and t, we created multiple perfect DP tables from
→m0 starting points. For each pre-computation table, we generated as many on-

line chains as was required to observe a sufficiently large number of alarms. For

each merge, the associated pre-computation chain was generated, up to the point

of merge, and the length of this chain segment was recorded. That is, the online

chain record technique, previously explained in Section 2.1.1, was used to termi-

nate the chain regeneration at the point of chain merge, rather than at the ending

point DP.

The results of our experiments, together with the predictions given by for-

mula (3.10), are summarized in Table 3.2. We have also plotted the experiment

data of Table 3.2 and the curve given by formula (3.10) in Figure 3.2. The test

54

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

Table 3.2: The number of one-way function iterations required to resolve each
alarm for various parameters. (N= 248; t̂ = 15 t).

parameters test formula test
formula

→m0 m t
D̄msc

1
t ×#(itr) 1

t ×Eq.(3.10)#(tbl) #(alarm) / tbl
3000 2766 131072

0.16882 1.02002 1.01977 1.00025
1280 10000

231000 209976 16384
0.20025 1.02354 1.02314 1.00039

128 30000
17000 15230 65536

0.23239 1.02616 1.02650 0.99967
640 10000

48000 37354 65536
0.56998 1.05758 1.05713 1.00042

128 10000
12775 9843 131072

0.60077 1.05889 1.05956 0.99937
640 5000

870000 661405 16384
0.63077 1.06202 1.06187 1.00014

128 20000
1504000 1013856 16384

0.96689 1.08460 1.08483 0.99978
128 20000

99000 65884 65536
1.00531 1.08758 1.08715 1.00039

128 10000
6400 4223 262144

1.03101 1.08824 1.08867 0.99961
1280 10000

9400 5588 262144
1.36426 1.10606 1.10642 0.99967

1280 10000
156000 91761 65536

1.40016 1.10806 1.10814 0.99993
128 20000

2576000 1501280 16384
1.43173 1.10999 1.10962 1.00033

128 20000
217500 115580 65536

1.76361 1.12370 1.12377 0.99994
128 20000

3587000 1887750 16384
1.80030 1.12553 1.12519 1.00030

128 20000
14400 7512 262144

1.83398 1.12610 1.12647 0.99967
1280 10000

74000 35512 131072
2.16748 1.13818 1.13810 1.00007

128 10000
4845000 2307050 16384

2.20017 1.13976 1.13915 1.00054
128 20000

310000 146425 65536
2.23427 1.14000 1.14022 0.99981

128 20000

55

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

value given in each row of the table is an average obtained after creating “#(tbl)”-

many tables and generating, for each table, as many online chains as were re-

quired to obtain “#(alarm)/tbl”-many alarms. Each value computed through for-

mula (3.10) is very close to the average number of one-way function iterations re-

quired per alarm that was obtained experimentally. Also, after viewing Figure 3.2,

one can be confident that formula (3.10) will be quite accurate, at least for all

parameter choices satisfying 0 < D̄msc < 2.3.

3.2 Analysis of the Perfect Rainbow Tradeoff

In this section, we present information of the perfect rainbow tradeoff required

for comparison of tradeoff algorithms. Even though much of the material given

here have not appeared before in the form presented here, the technical core of

our complexity analyses were developed by previous works, and the arguments

and proofs of this section contain no new ideas. These certainly require some

work to obtain, but, given enough time, anyone with a full understanding of the

papers [24], [15], and [18] should be able to reproduce the claims of this section.

3.2.1 Online Efficiency

Unlike the perfect DP tradeoff case, the difficult parts of the complexity analysis

for the perfect rainbow tradeoff have already been done by previous works, and it

only remains to combine these.

Lemma 3.8. A non-perfect rainbow matrix created with m0 starting points is ex-

pected to contain 2m0
2+pRmsc

distinct ending points, where pRmsc =
m0t
N . Conversely,

given m, one must generate m0 = 2
2−p̄Rmsc

m chains, where p̄Rmsc =
mt
N , in order

for m to be the expected number of chains contained in the corresponding perfect

rainbow matrix.

Proof. Consider a non-perfect rainbow matrix created with m0 starting points. It

56

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

is known [6, 15] that the number of distinct points mi expected in the i-th column

of this matrix, satisfies
mi

N
=

1
N
m0

+ i
2

,

for each 0≤ i≤ t. Setting i = t gives the number of distinct ending points

mt =
N

N
m0

+ t
2

=
2m0

2+ m0t
N

,

which is the first claim of this lemma.

To obtain the second claim, it suffices to solve for m0 from the relation

m = mt =
2m0

2+ m0t
N

.

This is equivalent to

m0 =
2m

2− mt
N

,

which is the second claim.

Throughout this thesis,

m0 =
2

2− p̄Rmsc
m (3.14)

will always denote the number of starting points that are required to create a per-

fect rainbow table that is expected to contain m ending points. This is the value

of m0 that should be used by Algorithm 9, given the algorithm parameters m and t.

Let us discuss about an interesting situation, which we will refer to as the max-

imal perfect rainbow tradeoff, is when m0 = N. Since a larger number of starting

points bring about a larger number distinct ending points, this is when a perfect

rainbow table is of maximum size [6,24], assuming a fixed t. Substituting m0 =N

into the second equation in the proof of Lemma 3.8, we see that m = mt =
2N
2+t .

57

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

This implies an upper bound

p̄Rmsc ≤
2t

t +2
< 2 (3.15)

on the possible range of p̄Rmsc, with the possibility of p̄Rmsc reaching very close

to 2, for any practical t.

The pre-computation phase of a perfect rainbow tradeoff requires m0t` itera-

tions of the one-way function. As with the DP case, we define the pre-computation

coefficient for the perfect rainbow tradeoff to be p̄Rpc =
m0t`
N , so that the num-

ber of one-way function iterations required for the pre-computation phase be-

comes p̄RpcN. The following statement is a direct consequence of Lemma 3.8.

Proposition 3.6. The pre-computation coefficient of the perfect rainbow tradeoff

is

p̄Rpc =
2

2− p̄Rmsc

mt`
N

=
2 p̄Rmsc

2− p̄Rmsc
`.

The success probability of a perfect rainbow tradeoff may easily be stated [6]

as

p̄Rps = 1−
(

1− m
N

)t`
= 1− exp

(
− mt`

N

)
= 1− exp

(
− p̄Rmsc`

)
, (3.16)

and this shows that the choice of ` determines the matrix stopping constant

p̄Rmsc =−
ln(1− p̄Rps)

`
. (3.17)

One must adhere to, when selecting parameters that achieve a prescribed proba-

bility of success. However, according to (3.15), the number of tables must satisfy

` >−1
2

ln(1− p̄Rps). (3.18)

That is, to achieve a given success probability p̄Rps, the number of tables one must

use is lower bound by (3.18). No set of parameters that uses a smaller number of

58

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

tables can achieve the desired success probability.

Using Proposition 3.6, we can restate the probability of success (3.16) as fol-

lows.

Proposition 3.7. The success probability of the perfect rainbow tradeoff is

p̄Rps = 1− exp
(
− 2− p̄Rmsc

2
p̄Rpc

)
.

The time memory tradeoff curve of the perfect rainbow tradeoff is obtained

straightforward from existing works.

Theorem 3.2. The time memory tradeoff curve for the perfect rainbow tradeoff is

T M2 = p̄RT M2N2, where the tradeoff coefficient is

p̄RT M2 =
(
p̄Rmsc`−

p̄Rmsc
2

+ `−2+
3
2`

)
−
(p̄R2

msc`

4
+ p̄Rmsc`

2− p̄Rmsc`+ p̄Rmsc + `−2+
3
2`

)
e−p̄Rmsc`.

Proof. According to [15], the expected number of one-way function iterations

required to generate the online chain is

`
{

1− (1+ p̄Rmsc`)e
−p̄Rmsc`

}(t
p̄Rmsc`

)2
,

and that required to resolve alarms is1

{p̄Rmsc

(
`− 1

2

)
−
(

2− 3
2`

)}
+
{(

2− 3
2`

)
+ p̄Rmsc(`−1)− p̄R

2
msc`

4

}
e−p̄Rmsc`

(t
p̄Rmsc`

)2
.

The time complexity T is the sum of these two terms.

As with the DP tradeoff, the storage complexity associated with ` tables, each

containing m entries is M = m`. The complexities T and M can be combined and

easily simplified to arrive at the claimed statement.

1The single ecR appearing in [15, p.312] should be corrected to ecR`.

59

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

3.2.2 Storage Optimization

As was with the perfect DP tradeoff in Section 3.1.2, a single starting point for the

perfect rainbow tradeoff can be recorded in logm0 bits, and (3.14) shows how this

compares with logm. However, unlike the DP case, since p̄Rmsc may take values

that are very close to 2, there is the possibility of logm0 being much larger than

logm.

A hint for resolving this problem comes from the derivation process of (3.15),

which shows that p̄Rmsc being close to 2 is associated with an unrealistically large

amount of pre-computation as much as the dictionary attack. In any real-world

situation, there will be a bound on the pre-computation cost one is willing to

invest. So, let us combine Proposition 3.6 and (3.17), and consider a somewhat

arbitrary bound of

p̄Rpc =
2

2− p̄Rmsc

{
− ln(1− p̄Rps)

}
≤ 20, (3.19)

on the pre-computation coefficient. Unless the requirement on the success rate is

unrealistically small, this gives a reasonably small bound on the coefficient 2
2−p̄Rmsc

of (3.14), so that logm will be similar to logm0. This shows that, for any practical

situation, it suffices to allocate slightly more than logm bits of storage to each

starting point.

One side effect of (3.19) is that it implies the bound p̄Rps ≤ 1− 1
e20 on the suc-

cess probability one can consider. However, a success probability that is arbitrar-

ily close to 1 cannot be achieved without enormous amount of pre-computation.

Thus, since 99.999999% < 1− 1
e20 , the above bound on the success probability

will not make a problem to execute the perfect rainbow tradeoff and also the an-

other implied bound on the success probability is essentially meaningless for even

a moderately large bound on the pre-computation cost.

The ending point truncation technique is the subject of our next discussion.

Unlike the case of the perfect DP tradeoff which truncated only for the DPs, end-

60

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

ing points may take any form with the rainbow tradeoff, so we now consider the

truncation of any point from N . We will reuse the terms truncation map and trun-

cated space that were previously introduced in Section 3.1.2. As was with the DP

case, truncation may cause two ending points of a perfect rainbow table to become

indistinguishable, and the following lemma, in a similar sense with Lemma 3.6,

solves this problem.

Lemma 3.9. Consider a truncation map with a truncated space of size r� N.

When m = O(r) distinct ending points are truncated, we can expect to obtain

r
{

1− exp(−m
r)
}

distinct truncated points. Conversely, given r > m, one must

truncate r ln
(r

r−m

)
distinct ending points in order for m to be the expected number

of distinct truncated points.

The example values that were given below Lemma 3.6 are still valid for the

perfect rainbow tradeoff. That is, truncation of 1.01596m ending points will give

m distinct truncated points, when r = 25m. Hence, the effects of ending point

truncation on pre-computation cost and success probability can be suppressed to

an ignorable degree by the use of an r such that logr = ε + logm for some small

positive integer ε .

Analogous to the DP case, if required, one can work with (3.14) to find the

correct m0 value one must use in order to collect the slightly larger number of

pre-computation chains that do not merge into each other. Note that our previous

discussion of how p̄Rmsc is sufficiently bounded away from 2, in practice, implies

that the non-linearity hidden within p̄Rmsc will not cause too much disturbance. In

particular, our claim of each starting point requiring logm0 ≈ logm bits of storage

remains valid even if one wants to account for the small loss of pre-computation

chains experienced through the truncation of ending points.

The effect of truncation on the online time is considered next.

Lemma 3.10. Consider a truncation map with a truncated space of size r. Assume

that r� N and that r has been chosen to be large enough for the occurrences of

61

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

indistinguishable ending points caused by truncations to be sufficiently limited.

Then, during the online phase of the perfect rainbow tradeoff, one can expected

to observe
(
p̄Rmsc`

2− p̄Rmsc`+
p̄Rmsc

2
− `+2− 3

2`

)
+
(p̄R2

msc`

4
− p̄Rmsc`+ p̄Rmsc + `−2+

3
2`

)
e−p̄Rmsc`

m
r

(t
p̄Rmsc`

)2

extra one-way function invocations induced by truncation-related alarms.

Proof. Consider the non-perfect rainbow matrix created with m0 =
2m

2−p̄Rmsc
start-

ing points and let mi (0 ≤ i ≤ t) denote the number of distinct points expected in

the i-th column of this matrix as before. Next, consider the online chain created

at the i-th online iteration for the corresponding pre-computation table, i.e., the

online chain of length i, starting from the correct inversion target pre-image. Note

that this online chain will merge into the perfect rainbow matrix if and only if it

merges into the non-perfect rainbow matrix. Treating the online chain as a random

walk, the probability for this chain not to merge into the perfect rainbow matrix

can be written as ∏
i
j=0
(
1− mt− j

N

)
.

On the other hand, assuming that r is large enough for the m truncated ending

points to be distinct, the probability for the truncation of the ending point for the

online chain that did not merge into the perfect matrix to colide one of the m

truncated ending points is m
r . Hence, the probability for an online chain of length i

to bring about a truncation-related false alarm is

m
r

i

∏
j=0

(
1−

mt− j

N

)
=

m
r

N
m0

+ t−i−1
2

N
m0

+ t
2

N
m0

+ t−i−2
2

N
m0

+ t−1
2

Here, one must substitute mi
N =

(
N
m0

+ i
2

)−1, which may be found in [6, 15], to

62

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

obtain the equality. This may be approximated and further simplified to

m
r

(N
m0

+ t−i
2

N
m0

+ t
2

)2
=

m
r

(
1−

i
2

N
m0

+ t
2

)2
=

m
r

(
1− 1

2N
m0t +1

i
t

)2
=

m
r

(
1− p̄Rmsc

2
i
t

)2
,

where the final equality results from the substitution of m0, as given by (3.14).

Now, i-th online iterations for all ` pre-compuataion tables are processed i.e.

the ` online chains of length i are generated if and only if all ` chains of length

strictly smaller than i did not return the correct answer to the inversion problem,

and this happens with probability
(
1− m

N

)`(i−1). Since each alarm from and online

chain of length i requires (t− i) iterations of the one-way function from the corre-

sponding starting point to resolve, the expected number of extra one-way function

iterations induced by truncation-related alarms can be written as

`
t

∑
i=0

(t− i)
m
r

(
1− p̄Rmsc

2
i
t

)2(
1− m

N

)`(i−1)
.

Rewriting this in the form

t2`
m
r

t

∑
i=0

(
1− i

t

)(
1− p̄Rmsc

2
i
t

)2
exp
(
− mt`

N

i−1
t

) 1
t
,

we can see that, unless t is very small, the expected extra cost can be approximated

by the definite integral

t2`
m
r

∫ 1

0
(1−u)

(
1− p̄Rmsc

2
u
)2

exp
(
− p̄Rmsc`u

)
du.

Claimed formula can be obtained by explicit computation of this definite integral.

Recall that the total online time, without ending point truncation, was given

during the proof of Theorem 3.2. Comparing the complexity with what is given by

Lemma 3.10, it is straightforward to express the effects of ending point truncation

63

CHAPTER 3. PERFECT TABLE TRADEOFF ALGORITHMS

on the total online time.

Proposition 3.8. Suppose that the online phase of a perfect rainbow tradeoff im-

plementation that stores each ending point in full requires T iterations of the one-

way function to complete. Consider a truncation map for which the truncated

space is of size r = 2εm� N. If ε is large enough for the occurrences of indistin-

guishable ending points caused by truncations to be ignored, then the implemen-

tation with the ending point truncation requires

−
(3

2` −2+ `− p̄Rmsc
(1

2 − `+ `2
))

+
(3

2` −2+ `+ p̄Rmsc
(
1− `+

p̄Rmsc`
4

))
e−p̄Rmsc`(3

2` −2+ `− p̄Rmsc
(1

2 + `
))
−
(3

2` −2+ `+ p̄Rmsc
(
1− `+ `2 +

p̄Rmsc`
4

))
e−p̄Rmsc`

T
2ε

additional iterations of the one-way function to complete.

For parameters satisfying p̄Rmsc = 1 and `= 1, the claim is that 0.774568 T
2ε ad-

ditional one-way function iterations are expected due to truncation-related alarms.

At ε = 5, this is 0.0242052T , which implies a 2.42% increase in online time due

to ending point truncation.

Let us gather the information about the storage optimization for the perfect

rainbow tradeoff. Each starting point can be recorded in slightly more than logm

bits. Each ending point can be truncated to slightly more than logm bits with little

effect on the success probability, pre-computation cost, and online time. The index

file technique can be used to remove almost logm further bits per ending point

without any loss of information. In all, storage of each starting point and ending

point pair requires a little more than logm bits. Even though this is identical to

the conclusion obtained in [18] for the non-perfect rainbow tradeoff, those inner

workings are different so that the analysis had to be repeated here for the perfect

rainbow tradeoff.

64

Chapter 4

Perfect Parallel DP Tradeoff

In this chapter, a full analysis of the perfect parallel DP p̄D tradeoff, which is a

mainly interesting tradeoff algorithm in this work and was described in Section

2.1.1, will be provided. As mentioned before, in a recent talk [26], it is announced

that the p̄D tradeoff outperforms the perfect rainbow tradeoff based on experimen-

tal results. The claim can be verified, utilizing the information gathered in this

section.

4.1 Online Efficiency

The goal of this section is to obtain the computational complexity of the p̄D trade-

off. Note that the only difference with the perfect DP tradeoff which analysis was

presented in Section 3.1, is in the order of operations executed during their online

phases. Hence, many formulas known for the perfect DP tradeoff hold true for the

p̄D tradeoff, when D̄msc and D̄ps are replaced by p̄Dmsc and p̄Dps, respectively.

Note that one can rewrite the pre-computation coefficient D̄pc as the following

formula

D̄pc =−
p̄Dmsc

2

(
1+

p̄Dmsc
2

) ln(1− p̄Dps)

ln(1+ p̄Dmsc
2)

, (4.1)

by combining Proposition 3.1, (3.7), and Proposition 3.3. Because of its frequent

65

CHAPTER 4. PERFECT PARALLEL DP TRADEOFF

appearances within this section, we will often use the shorthand notation

p̄Dln =−
ln(1− p̄Dps)

ln(1+ p̄Dmsc
2)

. (4.2)

For example, we can write D̄pc =
p̄Dmsc

2 (1+ p̄Dmsc
2)p̄Dln. We can also combine (3.3),

(4.1), and D̄pc =
m0tl
N to write the interesting relation

`=
p̄Dln

2
t, (4.3)

which must be satisfied by the parameters if the success rate of p̄Dps is to be

achieved.

We can now start our analysis of the online execution behavior of the p̄D trade-

off with a technical lemma. The lemma will be justified in Section 4.3.

Lemma 4.1. The probability for the inverse p of an inversion target h = F(p) not

to be found until the i-th online iteration step of the p̄D tradeoff is

{
1+

p̄Dmsc
2

(1− e−
i
t)
}−p̄Dln

.

Proof. Note that the (i+1)-th step creates a chain of length i+1, under our con-

vention for the unknown answer to be included in stating the chain length. Con-

sider the ` perfect DP matrices as having been aligned on their ending points.

The correct answer p cannot be found until the i-th online iteration step of the p̄D

tradeoff if and only if none of these DP matrices contain the correct input p to the

inversion target in all their columns of distances at most i from the ending points.

The probability for this event to occur is

(
1−

∑
i
j=1

←
m̄ j

N

)`
= exp

(
− `

N

i

∑
j=1

←
m̄ j

)
, (4.4)

where
←
m̄ j is the number of points that appear in a column of distance j from the

66

CHAPTER 4. PERFECT PARALLEL DP TRADEOFF

ending points in a perfect DP matrix.

Noting that all points of a perfect DP matrix are distinct, we can count the

points according to rows, rather than in columns, to write

i

∑
j=1

←
m̄ j = #

 chains of length > i

in perfect DP matrix

 · i+ i

∑
k=1

#
 chains of length k

in perfect DP matrix

 · k.
It is argued within the proof of Proposition 3.3 that a perfect DP matrix created

from m0 starting points is expected to contain

→m0

(
1− 1

t

)k−1 1
t

{
1+

p̄Dmsc
2

←mk

m
(e

k
t −1)

}−2

chains of length k, and we can observe that

#
 chains of length > i

in perfect DP matrix

= m−#
 chains of length ≤ i

in perfect DP matrix

 .

Using these facts, we can write the formula

i

∑
j=1

←
m̄ j = m · i− →m0

i

∑
k=1

(
1− 1

t

)k−1 i− k
t

{
1+

p̄Dmsc
2

←mk

m
(e

k
t −1)

}−2
,

and after applications of (3.3) and (3.6), this becomes

i

∑
j=1

←
m̄ j = m · i−mt

(
1+

p̄Dmsc
2

)∫ i
t

0
e−x
(i

t
− x
){

1+
p̄Dmsc

2
(1− e−x)

}−2
dx

= mt
2

p̄Dmsc
ln
(

1+
p̄Dmsc

2
(1− e−

i
t)
)
.

It now suffices to substitute this into (4.4) and then apply (4.3) to arrive at the

claimed formula.

Above lemma helps us to obtain an online computational complexity, which

consists of two components, that is, online chain creations and alarm resolving

process.

67

CHAPTER 4. PERFECT PARALLEL DP TRADEOFF

Proposition 4.1. For the p̄D tradeoff, the expected number of F-iterations required

to generate the online chains is

t2
∫

∞

0

p̄Dln
2

{
1+

p̄Dmsc
2

(1− e−x)
}−p̄Dln

e−x dx (4.5)

= t2× p̄Dln
p̄Dmsc(p̄Dln−1)

{
1−
(

1+
p̄Dmsc

2

)1−p̄Dln
}
. (4.6)

Proof. The (i+ 1)-th iteration for any pre-computation table is executed if and

only if its online chain had not yet reached a DP and none of the DP matrices

contain the correct input to the inversion target in their columns at distances at

most i from the ending points. Although the two events that were just mentioned

are not strictly independent, since ` is quite large in any practical situation, using

Lemma 4.1, we can state

(
1− 1

t

)i{
1+

p̄Dmsc
2

(1− e−
i
t)
}−p̄Dln

(4.7)

as a good approximation of the probability for these events to occur.

The number of function iterations under consideration can now be written as

`
∞

∑
0

(
1− 1

t

)i{
1+

p̄Dmsc
2

(1− e−
i
t)
}−p̄Dln

= `t
∫

∞

0
e−x
{

1+
p̄Dmsc

2
(1− e−x)

}−p̄Dln
dx.

The stated formula can be obtained by applying (4.3) and explicitly computing

the definite integral.

Unfortunately, based on experimental evidences, we claim that, when an alarm

occurs at the i-th onlne chain walk associated with a perfect table under focus,

t× D̄cr

(
1 +

0.615 p̄D
25
36
msc (1+ p̄Dmsc)

0.8

2+ p̄Dmsc

(
1− e−

2.495+3.538ln(1+5p̄Dmsc)
20.749 (i

t)
1.1
))2

(4.8)

F-invocations are required to resolve the alarm. We will later show in Section

68

CHAPTER 4. PERFECT PARALLEL DP TRADEOFF

4.3 that, this claim is quite credible for a sufficiently wide range of parameters m

and t, which covers almost all parameter combinations of interest in a theoretical

approach. As was emphasized in Section 3.1, we are not claiming formula (4.8)

to be correct in any theoretical sense. Note that, it is an interesting fact that an

alarm produced by very short online chain requires approximately D̄crt iterations

to resolve the alarm. We know from (3.9) that D̄crt is an average chain length

of a perfect DP matrix. This fact would seem to make sense, because the online

chain record technique, described in Section 2.1.1, do not quite work on very

short online chain so that the corresponding pre-computation chain in the perfect

DP table is fully regenerated,

Proposition 4.2. The online phase of the p̄D tradeoff is expected to require

t2 p̄DlnD̄cr

2

∫
∞

0

{
1+

p̄Dmsc
2

(1− e−x)
}−p̄Dln

e−x (1− e−p̄Dmscx) (4.9)

×
(

1 +
0.615 p̄D

25
36
msc (1+ p̄Dmsc)

0.8

2+ p̄Dmsc

(
1− e−

2.495+3.538ln(1+5p̄Dmsc)
20.749 x1.1

))2
dx

(4.10)

invocations of the one-way function in relation to resolving of possible alarms.

Proof. In a similar manner with the proof of [16, Lemma 3], let us focus on a sin-

gle perfect DP table among ` perfect tables. We already know that the probability

for the i-th online chain walk step of the table to be executed is written as (4.7),

replacing i by (i−1). From this fact, one can write the probability for the online

chain of the table to reach a DP at the i-th online iteration of p̄D tradeoff as

{
1+

p̄Dmsc
2

(1− e−
i−1

t)
}−p̄Dln

(
1− 1

t

)i−1 1
t
. (4.11)

Now, let us find a probability of an alarm to occur by the ending point DP of

this online chain of length i. By definition of ←mk and Dk, this probability can be

69

CHAPTER 4. PERFECT PARALLEL DP TRADEOFF

written as

←mi

|Di|
+
(

1−
←mi

|Di|

) ←mi−1

|Di−1|
+
(

1−
←mi

|Di|

)(
1−

←mi−1

|Di−1|

) ←mi−2

|Di−2|

+ · · ·+
(

1−
←mi

|Di|

)(
1−

←mi−1

|Di−1|

)
· · ·
(

1−
←m1

|D1|

) ←m0

|D0|
. (4.12)

Details to derive this formula are explained below. Since the online chain met

a DP, we’re aware of how far each node of the online chain away from the DP,

so that each online node should be treated as an element of a certain set Dk for

some k, rather than an entire space N . An alarm occurs if and only if there ex-

ists an unique k (1 ≤ k ≤ i) such that the online node, k iterations away from

the online DP, meets one of chain in a non-perfect DP matrix for the first time.

At this time, firstly merging online node must meet a pre-computed point in a

column, which position is the same amount of iterations far away from the DPs.

Furthermore, an each event for an online chain to meet a pre-computation chain

in a non-perfect matrix at a particular position for the first time is independent

on its merging position. Thus, a desired probability can be obtained by adding

probabilities of those events to occur for all position. For each online node k

iterations away from an online DP (1 ≤ k ≤ i), a probability for preceding on-

line nodes not to merge with pre-computation chains in a non-perfect matrix is

(1−
←mi
|Di|)(1−

←mi−1
|Di−1|) · · ·(1−

←mk+1
|Dk+1|), and a probability of this online node to merge

with non-perfect DP matrix is
←mk
|Dk| , so that a probability for an online chain k iter-

ations away from the online DP to merge with the non-perfect DP matrix for the

first time is (1−
←mi
|Di|)(1−

←mi−1
|Di−1|) · · ·(1−

←mk+1
|Dk+1|)

←mk
|Dk| . Combining these probabilities

for all k (1≤ k ≤ i), one can arrive at the desired formula (4.12).

By (3.6) and (3.8), for all k,
←mk
|Dk| =

p̄Dmsc
t . Hence, (4.12) can be written as

i

∑
k=0

(
1− p̄Dmsc

t

)k p̄Dmsc
t

= 1−
(

1− p̄Dmsc
t

)i+1

≈ 1− exp
(
− p̄Dmsc

i+1
t

)
. (4.13)

70

CHAPTER 4. PERFECT PARALLEL DP TRADEOFF

Combining this formula with (4.11), a probability of an alarm to occur at the

i-th online chain walk step of a perfect table under focus is

{
1+

p̄Dmsc
2

(1− e−
i−1

t)
}−p̄Dln

{
1− exp

(
− p̄Dmsc

i+1
t

)}
e−

i−1
t

1
t
. (4.14)

Still, events corresponding to (4.11) and (4.12) are not strictly independent, since

` is quite large in any practical situation, we can multiply two probabilities with

negligible error. Accuracy of the formula (4.14) will be verified experimentally in

Section 4.3.

Now, multiplying (4.8) to this, adding that for all i and then changing into an

integral form, we can obtain the expected number of F invocations to resolving a

possible alarm associated with a perfect table under focus as the following formula

t D̄cr

∫
∞

0

{
1+

p̄Dmsc
2

(1− e−x)
}−p̄Dln

e−x (1− e−p̄Dmscx)

×
(

1 +
0.615 p̄D

25
36
msc (1+ p̄Dmsc)

0.8

2+ p̄Dmsc

(
1− e−

2.495+3.538ln(1+5p̄Dmsc)
20.749 x1.1

))2
dx.

Finally, we can arrive at the desired formula by multiplying ` to this and applying

(4.3)

Now, combining Proposition 4.1 and Proposition 4.2, we can obtain the time

memory tradeoff coefficient p̄DT M2 , the measure of how efficient tradeoff algo-

rithm is, for the p̄D tradeoff.

Theorem 4.1. The time memory tradeoff curve for the p̄D tradeoff is T M2 =

p̄DT M2N2, where the tradeoff coefficient is given by

p̄DT M2 =
∫

∞

0

{ln(1− p̄Dps)}2

D̄2
cr

p̄Dln
2

{
1+

p̄Dmsc
2

(1− e−x)
}−p̄Dln

e−x

×


1+ D̄cr (1− e−p̄Dmscx)

(
1 +

0.615 p̄D
25
36
msc (1+ p̄Dmsc)

0.8

2+ p̄Dmsc

×
(

1− e−
2.495+3.538ln(1+5p̄Dmsc)

20.749 x1.1
))2

 dx.

71

CHAPTER 4. PERFECT PARALLEL DP TRADEOFF

Proof. The tradeoff curve of the p̄D tradeoff is direct consequences of Proposition

4.1, Proposition 4.2 and the fact that the pre-computation tables contain M = m`

entries in total. In order to derive the claimed formula, one can use the relation
mt`
N =

− ln(1−p̄Dps)

D̄cr
by (3.3) and (4.1).

We emphasize that Proposition 4.2 and Theorem 4.1 rely on the empirical

result (4.8). Hence, both claims should be understood as practical formulas, not

theoretically correct formulas.

4.2 Storage Optimization

As for any other DP variants algorithm, the effects of ending point truncation

are need to be discussed. However, since the analysis is very similar to that of

the perfect DP tradeoff, we quickly review Section 3.1.2 and omit the detailed

explanation.

The effect of truncating ending points on increasing pre-computation cost to

produce a perfect table is identical with that of the perfect DP tradeoff, so that

Lemma 3.6 and its ignorable level, presented below the lemma, can be applied

to the case of the p̄D tradeoff. Moreover, in a similar way to prove Lemma 3.7,

one can compute the number of extra one-way function invocations induced by

truncation-related alarms for the p̄D tradeoff.

Lemma 4.2. Consider a truncation map with a truncated space of size r. Assume

that the truncated space is much smaller than the DP space and that r has been

chosen to be large enough for the occurrences of indistinguishable ending points

caused by truncations to be sufficiently limited. Then the number of extra one-way

function invocations induced by truncation-related alarms is expected to be

t2 m
r

p̄Dln
p̄Dmsc

ln
(

1+
p̄Dmsc

2

) ∫ ∞

0

{
1+

p̄Dmsc
2

(1− e−x)
}−p̄Dln

e−(1+p̄Dmsc)x dx,

during the full processing of the p̄D tradeoff.

72

CHAPTER 4. PERFECT PARALLEL DP TRADEOFF

Proof. Let us quickly sketch a proof. The proof is very similar with the proof of

Lemma 3.7. The probability for an online chain of a perfect table under focus

to become a DP chain of length i and not merge into the perfect DP matrix, but

have a truncated ending point that coincides with a truncated ending point can be

written as

{
1+

p̄Dmsc
2

(1− e−
i−1

t)
}−p̄Dln

(
1− 1

t
− |DM|

N

)i−1(1
t
− m

N

)m
r
,

when a truncated space is of size r. Recall that the expression
{

1 +
p̄Dmsc

2 (1−
e−

i−1
t)
}−p̄Dln from Lemma 4.1 presents the probability for the algorithm not to

return the correct answer until (i−1)-th online iteration. Summation of this over

all i can be interpreted as the definite integral unless t is extremely small, and it

presents the probability for an online chain creation of a perfect table under focus

to produce a truncation-related alarm.

As was the perfect DP tradeoff, a truncation-related alarm requires iterations

of the one-way function to resolve this false alarm as much as the average length

of chains in a perfect DP matrix.

Multiplying the above formula with the average chain length (3.9) and the

number of tables `, and then combining this with (4.3), we arrive at the claim.

Now, one can realize that the number of extra one-way function invocations

induced by truncation-related alarms, when the p̄D tradeoff is fully processed, is

of order t2 m
r ·Θ(1).

Recall that the sum of formulas in Proposition 4.1 and Proposition 4.2 ex-

presses the normal expected number of F-iterations required for execution of the

online phase of the p̄D tradeoff before ending point truncation. The next proposi-

tion expresses the effects of ending point truncation on the total online time. For

example, with p̄Dmsc = 2 and r = 25m, if assume that `= 3.32 t is used to achieve

99% success probability at this p̄Dmsc value, the expected numbers of normal it-

erations and truncation-related iterations become 0.734478t2 and 0.276592 1
32t2,

73

CHAPTER 4. PERFECT PARALLEL DP TRADEOFF

respectively. Thus, the ending point truncation increases the number of one-way

function iterations by a mere 1.1%.

Proposition 4.3. Suppose that the online phase of a p̄D tradeoff implementation

that stores each ending point in full requires T iterations of the one-way function

to complete. Consider a truncation map for which the truncated space is of size

r = 2εm� N. If ε is large enough for the occurrences of indistinguishable end-

ing points caused by truncations to be ignored, then the implementation with the

ending point truncation requires

p̄Dln
p̄Dmsc

ln
(

1+ p̄Dmsc
2

) ∫
∞

0

{
1+ p̄Dmsc

2 (1− e−x)
}−p̄Dln

e−(1+p̄Dmsc)x dx
1
t2 ((4.5)+ (4.9))

T
2ε

additional iterations of the one-way function to complete.

For parameters satisfying p̄Dmsc = 2 and ` = 3.32 t, the above is 0.376583 T
2ε .

This implies that, for parameters of interest, a small ε is enough to keep the neg-

ative effects of ending point truncation on the online time to a reasonably small

level.

In all, the starting point can be stored using slightly more than logm bits.

Ending point DPs can be truncated so that a little more than logm bits of in-

formation is retained with very little negative effect on the success probability,

pre-computation cost, and online time. The index file technique can be used to

remove almost logm further bits per ending point without any loss of information.

In conclusion, storage of each starting point and ending point pair requires a little

more than logm bits. This was also the conclusion obtained for the previous two

DP tradeoff algorithms and the original DP tradeoff, analyzed in [18].

74

CHAPTER 4. PERFECT PARALLEL DP TRADEOFF

4.3 Experiment Results

We have verified the correctness of major parts of our complexity analysis with

experiments. Throughout this section, we use the modified version of the MD5

hash function, that was described in Section 3.1.3, as the one-way function. We

always set the moderately large chain length bound of t̂ = 15t.

The first experiment was designed to verify (4.7) and (4.14) simultaneously.

Recall that both are deeply related to computing the online complexity of the p̄D

tradeoff. More precisely, replacing i in (4.7) by i− 1, it presents a probability

for the i-th online chain walk to be executed, and (4.14) presents a probability of

alarm to occur at the i-th online iteration of a pre-computation perfect table under

focus, during the fully processing of the p̄D tradeoff.

We have observed when N = 235 and 237. After fixing suitable parameters
→m0, t, and `, which directly determines p̄Dln =

2`
t , we can expect the average num-

ber of entries in a perfect table from (3.3), and hence p̄Dmsc. We first generated `

perfect DP tables from →m0 starting points. Then we generated suitably many in-

version targets for each parameter set, and for each inversion target, a entire p̄D

tradeoff, described in Section 2.1.1, was processed. During the process, we sep-

arately counted and recorded, whenever a single chain walk to create an online

chain of a perfect table invoked and its iteration produced alarm, together with

corresponding online chain length i (1 ≤ i ≤ t̂). These first and second records

divided by `× (# of targets) are taken as test values which verify (4.7) and (4.14),

respectively.

The test results are provided by Figure 4.1 and Figure 4.2 for various param-

eter sets. For each graph box in Figure 4.1, the probability (y-axis) for the i-th

online chain walk of a pre-computation table under focus to be preformed during

a full process of the p̄D tradeoff is given for each chain length i (x-axis). Lines cor-

respond to our theory, as given by (4.7), and dots represent the counted test value

associated with each chain length, obtained through tests, divided by number of

75

CHAPTER 4. PERFECT PARALLEL DP TRADEOFF

N=235, m0=3200, m=2112, t=4096, pHln=2

msc=1.031, # of targets = 5000

0 t 2t 3t 4t 5t 6t 7t
0.0

0.2

0.4

0.6

0.8

1.0 N=235, m0=5000, m=2919, t=4096, pHln=2

msc=1.425, # of targets = 5000

0 t 2t 3t 4t 5t 6t 7t
0.0

0.2

0.4

0.6

0.8

1.0

N=235, m0=7000, m=5291, t=2048, pHln=4

msc=0.646, # of targets = 5000

0 t 2t 3t 4t 5t 6t 7t
0.0

0.2

0.4

0.6

0.8

1.0 N=235, m0=7000, m=5291, t=2048, pHln=8

msc=0.646, # of targets = 5000

0 t 2t 3t 4t 5t 6t 7t
0.0

0.2

0.4

0.6

0.8

1.0

N=237, m0=7000, m=3685, t=8192, pHln=2

msc=1.799, # of targets = 10000

0 t 2t 3t 4t 5t 6t 7t
0.0

0.2

0.4

0.6

0.8

1.0 N=237, m0=12300, m=8198, t=4096, pHln=2

msc=1.001, # of targets = 10000

0 t 2t 3t 4t 5t 6t 7t
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.1: Probability for the i-th online chain walk of a pre-computation ta-
ble during the entire process of the p̄D tradeoff to be executed (test:dots; the-
ory:line; t̂ = 15t).

76

CHAPTER 4. PERFECT PARALLEL DP TRADEOFF

N=235, m0=3200, m=2112, t=4096, pHln=2

msc=1.031, # of targets = 5000

0 t 2t 3t 4t 5t 6t 7t
0

0.00001

0.00002

0.00003

0.00004 N=235, m0=5000, m=2919, t=4096, pHln=2

msc=1.425, # of targets = 5000

0 t 2t 3t 4t 5t 6t 7t
0

0.00001

0.00002

0.00003

0.00004

N=235, m0=7000, m=5291, t=2048, pHln=4

msc=0.646, # of targets = 5000

0 t 2t 3t 4t 5t 6t 7t
0

0.00001

0.00002

0.00003

0.00004

0.00005
N=235, m0=7000, m=5291, t=2048, pHln=8

msc=0.646, # of targets = 5000

0 t 2t 3t 4t 5t 6t 7t
0

5.×10-6

0.00001

0.000015

0.00002

0.000025

0.00003

0.000035

N=237, m0=7000, m=3685, t=8192, pHln=2

msc=1.799, # of targets = 10000

0 t 2t 3t 4t 5t 6t 7t
0

5.×10-6

0.00001

0.000015

0.00002

0.000025 N=237, m0=12300, m=8198, t=4096, pHln=2

msc=1.001, # of targets = 10000

0 t 2t 3t 4t 5t 6t 7t
0

0.00001

0.00002

0.00003

0.00004

Figure 4.2: The probability of alarm to occur at the i-th iteration of a pre-
computation table during the entire process of the p̄D tradeoff (test:dots; the-
ory:line; t̂ = 15t).

77

CHAPTER 4. PERFECT PARALLEL DP TRADEOFF

tables `. For each graph box in Figure 4.2, the probability (y-axis) of occurring

alarm at the i-th iteration of a table under focus during the entire process of the p̄D

tradeoff is given for each chain length i (x-axis). Lines correspond to our theory,

as given by (4.14), and the corresponding count ratios obtained through tests are

plotted as dots. Even though our chain length bound was t̂ = 15 t, we have dis-

played the data only for chain lengths less than approximately 7t. Furthermore, in

each box, we only plotted approximately 1000 dots, since densely packing all 7t

dots into each box made the graphs harder to comprehend.

The experimental data agrees well with our theory in all the boxes in Fig-

ure 4.1 and Figure 4.2. Notice that the test results are less reliable at the large

chain lengths. This is because longer DP chains appeared less frequently and these

large chain length data were obtained from a smaller number of chains as like for

the perfect DP tradeoff in Section 3.1.3. A much larger number of DP matri-

ces would need to be generated to obtain meaningful test values at lengths much

larger than 7t.

Our final experiment measured the cost of regenerating the pre-computation

chain to deal with an alarm, produced by an online chain of each length, and we

claimed that the test values are close to our prediction formula (4.8). Likewise,

the modified version of the MD5 hash function is also regarded as an one-way

function for this experiments.

After choosing →m0 and t, we created multiple perfect DP tables from →m0 start-

ing points. Then from (3.3), we can expect the number of table entry m, consisted

in a perfect DP matrix, and so can p̄Dmsc. For each pre-computation table, we

generated as many online chains as was required to observe a sufficiently large

number of alarms. For each merge, the associated pre-computation chain was gen-

erated, up to the point of merge, that is referred to as the online chain records,

previously explained in Section 2.1.1, and the length of this regenerating chain

segment was recorded.

This process looks familiar with the last experiments done in Section 3.1.3.

78

CHAPTER 4. PERFECT PARALLEL DP TRADEOFF

However, in these experiments, when an alarm occurs, the length of the regener-

ated pre-computation chain segment was recorded associated with length of the

online chain that produced the alarm. Also, the number of alarms was counted,

together with its online chain length. Then, the ratios obtained by dividing the

first cost-related record by the second count-related record, associated with each

online chain length are treated as our test value for verifying (4.8).

Our test results for each various parameter set, together with the predictions

given by formula (4.8), are provided in Figure 4.3. Even though our chain length

bound was t̂ = 15t, we have displayed the data only for chain lengths less than 8t.

A reasonable excuses for this will be presented later in this section. In each box,

we only plotted 1000 dots, since densely packing all 8t dots into each box made

the graphs harder to comprehend.

In each graph box in Figure 4.3, the number of one-way function iterations (y-

axis), divided by t, to resolve an alarm that occurs at each online chain walk step

(x-axis) is given. In addition, numbers of inversion targets and perfect DP tables

to be generated for each parameter set can be found. Each line plotted through for-

mula (4.8) is close to the average number of one-way function iterations required

per alarm associated to each online chain length that was obtained experimentally.

One can believe that formula (4.8) will be quite reliable, at least for all parame-

ter choices satisfying 0 < p̄Dmsc ≤ 2.4. However, it is possible that one can find

another even closer formula than ours (4.8).

As an additional justification for our claimed formula (4.8), one can newly

compute the number of F-invocations in relation to the resolving of a possible

alarm in a single perfect DP table, not considering parallel treatment of pre-

computation tables. Recall that it was already claimed in Proposition 3.4, which

accuracy was verified in Section 3.1.3. Combining the probability of an online

chain to meet a DP at the i-th iteration, (1− 1
t)

i−1 1
t with (4.13), the re-claimed

79

CHAPTER 4. PERFECT PARALLEL DP TRADEOFF

cost can be written as

t D̄cr

∫
∞

0
e−x (1− e−p̄Dmscx)

×
(

1 +
0.615 p̄D

25
36
msc (1+ p̄Dmsc)

0.8

2+ p̄Dmsc

(
1− e−

2.495+3.538ln(1+5p̄Dmsc)
20.749 x1.1

))2
dx.

(4.15)

Thus, we claim that the above expression (4.15) presents the same value as

the previously justified formula (3.11). Two formulas are plotted for matrix stop-

ping constant p̄Dmsc in Figure 4.4, simultaneously. In addition, for various p̄Dmsc,

calculated values from those two formulas are presented in Table 4.1. These two

comparisons between (3.11) and (4.15) assure us that claimed formula (4.8) can

be quite reliable at least for all parameter choices satisfying 0 < p̄Dmsc ≤ 4.0.

0 1 2 3 4
msc

0.2t

0.4t

0.6t

0.8t

iterations

Figure 4.4: The number of one-way function iterations in relation to the resolving

of a possible alarm in a single perfect DP table(Proposition 3.4: dots; (4.15): line).

Finally, let us explain reasons of plotting each graph in Figure 4.3 only for

chain lengths less than 8t to be acceptable. Long online DP chains, further, alarms

produced by long online chains appear less frequently by the already known prob-

ability (1−e−p̄Dmsc
i+1

t)e−
i−1

t 1
t from (4.13) Thus, the test results are less reliable at

the large chain lengths. Nevertheless, our test results of large chain length over 5t

are plotted in Figure 4.5, together with (4.8). As explained, since the number of

alarms related to long chains is very small, test values are scattered, but one can

80

CHAPTER 4. PERFECT PARALLEL DP TRADEOFF

Table 4.1: The number of one-way function iterations in relation to the resolving
of a possible alarm in a single perfect DP table for various p̄Dmsc.

p̄Dmsc
(4.15) Proposition 3.4 (4.15)

Proposition 3.41
t ×#(itr) 1

t ×#(itr)
0.2 0.17062 0.17052 1.00057
0.5 0.35026 0.35047 0.99941
0.8 0.47676 0.47737 0.99873
1.1 0.57138 0.57234 0.99833
1.4 0.64525 0.64641 0.99820
1.7 0.70478 0.70597 0.99832
2.0 0.75397 0.75500 0.99865
2.3 0.79545 0.79611 0.99916
2.6 0.83099 0.83112 0.99984
2.9 0.86188 0.86132 1.00065
3.2 0.88904 0.88764 1.00158
3.5 0.91317 0.91080 1.00261
3.8 0.93481 0.93134 1.00372
4.0 0.94804 0.94380 1.00450

expect that the desired cost would maintain a certain constant value for sufficiently

large online chain lengths. Our claimed formula (4.8) also has these properties and

each line in Figure 4.5 looks very similar to the test dots. But still, the formula is

doubtable.

m0=99000, m=65884, t=213

avg over 3840 perfect DP tbl

(msc=1.005)
5t 6t 7t 8t 9t 10t 11t 12t 13t 14t 15t

chain len0.0

0.5

1.0

1.5

2.0

2.5

3.0
(× t) iters.

m0=35150, m=21302, t=214

avg over 6400 perfect DP tbl

(msc=1.300)
5t 6t 7t 8t 9t 10t 11t 12t 13t 14t 15t

chain len0.0

0.5

1.0

1.5

2.0

2.5

3.0
(× t) iters.

Figure 4.5: The number of one-way function iterations required per each alarm

that occurs at the i-th online chain walk of a perfect DP table (test:dots; the-

ory:line; N= 242; t̂ = 15t; 5t ≤ i≤ 15t).

81

CHAPTER 4. PERFECT PARALLEL DP TRADEOFF

However, we claim that the cost for resolving possible alarms produced by

sufficiently long online chain has negligible effect on the entire cost required to

resolve alarms. More precisely, alarms produced by long online chains of length

over 8t are very rare, as seen in Figure 4.2 and (4.14), so that the corresponding

alarm-related cost can be ignored. In the Table 4.2, for various success require-

ments and matrix stopping constants, the ratios of cost for resolving a possible

alarm produced by online chain of length less than 8t, that is ∑
8t
i=1(4.14)×(4.8),

to total alarm-related cost, that is ∑
∞
i=1(4.14)×(4.8), are presented. At this time,

the alarm-related cost is focused on amount of requirements for the process of a

single fixed perfect DP table during a full execution of the p̄D tradeoff.

Moreover, one can easily plot the formulas ∑
8t
i=1 (4.14)×(4.8) and ∑

∞
i=1 (4.14)×

(4.8) as functions of p̄Dmsc, for each fixed success rate. We omit those graphs, be-

cause two plotted lines do agree each other, so that it is hard to distinguish those

for every success probability. Thus, we can safely conclude that the cost for resolv-

ing a possible alarm produced by long online chain over 8t during a full execution

of the p̄D tradeoff, can be ignored, so that it is enough to verify the accuracy of the

formula (4.8) only when 1≤ i≤ 8t.

82

CHAPTER 4. PERFECT PARALLEL DP TRADEOFF

Table 4.2: The ratios of cost for resolving a possible alarm produced by online
chain of length less than 8t to total alarm-related cost for various p̄Dps and p̄Dmsc,
focusing on the process of a single perfect DP table.

p̄Dps p̄Dmsc
∑

8t
i=1 (4.14)× (4.8)

∑
∞
i=1 (4.14)× (4.8)

p̄Dps p̄Dmsc
∑

8t
i=1 (4.14)× (4.8)

∑
∞
i=1 (4.14)× (4.8)

25% 0.2 0.99826 50% 0.2 0.99845
0.7 0.99903 0.7 0.99914
1.2 0.99920 1.2 0.99929
1.7 0.99926 1.7 0.99933
2.2 0.99928 2.2 0.99936
2.7 0.99929 2.7 0.99937
3.2 0.99930 3.2 0.99937
3.7 0.99930 3.7 0.99937
4.2 0.99930 4.2 0.99937
4.7 0.99930 4.7 0.99937

90% 0.2 0.99910 95% 0.2 0.99933
0.7 0.99951 0.7 0.99963
1.2 0.99960 1.2 0.99970
1.7 0.99962 1.7 0.99972
2.2 0.99963 2.2 0.99973
2.7 0.99964 2.7 0.99973
3.2 0.99963 3.2 0.99972
3.7 0.99963 3.7 0.99972
4.2 0.99963 4.2 0.99972
4.7 0.99962 4.7 0.99971

99% 0.2 0.99970 99.9% 0.2 0.99993
0.7 0.99984 0.7 0.99996
1.2 0.99987 1.2 0.99997
1.7 0.99987 1.7 0.99997
2.2 0.99988 2.2 0.99997
2.7 0.99988 2.7 0.99997
3.2 0.99987 3.2 0.99997
3.7 0.99987 3.7 0.99997
4.2 0.99987 4.2 0.99997
4.7 0.99986 4.7 0.99997

83

CHAPTER 4. PERFECT PARALLEL DP TRADEOFF

m0=7850, m=6543, t=214

avg over 5120 perfect DP tbl

(msc=0.399, # of targets = 100000)

0 t 2t 3t 4t 5t 6t 7t 8t
chain len0.0

0.5

1.0

1.5

2.0

2.5
(.t) iters.

m0=15500, m=11479, t=214

avg over 5120 perfect DP tbl

(msc=0.701, # of targets = 100000)

0 t 2t 3t 4t 5t 6t 7t 8t
chain len0.0

0.5

1.0

1.5

2.0

2.5
(× t) iters.

m0=99000, m=65884, t=213

avg over 3840 perfect DP tbl

(msc=1.005, # of targets = 50000)

0 t 2t 3t 4t 5t 6t 7t 8t
chain len0.0

0.5

1.0

1.5

2.0

2.5
(× t) iters.

m0=35150, m=21302, t=214

avg over 6400 perfect DP tbl

(msc=1.300, # of targets = 100000)

0 t 2t 3t 4t 5t 6t 7t 8t
chain len0.0

0.5

1.0

1.5

2.0

2.5
(× t) iters.

m0=188800, m=104879, t=213

avg over 3840 perfect DP tbl

(msc=1.601, # of targets = 100000)

0 t 2t 3t 4t 5t 6t 7t 8t
chain len0.0

0.5

1.0

1.5

2.0

2.5
(× t) iters.

m0=971000, m=497990, t=212

avg over 1280 perfect DP tbl

(msc=1.900, # of targets = 100000)

0 t 2t 3t 4t 5t 6t 7t 8t
chain len0.0

0.5

1.0

1.5

2.0

2.5
(× t) iters.

m0=70500, m=34396, t=214

avg over 6400 perfect DP tbl

(msc=2.099, # of targets = 100000)

0 t 2t 3t 4t 5t 6t 7t 8t
chain len0.0

0.5

1.0

1.5

2.0

2.5
(× t) iters.

m0=346000, m=157278, t=213

avg over 3840 perfect DP tbl

(msc=2.400, # of targets = 100000)

0 t 2t 3t 4t 5t 6t 7t 8t
chain len0.0

0.5

1.0

1.5

2.0

2.5
(× t) iters.

Figure 4.3: The number of one-way function iterations required per each alarm
that occurs at the i-th online chain walk of a perfect DP table (test:dots; the-
ory:line; N= 242; t̂ = 15t).

84

Chapter 5

Comparisons Focused on

Theoretical Complexities

Formulas for the two DP variants, that are the perfect DP, and perfect parallel DP

tradeoffs, and the perfect rainbow tradeoff, which give the success rates, online

efficiencies, and pre-computation costs in terms of the algorithm parameters, were

obtained in the previous two chapters. Corresponding formulas for the original DP,

parallel DP, and non-perfect rainbow tradeoffs were provided in earlier works [18]

and [16], and were briefly reviewed in Section 2.3. In this chapter, we gather all of

these information to compare the performances of the four mentioned DP tradeoff

algorithms, and then compare the most efficient DP tradeoff against the perfect

and non-perfect rainbow tradeoffs.

We exclude the classical Hellman tradeoff from our comparisons. It was mainly

due to its performance being very similar to that of the non-perfect DP tradeoff.

Anyone who read this thesis very carefully can compare the performance of the

classical Hellman tradeoff with those of other tradeoff algorithms, using the infor-

mation from the previous work [18]. However, we’re already aware of the fact that

the original DP and the classical Hellman tradeoffs present similar performance.

85

CHAPTER 5. COMPARISONS FOCUSED ON THEORETICAL
COMPLEXITIES

5.1 Method of Comparison

Let us describe the method to be used in comparing the performances of different

tradeoffs. The approach we will use in this section was firstly suggested by [18].

Note that a time memory tradeoff method can fail to return the correct answer

to the given inversion problem and that any tradeoff method is sure to require less

resources if it is allowed to operate at a lower success rate. Hence, a fair perfor-

mance comparison of the tradeoff methods must compare their various execution

complexities under parameters for each tradeoff that correspond to a common

success rate.

One can accept the tradeoff coefficient T M2

N2 as providing a good measure of

how efficient a tradeoff method is during the online phase, with a smaller value

indicating a better method. Indeed, if Method-A has a smaller tradeoff coefficient

than Method-B, then Method-A is expected to require a smaller online time T

in solving an inversion problem than Method-B, when the two are provided with

pre-computation tables of equal storage complexity M. Furthermore, since each

of the six tradeoff methods we are comparing allows for tradeoffs between time

and memory of the same T M2 = c ·N2 form for some constant c, comparison of

their tradeoff coefficients can be understood to be a simultaneous comparison of

the online time T at all possible choices of the storage complexity M.

Although we have stated that the tradeoff coefficient is an accurate measure

of the online efficiency of a tradeoff method, certain adjustments must be made

before we can make comparisons of different tradeoff methods based on their

tradeoff coefficients. Recall that the storage complexity M that was used in com-

puting our tradeoff coefficients was the total number of entries written to the pre-

computation tables, but the physical number of bits required to store each table

entry actually depended on the tradeoff method and its parameters. As an exam-

ple, suppose that we were given parameters for Method-A and Method-B with

which the two methods would call for roughly comparable online resources, but

86

CHAPTER 5. COMPARISONS FOCUSED ON THEORETICAL
COMPLEXITIES

which would required Method-A and Method-B to allocate 10 bits and 20 bits, re-

spectively, to each pre-computation table entry. Then, to be fair, one must compare

the 100T M2

N2 value computed for Method-A against the 400T M2

N2 value computed for

Method-B, or, equivalently, compare Method-A’s 1
4

T M2

N2 against Method-B’s T M2

N2 .

In other words, the comparison of online efficiencies must be made between ad-

justed tradeoff coefficients that account for relative differences in the number of

bits allocated to each table entry by the different tradeoff methods.

The set of relative adjustments to the tradeoff coefficients that is most ap-

propriate will be different for every situation, and the precise adjustment factors

become available only after one fixes the parameters and decides on how aggres-

sively to apply the many storage reduction techniques. The previous work [18]

provided a careful discussion with examples as to how the relative adjustments of

the tradeoff coefficients are to be carried out in practice.

So far, we have explained that the tradeoff methods need to be compared un-

der parameters achieving a common success rate and that the adjusted tradeoff

coefficients allow for direct comparisons of the online efficiencies of different

tradeoff methods. Now, note that if two tradeoff methods present the same online

efficiency at the same success rate, one would prefer to use the one with a smaller

pre-computation cost. That is, a fair comparison of tradeoff performances must

also account for the cost of pre-computation. It is clear that the pre-computation

coefficient can be used to presents this cost directly.

One can expect a tradeoff method to behave more efficiently after a larger

investment in pre-computation. However, an amount of pre-computation which

can be invested depends on each implementer’s environment, so it is very difficult

to decide optimal tradeoff parameters for every situation. The solution is to draw

a pre-computation coefficient versus adjusted tradeoff coefficient curve for each

tradeoff method. Each curve will be a concise visual display of what level of

online efficiency is reachable by a tradeoff method after a certain amount of pre-

computation effort. The implementer can decide which tradeoff is better for the

87

CHAPTER 5. COMPARISONS FOCUSED ON THEORETICAL
COMPLEXITIES

specific situation he or she is faced with after viewing the whole range of options

made available by the different tradeoff methods.

5.2 Comparison of DP Variants

Since we are going to compare the tradeoff methods at a few common fixed prob-

abilities of success, the symbols Dps, pDps, D̄ps, and p̄Dps will be now treated as

fixed constants. We will use a notation X, which can be replaced by any of D, pD, D̄,

and p̄D.

Let us explain how one may plot the pre-computation coefficient versus (ad-

justed) tradeoff coefficient curves for the four DP tradeoff algorithms. Throughout

this chapter, we will refer to this curve simply as the pc-tc curve.

The pre-computation coefficients Dpc and D̄pc for the non-perfect DP and per-

fect DP variants, respectively, are regarded as functions of the single parame-

ter Dmsc, pDmsc, D̄msc, and p̄Dmsc, for each DP tradeoffs, from (2.2) and (4.1), when

a fixed success rate is required. Similarly, every tradeoff coefficient XT M2 of the

DP variants can be seen as a function of the single parameter Xmsc from (2.4),

(2.5), Theorem 3.1, and Theorem 4.1, because both Dcr and D̄cr are functions of

the matrix stopping constants, from (2.1) and Proposition 3.3. Thus, all the pc-tc

curves for the DP variants may be drawn as curves parameterized by Xmsc.

It is important to understand that, even when the success rate Xps and curve

parameter Xmsc are fixed to specific values, there still remains a single degree of

freedom concerning the tradeoff algorithm parameters mX, tX, and `X, with which

one can realize the tradeoff between the online time T and the storage require-

ment M. That is, the ability of the DP method to provide tradeoffs between online

time and storage requirement is unimpaired by restrictions on the success rate and

the matrix stopping constant.

To be more concrete for the perfect DP tradoeff, suppose that one is given

specific D̄ps and D̄msc values, together with any T and M that satisfy the tradeoff

88

CHAPTER 5. COMPARISONS FOCUSED ON THEORETICAL
COMPLEXITIES

curve, where the tradeoff coefficient D̄T M2 has been computed from the given D̄ps

and D̄msc values by Theorem 3.1. Then it is easy to check that the sequentially

defined parameter set

tD̄ =
{ D̄mscD̄cr

D̄ps

(
1+

1+0.577D̄msc

1+0.451D̄msc

D̄msc

1+ D̄msc

)−1
T
} 1

2
, (5.1)

mD̄ =
D̄mscN

t2 , (5.2)

`D̄ =
N

mtD̄cr

{
− ln(1− D̄ps)

}
(5.3)

satisfies the four requests or restrictions on D̄ps, D̄msc, T , and M. The equivalence

of (5.3) and (3.7) implies that the success rate D̄ps will be achieved with these pa-

rameters, while (5.2) ensures that the given D̄msc value is adhered to. Furthermore,

since (5.1) and the first equation in the proof of Theorem 3.1 are equivalent, the

online phase is expected to terminate in the requested time T . Finally, since both

the storage requirement under the above parameter set and the requested M value

satisfy the same tradeoff curve, i.e., with common values of the online time and

tradeoff coefficient, adherence to M is guaranteed.

For the p̄D tradeoff, the similar work can be done to set mp̄D, tp̄D, and `p̄D to

achieve a desired probability of success p̄Dps, when a specific p̄Dmsc value, together

with any T and M that satisfy the tradeoff curve of Theorem 4.1 is given. We omit

the detailed formulas.

The pc-tc curves for the original DP, parallel DP, perfect DP, and perfect par-

allel DP tradeoffs are given in Figure 5.1 for some specific success rates. As sum-

marized at the ends of Section 2.3.1, Section 3.1.2, and Section 4.2, all the DP

methods, mentioned in this work, allocate slightly more than logm bits to store

each table entry. Since all the DP methods choose m value at a common level, to-

gether with t and ` in a typical situation, comparisons of DT M2 , pDT M2 , D̄T M2 , and

p̄DT M2 will be fair under consideration of the adjustment of tradeoff coefficients,

explained in the previous section. Within each box, being lower corresponds to

89

CHAPTER 5. COMPARISONS FOCUSED ON THEORETICAL
COMPLEXITIES

having better online efficiency and being closer to the left edge corresponds to

requiring less pre-computation. Hence, one may roughly interpret being situated

closer to the lower left corner as displaying better performance. In each framed

90%

2 3 4 5 6 7 8 9
0

10

20

30

40

50 95%

2 4 6 8 10 12
0

10

20

30

40

50

60

70

99%

5 10 15 20 25
0

50

100

150 99.9%

⊗⊗ ●●

10 20 30 40 50
0

50

100

150

200

250

300

350

Figure 5.1: (Dpc, DT M2)(dashed), (Dpc, pDT M2)(line), (D̄pc, D̄T M2)(dotdashed), and
(D̄pc, p̄DT M2)(dotted), at various success rates.

graph box, all the curves should be seen as extending infinitely upwards. How-

ever, the right ends of the graphs are clearly visible. The curves start to go back

up beyond these right ends, so that these right ends correspond to the minimum

90

CHAPTER 5. COMPARISONS FOCUSED ON THEORETICAL
COMPLEXITIES

tradeoff coefficient achievable by each algorithms. As going beyond this mini-

mum implies using larger pre-computation to obtain worse tradeoff efficiency, so

parameters corresponding to the parts that are not drawn should not be used.

In each box, the dashed line, blue line, dotdashed line, and dotted line rep-

resent the choice of (Dpc,DT M2), (Dpc,pDT M2), (D̄pc, D̄T M2), and (D̄pc, p̄DT M2) pairs

made available by the original, parallel, perfect, and perfect parallel DP tradoe-

offs, respectively. Note that, it is reasonable to treat the parameter Xmsc =
mt2

N that

was used to draw these graphs as a continuous variable, even though it originates

from integers.

It is quite clear from Figure 5.1 that the perfect parallel DP tradeoff (dotted

line) is more likely to be preferable over the other DP algorithms. Even though

the pD tradeoff has a small advantage of low pre-computation cost against the

perfect DP variants, the p̄D tradeoff has a much bigger advantage on online per-

formance by comparison.

When the performances of the pD and D̄ tradeoffs are compared against each

other, one can conclude that the pD tradeoff (line) could be less useful than the per-

fect DP tradeoff (dotdashed line), at 90%, 95%, and 99% success requirements,

unless one is extremely constrained in the amount of pre-computation possible.

On the other hand, as seen in the last graph box in Figure 5.1, ⊗-option of the pD

tradeoff is more likely to be chosen, compared with the right end option of the

perfect DP tradeoff. Because, ⊗-option allow us to achieve similar tradeoff effi-

ciency of the right end option of the perfect DP tradeoff at a visibly lower pre-

computation cost. In addition, •-option of the perfect DP tradeoff, which provides

the same online efficiency with ⊗-option of the pD tradeoff, is hardly chosen.

Let us explain the reason why the pD tradeoff is getting more efficient when

the higher success rate is required in comparison against the perfect DP tradeoff.

An ultimate purpose of parallel treatment on pre-computation tables is to spend

more time in dealing with short online chains, so that the number of false alarms

is expected to be reduced. However, at a non-high success requirement, it is mean-

91

CHAPTER 5. COMPARISONS FOCUSED ON THEORETICAL
COMPLEXITIES

ingless, since almost all online chains will be treated until the correct answer p is

found. On the other hand, if extremely high success rate is required, the efficiency

of the pD tradeoff increases much more, because the algorithm terminates before

all the online chains reach its DP so all possible alarms are resolved, so that alarms

produced by short online chains are treated firstly. For the same reason, as seen in

Figure 5.2, two graphs of the perfect DP and p̄D tradeoffs are very close to each

other, while the pD tradeoff has bad performance at 25% success rate.

25%

0.2 0.4 0.6 0.8 1.0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Figure 5.2: (Dpc, pDT M2)(line), (D̄pc, D̄T M2)(dotdashed), and (D̄pc, p̄DT M2)(dotted),
at 25% success rate.

In conclusion, both use of perfect tables and parallel treatment of pre-computation

tables have positive effects, compared to the performance of the original DP trade-

off. Also, one can safely conclude that the perfect parallel DP tradeoff outperforms

the other DP tradeoff algorithms for every situation.

5.3 p̄D vs. Rainbow

Now we are going to compare the p̄D tradeoff, the most efficient tradeoff method

between the mentioned four DP algorithms, to the non-perfect pR and perfect p̄R

tradeoffs. As before, comparisons will be made at a few common fixed probabil-

92

CHAPTER 5. COMPARISONS FOCUSED ON THEORETICAL
COMPLEXITIES

ities of success, so the symbols p̄Dps, pRps, and p̄Rps will now be treated as fixed

constants.

Let us explain how the pc-tc curve for the perfect rainbow tradeof may be plot-

ted. One can combine (3.17) and Proposition 3.6 to express the pre-computation

coefficient

p̄Rpc =
2

2− p̄Rmsc

{
− ln(1− p̄Rps)

}
=−

2` ln(1− p̄Rps)

2`+ ln(1− p̄Rps)
(5.4)

as a function of the single variable `, when p̄Rps is treated as a fixed constant.

Similarly, the substitution of (3.17) into the formula of Theorem 3.2 results in an

expression for p̄RT M2 that is given in terms of the single variable `. Thus, the pc-

tc curve for the perfect rainbow tradeoff may be drawn as a curve parameterized

by `. As with the DP tradeoff, the possibility of tradeoffs between online time and

storage requirement remains unaffected by the restrictions on p̄Rps and `.

The pc-tc curve for the non-perfect rainbow tradeoff can be plotted in the

similar way to the perfect rainbow tradeoff. One can combine (2.6) and (2.7) to

express the pre-computation coefficient

pRpc = 2`
(
(1−pRps)

− 1
2` −1

)
as a function of the single variable `, when pRps is treated as a fixed constant. Sim-

ilarly, from (2.7), one can express pRmsc as a function of ` and pRps. Substituting

it into the formula (2.8), pRT M2 can be also regarded as a function of the single

variable `, at a fixed success probability. Now, the pc-tc curve for the non-perfect

rainbow tradeoff may be drawn as a curve parameterized by ` as like the perfect

rainbow tradeoff.

Before plotting the pc-tc curves and comparing each other, let us review the

adjusted tradeoff coefficients, explained in Section 5.1. Due to the relatively differ-

ences in the allocated number of bits to store a single table entry by each tradeoff

algorithm after applying the storage optimization techniques, have been analyzed

93

CHAPTER 5. COMPARISONS FOCUSED ON THEORETICAL
COMPLEXITIES

for each tradoff method, the comparison of online efficiencies must be made be-

tween adjusted tradeoff coefficients.

Although no single set of adjustment factors can be appropriate for all situa-

tions, we still need to fix them to something specific in order to proceed with the

comparison in this work. Our choice, which will soon be justified, is to compare

the adjusted tradeoff coefficients 1
4 p̄DT M2 , pRT M2 , and p̄RT M2 against each other.

At the ends of Section 2.3.2, Section 4.2 and Section 3.2.2, we had stated that all of

the p̄D, non-perfect, and perfect rainbow tradeoffs need to allocate “slightly more

than logm bits” to record each table entry. Now, for the p̄D tradeoffs, the total com-

plexity, defined as the sum T +M, is minimized by the parameters m≈ t ≈ `≈N
1
3 ,

and the same for the perfect and non-perfect rainbow tradeoffs is minimized by the

parameters m≈ N
2
3 , t ≈ N

1
3 , and a small `. In fact, we could state that these same

parameters are used in practical implementations, as long as the approximations

are understood to be extremely crude. Hence, the “slightly more than logm bits”

would often be not too far from 1
3 logN bits and 2

3 logN bits for the p̄D tradeoff

and two rainbow tradeoffs, respectively. In this sense, the p̄D tradeoff require only

half as many bits as the two rainbow tradeoffs in storing each table entry, and our

choice of the adjusted tradeoff coefficients is somewhat justified.

The pc-tc curves for the p̄D, non-perfect and perfect rainbow tradeoffs are

given in Figure 5.3 for some specific success rates. As explained in the previ-

ous section, within each box, being lower corresponds to having better online

efficiency and being closer to the left edge corresponds to requiring less pre-

computation. Hence, one may roughly interpret being situated closer to the lower

left corner as displaying better performance.

In each box, the empty circles represent the choice of (p̄Rpc, p̄RT M2)-pairs

made available by the perfect rainbow tradeoff, and the filled dots represent data

for the non-perfect rainbow tradeoff. Each circle for the perfect rainbow tradeoff

corresponds to an integer ` value, with the rightmost circle of each box corre-

sponding to ` = d−1
2 ln(1− p̄Rps)e, as determined by the bound (3.18). Since the

94

CHAPTER 5. COMPARISONS FOCUSED ON THEORETICAL
COMPLEXITIES

table count ` must be an integer, the available choices appear as a discrete set of

circles. Similar statements may be made for the dots that represent data for the

non-perfect rainbow tradeoff. The rightmost dot of each box, which represents

the smallest tradeoff coefficient of the non-perfect tradeoff, was determined in

the previous work [18]. The line in each box represents data for the p̄D tradeoffs.

As mentioned before, unless N is small, it is reasonable to treat the parameter

p̄Dmsc =
mt2

N that was used to draw these graphs as a continuous variable, even

though it originates from integers. One can numerically verify that the tradeoff

coefficient p̄DT M2 attains its minimum at p̄Dmsc = 2.649, 2.929, 3.662, and 4.683

for 90%, 95%, 99%, and 99.9% probabilities of success, respectively.

It is quite clear from Figure 5.3 that the p̄D tradeoff (line) is less desirable than

the perfect rainbow tradeoff (circle), regardless of how one wants to balance on-

line efficiency against pre-computation cost. It also seems fair to claim that the

perfect rainbow tradeoff (circle) is at an advantage over the non-perfect rainbow

tradeoff (dot), since it can approximately provide every option made available by

the non-perfect rainbow, while providing many more options that cannot be ap-

proximated by the non-perfect rainbow tradeoff. Furthermore, the perfect rainbow

tradeoff presents the possibility of obtaining much better online efficiencies, al-

though these must be paid for with higher pre-computation costs.

One may say that the p̄D tradeoff (line) could be more useful than the perfect

rainbow tradeoff (circle) by flexiblities in choosing options at the 90% success

rate. For example, the perfect rainbow tradeoff cannot provide the option cor-

responding to the ↙-option of the p̄D tradeoff. However, the circle next to the

rightmost circle of the perfect rainbow tradeoff is more attractive option against

the ↙-option (D̄pc, p̄DT M2) = (4.81674, 2.54876), because that option allows us

to obtain slightly lower, but very similar online efficiency, p̄RT M2 = 2.68737 with

investment in much smaller pre-computation p̄Rpc = 3.73653. Thus, still, the per-

fect rainbow tradeoff outperforms the p̄D tradeoff.

In all situations, one can conclude that the p̄D tradeoff (line) is more preferable

95

CHAPTER 5. COMPARISONS FOCUSED ON THEORETICAL
COMPLEXITIES

than the non-perfect rainbow tradeoff (dots), unless one is extremely constrained

in the amount of pre-computation possible.

The success rates covered by Figure 5.3 are those that would be of practical

interest. However, we acknowledge that for success rate requirements that are

much lower, such as 25% or 50%, the situation is somewhat different. One can

easily verify through curves similar to those of Figure 5.4 that the use of the p̄D

tradeoff can be advisable at these less interesting low success rates.

The comments we have given so far concerning Figure 5.3 should generally

be acceptable, but when lowering the pre-computation cost is immensely impor-

tant, there remains a small possibility that the non-perfect rainbow tradeoff (dot)

could be preferred over the perfect rainbow tradeoff (circle). This is illustrated by

Figure 5.5, which is an enlarged view of a small rectangular part from the 99%

box of Figure 5.3. We have intentionally stretched the small rectangle in the hori-

zontal direction and have reduced the height, so that even a small difference in the

pre-computation coefficient is perceived as being significant. Even though some

sacrifice in the online efficiency is inevitable, the options provided by the non-

perfect rainbow tradeoff (dot) now seem much more reasonable than previously

felt when viewed from within Figure 5.3.

To summarize, when the online efficiency and pre-computation cost are both

taken into account, the perfect rainbow tradeoff is very likely to be advantageous

over p̄D, non-perfect rainbow tradeoffs, in typical situations. However, there may

be special circumstances under which the preferences could be different. For ex-

ample, importance of lowering the pre-computation cost may shift the preference

towards the non-perfect rainbow tradeoff, and the need for fine-tuned parameter

choices may make the p̄D tradeoff favorable at low success rate requirements.

Before ending this section, let us add remark concerning the range in which (4.8)

is accurate. As in Section 4.3, the empirical result (4.8) is reliable at least for pa-

rameter choices satisfying 0 < p̄Dmsc ≤ 2.4. The options given by p̄Dmsc = 2.4

are indicated as bold dots • in all graph boxes of Figure 5.3. Under empirical

96

CHAPTER 5. COMPARISONS FOCUSED ON THEORETICAL
COMPLEXITIES

experiences, our formula (4.8) tends to be getting higher than practical test val-

ues obtained by experiments at the bigger p̄Dmsc than 2.4, so we can expect that

the curves after the • point would not be lower than those in Figure 5.3, at least.

Thus, one may safely claim that options over the option given by p̄Dmsc = 2.4 are

meaningless in a certain sense that to achieve a little better online efficiency by

invest much more pre-computation resources is much less preferable. Therefore,

our conclusion of this section is trustworthy, despite of unsureness of the empirical

formula (4.8) over p̄Dmsc = 2.4.

97

CHAPTER 5. COMPARISONS FOCUSED ON THEORETICAL
COMPLEXITIES

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

•
•
•
•

•

•

•

•

•

•

•

• 90%

•
↙

0 2 4 6 8

0

2

4

6

8

10

◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

95%

•

0 2 4 6 8 10 12 14

0

5

10

15

◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

•••
••
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

99%

•

0 5 10 15 20 25

0

5

10

15

20

25

30

35

◦◦◦◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦

••••
•••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••

99.9%

•

0 10 20 30 40 50
0

10

20

30

40

50

60

70

Figure 5.3: (D̄pc, 1
4 p̄DT M2)(line), (pRpc, pRT M2)(dots), and (p̄Rpc, p̄RT M2)(empty cir-

cles), at high success rates.

98

CHAPTER 5. COMPARISONS FOCUSED ON THEORETICAL
COMPLEXITIES

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

25%

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• 50%

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 5.4: (D̄pc, 1
4 p̄DT M2)(line), (pRpc, pRT M2)(dots), and (p̄Rpc, p̄RT M2)(empty cir-

cles), at low success rates.

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦

●●●
●

●
●

●
●

●
●

●

99%

5.0 5.2 5.4 5.6 5.8 6.0
0

5

10

15

20

Figure 5.5: Tradeoff coefficient for perfect (circles) and non-perfect (dots) rain-
bow tradeoffs in relation to their pre-computation costs at 99% success rate.

99

Chapter 6

Practice-Oriented Comparison

In this chapter, practical performance abilities of the perfect parallel DP p̄D and

perfect rainbow p̄R tradeoffs will be compared against the practically used per-

fect rainbow algorithm, namely, s̄R tradeoff. A theoretical comparison of these

algorithms, following the approach explained in Section 5.1, takes the following

aspects of the tradeoff algorithms into account: (a) the expected computational

complexity of the online phase that includes the effects of false alarms, (b) the size

of physical storage space required to retain the pre-computation tables, (c) compu-

tational complexity of the pre-computation phase. Even though such a comparison

could be meaningful in many situations, we have learned that practioners treated

such a comparison as being theoretical.

At least three reasons can be stated as to why the approach is seen as inade-

quate. First, the factor that affects the user experience most directly is the speed

of inversion, but the online computational complexity does not accurately reflect

the physical time taken by the online phase. The inaccuracy is mainly due to the

additional time taken to access the pre-computation tables, which the approaches

of previous chapters and [18] had completely ignored. Second, there is a practical

limit to how much storage can be utilized, at which point any measure of trade-

off characteristic looses its meaning. The monetary cost of data storage devices

has become so low that some might even claim that the effort of securing storage

100

CHAPTER 6. PRACTICE-ORIENTED COMPARISON

space up to a few terabytes almost does not depend on the size. On the other hand,

to utilize anything much larger, one must either greatly sacrifice disk access speed

or invest much more on the connection between the online system and the storage

device. This discontinuity implies that the theoretical tradeoff coefficient is of lim-

ited value in representing the capabilities of a tradeoff algorithm. Third, in most

cases, the complexity of the pre-computation phase is not very important. The cost

of pre-computation can become critical when the cost approaches the maximum

amount of available resources. However, in practice, since one can initially pro-

vide an inversion service of low success rate and later increase the success rate by

adding more pre-computation tables as they become available, the upper bound

to resources is a very flexible concept. Furthermore, since choosing the search

spaces in a straightforward manner leads to search spaces with quantum differ-

ences between their sizes rather than those that form a continuous spectrum of

sizes, the pre-computation task for each search space choice is likely to be either

quite infeasible or easily possible, rather than right at the boundary of feasibility.

These observations show that, to be meaningful in practice, a comparison of

tradoff algorithms must be focused on the physical (wall-clock) time requirements

of the online phases. Such a comparison of the s̄R, p̄R, and p̄D tradeoffs will be

provided in this chapter.

From now on, we refer T wc
X as the total physical wall-clock time requirement

of the online phase for each tradeoff algorithm X. The readers should distinguish

the notion of T wc with T , which has been used to refer the expected number of

one-way function invocations required to perform the online phase of tradeoff al-

gorithm. In order to derive the formulas of the physical times T wc
p̄D

and T wc
p̄R

explic-

itly, additional costs for the p̄R, and p̄D tradeoffs should be computed, and those

will be given in the next section. And then, analysis of the s̄R tradeoff will be fol-

lowing. Most of the arguments given there are reformulations of similar arguments

appearing in the recent work [21].

101

CHAPTER 6. PRACTICE-ORIENTED COMPARISON

6.1 Additional Costs for the p̄D and p̄R Tradeoffs

In this section, the expected numbers of table lookups to be required by the on-

line phases of the p̄D and the p̄R tradeoffs are presented. We use a symbol H to

represent the expected number of online phase table searches, and it was chosen

so that the words Hash table could be associated with it. All of notations and

terminologies will be also used as before.

Proposition 6.1. The online phase of the p̄D tradeoff is expected to generate

Hp̄D = t× p̄Dln
p̄Dmsc(p̄Dln−1)

{
1−
(

1+
p̄Dmsc

2

)1−p̄Dln
}

searches to the perfect DP tables.

Proof. Since a single search is performed precisely when a DP is reached during

the generation of the online chains, and since, on average, one in every t iterations

of the one-way function produces a DP, the expected number of table lookups is
1
t of the number of one-way function iterations given by Proposition 4.1.

Now, let us introduce the memory hash table lookups tradeoff curve MH ≈ N,

referred as the M-H tradeoff curve. Terminologies p̄DMH and p̄RMH will be used to

denote the M-H tradeoff coefficients MH
N of the p̄D and p̄R tradeoffs, respectively.

The following theorem is direct consequences of Proposition 6.1 and the fact

that the pre-computation tables contain M = m` entries in total.

Theorem 6.1. Let the symbol H denote the expected number of online phase table

searches for the p̄D tradeoff. Then MH
N equals

p̄DMH =
p̄D

2
ln

2(p̄Dln−1)

{
1−
(

1+
p̄Dmsc

2

)1−p̄Dln
}
,

where p̄Dln =−
ln(1−p̄Dps)

ln(1+ p̄Dmsc
2)

.

102

CHAPTER 6. PRACTICE-ORIENTED COMPARISON

As with the time memory tradeoff curve in Theorem 4.1, p̄DMH remains con-

stant under any fixed pair of p̄Dmsc and p̄Dps values. Hence, the above theorem

states the possibility of utilizing T -M and M-H tradeoffs.

Similar claims for the p̄R tradeoff can be obtained as below.

Proposition 6.2. The online phase of the p̄R tradeoff is expected to generate

Hp̄R = t×
p̄Rps

p̄Rmsc

searches to the perfect rainbow tables.

Proof. The number of table lookups for the p̄R tradeoff can be states as

Hp̄R = `
t

∑
i=1

(
1− m

N

)`(i−1)
= `

1− (1− m
N)

`t

1− (1− m
N)

`
=

p̄Rps`

1− (1− m`
N +O(1

t))
=

p̄Rps

p̄Rmsc
t

where the last equality ignores a multiplicative factor of 1+O
(1

t

)
.

Theorem 6.2. Let the symbol H denote the expected number of online phase table

searches for the p̄R tradeoff. Then MH
N equals

p̄RMH = p̄Rps`.

6.2 Analysis of the s̄R Tradeoff

In this section, we prepare information concerning the s̄R tradeoff that is analo-

gous to Theorem 3.2 and Theorem 6.2. As in the previous sections, the symbols T

and M will denote the expected numbers of online phase one-way function com-

putations, and pre-computation table entries, respectively.

Recall that the s̄R tradeoff compares multiple online chain ending points against

the ending points of the pre-computation tables. Let us write L or Ls̄R to denote

the expected number of pre-computation tables entries that would be compared

103

CHAPTER 6. PRACTICE-ORIENTED COMPARISON

against the online chain ending points. The character L is used because each of

these table entries must be Loaded into memory for comparison.

The work [21] expressed the complexities Ts̄R and Ls̄R for the s̄R tradeoff as

functions of the algorithm parameters. It is not too difficult to derive the following

results from their formulas.

Theorem 6.3. The T -M tradeoff curve for the s̄R tradeoff are T M2 = s̄RT M2N2,

where the tradeoff coefficient is given by

s̄RT M2 = s̄Rps{ln(1− s̄Rps)}2

{
1

2
(
1− (1− s̄Rps)

1
`
) + 1

6
+

ln(1− s̄Rps)

48`

}
.

Theorem 6.4. Let the symbol L denote the expected number of pre-computation

table entries loaded into memory during the online phase of the s̄R tradeoff. Then
L
M equals

s̄RLM−1 =−
s̄Rps

ln(1− s̄Rps)
.

6.3 Expressions for the Physical Online Time

We must start by introducing three system constants τF , τL, and τH .

Let τF be the physical time, for example, in milliseconds, taken by a single

iteration of the colored one-way function, i.e., the composition of the one-way

function and the reduction function, on the online phase platform. This value will

depend on the targeted one-way function, the reduction function being used, the

capabilities of the online phase platform, and the implementation itself.

Recall that the s̄R tradeoff checks whether each ending point from the pre-

computation table matches any one of the t online chain ending points generated

in one batch. In practice, each of the pre-computation table entries must be copied

from slow disk into fast system memory before being processed, and the time

taken for these data loading operations greatly overwhelms the time taken for the

comparison itself. In fact, the possibility of loading the tables faster is an incentive

104

CHAPTER 6. PRACTICE-ORIENTED COMPARISON

to reducing storage size that is more meaningful in practice than the reduction in

storage cost. Let us write τL to denote the physical time taken to load one table

entry from slow disk to fast system memory. This will depend on the sequential

disk read speed of the online phase platform and on how many bytes are allocated

to each pre-computation table entry. Current implementations apply the index file

technique to pre-computation tables stored on disk and expand each table entry

into its original full form during memory loading. Since the expansion requires

very little computational effort, the compactification of data stored on disk has the

effect of reducing loading time.

The final system constant we introduce is the physical time τH taken by a sin-

gle search of the pre-computation table for a matching ending point. Our interest

lies in the case where the pre-computation tables are too large to fit within the fast

system memory and accesses to the slow disk storage are inevitable to perform ta-

ble lookups. Note that if the search times for the successful and failed ending point

matches are significantly different, one must compute a weighted average value

that takes the probability for the online chain to merge into the pre-computation

matrix into account. The constant τH will certainly be affected by the random disk

read speed of the online phase machine and will depend greatly on the implemen-

tation.

Using the notation we have introduced, the expected physical times taken by

the online phases of the three tradeoffs can be written as follows.

T wc
s̄R = τFTs̄R+ τLLs̄R.

T wc
p̄R = τFTp̄R+ τHHp̄R.

T wc
p̄D = τFTp̄D+ τHHp̄D.

Substituting Theorem 6.3, Theorem 6.4, Theorem 3.2, Theorem 6.2, Theo-

105

CHAPTER 6. PRACTICE-ORIENTED COMPARISON

rem 4.1, and Theorem 6.1 into these equations, we can derive the expressions

1
τF

T wc
s̄R = s̄RT M2

(N
M

)2
+ s̄RLM−1

τL

τF
M, (6.1)

1
τF

T wc
p̄R = p̄RT M2

(N
M

)2
+ p̄RMH

τH

τF

(N
M

)
, (6.2)

1
τF

T wc
p̄D = p̄DT M2

(N
M

)2
+ p̄DMH

τH

τF

(N
M

)
. (6.3)

6.4 How to Minimize the Physical Online Time

Let us discuss how one might minimize the the online times given by (6.1), (6.2),

and (6.3). For the remainder of this chapter, we assume the three tradeoff algo-

rithms are set to achieve a fixed success rate requirement s̄Rps = p̄Rps = p̄Dps that

is common to the three algorithms. In fact, any reasonable comparison of tradeoff

algorithms would require a common success rate to the algorithms.

After drawing a few graphs, one can be confident that s̄RT M2 , as given by

Theorem 6.3, is an increasing function of `, for any fixed value of s̄Rps. Also note

that s̄RLM−1 , as given by Theorem 6.4, is constant for each choice of s̄Rps. Hence,

to minimize the righthand side of (6.1), one must use the smallest possible value

for `, which is

`=
⌈
− 1

2
ln(1− s̄Rps)

⌉
. (6.4)

Once the values of s̄RT M2 and s̄RLM−1 in (6.1) have been fixed through the above

choice of `, the righthand side function of M can be minimized by setting

M =
(

2
s̄RT M2

s̄RLM−1

τF

τL

) 1
3
N

2
3 . (6.5)

One can similarly check that both p̄RT M2 and p̄RMH of (6.2), as given by the

formulas of Theorem 3.2 and Theorem 6.2, are increasing functions of `, for each

fixed value of p̄Rps. Hence, as with (6.1), given a success rate requirement p̄Rps,

106

CHAPTER 6. PRACTICE-ORIENTED COMPARISON

one must use

`=
⌈
− 1

2
ln(1− p̄Rps)

⌉
, (6.6)

in order to minimize the righthand side of (6.2), for any fixed value of M. How-

ever, unlike the (6.1) case, the righthand side of (6.2) approaches zero as M is

increased. This is not surprising, since the limit corresponds to the dictionary at-

tack, which requires just a single search of the pre-computation table. Hence, one

can minimize (6.2) by using the largest possible M, together with (6.6).

The situation with (6.3) is slightly more complicated. Even though both p̄DT M2

and p̄DMH , as given by Theorem 4.1 and Theorem 6.1, are functions of the single

variable p̄Dmsc, assuming a fixed success rate requirement, one can find that the

two are minimized at different p̄Dmsc values. Hence, to minimize (6.3), one must

first fix M to the largest possible value and then find the optimal value of p̄Dmsc

for that M.

6.5 Comparisons

Certain numbers associated with the targeted inversion problem, available re-

sources, and online platform characteristics need to be fixed before the compar-

isons of algorithm performances are provided. The discussion below will first be

carried out with these numbers fixed to specific realistic values. This will later

be followed by a table that concisely presents the algorithm performances when

these numbers are replaced with other realistic values.

The search space size will be fixed to

N=
8

∑
i=1

95i = 252.574,

which corresponds to the set of all passwords of lengths up to 8, constructed from

all 95 characters on the standard keyboard. The success rate requirement will be

107

CHAPTER 6. PRACTICE-ORIENTED COMPARISON

set to

s̄Rps = p̄Rps = p̄Dps = 99.9%,

which is the claimed success rate of the majority of tables created by the two

rainbow table distributors [1,3]. The distributor [2] provides the tables that assure

success rates less than 99.9%, except for NT-hashes of only numeric passwords.

The search space size N= 252.574 is the largest among the search space dealt with

by the distributor [1], and is even larger than the charged tables provided by the

distributor [2]. The largest key space for the distributor [3] treats all passwords

of lengths up to 9, constructed from all uppercase and lowercase alphabets and

numeric characters, and its size is 253.611, almost twice our fixed search space

size N. However, since those tables assure the success rate 96.8%, the time for

creation of those rainbow tables will be 3.40× 1017× τF from (5.4). This is of

similar level with ours, which requires

s̄RpcN=
−2` ln(1− s̄Rps)

2`+ ln(1− s̄Rps)
N=
−2 ·4 · ln(1−0.999)
2 ·4+ ln(1−0.999)

N= 50.59×N= 3.39×1017

invocations of one-way function for the pre-computations of tables. This facts

suggest that pre-computation requirement for any larger search space is too large

to be handled by entities other than well funded governmental organizations.

Currently, the cost of a 4 TB SATA-III 7200 RPM hard disk drive is less than

$250 and even 6 TB disks have recently become available. Solid state drives of

1 TB size are now available at approximately $500. These SSDs may be eight

times as expensive as the HDDs of the same size, but are still affordable for even

personal use. A few of these HDDs or SSDs can easily be attached to a single

PC, but to utilize a storage space of much larger size, one must sacrifice the speed

of data access and work with a more elaborate hardware configuration. Based on

these observations, we somewhat arbitrarily set the maximum storage size to 4 TB.

It should be understood that this is not the bound on M, the number of table entries,

which further depends on how many bytes are allocated to each table entry.

108

CHAPTER 6. PRACTICE-ORIENTED COMPARISON

To fix the system constants, we made some measurements using specific im-

plementations of one-way function, table loading operation, and table search op-

eration. Details of these measurements will be explained in Appendix A.

Based on the measurements, we choose to use the realistic figure

τF = 2.04×10−7 seconds

as the physical time taken by a single iteration of the colored one-way function,

when the targeted search space size is N = 252.574. Assuming that 7 bytes are

allocated to store a single table entry, we choose

τL = 7.01×10−8 seconds

as the physical time taken to load a single table entry from slow disk to fast system

memory.

Let us now compute the optimal configurations for the s̄R tradeoff. We learn

from (6.4) that `= 4 must be used, and we can calculate the values s̄RT M2 = 35.2

and s̄RLM−1 = 0.145 from the formulas of Theorem 6.3. As stated by (6.5), the M

that minimizes the online time is 3.99× 1011. Since logm = log M
` = 36.5, each

starting point can be recorded well within 5 bytes through the use of sequential

starting points, even though 37 bits may not be enough, due to the existence of

discarded merging pre-computation chains. Recalling the ending point truncation

technique, we know that it suffices to record only slightly more than 36.5 bits of

each ending point. Note that a full set of 26-bit indices for the `= 4 tables consist-

ing of 5-byte addresses require only 1.34 GB and can easily be held in the system

memory of any modern PC. This shows that we can further remove 26 bits from

each ending point and record the remaining slightly more than 10.5 bits within

2 bytes of space. Hence, the pre-computation tables occupy (5+ 2)×M bytes,

which is 2.80 TB, of storage space and can fit comfortably within our 4 TB stor-

age space bound. Finally, we can calculate (6.1) to state that the physical time of

109

CHAPTER 6. PRACTICE-ORIENTED COMPARISON

the online phase can be minimized to T wc
s̄R

= 2.98×1010× τF .

The p̄R tradeoff will be treated next. As before, we know from (6.6) that

` = 4 tables are required, and we can compute from Theorem 3.2 and 6.2 that

p̄RT M2 = 8.39 and p̄RMH = 4.00. Taking the s̄R case as a hint, we assume each

table entry can be recorded in 7 bytes and take M = 4×1012

7 = 5.71×1011. Then,

logm = log M
` = 37.1, so that logm0 = 39.9 from (3.14) and (3.17), to generate a

perfect rainbow matrix which consists of m entries. Thus, assuming a 26-bit in-

dex to the sorted ending points, the 7 bytes assumption can be justified. Based

on the measurements treating the pre-computation table, which consists of simi-

lar amount of table entries and which table entry is recorded in 7 bytes, we can

choose to use the realistic figure

τ
p̄R
H = 1.04×10−2 seconds

The optimal physical online time can be calculated from (6.2) to be T wc
p̄R

= 3.55×
109× τF .

It remains to calculate the optimal online time for the p̄D tradeoff. Noting that

logN
1
3 = 17.5 < 3× 8, we assume each table entry can be recorded in 5 bytes,

and take M = 4×1012

5 . Then, according to measurement from Appendix A working

with random tables, targeted to perfect DP tables which entry was recorded in 5

bytes, we can set

τ
p̄D
H = 0.939×10−2 seconds.

The righthand side of (6.3) can be minimized to T wc
p̄D

= 5.25×109×τF at p̄Dmsc =

6.61, using the formulas of Theorem 4.1 and Theorem 6.1. Recalling (4.2) and

(4.3), we see that to achieve 99.9% success rate with p̄Dmsc = 6.61, we must have
`
t = 2.37, and this shows that logm = log(M2

p̄DmscN
t2

`2) = 21.3 must be used. We

can also check that log t = 17.0 must be used. Recalling (3.3), since log →m0 =

23.4, each starting point can be recorded in 3 bytes, as assumed before. As for

the ending points, using the ending point truncation technique from Section 4.2,

110

CHAPTER 6. PRACTICE-ORIENTED COMPARISON

Table 6.1: Optimal parameters and physical online time for N = 252.574, 99.9%

success rate, 4 TB storage, τL
τF

= 0.34, τ
p̄R
H

τF
= 5.10×104, and τ

p̄D
H

τF
= 4.60×104.

alg. logm log t ` bytes/entry online time pre-comp
s̄R 36.5 16.8 4 7 2.98×1010× τF 50.59N× τF
p̄R 37.1 16.3 4 7 3.55×109× τF 50.59N× τF
p̄D 21.3 17.0 2.37× t 5 5.25×109× τF 67.36N× τF

it suffices to record slightly more than 21.3 bits of each ending point, and then

assuming a 8-bit or 9-bit index to the ending points, the 2 bytes assumption can

be justified.

The optimal physical online time requires by the three tradeoff algorithms are

summarized in Table 6.1, together with the corresponding parameter sets. In con-

trast with the expectation of the most programmers who practically implemented

the perfect rainbow tradeoff so that the perfect rainbow tables are treated in serial,

such as in [1] and [3], the practical online time to execute the parallel version of

the perfect rainbow tradeoff is much shorter than that of the serial version with the

same pre-computation investment. Also, the p̄D tradeoff is even much faster than

the s̄R tradeoff for the online phase. More pre-computation effort is required for

the p̄D tradeoff, but complexity of the pre-computation phase is not a very impor-

tant factor, as explained at the start of this chapter, also its difference is not very

large to be concerned.

The online performance of the s̄R tradeoff is not affected by the storage size

to be used, once it is over 2.80 TB when N = 252.574 and 99.9% success rate is

required. This is because, as presented in Section 6.4, the physical online time

taken by the s̄R tradeoff is minimized at the certain pre-determined storage M,

expressed by (6.5). However, both formulas of physical online times for the p̄R

and the p̄D tradeoffs, expressed by (6.2) and (6.3), are in inverse proportion to

the storage M. Hence, if the larger hard disk drive is available, the faster online

phases can be achieved. Thus, one can claim that even though the physical time

taken by access to the pre-computation table and search an identical ending point

111

CHAPTER 6. PRACTICE-ORIENTED COMPARISON

is fully taken into account to the tradeoff performance comparison, still the parallel

versions of the perfect table tradeoffs, namely, the p̄R and the p̄D tradeoffs, give

better performances on the online phases than the s̄R tradeoff. In the case of the

p̄D tradeoff, it should be noted that the increase of the pre-computation, induced

by use of larger storage amount and so setting the higher matrix stopping constant

p̄Dmsc to minimize the physical online time T wc
p̄D

, may become a considerable level

at some point.

Now, let us discuss when 4 TB SSD is available to perform the s̄R tradeoff

and each table entry of the perfect rainbow table is stored in 3+ 1 = 4 bytes, in

order to be advantageous to the s̄R tradeoff. Since the implementations of the s̄R

tradeoff divide each pre-computation table into multiple sub-tables, by the consid-

erations of using the bigger index files and the ending point truncation technique,

the 4 bytes assumption can be possible. If 550 MB/s sequential read speed is as-

sumed as be claimed by Samsung 850 PRO SATA-III 1 TB SSD as an optimal

speed, then τL = 4
550×106 = 7.27× 10−9 (sec) can be fixed. Under these assump-

tions, much advantageous to the s̄R tradeoff, in the analogous arguments with the

above, the minimal physical online time taken by the s̄R tradeoff is 6.57×109×τF

with M = 8.50×1011, so 3.40 TB storage requirement to achieve 99.9% success

rate. Thus, even the p̄R and the p̄D tradeoffs use 4 TB HDD hard disk, the s̄R

tradeoff still falls behind the others.

We have seen an example of how the optimal physical online times for the

three tradeoff algorithms are computed. More examples of these optimal perfor-

mances can be seen in Table 6.2.

When N = 252.574, at the 99% and 90% probabilities of success, the optimal

online times for the s̄R and p̄R tradeoff algorithms can be achieved in the anal-

ogous arguments as the above. As for the p̄D tradeoff at the 99% success rate,

if assuming 5 bytes are allocated to record each table entry, then to achieve the

optimal online time, logm = 22.3 must be used with p̄Dmsc = 5.56, which re-

quires →m0 = 224.4 starting points. Thus, the 3 bytes assumption for each starting

112

CHAPTER 6. PRACTICE-ORIENTED COMPARISON

Table 6.2: Optimal physical online times of s̄R, p̄R, and p̄D tradeoffs at various
situations.(4TB storage.)

N ps bytes
sp+ep

τL
τF

τH
τF

online time pre-comp alg.

252.574 99% 5+2 0.34 2.99×1010× τF 19.81N s̄R

5+2 5.10×104 2.49×109× τF 19.81N p̄R

3+2 4.60×104 3.15×109× τF 26.05N p̄D

252.574 90% 5+2 0.34 2.84×1010× τF 5.43N s̄R

5+2 5.10×104 1.35×109× τF 5.43N p̄R

4+2 4.77×104 1.62×109× τF 14.05N p̄D

3+2 4.60×104 1.97×109× τF 4.14N p̄D

246.004 99.9% 5+1 0.32 1.35×109× τF 50.59N s̄R

5+2 5.47×104 2.71×107× τF 50.59N p̄R

4+2 5.12×104 1.20×107× τF 1105.24N p̄D

4+2 5.12×104 1.85×107× τF 50.59N p̄D

3+2 4.94×104 3.55×108× τF 7.37N p̄D

246.004 99% 5+1 0.32 1.36×109× τF 19.81N s̄R

5+2 5.47×104 2.02×107× τF 19.81N p̄R

4+2 5.12×104 1.02×107× τF 290.85N p̄D

4+2 5.12×104 1.65×107× τF 19.81N p̄D

3+2 4.94×104 5.18×108× τF 4.74N p̄D

point cannot be justified. Since T wc
p̄D

is a decreasing function until p̄Dmsc = 5.56

at the fixed M = 4×1012

5 , the maximal p̄Dmsc value satisfying the number of start-

ing point to be required →m0 < 224 is p̄Dmsc = 4.13, and the corresponding phys-

ical online time is T wc
p̄D

= 3.15× 109× τF . In the similar way, at the 90% suc-

cess rate, when each table entry is recorded in 5 bytes, the optimal online time is

T wc
p̄D

= 1.97×109× τF with p̄Dmsc = 0.94. On the other hand, if assuming 6 bytes

are allocated to record each table entry from the first, then M = 4×1012

6 and the

optimal physical online time is T wc
p̄D

= 1.62×109× τF , where

τ
p̄D
H = 0.973×10−2.

is set from the measurement under 6 bytes assumption for perfect DP tables in

Appendix A.

Now, examples for the key space size N = 246.004 are following. At the first,

113

CHAPTER 6. PRACTICE-ORIENTED COMPARISON

the realistic figure τF is newly set as

τF = 1.90×10−7 seconds,

by the measurement presented in Appendix A.

Let us first calculate the optimal physical online time for the s̄R tradeoff. The

6 bytes assumption can be made from the fact N
2
3 = 230.7 and the storage opti-

mization techniques. In this case, one can reset the realistic value

τL = 7.01×10−8× 6
7
= 6.01×10−8 seconds.

At the 99.9% success rate, the optimal online time T wc
s̄R

= 1.35×109× τF can be

obtained with logm = 32.2, which justifies that each ending point can be recorded

within only 1 bytes by the ending point truncation technique and use of index files.

Likewise, the optimal online time can be computed for the s̄R tradeoff at the 99%

success rate.

As for the p̄R tradeoff, by the similar work, 7 bytes allocation for each table

entry is necessary for both 99.9% and 99% success rates, and the optimal online

times can be easily computed and are presented in Table 6.2.

Now, let us finally compute the optimal online times for the p̄D tradeoff. As

before, under the 5 bytes assumption, the optimal online times are T wc
p̄D

= 3.55×
108 × τF and T wc

p̄D
= 5.18× 108 × τF at the 99.9% and 99% success rates, re-

spectively. Now, let us assume that 6 bytes are allocated to record each table en-

try. Then, T wc
p̄D

= 1.20× 107× τF and T wc
p̄D

= 1.02× 107× τF can be achieved as

the optimal online times at the 99.9% and 99% success rates. However, the pre-

computation costs to achieve these optimal online times are 1105.24N× τF and

290.85N× τF , which might be too large to be handled by tradeoff implementors,

as compared with the fact that almost maximal pre-computation cost for the per-

fect rainbow tradeoff is 50.59N. Thus, at both 99.9% and 99% success rates, even

though the optimal online times for the p̄D tradeoff are shorter than those for the p̄R

114

CHAPTER 6. PRACTICE-ORIENTED COMPARISON

tradeoff, one can say that the p̄D tradeoff is hard to be preferred in practice against

the p̄R tradeoff. However, if observing the physical online time for the p̄D tradeoff

at the same pre-computation cost associated with the optimal online time achieved

by the p̄R tradeoff, the p̄D tradeoff still provides the better performance than the

p̄R tradeoff. To be more precise, as seen in Table 6.2, T wc
p̄D

= 1.85×107× τF and

T wc
p̄D

= 1.65×107× τF can be obtained by the pre-computatin efforts 50.59N and

19.81N under the 99.9% and 99% success requirements, respectively.

Therefore, when the search space size is N = 246.004, the p̄D tradeoff is likely

to be preferred than the other two perfect rainbow tradeoff algorithms, to invert

one-way function with high success rate. This can be meaningful conclusion, be-

cause the perfect rainbow tradeoff is well-known to be the best efficient tradeoff

algorithm.

To conclude, in any case, the s̄R tradeoff falls behind the parallel versions of

the perfect rainbow and DP tradeoffs, and this is opposite to what the programmers

of [1, 3] were expected.

115

Chapter 7

Conclusion

Our work can be divided into three parts. Firstly, we analyzed the execution com-

plexity of the perfect DP, and perfect parallel DP tradeoffs and computed its time

memory tradeoff coefficients. We also combined existing results on the execution

complexity of the perfect rainbow tradeoff to present its online efficiency. In the

analyses, we did not ignore a non-negligible cost for resolving false alarm of each

tradeoff algorithm, and theoretical results were verified experimentally.

Secondly, using this information, the performances of the four DP variant al-

gorithms, namely, the original DP, the parallel DP, the perfect DP, and the perfect

parallel DP tradeoffs, were compared against each other. The previous results [18]

and [16] on the original DP and the parallel DP tradeoffs were also included in

our comparison, respectively. As a simplified conclusion, the perfect parallel DP

tradeoff is advantageous over the other three DP tradeoffs in most cases. Hence,

we compared the perfect parallel DP tradeoff with the non-perfect and the per-

fect rainbow tradeoffs. The result from the previous work [18] on the non-perfect

rainbow tradeoff was also used in comparison. Our simplified conclusion on these

comparisons was that the perfect rainbow tradeoff outperforms the perfect par-

allel DP and the non-perfect rainbow tradeoffs in typical situations. However,

there may be special circumstances under which the preferences could be dif-

ferent. For example, importance of lowering the pre-computation cost may shift

116

CHAPTER 7. CONCLUSION

the preference towards the non-perfect rainbow tradeoff, and the need for flex-

ibility on choosing parameter may make the perfect parallel tradeoff favorable

at success rate of inversion less than 90%. In addition, we made the meaningful

conclusion that the perfect parallel DP tradeoff could be more preferable over the

non-perfect rainbow tradeoff unless one is extremely constrained in the amount

of pre-computation possible. In these comparisons, we utilized the comparison

method introduced by the previous work [18]. Both online execution complex-

ity and cost for pre-computation of each tradeoff took into account, and known

techniques to reduce storage size were also considered.

Thirdly, we computed the optimal physical online execution times of the per-

fect parallel DP p̄D, the perfect parallel rainbow p̄R, and the perfect serial rain-

bow s̄R tradeoffs and compared against each other. Our work related to the opti-

mal physical online time of the tradeoff algorithms was motivated by the recent

work [21]. The paper noted that the online phase of the s̄R tradeoff is roughly same

as what is practically implemented by [1,3], even though the parallel processing of

the rainbow tables was suggested by the algorithm designer [24]. The work [21]

also analyzed the online execution complexity of the s̄R tradeoff, and the anal-

ysis included not only time memory tradeoff coefficient, but also the expected

number of table entries to be loaded into fast memory from hard disk drive. Us-

ing this information, we could express the physical online time of the s̄R tradeoff

and compute its minimum value, under a certain fixed success rate. In the similar

manner, we could also express the total physical online execution times of the p̄D

and p̄R tradeoffs, which include times taken for accessing to the pre-computed

data, resided in slow hard disk. These extra costs for the online phases have been

ignored in the previous theoretical approaches of the tradeoff algorithms.

We could conclude from the formulas that, for the p̄D and p̄R tradeoffs, at a

fixed success rate, each storage size M determines a minimum physical online time

and that this minimum time becomes smaller as the storage size M is increased.

On the other hand, for the s̄R tradeoff, there exists an M value that provides the

117

CHAPTER 7. CONCLUSION

minimum physical online time, so that, once the available storage size reaches

this M value, the physical online time cannot be improved further. Each minimum

physical online execution time could be calculated under the realistic constants set

through our test measurements, after the realistic password space and high success

rate of inversion were set. The s̄R tradeoff falls far behind the other two tradeoffs

in comparison of minimum physical online time against each other, when 4TB

HDD hard disk is assumed to be available. Also, one could claim that even though

4TB SSD was available, the conclusion, that is, two parallel tradeoffs’ superiority

to the s̄R tradeoff did not change.

When comparing between the p̄D and p̄R tradeoffs, the superiority depended

on a search space size. For example, when the set of all passwords of lengths

up to 8, constructed from all 95 characters on the standard keyboard is fixed to

the search space of the tradeoff algorithms, the optimal online time for the p̄R

tradeoff is smaller than that for the p̄D tradeoff at 99.9%, 99%, and 90% success

requirements. However, when the aimed password lengths are replaced by up to

7, the physical online time of the p̄D tradeoff is smaller than the optimal physical

online time of the p̄R tradeoff, even with the same pre-computation effort, under

99.9% and 99% success requirements.

It remains to extend this work and verify whether the lesser known recently

proposed tradeoff algorithms [5, 14, 17, 23, 28–33] are superiority to the more

widely used algorithms, in the sense considered in this work. Note that the re-

sults and approaches of this work have already been used to show [19, 20] that

the fuzzy rainbow tradeoff [7, 8] could be seen as performing better than even the

perfect rainbow tradeoff.

118

Bibliography

[1] (2015, Oct.) Free Rainbow Tables, Distributed Rainbow Table Project. [On-

line]. Available: http://freerainbowtables.com

[2] (2015, Oct.) Objectif Sécurité, Ophcrack. [Online]. Available:

http://ophcrack.sourceforge.net

[3] (2015, Oct.)RainbowCrack Project. [Online]. Available : http://project-

rainbowcrack.com

[4] (2015, Oct.) rcracki mt. [Online]. Available: http://sourceforge.net/projects/

rcracki/

[5] M. Ågren, T. Johansson, M. Hell, Improving the rainbow attack by reusing

colours. In CANS 2009, LNCS 5888, (Springer, 2009) pp. 362–378.

[6] G. Avoine, P. Junod, P. Oechslin, Characterization and improvement of time-

memory trade-off based on perfect tables. ACM Trans. Inform. Syst. Secur.

11(4), 17:1–17:22 (2008). Preliminary version presented at INDOCRYPT

2005.

[7] E. P. Barkan, Cryptanalysis of Ciphers and Protocols. Ph.D. Thesis,

Technion—Israel Institute of Technology, March 2006.

[8] E. Barkan, E. Biham, A. Shamir, Rigorous bounds on cryptanalytic

time/memory tradeoffs. In Advances in Cryptology—CRYPTO 2006, LNCS

4117, (Springer, 2006), pp. 1–21.

119

BIBLIOGRAPHY

[9] A. Biryukov, A. Shamir, D. Wagner, Real time cryptanalysis of A5/1 on a

PC. In FSE 2000, LNCS 1978, (Springer, 2001), pp. 1–18.

[10] J. Borst, Block Ciphers: Design, Analysis, and Side-Channel Analysis. Ph.D.

Thesis, Katholieke Universiteit Leuven, September 2001.

[11] J. Borst, B. Preneel, J. Vandewalle, On the time-memory tradeoff between

exhaustive key search and table precomputation. In Proceedings of the 19th

Symposium on Information Theory in the Benelux, (WIC, 1998), pp. 111–

118.

[12] A. Fiat, M. Naor, Rigorous time/space tradeoffs for inverting functions. In

Proceedings of the twenty-third annual ACM Symposium on Theory of Com-

puting, (ACM, 1991), pp. 534–541.

[13] M. E. Hellman, A cryptanalytic time-memory trade-off. IEEE Trans. on In-

for. Theory 26, pp. 401–406 (1980).

[14] Y. Z. Hoch, Security analysis of generic iterated hash functions. Ph.D. The-

sis, Weizmann Institute of Science, August 2009.

[15] J. Hong, The cost of false alarms in Hellman and rainbow tradeoffs. Des.

Codes Cryptogr. 57(3), pp. 293–327 (2010).

[16] J. Hong, G. W. Lee, D. Ma, Analysis of the parallel distinguished point trade-

off. In Progress in Cryptology—INDOCRYPT 2011, LNCS 7107, (Springer,

2011), pp. 161–180.

[17] J. Hong, K. C. Jeong, E. Y. Kwon, I.-S. Lee, D. Ma, Variants of the distin-

guished point method for cryptanalytic time memory trade-offs. In ISPEC

2008, LNCS 4991, (Springer, 2008), pp. 131–145.

[18] J. Hong, S. Moon, A comparison of cryptanalytic tradeoff algorithms. J.

Cryptology 26(4), pp. 559—637 (2013).

120

BIBLIOGRAPHY

[19] B.-I. Kim, J. Hong, Analysis of the non-perfect table fuzzy rainbow tradeoff.

In ACISP 2013, LNCS 7959, (Springer, 2013), pp. 347–362.

[20] B.-I. Kim, J. Hong, Analysis of the perfect table fuzzy rainbow tradeoff. J.

Appl. Math., 2014, (2014), Article ID 765394.

[21] J. W. Kim, J. Hong, K. Park, Analysis of the rainbow tradeoff algorithm used

in practice. Cryptology ePrint Archive, Report 2013/591.

[22] G. W. Lee, J. Hong, Comparison of perfect table cryptanalytic trade-

off algorithms. To appear in Des. Codes Cryptogr. (Online July 2015),

http://dx.doi.org/10.1007/s10623-015-0116-0

[23] S. Mukhopadhyay, P. Sarkar, Nearly orthogonal rainbow tables. Indian Sta-

tistical Institute Technical Report, No. ASD/2004/9, November 2004.

[24] P. Oechslin, Making a faster cryptanalytic time-memory trade-off. In Ad-

vances in Cryptology—CRYPTO 2003, LNCS 2729, (Springer, 2003),

pp. 617–630.

[25] J.-J. Quisquater, J. Stern, Time-Memory Tradeoff Revisited. Unpublished,

December 1998.

[26] A. Shamir, Random Graphs in Security and Privacy. Invited talk at IC-

ITS 2009.

[27] F.-X. Standaert, G. Rouvroy, J.-J. Quisquater, J.-D. Legat, A time-memory

tradeoff using distinguished points: New analysis & FPGA results. In Cryp-

tographic Hardware and Embedded Systems—CHES 2002, LNCS 2523,

(Springer, 2003), pp. 593–609.

[28] V. Thing, Virtual expansion of rainbow tables. In Advances in Digital Foren-

sics VI, IFIP AICT 337, pp.243–256, (2010).

121

BIBLIOGRAPHY

[29] V. L. L. Thing, H.-M. Ying, A novel time-memory trade-off method for pass-

word recovery. Digital Investigation 6, pp. S114–S120 (2009).

[30] V. L. L. Thing, H.-M. Ying, Rainbow table optimization for password recov-

ery. International Journal on Advances in Software 4, pp. 479–488, (2011).

[31] W. Wang, D. Lin, Z. Li, T. Wang, Improvement and analysis of VDP

method in time/memory tradeoff applications. In ICICS 2011, LNCS 7043,

(Springer, 2011), pp. 282–296.

[32] H.-M. Ying, V. L. L. Thing, A novel rainbow table sorting method. In CY-

BERLAWS 2011, pp.35–40, (2011).

[33] W. Zhang, M. Zhang, Y. Liu, R. Wang, A new time-memory-resource trade-

off method for password recovery. In ICCIIS 2010, (IEEE, 2010), pp. 75–79.

122

Appendix A

Practical System Constants τF , τL,

and τH

In this chapter, we will describe our measurements to decide realistic constants

τF , τL, and τH . Our machine consisted of an Intel Core i7-3770K 3.50GHz octa-

core CPU, a 16GB DDR3 main memory, and a 4TB 7200RPM SATA hard disk

drive.

A.1 τF

Recalling that τF is the physical time taken by a single iteration of the colored one-

way function, the physical time taken by the reduction process, which converts

hash value into index, should be taken into account to the measurement. In details,

the colored one-way function, which we treated, is as follows, together with the

cryptographic hash function MD5 as the one-way function to be inverted.

•
index
→ ◦

password

hash function−−−−−−−→
MD5

◦
hash

reduction−−−−−→ •
index

To set the realistic figure τF , we downloaded the online phase program rcracki mt [4],

together with two pre-computation tables from [1]. Each of those two is the di-

123

APPENDIX A. PRACTICAL SYSTEM CONSTANTS τF , τL, AND τH

Table A.1: Measurement results for the system constant τF
N # of chain walks / a hash # of hashes total time(sec) τF (s/iter.)

252.574 19999700001 5 20395.17 2.04×10−7

246.004 799940001 10 1520.21 1.90×10−7

vided sub-table of a single perfect rainbow table working with the search space

N = 252.574 or N = 246.004. The search space sizes N = 252.574 and N = 246.004

correspond to the set of all passwords of lengths up to 8 and 7, constructed from

all 95 characters on the standard keyboard, respectively. Then, using the program

rcracki mt, we measured the physical time taken by the online chain creations

for 5 or 10 given MD5 hashes. The measured results of our machine are in Ta-

ble A.1.

Recall that for the s̄R tradeoff, all t online chains, which correspond to a single

perfect rainbow table, are generated at once before search merges between those

online ending points and the pre-computed ending points in the table, where t

is the length of a rainbow chain. When the search space size N = 252.574, for a

single MD5 hash, 19999700001 invocations of the colored one-way function are

required to create all online chains which corresponds to a single perfect rainbow

table, and our machine took 20395.17 seconds to perform the online chain cre-

ations for 5 MD5 hashes. To be more precise, the downloaded pre-computation

table from [1] consists of rainbow chains of length t = 199999. Since each online

chain is assumed to start with the unknown answer, input to the given password

hash, the number of required colored one-way function invocations to generated

all t online chains is given by

t−1

∑
i=0

i = 19999700001.

This amount of required invocations can be also found when the online program

rcracki mt is run under its debug mode. Likewise, when the search space size

is 246.004, the chain length t is set as 39999 and it requires 799940001 one-way

124

APPENDIX A. PRACTICAL SYSTEM CONSTANTS τF , τL, AND τH

function invocations to create all online chains. Remark that [1] treated the chain

length as the number of points included in a single rainbow chain, so that 200000

and 40000 were recorded in those corresponding tables as chain lengths.

Averaging the measuring results, we found τF = 2.04× 10−7 (sec/iteration)

and τF = 1.90× 10−7 (sec/iteration) for the search space size N = 252.574 and

N= 246.004, respectively.

A.2 τL

As was the previous section, we used the online phase program rcracki mt [4]

and downloaded the pre-computation tables from [1], correspond to the divided

sub-table of the perfect rainbow table working with the search space size N =

252.574. Each sub-table consists of 226 table entries, and 7 bytes are allocated to

record each table entry. We measured the total time taken by loading the 10 sub-

tables from our hard disk drive to main memory, and it took 4702.60 seconds.

Thus, averaging over 10 sub-tables and 226 table entries, we found that

τL = 7.01×10−8 seconds/entry,

when each table entry is recorded in 7 bytes.

We note that our measurement do not cover the time taken by reading the

header of each table, which is irrelevant to loading of table entries, and only cover

the time taken by reading the table entries and combining those with the index file

information, which is brought already, to expand each table entry into 16 bytes

complete form.

125

APPENDIX A. PRACTICAL SYSTEM CONSTANTS τF , τL, AND τH

A.3 τH

Our measurements to set the realistic figure τH were made under the assumption

that 4 TB hard disk drive is fully used to perform the online phase of p̄R or p̄D

tradeoff algorithm.

Let us measure the time taken by a single search of the pre-computation perfect

rainbow table stored in the hard disk drive for a matching ending point, when each

table entry is recorded in 7 bytes. We created a random table which consisted of

236.8 table entries and each starting point and ending point were recorded in 5

and 2 bytes, respectively. More precisely, a random 39 bits number was generated

and regarded as the ending point after truncation, together with a sequentially

increasing number, regarded as a starting point to generate the perfect table. Our

random table consisted of 236.8 table entries after sorting on the ending points

and discarding merging entries. By using sequential starting points and applying

26-bit indices to 39-bit ending points, 7 bytes record of table entry is feasible.

Now, given a randomly generated 39-bit target, we calculated how many end-

ing points having the same 26-bit index with the target are in the table, using

the index file information. Then using that value and 13-bit tail of the target, to-

gether with index file information, we predicted a target’s position in the table, and

loaded 100 adjacent table entries into fast main memory which are the 50 table en-

tries each, the front and the rear of the position. We checked that a merging ending

point with the target is in the loaded 100 table entries using the binary search and

returned the corresponding starting point if a match was found. If a match did not

be found among loaded 100 table entries and a possibility to be found still existed,

then all the possible remaining table entries were loaded into fast main memory

and searched a match.

Results of measuring the execution speeds of the above processes, averaged

over 20 trials for 10000 randomly generated targets each are in Table A.2. Mea-

surement results can be separated into two parts, when a match was found and did

126

APPENDIX A. PRACTICAL SYSTEM CONSTANTS τF , τL, AND τH

Table A.2: Measurement results for the system constant τH when a table entry is
recorded in 7 bytes

τ
p̄R
H τ

p̄R
H (success) τ

p̄R
H (faill)

0.010397 seconds 0.010390 seconds 0.010399 seconds

not be found. As be seen in Table A.2, since difference between success and fail

speeds is negligible, we can choose realistic figure

τ
p̄R
H = 1.04×10−2 seconds

as the physical time taken by a single search of the perfect rainbow table stored in

hard disk drive for a matching ending point when 7 bytes are allocated to record

each table entry.

Let us now focus on the physical time taken by a single search of the perfect

DP tables stored in the hard disk drive when each table entry is recorded in 5 or

6 bytes. Under the 5 bytes record situation, we assumed that about 310000 perfect

DP tables are separately stored into 8 files and each table consists of 221.3 table en-

tries, recorded in 5 bytes each. Then each file contains 310000/8 = 38750 perfect

DP tables and requires approximately 500 GB. Since slightly more than 21.3 bits

are required to record each ending point by the distinguished part removal and the

ending point truncation techniques, 5 bytes assumption is justified, after applying

the index file. For our construction, we randomly generated a 22-bit point as a

truncated ending point and recorded a 14-bit ending point tail in 2 bytes assuming

a 8-bit index to the sorted ending points. By use of sequential starting points, each

starting point could be recorded in 3 bytes.

We made the two files, as described above and for randomly generated table

index and ending point target, we searched a matching ending point in the table

corresponding to the given table index, and returned the corresponding starting

point or fail, in the analogous way to the measurement for a perfect rainbow table.

A single difference with the previous measurement is that 50 adjacent table en-

127

APPENDIX A. PRACTICAL SYSTEM CONSTANTS τF , τL, AND τH

tries to a predicted position are loaded, not 100 adjacent entries. The speed of the

table lookup and searching process, averaged over 20 trials for 10000 randomly

generated targets each is

τ
p̄D
H = 0.939×10−2 seconds.

For the 6 bytes record situation, we assumed that about 43600 perfect DP

tables are separately stored into 8 files and each table consists of 223.8 table entries,

recorded in 6 bytes. We made two files so that each file consisted of 5450 random

tables, and a starting point and an an ending point were recorded in 4 and 2 bytes,

respectively. More precisely, use of a 11-bit index to a 25-bit truncated ending

point allowed us to record only 14-bits ending point tail in 2 bytes. Measurement

is very analogous to that of 5 bytes situation. The speed of the table lookup and

searching process, averaged over 20 trials for 10000 randomly generated targets

each is

τ
p̄D
H = 0.973×10−2 seconds.

128

국문초록

최근발표된논문에서 Hellman의시간저장공간절충기법과중복가능테이

블을이용한특이점절충기법,레인보우테이블기법이분석되었고,서로간

의성능비교또한수행된바있다.그분석은오경보를해결하는추가비용까

지고려해분석이정확하도록하였고,알고리즘성능비교에는온라인수행

복잡도와 사전계산 비용을 함께 고려할 뿐만아니라 저장공간의 최적화 기

술 또한 적용하여 공평하도록 하였다. 이 논문을 토대로 또다른 최근 논문

에서 중복가능 특이점 테이블을 병렬처리하는 절충기법의 분석 및 알고리

즘간 비교 또한 수행된 바 있다. 본 연구에서는 그밖의 세가지의 절충기법

의성능을분석하고,앞서언급한네가지절충기법과수행능력을비교한다.

새로이 분석할 알고리즘은 중복제거 테이블을 직렬 또는 병렬처리하는 두

가지특이점절충기법과중복제거테이블을병렬처리하는레인보우테이블

기법을포함한다.

알고리즘의 성능은 하나의 숫자로 표현될 수 없고, 그 선호도 또한 알

고리즘사용자의구현환경에의존한다.그렇기때문에,우리는절충기법의

성능을알고리즘의사용가능한파라미터들에의한곡선으로표현하여구현

자가선택할수있도록하였다.그러나우리는보편적인상황에서중복제거

특이점 테이블을 병렬처리하는 절충기법이 다른 특이점 절충기법들 중 가

장우수한성능을보이고,중복제거레인보우테이블을이용한절충기법이

모든우리가고려한절충기법들중가장뛰어나다는결론을내렸다.

다른한편으로,최근논문에서레인보우테이블기법을최초고안한논문

에서 테이블을 병렬처리하는 방법을 제시한 것에 반하게 실제로는 중복제

거레인보우테이블을직렬적인방식으로처리한다는사실을언급한바있

다.그이유는사전계산테이블의병렬처리가이론적으로는더효율적이나

패스워드 크랙킹과 같이 실제 상황에 적용되기 위해서는 테이블의 크기가

매우커빠른주메모리에테이블을모두올려병렬처리하는것이불가능하

기때문이다.이와같은접근방식으로우리는중복제거테이블을직렬처리

또는병렬처리하는레인보우절충기법과중복제거특이점테이블을병렬처

리하는절충기법의최적의물리적수행시간을계산했다.이계산은다양한

실제적인 패스워드 공간들과 다양한 높은 수준의 성공확률이 요구되는 상

황에서디스크용량에특정제한이있는경우를가정한후수행하였다.물리

적인온라인단계수행시간의계산에는기존의이론적인접근방식들에서는

무시했던,빠른주메모리로테이블을로딩하는시간또는느린디스크로테

이블검색을수행하는시간을고려하였다.

결과적으로 우리는 실제적 알고리즘 구현자의 감각과는 다르게, 알고

리즘들의 최적화된 물리적 수행시간을 비교하였을 때, 직렬처리를 적용한

중복제거레인보우절충기법이다른두가지병렬처리알고리즘에비해많

이 뒤떨어진다는 것을 알아냈다. 단순하게 내릴 수 있는 결론으로, 우리가

다룬 두가지 패스워드 공간 중 더 큰 공간에서는 중복제거 레인보우 테이

블을병렬처리한절충기법이가장빠르게온라인단계를수행하고더작은

공간에서는중복제거특이점테이블을병렬처리한절충기법이가장빠르게

온라인단계를수행한다는것을알수있었다.

주요어휘: 시간 저장공간 절충기법, 특이점, 레인보우 테이블, 중복제거 테

이블,알고리즘수행복잡도

학번: 2011-30898

	Chapter 1 Introduction
	Chapter 2 Preliminaries
	2.1 Algorithm Clarification, Terminology, and Notation
	2.1.1 Four Versions of the DP Tradeoff
	2.1.2 Non-perfect and Perfect Rainbow Tradeoffs pR, p?R
	2.1.3 Perfect Rainbow Tradeoff, Used in Practice s?R
	2.1.4 Other Conventions and Comments

	2.2 Storage Optimization Techniques
	2.3 Previous Results
	2.3.1 Analyses of the Original DP and Parallel DP Tradeoffs
	2.3.2 Analysis of the Non-perfect Rainbow Tradeoff

	Chapter 3 Perfect Table Tradeoff Algorithms
	3.1 Analysis of the Perfect DP Tradeoff
	3.1.1 Online Efficiency
	3.1.2 Storage Optimization
	3.1.3 Experiment Results

	3.2 Analysis of the Perfect Rainbow Tradeoff
	3.2.1 Online Efficiency
	3.2.2 Storage Optimization

	Chapter 4 Perfect Parallel DP Tradeoff
	4.1 Online Efficiency
	4.2 Storage Optimization
	4.3 Experiment Results

	Chapter 5 Comparisons Focused on Theoretical Complexities
	5.1 Method of Comparison
	5.2 Comparison of DP Variants
	5.3 p?D vs. Rainbow

	Chapter 6 Practice-Oriented Comparison
	6.1 Additional Costs for the p?D and p?R Tradeoffs
	6.2 Analysis of the s?R Tradeoff
	6.3 Expressions for the Physical Online Time
	6.4 How to Minimize the Physical Online Time
	6.5 Comparisons

	Chapter 7 Conclusion
	Bibliography
	Appendix A Practical System Constants τF, τL, and τH
	A.1 tF
	A.2 tL
	A.3 tH

	Abstract (in Korean)

<startpage>10
Chapter 1 Introduction 1
Chapter 2 Preliminaries 7
 2.1 Algorithm Clarification, Terminology, and Notation 7
 2.1.1 Four Versions of the DP Tradeoff 8
 2.1.2 Non-perfect and Perfect Rainbow Tradeoffs pR, p?R 19
 2.1.3 Perfect Rainbow Tradeoff, Used in Practice s?R 25
 2.1.4 Other Conventions and Comments 27
 2.2 Storage Optimization Techniques 28
 2.3 Previous Results 29
 2.3.1 Analyses of the Original DP and Parallel DP Tradeoffs 30
 2.3.2 Analysis of the Non-perfect Rainbow Tradeoff 31
Chapter 3 Perfect Table Tradeoff Algorithms 33
 3.1 Analysis of the Perfect DP Tradeoff 33
 3.1.1 Online Efficiency 33
 3.1.2 Storage Optimization 46
 3.1.3 Experiment Results 50
 3.2 Analysis of the Perfect Rainbow Tradeoff 56
 3.2.1 Online Efficiency 56
 3.2.2 Storage Optimization 60
Chapter 4 Perfect Parallel DP Tradeoff 65
 4.1 Online Efficiency 65
 4.2 Storage Optimization 72
 4.3 Experiment Results 75
Chapter 5 Comparisons Focused on Theoretical Complexities 85
 5.1 Method of Comparison 86
 5.2 Comparison of DP Variants 88
 5.3 p?D vs. Rainbow 92
Chapter 6 Practice-Oriented Comparison 100
 6.1 Additional Costs for the p?D and p?R Tradeoffs 102
 6.2 Analysis of the s?R Tradeoff 103
 6.3 Expressions for the Physical Online Time 104
 6.4 How to Minimize the Physical Online Time 106
 6.5 Comparisons 107
Chapter 7 Conclusion 116
Bibliography 119
Appendix A Practical System Constants ¥óF, ¥óL, and ¥óH 123
 A.1 tF 123
 A.2 tL 125
 A.3 tH 126
Abstract (in Korean) 129
</body>

