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Abstract

Finite C*-algebras associated
with labeled graphs

Eunji Kang

Department of Mathematical Sciences

The Graduate School

Seoul National University

We study the properties of the C∗-algebras C∗(E,L, E) associated to labeled

spaces (E,L, E). It is shown that if C∗(E,L, E) is AF, then the labeled space

(E,L, E) has no loops. We also prove that some of the known equivalent

conditions for usual graph C∗-algebras C∗(E) to be AF are not necessarily

equivalent for labeled graph C∗-algebras by providing examples. For this, we

use generalized Morse sequences. These examples are also shown to be non-AF

simple finite C∗-algebras, which contrasts with the fact that the usual simple

graph C∗-algebras are either AF or purely infinite.

Besides, we find a sufficient condition for a labeled space (E,L, E) to give

rise to an infinite C∗-algebra in the sense that every nonzero hereditary C∗-

subalgebra of C∗(E,L, E) contains an infinite projection.

Key words: graph C∗-algebras, labeled graph C∗-algebras, finite C∗-algebras,

AF C∗-algebas, purely infinite C∗-algebras, generalized Morse sequences
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Chapter 1

Introduction

About forty years ago, Cuntz [7] introduced a class of C∗-algebras On called

the Cuntz algebras which are generated by n isometries satisfying certain rela-

tions. In [9], Cuntz and Krieger constructed a generalized version of the Cuntz

algebras associated to a finite {0, 1}-matrix A. The Cuntz-Krieger algebra OA
which is defined to be the C∗-algebra generated by partial isometries satisfying

relations determined by A played an important role for the study of the topo-

logical Markov chain associated with the matrix A. It is natural to try to gen-

eralize this sort of C∗-algebras of partial isometries satisfying some relations

given by finite matrices to C∗-algebras of (infinitely many) partial isometries

with relations given by objects like directed graphs, since matrices with positive

integer entries are nothing but the adjacency matrices of some directed graphs.

Actually in [30], a class of C∗-algebras C∗(E) for directed graphs E (briefly,

graph C∗-algebras or graph algebras) was introduced as groupoid C∗-algebras

using the groupoid structure of the infinite path spaces when the graphs E

are locally finite, that is, every vertex emits and receives only finitely many

edges. Then in [29] for row-finite graphs E (every vertex emits only finitely

many edges), the C∗-algebras C∗(E) were shown to be defined without using

groupoid machineries. It is also shown later in [11] that an arbitrary graph

can be transformed into a row-finite graph with no sinks through the so-called

desingularization and that the C∗-algebra of the original graph is isomorphic

to a full conner of the C∗-algebra of the desingularized row-finite one. Thus
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CHAPTER 1. INTRODUCTION

every graph C∗-algebra is stably isomorphic to a C∗-algebra of a row-finite

graph. This fact allows us to focus on row-finite graphs and thier C∗-algebras.

Besides the graph C∗-algebras, there have been various generalizations of

Cuntz-Kreiger algebras. The Exel-Lace algebras [13], the ultra graph algebras

[35], and the higher-rank graph algebras [28] are those generalizations which

also include the C∗-algebras of row-finite graphs with no sinks. On the other

hand, it is known [26] that the class of graph algebras, Exel-Laca algebras, and

ultra graph algebras coincide up to Morita equivalence.

Working with graph algebras has attractive benefit because many complex

properties and structures of graph algebras can be explained in terms of graph

conditions. For example, a graph algebra C∗(E) is an AF (approximately

finite dimensional) algebra if and only if E has no loops [29], and similarly if a

higher-rank graph C∗-algebra C∗(Λ) is AF, then the higher-rank graph Λ has

no loops [12].

A C∗-algebra is called infinite if it contains infinite projections and finite

otherwise. AF algebras are C∗-algebras that are best understood among finite

C∗-algebras, and Cuntz algebras (or, more generally purely infinite simple C∗-

algebras) are infinite C∗-algebras. It is also known in [29] that C∗(E) is purely

infinite simple if and only if E satisfies Condition (L), namely every loop has

an exit, and every vertex connects to a loop.

As a generalization of graph C∗-algebras, a class of C∗-algebras C∗(E,L,B)

associated with labeled spaces (E,L,B) was introduced in [4] and has been

studied in [1, 4, 5, 17, 18, 19, 20]. Briefly, these are the C∗-algebras generated

by a family of partial isometies satisfying certain relations from the labeled

spaces (E,L,B), where L is a labeling map assigning a label (or alphabet) to

each of the edges of the graph E and B, called an accommodating set, is a

collection of vertex subsets which plays the role of vertices in graph algebras.

In this thesis we first investigate the question of when a labeled graph C∗-

algebra C∗(E,L, E) is AF, where (E,L, E) is a labeled space with the smallest

non-degenerate accommodating set E . We will define a notion of loop for a

labeled space (E,L, E) and show that if C∗(E,L, E) is AF, the labeled space

(E,L, E) has no loops. Unlike the graph algebra case, it turns out that the

converse may not be true in general, namely there is a labeled space with no
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CHAPTER 1. INTRODUCTION

loops whose C∗-algebra is not AF. A sufficient condition for a labeled space to

be associated to an AF labeled graph C∗-algebra will also be given.

It is also well-known [29] that there is a dichotomy for simple graph C∗-

algebras: it is either AF or purely infinite. On the other hand, in [5, Propo-

sition 7.2], Bates and Pask provide an example of a simple unital purely in-

finite labeled graph C∗-algebra which is not isomorphic to any unital graph

C∗-algebra. We also know from [33] that there exist simple higher-rank graph

C∗-algebras which are neither AF nor purely infinite, more specifically there

exist such simple C∗-algebras which are stably isomorphic to irrational rotation

algebras or Bunce-Deddens algebras. Since the property of being AF or pure

infiniteness is preserved under stable isomorphism, the examples of higher-rank

graph C∗-algebras constructed in [33] are not stably isomorphic to any graph

C∗-algebras. This leads us to ask if there exists a simple unital labeled graph

C∗-algebra which is neither AF nor purely infinite. We will show that there

exist simple labeled graph C∗-algebras C∗(EZ,Lω, EZ) associated to general-

ized Morse sequences ω that are not AF, but finite (with unique traces). To

see that C∗(EZ,Lω, EZ) is non AF, we show that K1(C∗(EZ,Lω, EZ)) 6= 0 by

applying the K-theory formula obtained in [1]. The fact that C∗(EZ,Lω, EZ) is

finite comes from the existence of a unique trace which is the extension of the

unique ergodic measure on the closed orbit space of ω. This result says that

the dichotomy for simple graph C∗-algebras does not hold for simple labeled

graph C∗-algebras.

We then turn our attention to the question of what conditions on a la-

beled space (E,L, E) guarantee that the labeled graph C∗-algebra C∗(E,L,B)

contains sufficiently many infinite projections in the sense that every nonzero

hereditary C∗-subalgebra of C∗(E,L, E) contains infinite projections. This

property is well-known to be equivalent to the pure infiniteness of [31] at

least for simple C∗-algebras. As mentioned earlier, a simple graph algebra

C∗(E) is purely infinite exactly when the graph E satisfies Condition (L) and

every vertex connects to a loop. To extend this fact to labeled graph C∗-

algebra C∗(E,L, E), we will make clear the meaning of connecting a vertex to

a loop in (E,L, E), and then show that every nonzero hereditary subalgebra

of C∗(E,L, E) is infinite for a disagreeable (E,L, E) with this property. Here
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CHAPTER 1. INTRODUCTION

the disagreeability of a labeled space is an extended notion of Condition (L)

for a graph ([5]).

This thesis is organized as follows. We begin in Chapter 2 with reviewing

necessary background on graph C∗-algebras, labeled graph C∗-algebras, and

generalized Morse sequences.

In Chapter 3, we find conditions of a labeled space (E,L, E) which give rise

to an AF C∗-algebra C∗(E,L, E). Based on the fact that a graph C∗-algebra

C∗(E) is AF exactly when the graph E has no loops, we first consider several

conditions on a directed graph E that are equivalent to the existence of a loop

in E (Proposition 3.1.2), and then we will define a notion of loop for a labeled

space (Definition 3.1.3) by extending one of these conditions. Each of the other

equivalent conditions can also be restated in terms of labeled spaces or labeled

graph C∗-algebras. We also discuss those equivalent conditions are not always

equivalent in the class of labeled graph C∗-algebras.

In Chapter 4, we consider the question of whether the dichotomy for simple

graph C∗-algebras (a simple graph C∗-algebra is either AF or purely infinite)

would hold true for the class of simple labeled graph C∗-algebras. To answer

this question we prove in Theorem 4.1.7 that there exists a simple unital finite,

but non-AF labeled graph C∗-algebra C∗(EZ,Lω, EZ). This is a C∗-algebra

associated to a labeled space (EZ,Lω, EZ) which is labeled by a generalized

Morse sequence ω.

Finally in Chapter 5, we investigate conditions of labeled spaces (E,L, E)

that generate infinite C∗-algebras. We shall define an analogue of connecting

every vertex to a loop in the context of labeled spaces and show that if (E,L, E)

is a disagreeable labeled space in which every generalized vertex connects to a

loop, then every nonzero hereditary C∗-subalgebra of C∗(E,L, E) contains an

infinite projection. It will be one of our future projects to explore whether the

converse holds and when the (possibly non-simple) labeled graph C∗-algebra

would be purely infinite in the sense of [31, 32].
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Chapter 2

Preliminaries

In this chapter, we review basic definitions and properties of graph C∗-algebras,

labeled graph C∗-algebras, and generalized Morse sequences and set up our

notation that are frequently used throughout this thesis.

2.1 Directed graphs and their C∗-algebras

A directed graph E = (E0, E1, r, s) consists of a countable set E0 of vertices,

a countable set E1 of edges, and range and source maps r, s : E1 → E0. The

directed graph E is row-finite if each vertex emits only finitely many edges.

A row-finite graph is locally finite if every vertex receives only finitely many

edges. A vertex v ∈ E0 which emits no edges is called a sink and a vertex

v ∈ E0 which does not receive any edges is called a source. By E0
sink we denote

the set of all sinks of E. A path of length n in a directed graph E is a sequence

of edges λ = λ1 · · ·λn with r(λi) = s(λi+1) for 1 ≤ i < n. We write |λ| := n for

the length of λ. Let En denote the set of all paths of length n. By convention

E0 is regarded as the set of paths of length 0. We let E∗ := ∪n≥0E
n be the

set of all finite paths and let E≤n and E≥n be the sets ∪ni=1E
i and ∪∞i=nEi,

respectively. The maps r and s naturally extend to E∗, where r(v) = s(v) = v

for v ∈ E0. If a sequence of edges λi ∈ E1(i ≥ 1) satisfies r(λi) = s(λi+1), one

obtains an infinite path λ1λ2λ3 · · · with the source s(λ1λ2λ3 · · · ) := s(λ1) and
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CHAPTER 2. PRELIMINARIES

E∞ will denote the set of all infinite paths.

If E is a directed graph, a Cuntz-Kreiger E-family consists of a set {pv :

v ∈ E0} of mutually orthogonal projections and a set {se : e ∈ E1} of partial

isometries satisfying the following Cuntz-Kreiger relations:

(i) s∗ese = pr(e) for e ∈ E1,

(ii) ses
∗
e ≤ ps(e) for e ∈ E1,

(iii) pv =
∑

s(e)=v ses
∗
e whenever 0 < |s−1(v)| <∞.

It is shown ([29, Theorem 1.2] and [14]) that there is a C∗-algebra C∗(E)

generated by a universal Cuntz-Krieger E-family {se, pv : e ∈ E1, v ∈ E0} (or,

briefly {se, pv}). More precisely, for every Cuntz-Krieger E-family {Se, Pv} of

partial isometries on a Hilbert space H, there is a representation π := πS,P of

C∗(E) on H such that π(se) = Se and π(pv) = Pv for all e ∈ E1, v ∈ E0. The

C∗-algebra C∗(E) is called the graph C∗-algebra of E. Since one can construct

families {Se, Pv} in which all projections Pv are non-zero, we have that pv is

non-zero for all v ∈ E0.

It is known in [11] that if E is an arbitrary graph, there is a row-finite

graph E ′ with no sinks or sources such that C∗(E) and C∗(E ′) are stably

isomorphic. Since we are mainly interested in properties of graph C∗-algebras

that are preserved under stable isomorphism, we will restrict ourselves to graph

C∗-algebras C∗(E) of row-finite graphs E. So, from now on E will be a row-

finite directed graph unless stated otherwise.

The Cuntz-Krieger relations imply that sesf 6= 0 only if r(e) = s(f) and

that s∗esf = 0 unless e = f . More generally, a product sλ := sλ1sλ2 · · · sλn of

partial isometries sλ1 , · · · , sλn is non-zero precisely when λ = λ1λ2 · · ·λn is a

path in En and one has the following relations.

Lemma 2.1.1. ([29, Lemma 1.1]) Let E be a row-finite graph, {se, pv} a Cuntz-

6



CHAPTER 2. PRELIMINARIES

Krieger E-family, and ν, λ ∈ E∗. Then

s∗νsλ =


sλ′ , if λ = νλ′

s∗ν′ , if ν = λν ′

pr(λ), if ν = λ

0, otherwise.

Moreover, every non-zero finite product of se, pv and s∗f is a partial isometry

of the form sµs
∗
ν for some µ, ν ∈ E∗ with r(µ) = r(ν).

It follows by Lemma 2.1.1 that for a universal Cuntz-Krieger E-family {se, pv}

C∗(E) = span{sµs∗ν : µ, ν ∈ E∗ and r(µ) = r(ν)},

where sv := pv for v ∈ E0.

A finite path λ with |λ| > 0 is called a loop based at v ∈ E0 if s(λ) =

r(λ) = v, that is, if it comes back to its source vertex. An exit of a loop

λ = λ1λ2 · · ·λn is an edge f ∈ E1 which satisfies that s(f) = s(λi) for some

i ∈ {1, · · · , n}, but f 6= λi. We say that a directed graph E satisfies Condition

(L) if every loop has an exit.

Theorem 2.1.2. (The Cuntz-Krieger uniqueness theorem [3, Theorem 3.1]).

Let E be a row-finite graph which satisfies Condition (L) and let {Te, Qv} be a

Cuntz-Krieger E-family such that Qv 6= 0 for every v ∈ E0. Then there is an

isomorphism π of C∗(E) onto C∗(Te, Qv) such that π(se) = Te and π(pv) = Qv

for all e ∈ E1 and v ∈ E0.

For each z ∈ T, the family {zse, pv : e ∈ E1, v ∈ E0} is a Cuntz-Kreiger

E-family which generates C∗(E) = C∗(se, pv). Thus the universal property of

C∗(E) defines an automorphism γz : C∗(E)→ C∗(E) such that

γz(se) = zse and γz(pv) = pv

7



CHAPTER 2. PRELIMINARIES

for all e ∈ E1 and v ∈ E0. Moreover, γ : T→ Aut(C∗(E)) given by γ(z) := γz
is a strongly continuous action of T on the C∗-algebra C∗(E) which is called

the gauge action.

Theorem 2.1.3. (The Gauge Invariant Uniqueness Theorem [3, Theorem

2.1]). Let E be a row-finite graph and {Te, Qv} be a Cuntz-Krieger E-family

in which Qv is non-zero for all v ∈ E0. Let π := πS,P be the representation of

C∗(E) such that π(se) = Te and π(pv) = Qv. If there is a strongly continuous

action β of T on C∗(Te, Qv) such that βz ◦ π = π ◦ γz for all z ∈ T, then π is

faithful.

A directed graph E is said to be cofinal if for every vertex v ∈ E0 and for

every infinite path λ = λ1λ2 · · · ∈ E∞, there exists µ ∈ E∗ such that s(µ) = v

and r(µ) = s(λi) for some i ≥ 1. For the simplicity of graph C∗-algebras, the

following is known.

Theorem 2.1.4. ([3, Proposition 5.1]) Let E be a row-finite directed graph

with no sinks. Then C∗(E) is simple if and only if E is cofinal and satisfies

Condition (L).

For v, w ∈ E0 we write v ≥ w if there is a path µ ∈ E∗ with s(µ) = v and

r(µ) = w. A subset H of E0 is called hereditary if v ≥ w and v ∈ H imply w ∈
H. A hereditary set H is saturated if v ∈ H whenever {r(e) : s(e) = v} ⊂ H.

If H is a hereditary set, the saturation of H is the smallest saturated subset

H of E0 containing H. For each subset H of E0, let IH be the ideal of C∗(E)

generated by the projections {pv : v ∈ H}.

Theorem 2.1.5. ([3, Theorem 4.1]) Let E be a row-finite directed graph. Then

we have the following.

(i) The map H 7→ IH is an isomorphism from the lattice of saturated hered-

itary subsets of E0 onto the lattice of gauge-invariant ideals of C∗(E).

(ii) Let H be a saturated hereditary subset of E0 and E \H := (E0 \H,E1 \

8



CHAPTER 2. PRELIMINARIES

r−1(H), r, s) be the subgraph of E. Then C∗(E)/IH is canonically iso-

morphic to C∗(E \H).

A loop λ = λ1λ2 · · ·λn at v = s(λ) is called a first-return path if s(λi) 6= v

for all i = 2, · · · , n. A directed graph E is said to satisfy Condition (K) if no

vertex is the base of exactly one first-return path.

Example 2.1.6. The following directed graph E satisfies Condition (K). The

vertex v is a base of two distinct first-return paths eg and efg. Also, f and ge

are distint first-return paths at w. (fge is not a first-return path.)

• • cc
&&

ff
v w

e

g

f

Theorem 2.1.7. ([3, Theorem 4.4]) Let E be a row-finite directed graph. Then

the following are equivalent.

(i) E satisfies Condition (K),

(ii) all ideals of C∗(E) are gauge invariant,

(iii) the map H 7→ IH is a lattice isomorphism from the saturated hereditary

subsets of E onto the ideals of C∗(E).

Example 2.1.8. The following graph E satisfies Condition (L), but does not

satisfy Condition (K) since v3 is the base of only the first-return path e.

• • • • •
��
[[

�� ��
[[

// // // //
v1 v2 v3 v4 v5

e
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CHAPTER 2. PRELIMINARIES

The hereditary saturated subsets of E0 are

∅, H1 = {v4, v5}, H2 = {v2, v3, v4, v5}, E0.

Thus C∗(E) has two non-trivial gauge invariant ideals, namely IH1 and IH2 .

It is easy to see that the subgraphs E \H1 and E \H2 are as follows:

• • •
��
[[

��
// //

v1 v2 v3

E \H1 :

•
��
[[v1

E \H2 :

By Theorem 2.1.5 (ii), one sees that C∗(E)/IH2
∼= C∗(E \ H2). Note that

the hereditary subalgebra pv3C
∗(E)pv3 is isomorphic to C(T). Since C(T) has

many ideals that are not gauge invariant, it follows that C∗(E) also has many

ideals that are not gauge invariant.

If a graph E has a loop with an exit, the C∗-algebra C∗(E) is infinite in

the sense that C∗(E) contains an infinite projection. In fact, if λ = λ1λ2 · · ·λn
is a loop at v = s(λ1) with an exit f ∈ E1 at v, the projection pv is Murray-

von Neumann equivalent to its proper subprojection sλs
∗
λ in C∗(E) since pv =

s∗λsλ ∼ sλs
∗
λ ≤ sλ1s

∗
λ1
< sλ1s

∗
λ1

+ sfs
∗
f ≤ pv. Thus if C∗(E) is finite, the graph

E should not have any loops with exits. If E has a loop with no exits, it can

be seen that C∗(E) has a quotient C∗-algebra which is stably isomorphic to

C(T). Thus, if C∗(E) is an AF algebra, the graph E can not have any loops.

Moreover, the converse is also known to hold true.

10



CHAPTER 2. PRELIMINARIES

Theorem 2.1.9. ([29, Theorem 2.4]) A directed graph E has no loops if and

only if C∗(E) is an AF algebra.

If a graph C∗-algebra C∗(E) is AF, by Theorem 2.1.7 all ideals of C∗(E) are

gauge invariant because E (with no loops) trivially satisfies Condition (K).

Since any quotients of AF algebras are also AF, the graph E \ H must have

no loops for any saturated hereditary subset H of E0.

Recall ([7]) that a simple C∗-algebra A is said to be purely infinite if every

non-zero hereditary C∗-subalgebra of A contains an infinite projection. In

many works including [29], a (possibly non-simple) C∗-algebra A that has this

property was called purely infinite. On the other hand, another notion of pure

infiniteness for non-simple C∗-algebras was studied intensively by Kirchberg

and Rørdam in [31, 32] and it was suggested to call a non-simple C∗-algebra A

purely infinite if there are no characters on A and if for every pair of positive

elements a, b ∈ A such that a ∈ AbA, there exists a sequence (xi)
∞
i=1 in A with

x∗i bxi → a ([31, Definition 4.1]).

In this thesis, if a C∗-algebra A has the property that every non-zero hered-

itary C∗-subalgebra of A contains an infinite projection, we will say that A

has the property (SP∞) to distinguish this one from the pure infiniteness of

[31]. The reason we have chosen (SP∞) to refer the property is because in

the literature a C∗-algebra is said to have the property (SP ) if every nonzero

hereditary C∗-subalgebra of A contains a nonzero projection. In gereral, the

property (SP∞) is neither weaker nor stronger than pure infiniteness ([31, Ex-

ample 4.6]). But, both definitions are equivalent for simple C∗-algebras ([31,

Proposition 4.6 and Proposition 5.4]).

Theorem 2.1.10. ([3, Proposition 5.3] or [29, Theorem 3.9]) Let E be a row-

finite directed graph with no sinks. Then C∗(E) has the property (SP∞) if and

only if E satisfies Condition (L) and every vertex connects to a loop.

If a directed graph E is cofinal and has a loop, every vertex automatically

connects to every loop. Combining this fact together with Theorem 2.1.9, we

have the following dichotomy for simple graph C∗-algebras.

11
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Corollary 2.1.11. ([29, Corollary 3.10]) Let E be a row-finite directed graph.

If C∗(E) is simple, then either

(i) C∗(E) is an AF-algebra if E has no loops; or

(ii) C∗(E) is purely infinite if E has a loop.

For a path µ ∈ E∗ ∪ E∞, µ0 will denote the following subset of E0

µ0 = {v ∈ E0 : v = s(e) or v = r(e) for some edge e appearing in µ},

namely µ0 is the set of all vertices that µ is passing through. A path ν ∈ E∗ is

called a detour of µ if s(ν) ∈ µ0 and r(ν) ∈ µ0. Obviously, subpaths of µ are

detours of µ. In [16], Hjelmborg shows among others that:

Theorem 2.1.12. ([16, Theorem 3.1]) Let E be a locally finite directed graph

with no sinks. The following are equivalent.

(i) C∗(E) is purely infinite,

(ii) C∗(E) has no quotient that contains a two-sided ideal that is an AF-

algebra or contains a corner that is ∗-isomorphic to Mn(C(T)) for some

n ∈ N,

(iii) every infinite path in E admits a detour β such that there are two or

more loops based at some vertex of β0,

(iv) the subgraph E \ H := (E0 \ H,E1 \ r−1(H), r, s) has the property that

every vertex connects to a loop with an exit for every hereditary saturated

subset H of E0.

Theorem 2.1.12 (iv) says that a purely infinite graph C∗-algebra C∗(E) has the

property (SP∞). The converse may not be true as we see from the following

example.

12
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Example 2.1.13. Consider a directed graph E as follows:

· · · • • • • • • • •• •· · · .

• • • •

// // // // // // // //

##
cc

##
cc

##
cc

##
ccOO OOOOOO

v0v−1 v1 v2

It is easy to see that E satisfies Condition (L) and E is not cofinal, but every

vertex in E0 connects to a loop. Thus, C∗(E) is a non-simple C∗-algebra

by Theorem 2.1.4 and has the property (SP∞) by Theorem 2.1.10. Whereas

the hereditary saturated subset H := {vi : i ∈ Z} of E0 gives rise to the

non-trivial ideal IH in C∗(E) generated by the projections {pv : v ∈ H} and

C∗(E)/IH is isomorphic to C∗(E \H), where the directed subgraph E \H =

(E0 \H,E1 \ r−1(H), r, s) is as below:

· · · • • • • • • • ••· · · .// // // // // // //

The subgraph E \H has no loops at all, so C∗(E \H) is AF by Theorem 2.1.9,

which means that C∗(E) contains an AF quotient. Thus C∗(E) is not purely

infinite. This also can be seen from Theorem 2.1.12 (iii) since E has an infinite

path in which every vertex admits no loops at all.

2.2 Labeled spaces and their C∗-algebras

We use notational conventions of [1, 5] for labeled spaces and their C∗-algebras.

A labeled graph (E,L) over a countable alphabet A consists of a directed graph

E and a labeling map L : E1 → A. We assume that the map L is onto. Let

A∗ be the set of all finite sequences of length greater than or equal to 1 in the

symbols of A. Then the map L extends naturally to the map L : E∗ → A∗
given by L(λ) := L(λ1) · · · L(λn) ∈ A∗ for λ = λ1 · · ·λn ∈ En. Similarly, A∞
denotes the set of all infinite sequences in A and the map L extends to E∞

via L(δ) := L(δ1)L(δ2) · · · ∈ L(E∞) ⊂ A∞ for δ = δ1δ2 · · · ∈ E∞. We use

13
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notation L∗(E) := L(E≥1). For α = α1α2 · · ·α|α| ∈ L∗(E), we denote the

subsegment αi · · ·αj of α by α[i,j] for 1 ≤ i ≤ j ≤ |α|. A subsegment of the

form α[1,j] is called an initial path of α. The range r(α) and source s(α) of a

labeled path α ∈ L∗(E) are subsets of E0 defined by

r(α) = {r(λ) : λ ∈ E≥1, L(λ) = α},
s(α) = {s(λ) : λ ∈ E≥1, L(λ) = α}.

The relative range of α ∈ L∗(E) with respect to A ⊂ E0 is defined to be

r(A,α) = {r(λ) : λ ∈ E≥1, L(λ) = α, s(λ) ∈ A}.

A collection B ⊂ 2E
0

of subsets of E0 is said to be closed under relative ranges

for (E,L) if r(A,α) ∈ B whenever A ∈ B and α ∈ L∗(E). We call B an

accommodating set for (E,L) if it contains r(α) for all α ∈ L∗(E) and it is

closed under relative ranges, finite intersections and unions. Moreover, if an

accommodation set B is closed under relative complements, then it is said to

be non-degenerate ([1]).

Definition 2.2.1. Let (E,L) be a labeled graph. A labeled space consists of

a triple (E,L,B) where B is an accommodating set for (E,L). If in addition

B is non-degenerate, then the labeled space (E,L,B) is called normal ([1]).

A labeled space (E,L,B) is weakly left-resolving if

r(A,α) ∩ r(B,α) = r(A ∩B,α)

holds for all A,B ∈ B and α ∈ L∗(E). A labeled graph (E,L) is left-resolving

if the map L : r−1(v) → A is injective for each v ∈ E0 and label-finite if

|L−1(a)| < ∞ for each a ∈ A. If (E,L) is left-resolving, then it is label-finite

if and only if r(a) is finite for all a ∈ A. A set A ∈ B is called minimal (in B)

if A does not have any proper subset in B.

We denote by E the smallest subset of 2E
0

which is an accommodating set

14
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for (E,L) and by E0,− the smallest accommodating set containing

{r(α) : α ∈ L∗(E)} ∪ {{v} : v is a sink or a source}.

If E has no sinks or sources, E0,− = E and if (E,L, E) is weakly left-resolving,

E = {∪mk=1 ∩ni=1 r(βi,k) : βi,k ∈ L∗(E)}

from [5, Remarks 2.1(i)]. For a vertex subset A ⊂ E0, Asink denotes the sinks

A ∩ E0
sink in A, and for B ⊂ 2E0 we simply denote the set {Asink : A ∈ B}

by Bsink. For a labeled space (E,L,B), we denote by B the smallest non-

degenerate accommodating set that contains B ∪ Bsink. The existence of B
clearly follows from considering the intersection of all those accommodating

sets. E will thus denote the smallest non-degenerate accommodating set con-

taining Esink = {Asink : A ∈ E} (We wrote E0 for E in the paper [17]). Also

with abuse of notation, for B ⊂ 2E0 and A ⊂ E0, we write

B ∩ A := {B ∈ B : B ⊂ A}.

Example 2.2.2. For the following labeled graph (E,L) (see [1])

• • •// oo
�� �� ��

v1 v2 v3

b b b

a a ,

the smallest accommodating set is E = {{v2}, {v1, v2, v3}}, while the small-

est non-degenerate accommodating set is E = {∅, {v2}, {v1, v3}, {v1, v2, v3}}.
Thus, E ( E . The set B = {∅, {v2}, {v3}, {v2, v3}, {v1, v3}, {v1, v2, v3}} is also

an accommodating set for (E,L), which is not closed under relative comple-

ments: {v1, v3} \ {v3} = {v1} /∈ B. The labeled space (E,L,B) is weakly left-

resolving. Of course, 2E
0

is the largest accommodating set for (E,L). But,

(E,L, 2E0
) is not weakly left-resolving because r({v1}, a)∩r({v2, v3}, a) = {v2},

but r({v1} ∩ {v2, v3}, a) = ∅.
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Remark 2.2.3. As we have seen in Example 2.2.2, the smallest accommodating

set E is not necessarily closed under relative complements. On the other hand,

in the construction of the C∗-algebra C∗(E,L,B) ([4, 5]) of a labeled space

(E,L,B), to each nonempty set A ∈ B there is associated a nonzero projection

pA in C∗(E,L,B) in such a manner that pA ≤ pB whenever A ⊂ B. Hence

pB−pA belongs to C∗(E,L,B) and it seems reasonable to write pB\A for pB−pA,

which leads us to consider accommodating sets that are closed under relative

complements and the results in [19] was obtained under this assumption. But

then quite recently in [1], a labeled space (E,L,B) with an accommodating set

B which is closed under relative complements is newly termed as normal and

discussed that the original definition of C∗(E,L,B) given in [4, 5] is correct

to establish the so-called Gauge Invariant Uniqueness Theorem only when

(E,L,B) is normal. For a general case, a correct definition of C∗(E,L,B) is

also given in Appendix A of [1].

For A,B ∈ 2E
0

and n ≥ 1, let

AEn = {λ ∈ En : s(λ) ∈ A}, EnB = {λ ∈ En : r(λ) ∈ B},

and AEnB = AEn ∩ EnB. We write Env for En{v} and vEn for {v}En.

Then the sets AE≥k and vE∞ must have their obvious meaning. We also take

conventions like AE0 = A and L(A) = A for A ∈ B. A labeled space (E,L,B)

is said to be set-finite if the set L(AEl) is finite for every A ∈ B and l ≥ 1 and

it is said to be receiver set-finite if L(ElA) is finite for all A ∈ B and l ≥ 1.

Assumptions. We assume that a labeled space (E,L,B) considered in this

thesis always satisfies the following:

(i) (E,L,B) is normal.

(ii) (E,L,B) is weakly left-resolving.

(iii) (E,L,B) is set-finite and receiver set-finite.

By Ω0(E) we mean the set of all vertices of E that are not sources. For
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v, w ∈ Ω0(E) ⊂ E0, we write v ∼l w if L(E≤lv) = L(E≤lw) as in [5]. Then ∼l
is an equivalence relation on Ω0(E). The equivalence class [v]l of v is called a

generalized vertex. Let Ωl(E) := Ω0(E)/∼l for l ≥ 1. If k > l, [v]k ⊂ [v]l is

obvious and [v]l = ∪mi=1[vi]l+1 for some vertices v1, . . . , vm ∈ [v]l ([5, Proposition

2.4]).

Note that every set in E can be expressed as a finite union of generalized

vertices ([5, Remark 2.1 and Proposition 2.4.(ii)], where E0,− denotes our E):

E ⊆ {∪ni=1[vi]l : vi ∈ Ω0(E), n, l ≥ 1}.

Generalized vertices [v]l are not always members of the accommodating set E
but always the relative complements of sets in E , namely [v]l = Xl(v)\r(Yl(v)),

where Xl(v), Yl(v) are given by

Xl(v) := ∩α∈L(E≤lv)r(α) and Yl(v) := ∪w∈Xl(v)L(E≤lw) \ L(E≤lv)

so that Xl(v), r(Yl(v)) ∈ E ([5, Proposition 2.4]). One can easily check that the

expression [v]l = Xl(v)\r(Yl(v)) is valid even for a sink v and [v]l∩r(Yl(v)) = ∅.
Notice also that the smallest non-degenerate accommodating set E contains

all generalized vertices, and hence

{∪ni=1[vi]l : vi ∈ Ω0(E), n, l ≥ 1} ⊂ E .

More precisely, we see the following.

Proposition 2.2.4. Let (E,L) be a labeled graph and A ∈ E. Then A is of

the form

A =
(
∪n1
i=1 [vi]l

)
∪
(
∪n2
j=1 ([uj]l)sink

)
∪
(
∪n3
k=1 [wk]l \ ([wk]l)sink

)
(2.1)

for some vi, uj, wk ∈ Ω0(E) and l ≥ 1, n1, n2, n3 ≥ 0.

Proof. Let B be the set of all vertex subsets that are expressed as in the right

hand side of (2.1). Then B ⊂ E is obvious since E contains all generalized

17
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vertices. Now it suffices to show that B is an accommodating set that is closed

under relative complements. By the proof of [5, Proposition 2.4], r(α) ∈ B
for all labeled paths α ∈ L∗(E). It is easy to see that B is closed under finite

unions, finite intersections and relative complements.

In order to show that B is closed under relative ranges, it suffices to see that

r([v]l, α) ∈ B for v ∈ Ω0(E) and α ∈ L∗(E). Since r([v]l, α) ∩ r(r(Yl(v)), α) =

r([v]l ∩ r(Yl(v)), α) = r(∅, α) = ∅, we have

r([v]l, α) = r
(
Xl(v) \ r(Yl(v)), α

)
= r(Xl(v), α) \ r

(
r(Yl(v)), α

)
which belongs to B since r(Xl(v), α), r(r(Yl(v)), α) ∈ E ⊂ B and B is closed

under relative complements.

Notation 2.2.5. Let (E,L) be a labeled graph.

(a) As in [1], L#(E) will denote the union of all labeled paths L∗(E) and

empty word ε, where ε is a symbol such that r(ε) = E0, r(A, ε) = A for

all A ⊂ E0.

(b) If L is the identity map id : E1 → E1, it is called the trivial labeling and

will be denoted by Lid. For a labeled graph (E,Lid), the accommodating

set E is equal to the collection of all finite subsets of E0.

Recall [5] that α ∈ L∗(E) with s(α)∩ [v]l 6= ∅ is said to be agreeable for [v]l
if α = βα′ = α′γ for some α′, β, γ ∈ L∗(E) with |β| = |γ| ≤ l. Otherwise α is

said to be disagreeable.

Definition 2.2.6. ([4, Definition 5.1]) Let E be a graph with no sinks or

sources and (E,L,B) be a labeled space.

(i) [v]l ∈ B is called disagreeable if there is an N > 0 such that for all n > N

there is an α ∈ L(E≥n) that is disagreeable for [v]l.

(ii) (E,L,B) is called disagreeable if [v]l is disagreeable for all v ∈ E0 and

l ≥ 1.

18
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Note [20, Proposition 3.9] that a generalized vertex [v]l is not disagreeable

if and only if there is an N > 0 such that every path α ∈ L([v]lE
≥N) is

agreeable, namely is of the form α = βkβ′ for some k ≥ 0 and some paths

β, β′ ∈ L(E≤l), where β′ is an initial path of β. In case of trivial labeling,

(E,Lid, E) is disagreeable exactly when the graph E satisfies condition (L) [4,

Lemma 5.3].

We now define a representation of a labeled space (E,L,B) such that E ⊂ B,

where E is the smallest non-degenerate accommodating set containing Esink =

{Asink : A ∈ E}.

Definition 2.2.7. Let (E,L,B) be a labeled space such that E ⊂ B. A

representation of (E,L,B) consists of projections {pA : A ∈ B} and partial

isometries {sa : a ∈ A} such that for A,B ∈ B and a, b ∈ A,

(i) p∅ = 0, pApB = pA∩B, and pA∪B = pA + pB − pA∩B,

(ii) pAsa = sapr(A,a),

(iii) s∗asa = pr(a) and s∗asb = 0 unless a = b,

(iv) for each A ∈ B,

pA =
∑

a∈L(AE1)

sapr(A,a)s
∗
a + pAsink

.

Remark 2.2.8. For a weakly left-resolving normal labeled space (E,L,B) such

that Esink 6⊂ B, a definition of a representation of (E,L,B) is given in [1,

Definition 2.1]. As pointed out in [1, Remark 2.3], if A ∈ B and A∩E0
sink ∈ B,

pA = pA∩E0
sink

+
∑

a∈L(AE1) sapr(A,a)s
∗
a, which agrees with our definition of the

representation of (E,L,B).

Theorem 2.2.9. Let (E,L,B) be a labeled space such that E ⊂ B. Then

there exists a C∗-algebra B generated by a universal representation {sa, pA} of

(E,L,B).
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Proof. The assertion can be obtained by a slight modification of the proof of [4,

Theorem 4.5], namely we should mod out the ∗-algebra k(E,L,B) by the ideal J

generated by the elements qA∪B−qA−qB+qA∩B and qA−
∑

a∈L(AE1) saqr(A,a)s
∗
a−

qAsink
for A, B ∈ B.

Remark 2.2.10. Let (E,L,B) be a labeled space such that E ⊂ B.

(i) If {sa, pA} is a universal representation of (E,L,B), we simply write

C∗(E,L,B) = C∗(sa, pA) and call C∗(E,L,B) the labeled graph C∗-

algebra of a labeled space (E,L,B). Note that sa 6= 0 and pA 6= 0

for a ∈ A and A ∈ B, A 6= ∅, and that sαpAs
∗
β 6= 0 if and only if

A ∩ r(α) ∩ r(β) 6= ∅. By Definition 2.2.7(iv) and [4, Lemma 4.4] saying

that with sα := pα for α ∈ B,

(sαpAs
∗
β)(sγpBs

∗
δ) =


sαγ′pr(A,γ′)∩Bs

∗
δ , if γ = βγ′

sαpA∩r(B,β′)s
∗
δβ′ , if β = γβ′

sαpA∩Bs
∗
δ , if β = γ

0, otherwise,

for α, β, γ, δ ∈ L#(E) and A,B ∈ B, it follows that

C∗(E,L,B) = span{sαpAs∗β : α, β ∈ L#(E), A ∈ B}, (2.2)

where sε denotes the unit of the multiplier algebra of C∗(E,L,B) [1]. It

is observed in [20] that if E has no sinks nor sources, then

C∗(E,L, E0,−) ∼= C∗(E,L, E).

(ii) From Definition 2.2.7(iv), we have for each n ≥ 1,

pA =
∑

α∈L(AEn)

sαpr(A,α)s
∗
α +

∑
γ∈L(AE≤n−1)

sγpr(A,γ)sinks
∗
γ,
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where
∑

γ∈L(AE0) sγpr(A,γ)sinks
∗
γ := p

Asink
. In fact,

pA =
∑

a∈L(AE1)

sapr(A,a)s
∗
a + p

Asink

=
∑

a∈L(AE1)

sa

( ∑
b∈L(r(A,a)E1)

sbpr(A,ab)s
∗
b + pr(A,a)sink

)
s∗a + p

Asink

=
∑

γ∈L(AE2)

sγpr(A,γ)s
∗
γ +

∑
a∈L(AE1)

sapr(A,a)sinks
∗
a + p

Asink

=
∑

γ∈L(AE2)

sγ

(∑
c

scpr(A,γc)s
∗
c + pr(A,γ)sink

)
s∗γ

+
∑

a∈L(AE1)

sapr(A,a)sinks
∗
a + p

Asink

=
∑

α∈L(AE3)

sαpr(A,α)s
∗
α +

∑
γ∈L(AE2)

sγpr(A,γ)sinks
∗
γ

+
∑

a∈L(AE1)

sapr(A,a)sinks
∗
a + p

Asink

= · · ·

=
∑

α∈L(AEn)

sαpr(A,α)s
∗
α +

∑
γ∈L(AE≤n−1)

sγpr(A,γ)sinks
∗
γ.

(iii) Universal property of C∗(E,L,B) = C∗(sa, pA) defines a strongly con-

tinuous action γ : T → Aut(C∗(E,L,B)), called the gauge action, such

that

γz(sa) = zsa and γz(pA) = pA

for a ∈ L(E1) and A ∈ B.

(iv) For B ∈ E , one can easily show that the ideal IB of C∗(E,L, E) =

C∗(sa, pA) generated by the projection pB is equal to

IB = span{sαpAs∗β : α, β ∈ L#(E), A ∈ E ∩ r(L(BE≥0)) }, (2.3)

where r(L(BE0)) := B and E ∩ A = {B ∈ E : B ⊂ A} for A ∈ E .
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As we have seen in the previous section, Condition (L) meaning that ev-

ery loop has an exit was introduced as an essential condition to obtain the

Cuntz-Krieger uniqueness theorem for graph C∗-algebras. More generally, in

[4, Theorem 5.5] it is known that if (E,L,B) is disagreeable, Cuntz-Krieger

uniqueness Theorem holds:

Theorem 2.2.11. (The Cuntz-Krieger Uniqueness Theorem [4, Theorem 5.5]).

Let (E,L,B) be a disagreeable labeled space. If {Sa, PA} is a representation of

a labeled space (E,L,B) such that Sa 6= 0 and PA 6= 0 for all a ∈ A and A ∈ B,

then there is an isomorphism π of C∗(E,L,B) = C∗(sa, pA) onto C∗(Sa, PA)

such that π(sa) = Sa and π(pA) = PA for all a ∈ A and A ∈ B.

Remark 2.2.12. As it is pointed out in [1], if (E,L,B) is weakly left-resoling

labeled space that is not normal, then C∗(E,L,B) may not satisfy the gauge

invariant uniqueness theorem under our definitions given in Definition 2.2.7 and

Definition 2.2.9. To treat the general case, the definition of representations of

non-normal labeled spaces (E,L,B) has to be modified. See [1, Appendis A]

for this.

Theorem 2.2.13. (The Gauge Invariant Uniqueness Theorem [1, Corollary

3.9]). Let (E,L,B) be a weakly left-resolving normal labeled space, {Sa, PA} a

representation of (E,L,B) on a Hilbert space, and π := πS,P the representation

of C∗(E,L,B) satisfying π(sa) = Sa and π(pA) = PA. Suppose that PA 6= 0

for all ∅ 6= A ∈ B and that there is a strongly continuous action β of T on

C∗(Sa, PA) such that βz ◦ π = π ◦ γz for all z ∈ T. Then π is faithful.

K-theory of labeled graph C∗-algebras. In [1], labeled graph C∗-algebras

C∗(E,L,B) are shown to be realized as Cuntz-Pimsner algebras on the purpose

of computing the K-theory of C∗(E,L,B) by applying the results on the K-

theory of Cuntz-Pimsner algebras obtained in [25]. Let

BJ := {A ∈ B : L(AE1) is finite and A∩B = ∅ for all B ∈ B with B ⊆ E0
sink}.
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Note that the following theorem can be obtained without the assumption that

(E,L,B) is set-finite.

Theorem 2.2.14. ([1, Theorem 4.4]) Let (E,L,B) be a weakly left-resolving

normal labeled space, then the linear map (1 − Φ) : spanZ{χA : A ∈ BJ} →
spanZ{χA : A ∈ B} given by

(1− Φ)(χA) = χA −
∑

a∈L(AE1)

χr(A,a), A ∈ BJ (2.4)

determines K∗(C
∗(E,L,B)) as follows:

K0(C∗(E,L,B)) ∼= spanZ{χA : A ∈ B}/Im(1− Φ) (2.5)

K1(C∗(E,L,B)) ∼= ker(1− Φ). (2.6)

In (2.5), the isomorphism is given by [pA]0 7→ χA + Im(1− Φ) for A ∈ B.

2.3 Generalized Morse sequences

We review from [22] definitions and basic properties of generalized Morse se-

quences. Let Ω be the space

Ω := {ω = · · ·ω−2ω−1ω0ω1 · · · : ωi ∈ {0, 1}, i ∈ Z }

of all two-sided sequences of zeros and ones, and let

Ω+ := {x = x0x1 · · · : xi ∈ {0, 1}, i ≥ 0}

the space of one-sided sequences. By B, we denote the set of all finite blocks of

zeros and ones. We write |b| := n+1 for the length of a block b = b0 · · · bn ∈ B.

For ω ∈ Ω (x ∈ Ω+, respectively), the set of all finite blocks appearing in ω (x,

respectively) will be denoted by Bω (Bx, respectively). For ω ∈ Ω, we write

ω[t1,t2] for the block ωt1 · · ·ωt2 ∈ Bω at the position t1 (t1 ≤ t2) of ω. Similarly,
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ω[t1,∞) and ω(−∞,t2] mean the infinite sequences ωt1ωt1+1 · · · and · · ·ωt2−1ωt2 ,

respectively.

The space Ω (and similarly Ω+) endowed with the product topology be-

comes a totally disconnected compact Hausdorff space such that the clopen

cylinder sets

t[b] := {ω ∈ Ω : ω[t,t+n] = b},

t ∈ Z, b ∈ B, |b| = n + 1 ≥ 1, form a base for the topology. Thus every

characteristic function χt[b] is continuous on Ω. For convenience, we use the

following notation:

[.b] := 0[b], [b.] := −|b|[b], [b.c] := −|b|[bc]

for b, c ∈ B. Note that on the right side of the dot is the zeroth position.

The shift map

T : Ω→ Ω given by (Tω)i = ωi+1,

ω ∈ Ω, i ∈ Z, is easily seen to be a homeomorphism; if we consider T on the

one-sided compact space Ω+, it is just a continuous (not invertible) map. The

orbit O(ω) of a point ω ∈ Ω is given by

O(ω) := {T i(ω) : i ∈ Z}

and its orbit closure is denoted by Oω := O(ω).

A subset Ω0 of Ω is said to be invariant if T (Ω0) ⊆ Ω0. A non-empty

closed invariant subset Ω0 of Ω is called minimal if it contains no proper closed

invariant subsets. A subset Ω0 of Ω is minimal if and only if the orbit of each

point of Ω0 is dense in Ω0. It is known ([22]) that Oω = O(ω) is minimal if and

only if ω is almost periodic. The meaning of almost periodicity is as follows.

Definition 2.3.1. A point x of Ω+ is almost periodic if for any cylinder set

[.b], b ∈ Bx, there exists d ≥ 1 such that for any n ≥ 0, T n+jx ∈ [.b] for some

0 ≤ j ≤ d.
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For each block b = b0 · · · bn ∈ B the mirror image of b, denoted by b̃, is

defined by b̃i = bi + 1 (mod 2) for i = 0, · · · , n, that is, b̃ is obtained from b by

changing zeros into ones and vice-versa. Given a fixed block c = c0 · · · cn ∈ B,

the product b× c of b and c denotes the block formed by putting n+ 1 copies

of either b or b̃ next to each other according to the rule of choosing the ith

copy as b if ci = 0 and b̃ if ci = 1. For example, if b = 01 and c = 011, then

the product block b× c is equal to bb̃b̃ = 011010.

For each i ≥ 0, let bi = bi0 · · · bi|bi|−1 ∈ B be a block such that |bi| ≥ 2 and

bi0 = 0 for all i ≥ 0. (Here the superscript i of bi should not be confused with a

repetition of b.) Since the product operation × is associative, one can consider

a sequence of the form

x = b0 × b1 × b2 × · · · ∈ Ω+

which is called a one-sided recurrent sequence (see [22, Definition 7]). For

x ∈ Ω+, the set of all two-sided sequences ω such that Bω ⊂ Bx is denoted by

Ox, namely

Ox := {ω ∈ Ω : Bω ⊂ Bx}.

For c ∈ B, the quantity

rb(c) :=
1

|c|

|c|−1∑
t=0

χt[b](c)

indicates the relative frequency of occurrence of b in c. In particular, r0(c) and

r1(c) are the relative frequencies of zeros and ones in c respectively.

Definition 2.3.2. ([22, Definition 8]) A one-sided recurrent sequence x =

b0× b1× b2×· · · ∈ Ω+ is called a one-sided Morse sequence if it is non-periodic

and
∞∑
i=0

min(r0(bi), r1(bi)) =∞.

The poinst of Ox are called two-sided Morse sequences.
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Definition 2.3.3. By a generalized Morse sequence, we mean a two-sided

sequence ω ∈ Ω such that x := ω[0,∞) is a one-sided Morse sequence and

Bω = Bx.

A probability measure m on Ω is T-invariant if m(A) = m(TA) for every

borel subset A of Ω. A T -invariant measure is called ergodic if every invariant

set has measure 0 or 1. A compact invariant non-empty subset Ω0 of Ω is

uniquely ergodic if there is only one T -invariant measure carried by Ω0. We

record the following known facts for later use:

Theorem 2.3.4. ([22, Lemma 2, Lemma 4, Theorem 3]) Let x ∈ Ω+ be a

non-periodic recurrent sequence. Then we have the following:

(i) x is almost periodic,

(ii) there exists ω ∈ Ox with x = ω[0,∞). Moreover, x is a one-sided Morse

sequence if and only if Oω is minimal and uniquely ergodic. We denote

the T -invariant probability measure on Oω by mω.

Remark 2.3.5. For a generalized Morse sequence ω, the unital commutative

AF algebra C(Oω) of all continuous functions on Oω admits a (tracial) state

f 7→
∫

Oω

fdmω : C(Oω)→ C (2.7)

which we also writemω. Sincemω is T -invariant, it easily follows thatmω(χt[b]) =

mω(χt[b] ◦ T ) = mω(χt+1[b]), and hence

mω(χt[b]) = mω(χ[.b]) (2.8)

holds for all t ∈ Z and b ∈ Bω.

Example 2.3.6. (Thue-Morse sequence) Let bi := b = 01 ∈ B for all

i ≥ 0. Then the recurrent sequence

x := b× b× b× · · · = 01× b× · · · = 0110× b× · · · = 01101001× b× · · ·
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is a one-sided Morse sequence and

ω := x−1.x = · · · 10010110.011010011001 · · · ∈ Ox

is a two-sided Morse sequence which we call the Thue-Morse sequence, where

x−1 := · · ·x2x1x0 is the sequence obtained by writing x = x0x1 · · · in reverse

order. In fact, ω is the sequence constructed from the proof of Theorem 2.3.4(ii)

(see [22, Lemma 4]), and it is well known [15] that ω has no blocks of the form

bbb0 for any block b = b0 · · · b|b|−1 ∈ Bω.

Notation 2.3.7. Throughout this thesis, EZ will denote the following graph:

· · · · · · .• • • • • • • • •// // // // // // // //e−4 e−3 e−2 e−1 e0 e1 e2 e3

v0 v1v−1v−2v−3v−4 v2 v3 v4

Given a two-sided sequence ω = · · ·ω−1ω0ω1 · · · ∈ Ω of zeros and ones, we

obtain a labeled graph (EZ,Lω) shown below

· · · · · · ,• • • • • • • • •// // // // // // // //ω−4 ω−3 ω−2 ω−1 ω0 ω1 ω2 ω3

v0 v1v−1v−2v−3v−4 v2 v3 v4
(EZ,Lω)

where the labeling map Lω : E1
Z → {0, 1} is given by Lω(en) = ωn for en ∈ E1

Z.

Then we also have a labeled space (EZ,Lω, EZ) with the smallest accommo-

dating set EZ which is closed under relative complements.
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Chapter 3

AF labeled graph C∗-algebras

In this chapter, we find conditions of a labeled space (E,L, E) under which

the C∗-algebra C∗(E,L, E) becomes an AF algebra. Since a graph C∗-algebra

C∗(E) is AF exactly when the graph E has no loops (Theorem 2.1.9), we need

to consider labeled spaces with no loops. Hence it should be our first task to

define a notion of loop in labeled spaces.

3.1 Loops in labeled spaces

Recall that a path x ∈ E≥1 in a directed graph E is called a loop if s(x) = r(x).

Considering (E,Lid) with the trivial labeling Lid, it is rather obvious that the

following are equivalent for a path x = x1 · · ·xm ∈ E≥1(= L∗id(E)):

(i) x is a loop in E,

(ii) {r(x)} = r({r(x)}, x),

(iii) x is repeatable, that is, xn ∈ E≥1 for all n ≥ 1,

(iv) (A1x1A2x2 · · ·Amxm)n(A1x1A2x2 · · ·Aixi) ∈ L∗id(E) for all n ≥ 1 and

1 ≤ i ≤ m, where Ai = {s(xi)} ∈ E . (See the following Notation 3.1.1

for the meaning of A1x1A2x2 · · ·Amxm.)
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Notation 3.1.1. For Ai ∈ B, 1 ≤ i ≤ n, and K ≥ 1, we adopt the notation

A1E
≤KA2 · · ·E≤KAn+1 := {x1 · · ·xn ∈ E≥1 : xi ∈ AiE≤KAi+1, 1 ≤ i ≤ n }

for the set of paths x = x1 · · ·xn ∈ E∗ consisting of sub-paths xi passing

through from Ai to Ai+1 with length |xi| ≤ K for 1 ≤ i ≤ n. To stress the

fact that a path x = x1 · · ·xn belongs to A1E
≤KA2 · · ·E≤KAn+1, we may write

A1x1A2 · · ·xnAn+1 for x.

From the equivalent conditions given above for a labeled space (E,Lid, E), we

can obtain several equivalent conditions for a graph C∗-algebra C∗(E) to be

AF as follows.

Proposition 3.1.2. Let (E,Lid, E) be a labeled space with the trivial labeling

Lid. Then the following are equivalent for C∗(E,Lid, E) ∼= C∗(E).

(i) C∗(E,Lid, E) is AF,

(ii) E has no loops,

(iii) there are no repeatable paths in L∗id(E),

(iv) A 6⊂ r(A, x) for all A ∈ E and x ∈ L∗id(E),

(v) if {A1, . . . , Am} is a finite collection of sets from E and K ≥ 1, there is

an m0 ≥ 1 such that Ai1E
≤KAi2 · · ·E≤KAin+1 = ∅ for all n > m0.

Proof. We only need to prove that (ii) and (v) are equivalent since the equiv-

alence of (i) and (ii) is well known (see Theorem 2.1.9) and the other implica-

tions are rather obvious. Suppose x is a loop in E, then with A = {s(x)} ∈ E
and K := |x| ≥ 1, it is immediate that (AxA)n 6= ∅ for all n ≥ 1. For the

converse, suppose that (v) dose not hold and so there are finitely many sets

A1, . . . , Am in E and K ≥ 1 such that Ai1E
≤KAi2 · · ·E≤KAin+1 6= ∅ for all

n ≥ 1. Since every set in E is finite, the number of vertices in ∪mi=1Ai is

also finite. Choose an integer N with | ∪mi=1 Ai| < N . Then for any path
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in Ai1E
≤KAi2 · · ·E≤KAiN+1

(6= ∅), there is a vertex in ∪mi=1Ai the path passes

through at least two times, which proves the existence of a loop (at that ver-

tex) in E.

Motivated by the fact in Proposition 3.1.2 that there is a set A ∈ E satis-

fying A ⊂ r(A, x) for a path x (in fact, A = {s(x)} = {r(x)}) is equivalent to

the existence of a loop in E, we extend the notion of a loop to a labeled space

as follows.

Definition 3.1.3. Let (E,L,B) be a labeled space and α ∈ L∗(E) be a labeled

path.

(a) α is called a generalized loop at A ∈ B if α ∈ L(AE≥1A).

(b) α is called a loop at A ∈ B if it is a generalized loop such that A ⊂ r(A,α).

(c) A loop α at A ∈ B has an exit if one of the following holds:

(i) {α[1,k] : 1 ≤ k ≤ |α|} ( L(AE≤|α|),

(ii) r(A,α[1,i])sink 6= ∅ for some i = 1, . . . , |α|,

(iii) A ( r(A,α).

If α is a loop at A ∈ B, we also say that A admits a loop α. Note that every

loop α is repeatable, that is, αn ∈ L∗(E) for all n ≥ 1 ([5, Definition 6.6]), and

every repeatable path is a generalized loop at its range. Not every repeatable

path is a loop as we can see in Example 3.2.3(iii).

Remark 3.1.4. Let (E,L,B) be a labeled space and A ∈ B.

(i) A generalized loop α at a minimal set A ∈ B is always a loop because

A ⊂ r(A,α) follows from the minimality of A since ∅ 6= A∩ r(A,α) ⊂ A.

A labeled graph (E,L) might have a loop α even though the underlying

graph E itself has no loops at all as we will see in Example 3.2.3(i) and

(ii).
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(ii) If A ∈ B admits a loop α and {sa, pA} is a representation of (E,L,B),

then evidently pA ≤ pr(A,α).

Example 3.1.5. We give three examples of labeled spaces with a loop each

of which has an exit of different type from other two.

(i) The loop α := b1b2 at A := r(b2) = {v} ∈ E has an exit of type (i)

of Definition 3.1.3(c) because {α[1,k] : 1 ≤ k ≤ 2} = {b1, b1b2} while

L(AE≤|α|) = {b1, b1b2, b1a}.

· · · • • • • •dd//
$$ // // · · ·a

b1
a dv

b2

(ii) Let A := r(b) = {v, w} ∈ E . Since A = r(A, b), b is a loop at A with an

exit of type (ii) of Definition 3.1.3(c); r(A, b)sink = {w} 6= ∅.

· · · • • •// //
__

a bv

b

w

(iii) The loop α := bc at A := {v} ∈ E has an exit of type (iii) of Defini-

tion 3.1.3(c) because A ( r(A,α).

· · · • • • • •dd//
$$ // // · · ·a

b
c dv

c

The following proposition is an extended version of the fact that if a directed

graph E has a loop with an exit, its graph C∗-algebra has an infinite projection.

Proposition 3.1.6. Let (E,L) be a labeled graph and A ∈ E admit a loop α

with an exit. Then pA is an infinite projection in C∗(E,L, E).
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Proof. If A ( r(A,α), the projection pr(A,α) is infinite because

pr(A,α) > pA ≥ sαpr(A,α)s
∗
α ∼ pr(A,α).

If either L(AE≤|α|) ) {α[1,k] : 1 ≤ k ≤ |α|} or r(A,α[1,i])sink 6= ∅ for some i,

1 ≤ i � |α|, by Remark 2.2.10(iii) we have

pA =
∑

β∈L(AE|α|)

sβpr(A,β)s
∗
β +

∑
1≤|γ|≤|α|−1

sγpr(A,γ)sinks
∗
γ  sαpr(A,α)s

∗
α.

Thus pr(A,α) ≥ pA > sαpr(A,α)s
∗
α ∼ pr(A,α) and we see that the projection

pr(A,α) (hence pA) is infinite. Now it remains to prove the assertion in case

r(A,α)sink 6= ∅ and A = r(A,α). The set A0 := A \ Asink ( 6= ∅) then satisfies

A0 ( A = r(A,α) = r(A0, α), and by the first argument of the proof pA0 is

infinite. Hence pA( pA0) is infinite.

Remark 3.1.7. Proposition 3.1.6 can be slightly generalized as follows: Let

(E,L) be a labeled graph and α1, . . . , αn be distinct labeled paths with the

same length, say l ≥ 1, such that A ⊆ ∪ni=1r(A,αi). Then pA is an infinite

projection in C∗(E,L, E) if one of the following holds:

(i) ∪ni=1{α′i : α′i is an initial path of αi} ( L(AE≤l)

(ii) r(A,α′i)sink 6= ∅ for some i and an initial path α′i of αi

(iii) A ( ∪ni=1r(A,αi).

To prove this, first assume the case (iii) and set A1 := r(A,α1) and Ai :=

r(A,αi)\∪i−1
j=1r(A,αj), i = 2, . . . , n, so that ∪ni=1r(A,αi) = ∪ni=1Ai is the union

of disjoint sets Ai’s. Then we have

pA ≥
n∑
i=1

sαipr(A,αi)s
∗
αi
≥

n∑
i=1

sαipAis
∗
αi
∼

n∑
i=1

pAi = p∪Ai = p∪ni=1r(A,αi)
 pA

and so the projection pA is infinite, where the equivalence is given by the partial

isometry u :=
∑n

i=1 sαipAi . It is not hard to see that the same argument in

32



CHAPTER 3. AF LABELED GRAPH C∗-ALGEBRAS

the proof of Proposition 3.1.6 shows the assertion for the rest cases.

Proposition 3.1.8. Let (E,L, E) be a labeled space such that C∗(E,L, E) has

no infinite projections. Let A ∈ E admit a loop. Then there exists a loop α at

A such that A = r(A,α) and

L(AE≥1) = {αkα′ : k ≥ 0, α′ is an initial path of α}.

Proof. Choose a loop α at A with the smallest length; |α| ≤ |γ| for all loops γ

at A. Since C∗(E,L, E0) has no infinite projections, α does not have an exit

by Proposition 3.1.6, hence A = r(A,α) and

L(AE≤|α|) = {α[1,k] : 1 ≤ k ≤ |α|}. (3.1)

Now let β ∈ L(AE≥1) be a path with |β| > |α|. Then by (3.1), L(AE|α|) = {α}
and so we can write β = αβ′ for a path β′. But then from A = r(A,α), β′ must

be either an initial path of α or of the form αβ′′ for some path β′′. Applying

the argument repeatedly, we finally end up with β = αkα′ for some k ≥ 1 and

an initial path α′ of α.

3.2 Labeled spaces associated with AF alge-

bras

In the previous section, we studied several equivalent conditions on (E,Lid, E)

to give rise to an AF C∗-algebra C∗(E,Lid, E) ∼= C∗(E) and defined a notion

of loop in a labeled space (E,L,B) based on one of the equivalent conditions

given in the first paragraph of the previous section. Here, we will show that

if a labeled graph C∗-algebra is AF, the labeled space has no loops and that

other equivalent conditions for a graph C∗-algebra to be AF in the setting of

labeled spaces are not always equivalent by invoking various examples.

Remark 3.2.1. We will consider the following properties (a)-(d) of a labeled
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space (E,L, E) and its C∗-algebra C∗(E,L, E). These properties are equivalent

if L is the trivial labeling Lid as we have seen in Proposition 3.1.2.

(a) For every finite set {A1, . . . , AN} of E and every K ≥ 1, there exists

an m0 ≥ 1 such that Ai1E
≤KAi2 · · ·E≤KAin = ∅ for all n > m0 and

Aij ∈ {A1, . . . , AN}.

(b) (E,L, E) has no repeatable paths.

(c) C∗(E,L, E) is an AF algebra.

(d) (E,L, E) has no loops (in the sense of Definition 3.1.3).

Note that (a)⇒ (b) follows from a simple observation that if α is a repeatable

path, then with A := r(α) one has Ai1E
|α|Ai2 · · ·E|α|Ain 6= ∅ for all n ≥ 1,

where Aij = A, j = 1, . . . , n. The implication (b) ⇒ (d) is obvious.

For the other implications, we shall see (b) ; (a) and (b) ; (c), in general

throughout Example 3.2.10. Consequently (d) ; (c) follows although it can

also be seen from Example 3.2.3(iii). We will show that (c) ⇒ (d) and (a) ⇒
(c) hold true in Theorem 3.2.2 and Theorem 3.2.8, respectively.

It would be interesting to know whether the remaining implication (c) ⇒
(b) is true, that is, whether C∗(E,L, E) will never be AF whenever (E,L, E)

contains a repeatable path. In Theorem 3.2.12, we will show that this is the

case under some additional conditions.

Theorem 3.2.2. Let (E,L) be a labeled graph. If C∗(E,L, E) is an AF alge-

bra, the labeled space (E,L, E) has no loops.

Proof. Suppose, for contradiction, that (E,L, E) has a loop α at A ∈ E . By

Proposition 3.1.6, A = r(A,α) and so pAsα = sαpr(A,α) = sαpA. Then U :=

sαpA satisfies

pA = U∗U ∼ UU∗ = sαpAs
∗
α = sαpr(A,α)s

∗
α ≤ pA.

Since pA is a finite projection, it follows that U is a unitary of the unital

hereditary subalgebra pAC
∗(E,L, E)pA. Since γz(pA) = pA for any z ∈ T, the
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algebra pAC
∗(E,L, E)pA admits an action of T which is the restriction of the

gauge action γ on C∗(E,L, E). Then the fact that γz(U) = γz(sα)pA = z|α|U

shows that U is not in the unitary path connected component of the unit

pA ([12, Proposition 3.9]), which is a contradiction to the assumption that

C∗(E,L, E) (hence any nonzero hereditary subalgebra) is an AF algebra.

In Example 3.2.3(iii) below, we see that the converse of Theorem 3.2.2 may

not be true, in general.

Example 3.2.3. (i) For the following labeled graph (E,L)

· · · · · · ,• • • • •// // // //a a a a

v0 v1v−1v−2 v2

we have E = {r(a)} = {E0} and the path a is a loop at r(a). By Theo-

rem 3.2.2, C∗(E,L, E) := C∗(sa, pA) is not AF. Actually C∗(E,L, E) ∼= C(T)

is the universal C∗-algebra generated by the unitary sa.

(ii) E of the following labeled graph consists of three sets r(a) = E0, r(a)sink =

{v0}, and A := r(a) \ r(a)sink = {v−1, v−2, . . . }.

· · · • • • • •// // // //a a a a

v−3 v−2v−4 v−1 v0

Since A ( r(A, a), the labeled path a is a loop at A, hence C∗(E,L, E) is

not AF by the above theorem. In fact, since the loop a at A has an exit,

C∗(E,L, E) contains an infinite projection by Proposition 3.1.6.

(iii) If (E,L) is as follows

· · · ,• • • • •// // // //a a a a

v3 v4v2v1v0

it is not hard to see that E consists of all finite sets F with v0 /∈ F and all

sets of the form F ∪ {vk, vk+1, . . . } for some k ≥ 1. It is also easy to see that
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every A ∈ E containing at least two vertices always admits a generalized loop.

But there does not exist a loop at any A ∈ E . Nevertheless we shall show that

C∗(E,L, E) contains an infinite projection and so the C∗-algebra is not AF.

Let C∗(E,L, E) := C∗(pA, sa). Then

pr(a) = sapr(r(a),a)s
∗
a = sapr(a2)s

∗
a ∼ pr(a2) < pr(a)

since r(a2) ( r(a), which proves that pr(a) is an infinite projection.

The C∗-algebra is unital with the unit sas
∗
a; (sas

∗
a)pA = sapr(A,a)s

∗
a = pA,

pA(sas
∗
a) = sapr(A,a)s

∗
a = pA for all A ∈ E and (sas

∗
a)sa = sa = sapr(a) =

sapr(a)(sas
∗
a) = sa(sas

∗
a). Also we have sas

∗
a  pr(a) = s∗asa since sas

∗
a ≥

sap{v1}s
∗
a(6= 0) and (sap{v1}s

∗
a)pA = sap{v1}pr(A,a)s

∗
a = sap{v1}∩r(A,a)s

∗
a = 0 be-

cause {v1} ∩ r(A, a) = ∅ for all A ∈ E . Moreover every projection pA be-

longs to the ∗-algebra generated by sa. Therefore C∗(E,L, E) is the universal

C∗-algebra generated by a proper coisometry sa, and thus C∗(E,L, E) is the

Toeplitz algebra. The ideal I{v1} generated by the projection p{v1} is in fact

isomorphic to the C∗-algebra of compact operators on an infinite dimensional

separable Hilbert space as I{v1} = span{sma p{vi}(s∗a)n : m,n ≥ 0 and i ≥ 1}
(see (2.3)). The quotient algebra C∗(E,L, E)/I{v1} is therefore isomorphic to

C(T).

For a labeled graph (E,LE), v ∼ w if and only if v ∼l w for all l ≥ 1 defines

an equivalence relation on E0. We denote the equivalence class of v ∈ E0 by

[v]∞. If (E,LE) has no sinks or sources, there exists a labeled graph (F,LF )

called the merged labeled graph of (E,LE) with vertices F 0 := {[v]∞ : v ∈ E0}
and edges F 1 := {eλ : λ ∈ E1}, where eλ is a path with sF (eλ) = [s(λ)]∞,

rF (eλ) = [r(λ)]∞, and LF (eλ) = LE(λ). The range of a ∈ LF (F 1) is defined

by rF (a) = {rF (eλ) : LF (eλ) = a}. Here we use notation rF to denote both

the range map of paths in F ∗ and of labeled paths in L∗F (F ). It is known in

[20, Theorem 6.10] that if [v]∞ ∈ E for all v ∈ E0, then {[v]∞} ∈ F for all

[v]∞ ∈ F 0 and moreover C∗(E,LE, E) ∼= C∗(F,LF ,F). Even when (E,LE)

has sinks or sources, we can obtain C∗(E,LE, E) ∼= C∗(F,LF ,F) whenever

[v]∞ ∈ E for all v ∈ E0 without significant modification of the proof of [20,
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Theorem 6.10].

The following proposition is a slightly generalized version of the result

well known for graph C∗-algebras. Actually in case L is the trivial labeling,

C∗(E,L, E) is isomorphic to C∗(E) and the minimal sets in E are the single

vertex sets {v}, v ∈ E0.

Proposition 3.2.4. Let (E,L) be a row-finite labeled graph with no sinks or

sources such that every generalized vertex is a finite union of minimal sets in

E. Then C∗(E,L, E) is AF if and only if no minimal set of E admits a loop.

Proof. Let (F,LF ) be the merged labeled graph of (E,L). We first show that

C∗(E,L, E) is isomorphic to the graph C∗-algebra C∗(F ).

Our assumption implies [v]∞ ∈ E for all v ∈ E0, so {[v]∞} ∈ F for all

v ∈ E0 and C∗(E,L, E) is isomorphic to C∗(F,LF ,F) ([20, Theorem 6.10]).

For each a ∈ L(E1), its range r(a) can be written as the union r(a) = ∪ni=1[wi]li
of finitely many minimal sets [wi]li by the assumption, but minimality of each

[wi]li implies that [wi]li = [wi]∞ for 1 ≤ i ≤ n. Hence rF (a) = [r(a)]∞ :=

{[w]∞ : w ∈ r(a)} = {[w1]∞, . . . , [wn]∞} is finite for each a ∈ A. But from

the construction ([20, Definition 6.1]), the merged labeled graph (F,LF ) is

left-resolving. Thus the finiteness of each range set rF (a) implies that (F,LF )

is label-finite. Then by [4, Theorem 6.6], we have C∗(F,LF ,F) ∼= C∗(F ).

Suppose that there is no loop at any minimal set [v]∞ in E . Since LE([v]∞E
kv′) =

LF ([v]∞F
k[v]∞) for all v′ ∈ [v]∞ and k ≥ 1 ([20, Lemma 6.7]), if F has a loop

α at a vertex [v]∞ ∈ F 0, α ∈ LE([v]∞E
kv′) for all v′ ∈ [v]∞. This means

that [v]∞(∈ E) satisfies [v]∞ ⊂ r([v]∞, α), a contradiction. Hence F has no

loops and the C∗-algebra C∗(F ) is AF. The converse was proved in Theo-

rem 3.2.2.

Example 3.2.5. In the following labeled graph (E,L)
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u0 u1 u2u−1u−2u−3

v−1v−2v−3 v2 v3

b

b

b

b

b

b

c

c

c

c

c

c

c
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the path α := a2 is a loop at {v2k : k ∈ Z} and also at {v2k+1 : k ∈ Z}. By

Theorem 3.2.2, the C∗-algebra C∗(E,L, E) is not AF. In fact, C∗(E,L, E) is

isomorphic to the graph algebra C∗(F ), where F is the underlying graph of

the merged labeled graph (F,LF ) of (E,L)

• • • •== ee// oo
""

bbb c

a

a
b c

,
[u0]∞

[v0]∞ [v1]∞

[u1]∞
F :

and C∗(F ) has infinite projection because F has loops with exits.

Example 3.2.6. The following labeled graph (E,L) does not have any infinite

paths, but it has a repeatable path a.

• •

• • •

• • • •

...
...

...
...

. . .

//

// //

// // //

a

a

a

a

a a

u1 v11

u2 v21 v22

u3 v31 v32 v33

Note that each finite path an is not a loop at any A ∈ E but it is a generalized
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loop at r(ak) for all k ≥ 1. (E,L, E) has the generalized vertices as follows:

[vij]k =

{
r(ak), if 1 ≤ k ≤ j

r(aj) \ r(aj+1), if 1 ≤ j < k

([vij]k)sink =

{
{vmm : m ≥ k }, if 1 ≤ k ≤ j

{vjj}, if 1 ≤ j < k

[vij]k \ ([vij]k)sink =

{
{vmn : m > n ≥ k }, if 1 ≤ k ≤ j

{vmj : m ≥ j }, if 1 ≤ j < k,

and every A ∈ E is a finite union of these sets.

Let J be the ideal of C∗(E,L, E) = C∗(pA, sa) generated by the projection

p[v11]2 . Then (2.3) shows that

J = span{sma pBs∗a
n : B ∈ [vkk]k+1 ∩ E , m, n ≥ 0, k ≥ 1}.

From pr(a) − pr(a2) = pr(a)\r(a2) = p[v11]2 ∈ J , we have

sa + J = sapr(a) + J = pr(a)sa + J.

Thus sapr(a) + J is a unitary of the unital hereditary subalgebra (with unit

pr(a) + J) of the quotient algebra C∗(E,L, E)/J . The ideal J is obviously in-

variant under the gauge action γ : T → Aut(C∗(E,L, E)). Hence there exists

an induced action γ : T → Aut(C∗(E,L, E)/J) such that γz(sapr(a) + J) =

z(sapr(a) + J) for z ∈ T. Thus the unitary sapr(a) + K does not belong to

the unitary path connected component of the unit of the hereditary subal-

gebra of C∗(E,L, E)/J , which implies as in the proof of Theorem 3.2.2 that

C∗(E,L, E)/J and hence C∗(E,L, E) is not AF.

Notation 3.2.7. If xi ∈ AiE≤KAi+1 is a path with αi = L(xi) for i = 1, . . . , n

such that x1 · · ·xn ∈ A1E
≤K · · ·E≤KAn+1, then we set

r̄(A1α1A2) := r(A1, α1) ∩ A2

r̄(A1α1A2α2A3) := r(r̄(A1α1A2), α2) ∩ A3 = r(r(A1, α1) ∩ A2, α2) ∩ A3,

39



CHAPTER 3. AF LABELED GRAPH C∗-ALGEBRAS

and so on, thus for 3 ≤ i ≤ n+ 1,

r̄(A1α1A2 · · ·αi−1Ai) := r(r̄(A1α1A2 · · ·Ai−1), αi−1) ∩ Ai.

Note that r̄(A1α1A2 · · ·αi−1Ai) belongs to E whenever Aj ∈ E for 1 ≤ j ≤ i.

The notation r̄(A1E
≤KA2 · · ·E≤KAn+1) will then be used for the collection of

all sets r̄(A1α1A2 · · ·αn−1An+1) for α1 · · ·αn ∈ L(A1E
≤KA2 · · ·E≤KAn+1).

Theorem 3.2.8. Let (E,L, E) be a labeled space such that for every finite

subset {A1, . . . , AN} of E and every K ≥ 1, there exists an m0 ≥ 1 for which

Ai1E
≤KAi2E

≤KAi3 · · ·E≤KAin = ∅

for all n > m0 and 1 ≤ ij ≤ N . Then C∗(E,L, E) is an AF algebra.

Proof. Let F := {sαipAis∗βi : Ai ⊂ r(αi) ∩ r(βi), i = 1, . . . , N} be a finite set

in the C∗-algebra C∗(E,L, E) = C∗(sa, pA) with F = F ∗. We shall show that

F generates a finite dimensional C∗-algebra. Set K := max{|αi|, |βi| : i =

1, . . . N}. By Remark 2.2.10(i), we have

(sαipAis
∗
βi

)(sαjpAjs
∗
βj

) =


sαiγ′pr(Ai,γ′)∩Ajs

∗
βj
, if αj = βiγ

′

sαipAi∩r(Aj ,β′)s
∗
βjβ′

, if βi = αjβ
′

sαipAi∩Ajs
∗
βj
, if βi = αj

0, otherwise,

and so if, for example, αj = βiγ
′ and αk = βjγ

′′, we get

(sαipAis
∗
βi

)(sαjpAjs
∗
βj

)(sαkpAks
∗
βk

) = (sαiγ′pr(Ai,γ′)∩Ajs
∗
βj

)(sαkpAks
∗
βk

)

= sαiγ′γ′′pr(r(Ai,γ′)∩Aj ,γ′′)∩Aks
∗
βk
.

Here note that γ′γ′′ belongs to L(AiE
|γ′|AjE

|γ′′|Ak) and the set r(r(Ai, γ
′) ∩

Aj, γ
′′)∩Ak is equal to r̄(Aiγ

′Ajγ
′′Ak). Continuing a similar computation once
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more, for example with βk = αlβ
′, we have

(sαipAis
∗
βi

)(sαjpAjs
∗
βj

)(sαkpAks
∗
βk

)(sαlpAls
∗
βl

)

= (sαiγ′γ′′pr(r(Ai,γ′)∩Aj ,γ′′)∩Aks
∗
βk

)(sαlpAls
∗
βl

)

= sαiγ′γ′′pr(r(Ai,γ′)∩Aj ,γ′′)∩Ak∩r(Al,β′)s
∗
βlβ′

which is nonzero only when γ′γ′′ ∈ L(AiE
|γ′|AjE

|γ′′|Ak) and β′ ∈ L(AlE
|β′|Ak).

If this is the case, we have

sαiγ′γ′′pr(r(Ai,γ′)∩Aj ,γ′′)∩Ak∩r(Al,β′)s
∗
βlβ′

= sαiγ′γ′′pr̄(Aiγ′Ajγ′′Ak)∩r̄(Alβ′Ak)s
∗
βlβ′

as before. Repeating the process of multiplying any finite elements from the

set F actually produces an element of the form sαiµpAs
∗
βjν

, where A is a finite

intersection of sets in

A(F ) := ∪ n≥1
1≤ij≤N

r̄
(
Ai1E

≤KAi2 · · ·E≤KAin
)

and µ and ν are paths in

L(F ) := ∪ n≥1
1≤ij≤N

L(Ai1E
≤KAi2 · · ·E≤KAin).

By our assumption, we find an m0 ≥ 1 such that L(Ai1E
≤KAi2 · · ·E≤KAin) =

∅ for all n > m0, so that L(F ) turns out to be a finite set since our labeled

space is always assumed receiver set-finite. Then the finiteness of the set A(F )

is immediate, and so we conclude that F generates the finite dimensional ∗-
algebra;

span
{
sαiµpAs

∗
βjν

: A = ∩Bk, Bk ∈ A(F ), µ, ν ∈ L(F ), 1 ≤ i, j ≤ N
}
.

Example 3.2.9. In the following labeled graph (E,L)
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one can show that the labeled graph C∗-algebra C∗(E,L, E) is an AF algebra

using Theorem 3.2.8. In fact, it is enough to see that for any finite subset

{r(n1), r(n2), · · · , r(nN)} of E with n1 < n2 < · · · < nN , ni ∈ N and every

K ≥ 1, actually only the K := max{ni+1 − ni : i = 1, · · · , N − 1} is a matter

of concern, we have

r(n1)E≤Kr(n2)E≤Kr(n3) · · ·E≤Kr(nN)E≤Kr(ni) = ∅

for any n1 ≤ ni ≤ nN .

In the following example, we see that the condition that (E,L, E) has no

repeatable paths is not a sufficient condition for C∗(E,L, E) to be AF.

Example 3.2.10. Consider the following labeled graph (EZ,Lω):

· · · · · · ,• • • • • • • • •// // // // // // // //0 1 1 0 x0 = 0 x1 = 1 1 0
v0 v1v−1v−2v−3v−4 v2 v3 v4

where the {0, 1} sequence ω is the Thue-Morse sequence (see Example 2.3.6).

Recall that ω contains no block (no finite subsequence) of the form βββ1 for

β = β1 · · · β|β| ∈ L∗(E). Thus (E,L, E) has no repeatable paths satisfying (b)

in Remark 3.2.1. But, the set A := r(0), with K := 3, satisfies

Ai1E
≤3Ai2 · · ·E≤3Ain 6= ∅
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for all n ≥ 1, where Aij = A, j ≥ 1. This is because the block 111 does not

appear in the sequence ω. Thus (E,L, E) does not meet the condition (a) in

Remark 3.2.1. To see that C∗(E,L, E) (equivalently, M2 ⊗C∗(E,L, E)) is not

AF, it is enough to show that M2 ⊗ C∗(E,L, E) contains a unitary U such

that (idM2 ⊗ γ)z(U) = zU for all z ∈ T, where γ is the gauge action of T on

C∗(E,L, E) = C∗(si, pA) ([12, Proposition 3.9]). Actually one can easily check

that the unitary U = (uij), with entries uij = δij s0 + (1 − δij)s1, is a desired

one.

Now we turn to the implication (c) ⇒ (b) of Remark 3.2.1. For a C∗-

algebra C∗(E,L, E) = C∗(sa, pA) and a set A ∈ E , we denote by IA the ideal

of C∗(E,L, E) generated by the projection pA as before.

Lemma 3.2.11. Let C∗(E,L, E) = C∗(sa, pA) be the C∗-algebra of a labeled

graph (E,L) with no sinks or sources. For A,B ∈ E, we have pA ∈ IB if and

only if there exist an N ≥ 1 and finitely many paths {µi}ni=1 in L(BE≥0) such

that

∪|β|=N r(A, β) ⊂ ∪ni=1r(B, µi).

Proof. If pA ∈ IB, we can approximate pA, within a small enough ε > 0,

by an element
∑n

i=1 cisβipBi∩r(B,µi)s
∗
γi

of IB, where ci ∈ C, βi, γi ∈ L(AE≥0),

Bi ∈ E , and µi ∈ L(BE≥0) for 1 ≤ i ≤ n (see (2.3)). We assume (βi, µi, γi) 6=
(βj, µj, γj) if i 6= j. Considering the image of X := pA−

∑n
i=1 cisβipBi∩r(B,µi)s

∗
γi

under the conditional expectation onto the AF core (the fixed point algebra of

the gauge action), we may assume that |βi| = |γi|, 1 ≤ i ≤ n, since pA is in the

core. Moreover, since (E,L) has no sinks, we can also assume that |βi| = |β1|
for all i. Put N := |βi|, 1 ≤ i ≤ n. From pA =

∑
|β|=N sβpr(A,β)s

∗
β, we have

‖X‖ =
∥∥ ∑
|β|=N

sβpr(A,β)s
∗
β −

n∑
i=1

cisβipBi∩r(B,µi)s
∗
γi

∥∥ < ε.

If r(A, β) 6⊂ ∪ni=1r(B, µi) for some β ∈ L(AEN), that is, A′ := r(A, β) \
∪ni=1r(B, µi) 6= ∅, one obtains a contradiction, ε > ‖pA′(s∗βXsβ)pA′‖ = ‖pA′‖ =

1.
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For the reverse inclusion, it is enough to note that p∪ni=1r(B,µi)
∈ IB (see [20,

Lemma 3.5]).

If α is a repeatable path in a directed graph E, then α is a loop with the

range r(α) consisting of a single vertex and every repetition αn also has the

same range as α, r(αm) = r(α), m ≥ 1. The projection pr(α)\r(αm) is then

equal to 0 in the C∗-algebra C∗(E,Lid, E), and so the (zero) ideal generated

by the projection pr(α)\r(αm) can not have the nonzero projection pr(α). In this

case, we already know that C∗(E) = C∗(E,Lid, E) is not AF. But for a general

labeled space (E,L, E) with a repeatable path α, this is no longer true, namely

r(αm) ( r(α) can happen for some m ≥ 2. Moreover, we have the following.

Theorem 3.2.12. Let C∗(E,L, E) = C∗(sa, pA) be the C∗-algebra of a labeled

graph (E,L) with no sinks or sources. Let (E,L, E) have a repeatable path

α ∈ L∗(E). If pr(αm) does not belong to the ideal generated by a projection

pr(αm)\r(αm+1) for some m ≥ 1, C∗(E,L, E) is not AF.

Proof. Let Am := r(αm) \ r(αm+1) for m ≥ 1. Then {IAm}∞m=1 is a decreasing

sequence of ideals because the generator pr(αm+1)\r(αm+2) of IAm+1 belongs to

IAm ;

pr(αm+1)\r(αm+2) = s∗αsα pr(r(αm)\r(αm+1),α) = s∗αpr(αm)\r(αm+1)sα ∈ IAm .

We first show the following claim.

Claim: If pr(α) does not belong to the ideal generated by pr(α)\r(α2), then the

C∗-algebra C∗(E,L, E) is not AF.

To prove the claim, it is enough to show that the quotient algebra C∗(E,L, E)/IA1

is not AF. Note that pr(α) + IA1 = pr(α2) + IA1 is a nonzero projection in the

quotient algebra C∗(E,L, E)/IA1 and that

IA1 = span
{
sβpBs

∗
γ : β, γ ∈ L(E≥0) and B ∈ r(L(A1E

≥0)) ∩ E
}

by (2.3). If s∗αsα+IA1 = sαs
∗
α+IA1 , the hereditary subalgebra of C∗(E,L, E)/IA1
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with the unit projection pr(α)+IA1 is not AF since it contains a unitary sα+IA1

satisfying γz(sα + IA1) = z|α|(sα + IA1) for each z ∈ C. Thus the hered-

itary subalgebra (hence C∗(E,L, E)) is not an AF algebra. (The fact that

sα + IA1 belongs to the hereditary subalgebra follows from pr(α)sα + IA1 =

sαpr(α2) + IA1 = sαpr(α) + IA1 = sα + IA1 .) If s∗αsα + IA1 6= sαs
∗
α + IA1 , then

s∗αsα + IA1 = pr(α) + IA1 ≥ sαpr(α2)s
∗
α + IA1 = sαpr(α)s

∗
α + IA1 = sαs

∗
α + IA1 and

this shows that s∗αsα + IA1  sαs
∗
α + IA1 . Thus the projection s∗αsα + IA1 is

infinite, and the quotient algebra is not AF as claimed.

Now suppose that pr(αm) /∈ IAm for some m ≥ 2. Since δ := αm is a

repeatable path, by the above claim, we only need to show that pr(δ) does not

belong to the ideal, say J , generated by the projection pr(δ)\r(δ2) = pr(αm)\r(α2m).

For this, assuming pr(δ) ∈ J we have from Lemma 3.2.11 that there exist an

N ≥ 1 and paths {µj}nj=1 such that

r(r(δ), β) ⊂ ∪ni=1r
(
r(αm) \ r(α2m), µi

)
for all β ∈ L(r(δ)EN). Since each set r(r(αm) \ r(α2m), µi) coincides with

∪m−1
j=0 r

(
r(αm+j) \ r(αm+j+1), µi

)
= ∪m−1

j=0 r
(
r(αm) \ r(αm+1), αjµi

)
,

we can write the set ∪ni=1r
(
r(αm) \ r(α2m), µi

)
as ∪n′j=1r

(
r(αm) \ r(αm+1), µ′j)

for some finitely many paths µ′j which is of the form αlµi. This means that

pr(αm) = pr(δ) ∈ IAm again by Lemma 3.2.11, which is a contradiction.

As pointed out in [5], a disagreeable labeled space (E,L, E) contains lots

of aperiodic paths and in fact, (E,L, E) is disagreeable whenever it has no

repeatable paths as it can be seen in the following proposition.

Proposition 3.2.13. Let E be a directed graph with no sinks or sources. If

the labeled space (E,L, E) has no repeatable paths, it is always disagreeable.

Proof. Assuming that (E,L, E) is not disagreeable, one can pick a generalized

vertex [v]l that is not disagreeable. Then there is an N > 0 such that every α

in L([v]lE
≥N) is agreeable and of the form α = βkβ′ for some β ∈ L([v]lE

≤l)
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and its initial path β′. On the other hand, there are only finitely many labeled

paths in L([v]lE
≤l) while L([v]lE

≥N) has infinitely many labeled paths. This

shows that there should exist a path β in L([v]lE
≤l) such that its repetitions

βn appear in L([v]lE
≥N) for all sufficiently large n.

One might expect that a labeled space would be disagreeable if it has no

loops, but this is not true in general: See the following example.

Example 3.2.14. Consider the following labeled graph (E,L)

· · · · · · .• • • • • • •// // // // // //−3 −2 −1 0 0 0
v0 v1v−1v−2v−3 v2 v3

Then E is the collection of all finite sets F of E0 and sets of the form F ∪
{vn, vn+1, . . . }, n ≥ 1. For the generalized vertex {v0} = [v0]1, every path

α ∈ L(v0E
≥N) is agreeable since it must be equal to am for some m ≥ N , so the

labeled space (E,L, E) is not disagreeable, whereas it is obvious that(E,L, E)

has no loops.
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Non-AF finite simple labeled

graph C∗-algebras

A simple graph C∗-algebra C∗(E) is either AF or purely infinite ([29, Corollary

3.10]). In this chapter, we consider the question of whether this dichotomy for

simple graph C∗-algebras would hold true for the simple labeled graph C∗-

algebras.

4.1 Simple finite labeled graph C∗-algebras of

generalized Morse sequences

We will provide a family of simple labeled graph C∗-algebras C∗(EZ,Lω, EZ)

associated to generalized Morse sequences ω and show that these C∗-algebras

are equipped with unique traces, hence finite, and are not AF with non-zero

K1-groups.

Fixed point algebras C∗(EZ,Lω, EZ)γ of gauge action. Let ω be a gen-

eralized Morse sequence and let C∗(EZ,Lω, EZ) = C∗(sa, pA) be the labeled

graph C∗-algebra associated with the labeled space (EZ,Lω, EZ) of a general-
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ized Morse sequence ω (see Notaion 2.3.7). Then the fixed point algebra

C∗(EZ,Lω, EZ)γ = span{sαpAs∗α : A ∈ EZ, A ⊂ r(α)}

of the gauge action γ is easily seen to be a commutative C∗-algebra. For each

k ≥ 1, let

Fk := span{sαpr(α′α)s
∗
α : α, α′ ∈ Lω(Ek

Z)}.

The set Lω(Ek
Z) is finite and the elements sαpr(α′α)s

∗
α in Fk are easily seen

to be mutually orthogonal. Hence Fk is a finite dimensional subalgebra of

C∗(EZ,Lω, EZ)γ. Moreover Fk is a subalgebra of Fk+1 because

sαpr(α′α)s
∗
α =

∑
b∈{0,1}

sαbpr(α′αb)s
∗
αb =

∑
a,b∈{0,1}

sαbpr(aα′αb)s
∗
αb.

This gives rise to an inductive sequence F1
ι1−→ F2

ι2−→ · · · of finite dimensional

C∗algebras, where the connecting maps ιk : Fk → Fk+1 are inclusions for all

k ≥ 1, from which we obtain an AF algebra lim−→Fk.

Proposition 4.1.1. Let (EZ,Lω, EZ) be the labeled space of a generalized

Morse sequence ω. Then

C∗(EZ,Lω, E)γ = lim−→Fk,

where Fk := span{sαpr(α′α)s
∗
α : α, α′ ∈ L(Ek)} is a finite dimensional subalge-

bra of C∗(EZ,L, EZ)γ for k ≥ 1.

Proof. Since Fk ⊂ C∗(EZ,Lω, EZ)γ for all k ≥ 1 and ∪kFk = lim−→Fk, it is clear

that lim−→Fk ⊂ C∗(EZ,Lω, EZ)γ. Thus it suffices to know that ∪kFk is dense in

C∗(EZ,Lω, EZ)γ and we only need to show that for y := sαpr(βα)s
∗
α, there is

k ≥ 1 with y ∈ Fk as the span of the elements sαpr(βα)s
∗
α (|α|, |β| ≥ 0) is dense

in C∗(EZ,Lω, EZ)γ. If |βα| = 2|α|, then y ∈ Fk with k = |α|. If |βα| > 2|α|,
then y = sαpr(βα)s

∗
α =

∑
σ∈L(E|β|−|α|) sασpr(βασ)s

∗
ασ ∈ Fk with k = |β|. Finally

if |βα| < 2|α|, we have y = sαpr(βα)s
∗
α =

∑
σ∈L(E|α|−|β|) sαpr(σβα)s

∗
α ∈ Fk with

k = |α|.
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Proposition 4.1.2. Let (EZ,Lω, EZ) be the labeled space of a generalized

Morse sequence ω. Then there is a surjective isomorphism

ρ : C∗(EZ,Lω, EZ)γ → C(Oω) (4.1)

such that ρ(sαpr(α′α)s
∗
α) = χ[α′.α] for sαpr(α′α)s

∗
α ∈ Fk, k ≥ 1.

Proof. Note that for each k ≥ 1, the map ρk : Fk → C(Oω) given by

ρk(sαpr(α′α)s
∗
α) = χ[α′.α]

is a ∗-homomorphism (we omit the proof) such that ρk(y) = ρk+1(ιk(y)) for

y = sαpr(α′α)s
∗
α ∈ Fk, where ιk : Fk → Fk+1 is the inclusion map. In fact,

ιk(y) =
∑

a,b∈{0,1} sαbpr(aα′αb)s
∗
αb and so

ρk+1(ιk(y)) = ρk+1

( ∑
a,b∈{0,1}

sαbpr(aα′αb)s
∗
αb

)
=

∑
a,b∈{0,1}

χ[aα′.αb].

But
∑

a,b∈{0,1} χ[aα′.αb] = χ[α′.α] is obvious from ∪a,b∈{0,1}[aα′.αb] = [α′.α]. Thus

there exists a ∗-homomorphism ρ : lim−→Fk → C(Oω) satisfying ρ(y) = ρk(y)

for all y ∈ Fk, k ≥ 1. Since each ρk is injective, so is ρ, and so we now show

that ρ is surjective to complete the proof. Let χt[β] ∈ C(Oω) for t ∈ Z and

β ∈ L∗ω(EZ). Assuming t > 0, we can write χt[β] =
∑
α,σ

χ[α.σβ], where the

sum is taken over all α, σ with |σ| = t and |α| = |σβ|. Thus we see that for

k := |β|+ t

χt[β] = ρk
( ∑

α,σ

sαpr(ασβ)s
∗
α

)
∈ ρ(Fk).

In case where t ≤ 0, a similar argument shows that χt[β] ∈ ρ(Fk) for some k.

Thus ρ is surjective since the space span{χt[β] : t ∈ Z, β ∈ L∗ω(EZ)} is a dense

subalgebra of C(Oω).

Lemma 4.1.3. Let (EZ,Lω, EZ) be the labeled space of a generalized Morse

sequence ω and let ρ : C∗(EZ,Lω, EZ)γ → C(Oω) be the isomorphism in (4.1).
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Then the unique T -invariant ergodic measure mω : C(Oω) → C defines a

tracial state

τ0 := mω ◦ ρ : C∗(EZ,Lω, EZ)γ → C

on the fixed point algebra C∗(EZ,Lω, EZ)γ such that for α, β ∈ L∗ω(EZ),

τ0(sαpr(βα)s
∗
α) = τ0(pr(βα)).

Proof. Note that pr(βα) =
∑

σ sσpr(βασ)s
∗
σ, where the sum is taken over the

paths σ with |σ| = |βα| from which we have ρ(pr(βα)) = ρ(
∑
|σ|=|βα| sσpr(βασ)s

∗
σ) =∑

|σ|=|βα| χ[βα.σ] = χ∪σ [βα.σ] = χ[βα.]. Thus

τ0(pr(βα)) = mω(χ[βα.]).

On the other hand, if |βα| > 2|α|, sαpr(βα)s
∗
α =

∑
σ∈L(E|β|−|α|) sασpr(βασ)s

∗
ασ so

that

τ0(sαpr(βα)s
∗
α) = mω(

∑
|σ|=|β|−|α|

χ[β.ασ]) = mω(χ[β.α]).

But the equality mω(χ[βα.]) = mω(χ[β.α]) follows from the fact that mω is T -

invariant. The case where |βα| ≤ 2|α| can be done in a similar way.

We also use the following notation

[α) := {αβ : β ∈ L]ω(EZ)} and (α] := {βα : β ∈ L]ω(EZ)}.

Lemma 4.1.4. Let (EZ,Lω, EZ) be the labeled space of a generalized Morse

sequence ω. Then

τ0 ◦Ψ : C∗(EZ,Lω, EZ)→ C

is a tracial state.

Proof. To see that τ0 ◦Ψ is a trace, we claim

τ0(Ψ(XY )) = τ0(Ψ(Y X)) (4.2)

50



CHAPTER 4. NON-AF FINITE SIMPLE LABELED GRAPH
C∗-ALGEBRAS

for X, Y ∈ span{sαpAs∗β : α, β ∈ L∗(EZ), A ∈ EZ, A ⊂ r(α) ∩ r(β)}. We first

show (4.2) with X = sαpAs
∗
β and Y = sµpBs

∗
ν by considering all possible cases

as follows:

(a) [β) ∩ [µ) = ∅ and [α) ∩ [ν) = ∅: Obviously XY = Y X = 0.

(b) [β) ∩ [µ) = ∅ and [α) ∩ [ν) 6= ∅: XY = 0 is clear, and we have either

α ∈ [ν) or ν ∈ [α). If α ∈ [ν) with α = να′ for some α′ ∈ L]ω(EZ), then

Y X = sµpBs
∗
ν sαpAs

∗
β = sµα′pr(B,α′)∩As

∗
β

and Ψ(Y X) = 0 if |µα′| 6= |β|. If not, that is |µα′| = |β|, then Y X

can possibly be nonzero only when µα′ = β, but this contradicts to the

assumption [β)∩ [µ) = ∅. If ν ∈ [α) with ν = αν ′ for some ν ′ ∈ L]ω(EZ),

the same argument as above proves Ψ(Y X) = 0.

(c) [β) ∩ [µ) 6= ∅ and [α) ∩ [ν) = ∅: Y X = 0 is obvious, and Ψ(XY ) = 0

follows from the same argument as in (b) by exchanging the roles of X

and Y .

(d) [β) ∩ [µ) 6= ∅ and [α) ∩ [ν) 6= ∅:

(i) |β| = |µ| and |α| = |ν|: Then α = ν and β = µ, and so

XY = sαpA∩Bs
∗
α and Y X = sβpB∩As

∗
β.

Thus τ0(Ψ(XY )) = τ0(XY ) = τ0(sαpA∩Bs
∗
α) = τ0(pA∩B) and simi-

larly τ0(Ψ(Y X)) = τ0(pA∩B), so that (4.2) holds.

(ii) |β| = |µ| and |α| 6= |ν|: If |α| > |ν| with α = να′ for some

α′ ∈ L∗ω(EZ). Then Ψ(XY ) = Ψ(sαpA∩Bs
∗
ν) = 0. Also Ψ(Y X) =

Ψ(sµα′pr(B,α′)∩As
∗
β) = 0 because |µα′| > |β|. If |ν| > |α|, a similar

argument can be applied to have Ψ(XY ) = 0 = Ψ(Y X).

(iii) |β| 6= |µ| and |α| = |ν|: We can exchange the roles of X and Y

again to see that (4.2) holds in this case by (ii).
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(iv) |β| 6= |µ| and |α| 6= |ν|: First suppose |β| > |µ| and |α| > |ν| with

β = µβ′ and α = να′ for some β′, α′ ∈ L∗ω(EZ), so that

XY = sαpA∩r(B,β′)s
∗
νβ′ and Y X = sµα′pr(B,α′)∩As

∗
β.

It is easily checked that |α| = |νβ′| if and only if |µα′| = |β|, and

moreover if this is the case, we may assume α′ = β′ (because α′ 6= β′

implies XY = Y X = 0) and so τ0(Ψ(XY )) = τ0(pr(B,α′)∩A) =

τ0(Ψ(XY )). Otherwise (that is, |α| 6= |νβ′| and |µα′| 6= |β|),
Ψ(XY ) = Ψ(Y X) = 0 is clear. This argument also proves the

case when |β| < |µ| and |α| < |ν|. Now suppose |β| > |µ| and

|α| < |ν| with β = µβ′ and ν = αν ′ for some β′, ν ′ ∈ L∗ω(EZ). Then

XY = sαpA∩r(B,β′)s
∗
νβ′ and Y X = sµpB∩r(A,ν′)s

∗
βν′ .

Since |α| < |νβ′| and |µ| < |βν ′|, we have Ψ(XY ) = Ψ(Y X) = 0.

This, of course, proves the assertion when |β| < |µ| and |α| > |ν|.

In general, for X =
∑n

i=1 ciXi and Y =
∑n

j=1 c
′
jYj with Xi, Yj ∈ {sαpAs∗β :

α, β ∈ L∗ω(EZ), A ∈ EZ}, ci, c′j ∈ C, the above computations show that

τ0(Ψ(XY )) =
∑
i,j

cic
′
jτ0(Ψ(XiYj)) =

∑
i,j

cic
′
jτ0(Ψ(YjXi))

= τ0(Ψ(
∑
i,j

c′jciYjXi)) = τ0(Ψ(Y X)).

The positive linear functional τ0 ◦Ψ is a state since

(τ0 ◦Ψ)(1) = τ0

( ∑
a,b∈{0,1}

sbpr(ab)s
∗
b

)
= mω(

∑
a,b∈{0,1}

χ[a.b]) = mω(χΩω) = 1.

We need several lemmas to show that the C∗-algebra C∗(EZ,Lω, EZ) of a

generalized Morse sequence ω is simple.
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Lemma 4.1.5. Let ω be a point of Ω. If β ∈ L∗ω(EZ) is a path such that

β = β′β′′ = β′′β′ for β′, β′′ ∈ L]ω(EZ), then β′ and β′′ (hence β itself) are

repetitions of an α ∈ L∗ω(EZ).

Proof. If |β′| = |β′′|, then β = (β′)2. So we assume that |β′′| < |β′|. Let

β(1) := β′ and β(2) := β′′. Then the assumption β(1)β(2) = β(2)β(1) implies

that β(1) = (β(2))n1β(3) for some n1 ≥ 1 and β(3) with |β(3)| < |β(2)|. If

|β(3)| = 0, β = (β(2))n1+1 as desired. If |β(3)| 6= 0, again from the assumption

β(1)β(2) = β(2)β(1) we have (β(2))n1β(3)β(2) = β(2)(β(2))n1β(3) which reduces to

an equation β(3)β(2) = β(2)β(3), |β(3)| < |β(2)|. Thus we have β(2) = (β(3))n2β(4)

with |β(4)| < |β(3)|. In this way, we obtain a sequence (β(m)) of subpaths of β

such that |β(m+1)| < |β(m)|,

β(m−1) = (β(m))nm−1β(m+1) and β(m)β(m+1) = β(m+1)β(m).

Since |β| <∞, this process of obtaining β(m) should stop at some point where

we must have |β(m+1)| = 0 and so have β(m−1) = (β(m))nm−1 . Then it is clear

that every path β(j), 1 ≤ j ≤ m − 1, is equal to some repetition of β(m), and

we complete the proof with α = β(m).

Lemma 4.1.6. Let x be a one-sided recurrent sequence and let ω ∈ Ox be a

two-sided sequence with x = ω[0,∞). Then (EZ,Lω) has a repeatable path if and

only if the sequence x is periodic. In particular, if ω is a generalized Morse

sequence, the labeled graph (EZ,Lω) has no repeatable paths (hence (EZ,Lω, EZ)

is disagreeable).

Proof. If x is periodic, obviously (EZ,Lω) has repeatable paths.

For the converse, let x = b0× b1× b2×· · · be a non-periodic sequence such

that (EZ,Lω) has a repeatable path. We may assume that l := |b0| ≥ 2. Since

any repetition of a repeatable path is repeatable, we can choose a repeatable

path β with |β| ≥ 2. Note also that if β is written as β = β′β′′ for some

β′, β′′ ∈ L#
ω (EZ), then β′′β′ is repeatable. From this observation and the fact

that for each k ≥ 1, x[kl,(k+1)l−1] is equal to either b0 or b̃0, we may assume that
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there are a repeatable path β and k, n, n′ ≥ 2 such that

x[kl,n′] = βn

and x[kl,(k+2)l−1] = b0b0 (this is possible because x is non-periodic) and |βn| is

much larger than l = |b0|. Taking b0 × · · · × bm instead of b0 for a large m, we

may also assume that |β| < |b0|. Then b0 = βdβ′ for some d ≥ 1 and β′ with

β = β′β′′, which gives b0b0 = βdβ′βdβ′. On the other hand, b0b0 = x[kl,(k+2)l−1],

as an initial path of x[kl,n′], starts with a repetition βd+2 of β and ends with

some initial path of β. Thus b0b0 = βdβ′βdβ′ = βd+2δ should hold (for some δ),

which then implies β = β′β′′ = β′′β′. By Lemma 4.1.5, we see that b0 = βkβ′

is a repetition of a path, so that x is periodic, a contradiction.

It is not hard to see that (EZ,Lω, EZ) is disagreeable if ω is a generalized

Morse sequence (see [17, Proposition 4.12]).

Now we prove our main theorem of this chapter.

Theorem 4.1.7. Let ω be a generalized Morse sequence of zeros and ones.

Then the C∗-algebra C∗(EZ,Lω, EZ) is

(i) simple unital,

(ii) non AF,

(iii) finite with a unique tracial state τ which satisfies

τ(sαpr(σα)s
∗
β) = τ(Ψ(sαpr(σα)s

∗
β)) = δα,βτ(pr(σα))

for α, β, σ ∈ L∗ω(EZ).

In particular, C∗(EZ,Lω, EZ) is not stably isomorphic to any graph C∗-algebra.

Proof. By definition of a generalized Morse sequence, x := ω[0,∞) is a one-sided

Morse sequence.
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(i) For the simplicity of C∗(EZ,Lω, EZ), we show that any nonzero homo-

morphism π : C∗(EZ,Lω, EZ) → C∗(qA, ti) onto a C∗-algebra generated by

qA := π(pA), ti := π(si) for A ∈ E , i = 0, 1, is faithful. Since the labeled space

(EZ,Lω, EZ) is disagreeable by Lemma 4.1.6, we see from [5, Theorem 5.5] that

π is faithful whenever π(p[v]l) 6= 0 for all v ∈ E0 and l ≥ 1. Suppose on the

contrary that

q[v]m = π(p[v]m) = 0

for some [v]m = r(α) with |α| = m. Since α ∈ Bx and x is almost periodic by

Theorem 2.3.4(i), one finds a d ≥ 1 such that for all s ≥ 0,

T s+jx ∈ [.α],

for some 0 ≤ j ≤ d. This means that if β ∈ Bx is a block with length |β| ≥ d,

it must have α as its subpath. Thus β must be of the form β = β′αβ′′ for some

β′, β′′ ∈ L]ω(E). For these β’s with |β| ≥ d we have qr(β) = 0. In fact,

qr(β) = qr(β′αβ′′) = qr(r(β′α),β′′)

= qr(r(β′α),β′′)t
∗
β′′tβ′′qr(r(β′α),β′′)

∼ tβ′′qr(r(β′α),β′′)t
∗
β′′

≤ qr(β′α) ≤ qr(α)

= q[v]m .

On the other hand, since π is a nonzero homomorphism, there exists a δ ∈
L∗ω(EZ) with qr(δ) = π(pr(δ)) 6= 0. But then, with an n > max{|δ|, d}, we have

qr(δ) = π(pr(δ)) = π
( ∑
|δµi|=n

sµipr(δµi)s
∗
µi

)
=
∑
|δµi|=n

tµiqr(δµi)t
∗
µi

= 0,

a contradiction.

(ii) With EZ in place of B in (2.6) it is rather obvious that N = ∅ and

B̂ = B̂J = EZ. Since χA ∈ ker(1 − Φ) if and only if χA = χr(A,0) + χr(A,1)

(see (2.4), and the vertex set E0
Z is the disjoint union of two sets r(E0

Z, 0) and
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r(E0
Z, 1) in EZ, we have χE0

Z
∈ ker(1 − Φ). Thus K1(C∗(EZ,Lω, EZ)) 6= 0 and

C∗(EZ,Lω, EZ) is not AF.

(iii) The tracial state τ := τ0 ◦ Ψ : C∗(EZ,Lω, EZ) → C of Lemma 4.1.4

satisfies

τ(sαpr(σα)s
∗
β) = δα,βτ(pr(σα)) (4.3)

for sαpr(σα)s
∗
β ∈ C∗(EZ,Lω, EZ) by Lemma 4.1.3.

To show that τ is the unique tracial state on C∗(EZ,Lω, EZ), we claim that

if τ ′ is a tracial state on C∗(EZ,Lω, EZ), then τ ′ ◦ Ψ = τ ′ holds, and that the

state τ ′ ◦ ρ−1 on C(Oω) is T -invariant. For the first claim, suppose τ ′ ◦Ψ 6= τ ′.

Then there exists an element sαpr(α)s
∗
β (|β| < |α|) such that τ ′(sαpr(α)s

∗
β) 6= 0.

Since τ ′ is tracial, we have 0 6= τ ′(sαpr(α)s
∗
β) = τ ′(s∗βsαpr(α)). Thus α must be

of the form α = βα′ for some path α′, and then 0 6= τ ′(s∗βsαpr(α)) = τ ′(sα′pr(α)).

Again the tracial property of τ ′ gives

0 6= τ ′(sα′pr(α)) = τ ′(pr(α)sα′) = τ ′(sα′pr(αα′)) = · · · = τ ′(sα′p(r(α),(α′)n))

for all n ≥ 1. But this means that the generalized vertex [v]l := r(α), l = |α|,
is not disagreeable emitting only agreeable paths, which is a contradiction to

Lemma 4.1.6. To see that τ ′ ◦ ρ−1 : C(Oω) → C is T -invariant, let χt[β] ∈
C(Oω). We assume t > 0. Since

ρ−1(χt[β]) = ρ−1
( ∑

α,β
|α|=|σβ|=t+|β|

χ[α.σβ]

)
=

∑
α,β

|α|=|σβ|=t+|β|

sσβpr(ασβ)s
∗
σβ,

we have τ ′(ρ−1(χt[β])) = τ ′
( ∑

α,β
|α|=|σβ|=t+|β|

pr(ασβ)

)
= τ ′(pr(β)). This implies that

τ ′ ◦ ρ−1(χt[β]) = τ ′ ◦ ρ−1(χt+1[β]) = τ ′ ◦ ρ−1(χt[β] ◦ T ),

which can also be shown for t ≤ 0 in a similar way. Thus τ ′ ◦ρ−1 is T -invariant

because the span of functions χt[β] is dense in C(Oω).
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The last assertion follows from the fact that a simple graph C∗-algebra is

either AF or purely infinite .

Remark 4.1.8. Without using the result on the existence of a unique ergodic

probability measure on Oω for a generalized Morse sequence ω, one can directly

show that the simple unital C∗-algebra C∗(EZ,Lω, EZ) of the Thue-Morse se-

quence ω admits only one tracial state. Moreover, its values on typical ele-

ments of the form sαpAs
∗
β can be obtained concretely, which is done in [23].
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Chapter 5

Labeled graph C∗-algebras that

are not finite

In previous chapters, we studied finite C∗-algebras of labeled spaces. Now we

consider conditions of labeled spaces which give rise to infinite C∗-algebras.

Throughout this chapter, we assume that a directed graph E has no sinks.

5.1 Labeled graph C∗-algebras whose nonzero

hereditary subalgebras are all infinite

In a directed graph E satisfying Condition (L), if we further require every

vertex to connect to a loop, any of nonzero hereditary C∗-subalgebras of the

C∗-algebra C∗(E) is well known to be infinite. Dealing with the labeled paths

and the generalized vertices in a labeled space, we first need to define when a

(generalized) vertex should be said to connects to a loop.

Definition 5.1.1. Let (E,L,B) be a labeled space. We say that every vertex

connects to a loop in (E,L,B) if for every [v]m, there exist an A ∈ B and

labeled paths α, δ ∈ L∗(E) such that

(i) A ⊆ r([v]m, δ),
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(ii) A ⊆ r(A,α).

Remarks 5.1.2. Let (E,L,B) be a labeled space.

(a) The condition (i) of Definition 5.1.1 can be replaced by

(i’) A ⊆ r([v]m, δα).

In fact, if a vertex [v]m connects to a loop so that (i), (ii) of Defini-

tion 5.1.1 hold for A ∈ B and α, δ ∈ L∗(E), then A ⊆ r(A,α) ⊆
r([v]m, δα) follows immediately. Conversely, for a vertex [v]m if there

exist an A ∈ B and α, δ satisfying (i’) and (ii), then from

A ⊆ r(A,α) ∩ r([v]m, δα) = r(A ∩ r([v]m, δ), α)

we see that the nonempty set A′ := A∩ r([v]m, δ)(⊆ A) satisfies (i)(A′ ⊆
r([v]m, δ)) and (ii)(A′ ⊆ r(A′, α)).

(b) In [5, Definition 6.6], a property of (E,L,B) requiring every (generalized)

vertex to connect to a loop which is based at a descending sequence

([w]l)l of generalized vertices was phrased as every vertex connects to a

repeatable path. More precisely, this means that for every [v]m there exist

a w ∈ E0, L(w) ≥ 1, and labeled paths α, δ ∈ L∗(E) such that

w ∈ r([v]m, δα) and [w]l ⊆ r([w]l, α) for all l ≥ L(w).

If we take L(w) large enough, [w]l ⊆ r([v]m, δα) for all l ≥ L(w) and

so [w]l ⊆ r([w]l ∩ r([v]m, δ), α). Then [w]l ∩ r([v]m, δ) 6= ∅ for all l ≥
L(w), which implies that [w]l ⊆ r([v]m, δ) again for all sufficiently large

l. Thus this property is equivalent to that for every [v]m, there exist

a w ∈ E0, L(w) ≥ 1, and labeled paths α, δ ∈ L∗(E) such that for all

l ≥ L(w),

(i) [w]l ⊆ r([v]m, δ)

(ii) [w]l ⊆ r([w]l, α) (that is, α is a loop at [w]l).
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So obviously this property is stronger than the one introduced in Defi-

nition 5.1.1 while the converse is not true because a loop at [w]L(w) may

not be a loop at [w]l for l > L(w) as Example 5.1.3 given below shows.

Actually, Example 5.1.3 suggests that the notion of connecting every

vertex to a repeatable path ([5]) might be said every vertex connects to

a loop at a nested sequence of generalized vertices.

(c) It is known in [5, Theorem 6.9] that if a labeled space (E,L, E) is dis-

agreeable and strongly cofinal and every vertex connects to a repeatable

path, then the C∗-algebra C∗(E,L, E) is simple and purely infinite.

Example 5.1.3. Consider the following labeled graph (E,L).

· · · • • • • • • • • • · · ·

· · · • • • • • • • • • · · ·

· · · • • • • • • • • • · · ·

•· · · • • •• •• • • · · ·

•

•

· · · • •• •• •• • · · ·

...
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...

...
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��

��

��

������

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��""
==

"" "" "" "" "" "" ""
==== == == == == ==

a a a a a a a a

b b b b b b b b
v0 v1v−1v−2v−3v−4 v2 v3 v4

2 2 2 2 2 2 2 2 2

31 32 31 32 31 32 31 32 31

41 42 43 44 41 42 43 44 41

55 56 57 58 51 52 53 54 55

Then one easily sees that for each n ≥ 1,

[v0]n = {vk·2n−1 : k ∈ Z} = {· · · , v−2·2n−1 , v−2n−1 , v0, v2n−1 , v2·2n−1 , · · · }

admits loops a2k−1
for all k ≥ n. Specifically, for example, the path a is

a loop at [v0]1, but not a loop at any [v0]n for n ≥ 2. Actually, (E,L, E)

does not have a path α ∈ L∗(E) for which there are w ∈ E0 and L(w) ≥ 1
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with [w]l ⊆ r([w]l, α) for all l ≥ L(w), while one can check that every vertex

connects to a loop in this example. Since it is rather obvious that (E,L, E) is

disagreeable, we see that C∗(E,L, E) has the property (SP∞) by Theorem 5.1.6

below.

Lemma 5.1.4. Let (E,L, E) be a disagreeable labeled space. Then every loop

has an exit. Moreover, the projection pA is infinite in C∗(E,L, E) = C∗(sa, pA)

whenever A ∈ E admits a loop.

Proof. Let α be a loop at A ∈ E . Choose w ∈ A and l ≥ 1 so that [w]l ⊆ A.

Since [w]l is disagreeable, we may choose a labeled path β ∈ L∗(E) with

[w]l ∩ s(β) 6= ∅ so that |β| = |αi| and β 6= αi for some i > 1, which means that

the loop µ := αi at A ∈ E has an exit β. Thus, pA is an infinite projection by

Proposition 3.1.6.

The similar arguments as in [5, Theorem 6.9] and [3, Proposition 5.3] yield

the following proposition. But it has to be modified to fit in our setting. Thus

for convenience we provide a proof with details. In the following proposition,

the notation that p � q where p, q are projections in a C∗-algebra will mean

that p is Murray-von Neumann equivalent to a subprojection of q.

Proposition 5.1.5. Let (E,L, E) be a disagreeable labeled space. Then every

nonzero hereditary C∗-subalgebra of C∗(E,L, E) contains a nonzero projection

p such that sµpAs
∗
µ � p for some µ ∈ L∗(E) and A ∈ E.

Proof. Let B be a nonzero hereditary C∗-subalgebra of C∗(E,L, E) and fix

a positive element a ∈ B with ‖Φ(a)‖ = 1. Choose a positive element b ∈
span{sαpAs∗β : α, β ∈ L∗(E) and A ⊆ r(α)∩r(β)} so that ‖a−b‖ < 1

4
. From [5,

Proposition 2.4 (ii) and (iii)], we may write b =
∑

(α,[w]l,β)∈F c(α,[w]l,β)sαp[w]ls
∗
β,

where F is a finite subset of L∗(E) × Ωl × L∗(E) for some l ≥ 1. Let b0 =

Φ(b) ≥ 0. Since Φ is norm-decreasing, we have

|1− ‖b0‖| = |‖Φ(a)‖ − ‖Φ(b)‖| ≤ ‖Φ(a− b)‖ ≤ ‖a− b‖ < 1

4
,
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and hence ‖b0‖ ≥ 3
4
. Let k = max{|α|, |β| : (α, [w]l, β) ∈ F}. Applying the

Definition 2.2.7(iv) and changing F (if necessary), we can choose a k ∈ N
so that min{|α|, |β|} = k for every (α, [w]l, β) ∈ F . Let M = max{|α|, |β| :

(α, [w]l, β) ∈ F}. Applying [5, Proposition 2.4.(iii)] again, we may choose

m ≥M large enough so that

b0 ∈ ⊕{w:(α,[w]l,β)∈F}Fk([w]m).

Now, ‖b0‖ must be attained in some summand Fk([v]m). Let b1 be the com-

ponent of b0 in Fk([v]m) so that ‖b0‖ = ‖b1‖ and note that b1 ≥ 0. Then we

can choose a projection r ∈ C∗(b1) ⊆ Fk([v]m) such that rb1r = ‖b1‖r. Since

b1 is a finite sum of sαp[v]ms
∗
β, we can write r as a sum

∑
cαβsαp[v]ms

∗
β over all

pairs of paths in

G = {α ∈ L(Ek) : either (α, [v]m, β) ∈ F or (β, [v]m, α) ∈ F}.

Note that rb0r = rb1r and the G × G-matrix (cαβ) is also a projection in a

finite dimensional matrix algebra Fk([v]m) = span{sαp[v]ms
∗
β : α, β ∈ G}.

Since [v]m is disagreeable, we may choose a path λ ∈ L∗(E) with |λ| > M so

that λ has no factorization λ = λ′λ′′ = λ′′δ for some |λ′|, |δ| ≤ m. Then because

span{sαλpr([v]m,λ)s
∗
βλ : α, β ∈ G} is also a finite dimensional matrix algebra

generated by the family of non-zero matrix units {sαλpr([v]m,λ)s
∗
βλ : α, β ∈ G},

Q =
∑
α,β∈G

cαβsαλpr([v]m,λ)s
∗
βλ

is a projection satisfying

r =
∑

cαβsαp[v]ms
∗
β =

∑
cαβsα(sλpr([v]m,λ)s

∗
λ + (p[v]m − sλpr([v]m,λ)s

∗
λ))s

∗
β ≥ Q.

We claim that for (µ, [v]l, ν) ∈ F ,

Qsµp[v]ms
∗
νQ = 0 unless |µ| = |ν| = k and [v]m ⊆ r(µ) ∩ r(ν).

Suppose that (µ, [v]m, ν) ∈ F with |µ| 6= |ν|. We may assume |µ| = k because
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either µ or ν has length k. Since s∗βλsµ 6= 0 if and only if β = µ, we have

Q(sµp[v]ms
∗
ν)Q = (

∑
α′,β′∈G

cα′β′sα′λpr([v]m,λ)s
∗
β′λ)(sµp[v]ms

∗
ν)(
∑
α,β∈G

cαβsαλpr([v]m,λ)s
∗
βλ)

= (
∑
α′∈G

cα′µsα′λpr([v]m,λ)s
∗
µλsµp[v]ms

∗
ν)(
∑
α,β∈G

cαβsαλpr([v]m,λ)s
∗
βλ)

=
∑
α,β∈G

cαβ(
∑
α′∈G

cα′µsα′λpr([v]m,λ)s
∗
νλ)sαλpr([v]m,λ)s

∗
βλ.

To be s∗νλsαλ 6= 0, it must be true that νλ = αλδ for some δ ∈ L∗(E). Since

|ν| > |α| = k, we may say that ν = αλ′ where λ = λ′λ′′ for some λ′, λ′′ ∈ L∗(E).

As νλ = αλδ = αλ′λ′′δ = αλ′λ, we have

λ = λ′λ′′ = λ′′δ

with |λ′| = |δ|. Because |ν| = |αλ′| ≤M with |α| = k, we know |λ′| ≤M−k ≤
m, which contradicts to the fact that λ is disagreeable for [v]m.

Thus, we see that

QbQ = Qb1Q = Qrb1rQ = ‖b1‖rQ = ‖b0‖Q ≥
3

4
Q.

Since ‖a− b‖ < 1
4
, we have QaQ ≥ QbQ− 1

4
Q ≥ 1

2
Q. This implies that QaQ

is invertible in QC∗(E,L, E)Q. Let c be the inverse of QaQ in QC∗(E,L, E)Q

and put v = c
1
2Qa

1
2 . Then v∗v = a

1
2QcQa

1
2 ≤ ‖c‖a, and hence v∗v ∈ B. Since

v∗v ∼ vv∗ = c
1
2QaQc

1
2 = Q,

the hereditary C∗-subalgebra B contains a non-zero projection equivalent to Q.

Note thatQ belongs to the finite dimensional subalgebra C := span{sαλpr([v]m,λ)s
∗
βλ :

α, β ∈ G} for which the elements {sαλpr([v]m,λ)s
∗
βλ} forms a matrix unit. This

means that Q dominates a minimal projection in C. Since every minimal pro-

jecton in C is equivalent to a minial projection of the form sαλpr([v]m,λ)s
∗
αλ, the

hereditary subalgebra B also contains a projection equivalent to the desired

form.
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Theorem 5.1.6. Let (E,L, E) be a disagreeable labeled space in which every

vertex connects to a loop. Then C∗(E,L, E) has the property (SP∞). Moreover

every nonzero hereditary C∗-subalgebra of C∗(E,L, E) contains an infinite pro-

jection equivalent to a projection pA for some A ∈ E.

Proof. We first show that p[v]l is infinite for any generalized vertex [v]l. By

our assumption, the generalized vertex [v]l should connect to a loop, say α

based at A ∈ E . Thus there is a δ ∈ L∗(E) such that A ⊂ r([v]l, δ). Then

clearly pr([v]l,δ) ≥ pA. Since pA is an infinite projection by Lemma 5.1.4, the

projeciton pr([v]l,δ) should also be infinite. From p[v]l =
∑
|µ|=|δ| sµpr([v]l,µ)s

∗
µ ≥

sδpr([v]l,δ)s
∗
δ ∼ pr([v]l,δ), we conclude that the projection p[v]l is infinite.

Now let B be a nonzero hereditary subalgebra of C∗(E,L, E). By Propo-

sition 5.1.5, B then contains a nonzero projection p such that sµpAs
∗
µ � p for

some µ ∈ L∗(E) and A ∈ E . But the projeciton sµpAs
∗
µ is equivalent to pA∩r(µ)

which is infinite by the first assertion. Thus p is infinite.

Remark 5.1.7. Let a disagreeable labeled space (E,L, E) satisfy the following

property which is slightly weaker than the one assumed in Theorem 5.1.6: for

every generalized vertex [v]l, there exists a loop α based at A ∈ E and a finite

number of labeled paths δ1, . . . , δm ∈ Lk(E) with the same length k such that

A ⊆ ∪mi=1r([v]l, δi).

Then the conclusion in Theorem 5.1.6 still holds true. In fact, we can pick

a path γ ∈ Ll(E) with [v]l ⊂ r(γ), then with Ai := A ∩ r([v]l, δi) and Bi :=
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Ai − ∪j−1
j=1Aj (B1 := A1), i = 1, . . . ,m, we have

pA = pB1 + pB2 + · · ·+ pBn

≤ pB1s
∗
γδ1
sγδ1pB1 + · · ·+ pBns

∗
γδnsγδnpBn

∼ sγδ1pB1s
∗
γδ1

+ · · ·+ sγδnpBns
∗
γδn

= sγ
(
sδ1pB1s

∗
δ1

+ · · ·+ sδnpBns
∗
δn

)
s∗γ

≤ sγ
(
sδ1pr([v]l,δ1)s

∗
δ1

+ · · ·+ sδnpr([v]l,δn)s
∗
δn

)
s∗γ

≤ sγp[v]ls
∗
γ ∼ p[v]l .

But pA is infinite and we see that p[v]l is also infinite. The second part of the

proof of Theorem 5.1.6 shows even in this case that every nonzero hereditary

subalgebra of C∗(E,L, E) contains an infinite projection equivalent to pA for

some A ∈ E .

The set L∞(E) := {α = α1α2 · · · ∈ A∞ : α1 · · ·αn ∈ L∗(E) for all n ≥ 1}
that includes the infinite paths L(E∞) is considered in [23] to define a new

version of strong cofinality of labeled spaces.

Definition 5.1.8. ([23]) A labeled space (E,L, E) is said to be strongly cofinal

if for any generalized vertex [v]l ∈ E and any x ∈ L∞(E), there exist an N ≥ 1

and finitely many labeled paths λ1, . . . , λm ∈ L∗(E) such that

r(x[1,N ]) ⊆ ∪mi=1r([v]l, λi). (5.1)

It is shown ([5, 19, 23]) that if (E,L, E) is disagreeable and strongly cofinal,

then C∗(E,L, E) is simple.

Corollary 5.1.9. Let (E,L, E) be a disagreeable and strongly cofinal labeled

space. If there is a vertex w ∈ E0 such that [w]li admits a loop for a sequence

l1 < l2 < · · · , then C∗(E,L, E) is simple and purely infinite.

Proof. By [19, Theorem 3.16], C∗(E,L, E) is simple. To see that C∗(E,L, E)

is purely infinite, it is enough to show that p[v]l is infinite for any [v]l ∈ E . Let
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α be a loop at [w]l1 . Since (E,L, E) is strongly cofinal and αn ∈ L∗(E) for

n ≥ 1 (that is, α∞ ∈ L∞(E)), [v]l connects to α∞ ∈ L∞(E). Thus there exist

an N ∈ N and labeled paths δ1, · · · , δm ∈ L∗(E) such that

r(αkα′) = r(α∞[1,N ]) ⊂ ∪mi=1r([v]l, δi),

where α′ is an initial path of α(= α′α′′) and some k ≥ 1. Then

[w]l1 ⊂ r([w]l1 , α
k+1) ⊂ r(αk+1) ⊂ ∪mi=1r([v]l, δiα

′′).

Setting A1 := [w]l1∩r([v]l, δ1α
′′) for convenience, we choose l > l1 large enough

so that [w]l ⊆ A1. Then by assumption [w]l admits a loop, and hence the

projection p[w]l is infinite by Lemma 5.1.4. On the other hand, one sees that

p[v]l ≥ sδ1α′′pr([v]l,δ1α′′)s
∗
δ1α′′
∼ pr([v]l,δ1α′′) ≥ p[w]l , which implies that p[v]l is also

infinite. Then the second part of the proof of Theorem 5.1.6 completes the

proof.

Example 5.1.10. For the following labeled graph (E,L)

· · · • • • • • • •

· · · • • • • • • • · · ·

· · · • • • • • • •

· · ·
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· · · • • • • • • •
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::

$$
::
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::

$$
::

$$
:: · · · ,

a a a a a a

b b b b b b
v0 v1

u0 u1 u2 u3u−1u−2u−3

v−1v−2v−3 v2 v3

d′

d

d

d′

d

d

d′

d

d

c′

c

c

c′

c

c

c′

c

c

c′

c

c

Theorem 6.10 in [20] shows that C∗(E,L, E) ' C∗(F,L,F), where (F,L,F)
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is the associated merged labeled space of (E,L, E) which is shown as below

• • • •== ee// oo
""

bb
��

ZZd c

a

a
d′ c′

b

b

[u0]∞

[v0]∞ [v1]∞

[u1]∞

.

Then it is clear that (F,L,F) is disagreeable and every vertex connects to a

loop. Thus by Theorem 5.1.6, C∗(F,L,F) has the property (SP∞), and hence

C∗(E,L, E) also has the property (SP∞).

Extending the relation ≥ for vertices of directed graphs, we write A ≥ B

for A,B ∈ E if there exists a labeled path α ∈ L#(E) such that B ⊆ r(A,α).

The relation ≥ is reflexive and transitive. For [v]l ∈ E , set

R[v]l := {A ∈ E : [v]l ≥ A} and

F[v]l := {B ∈ E : B = ∪ki=1Ai for some Ai ∈ R[v]l and k ≥ 1}. (5.2)

Lemma 5.1.11. The set F[v]l defined above is a hereditary subset of E.

Proof. Choose B ∈ H := F[v]l . Then B = ∪ki=1Ai where Ai ∈ R[v]l for all

i = 1, · · · , k, that is, Ai ⊆ r([v]l, αi) for some αi ∈ L#(E). So, r(B, β) =

∪ki=1r(Ai, β) ∈ H for all β ∈ L#(E) because r(Ai, β) ⊆ r([v]l, αiβ) for all i.

Also, if C ∈ E with C ⊆ B, then C = ∪ki=1(C∩Ai) with C∩Ai ⊆ Ai ⊆ r([v]l, αi)

for all i, which implies C ∈ H. It is rather abvious that if B1, B2 ∈ H, then

B1 ∪B2 ∈ H.

If H is any hereditary subset of E , we write EH := (E0
H , E

1
H) for the

subgraph of E whose vertices and edges are defined as follows:

E0
H := {w ∈ E0 : w ∈ B for some B ∈ H},
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E1
H := {f ∈ E1 : s(f) ∈ E0

H}.

Note that the subgraph EH can have a source and

E0
F[v]l

= E0
R[v]l

:= {w ∈ E0 : w ∈ A for some A ∈ R[v]l}.

Example 5.1.12. For the following labeled graph (E,L)

• • • • •
��
BB

// // // //

L(e1) = b

L(e2) = c

L(f1) = a L(f2) = a L(f3) = a L(f4) = a
v0 v1 v2 v3 v4

· · · ,

it is easy to see that [v2]l = {v2} for l ≥ 3. Then R{v2} = {{vk} : k ≥ 2},
H := F{v2} = {B ⊂ E0 \ {v0, v1} : B is finite } and E0

H = {vk : k ≥ 2}. Now

we have the directed subgraph EH = (E0
H , E

1
H) of E as follows

• • • • •// // // //
v2 v3 v4 v5 v6

f3 f4 f5 f6 · · · .EH :

Considering the restriction map L|E1
H

: E1
H → A, one can regard the directed

subgraph EH as a labeled graph (EH ,L|E1
H

) with a source as below

• • • • •// // // //
v2 v3 v4 v5 v6

a a a a · · · .

For a hereditary subset H of E , we denote by IH the ideal of C∗(E,L, E)
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generated by the projections {pA : A ∈ H}. It is easy to see ([20]) that

IH = span{sµpAs∗ν : µ, ν ∈ L∗(E), A ∈ H}
= span{sµpAs∗ν : µ, ν ∈ L∗(E), A ∈ H}.

The following proposition is known for graph C∗-algebras (see [29, Proposition

2.1]).

Proposition 5.1.13. For the hereditary set H := F[v]l given in (5.2), the ideal

IH = IF[v]l
is Morita equivalent to the hereditary C∗-subalgebra

BH := span{sµpBs∗ν : µ, ν ∈ L∗(EH) and B ∈ F[v]l}.

Proof. The relations

(sµpBs
∗
ν)(sαpAs

∗
β) =


sµpB∩r(A,ν′)s

∗
βν′ , if ν = αν ′

sµα′pr(B,α′)∩As
∗
β, if α = να′

sµpB∩As
∗
β, if ν = α

0, otherwise,

where α, β, ν ∈ L∗(E), A ∈ E and µ ∈ L∗(EH), B ∈ F[v]l , show that

X := span{sµpBs∗ν : µ ∈ L∗(EH), ν ∈ L∗(E) and B ∈ F[v]l}

is a right ideal of C∗(E,L, E) which satisfies IH = X∗X and XX∗ = BH .

Remark 5.1.14. If a (generalized) vertex [v]l ∈ E does not connect to any loop,

then obviously each set A in R[v]l does not admit any loops. But some set

B ∈ F[v]l of their union can be bases of loops. Consider the following labeled

graph (E,L):

69



CHAPTER 5. LABELED GRAPH C∗-ALGEBRAS THAT ARE NOT
FINITE

· · · • • • • • • • • • · · ·
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// // // // // // // ////a a a a a a a a

v0 v1v−1v−2v−3 v2 v3

0 1 1 0 L(x0) = 0
L(x1) = 1

1 0 1

22 22 2 22

3

22

3 3 33 3 333

4 44 4 44444

By xi we denote an edge with s(xi) ∈ r(2) and r(xi) = vi for all i ∈ Z. Then

we give labels with the Thue-Morse sequence {0, 1} starting from L(x0) = 0,

L(x1) = 1. One can see that both of r(0) and r(0an) do not admit any loops

for all n ≥ 1. This proves that r(0) can not connect to any loops in the sense

of Definition 5.1.1. We see that

Rr(0) = {A ∈ E : r(0) ≥ A} = {r(0an) ∈ E : n ≥ 0},

Fr(0) = {∪ki=1r(0a
ni) ∈ E : ni ≥ 0 and k ≥ 1},

where r(0a0) := r(0). Observe that r(a) ⊆ r(0a) ∪ r(0a2) ∪ r(0a3). So, r(a) ∈
Fr(0) and r(a) admits loops.

Corollary 5.1.15. Let (E,L, E) be a labeled space and [v]l ∈ E. If for every

finite subset {A1, · · · , AN} of H := F[v]l and every K ≥ 1, there exists an

m0 ≥ 1 for which

Ai1E
≤K
H Ai2E

≤K
H Ai3 · · ·E

≤K
H Ain = ∅

for all n > m0 and 1 ≤ ij ≤ N , then the ideal IF[v]l
is an AF algebra.
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Proof. Choose a generalized vertex [v]l ∈ E . By Proposition 5.1.13, the ideal

IF[v]l
is Morita equivalent to

BF[v]l
:= span{sµpBs∗ν : µ, ν ∈ L∗(EH) and B ∈ F[v]l}.

The assumtion asserts that BF[v]l
is an AF algebra (see [17, Theorem 4.8]).

Example 5.1.16. Let us revisit the labeled graph in Example 5.1.12:

• • • • •
��
BB

// // // //

L(e1) = b

L(e2) = c

L(f1) = a L(f2) = a L(f3) = a L(f4) = a

v0 v1 v2 v3 v4

· · · ,

• • • • •// // // //
v2 v3 v4 v5 v6

a a a a · · · .(EH ,L|E1
H

) :

We first see that

I{v2} = span{sµpBs∗ν : µ, ν ∈ L∗(E) and B ∈ F{v2}},

where F{v2} = {B ⊂ E0 \ {v0} : B is finite }. By Proposition 5.1.13, the ideal

I{v2} is Morita equivalent to

B{v2} = span{sµpBs∗ν : µ, ν ∈ L∗(EH) and B ∈ F{v2}}
= span{sµpBs∗ν : µ = an, ν = am, B ⊂ E0 \ {v0, v1} and B is finite }.

Corollary 5.1.15 says that B{v2} is an AF-algebra, which implies that C∗(E,L, E)

contains an AF hereditary C∗-subalgebra, namely I{v2}. Thus, C∗(E,L, E)

does not have the property (SP∞).
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국문초록

본학위논문에서는라벨그래프로생성된 C∗-대수의구조를연구하였다. 라

벨 그래프 C∗-대수 C∗(E,L, E)가 AF-대수이면, 라벨 공간 (E,L, E)에 loop이

없음을 증명하였다. 또한 그래프 C∗-대수 C∗(E)가 AF-대수가 될 몇 가지 필요

충분조건들이 라벨 그래프 C∗-대수에서는 더 이상 동치가 아님을 보였다. 이를

보이는 과정에서 일반화된 모스 수열을 이용하였다. 더 나아가 일반화된 모스

수열로 라벨을 준 그래프로 생성된 C∗-대수가 단순 유한 C∗-대수이면서 AF-

대수는 아님을 증명하였다. 이는 단순 그래프 C∗-대수는 AF-대수이거나 순수

무한 C∗-대수라는 사실에 대비된다.

이외에라벨그래프 C∗-대수의모든영이아닌유전적부분 C∗-대수가무한

C∗-대수가 될 충분조건을 제시하였다.

주요어휘: 그래프 C∗-대수, 라벨 그래프 C∗-대수, 유한 C∗-대수, AF C∗-대수,

순수 무한 C∗-대수, 일반화된 모스 수열

학번: 2008-30080
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