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Abstract

Finite C*-algebras associated
with labeled graphs

Eunji Kang

Department of Mathematical Sciences
The Graduate School

Seoul National University

We study the properties of the C*-algebras C*(E, L, £) associated to labeled
spaces (E, L,E). Tt is shown that if C*(E, £,€) is AF, then the labeled space
(E,L,E) has no loops. We also prove that some of the known equivalent
conditions for usual graph C*-algebras C*(E) to be AF are not necessarily
equivalent for labeled graph C*-algebras by providing examples. For this, we
use generalized Morse sequences. These examples are also shown to be non-AF
simple finite C*-algebras, which contrasts with the fact that the usual simple
graph C*-algebras are either AF or purely infinite.

Besides, we find a sufficient condition for a labeled space (E, L, &) to give
rise to an infinite C*-algebra in the sense that every nonzero hereditary C*-
subalgebra of C*(E, £, £) contains an infinite projection.

Key words: graph C*-algebras, labeled graph C*-algebras, finite C*-algebras,
AF C*-algebas, purely infinite C*-algebras, generalized Morse sequences
Student Number: 2008-30080
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Chapter 1

Introduction

About forty years ago, Cuntz [7] introduced a class of C*-algebras O,, called
the Cuntz algebras which are generated by n isometries satisfying certain rela-
tions. In [9], Cuntz and Krieger constructed a generalized version of the Cuntz
algebras associated to a finite {0, 1}-matrix A. The Cuntz-Krieger algebra O 4
which is defined to be the C*-algebra generated by partial isometries satisfying
relations determined by A played an important role for the study of the topo-
logical Markov chain associated with the matrix A. It is natural to try to gen-
eralize this sort of C*-algebras of partial isometries satisfying some relations
given by finite matrices to C*-algebras of (infinitely many) partial isometries
with relations given by objects like directed graphs, since matrices with positive
integer entries are nothing but the adjacency matrices of some directed graphs.
Actually in [30], a class of C*-algebras C*(E) for directed graphs E (briefly,
graph C*-algebras or graph algebras) was introduced as groupoid C*-algebras
using the groupoid structure of the infinite path spaces when the graphs F
are locally finite, that is, every vertex emits and receives only finitely many
edges. Then in [29] for row-finite graphs E (every vertex emits only finitely
many edges), the C*-algebras C*(E) were shown to be defined without using
groupoid machineries. It is also shown later in [11] that an arbitrary graph
can be transformed into a row-finite graph with no sinks through the so-called
desingularization and that the C*-algebra of the original graph is isomorphic
to a full conner of the C*-algebra of the desingularized row-finite one. Thus
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every graph C*-algebra is stably isomorphic to a C*-algebra of a row-finite
graph. This fact allows us to focus on row-finite graphs and thier C*-algebras.

Besides the graph C*-algebras, there have been various generalizations of
Cuntz-Kreiger algebras. The Exel-Lace algebras [13], the ultra graph algebras
[35], and the higher-rank graph algebras [28] are those generalizations which
also include the C*-algebras of row-finite graphs with no sinks. On the other
hand, it is known [26] that the class of graph algebras, Exel-Laca algebras, and
ultra graph algebras coincide up to Morita equivalence.

Working with graph algebras has attractive benefit because many complex
properties and structures of graph algebras can be explained in terms of graph
conditions. For example, a graph algebra C*(FE) is an AF (approximately
finite dimensional) algebra if and only if £ has no loops [29], and similarly if a
higher-rank graph C*-algebra C*(A) is AF, then the higher-rank graph A has
no loops [12].

A C*-algebra is called infinite if it contains infinite projections and finite
otherwise. AF algebras are C*-algebras that are best understood among finite
C*-algebras, and Cuntz algebras (or, more generally purely infinite simple C*-
algebras) are infinite C*-algebras. It is also known in [29] that C*(F) is purely
infinite simple if and only if E satisfies Condition (L), namely every loop has
an exit, and every vertex connects to a loop.

As a generalization of graph C*-algebras, a class of C*-algebras C*(F, L, B)
associated with labeled spaces (E, L, B) was introduced in [4] and has been
studied in [1, 4, 5, 17, 18, 19, 20]. Briefly, these are the C*-algebras generated
by a family of partial isometies satisfying certain relations from the labeled
spaces (F, L, B), where L is a labeling map assigning a label (or alphabet) to
each of the edges of the graph E and B, called an accommodating set, is a
collection of vertex subsets which plays the role of vertices in graph algebras.

In this thesis we first investigate the question of when a labeled graph C*-
algebra C*(E, L, E) is AF, where (E, L, ) is a labeled space with the smallest
non-degenerate accommodating set £. We will define a notion of loop for a
labeled space (E, L, &) and show that if C*(E, £, €) is AF, the labeled space
(E,L,€) has no loops. Unlike the graph algebra case, it turns out that the
converse may not be true in general, namely there is a labeled space with no
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loops whose C*-algebra is not AF. A sufficient condition for a labeled space to
be associated to an AF labeled graph C*-algebra will also be given.

It is also well-known [29] that there is a dichotomy for simple graph C*-
algebras: it is either AF or purely infinite. On the other hand, in [5, Propo-
sition 7.2], Bates and Pask provide an example of a simple unital purely in-
finite labeled graph C*-algebra which is not isomorphic to any unital graph
C*-algebra. We also know from [33] that there exist simple higher-rank graph
C*-algebras which are neither AF nor purely infinite, more specifically there
exist such simple C*-algebras which are stably isomorphic to irrational rotation
algebras or Bunce-Deddens algebras. Since the property of being AF or pure
infiniteness is preserved under stable isomorphism, the examples of higher-rank
graph C*-algebras constructed in [33] are not stably isomorphic to any graph
C*-algebras. This leads us to ask if there exists a simple unital labeled graph
C*-algebra which is neither AF nor purely infinite. We will show that there
exist simple labeled graph C*-algebras C*(FEy, L,,,Ez) associated to general-
ized Morse sequences w that are not AF, but finite (with unique traces). To
see that C*(Ey, L,,,Ez) is non AF, we show that K,(C*(Eyz, L.,,Ez)) # 0 by
applying the K-theory formula obtained in [1]. The fact that C*(Ez, L., £z) is
finite comes from the existence of a unique trace which is the extension of the
unique ergodic measure on the closed orbit space of w. This result says that
the dichotomy for simple graph C*-algebras does not hold for simple labeled
graph C*-algebras.

We then turn our attention to the question of what conditions on a la-
beled space (E, £, €) guarantee that the labeled graph C*-algebra C*(E, L, B)
contains sufficiently many infinite projections in the sense that every nonzero
hereditary C*-subalgebra of C*(E,L,£) contains infinite projections. This
property is well-known to be equivalent to the pure infiniteness of [31] at
least for simple C*-algebras. As mentioned earlier, a simple graph algebra
C*(F) is purely infinite exactly when the graph E satisfies Condition (L) and
every vertex connects to a loop. To extend this fact to labeled graph C*-
algebra C*(E, L, £), we will make clear the meaning of connecting a vertex to
a loop in (E, £,€), and then show that every nonzero hereditary subalgebra
of C*(E, L, &) is infinite for a disagreeable (E, £, ) with this property. Here
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the disagreeability of a labeled space is an extended notion of Condition (L)
for a graph ([5]).

This thesis is organized as follows. We begin in Chapter 2 with reviewing
necessary background on graph C*-algebras, labeled graph C*-algebras, and
generalized Morse sequences.

In Chapter 3, we find conditions of a labeled space (F, £, €) which give rise
to an AF C*-algebra C*(E, L, &). Based on the fact that a graph C*-algebra
C*(E) is AF exactly when the graph E has no loops, we first consider several
conditions on a directed graph E that are equivalent to the existence of a loop
in £ (Proposition 3.1.2), and then we will define a notion of loop for a labeled
space (Definition 3.1.3) by extending one of these conditions. Each of the other
equivalent conditions can also be restated in terms of labeled spaces or labeled
graph C*-algebras. We also discuss those equivalent conditions are not always
equivalent in the class of labeled graph C*-algebras.

In Chapter 4, we consider the question of whether the dichotomy for simple
graph C*-algebras (a simple graph C*-algebra is either AF or purely infinite)
would hold true for the class of simple labeled graph C*-algebras. To answer
this question we prove in Theorem 4.1.7 that there exists a simple unital finite,
but non-AF labeled graph C*-algebra C*(Eyz, L., £z). This is a C*-algebra
associated to a labeled space (Ez,ﬁw,gz) which is labeled by a generalized
Morse sequence w.

Finally in Chapter 5, we investigate conditions of labeled spaces (E, L, &)
that generate infinite C*-algebras. We shall define an analogue of connecting
every vertex to a loop in the context of labeled spaces and show that if (E, £, £)
is a disagreeable labeled space in which every generalized vertex connects to a
loop, then every nonzero hereditary C*-subalgebra of C*(E, £, ) contains an
infinite projection. It will be one of our future projects to explore whether the
converse holds and when the (possibly non-simple) labeled graph C*-algebra
would be purely infinite in the sense of [31, 32].



Chapter 2

Preliminaries

In this chapter, we review basic definitions and properties of graph C*-algebras,
labeled graph C*-algebras, and generalized Morse sequences and set up our
notation that are frequently used throughout this thesis.

2.1 Directed graphs and their C"*-algebras

A directed graph E = (E°, E',r,s) consists of a countable set E° of vertices,
a countable set E' of edges, and range and source maps r,s : E* — E°. The
directed graph E is row-finite if each vertex emits only finitely many edges.
A row-finite graph is locally finite if every vertex receives only finitely many
edges. A vertex v € E° which emits no edges is called a sink and a vertex
v € EY which does not receive any edges is called a source. By E2 , we denote
the set of all sinks of E. A path of length n in a directed graph F is a sequence
of edges A = Ay - -+ A, with r(\;) = s(A\iy1) for 1 < i < n. We write |A| := n for
the length of A\. Let E™ denote the set of all paths of length n. By convention
E° is regarded as the set of paths of length 0. We let E* := U,>oE™ be the
set of all finite paths and let E<" and E=" be the sets U E" and U, F",
respectively. The maps r and s naturally extend to E*, where r(v) = s(v) = v
for v € E°. If a sequence of edges \; € E'(i > 1) satisfies r(\;) = s(A\i11), one
obtains an infinite path A\ AsAg - -+ with the source s(AjA2A3--+) := s(\;) and
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E* will denote the set of all infinite paths.

If F is a directed graph, a Cuntz-Kreiger E-family consists of a set {p, :
v € E°} of mutually orthogonal projections and a set {s. : e € E'} of partial
isometries satisfying the following Cuntz-Kreiger relations:

(1) $iSe = pr(e) for e € B,
(i) sest < ps(e) for e € E,

(iil) po = D" y(e)=y SeSe Whenever 0 < [s™!(v)| < oo.

It is shown ([29, Theorem 1.2] and [14]) that there is a C*-algebra C*(FE)
generated by a universal Cuntz-Krieger E-family {s.,p, : e € E*,v € E°} (or,
briefly {sc,p,}). More precisely, for every Cuntz-Krieger E-family {S., P,} of
partial isometries on a Hilbert space H, there is a representation 7 := 7g p of
C*(F) on H such that 7(s.) = S, and 7(p,) = P, for all e € F',v € E°. The
C*-algebra C*(F) is called the graph C*-algebra of E. Since one can construct
families {Se, P,} in which all projections P, are non-zero, we have that p, is
non-zero for all v € E°.

It is known in [11] that if £ is an arbitrary graph, there is a row-finite
graph E’ with no sinks or sources such that C*(FE) and C*(E’) are stably
isomorphic. Since we are mainly interested in properties of graph C*-algebras
that are preserved under stable isomorphism, we will restrict ourselves to graph
C*-algebras C*(F) of row-finite graphs E. So, from now on E will be a row-
finite directed graph unless stated otherwise.

The Cuntz-Krieger relations imply that s.sy # 0 only if r(e) = s(f) and
that s7s; = 0 unless e = f. More generally, a product sy := sy,5, - -5y, of
partial isometries sy,,--- , sy, is non-zero precisely when A = A\Ag--- )\, is a
path in £" and one has the following relations.

Lemma 2.1.1. ([29, Lemma 1.1)) Let E be a row-finite graph, {se,p,} a Cuntz-
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Krieger E-family, and v, A € E*. Then

Sy, if A=vXN

sy, if v=X/
S8\ = .

Prny, if v=2A

0, otherwise.

Moreover, every non-zero finite product of se,p, and s} is a partial isometry
of the form s,s;, for some p,v € E* with r(p) = r(v).

It follows by Lemma 2.1.1 that for a universal Cuntz-Krieger E-family {s., p,}
C*(E) = span{s,s, : p,v € E* and r(u) = r(v)},
where s, := p, for v € E°.

A finite path A\ with |[A] > 0 is called a loop based at v € E° if s()\) =
r(A) = v, that is, if it comes back to its source vertex. An ezit of a loop
A= MMy -\, is an edge f € E' which satisfies that s(f) = s()\;) for some
i€{l,---,n}, but f # \;. We say that a directed graph F satisfies Condition
(L) if every loop has an exit.

Theorem 2.1.2. (The Cuntz-Krieger uniqueness theorem [3, Theorem 3.1]).
Let E be a row-finite graph which satisfies Condition (L) and let {T,,Q,} be a
Cuntz-Krieger E-family such that Q, # 0 for every v € E°. Then there is an
isomorphism w of C*(E) onto C*(T,, Q) such that w(s.) =T, and w(p,) = Qy
for alle € E' and v € E°.

For each z € T, the family {zs.,p, : e € E',v € E°} is a Cuntz-Kreiger
E-family which generates C*(E) = C*(s.,p,). Thus the universal property of

C*(FE) defines an automorphism v, : C*(E) — C*(E) such that

V2(Se) = 25 and 7. (py) = Py

¥ [ -1 ==
| = Lh.
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for all e € E' and v € E°. Moreover, v : T — Aut(C*(E)) given by v(z) := 7.
is a strongly continuous action of T on the C*-algebra C*(E) which is called
the gauge action.

Theorem 2.1.3. (The Gauge Invariant Uniqueness Theorem [3, Theorem
2.1]). Let E be a row-finite graph and {T.,Q,} be a Cuntz-Krieger E-family
in which Q, is non-zero for allv € E°. Let m := ms p be the representation of
C*(E) such that w(s.) =T, and w(p,) = Q,. If there is a strongly continuous
action 8 of T on C*(T,,Q,) such that 5, om = 7w o, for all z € T, then 7 is
faithful.

A directed graph E is said to be cofinal if for every vertex v € E° and for
every infinite path A = A\jAg -+ - € £, there exists p € E* such that s(u) = v
and 7(u) = s(\;) for some ¢ > 1. For the simplicity of graph C*-algebras, the
following is known.

Theorem 2.1.4. ([3, Proposition 5.1|) Let E be a row-finite directed graph
with no sinks. Then C*(E) is simple if and only if E is cofinal and satisfies
Condition (L).

For v,w € E° we write v > w if there is a path y € E* with s(u) = v and
r(u) = w. A subset H of E° is called hereditary if v > w and v € H imply w €
H. A hereditary set H is saturated if v € H whenever {r(e) : s(e) = v} C H.
If H is a hereditary set, the saturation of H is the smallest saturated subset
H of E° containing H. For each subset H of E°, let Iy be the ideal of C*(E)
generated by the projections {p, : v € H}.

Theorem 2.1.5. ([3, Theorem 4.1]) Let E be a row-finite directed graph. Then
we have the following.

(i) The map H — Iy is an isomorphism from the lattice of saturated hered-
itary subsets of E° onto the lattice of gauge-invariant ideals of C*(FE).

(i) Let H be a saturated hereditary subset of E° and E\ H := (E°\ H, E'\
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r~Y(H),r,s) be the subgraph of E. Then C*(E)/Iy is canonically iso-
morphic to C*(E '\ H).

Aloop A = A Ag--+ A, at v = s()\) is called a first-return path if s(\;) # v
foralli =2,--- n. A directed graph E is said to satisfy Condition (K) if no
vertex is the base of exactly one first-return path.

Example 2.1.6. The following directed graph E satisfies Condition (K'). The
vertex v is a base of two distinct first-return paths eg and efg. Also, f and ge
are distint first-return paths at w. (fge is not a first-return path.)

e
/_\ Q
° ° f
v >~—w
g

Theorem 2.1.7. ([3, Theorem 4.4]) Let E be a row-finite directed graph. Then
the following are equivalent.

(i) E satisfies Condition (K),
(i) all ideals of C*(E) are gauge invariant,

(iii) the map H — Iy is a lattice isomorphism from the saturated hereditary
subsets of E onto the ideals of C*(E).

Example 2.1.8. The following graph E satisfies Condition (L), but does not
satisfy Condition (K) since v is the base of only the first-return path e.

QO QO
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The hereditary saturated subsets of E° are
(2)7 Hl = {U47U5}7 H2 = {U27U37U47U5}7 EO'

Thus C*(E) has two non-trivial gauge invariant ideals, namely Iy, and Ig,.
It is easy to see that the subgraphs E \ H; and E \ H; are as follows:

E\ H : ° ° .

E\HQi L]

By Theorem 2.1.5 (ii), one sees that C*(F)/Iy, = C*(E \ Hy). Note that
the hereditary subalgebra p,,C*(FE)p,, is isomorphic to C(T). Since C(T) has
many ideals that are not gauge invariant, it follows that C*(E) also has many
ideals that are not gauge invariant.

If a graph F has a loop with an exit, the C*-algebra C*(FE) is infinite in
the sense that C*(FE) contains an infinite projection. In fact, if A = A\ g« -\,
is a loop at v = s(\;) with an exit f € E' at v, the projection p, is Murray-
von Neumann equivalent to its proper subprojection sys} in C*(E) since p, =
S3Sx ~ 5aSY < sy sy, < sy 8y, +Sps) < py. Thus if C*(F) is finite, the graph
E should not have any loops with exits. If F has a loop with no exits, it can
be seen that C*(E) has a quotient C*-algebra which is stably isomorphic to
C(T). Thus, if C*(F) is an AF algebra, the graph E can not have any loops.
Moreover, the converse is also known to hold true.

10
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Theorem 2.1.9. (|29, Theorem 2.4]) A directed graph E has no loops if and
only if C*(E) is an AF algebra.

If a graph C*-algebra C*(E) is AF, by Theorem 2.1.7 all ideals of C*(E) are
gauge invariant because E (with no loops) trivially satisfies Condition (K).
Since any quotients of AF algebras are also AF, the graph £\ H must have
no loops for any saturated hereditary subset H of E°.

Recall ([7]) that a simple C*-algebra A is said to be purely infinite if every
non-zero hereditary C*-subalgebra of A contains an infinite projection. In
many works including [29], a (possibly non-simple) C*-algebra A that has this
property was called purely infinite. On the other hand, another notion of pure
infiniteness for non-simple C*-algebras was studied intensively by Kirchberg
and Rgrdam in [31, 32] and it was suggested to call a non-simple C*-algebra A
purely infinite if there are no characters on A and if for every pair of positive
elements a,b € A such that a € AbA, there exists a sequence (z;)%2, in A with
xfbxr; — a ([31, Definition 4.1]).

In this thesis, if a C*-algebra A has the property that every non-zero hered-
itary C*-subalgebra of A contains an infinite projection, we will say that A
has the property (SP) to distinguish this one from the pure infiniteness of
[31]. The reason we have chosen (SP,,) to refer the property is because in
the literature a C*-algebra is said to have the property (SP) if every nonzero
hereditary C*-subalgebra of A contains a nonzero projection. In gereral, the
property (SP.) is neither weaker nor stronger than pure infiniteness ([31, Ex-
ample 4.6]). But, both definitions are equivalent for simple C*-algebras ([31,
Proposition 4.6 and Proposition 5.4]).

Theorem 2.1.10. ([3, Proposition 5.3] or [29, Theorem 3.9]) Let E be a row-
finite directed graph with no sinks. Then C*(E) has the property (SPx) if and
only if E satisfies Condition (L) and every vertex connects to a loop.

If a directed graph E is cofinal and has a loop, every vertex automatically
connects to every loop. Combining this fact together with Theorem 2.1.9, we
have the following dichotomy for simple graph C*-algebras.

11
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Corollary 2.1.11. ([29, Corollary 3.10]) Let E be a row-finite directed graph.
If C*(E) is simple, then either

(i) C*(E) is an AF-algebra if E has no loops; or

(il) C*(F) is purely infinite if E has a loop.

For a path u € E* U E*, u° will denote the following subset of E°
p’ ={v e E”:v=s(e) or v=r(e) for some edge e appearing in p},

namely 1 is the set of all vertices that y is passing through. A path v € E* is
called a detour of p if s(v) € p° and r(v) € pu°. Obviously, subpaths of u are
detours of u. In [16], Hjelmborg shows among others that:

Theorem 2.1.12. ([16, Theorem 3.1]) Let E be a locally finite directed graph
with no sinks. The following are equivalent.

(i) C*(E) is purely infinite,

(ii) C*(E) has no quotient that contains a two-sided ideal that is an AF-
algebra or contains a corner that is x-isomorphic to M, (C(T)) for some
neN,

(iii) every infinite path in E admits a detour  such that there are two or
more loops based at some vertex of 3°,

(iv) the subgraph E\ H := (E°\ H,E'\ r—'(H),r,s) has the property that
every vertex connects to a loop with an exit for every hereditary saturated
subset H of E°.

Theorem 2.1.12 (iv) says that a purely infinite graph C*-algebra C*(E) has the
property (SPs). The converse may not be true as we see from the following
example.

12
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Example 2.1.13. Consider a directed graph E as follows:

CTQ C?Q C?Q CUfQ

It is easy to see that F satisfies Condition (L) and E is not cofinal, but every
vertex in E° connects to a loop. Thus, C*(F) is a non-simple C*-algebra
by Theorem 2.1.4 and has the property (SP) by Theorem 2.1.10. Whereas
the hereditary saturated subset H := {v; : i € Z} of EY gives rise to the
non-trivial ideal Iy in C*(E) generated by the projections {p, : v € H} and
C*(E) /Iy is isomorphic to C*(E \ H), where the directed subgraph F \ H =
(E°\ H,E'\r~Y(H),r,s) is as below:

The subgraph E'\ H has no loops at all, so C*(E'\ H) is AF by Theorem 2.1.9,
which means that C*(F) contains an AF quotient. Thus C*(FE) is not purely
infinite. This also can be seen from Theorem 2.1.12 (iii) since £ has an infinite
path in which every vertex admits no loops at all.

2.2 Labeled spaces and their C*-algebras

We use notational conventions of [1, 5] for labeled spaces and their C*-algebras.
A labeled graph (E, L) over a countable alphabet A consists of a directed graph
E and a labeling map L : E* — A. We assume that the map £ is onto. Let
A* be the set of all finite sequences of length greater than or equal to 1 in the
symbols of A. Then the map L extends naturally to the map L : E* — A*
given by L(A) := L(A\)---L(\,) € A* for A = Ay --- A, € E™. Similarly, A>
denotes the set of all infinite sequences in A and the map £ extends to E™

via L(6) := L(61)L(ds)--- € L(E®) C A® for § = 6162--- € E>®. We use

13
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notation £*(E) := L(E='). For a = ajag---ap € L*(E), we denote the
subsegment «;---a; of a by aypj for 1 < i < j < |al. A subsegment of the
form ap ;) is called an initial path of o. The range r(a) and source s(«) of a
labeled path o € L*(E) are subsets of E° defined by

r(a) ={r(\) : A€ E=Y L(\) = a},
s(a) = {s(A) : e E=' L()\) = a}.

The relative range of a € L*(E) with respect to A C E° is defined to be
r(A,a) ={r(\) : A€ B, L()\) = a, s()\) € A}.

A collection B C 2E° of subsets of E° is said to be closed under relative ranges
for (E,L) if r(A,a) € B whenever A € B and o € L*(F). We call B an
accommodating set for (E, L) if it contains r(«) for all & € L£*(E) and it is
closed under relative ranges, finite intersections and unions. Moreover, if an
accommodation set B is closed under relative complements, then it is said to
be non-degenerate ([1]).

Definition 2.2.1. Let (£, £) be a labeled graph. A labeled space consists of
a triple (F, £, B) where B is an accommodating set for (E, £). If in addition
B is non-degenerate, then the labeled space (E, £, B) is called normal ([1]).

A labeled space (E, L, B) is weakly left-resolving if
r(A,a)Nr(B,a) =r(AN B, «)

holds for all A, B € B and o € L*(FE). A labeled graph (E, L) is left-resolving
if the map £ : r~1(v) — A is injective for each v € EY and label-finite if
|£7(a)| < oo for each a € A. If (E, L) is left-resolving, then it is label-finite
if and only if 7(a) is finite for all a € A. A set A € B is called minimal (in B)
if A does not have any proper subset in B.

We denote by £ the smallest subset of 2E° which is an accommodating set

14
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for (£, L) and by £%~ the smallest accommodating set containing
{r(a) :a € L*(E)} U{{v} : v is a sink or a source}.
If E has no sinks or sources, £~ = & and if (E, L, £) is weakly left-resolving,
E={Uii My 7(Bik) : Bix € L*(E)}

from [5, Remarks 2.1(i)]. For a vertex subset A C E°, Agu denotes the sinks
ANEY, in A and for B C 2P0 we simply denote the set {Agu : A € B}
by Bank. For a labeled space (E,L,B), we denote by B the smallest non-
degenerate accommodating set that contains B U Bgu. The existence of B
clearly follows from considering the intersection of all those accommodating
sets. € will thus denote the smallest non-degenerate accommodating set con-
taining Esnc = {Asux : A € E} (We wrote 0 for £ in the paper [17]). Also
with abuse of notation, for B C 2¥0 and A C E,, we write

BNA:={BeB: BCA}

Example 2.2.2. For the following labeled graph (E, L) (see [1])

[ ] a [ a e
U1 (%) V3

the smallest accommodating set is € = {{va}, {v1,v2,v3}}, while the small-
est non-degenerate accommodating set is € = {0, {va}, {v1, v3}, {v1,v2,v3}}.
Thus, £ C €. The set B = {0, {va}, {vs}, {vo, vs}, {v1, v3}, {v1, va,v3}} is also
an accommodating set for (F, L), which is not closed under relative comple-
ments: {vy,v3} \ {vs} = {vi} ¢ B. The labeled space (E, L, B) is weakly left-
resolving. Of course, 2E" is the largest accommodating set for (E, £). But,
(E, £,2"") is not weakly left-resolving because r({v; }, a)Nr({vs, v3}, a) = {va},
but r({vi} N {ve, v3},a) = 0.

15
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Remark 2.2.3. As we have seen in Example 2.2.2, the smallest accommodating
set &€ is not necessarily closed under relative complements. On the other hand,
in the construction of the C*-algebra C*(E, L, B) ([4, 5]) of a labeled space
(E, L, B), to each nonempty set A € B there is associated a nonzero projection
pa in C*(E, L, B) in such a manner that p4s < pp whenever A C B. Hence
pB—pa belongs to C*(E, L, B) and it seems reasonable to write pp\ 4 for pg—pa,
which leads us to consider accommodating sets that are closed under relative
complements and the results in [19] was obtained under this assumption. But
then quite recently in [1], a labeled space (E, £, B) with an accommodating set
B which is closed under relative complements is newly termed as normal and
discussed that the original definition of C*(E, L, B) given in [4, 5] is correct
to establish the so-called Gauge Invariant Uniqueness Theorem only when
(E, L,B) is normal. For a general case, a correct definition of C*(FE, L, B) is
also given in Appendix A of [1].

For A,B € 2F° and n > 1, let
AE" ={\N€ E" : s(\) € A}, E"B={\€ E" : r()\) € B},

and AE"B = AE" N E"B. We write E"v for E"{v} and vE" for {v}E™.
Then the sets AEZ*¥ and vE> must have their obvious meaning. We also take
conventions like AE? = A and L(A) = A for A € B. A labeled space (FE, L, B)
is said to be set-finite if the set L(AE") is finite for every A € B and [ > 1 and
it is said to be receiver set-finite if L(E'A) is finite for all A € B and [ > 1.

Assumptions. We assume that a labeled space (F, L, B) considered in this
thesis always satisfies the following;:

(i) (E,L,B) is normal.
(ii) (E,L,B) is weakly left-resolving.

(ili) (E,L,B) is set-finite and receiver set-finite.
By Qo(F) we mean the set of all vertices of E that are not sources. For
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v,w € Qo(E) C E° we write v ~; w if L(ES) = L(ES'w) as in [5]. Then ~;
is an equivalence relation on Qy(FE). The equivalence class [v]; of v is called a
generalized verter. Let Q(E) := Qo(E)/~; for I > 1. If k > [, [v]x C [v]; is
obvious and [v]; = U, [v;];41 for some vertices vy, . .., v, € [v]; ([5, Proposition
2.4]).

Note that every set in £ can be expressed as a finite union of generalized
vertices ([5, Remark 2.1 and Proposition 2.4.(ii)], where £%~ denotes our &):

ECH{UL v+ vi € Q(E), n,l>1}.

Generalized vertices [v]; are not always members of the accommodating set £
but always the relative complements of sets in £, namely [v], = X;(v)\r(V;(v)),
where X;(v), Y;(v) are given by

Xi(v) == Naegpsinyr(a) and Yi(v) = Uwex, ) L(ES'w) \ L(ES)

so that X;(v), r(Y;(v)) € € ([5, Proposition 2.4]). One can easily check that the
expression [v]; = X;(v)\r(Y;(v)) is valid even for a sink v and [v],Nr(Y;(v)) = 0.

Notice also that the smallest non-degenerate accommodating set € contains
all generalized vertices, and hence

(U [vili s vi € W(E), n,l>1} CE.
More precisely, we see the following.

Proposition 2.2.4. Let (E, L) be a labeled graph and A € . Then A is of
the form

A= (U [vil) U (U721 ([wg)sioe) U (U2 [wili\ ([wil)si) — (2.1)

for some v;, u;, wy, € Qo(E) and 1 > 1, ny,ny,ng > 0.

Proof. Let B be the set of all vertex subsets that are expressed as in the right
hand side of (2.1). Then B C & is obvious since £ contains all generalized

17
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vertices. Now it suffices to show that B is an accommodating set that is closed
under relative complements. By the proof of [5, Proposition 2.4], r(a) € B
for all labeled paths aw € L*(E). It is easy to see that B is closed under finite
unions, finite intersections and relative complements.

In order to show that B is closed under relative ranges, it suffices to see that
r([v];, ) € B for v € Qy(F) and a € L*(FE). Since r([v];, ) Nr(r(Yi(v)),a) =
r([v]; Nr(Y;(v)),a) = 7(0,a) = 0, we have

r([li, @) = r(Xi(0) \ r(Yi(v)), @) = r(Xi(v), a) \ 7 (r(Yi(v)), @)

which belongs to B since r(X;(v), «), r(r(Y;(v)),a) € € C B and B is closed
under relative complements. O

Notation 2.2.5. Let (F, L) be a labeled graph.

(a) As in [1], £#(E) will denote the union of all labeled paths £*(E) and
empty word €, where € is a symbol such that r(e) = E°, r(4,¢) = A for
all A C EY.

(b) If L is the identity map id : E' — E', it is called the trivial labeling and
will be denoted by L;4. For a labeled graph (E, L;4), the accommodating
set £ is equal to the collection of all finite subsets of E°.

Recall [5] that o € £*(F) with s(a) N[v]; # 0 is said to be agreeable for [v],
if @ = pa’ = o'y for some o/, 5,y € L*(E) with || = |y| < [. Otherwise « is
said to be disagreeable.

Definition 2.2.6. ([4, Definition 5.1]) Let E be a graph with no sinks or
sources and (E, L, B) be a labeled space.

(i) [v]; € Bis called disagreeable if there is an N > 0 such that for alln > N
there is an a € L(FE=") that is disagreeable for [v];.

(ii) (E,L,B) is called disagreeable if [v]; is disagreeable for all v € E° and
[>1.

18



CHAPTER 2. PRELIMINARIES

Note [20, Proposition 3.9] that a generalized vertex [v]; is not disagreeable
if and only if there is an N > 0 such that every path a € L([v];E=") is
agreeable, namely is of the form a = ¥4’ for some k > 0 and some paths
8,5 € L(ESY), where 3’ is an initial path of 5. In case of trivial labeling,
(E, L4, E) is disagreeable exactly when the graph E satisfies condition (L) [4,
Lemma 5.3].

We now define a representation of a labeled space (E, £, B) such that € C B,

where &€ is the smallest non-degenerate accommodating set containing Egni =
{Asink cAe z}

Definition 2.2.7. Let (E,L,B) be a labeled space such that £ C B. A
representation of (F,L,B) consists of projections {p4 : A € B} and partial
isometries {s, : a € A} such that for A, B € B and a,b € A,

PASa = SaPr(A,a)>

)
)

(iii) s}5q = Pr(a) and s}s, = 0 unless a = b,
)

pa = Z SaPr(Aa)Sn + DAgme-
a€L(AE")

Remark 2.2.8. For a weakly left-resolving normal labeled space (£, £, B) such
that &k ¢ B, a definition of a representation of (F,L,B) is given in [1,
Definition 2.1]. As pointed out in [1, Remark 2.3], if A € Band ANES, , € B,

PA = Pange . + ZaeL(AEl) SaPr(A,a)Sy, Which agrees with our definition of the

sink

representation of (E, L, B).
Theorem 2.2.9. Let (E,L,B) be a labeled space such that € C B. Then
there exists a C*-algebra B generated by a universal representation {s,,pa} of

(E, L, B).
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Proof. The assertion can be obtained by a slight modification of the proof of [4,
Theorem 4.5], namely we should mod out the *-algebra k(g c ) by the ideal J

generated by the elements ¢4, —q4—q¢B+qanp and qA_Zaeﬁ(AEl) SaQr(Aa)Sa—
qa,,, for A, B € B. O

Remark 2.2.10. Let (E, L, B) be a labeled space such that €& C B.

(i) If {sq,pa} is a universal representation of (E,L,B), we simply write
C*(E,L,B) = C*(sq,pa) and call C*(E, L,B) the labeled graph C*-
algebra of a labeled space (E,L,B). Note that s, # 0 and ps # 0
fora € Aand A € B, A # 0, and that sopas; # 0 if and only if
ANnr(a)Nr(p) # 0. By Definition 2.2.7(iv) and [4, Lemma 4.4] saying
that with s, := p, for a € B,

Sory’pr(A;y’)ﬁBSEa if = Bﬁ)/
SapAﬂr(B,,B’)Sgﬁ/a if 5 = Vﬁ/
SapAﬂBsga if 6 =7

0, otherwise,

(sapasp)(s,0555) =

for o, B,7,0 € L#(E) and A, B € B, it follows that
C*(E,L,B) = span{sapash : a, B € L¥(E), A€ B}, (2.2)

where s, denotes the unit of the multiplier algebra of C*(E, £, B) [1]. It
is observed in [20] that if E' has no sinks nor sources, then

C*(E,L,E") = C*(E, L,E).
(ii) From Definition 2.2.7(iv), we have for each n > 1,

pa = Z So‘pr(Aﬂ)S:; + Z S’Ypr(Aﬂ/)sinks’);’
acL(AE™) fyeﬁ(AESn—l)
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where > ramo) SyPr(An)am Sy = Pa_ - In fact,

sin

pba = Z SaPr(A, a)S + Pa
a€L(AET)

= Z Sa ( Z SbPr(A,ab) SZ + pr(A,a)si“k> Sz + pAsink
acL(AE"Y) beL(r(A,a)EL)

= Z S'YpT A’Y 8 + Z apT A a)smksa + pAsmk
YEL(AE?) a€L(AEY)

- Z 5y (Z ScPr(Ane)Sc T Pr(4 n)ynk)

YEL(AE?)

+ Z sa/prAablﬂk a+pA
acL(AEY)

= Z Sap'I‘(A,Ot) Sa + Z S’YPT(A:’Y)sink Sik)/

a€L(AE3) YEL(AE?)

+ : : SapTAa/smk a+pA
a€L(AEY)

sink

sink

sink

= Z Soépr(A,a)SZ + Z S’YpT(AfY)sinkS:'

acL(AE™) YEL(AES"—1)

(iii) Universal property of C*(E,L,B) = C*(s4,pa) defines a strongly con-
tinuous action v : T — Aut(C*(E, L, B)), called the gauge action, such
that

V2(84) = 254 and 7.(pa) = pa
for a € L(E') and A € B.

(iv) For B € &, one can easily show that the ideal Iy of C*(E,L,&) =
C*(s4,pa) generated by the projection pp is equal to

Ip =span{s.pash : o, B € L#(E), Ac Enr(L(BEZ))}, (2.3)

where r(L(BE°)) := Band ENA={B€&:BC A} for A€E&.
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As we have seen in the previous section, Condition (L) meaning that ev-
ery loop has an exit was introduced as an essential condition to obtain the
Cuntz-Krieger uniqueness theorem for graph C*-algebras. More generally, in
[4, Theorem 5.5] it is known that if (E, £, B) is disagreeable, Cuntz-Krieger
uniqueness Theorem holds:

Theorem 2.2.11. (The Cuntz-Krieger Uniqueness Theorem [4, Theorem 5.5]).
Let (E, L, B) be a disagreeable labeled space. If {S,, Pa} is a representation of
a labeled space (E, L, B) such that S, # 0 and Py # 0 for alla € A and A € B,
then there is an isomorphism m of C*(E,L,B) = C*(sq,pa) onto C*(Sa, Pa)
such that w(s,) = S, and m(pa) = Py for alla € A and A € B.

Remark 2.2.12. As it is pointed out in [1], if (E, L, B) is weakly left-resoling
labeled space that is not normal, then C*(E, £, B) may not satisfy the gauge
invariant uniqueness theorem under our definitions given in Definition 2.2.7 and
Definition 2.2.9. To treat the general case, the definition of representations of
non-normal labeled spaces (E, L, B) has to be modified. See [1, Appendis A]
for this.

Theorem 2.2.13. (The Gauge Invariant Uniqueness Theorem [1, Corollary
3.9]). Let (E,L,B) be a weakly left-resolving normal labeled space, {S,, Pa} a
representation of (E, L, B) on a Hilbert space, and m := wg p the representation
of C*(E, L, B) satisfying m(s.) = Sa and w(pa) = Pa. Suppose that Py # 0
for all O # A € B and that there is a strongly continuous action B of T on
C*(Sa, Pa) such that B,om =mo~y, forallz € T. Then 7 is faithful.

K-theory of labeled graph C*-algebras. In [1], labeled graph C*-algebras
C*(E, L, B) are shown to be realized as Cuntz-Pimsner algebras on the purpose
of computing the K-theory of C*(E, L, B) by applying the results on the K-
theory of Cuntz-Pimsner algebras obtained in [25]. Let

By :={A€B:L(AE") is finite and ANB = () for all B € B with B C E% , }.
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Note that the following theorem can be obtained without the assumption that
(E, L, B) is set-finite.

Theorem 2.2.14. ([1, Theorem 4.4)) Let (E,L,B) be a weakly left-resolving
normal labeled space, then the linear map (1 — ®) : spany{xa : A € B;} —
spang{xa : A € B} given by

(1 —=®)(xa) =xa— Z Xr(Aa), A€B; (2.4)

acL(AEY)
determines K.(C*(E, L,B)) as follows:

Ko(C*(E,L,B)) 2 spany{xa: A € B}/Im(1 — ®) (2.5)
Ki(C*(E, L,B)) = ker(1 — ). (2.6)

In (2.5), the isomorphism is given by [palo — xa + Im(1 — ®) for A € B.

2.3 Generalized Morse sequences

We review from [22] definitions and basic properties of generalized Morse se-
quences. Let 2 be the space

Q::{w:---w,gw,lwowl--- 3wi€{0,1},i€Z}
of all two-sided sequences of zeros and ones, and let
Qp ={rx=wxr1--- : 2, €{0,1}, i >0}

the space of one-sided sequences. By B, we denote the set of all finite blocks of
zeros and ones. We write |b| := n+1 for the length of a block b = by - - - b, € B.
For w € Q (z € Q4 , respectively), the set of all finite blocks appearing in w (z,
respectively) will be denoted by B, (B, respectively). For w € €, we write
Wty 1) for the block wy, - - - wy, € B, at the position #; (t1 < t3) of w. Similarly,
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Wit ,00) aNd W(—oo t,) Mean the infinite sequences wy, wy, 41 -+- and - - - wy, 1w,
respectively.

The space Q (and similarly Q,) endowed with the product topology be-
comes a totally disconnected compact Hausdorff space such that the clopen
cylinder sets

t[b] = {w €Q: W[t t4n] = b},

t€Z,be B, bl =n+12>1, form a base for the topology. Thus every
characteristic function ¥, is continuous on ). For convenience, we use the
following notation:

[.0] == o[b], [b]:=_py[b], [b.c] := _p[bc]

for b,c € 2B. Note that on the right side of the dot is the zeroth position.
The shift map

T:0Q—Q given by (Tw); = wjy1,

w € (), 1 € Z, is easily seen to be a homeomorphism; if we consider T" on the
one-sided compact space (2, it is just a continuous (not invertible) map. The
orbit O(w) of a point w € € is given by

O(w) = {T"(w):i€Z}
and its orbit closure is denoted by O, := O(w).
A subset Qg of Q is said to be invariant if T(y) C Qp. A non-empty
closed invariant subset €2y of €2 is called minimal if it contains no proper closed
invariant subsets. A subset 0y of ) is minimal if and only if the orbit of each

point of € is dense in €. It is known ([22]) that &, = '(w) is minimal if and
only if w is almost periodic. The meaning of almost periodicity is as follows.

Definition 2.3.1. A point x of €2, is almost periodic if for any cylinder set
.b], b € B, there exists d > 1 such that for any n > 0, 7"z € [.b] for some
0<j<d
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For each block b = by---b, € B the mirror image of b, denoted by B, is
defined by b; = b; + 1 (mod 2) for i = 0,--- ,n, that is, b is obtained from b by
changing zeros into ones and vice-versa. Given a fixed block c =c¢y--- ¢, € ‘B,
the product b x ¢ of b and ¢ denotes the block formed by putting n + 1 copies
of either b or b next to each other according to the rule of choosing the ith
copy as b if ¢; = 0 and b if ¢; = 1. For example, if b = 01 and ¢ = 011, then
the product block b x ¢ is equal to bbb = 011010.

For each i > 0, let b' = b} - - - b\ibi|f1 € B be a block such that [b'] > 2 and
by = 0 for all s > 0. (Here the superscript 7 of &' should not be confused with a
repetition of b.) Since the product operation x is associative, one can consider
a sequence of the form

=0 xb xbx---€Q,

which is called a one-sided recurrent sequence (see [22, Definition 7]). For
x € (1, the set of all two-sided sequences w such that B, C B, is denoted by
0., namely

Op :={weQ:B, CB,}
For ¢ € B, the quantity

c|—1

\
ro(c) = ﬁ 3 )

indicates the relative frequency of occurrence of b in c. In particular, ro(c) and
r1(c) are the relative frequencies of zeros and ones in ¢ respectively.

Definition 2.3.2. (][22, Definition 8]) A one-sided recurrent sequence x =
O x bt x b x - -+ € Q. is called a one-sided Morse sequence if it is non-periodic
and

Zmin(ro(bi),rl(bi)) = 0.

The poinst of 0, are called two-sided Morse sequences.
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Definition 2.3.3. By a generalized Morse sequence, we mean a two-sided
sequence w € {2 such that z := wj ) is a one-sided Morse sequence and

B, =B,.

A probability measure m on Q is T-invariant if m(A) = m(TA) for every
borel subset A of ). A T-invariant measure is called ergodic if every invariant
set has measure 0 or 1. A compact invariant non-empty subset 2y of €2 is
uniquely ergodic if there is only one T-invariant measure carried by €2. We
record the following known facts for later use:

Theorem 2.3.4. ([22, Lemma 2, Lemma 4, Theorem 3|) Let = € € be a
non-periodic recurrent sequence. Then we have the following:

(i) x is almost periodic,

(ii) there exists w € O, with ¥ = wjo). Moreover, x is a one-sided Morse
sequence if and only if O, is minimal and uniquely ergodic. We denote
the T-invariant probability measure on O,, by my,.

Remark 2.3.5. For a generalized Morse sequence w, the unital commutative
AF algebra C(0,,) of all continuous functions on &, admits a (tracial) state

fe /ﬁ fdm, : C(0,) — C (2.7)

which we also write m,,. Since my, is T-invariant, it easily follows that m,,(x, [b}) =

mW(Xt[b] © T) = mW(XtJrl[b])? and hence
mw(Xt[b]) = mw(X[b]) (28)
holds for all t € Z and b € B,,.

Example 2.3.6. (Thue-Morse sequence) Let b' := b = 01 € B for all
1 > 0. Then the recurrent sequence

T:=bXxbxbx--- =01l xbx---=0110xbx---=01101001l x b x - --
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is a one-sided Morse sequence and
w:=z '2=---10010110.011010011001- - - € O,

is a two-sided Morse sequence which we call the Thue-Morse sequence, where
27! = .- @y7170 is the sequence obtained by writing # = zgx; - -+ in reverse
order. In fact, w is the sequence constructed from the proof of Theorem 2.3.4(ii)
(see [22, Lemma 4]), and it is well known [15] that w has no blocks of the form

bbby for any block b = by - - - bjp—1 € B,

Notation 2.3.7. Throughout this thesis, E7 will denote the following graph:

e_ e_ e_ e_ e e e e
[ ] 4 [ ] 3 [ ] 2 [ ] 1 [ ] 0 [ ] 1 [ ] 2 [ ] 3 [ ]
V_4 V_3 V_9 V-1 Vo U1 (%) U3 Uy
Given a two-sided sequence w = ---w_jwowr - -+ €  of zeros and ones, we

obtain a labeled graph (Ey, £,) shown below

w_ w_ w_ w_ w w w w
(EZ’,CUJ)-HO e 3 e Ze Lo 20, o Ml o 2 o X3 _o---,
V_4 V_3 V_9 V_1 Vo (%1 V9 V3 V4

where the labeling map £,, : EL — {0, 1} is given by L, (e,) = w, for e, € F}.
Then we also have a labeled space (Ez, L., Ez) with the smallest accommo-
dating set £z which is closed under relative complements.
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Chapter 3

AF labeled graph C*-algebras

In this chapter, we find conditions of a labeled space (E,L,&) under which
the C*-algebra C*(E, L, £) becomes an AF algebra. Since a graph C*-algebra
C*(F) is AF exactly when the graph E has no loops (Theorem 2.1.9), we need
to consider labeled spaces with no loops. Hence it should be our first task to
define a notion of loop in labeled spaces.

3.1 Loops in labeled spaces

Recall that a path x € E=! in a directed graph E is called a loop if s(x) = r(x).
Considering (E, L;4) with the trivial labeling L4, it is rather obvious that the

J— *

following are equivalent for a path z =z - -z, € E='(= L}(E)):
(i) x is aloop in F,
(i) {r(e)} = r({r()}. ),
(iii) z is repeatable, that is, 2™ € E=! for all n > 1,

(iv) (Ajx1Asxs -+ Ap) " (Ar1z1 Aoy - - - Ajy) € LI(E) for all n > 1 and
1 <i < m, where A4; = {s(x;)} € €. (See the following Notation 3.1.1
for the meaning of Az Aszs - Apy,.)
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Notation 3.1.1. For A; € B, 1 <i<n, and K > 1, we adopt the notation
AESR Ay BN ALy = {ry - x, € BFN gy € ABSN A, 1<i<n}

for the set of paths * = x,---z, € E* consisting of sub-paths x; passing
through from A; to A;y; with length |z;| < K for 1 < i < n. To stress the
fact that a path z = z; - - -z, belongs to A E<K Ay --- E<K A, |, we may write
A1x1Ag -2 Ay gy for

From the equivalent conditions given above for a labeled space (E, L;g, £), we
can obtain several equivalent conditions for a graph C*-algebra C*(E) to be
AF as follows.

Proposition 3.1.2. Let (E, L4, &) be a labeled space with the trivial labeling
Liq. Then the following are equivalent for C*(E, Lig, £) = C*(E).

(i) C*(E, Lig, &) is AF,

(ii) E has no loops,

(iii) there are no repeatable paths in L5,(E),
(iv) A¢ r(A,z) forall A€ & and x € L(E),
)

(v) if {A1,..., Ay} is a finite collection of sets from € and K > 1, there is
an mg > 1 such that Ay, ESK A, -  ESKA; =0 for all n > my.

in+1

Proof. We only need to prove that (ii) and (v) are equivalent since the equiv-
alence of (i) and (ii) is well known (see Theorem 2.1.9) and the other implica-
tions are rather obvious. Suppose z is a loop in E, then with A = {s(z)} € £
and K := |z] > 1, it is immediate that (AzA)" # 0 for all n > 1. For the
converse, suppose that (v) dose not hold and so there are finitely many sets
Ai,..., A, in € and K > 1 such that A; ESKA, - - ESKA; . # 0 for all
n > 1. Since every set in £ is finite, the number of vertices in U™ A; is
also finite. Choose an integer N with | U, A;| < N. Then for any path
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in A, ES®A;, - ESKA;, (# 0), there is a vertex in U, A; the path passes
through at least two times, which proves the existence of a loop (at that ver-
tex) in F. O

Motivated by the fact in Proposition 3.1.2 that there is a set A € & satis-
fying A C r(A, z) for a path x (in fact, A = {s(z)} = {r(x)}) is equivalent to
the existence of a loop in E, we extend the notion of a loop to a labeled space
as follows.

Definition 3.1.3. Let (E, £, B) be a labeled space and a € L£*(E) be a labeled
path.

(a) «is called a generalized loop at A € Bif a € L(AE='A).
(b) «aiscalled a loop at A € B if it is a generalized loop such that A C (A4, «).
(c) Aloop o at A € B has an exit if one of the following holds:

(i) {a[l,k} 1 <k<l|al} C ﬁ(AESIa\)’
(i) r(A, api)sink # 0 for some i =1,..., |af,
(iii) A Cr(A, ).

If o is a loop at A € B, we also say that A admits a loop «. Note that every
loop « is repeatable, that is, o™ € L*(F) for all n > 1 ([5, Definition 6.6]), and
every repeatable path is a generalized loop at its range. Not every repeatable
path is a loop as we can see in Example 3.2.3(iii).

Remark 3.1.4. Let (E, L, B) be a labeled space and A € B.

(i) A generalized loop « at a minimal set A € B is always a loop because
A C r(A, «) follows from the minimality of A since () # ANr(A, «) C A.
A labeled graph (F, £) might have a loop « even though the underlying
graph F itself has no loops at all as we will see in Example 3.2.3(i) and

(i).
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(ii) If A € B admits a loop a and {s,,pa} is a representation of (F, L, ),
then evidently pa < priaq)-

Example 3.1.5. We give three examples of labeled spaces with a loop each
of which has an exit of different type from other two.

(i) The loop a := biby at A := 7(by) = {v} € € has an exit of type (i)
of Definition 3.1.3(c) because {apy : 1 < k < 2} = {by,biby} while
£<AE§|(1\) = {bl, blbg, bla}.

b
a U/l\\ a d
o— -o ° ° °
~__~
by

(ii) Let A :=r(b) = {v,w} € €. Since A =r(A,b), b is a loop at A with an
exit of type (ii) of Definition 3.1.3(c); 7(A, b)simx = {w} # 0.

Ly by
L
(iii) The loop a := be at A := {v} € € has an exit of type (iii) of Defini-
tion 3.1.3(c) because A C (A4, a).

b
a v 2\ c d
o —>0 [ ] [ ] [ J
~x_
c

The following proposition is an extended version of the fact that if a directed
graph E has a loop with an exit, its graph C*-algebra has an infinite projection.

Proposition 3.1.6. Let (E, L) be a labeled graph and A € € admit a loop o
with an exit. Then py is an infinite projection in C*(E, L, E).
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Proof. If A C r(A,a), the projection p,(a,q) is infinite because

Pr(Aa) > PA > Salr(Aa)Se ~ Dr(Aa)-

If either L(AESIYN) D {apy : 1 <k < |al} or (A, apg)snx # 0 for some i,
1 <i < |al, by Remark 2.2.10(iii) we have

pa= Z SeDr(4,8)55 T Z SyPr(A)sink Sy 2 Salr(A,)Sa-
BEL(AE) 1<]y[<al-1
Thus praa) = Pa > SaPr(A0)Se ~ Pr(Aq and we see that the projection
Pr(a,a) (hence py) is infinite. Now it remains to prove the assertion in case
r(A, a)sink # 0 and A = r(A,«). The set Ag := A\ Agnk (# 0) then satisfies
Ay € A =r(A a) = r(Ap, ), and by the first argument of the proof pu, is
infinite. Hence pa(> pa,) is infinite. O

Remark 3.1.7. Proposition 3.1.6 can be slightly generalized as follows: Let
(E, L) be a labeled graph and ag,...,a, be distinct labeled paths with the
same length, say { > 1, such that A C U ;7(A, ;). Then p, is an infinite
projection in C*(E, L, E) if one of the following holds:

(i) UL {c’: o} is an initial path of o;} € L(AES)
(i) r(A, al)sink # 0 for some i and an initial path o of o
(i) A C U™ (A, o).

To prove this, first assume the case (iii) and set A; := r(A4,a;) and A; =
r(A, ozi)\Ué;llr(A, a;),1=2,...,n,so that U’ r(A, a;) = U A, is the union
of disjoint sets A;’s. Then we have

n n n
bAa > Z Saipr(A,ai)SZi > Z SaipAiSZi ~ ZPAZ = pua; = pu;;lr(A,ai) 2 PA
i=1 =1 i=1

and so the projection p4 is infinite, where the equivalence is given by the partial
isometry u := Y1 | Sa,pa,- 1t is not hard to see that the same argument in

32



CHAPTER 3. AF LABELED GRAPH C*-ALGEBRAS

the proof of Proposition 3.1.6 shows the assertion for the rest cases.

Proposition 3.1.8. Let (E, L, &) be a labeled space such that C*(E, L,E) has
no infinite projections. Let A € € admit a loop. Then there exists a loop a at
A such that A =r(A,«) and

L(AE=Y = {aFa’ 1 k>0, o is an initial path of a}.

Proof. Choose a loop « at A with the smallest length; |a| < |v| for all loops
at A. Since C*(F, E,@) has no infinite projections, o does not have an exit
by Proposition 3.1.6, hence A = r(A, «) and

LIAES) = {apy : 1<k < |af}. (3.1)

Now let 8 € L(AEZ') be a path with |3| > |a|. Then by (3.1), L(AE!*) = {a}
and so we can write 5 = af’ for a path 5. But then from A = (A, «), f’ must
be either an initial path of « or of the form af” for some path 8”. Applying
the argument repeatedly, we finally end up with 8 = o*a’ for some k > 1 and
an initial path o' of «. O

3.2 Labeled spaces associated with AF alge-
bras

In the previous section, we studied several equivalent conditions on (E, L4, &)
to give rise to an AF C*-algebra C*(E, Li4,E) = C*(F) and defined a notion
of loop in a labeled space (E, L, B) based on one of the equivalent conditions
given in the first paragraph of the previous section. Here, we will show that
if a labeled graph C*-algebra is AF, the labeled space has no loops and that
other equivalent conditions for a graph C*-algebra to be AF in the setting of
labeled spaces are not always equivalent by invoking various examples.

Remark 3.2.1. We will consider the following properties (a)-(d) of a labeled
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space (E, £, ) and its C*-algebra C*(E, L, E). These properties are equivalent
if £ is the trivial labeling £;; as we have seen in Proposition 3.1.2.

(a) For every finite set {A;,..., Ay} of € and every K > 1, there exists
an mg > 1 such that A; ESKA;, --- ESKA; = ) for all n > my and
A, € {Ar, ... AN}

(b) (E,L, &) has no repeatable paths.
(c) C*(E,L,E) is an AF algebra.
(d) (E,L,€) has no loops (in the sense of Definition 3.1.3).

Note that (a) = (b) follows from a simple observation that if « is a repeatable
path, then with A := r(a) one has A;, El*A;, --- El*lA; # () for all n > 1,
where A4;; = A, j =1,...,n. The implication (b) = (d) is obvious.

For the other implications, we shall see (b) # (a) and (b) % (c), in general
throughout Example 3.2.10. Consequently (d) # (c) follows although it can
also be seen from Example 3.2.3(iii). We will show that (¢) = (d) and (a) =
(¢) hold true in Theorem 3.2.2 and Theorem 3.2.8, respectively.

It would be interesting to know whether the remaining implication (c¢) =
(b) is true, that is, whether C*(E, £, €) will never be AF whenever (E, L, £)
contains a repeatable path. In Theorem 3.2.12, we will show that this is the
case under some additional conditions.

Theorem 3.2.2. Let (E, L) be a labeled graph. If C*(E, L, E) is an AF alge-
bra, the labeled space (E,L,E) has no loops.

Proof. Suppose, for contradiction, that (£, £, &) has a loop o at A € £. By
Proposition 3.1.6, A = r(A4,a) and so pasea = SaPr(a,a) = Sapa. Then U :=
Sapa satisfies

pa=UU ~UU" = 5,pAS;, = Salr(A,0)50 < PA-

Since p,4 is a finite projection, it follows that U is a unitary of the unital
hereditary subalgebra poC*(E, L, E)p4. Since 7.(pa) = pa for any z € T, the
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algebra psC*(E, £, €)pa admits an action of T which is the restriction of the
gauge action v on C*(E, L, €). Then the fact that v,(U) = 7.(sa)pa = 21U
shows that U is not in the unitary path connected component of the unit
pa ([12, Proposition 3.9]), which is a contradiction to the assumption that
C*(E, L,&) (hence any nonzero hereditary subalgebra) is an AF algebra. [

In Example 3.2.3(iii) below, we see that the converse of Theorem 3.2.2 may
not be true, in general.

Example 3.2.3. (i) For the following labeled graph (E, £)

we have £ = {r(a)} = {E°} and the path a is a loop at 7(a). By Theo-
rem 3.2.2, C*(E, L, &) := C*(sq4,pa) is not AF. Actually C*(E, L, &) = C(T)
is the universal C*-algebra generated by the unitary s,.

(ii) € of the following labeled graph consists of three sets 7(a) = E°, r(a)sux =
{vo}, and A :=r(a) \ r(a)sink = {v_1,v_2,... }.

Since A C 7(A,a), the labeled path a is a loop at A, hence C*(E, L, &) is
not AF by the above theorem. In fact, since the loop a at A has an exit,
C*(E, L, &) contains an infinite projection by Proposition 3.1.6.

(iii) If (E, L) is as follows

a a a a
° ° ° ° o -,

Vo (%1 V2 U3 V4

it is not hard to see that £ consists of all finite sets F' with vy ¢ F and all
sets of the form F' U {vk, vgi1,...} for some k > 1. It is also easy to see that
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every A € € containing at least two vertices always admits a generalized loop.
But there does not exist a loop at any A € €. Nevertheless we shall show that
C*(E,L,&) contains an infinite projection and so the C*-algebra is not AF.
Let C*(E, L,€) := C*(pa, 54). Then

Pra) = Sapr(r(a),a)sz = Sapr(aQ)SZ ~ Pr(a?) < Pr(a)

since r(a®) C r(a), which proves that p,(q) is an infinite projection.

The C*-algebra is unital with the unit s,s7; (5,55)pa = SaPr(a0)Ss = Pa,
Pa(5aSk) = SaPr(aa)s, = pa for all A € E and (8,5%)8q = 84 = SaPr(a) =
Salr(a)(SaSs) = Sa(5as;). Also we have s,s% > pra) = Sis. since sgs; >
SaP{v:1}55(7 0) and (8aPro,}s5)Pa = SaPloi}Pr(a0)Sa = SaPfu}nr(aa)Sy = 0 be-
cause {v1} Nr(A,a) = () for all A € £. Moreover every projection ps be-
longs to the x-algebra generated by s,. Therefore C*(E, £, £) is the universal
C*-algebra generated by a proper coisometry s,, and thus C*(E, £, €) is the
Toeplitz algebra. The ideal Iy, ) generated by the projection py,,; is in fact
isomorphic to the C*-algebra of compact operators on an infinite dimensional
separable Hilbert space as I,,} = Span{s}'p,}(si)" : m,n > 0 and i > 1}
(see (2.3)). The quotient algebra C*(E, L, &) /I, is therefore isomorphic to
c(T).

For a labeled graph (E, Lg), v ~ w if and only if v ~; w for all [ > 1 defines
an equivalence relation on £°. We denote the equivalence class of v € E° by
[V]oo- If (E, Lg) has no sinks or sources, there exists a labeled graph (F, L)
called the merged labeled graph of (E, Lg) with vertices F© := {[v]o : v € E°}
and edges F' := {ey : A € E'}, where e, is a path with sp(e)) = [$()\)]w,
re(en) = [r(A)]so, and Lr(ey) = Lg(\). The range of a € Lp(F?) is defined
by rr(a) = {rr(ex) : Lr(ex) = a}. Here we use notation rp to denote both
the range map of paths in ™ and of labeled paths in £(F'). It is known in
[20, Theorem 6.10] that if [v]o, € & for all v € E°, then {[v]o} € F for all
[V]so € F° and moreover C*(E, Ly, E) = C*(F, Ly, F). Even when (E,Lg)
has sinks or sources, we can obtain C*(E, L, &) = C*(F, L, F) whenever
[V]oo € & for all v € E° without significant modification of the proof of [20,
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Theorem 6.10].

The following proposition is a slightly generalized version of the result
well known for graph C*-algebras. Actually in case £ is the trivial labeling,
C*(E,L,€&) is isomorphic to C*(E) and the minimal sets in £ are the single
vertex sets {v}, v € E°,

Proposition 3.2.4. Let (E, L) be a row-finite labeled graph with no sinks or
sources such that every generalized vertex is a finite union of minimal sets in
E. Then C*(E,L,E) is AF if and only if no minimal set of £ admits a loop.

Proof. Let (F, Lr) be the merged labeled graph of (E, £). We first show that
C*(E, L, €) is isomorphic to the graph C*-algebra C*(F).

Our assumption implies [v]o, € & for all v € E° so {[v]o} € F for all
v € E° and C*(E, L, ) is isomorphic to C*(F, Lr, F) ([20, Theorem 6.10]).
For each a € L(E"), its range r(a) can be written as the union r(a) = U™, [w;];
of finitely many minimal sets [w;];, by the assumption, but minimality of each

i

[w;];, implies that [w;];, = [w;]e for 1 < i < n. Hence rp(a) = [r(a)]e =
{[w]oo : w € 1(a)} = {[w1]ooy- -+, [Wn]oo} is finite for each a € A. But from
the construction (|20, Definition 6.1]), the merged labeled graph (F,Lp) is
left-resolving. Thus the finiteness of each range set rr(a) implies that (F, Lr)
is label-finite. Then by [4, Theorem 6.6], we have C*(F, Lr, F) = C*(F).
Suppose that there is no loop at any minimal set [v], in €. Since L£g([v]oo EFv) =

Lr([v]oo F¥[v])so) for all v’ € [v]oe and k > 1 ([20, Lemma 6.7]), if F' has a loop
a at a vertex [v]o € FO, a € Lg([v]oE*') for all v/ € [v]s. This means
that [v]o(€ &) satisfies [v]o C 7([v]oo, @), a contradiction. Hence F has no
loops and the C*-algebra C*(F') is AF. The converse was proved in Theo-
rem 3.2.2. [l

Example 3.2.5. In the following labeled graph (F, L)
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the path o := a? is a loop at {vy, : k € Z} and also at {vy,1 : k € Z}. By

Theorem 3.2.2, the C*-algebra C*(E, L,€) is not AF. In fact, C*(E, L, &) is
isomorphic to the graph algebra C*(F'), where F' is the underlying graph of
the merged labeled graph (F, Lr) of (E, L)

PO e O

and C*(F") has infinite projection because F' has loops with exits.

Example 3.2.6. The following labeled graph (F, £) does not have any infinite
paths, but it has a repeatable path a.

[ ] _Cl) [ ]

Uy V11

[ J a [} a [ ]

Uz V21 V22

[ ] a [ ] a [ ] a [ ]
Uus V31 U32 V33

Note that each finite path a™ is not a loop at any A € € but it is a generalized
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loop at r(a*) for all k > 1. (E, L, €) has the generalized vertices as follows:

(w511 = r(a*), if1<k<j

TR r@) \r(@h), 1< <k
([vs;]8 sk = {Vmm : m >k}, f1<k<j
17|k )sink {vjj}, 1f1§j<k’

cm>n>k}, f1<k<j

il \ (i)t = { {vmn

{Um; - m >3}, if 1<y <k,

and every A € &€ is a finite union of these sets.
Let J be the ideal of C*(E, L£,E) = C*(pa, s4) generated by the projection
Ploii]o- Then (2.3) shows that

J =span{s"ppsi" : B € [vlp1 NE, myn >0, k> 1}
From DPr(a) = Pr(a2?) = Pr(a)\r(a?) = Plvi1]2 € J7 we have
Sa +J = SaPr(a) + J = Pr(a)Sa + J-

Thus s.pr@) + J is a unitary of the unital hereditary subalgebra (with unit
Pra) + J) of the quotient algebra C*(E, L, €)/J. The ideal J is obviously in-
variant under the gauge action v : T — Aut(C*(E, £, €)). Hence there exists
an induced action v : T — Aut(C*(E, £,€)/J) such that 7V,(sepr@) + J) =
2(Sapr(a) + J) for z € T. Thus the unitary s.p,) + K does not belong to
the unitary path connected component of the unit of the hereditary subal-
gebra of C*(E, £, £)/J, which implies as in the proof of Theorem 3.2.2 that
C*(E,L,£)/J and hence C*(E, L, £) is not AF.

Notation 3.2.7. If x; € A;ESK A, is a path with o; = L(z;) fori=1,...,n
such that x;---z, € A|E<K ... E<K A, |, then we set
f(AlalAg) = ’I“(Al, al) N A2
F(AlO[lAQO[QAg) = ’I”(f(Al()élAQ), 042) N Ag == T(T’(Al, Oél) N Ag, 042) N Ag,
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and so on, thus for 3 <i<n+1,
f(Aloqu e OéiflAi) = T’(f(AlOélAQ cee Ai,1>, Oéi,1> N A,L

Note that 7(Ajaq Ay -+ - ;1 A;) belongs to £ whenever Aj € Eforl<j<i
The notation 7(A; ESK Ay - ESK A, 1) will then be used for the collection of
all sets 7(AjaqAg -+ a1 Apy) for ay -, € LIALESEAy -  ESKA, ).

Theorem 3.2.8. Let (E,L,E) be a labeled space such that for every finite
subset {Ay, ..., An} ofg and every K > 1, there exists an mg > 1 for which

Ai1 ESKAZ‘QESKAZ‘?) s ESKAM - Q)
for allm >mqy and 1 <i; < N. Then C*(E,L,E) is an AF algebra.

Proof. Let F 1= {sa,pa,sp, : A Cr(a;) Nr(B),i=1,...,N} be a finite set
in the C*-algebra C*(E, L,E) = C*(s4,pa) with F' = F*. We shall show that
F generates a finite dimensional C*-algebra. Set K := max{|al|, |G| : i =
1,...N}. By Remark 2.2.10(i), we have

Saiy'Pr(Aiy)na; S, i aj = B
SeiDAinr(4;,8) 55, 1 Bi = o
Sa;PA;NA; S;ﬁ if B; = Q;
0, otherwise,

(Sa;pa,55,)(Sa;pa,85,) =

and so if, for example, a; = ;7" and oy = 57", we get

(SaipAi SEi ) (Socijj SZJ_ ) (SakpAk 821) = (Sai'Y/pT(Aiy'Y/)mAj SEJ- ) (SakpAk Szk)

*
= Say'y" Pr(r(A; v )NA; 4")NAL S B, -

Here note that v'7” belongs to L(A;E"1A;EN"IA,) and the set 7(r(A;,+') N
A, v")N Ay is equal to 7(A;7'A;v" Ay). Continuing a similar computation once
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more, for example with 8, = o;5’, we have

(SaipAi S,Z’i ) (Saijj SZ’j ) (SakpAk S,Z’k ) (salpAl Szl )
= (Sai’y’w”pr(r(Ai,v’)ﬁAj ,’y”)ﬂAk Szk ) (SalpAl Szl )

Seriy' 3 Pr(r(Asy )N Ay 1" )AL (ALE") S By
which is nonzero only when +'~” € L'(AiEW'AjEW'Ak) and B’ € L(AEP1Ay).
If this is the case, we have

San"Y”pT(T(Aiﬁ’)ﬁAjﬁ”)ﬂAkﬂT(Azﬁ’)SZlﬁ’ = Saz‘W"Y”pf(Aw’Aﬂ”Ak)ﬂF(Azﬁ’Ak)5731,6”

as before. Repeating the process of multiplying any finite elements from the
set F' actually produces an element of the form s,,,p As}}jw where A is a finite
intersection of sets in

A(F) =U n>1 f(AilESKAZé tee ESKAM)

1<i;<N

and p and v are paths in

ﬁ(F) =U p>1 ﬁ(AiIESKAiQ ce ESKAM)

1<i; <N

By our assumption, we find an mg > 1 such that £(A; ESKA,, --- ESKA; ) =
() for all n > myg, so that £L(F) turns out to be a finite set since our labeled
space is always assumed receiver set-finite. Then the finiteness of the set A(F')
is immediate, and so we conclude that F' generates the finite dimensional *-
algebra;

span{sampAs}}jy : A=nNBy, By € A(F), pv e L(F),1<i,j <N }

Example 3.2.9. In the following labeled graph (F, L)
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[ J ;- [ ]
Uy V11
[ ] ]' [ ] 2 [ ]
U2 V21 V22
[ ] 1 [ ] 2 [ ] 3 [ ]
Uus V31 V32 V33
[ ] ]' [ ] 2 [ ] 3 [ ] 4 [ ]
Uy U1 V42 V43 V44

]

one can show that the labeled graph C*-algebra C*(E, L, &) is an AF algebra
using Theorem 3.2.8. In fact, it is enough to see that for any finite subset
{r(ny),r(ng), - ,r(ny)} of € with n; < ny < -+ < ny, n; € N and every
K > 1, actually only the K := max{n;;; —n; :i=1,--- , N — 1} is a matter
of concern, we have

r(n) E<Er(ng) EXXr(ng) - - E=%r(ny) E<Xr(n;) = 0
for any ny < n; < ny.

In the following example, we see that the condition that (E, £,€) has no
repeatable paths is not a sufficient condition for C*(E, £, £) to be AF.
Example 3.2.10. Consider the following labeled graph (Ez, L,):

0 1 1 0 .$0:0.IE1:1. 1 0

° ° ° ° ° o ‘-,
V_4 V_3 V_9 V-1 Vo V1 V2 Vs (]

where the {0, 1} sequence w is the Thue-Morse sequence (see Example 2.3.6).
Recall that w contains no block (no finite subsequence) of the form S35, for
B =B B € L*(E). Thus (E, L,€) has no repeatable paths satisfying (b)
in Remark 3.2.1. But, the set A :=r(0), with K := 3, satisfies

Ay E=3 A, - E=3A; #0)

42

&

| &1



CHAPTER 3. AF LABELED GRAPH C*-ALGEBRAS

for all n > 1, where A;; = A, j > 1. This is because the block 111 does not
appear in the sequence w. Thus (E, £,€) does not meet the condition (a) in
Remark 3.2.1. To see that C*(E, L, €) (equivalently, My ® C*(E, L, £)) is not
AF, it is enough to show that M, ® C*(E,L,£) contains a unitary U such
that (idy, ® v).(U) = zU for all z € T, where 7 is the gauge action of T on
C*(E,L,E) = C*(si,pa) ([12, Proposition 3.9]). Actually one can easily check
that the unitary U = (u;;), with entries w;; = 0,5 So + (1 — 0;5)s1, is a desired
one.

Now we turn to the implication (¢) = (b) of Remark 3.2.1. For a C*-
algebra C*(E,L,€) = C*(s4,p4) and a set A € &, we denote by I the ideal
of C*(E, L, &) generated by the projection p, as before.

Lemma 3.2.11. Let C*(E,L,E) = C*(sq,p4) be the C*-algebra of a labeled
graph (E, L) with no sinks or sources. For A,B € &, we have ps € Iy if and
only if there exist an N > 1 and finitely many paths {p;}?_, in L(BE=%) such
that

U|/3|=NT(A7 ﬂ) - U?:lr(Bap“i)'

Proof. 1f py € I, we can approximate p,, within a small enough ¢ > 0,
by an_element > i1 CiSEDBinr(By)Ss, Of I, where ¢; € C, B,y € LIAEZ),
B; € &, and p; € L(BE=Y) for 1 <i < n (see (2.3)). We assume (03;, 115, ;) #
(Bj, 1j; ;) if i # j. Considering the image of X := pa—_ 1L, ciSp,0B,0r(B,u) 5%,
under the conditional expectation onto the AF core (the fixed point algebra of
the gauge action), we may assume that |5;| = ||, 1 <@ < n, since py is in the
core. Moreover, since (F, £) has no sinks, we can also assume that |5;| = |51|
for all i. Put N :=|5;|, 1 <i <n. From py = Z\m:N 8Pr(A,8)55, We have

n

IXI = D saprasss — D cispppionmumss,|| < e
|BI=N i=1

If r(A,B) ¢ UL r(B,p;) for some 8 € L(AEYN), that is, A’ := r(A,B3) \
Ui, 7(B, ;) # 0, one obtains a contradiction, € > |[pa(s5Xsg)pall = [lpall =
1.
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For the reverse inclusion, it is enough to note that pu» (s, € Ip (see [20,
Lemma 3.5]). O

If o is a repeatable path in a directed graph E, then « is a loop with the
range r(«) consisting of a single vertex and every repetition o” also has the
same range as «, 7(a™) = r(a), m > 1. The projection p,)\r(am) is then
equal to 0 in the C*-algebra C*(E, L;4,E), and so the (zero) ideal generated
by the projection py(a)\r(am) can not have the nonzero projection py(). In this
case, we already know that C*(E) = C*(E, L;4, ) is not AF. But for a general
labeled space (E, £, ) with a repeatable path «, this is no longer true, namely
r(a™) C r(a) can happen for some m > 2. Moreover, we have the following.

Theorem 3.2.12. Let C*(E,L,E) = C*(s4,p4) be the C*-algebra of a labeled
graph (E,L) with no sinks or sources. Let (E,L,E) have a repeatable path
a € LXE). If pram)y does not belong to the ideal generated by a projection
Pr(am)\r(am+1y for some m > 1, C*(E, L,E) is not AF.

Proof. Let A, :=r(a™)\ r(a™") for m > 1. Then {I4,,}°°_, is a decreasing

sequence of ideals because the generator p,am+iy\,@m+2y of 14 belongs to

m—+1
Ia,,;

Pr(am+1)\r(am+2) = SuSa Pr(r(am)\r(am+1),a) = SaPr(am)\r(am+)Sa € 14,

We first show the following claim.

Claim: If p,(,) does not belong to the ideal generated by p,(a)\r(a2), then the
C*-algebra C*(E, L, £) is not AF.

To prove the claim, it is enough to show that the quotient algebra C*(E, L, E) /14,

is not AF. Note that p.(a) + Ia, = Pra2) + 14, is a nonzero projection in the
quotient algebra C*(E, £,E)/14, and that

I, = span{sgpps; : 3,7 € L(EZ?) and B € r(L(4E"))NE }

by (2.3). If sX54+14, = 5455414, the hereditary subalgebra of C*(E, £, E)/1 4,
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with the unit projection p,()+14, is not AF since it contains a unitary s, 414,
satisfying 7v.(sq + I4,) = 2!°l(sq + I4,) for each z € C. Thus the hered-
itary subalgebra (hence C*(E,L,€)) is not an AF algebra. (The fact that
So + I, belongs to the hereditary subalgebra follows from p,)sq + 14, =
Salr(a?) + 14, = SaPr(a) + 1a, = Sa + La;.) I 8350 + L4, # 545;, + 14, then
SnSat 1A, = Pra) + 14, 2 SaDr(a2)Sh + 14, = SaPr(a)Sg + 14, = Sasg, + 14, and
this shows that s’ s, + [a, > sa5s,, + I4,. Thus the projection s}s, + I4, is

T

infinite, and the quotient algebra is not AF as claimed.

Now suppose that p,my ¢ Ia, for some m > 2. Since § := o™ is a
repeatable path, by the above claim, we only need to show that p,) does not
belong to the ideal, say J, generated by the projection p,sy\,s2) = Pr(am)\r(a2m)-
For this, assuming p,s) € J we have from Lemma 3.2.11 that there exist an

N > 1 and paths {y;}}_, such that

r(r(0), ) € Uyr (r(@™) \ r(e®™), 1)
for all 3 € L(r(6)EY). Since each set r(r(a™) \ r(a®™), u;) coincides with

U (r(@ ) \ @), ) = Uil (r(@™) \ ra™), o),
we can write the set U7 (r(a™) \ r(a®™), ;) as U;ilr(r(ozm) \ (o™ ), )
for some finitely many paths y which is of the form a!p;. This means that
Dr(am) = Pr(s) € 14,, again by Lemma 3.2.11, which is a contradiction. O

As pointed out in [5], a disagreeable labeled space (E, L, £) contains lots
of aperiodic paths and in fact, (E, L, &) is disagreeable whenever it has no
repeatable paths as it can be seen in the following proposition.

Proposition 3.2.13. Let E be a directed graph with no sinks or sources. If
the labeled space (E, L,E) has no repeatable paths, it is always disagreeable.

Proof. Assuming that (E, £, ) is not disagreeable, one can pick a generalized
vertex [v]; that is not disagreeable. Then there is an N > 0 such that every «
in L([v];EZ") is agreeable and of the form a = %3 for some 3 € L([v],E<!)
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and its initial path 4. On the other hand, there are only finitely many labeled
paths in £([v];ES!) while £([v];EZ") has infinitely many labeled paths. This
shows that there should exist a path 8 in £([v];E<!) such that its repetitions
B™ appear in L([v];E=Y) for all sufficiently large n. O

One might expect that a labeled space would be disagreeable if it has no
loops, but this is not true in general: See the following example.

Example 3.2.14. Consider the following labeled graph (E, L)

Then & is the collection of all finite sets F' of E° and sets of the form F U
{vn, Vns1,...}, n > 1. For the generalized vertex {vo} = [vo]1, every path
a € L(voE=") is agreeable since it must be equal to ™ for some m > N, so the
labeled space (E, £, ) is not disagreeable, whereas it is obvious that(E, £, E)
has no loops.
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Chapter 4

Non-AF finite simple labeled
graph (C'*-algebras

A simple graph C*-algebra C*(F) is either AF or purely infinite ([29, Corollary
3.10]). In this chapter, we consider the question of whether this dichotomy for
simple graph C*-algebras would hold true for the simple labeled graph C*-
algebras.

4.1 Simple finite labeled graph (C*-algebras of
generalized Morse sequences

We will provide a family of simple labeled graph C*-algebras C*(Ez, L., Ez)
associated to generalized Morse sequences w and show that these C*-algebras
are equipped with unique traces, hence finite, and are not AF with non-zero
K;i-groups.

Fixed point algebras C*(Eyz, L,,Ez)” of gauge action. Let w be a gen-
eralized Morse sequence and let C*(Eyz, L., Ez) = C*(s4,pa) be the labeled
graph C*-algebra associated with the labeled space (Ez, L., £z) of a general-
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ized Morse sequence w (see Notaion 2.3.7). Then the fixed point algebra
C*(Eg, Ly, E7)" = span{sapas’ : A€ Ey, ACr(a)}

of the gauge action + is easily seen to be a commutative C*-algebra. For each
k>1, let
By := span{saPr(ara)Ss : @, &/ € L, (Ef)}.

The set L, (E%) is finite and the elements SaDr(a/a)S,, 10 I}, are easily seen
to be mutually orthogonal. Hence F}, is a finite dimensional subalgebra of
C*(Ez, L,,,Ez)". Moreover F}, is a subalgebra of Fy.,; because

* * *
SaPr(a’a)Sq = E SabPr(a’ab)Sabh = § SabPr(ac’ ab)Sab-

be{0,1} a,be{0,1}
This gives rise to an inductive sequence Fy <% Fy = - .. of finite dimensional

C*algebras, where the connecting maps ¢ : F, — Fii1 are inclusions for all
k > 1, from which we obtain an AF algebra th k-

Proposition 4.1.1. Let (Eyz, L,,Ez) be the labeled space of a generalized
Morse sequence w. Then

C*(EZ7£L07?>’Y = h_n;lea

where F, := span{sapr(aa)Ss : @, € L(E®)} is a finite dimensional subalge-
bra of C*(Ez, L,E7)Y for k> 1.

Proof. Since F}, C C’*(EZ,EM,EZ)V for all k£ > 1 and UgF), = ligle, it is clear
that hgle_C C*(Ez, L,,E2)". Thus it suffices to know that U, F}, is dense in
C*(Ez, L,,E7)” and we only need to show that for y := s,prsa)ss, there is
k > 1 with y € F}, as the span of the elements s,p,(3a)s; (|, |3] > 0) is dense
in C*(Ez, L, E2)". If |Bal = 2|a|, then y € F), with k = |a|. If |Ba| > 2|al,
then y = SapPr(ga)Sa = Dper(pfi-lal) SacPr(fac)Sae € Fi, with k = [B]. Finally
if |Bal < 2|al, we have y = SaDr(ga)Ss, = ZUEE(EW*W) SaPr(opa)S, € F with
k= |al. O
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Proposition 4.1.2. Let (Ez, L,,Ez) be the labeled space of a generalized
Morse sequence w. Then there is a surjective isomorphism

p:C*(Ey L, E2) — C(0,) (4.1)

such that p(SaPriaa)Sh) = Xja.a] fOT SaDrwa)ss, € Fi, k> 1.

Proof. Note that for each k > 1, the map py, : F, — C(0,) given by

pk(sapr(a’a)Sj;) = X[e'.q]

is a *-homomorphism (we omit the proof) such that p(y) = prr1(tx(y)) for
Y = SaDr(wa)S € Ik, where 1 : F}, — Fjy is the inclusion map. In fact,
Lk(y) = Za,be{o,l} Sabpr(aa’ab)szb and so

pk—&—l(bk(y)) = pk—f—l( Z Sabpr(aa’ab)szb) - Z X[ao/.ab]-
a,be{0,1} a,be{0,1}

But Z&be{m} X[aa’.ab] = X[o’.a] 18 Obvious from U, pefo,13[ac’.ab] = [o.a]. Thus
there exists a *-homomorphism p : lim Fj, — C(0,) satistying p(y) = pr(y)
for all y € Fy, k > 1. Since each p; is injective, so is p, and so we now show
that p is surjective to complete the proof. Let x,;5 € C(0,) for t € Z and
B e L(Ez). Assuming t > 0, we can write x,[5 = ZX[M,g], where the

a,0

sum is taken over all a, o with |o| =t and |a| = |¢8|. Thus we see that for
k:=|6|+t
Xt = Pk (D SaPriaos)ss) € p(FR).

a,o

In case where t < 0, a similar argument shows that x,i5 € p(Fy) for some k.
Thus p is surjective since the space span{x,;g :t € Z, B € L (E7)} is a dense
subalgebra of C'(0,). O

Lemma 4.1.3. Let (Ez, L,,Ez) be the labeled space of a generalized Morse
sequence w and let p : C*(Ey, L,,Ez)" — C(0,) be the isomorphism in (4.1).
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Then the unique T-invariant ergodic measure m,, : C(0,) — C defines a
tracial state

T0:=myo0p: C*(Ey, L,,Ez)" — C
on the fived point algebra C*(Ez, L,,,Ez)" such that for o, 3 € L (Ey),
TO(Sapr(ﬁa)SZ) = To(pr(ﬁa))'

Proof. Note that p,g.) = Yo S5Pr(Bac)Sy, Where the sum is taken over the
paths o with |o| = [Ba| from which we have p(pr(sa)) = (D= 50| SoPr(Bac)Sy) =
2 jo|=|a] XBauo] = XUs[fa.o] = X[ga]- Thus

T0(Pr(8a)) = Muw(X(8al)-

On the other hand, if [Ba| > 2[al, Saprsa)Sa = 2 oer(pifl-1al) SaoPr(Bac)Sa SO
that

To(SaPr(8a)Sa) = Muw( Z X[B.a0]) = Mu(X[5.0])-
lo|=|8]-la|

But the equality mq,(x[a]) = Mw(X[s.a)) follows from the fact that m,, is T-
invariant. The case where |Sa| < 2|a| can be done in a similar way. O

We also use the following notation

[a) :={aB:peLl(Ey)} and (o] :={Ba:p e Ll(E)}.

Lemma 4.1.4. Let (Ez, L,,,Ez) be the labeled space of a generalized Morse
sequence w. Then
To © U C*(Ez,,cw,zz) — C

1s a tracial state.

Proof. To see that ) o ¥ is a trace, we claim

(¥ (XY)) = 70 (¥ (VX)) (4.2)
50
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for X,V € span{sapasy : a, 8 € L*(Ez), A€ €z, A Cr(a)nr(B)}. We first
show (4.2) with X = s,pas}; and Y = s,pgs; by considering all possible cases
as follows:

(a) [8)N[p) =0 and [@) N [v) = : Obviously XY =YX = 0.

) = 0 and [a) N [v) # 0: XY = 0 is clear, and we have either
) € [a). If a € [v) with a = va/ for some o' € Lf (E7), then

YX = s,pps, SapASE = Sua’pr(B,o/)ﬁASZi

and U(YX) = 0 if |ud/| # |B]. If not, that is |ua/| = |B|, then Y X
can possibly be nonzero only when pua’ = 3, but this contradicts to the
assumption [3) N [u) = 0. If v € [a) with v = av/ for some ' € LF(Ey),
the same argument as above proves V(Y X) = 0.

() [B)N[u) # 0 and [o) N [v) = 0: YX = 0 is obvious, and ¥(XY) = 0
follows from the same argument as in (b) by exchanging the roles of X
and Y.

(d) [B) N [w) # 0 and [a) N [v) # 0
(i) |5| = |p| and |a| = |v|: Then a = v and = u, and so

XY = sapanps, and Y X = sgppnass.

Thus 70(V(XY)) = 70(XY) = 10(Sapanpss) = To(panp) and simi-
larly 70(¥(Y' X)) = 79(pang), so that (4.2) holds.

(ii) || = || and |a] # |v|: If |a] > |v| with o = va’ for some
o € L(Ez). Then U(XY) = Y(sapanps,) = 0. Also UV(YX) =
U (SuarPr(B,anass) = 0 because [ua’| > [B]. If || > |af, a similar
argument can be applied to have ¥(XY) =0= V(Y X).

(iii) 5] # |u| and |a] = |v|: We can exchange the roles of X and Y
again to see that (4.2) holds in this case by (ii).
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(iv) |B] # |p| and |«| # |v|: First suppose |B| > |u| and |a| > |v| with
S = pl and a = va' for some ', o’ € L (Eyz), so that

XY = SapAﬂr(B,,B’)Sltﬁ/ and YX = S,ua’pr(B,a’)ﬂASE'

It is easily checked that |a|] = |vf'| if and only if |ua/| = |5, and
moreover if this is the case, we may assume o/ = ' (because o # ('
implies XY = YX = 0) and so 70(¥(XY)) = 70(prB,a)na) =
7o(V(XY)). Otherwise (that is, |a| # |vf'| and |ud/| # |B)),
U(XY) = U(YX) = 0 is clear. This argument also proves the
case when || < |u| and |a| < |v|. Now suppose |3| > |u| and
la| < |v| with 8 = pp’ and v = a/’ for some ', € L (Ez). Then

XY = sapanr(,p)Sye and Y X = 8,pprr(a0)S5,-

Since |o| < |vf| and |p| < |BV'|, we have U(XY) = U(YX) = 0.
This, of course, proves the assertion when |5| < |u| and |a] > |v].

In general, for X :_Z?:l ¢ Xiand Y = 377 | &Y with X;, Y; € {sapasj :
a,B € L (Ez), A€ &z}, ci,cj € C, the above computations show that

To(V(XY)) = Z cic;o (¥ (XiY))) = Z cicyo (W (VX))

= TO(\II(Z c;.cinXZ-)) =7 (V(YX)).

The positive linear functional 7y o W is a state since

(oo U)(1) = 7'0( Z sbpr(ab)si) = My, Z X[ab) = Mw(Xa.) = 1.

a,be{0,1} a,be{0,1}
O

We need several lemmas to show that the C*-algebra C*(Ey, EW,EZ) of a
generalized Morse sequence w is simple.
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Lemma 4.1.5. Let w be a point of Q. If 5 € L (Ey) is a path such that

B = pp" = p"B for B',8" € LE(Ey), then B and B" (hence B itself) are
repetitions of an « € L (Ey).

Proof. 1f |8'] = |B"|, then 8 = (#')%. So we assume that |3”| < |f'|. Let
BM = B and P := B”. Then the assumption M3 = 52 FMN) implies
that s = (@) BG) for some n; > 1 and & with |p®)] < |33, If
B8 =0, B = (BP)m+! as desired. If |3®)| # 0, again from the assumption
LR = g0 we have (5(2))7115(3)5(2) — 5(2)(5(2))7115(3) which reduces to
an equation 332 = 3236 156)| < |3@)|. Thus we have ) = (33))m25M)
with |3®] < |3®)|. In this way, we obtain a sequence (3™)) of subpaths of /3
such that |3m+D| < |p™)],

5(m—1) - (B(m))nm—lﬁ(mﬂ) and g(m)/g(mﬂ) - 5(m+1)5(M)‘

Since |B| < 0o, this process of obtaining 3™ should stop at some point where
we must have |3+ = 0 and so have (™~ = (3(™)7m-1 Then it is clear
that every path ), 1 < j < m — 1, is equal to some repetition of 5™ and
we complete the proof with a = ™. n

Lemma 4.1.6. Let x be a one-sided recurrent sequence and let w € O, be a
two-sided sequence with © = wy o). Then (Ez, L,,) has a repeatable path if and
only if the sequence x is periodic. In particular, if w is a generalized Morse
sequence, the labeled graph (Ez, L,,) has no repeatable paths (hence (Ez, L, Ez)
is disagreeable).

Proof. 1f x is periodic, obviously (E7, L) has repeatable paths.

For the converse, let x = b x b! x b2 x - -- be a non-periodic sequence such
that (Fz, L,) has a repeatable path. We may assume that [ := [0°| > 2. Since
any repetition of a repeatable path is repeatable, we can choose a repeatable
path g with |G| > 2. Note also that if § is written as § = f'f” for some
B, 3" € L¥(Ey), then 8" is repeatable. From this observation and the fact
that for each & > 1, Z{xy (k+1)1-1] is equal to either b° or IN)O, we may assume that
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there are a repeatable path 8 and k,n,n’ > 2 such that
Tlkln] = B

and Ty, (k2y—1] = b°0° (this is possible because x is non-periodic) and |5"| is
much larger than [ = [b°|. Taking ° x - -- x b™ instead of b° for a large m, we
may also assume that || < |°]. Then 0° = 843" for some d > 1 and ' with
B = p'B”, which gives b°0° = 8?4'3%’. On the other hand, b°6° = sy, (k42)1-1],
as an initial path of zyy ., starts with a repetition B2 of B and ends with
some initial path of 8. Thus 0°0° = B3’ 343" = 39+25 should hold (for some §),
which then implies 8 = 88" = 3”5’. By Lemma 4.1.5, we see that 0° = g3’
is a repetition of a path, so that x is periodic, a contradiction.

It is not hard to see that (Ey, L., &z) is disagreeable if w is a generalized
Morse sequence (see [17, Proposition 4.12]). O

Now we prove our main theorem of this chapter.

Theorem 4.1.7. Let w be a generalized Morse sequence of zeros and ones.

Then the C*-algebra C*(Fy, L, Eyz) is
(i) simple unital,
(ii) non AF,
(iii) finite with a unique tracial state T which satisfies
T(SaPr(oa)Sh) = T(Y(8aPr(0a)S5)) = 0a,sT(Pr(oa))
for a,B,0 € LI (E7).

In particular, C*(Ey, L,,,£z) is not stably isomorphic to any graph C*-algebra.

Proof. By definition of a generalized Morse sequence,  := wjy ) is a one-sided

Morse sequence.
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(i) For the simplicity of C*(Ez, L., Ez), we show that any nonzero homo-
morphism 7 : C*(Eyz, L, Ez) — C*(qa,t;) onto a C*-algebra generated by
qa = m(pa), t; :=m(s;) for A€ &,i=0,1, is faithful. Since the labeled space
(Ez, L, Eyz) is disagreeable by Lemma 4.1.6, we see from [5, Theorem 5.5] that
7 is faithful whenever 7(py,,) # 0 for all v € E° and [ > 1. Suppose on the
contrary that

Q) = T(P]) =0

for some [v],, = () with |a| = m. Since o € B, and x is almost periodic by
Theorem 2.3.4(i), one finds a d > 1 such that for all s > 0,

5z € [.al,

for some 0 < j < d. This means that if § € 9B, is a block with length |3| > d,
it must have « as its subpath. Thus 5 must be of the form g = 'af” for some
8, 8" € LL(E). For these B’s with |3| > d we have ¢.(3) = 0. In fact,

4r(B) = 4r(B'ap”) = 4r(r(8'a),8")
= q?‘(f‘(ﬁ/a)ﬁ”)tg”tﬂ”qT(T(ﬁ’a)wB”)
~ L Gr(r(gra),6m)
< @G ra) < Gr(a)
= q)m-

On the other hand, since 7 is a nonzero homomorphism, there exists a § €
L (Ez) with ¢, = 7(pr(s)) # 0. But then, with an n > max{|d|,d}, we have

qr((s) = Z S,LL’LpT 6#1)8 Z tﬂzqr 5,“47, i 0
[6pi|=n [6pi|l=n

a contradiction.

(11) With €7 in place of B in (2.6) it is rather obvious that N = ) and
B =B, =&, Since xa € ker(l — @) if and only if x4 = X0 + Xra1)
(see (2.4), and the vertex set EY is the disjoint union of two sets r(E3, 0) and
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r(EY, 1) in £z, we have Xgo € ker(1 — @). Thus K\(C*(Ey, L,,,E2)) # 0 and
C*(Egz, Ly, Ez) is not AF.

(iii) The tracial state 7 := 790 VU : C*(Ey, L,,,Ez) — C of Lemma 4.1.4
satisfies

T(Sapr(aa)sza) - a,BT(pr(oa)) (43)

for sapr(oaysy € C*(Ez, L.,Ez) by Lemma 4.1.3.

To show that 7 is the unique tracial state on C*(Ez, L, Ez), we claim that
if 7/ is a tracial state on C*(Ey, L, Ez), then 7/ o ¥ = 7/ holds, and that the
state 770 p~! on C(0,,) is T-invariant. For the first claim, suppose 770 ¥ # 7.
Then there exists an element s,py()55 (|8] < |a|) such that 7/(sapr(a)sh) # 0.
Since 7' is tracial, we have 0 # 7'(Sapr(a)Sh) = 7'(855aPr(a)). Thus a must be
of the form oo = o’ for some path o, and then 0 T’(s}sapr(a)) = 7' (Sa/Dr(a))-
Again the tracial property of 7/ gives

0 % 7_/<8a/p,r(a)> — T/(pr(a)sa/) — T/(Sa’p'r(oza’)) — . = T’(Sa’p(r(a),(a’)"))

for all n > 1. But this means that the generalized vertex [v]; := r(«), [ = |a/,
is not disagreeable emitting only agreeable paths, which is a contradiction to
Lemma 4.1.6. To see that 7/ o p~! : C(0,) — C is T-invariant, let x,5 €
C(0,). We assume t > 0. Since

p ) =0 (0 ) XewBl) = DL SosPr(aop)Sass

a,fB o,
loe|=|oB|=t+|B] |la|=|oB|=t+|B|

we have 7/(p~' (x,(9)) = 7'( Z Pr(aos) ) = T (pr(s))- This implies that
a76
la|=|oB|=t+|B]

T opHxum) =7 0 () =T o p (g 0 1),

which can also be shown for ¢ < 0 in a similar way. Thus 70 p~! is T-invariant
because the span of functions x, s is dense in C(0,).
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CHAPTER 4. NON-AF FINITE SIMPLE LABELED GRAPH
C*-ALGEBRAS

The last assertion follows from the fact that a simple graph C*-algebra is
either AF or purely infinite . m

Remark 4.1.8. Without using the result on the existence of a unique ergodic
probability measure on &, for a generalized Morse sequence w, one can directly
show that the simple unital C*-algebra C*(Ez, L,,,Ez) of the Thue-Morse se-
quence w admits only one tracial state. Moreover, its values on typical ele-
ments of the form s,pasj can be obtained concretely, which is done in [23].
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Chapter 5

Labeled graph C*-algebras that
are not finite

In previous chapters, we studied finite C*-algebras of labeled spaces. Now we
consider conditions of labeled spaces which give rise to infinite C*-algebras.
Throughout this chapter, we assume that a directed graph E has no sinks.

5.1 Labeled graph (*-algebras whose nonzero
hereditary subalgebras are all infinite

In a directed graph E satisfying Condition (L), if we further require every
vertex to connect to a loop, any of nonzero hereditary C*-subalgebras of the
C*-algebra C*(FE) is well known to be infinite. Dealing with the labeled paths
and the generalized vertices in a labeled space, we first need to define when a
(generalized) vertex should be said to connects to a loop.

Definition 5.1.1. Let (£, £, B) be a labeled space. We say that every vertex
connects to a loop in (E,L,B) if for every [v],,, there exist an A € B and
labeled paths «, 6 € L*(E) such that

(i) A C r(v]m,9),
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(ii)) ACr(A ).

Remarks 5.1.2. Let (E, L, B) be a labeled space.

(a) The condition (i) of Definition 5.1.1 can be replaced by

(i) A Cr([v]m,da).

In fact, if a vertex [v],, connects to a loop so that (i), (ii) of Defini-
tion 5.1.1 hold for A € B and «,§ € L*(E), then A C r(A,a) C
7([v]m, 0cr) follows immediately. Conversely, for a vertex [v],, if there

exist an A € B and «, ¢ satisfying (i’) and (ii), then from

ACr(A o) Nr([v)m, da) =r(ANT([v)m, d), @)

we see that the nonempty set A’ := ANr([v],,,d)(C A) satisfies (i)(A" C

r([v]m,0)) and (ii)(A" C r(4', a)).

(b) In [5, Definition 6.6], a property of (F, £, B) requiring every (generalized)

vertex to connect to a loop which is based at a descending sequence

([w]y); of generalized vertices was phrased as every vertex connects to a

repeatable path. More precisely, this means that for every [v],, there exist

aw € E° L(w) > 1, and labeled paths a,d € L*(F) such that

w € r([v]m,0a) and [w]; C r([w];, «) for all [ > L(w).

If we take L(w) large enough, [w]; C r([v]m,da) for all [ > L(w) and
so [w]; € r([w]; N r([v]m,0),a). Then [w], N r([v]m,d) # 0 for all I >
L(w), which implies that [w]; C r([v],,, ) again for all sufficiently large
[. Thus this property is equivalent to that for every [v],,, there exist
aw € E° L(w) > 1, and labeled paths «,d € L*(F) such that for all

[ > L(w),

—~
—
=
=
N
<
—~
=
Q
~—
—~
—+
=
&
-+
—
\'U)
Q
—
n
o
—
]
o
T
®
-+
=
Nl
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So obviously this property is stronger than the one introduced in Defi-
nition 5.1.1 while the converse is not true because a loop at [w]y,) may
not be a loop at [w], for | > L(w) as Example 5.1.3 given below shows.
Actually, Example 5.1.3 suggests that the notion of connecting every
vertex to a repeatable path ([5]) might be said every vertez connects to
a loop at a nested sequence of generalized vertices.

(¢) It is known in [5, Theorem 6.9] that if a labeled space (E, L, ) is dis-
agreeable and strongly cofinal and every vertex connects to a repeatable
path, then the C*-algebra C*(E, L, ) is simple and purely infinite.

Example 5.1.3. Consider the following labeled graph (E, £).

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
95 6 57 D8 51 92 53 54 95
[ J [ [ ] [ ] [ [ J [ ] [ ] [
44 45 43 4y 44 45 43 4y 4
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
31 39 31 39 31 39 31 39 31
c- @ [ [ ] [ ] [ J [ [ ] [ J [
ol a2l 4 2 a2 a2 a2 42 42 4 2

STONY T ONY TN TN Y T N YT N Y T Ny T

- @ [ ] [ ] [ ] [ ] [ ] [ ] [ ] ® ---
v*M*Mfol\/UO\/Ul\/UQ\_/U3\_/’U4
b b b b b b b b
Then one easily sees that for each n > 1,

[UO]H - {Uk-Q”_l k € Z} = { ©r 5, U_g.9n-1,V_2n-1,U0, Ugn-1, Ug.gn-1, * * * }

admits loops a2 for all k¥ > n. Specifically, for example, the path a is
a loop at [vg];, but not a loop at any [vg), for n > 2. Actually, (E,L,&)
does not have a path o € £*(E) for which there are w € EY and L(w) > 1
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with [w]; C r([w];, ) for all [ > L(w), while one can check that every vertex
connects to a loop in this example. Since it is rather obvious that (E, £, &) is
disagreeable, we see that C*(E, £, £) has the property (SP.) by Theorem 5.1.6
below.

Lemma 5.1.4. Let (E,L,&) be a disagreeable labeled space. Then every loop
has an exit. Moreover, the projection p4 is infinite in C*(E,L,€) = C*(54,p4)
whenever A € € admits a loop.

Proof. Let o be a loop at A € €. Choose w € A and [ > 1 so that [w], C A.
Since [w]; is disagreeable, we may choose a labeled path f € L*(E) with
[w]; N's(B) # 0 so that |3] = |o'| and 8 # ' for some 7 > 1, which means that
the loop p:= o’ at A € € has an exit $. Thus, p, is an infinite projection by
Proposition 3.1.6. 0

The similar arguments as in [5, Theorem 6.9] and [3, Proposition 5.3] yield
the following proposition. But it has to be modified to fit in our setting. Thus
for convenience we provide a proof with details. In the following proposition,
the notation that p < ¢ where p, ¢ are projections in a C*-algebra will mean
that p is Murray-von Neumann equivalent to a subprojection of q.

Proposition 5.1.5. Let (E, L, €) be a disagreeable labeled space. Then every
nonzero hereditary C*-subalgebra of C*(E, L,E) contains a nonzero projection
p such that s,pas;, < p for some p € L*(E) and A € E.

Proof. Let B be a nonzero hereditary C*-subalgebra of C*(E, L, &) and fix
a positive element a € B with ||®(a)|| = 1. Choose a positive element b €
span{sapash : o, f € L*(E) and A C r(a)nr(B)} so that [[a—b|| < ;. From [5,
Proposition 2.4 (ii) and (iii)], we may write b= 3", .1, s)cF Clafw]i,8)SaPlw)i 55
where F' is a finite subset of L*(FE) x ; x L*(E) for some [ > 1. Let by =
®(b) > 0. Since P is norm-decreasing, we have

1

1= lloolll = @)l = 12 @)} = [®(a = )] < [la = bl < ,
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and hence ||bo|] > 2. Let k = max{|a|, |8| : (a,[w];, 3) € F}. Applying the
Definition 2.2.7(iv) and changing F' (if necessary), we can choose a k € N
so that min{|al,|5|} = k for every (o, [w];, 5) € F. Let M = max{|al,|5| :
(e, [w];, B) € F}. Applying [5, Proposition 2.4.(iii)] again, we may choose
m > M large enough so that

bo € Bluws(auliB)eryF ([Wn).

Now, ||bo|| must be attained in some summand F*([v],,). Let b; be the com-
ponent of by in F*([v],,) so that ||by| = ||b1|| and note that by > 0. Then we
can choose a projection 7 € C*(by) C F*([v],,) such that 7byr = ||by||r. Since
b; is a finite sum of SaPu]m Sg, WE can write r as a sum > CapSaPlv]mSh OVer all
pairs of paths in

G = {a e L(E"): either (a, [V],n, B) € F or (B, [v]m, ) € F}.

Note that rbyr = rbyr and the G x G-matrix (c,p) is also a projection in a
finite dimensional matrix algebra F*([v],,) = span{s.pp,,s5 : a, 8 € G}.
Since [v],, is disagreeable, we may choose a path A € £*(F) with |A| > M so
that A has no factorization A = M\’ = \"¢ for some |\'|,|§| < m. Then because
span{sakpr([v]myA)sg/\ :a, B € G} is also a finite dimensional matrix algebra
generated by the family of non-zero matrix units {saxpr(j NShEA @, g e G},

my

Q= CapSarlr(olmn)Sia
a,BeG

is a projection satisfying
r= Z CapSaPlulmSh = Z CapSa(SAPr([u]m,\)SA T (Plolm — SAPr (0], N)52)) S5 = Q.
We claim that for (u, [v];,v) € F,
Q5P 5,Q = 0 unless |u| = [v| =k and [v],, C r(pn) Nr(v).

Suppose that (i, [v]m,v) € F with |u| # |v]. We may assume |u| = k because
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either p or v has length k. Since sj,s, # 0 if and only if 5 = u, we have

Q5P 53)Q = (Y CarrSaaPr(lulon ) 55) (5Pl 50)( D, CapSarDr(iulmn)S5n)

o ,B'eG o,BeCG
= (D CaruSaraPr(lw NS5l S0 )( Y CapSarPr(loln )Sha)
o’'eG a,peG

== Z Caﬁ(Z Ca’psa’)\pr([v]m,A)SZ,\)SaApT([U]m,A)SE,\-
a,8eG o'e€G

To be s%,5ax # 0, it must be true that vA = aAd for some § € L*(F). Since
lv| > |a| = k, we may say that v = aX where A = N\ for some X', \" € L*(E).
As v\ = ald = aN)XN'§ = aN A, we have

)\: )\/)\Il — )\//6

with [N = |d]. Because |v| = |aN| < M with |a| = k, we know |N| < M —Fk <
m, which contradicts to the fact that \ is disagreeable for [v],,.
Thus, we see that

Qb = Q= QrirQ = @ = @ > 2@

Since [la — b|| < 1, we have QaQ > QbQ — 1Q > 3Q. This implies that QaQ
is invertible in QC*(E, £, £)Q. Let ¢ be the inverse of QaQ in QC*(E, L, E)Q

and put v = C%Qai. Then v*v = a%QcQa% < |l¢||a, and hence v*v € B. Since
v ~ vt = C%QCLQC% = Q,

the hereditary C*-subalgebra B contains a non-zero projection equivalent to ().
Note that @ belongs to the finite dimensional subalgebra C' := span{saapp(jv],. \) S5 :
a, 3 € G} for which the elements {saApy(ju],., 2552} forms a matrix unit. This
means that () dominates a minimal projection in C'. Since every minimal pro-
jecton in C' is equivalent to a minial projection of the form soxp((u],.,0) Sk, the
hereditary subalgebra B also contains a projection equivalent to the desired
form. ]
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Theorem 5.1.6. Let (E,L,&) be a disagreeable labeled space in which every
vertex connects to a loop. Then C*(E, L,E) has the property (SP.,). Moreover
every nonzero hereditary C*-subalgebra of C*(E, L,E) contains an infinite pro-
jection equivalent to a projection pa for some A € E.

Proof. We first show that pp,, is infinite for any generalized vertex [v];. By
our assumption, the generalized vertex [v]; should connect to a loop, say «
based at A € €. Thus there is a § € L*(E) such that A C r([v);,6). Then
clearly py((,],,5) = Pa. Since p4 is an infinite projection by Lemma 5.1.4, the
projeciton py((),.5) should also be infinite. From pp), = >_,_ s SuPr(lm Sy =
SsDr([v),,8)55 ~ Pr([o].,6), We conclude that the projection py,, is infinite.

Now let B be a nonzero hereditary subalgebra of C*(E, L,€). By Propo-
sition 5.1.5, B then contains a nonzero projection p such that s,pas}, < p for
some pu € L*(F) and A € £. But the projeciton SupAS;, 1s equivalent to pan(u)
which is infinite by the first assertion. Thus p is infinite. O

Remark 5.1.7. Let a disagreeable labeled space (E, £, €) satisfy the following
property which is slightly weaker than the one assumed in Theorem 5.1.6: for
every generalized vertex [v];, there exists a loop a based at A € £ and a finite
number of labeled paths 6y, ..., 4, € L¥(E) with the same length k such that

A C UZ (o), ).

Then the conclusion in Theorem 5.1.6 still holds true. In fact, we can pick
a path v € LI(E) with [v]; C 7(v), then with A; := ANr([v];,d) and B; :=

64



CHAPTER 5. LABELED GRAPH C*-ALGEBRAS THAT ARE NOT
FINITE

Ai — U;;iAj (Bl = Al); 1= 17 ..., M, we have

PA =PB, +PB, + "+ DB,
< PB, 545, 546,08, T+ DB, SLs, 546,PB,
~ S~v61PBy 3;51 + -+ 845,08, S%n
= 5, (ss,ppy S5, + -+ s(;anns;n)sf;
< 5y (851r((u]16) 55, + T S6uDr([ulion) 55, ) S5

< SyP)i Sy ™~ Pll;-

But p4 is infinite and we see that py,), is also infinite. The second part of the
proof of Theorem 5.1.6 shows even in this case that every nonzero hereditary
subalgebra of C*(E, £, £) contains an infinite projection equivalent to p, for
some A € &.

The set L2(E) :={a=omay--- € A®: a; -, € L*(E) for all n > 1}
that includes the infinite paths £(E>) is considered in [23] to define a new
version of strong cofinality of labeled spaces.

Definition 5.1.8. ([23]) A labeled space (E, £, £) is said to be strongly cofinal
if for any generalized vertex [v]; € £ and any x € £L>(E), there exist an N > 1
and finitely many labeled paths Ay, ..., \,, € L*(E) such that

r(@pny) € UL ([l A). (5.1)
It is shown ([5, 19, 23]) that if (E, £, ) is disagreeable and strongly cofinal,
then C*(E, L, ) is simple.

Corollary 5.1.9. Let (E,L,€) be a disagrecable and strongly cofinal labeled
space. If there is a vertex w € EY such that [w];, admits a loop for a sequence
Iy <ly<---, then C*(E, L,E) is simple and purely infinite.

Proof. By [19, Theorem 3.16], C*(E, £, £) is simple. To see that C*(E, L, E)
is purely infinite, it is enough to show that py,, is infinite for any [v]; € €. Let
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a be a loop at [w],.
n > 1 (that is, a® € L>®(E)), [v]; connects to o™ € L>(FE). Thus there exist
an N € N and labeled paths 01, ,d,, € L*(E) such that

where o/ is an initial path of o

[w]h - T([w]lu ak+1) - T(O/H_l) - U;-ZIT’([U]Z, 5ia”)'

r(afa) = r(afﬁN]) C Uz r([v], 6:),

— a/all

) and some k£ > 1. Then

Since (E, L, &) is strongly cofinal and o™ € L*(E) for

Setting Ay := [w];, Nr([v];, 61a") for convenience, we choose | > [; large enough

so that [w]; € A;. Then by assumption [w]; admits a loop, and hence the

projection pyy,

is infinite by Lemma 5.1.4. On the other hand, one sees that

p[vh Z S5la”pr([v]z,51a”)Sglo/’ ~ pr([v];,&a”) Z p[w]” Wthh implies that p[U]l iS also
infinite. Then the second part of the proof of Theorem 5.1.6 completes the

proof.

Example 5.1.10. For the following labeled graph (E, L)

[ J
C
[
C
eU_3
c
a

. [ [ ] [ ] [ ] [ ] [ ] ® -
1)_3\_/’(]_2\_/1}_1\_/'1}0\_/’01\_/’(]2\_/1}3

b

[ ]
d
[ ]
d
oU_9
d
a

b

[ ]
Cc
[ ]
C
oeU_1
c
a

b

b

b

O

Theorem 6.10 in [20] shows that C*(E, £,&E) ~ C*(F, L, F), where (F, L, F)
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CHAPTER 5. LABELED GRAPH C*-ALGEBRAS THAT ARE NOT
FINITE

is the associated merged labeled space of (E, £, ) which is shown as below

! C[g%];

Then it is clear that (F, L, F) is disagreeable and every vertex connects to a
loop. Thus by Theorem 5.1.6, C*(F, £, F) has the property (SPs), and hence
C*(E, L,€) also has the property (SPs,).

@< >>@
@.
g
'
5
(@)

Extending the relation > for vertices of directed graphs, we write A > B
for A, B € £ if there exists a labeled path a € £#(E) such that B C r(A, a).
The relation > is reflexive and transitive. For [v]; € &, set

Ry, ={A€&: ), > A} and
Fup ={B €& :B=U]_ A for some A; € R}, and k > 1}. (5.2)

Lemma 5.1.11. The set F,), defined above is a hereditary subset of €.

Proof. Choose B € H := F,,. Then B = Uk A; where A; € Ry, for all
i=1,---,k, that is, A; C r([v];, ) for some a; € L#(E). So, r(B,3) =
U r(A4;,8) € H for all B € L#(E) because r(A;, 3) C r([v];, a;3) for all i.
Also, if C' € € with C' C B, then C = UF_,(CNA;) with CNA; € A; C r([v];, o)
for all ¢, which implies C' € H. It is rather abvious that if By, By € H, then
BiUBy; € H. O

If H is any hereditary subset of &, we write Ey := (EY, E}) for the
subgraph of E whose vertices and edges are defined as follows:

EY :={we E°:w € B for some B € H},
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Ey ={f € E":s(f) € E}}.

Note that the subgraph E can have a source and

E%[v]l = E%[v]l = {w € E°: w € A for some A € Ry, }.

Example 5.1.12. For the following labeled graph (E, L)

5(62 =

it is easy to see that [vo]; = {vo} for [ > 3. Then Ry,,y = {{w} : k > 2},
H := Fpy = {B C E°\ {v,v1} : B is finite } and EY, = {v; : k > 2}. Now
we have the directed subgraph Ey = (EY, Ey) of E as follows

[ T S R

T U2 U3 V4 (5 Vg

Considering the restriction map L| BL E} — A, one can regard the directed
subgraph Ey as a labeled graph (Ep, £|g; ) with a source as below

For a hereditary subset H of £, we denote by Iy the ideal of C*(E, L, &)
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generated by the projections {p4 : A € H}. It is easy to see ([20]) that

Iy =3span{s,pas, : p,v e L(E), Ac H}
= span{s,pas; : p,v € L(E), A€ H}.

The following proposition is known for graph C*-algebras (see [29, Proposition
2.1)).

Proposition 5.1.13. For the hereditary set H := F), given in (5.2), the ideal
Ig=1 Fr, 1 Morita equivalent to the hereditary C*-subalgebra

By :=span{s,pps, : p,v € L*(Ey) and B € Fi, }.

Proof. The relations

sMmeT(Aﬁ,,/)s/’gy,, ifv=a
Slu,oz’pr(B,a’)ﬂASjg’a if a =va
SuPBNASS, ifv=a«a

0, otherwise,

(supBs,)(sapasy) =

where o, B,v € L*(E), A€ £ and p € L*(Ey), B € Fp),> show that
X :=3pan{s,pps, : p € L*(Ey),v € L*(E) and B € F),}

is a right ideal of C*(E, £, €) which satisfies I[;; = X*X and X X* = By.
[l

Remark 5.1.14. If a (generalized) vertex [v]; € £ does not connect to any loop,
then obviously each set A in Ry, does not admit any loops. But some set
B € Fy,, of their union can be bases of loops. Consider the following labeled
graph (F, L):
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[ ] o [ ) [ ) [ ] o [ ) [ ] [ ]
4 4 4 4 4 4 4 4 4

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
3 3 3 3 3 3 3 3 3

[ ] [ ] [ ) [ ) [ ] [ ) [ ) [ ] [ ]
2 2 2 2 2 2 2 2 2

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
0 1 1 o| £(zo)=0 | 0 1

E(Il) =1
a a a a a a a
[ ] [ ] [ ) [ ) [ ] [ ) [ ) [ ] [ ]
V_3 V_9 V_1 Vo V1 V2 Vs

By z; we denote an edge with s(z;) € r(2) and r(x;) = v; for all i € Z. Then
we give labels with the Thue-Morse sequence {0, 1} starting from L£(zq) = 0,
L(z1) = 1. One can see that both of r(0) and r(0a™) do not admit any loops
for all n > 1. This proves that 7(0) can not connect to any loops in the sense
of Definition 5.1.1. We see that

Ryoy={A€&:r(0) > A} = {r(0a") € € : n > 0},

Fro) = {UF_r(0a™) € € :n; >0 and k > 1},

where 7(0a°) := r(0). Observe that r(a) C r(0a) Ur(0a?) Ur(0a®). So, r(a) €
Fr(0) and r(a) admits loops.

Corollary 5.1.15. Let (E,L,E) be a labeled space and [v]; € €. If for every
finite subset {Aq,--- ,Ax} of H := Fp), and every K > 1, there exists an
mgo > 1 for which

AVESFALESR A, B A, — 0

for alln >mg and 1 < i; < N, then the ideal I;Ml is an AF algebra.
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Proof. Choose a generalized vertex [v]; € £ By Proposition 5.1.13, the ideal
1 Fuu, is Morita equivalent to

B;[U]l := spani{s,pgs, : p,v € L (Ey) and B € Fp, }.

The assumtion asserts that B, is an AF algebra (see [17, Theorem 4.8]). [

Example 5.1.16. Let us revisit the labeled graph in Example 5.1.12:

We first see that
I,y = span{s,pps; : p,v € L*(E) and B € Fiu,1},

where Fy,,y = {B C E°\ {vo} : B is finite }. By Proposition 5.1.13, the ideal
I1,,y is Morita equivalent to

B,y = spand{s,pps, : t,v € L*(Ey) and B € F,y}
= span{s,ppst : p=a",v=a",B C E°\ {vy,v1} and B is finite }.

Corollary 5.1.15 says that By, is an AF-algebra, which implies that C*(E, L, &)
contains an AF hereditary C*-subalgebra, namely Iy,,;. Thus, C*(E,L,E)
does not have the property (SPy).
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