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Abstract

Homomorphic Encryption Applied to Secure
Program Analysis and a New Design

Hyunsook Hong

Department of Mathematical Sciences

The Graduate School

Seoul National University

Homomorphic encryption enables computing certain functions on encrypted

data without decryption. Many cloud-based services need efficient homomor-

phic encryption schemes to provide security to the data in cloud computing.

In this thesis, we focus on applications of homomorphic encryptions for

set operation and program analysis, and we suggest a new construction of ho-

momorphic encryption. First, we present a new privacy preserving set union

protocol and a secure points-to analysis method as applications of homomor-

phic encryptions. Our set union protocol is based on the additive homo-

morphic encryption scheme by Naccache and Stern, whose message space is

Zσ which σ is a product of small primes. We introduce a special polynomial

representation such that if a polynomial is represented as this form, then it is

factorized uniquely in Zσ[X]. From this representation, we obtain an efficient

constant round set union protocol without honest majority assumption.

We adopt a somewhat homomorphic encryption to perform static anal-

ysis on encrypted programs. In our method, a somewhat homomorphic en-

cryption scheme of depth O(logm) is able to evaluate Andersen’s pointer

analysis with O(logm) homomorphic matrix multiplications, for the number

m of pointer variables when the maximal pointer level is bounded.
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Finally, we propose a somewhat homomorphic encryption scheme over the
polynomial ring. The security of the proposed scheme is based on the polyno-
mial approximate common divisor problem which can be seen as a polynomial
analogous of a base problem of DGHV fully homomorphic encryption and its
extension. Our scheme is conceptually simple and does not require a compli-
cated re-linearization process. For this reason, our scheme is more efficient
than RLWE-based homomorphic encryption over the polynomial ring when
evaluating low degree polynomial of large integers. Furthermore, we convert
this scheme to a leveled fully homomorphic encryption scheme, and the re-
sulting scheme has features similar to the variant of van Dijk et al.’ s scheme
by Coron et al. Our scheme, however, does not use the subset sum, which
makes its design much simpler.

Key words: additive homomorphic encryption, somewhat homomorphic en-
cryption, privacy-preserving set union, static analysis in secrecy, pointer
analysis, polynomial approximate GCD problem
Student Number: 2009-22898
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Chapter 1

Introduction

Owing to the advancement of information and communication technology,
information can be accessed at any time and from any location. The amount
of information that is stored and managed by individuals has grown consid-
erably, and cloud services have facilitated easy access to this information.
Cloud technology has the advantage that the information stored by users
can be accessed through the Internet from anywhere at any time. However,
because this information is stored externally, there is a legitimate risk of in-
formation leakage. Thus, it is important that the information stored in the
cloud is encrypted. Standardly, encrypted information must be decrypted
before the information can be accessed, and this exposes the decrypted infor-
mation to the risk of leakage. To address this problem in cloud environments,
security technology using advanced homomorphic encryption is required.

Homomorphic encryption facilitates computation between ciphertexts within
the encrypted state. This technology is expected to solve many problems
that can occur when private information is stored externally, as it is in the
cloud-computing environment.

There are two types of homomorphic encryption considered in this dis-
sertation: additive homomorphic encryption and somewhat homomorphic
encryption. (i) An additive homomorphic encryption scheme accepts only
homomorphic additions on ciphertexts. (ii) A somewhat homomorphic en-

1



CHAPTER 1. INTRODUCTION

cryption scheme supports a limited number of homomorphic additions and
multiplications over encrypted data.

With somewhat homomorphic encryption, the ciphertext contains a cer-
tain amount of noise. The noise increases with successive homomorphic op-
erations, so we use several noise management techniques to handle this noise
in ciphertexts.

There are two main techniques used for noise management. The first is
the bootstrapping technique, which transfers a ciphertext to a corresponding
noise-free ciphertext by homomorphically evaluating the decryption circuit
with the encrypted decryption key. The bootstrapping technique facilitates
fully homomorphic encryption, supporting multiple arbitrary operations over
encrypted data. The other technique is known as modulus switching, and
this method reduces noise by scaling it by a factor of the modulus in the
ciphertext space. This modulus switching technique provides a leveled fully
homomorphic scheme, in which the parameters of a scheme depend polyno-
mially on the depth of the circuits that the scheme can evaluate. The number
of times that several processes are performed to adjust the noise is mostly af-
fected by the degree of the circuit under evaluation. Therefore, for encrypted
computation using somewhat-homomorphic encryption, the base algorithm
for processing data with homomorphic encryption should be expressed as a
circuit with a minimum degree.

By contrast, the ciphertexts in an additive homomorphic encryption scheme
are not subject to noise. Thus, additive homomorphic encryption does not
require a complicated noise-management technique, unlike somewhat homo-
morphic encryption. Consequently, this type of encryption supports an un-
limited number of homomorphic additions on ciphertexts and it is faster than
a somewhat homomorphic encryption scheme. However, additive homomor-
phic encryption does not provide homomorphic multiplication over encrypted
data. Therefore, provided that the base algorithm for data processing merely
requires addition on ciphertexts or the multiplication of known constants, it
is much more effective to use additive homomorphic encryption than some-

2



CHAPTER 1. INTRODUCTION

what homomorphic encryption.
As a result, it is important to use the appropriate encryption scheme

when computing homomorphically encrypted data, and this depends on the
necessary type and number of computations on ciphertexts according to the
characteristics of the base algorithm that is processed. In this thesis, we
focus on applications of homomorphic encryption for set operations and pro-
gram analysis, and we propose a new design for somewhat homomorphic
encryption.

Applying Additive Homomorphic Encryption to a Set-union Proto-
col We propose the first constant-round privacy-preserving multi-party set
union protocol without assuming an honest majority. Our protocol is based
on a novel rational function representation of a set over Zσ and exploits an
additive homomorphic encryption scheme over Zσ, where σ is a product of
small primes. With our protocol, each user begins with a rational function
whose poles consist of elements of a user’s own set and ends with a rational
function whose poles correspond to the set union. Then, each user computes
the denominator of the final rational function using a reconstructed rational
function and recovers the set union with a root-finding algorithm. Because
Zσ[x] is not a unique factorization domain, this yields several irrelevant el-
ements. Thus, we introduce a special polynomial representation so that if
a polynomial is represented in this form, it is factorized uniquely in Zσ[X].
From this representation, we efficiently recover the set union from the result-
ing polynomial. Furthermore, our proposed design reduces computational
and communicational costs more than previous techniques. We also provide
a constant-round privacy-preserving multi-set union protocol by modifying
our representation.

Applying Somewhat Homomorphic Encryption to Program Anal-
ysis Formerly, program analysis could be performed only after an analyzer
or target program was exposed. In other words, program analysis was pos-
sible only when the analyzer was provided to the user or when the program

3



CHAPTER 1. INTRODUCTION

was provided to the user performing the analysis. However, because there are
many cases where both the analyzer and the target analysis program contain
sensitive information, it is difficult to conduct program analysis when both
the analyzer and program cannot be opened. We submit that a somewhat-
homomorphic encryption scheme can unleash the potential for the static
analysis of encrypted programs. The static analysis of ciphers is desirable as
a service, because the program can be encrypted and uploaded to a static-
analysis service, and the service provider can analyze the encrypted program
without decrypting it. Only the owner of the decryption key (i.e., the pro-
gram’s owner) is able to decrypt the results of the analysis. As a concrete
example, we describe how inclusion-based pointer analysis can be performed
secretly. With this method, a somewhat-homomorphic encryption scheme of
depth O(logm) is able to evaluate a simple pointer analysis with O(logm)

homomorphic matrix multiplications, for a number m of pointer variables
when the maximal pointer level is bounded. We also demonstrate the viabil-
ity of our method by implementing pointer analysis in secret.

New Design for Fully Homomorphic Encryption We propose a new
somewhat homomorphic encryption scheme whose security is based on a new
hard problem, called the polynomial approximate common divisor problem.
This problem is the polynomial analogue of the approximate integer common-
divisor problem. Our scheme is simple and supports homomorphic operations
on large integers. The proposed scheme does not require a somewhat com-
plicated re-linearization process, and the operation of ciphertexts is more
simplistic than in previous works. When evaluations of a low-degree poly-
nomial of very large integers are required, our scheme is more efficient than
the so-called Yet Another Somewhat Homomorphic Encryption (YASHE)
scheme proposed by Bos et al. (Cryptography and Coding, 2013) and based
on the Ring Learning With Errors (RLWE) problem. In particular, with
our scheme, multiplication is ten-times faster that YASHE when evaluating
ten-degree polynomials of 1638-bit integers.

4



CHAPTER 1. INTRODUCTION

We convert this scheme to a leveled fully homomorphic encryption scheme
by applying Brakerski’s scale-invariant technique, and the resulting scheme
has features similar to the variant of van Dijk et al.’s scheme proposed by
Coron et al. (PKC, 2014). Our scheme, however, does not use the subset
sum, and this simplifies its design.

The base problem is rather new: we performed extensive cryptanalysis,
applying various known attacks against problems that are structurally simi-
lar. Moreover, we propose a small root-finding algorithm for a multivariate
modular-equation system, and we apply it to the proposed problem. Our
analyses confirm that the proposed problem is difficult, given the appropri-
ate parameters.

List of Papers This thesis contains results that were obtained jointly with
Jung Hee Cheon and Hyung Tae Lee [CHL14], which appears in ICISC 2013,
and a work by Woosuk Lee, Kwangkeun Yi, and Jung Hee Cheon [LHYC15]
which is accepted to Static Analysis Symposium. It also includes results
obtained as a joint effort with a forthcoming article by Jung Hee Cheon,
Moon Sung Lee and Hansol Ryu [CHLR14] which has been accepted for
publication in Information Sciences.

• [CHL14] Jung Hee Cheon, Hyunsook Hong and Hyung Tae Lee: Invert-
ible Polynomial Representation for Private Set Operations. ICISC 2013:
277-292.

• [LHYC15] Woosuk Lee, Hyunsook Hong, Kwangkeun Yi and Jung Hee
Cheon: Static Analysis with Set-closure in Secrecy. To appear in Static
Analysis Symposium 2015.

• [CHLR14] Jung Hee Cheon, Hyunsook Hong, Moon Sung Lee and Han-
sol Ryu: The Polynomial Approximate Common Divisor Problem and
its Application to the Fully Homomorphic Encryption. To appear in
Information Sciences.
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Chapter 2

Private Set Union Protocol

Privacy-preserving set operations (PPSOs) allow a participant to compute
set operations between datasets without revealing any data other than the
result. There have been many proposals for constructing PPSO protocols
using various techniques such as general multi-party computations [GMW87,
BOGW88], polynomial representations [FNP04, KS05, Fri07, SS09, HKK+13],
pseudo random functions [JL09], and blind RSA signatures [CT10, CKT10].
While the last two techniques are difficult to generalize to multi-party pro-
tocols, polynomial representations combined with additive homomorphic en-
cryption (AHE) schemes facilitate the use of multi-party PPSO protocols for
various operations including the set intersection [KS05, Fri07, SS09], (over-
)threshold set union [KS05], and element reduction [KS05]. Among these
constructions, set intersection protocols run in constant rounds, but the oth-
ers run linear to the number of participants.

We focus on privacy-preserving set union (PPSU) protocols. There are
two barriers to constructing constant-round privacy-preserving multi-party
set union protocols based on polynomial representations with AHE schemes.
First, the set union protocol is conducted by multiplying the polynomials
whose roots are the elements of participants’ datasets; however, an AHE
scheme does not provide multiplication between encrypted data. Second, for
the message space Zσ of the AHE scheme, it is necessary to efficiently find

6



CHAPTER 2. PRIVATE SET UNION PROTOCOL

the roots of the polynomial in Zσ to recover the union set from the resulting
polynomial.

The first barrier is easily overcome by utilizing a rational function rep-
resentation with the reversed Laurent series in [SCK12]. In this approach,
a set of participants is represented by a rational function whose poles are
the elements of the set. Then, the denominator of a summation of partici-
pants’ rational functions corresponds to the union set. Since an AHE scheme
supports addition over encrypted date, we can compute the encrypted poly-
nomial, which corresponds to the union set from participants’ encrypted
rational functions in constant rounds.

Root finding, however, is still an obstacle. There is no appropriate root
finding algorithm that works in the message space of AHE schemes. The
message space has unknown order [OU98] and is not a unique factorization
domain [NS98, Pai99, CS03]. The authors of [SCK12] exploited a secret
sharing scheme to provide polynomial multiplication in secrecy. However,
this scheme requires computational and communicational costs heavier than
the previous and requires an honest majority for security.

Our Results We provide a new polynomial representation that facilitates
the unique recovery of roots of a polynomial in Zσ[x] if the polynomial satis-
fies certain criteria and if the factorization of σ =

∏ℓ̄
i=1 qi is public for distinct

primes qi.
For a polynomial f(x) =

∏d
i=1(x − si) ∈ Zσ[x], the number of root can-

didates of f is usually dℓ̄ and is exponential in the size of the modulus σ.
To reduce irrelevant candidates, we enforce a certain relation among roots
of f in Zqj [x] and roots of f in Zqj+1

[x]. As a result, our encoding function
enables us to efficiently recover all of the roots of f with negligible failure
probability if they are in the image of ι.

As an application of our new representation, we consider the Naccache-
Stern (NS) AHE scheme, where the factorization of σ is public, and obtain
an efficient constant-round PPSU protocol without an honest majority. In

7



CHAPTER 2. PRIVATE SET UNION PROTOCOL

Table 2.1: Comparison to previous set-union protocols.

HBC Rounds Communication Cost Computational Cost # of Honest Party

[KS05] O(n) O(n3kτN ) O(n4k2τNρN ) ≥ 1

[Fri07] O(n) O(n2kτN ) O(n2k2τNρN ) ≥ 1

[SCK12] O(1) O(n4k2τp′) O(n5k2ρp′) ≥ n/2

Ours O(1) O(n3kτN ) O(n3k2τNρN ) ≥ 1

Malicious Rounds Communication Cost Computational Cost # of Honest Party

[Fri07] O(n) O
(
(n2k2 + n3k)τN

)
O(n2k2τNρN ) ≥ 1

[SCK12] O(1) O(n4k2τp) O(n5k2τpρp) ≥ n/2

Ours O(1) O(n3k2τN ) O(n3k2τNρN ) ≥ 1

n: the number of participants, k: the maximum size of sets
τN , τp′ , τp: the size of modulus N for the Paillier encryption scheme or NS
encryption scheme, the size p′ of representing the domain, and the order p of
a cyclic group for the Pedersen commitment scheme, respectively.
ρN , ρp′ , ρp: modular multiplication cost of modulus N for the Paillier encryp-
tion scheme or NS encryption scheme, the size p′ of representing the domain,
and the order p of a cyclic group for the Pedersen commitment scheme, re-
spectively.

Table 2.1*, we compare our set union protocols to previous results [Fri07,
KS05, SCK12].

2.1 Preliminaries
Throughout this chapter, let U be the universe, n be the number of partici-
pants in the protocol, and k be the maximum size of a participant dataset Si.
Furthermore, let d denote the size of set union among participant datasets
in the protocol.

2.1.1 Polynomial Representation of a Set

Let R be a commutative ring with unity and S be a subset of R.
*Note that the communication and computational complexities in Table 1 of [SCK12]

are for one participant.

8



CHAPTER 2. PRIVATE SET UNION PROTOCOL

Polynomial Representation In many PPSO protocols [FNP04, KS05,
Fri07, HKK+13, SCK12], a set S is represented by a polynomial fS(x) ∈ R[x]

such that the roots of fS are elements of S; that is,

fS(x) :=
∏
si∈S

(x− si).

Rational Function Representation In [SCK12], a set S is represented
by a rational function representation FS whose poles are elements of S; that
is,

FS(x) :=
1∏

si∈S(x− si)
=

1

fS(x)
.

Let FS(x) and FS′(x) be the rational function representations of the sets S

and S ′, respectively.

FS(x) + FS′(x) =
fS(x) + fS′(x)

fS(x) · fS′(x)
=

gcd(fS(x), fS′(x)) · u(x)
fS(x) · fS′(x)

=
u(x)

lcm(fS(x), fS′(x))
,

for some polynomial u(x) ∈ R[x]. Hence, the poles of FS(x) + FS′(x) are
exactly the elements of S∪S ′ if u(x) and lcm(fS(x), fS′(x)) have no common
roots. To represent a set by a rational function, the authors of [SCK12]
exploit a reversed Laurent series, which is an infinite formal power series.

2.1.2 Reversed Laurent Series

For a positive integer q, a reversed Laurent series (RLS) over Zq is a singly
infinite sum of the form f(x) =

∑m
i=−∞ f [i]xi (f [m] ̸= 0), where m is an

integer and f [i] ∈ Zq for all i. We define the degree of f by m and denote it
by deg f . For an RLS f(x) and integers d1 and d2 with d1 ≤ d2 ≤ deg f , we
define f(x)[d1,d2] :=

∑d2
i=d1

f [i]xi. For polynomials f, g ∈ Zq[x] where g ̸= 0,
we refer to the RLS representation of a rational function f/g as the RLS of
f/g.

When q is a prime, the RLS representation has the following properties:

• The RLS representation for a given rational function is unique.

9



CHAPTER 2. PRIVATE SET UNION PROTOCOL

Input : f(x), g(x) ∈ Zq[x] with deg f < deg g and an integer k > deg g.
Output : k higher-order terms of the RLS representation of a rational
function f/g.

1. F (x)← f(x) · xk

2. Compute Q(x) and R(x) such that F (x) = g(x)Q(x) + R(x) and
degR < deg g using a polynomial division algorithm

3. Return Q(x) · x−k

Figure 2.1: RationalToRLS(f, g, k)

• Let f and g be polynomials in Zq[x] with deg f < deg g where g ̸= 0.
Then we can easily compute several higher-order terms of the RLS
representation of f/g in O (deg g(deg f + k)) operations in Zq [SCK12].
This algorithm is described in Figure 2.1.

• If deg f < deg g ≤ k and the bound k on deg g is given, along with the
higher-order 2k terms of a rational function f/g, we can recover two
polynomials v(x) and u(x) in Zq[x] such that v/u ≡ f/g (mod q) and
gcd(v, u) = 1 in O(k2) operations in Zq [Sho09, Section 17.5.1].

2.1.3 Additive Homomorphic Encryption

Let R be a commutative ring with unity and G be an R-module, where
r · g := gr for r ∈ R and g ∈ G. Let Encpk : R → G be a public key
encryption under the public key pk. We define a public key encryption for a
polynomial f =

∑deg f
i=0 f [i]xi ∈ R[x] as follows:

Epk(f) :=

deg f∑
i=0

Encpk(f [i])x
i.

Assume Encpk has an additive homomorphic property such that

Encpk(a+ b) = Encpk(a)Encpk(b), Encpk(ab) = Encpk(a)
b,

10
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for a, b ∈ R. Then, given two polynomials f =
∑deg f

i=0 f [i]xi and g =∑deg g
i=0 g[i]xi in R[x], we can induce homomorphic properties of E as follows:

• Polynomial addition: Given Epk(f) and Epk(g), Epk(f+g) is determined
by computing Encpk((f + g)[i]) = Encpk(f [i])Encpk(g[i]) for all 0 ≤ i ≤

max{deg f, deg g}, where f + g =
∑max{deg f,deg g}

i=0 (f + g)[i]xi.

• Polynomial multiplication: Given Epk(f) and g, Epk(fg) is determined
by calculating Encpk((fg)[ℓ]) =

∏
i+j=ℓ Encpk(f [i])g[j] for all 0 ≤ ℓ ≤ deg f +

deg g, where fg =
∑deg f+deg g

ℓ=0 (fg)[ℓ]xℓ.

Several efficient AHE schemes already exist [NS98, OU98, Pai99, CS03].
Under the assumption that factoring N = p2q is difficult, Okamoto and
Uchiyama [OU98] proposed a scheme with R = Zp and G = ZN in which
the order p of the message space R is hidden. With the decisional composite
residuosity assumption, the Paillier scheme [Pai99] with R = ZN and G =

ZN2 for N = pq was proposed in which the modulus of message spaces is a
hard-to-factor composite integer N . Naccache and Stern [NS98] proposed a
scheme with R = Zσ and G = ZN under the higher residuosity assumption,
where N = pq is a hard-to-factor integer and σ is a product of small primes
dividing ϕ(N) for Euler’s totient function ϕ.

In the above schemes, it is difficult to determine the roots of a polynomial
in R[x] without knowing a secret key. Determining a root of the polynomial
f(x) =

∏d
i=1(x− si) ∈ ZN [x] is equivalent to the factor N [Sha93]. However,

in the NS scheme, it is possible to compute the roots of a polynomial in Zσ[x]

since the factorization of σ is public. Since Zσ[x] is not a unique factorization
domain (UFD), the number of roots of a polynomial f ∈ Zσ[x] can be greater
than deg f . In fact, if f(x) =

∏d
i=1(x− si) ∈ Zσ[x], then the number of roots

of the polynomial f is dℓ̄, where ℓ̄ is the number of prime factors of σ. We
will use the NS scheme by presenting a method to efficiently recover all of
the roots of a polynomial f ∈ Zσ[x] satisfying certain criteria.

11
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2.1.4 Root Finding Algorithms

There are several efficient root finding algorithms for polynomials over fi-
nite fields. A polynomial of degree d over a field Fq can be factored in
Õ(d2 log q) field operations using a square-free decomposition and the Cantor-
Zassenhaus algorithm [VZGG13, Section 14.4]. Recently, this was improved
to O(d1.5+o(1)) field operations by Umans [Uma08].

2.2 New Polynomial Representation of a Set
In our set union protocol, each participant performs the following steps:

1. Each participant Pi represents their own private set Si as a polynomial
fSi

(x) =
∏

si,j∈Si
(x − ι(si,j)) ∈ Zσ[x] for some encoding function ι,

where Zσ is the message space of the utilized additive homomorphic
encryption scheme.

2. Each participant Pi computes the RLS polynomial

FSi(x) =

(
1

fSi(x)

)
[−(2n+1)k+1,−k]

· x(2n+1)k−1

and sends the encrypted polynomial F̃Si
= E(FSi

).

3. After interactions among participants, each participant Pi obtains the
resulting rational function

F (x) =

n∑
i=1

(
ri
fSi

)
[k−1,(2n+1)k−2]

=

(
u

lcm(fS1 , . . . , fSn)

)
[k−1,(2n+1)k−2]

for random polynomials ri and u. Then, participant Pi recovers
f∪Si

(x) = lcm(fS1 , . . . , fSn) in Zσ[x] and finds all roots of f(x) in the
image of ι.

In the second step, we execute RationalToRLS(1, fSi
, (2n + 1)k − 1) to

obtain (1/fSi
(x))[−(2n+1)k+1,−k]. However, to perform the third step, there

are two important questions that must be addressed:

12
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1. How is f∪Si
(x) recovered from F (x), and is it unique?

2. How can all roots of f∪Si
(x) in the image of ι be found efficiently?

For the first question, if F is defined over a field, f∪Si
can be recovered

from F using a rational function reconstruction, and it is unique since the
2nk higher-order terms of the RLS representation of u/lcm(fS1 , . . . , fSn) are
given such that deg (lcm(fS1 , . . . , fSn)) ≤ nk. For our purposes, F is not
defined over a field but over Zσ for a product σ of small primes. Thus, we
apply the rational function reconstruction to each F (x) mod qj, where qj is
a divisor of σ.

For the second question, it is difficult to recover the corresponding set ∪Si

from the polynomial f∪Si
∈ Zσ[x] since Zσ is not a UFD. Instead, it can be

factorized modulo qj using each divisor qj of σ, and the Chinese Remainder
Theorem (CRT) is applied to determine all roots of f∪Si

. However, this
process yields many root candidates.

In this section, we propose a special encoding function ι that enables us
to recover the exact corresponding set elements from the polynomial based
on our encoding scheme.

Parameter Settings For a given universe U , rational number 0 < α < 1,
and integer τ such that 3ατ and 3(1− α)τ are integers, choose the smallest
integer ℓ such that U ⊆ {0, 1}3ατℓ. Choose distinct primes qj of (3τ + 1)-bit,
where j = 1, . . . , , ℓ̄, set σ =

∏ℓ̄
j=1 qj, and let ℓ′ = ℓ̄− ℓ.

Naive Approach to Reduce Root Candidates Consider the rule that
each root si of f =

∏d
i=1(x − si) ∈ Zσ[x] has the same last bits in Zqj for

j = 1, · · · , ℓ̄. For example, let h : {0, 1}∗ → {0, 1}3(1−α)τ be a uniform hash
function. We divide si ∈ Zσ into ℓ̄ blocks si,1, . . . , si,ℓ̄ of 3ατ -bit so that
si = si,1|| · · · ||si,ℓ̄. Define the function ι′ : U ⊆ {0, 1}3ατℓ̄ → Zσ such that
ι′(si) is a unique element in Zσ with ι′(si) ≡ si,j||h(si) (mod qj). Let the
polynomial representation of the set S be fS(x) =

∏
si∈S(x− ι′(si)) ∈ Zσ[x].

13
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The actual roots among the candidates can be determined by checking
the hash values h(si). However, if there exist s and s′ with h(s) = h(s′) and
s ̸= s′, there are at least 2ℓ̄ root candidates that are possible combinations
of (s1, s′1), · · · , (sℓ̄, s′ℓ̄). The probability of the event is less than

1−
(
1− 1

2(1−3α)τ

)
· · ·
(
1− d− 1

2(1−3α)τ

)
≈ 1− exp

(
−

d−1∏
i=1

i

2(1−3α)τ

)
≈ d2

2 · 2(1−3α)τ
,

which is not negligible even for small α. Moreover, the expected computation
cost is Ω(2ℓ̄).

2.2.1 New Invertible Polynomial Representation

We present a new polynomial representation to recover a set from a poly-
nomial over Zσ. For optimization, we take α = 1

3
, U ⊆ {0, 1}τℓ. If α ̸= 1

3
,

the expected computation occurs in polynomial time only when the size of
the universe is restricted. Details about the proper size of α can be found in
Section 2.2.3.

· · ·
· · ·

· · ·

. . .

(mod q1)

(mod q2)

(mod q¯̀)

...
...

...

Figure 2.2: Our Encoding Function ι

Let h : {0, 1}∗ → {0, 1}2τ and hj : {0, 1}∗ → {0, 1}τ be uniform hash
functions for 1 ≤ j ≤ ℓ′. Parse a message si ∈ U ⊆ {0, 1}τℓ into ℓ blocks
si,1, . . . , si,ℓ of τ -bit so that si = si,1|| · · · ||si,ℓ. Let si,ℓ+j = hj(si) for 1 ≤ j ≤
ℓ′ and parse h(si) into two blocks si,ℓ̄+1 and si,ℓ̄+2 of τ -bit. Set ℓ̄ = ℓ+ ℓ′. We
define the encoding function ι : U ⊆ {0, 1}τℓ → Zσ, where ι(si) is the unique
element in Zσ satisfying ι(si) ≡ si,j||si,j+1||si,j+2 mod qj for 1 ≤ j ≤ ℓ̄. Then,
a set S can be represented as a polynomial fS(x) =

∏
si∈S(x− ι(si)) ∈ Zσ[x].

14
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Decoding Phase Let s(i)j := ι(si) mod qj for each message si = si,1|| · · · ||si,ℓ.
For 1 ≤ j ≤ ℓ̄− 1, define (s

(i)
j , s

(i′)
j+1) ∈ Zqj × Zqj+1

to be a linkable pair if the
last (2τ)-bit of s(i)j are equal to the first (2τ)-bit of s(i

′)
j+1, i.e., si,j+1||si,j+2 =

si′,j+1||si′,j+2. Inductively, we also define (s
(i1)
1 , · · · , s(ij+1)

j+1 ) ∈ Zq1×· · ·×Zqj+1

to be a linkable pair if (s(i1)1 , · · · , s(ij)j ) and (s
(ij)
j , s

(ij+1)
j+1 ) are linkable pairs.

s(i1)1 =

s(i2)2 =

s(i3)3 =

si1,1||si1,2||si1,3

si3,3||si3,4||si3,5

)
⇣
s(i1)1 , s(i2)2 , s(i3)3

⌘
is a linkable pair.

si2,2||si2,3||si2,4

Figure 2.3: Linkable Pair
Let ι(si) and ι(si′) be the images of elements si and si′ , respectively, of

the function ι with si ̸= si′ . The following properties can easily be confirmed:

•
(
s
(i)
1 , · · · , s(i)j+1

)
is always a linkable pair.

• When si and si′ are uniformly chosen strings from {0, 1}τℓ,

Pr[(s(i)j , s
(i′)
j ) is a linkable pair] = Pr [si,j+1||si,j+2 = si′,j+1||si′,j+2] =

1

22τ

for a fixed 1 ≤ j ≤ ℓ̄.

In the decoding phase, when a polynomial f(x) =
∏d

i=1(x− ι(si)) ∈ Zσ[x]

is given, two phases are performed to find the correct d roots of the polyno-
mial f(x). In the first stage, all of the roots {s(1)j , · · · , s(d)j } are computed over
Zqj [x] for each j. Sequentially, for each j from 1 to ℓ̄−1, we determine all link-
able pairs among {s(1)j , · · · , s(d)j } and {s(1)j+1, · · · , s

(d)
j+1} by checking whether

the last (2τ)-bit of s(i)j and the first (2τ)-bit of s(i
′)

j+1 are the same. This can
be achieved in d2 comparisons or O(d log d) computations using sorting and
determining algorithms.

After ℓ̄ − 1 steps, we obtain d′ linkable pairs of the ℓ̄-tuple, which are
candidate roots of the polynomial f and elements of the set; this also includes
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d elements corresponding to ι(s1), . . . , ι(sd). Note that if d′ is much larger
than d, this can be problematic. However, we show that the expected value
of d′ is at most 3d in Theorem 2.2.1.

After obtaining d′ linkable pairs of the ℓ̄-tuple, in the second phase, we
check whether each pair belongs to the image of ι using the following equal-
ities:

si,ℓ+j = hj(si) for all 1 ≤ j ≤ ℓ′, (2.2.1)

si,ℓ̄+1|| si,ℓ̄+2 = h(si). (2.2.2)

The linkable pairs of the ℓ̄-tuple, corresponding to ι(si) for some i, clearly
satisfy the above equations. However, for a random ℓ̄-tuple in Zq1 × · · · ×
Zqℓ̄

, the probability that it satisfies (2.2.1) is approximately 1
2τℓ

′ , and the
probability that it satisfies (2.2.2) is approximately 1

22τ
under the assumption

that h and hj are uniform hash functions. Hence, the expected number of
wrong ℓ̄-tuples passing both phases is less than d× 1

2τ(2+ℓ′) , which is less than
2−λ for a security parameter λ if ℓ′ satisfies

ℓ′ >
3(λ+ log d)

log d+ 2 log d0
− 2. (2.2.3)

For example, when λ = 80 and d ≈ d0 ≈ 210, ℓ′ is approximately 8. There-
fore, a set can be recovered from the given polynomial represented by our
scheme without a negligible failure probability in the security parameter.

Computational Complexity We determine the computational cost of
our representation. The encoding phase consists of two steps: (1) the CRT
computation per element to obtain a value of the encoding function ι, and (2)
the polynomial expansion. The first step requires O(d log2 σ) bit operations
for d elements, and the second step requires O(d2) multiplications. Hence,
the complexity for the encoding phase is O(d2) multiplications.

The decoding phase can be divided into three steps: (1) finding roots of
the polynomial f in Zqj for each j, (2) finding all linkable pairs of length ℓ̄,
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and (3) verifying (2.2.1) and (2.2.2). These steps require O(ℓ̄d1.5) multiplica-
tions, O(ℓ̄d log d) bit operations, and O(ℓ′d) hash computations, respectively.
Hence, the complexity for the decoding phase is dominated by O(ℓ̄d1.5) mul-
tiplications.

2.2.2 The Expected Number of Root Candidates

We analyze the expected number of linkable pairs of an ℓ̄-tuple when a set
is recovered from a polynomial of degree d that is represented according to
our scheme.

A set of κ elements s
(1)
j , · · · , s(κ)j ∈ Zqj is called a κ-collision if its last

2τ -bit are the same. Since (s
(i)
j−1, s

(i)
j ) is a trivial linkable pair for 1 ≤ i ≤ κ, a

κ-collision induces at least κ linkable pairs. Assume that S = {s1, . . . , sd} is
a uniformly and randomly chosen set in the set of subsets of cardinality d of
the set {0, 1}τℓ. Furthermore, assume that h and hj utilized in the encoding
function ι are uniform hash functions. Then the following observations can
easily be obtained:

1. The probability that at least one 2-collision occurs in Zqj is less than
1
2

by the birthday paradox.

2. The probability that at least one κ-collision occurs for κ ≥ 3 in Zqj is
at most 1

4d
≈ 1

2(2+τ) of the probability that at least one (κ− 1)-collision
occurs [STKT06, Theorem 2].

3. A κ-collision in Zqj yields κ2 more root candidates of the polyno-
mial f , not 2κ candidates. More precisely, assume that a κ-collision
{s(1)j , · · · , s(κ)j } occurs. Then s

(1)
j can be combined with κ candidates

{s(1)j+1, · · · , s
(κ)
j+1}; hence, κ2 linkable pairs are generated.

These observations are evidence that the expected number of linkable pairs
of an ℓ̄-tuple is not large. The expected number of 2-collisions in Zqj for all j
is approximately ℓ̄

2
, and the expected number of κ-collisions in Zqj for κ ≥ 3
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is negligible. The following theorem provides a rigorous analysis of the upper
bound of the expected number of linkable pairs of an ℓ̄-tuple.

Theorem 2.2.1. Let S = {s1, . . . , sd} be a uniformly and randomly chosen
set in the set of subsets of cardinality d of the set {0, 1}τℓ. Define an encoding
function ι : {0, 1}τℓ → Zσ so that ι(si) is the unique element in Zσ satisfying
ι(si) ≡ si,j||si,j+1||si,j+2 mod qj for all 1 ≤ j ≤ ℓ̄ when si = si,1|| . . . ||si,ℓ and
si,j is τ -bit. Assume h and hj utilized in the encoding function ι are uniform
hash functions. Then the expected number of linkable pairs of the ℓ̄-tuple is
at most 3d for a polynomial fS =

∏
si∈S(x− si).

Proof. Let Ej be the expected number of linkable pairs of a j-tuple in Zq1 ×
· · · × Zqj for j ≥ 2. For 1 ≤ j ≤ j′ ≤ ℓ̄, let Sj′−j+1(ij, . . . , ij′) be the event
that (s

(ij)
j , . . . , s

(ij′ )

j′ ) is a linkable pair. Then,

E2 =
∑

i1,i2∈{1,...,d}

1 · Pr[S2(i1, i2)]

=
∑

i1,i2∈{1,...,d}

Pr[S2(i1, i2) ∧ (i1 = i2)] +
∑

i1,i2∈{1,...,d}

Pr[S2(i1, i2) ∧ (i1 ̸= i2)]

=
∑

i1∈{1,...,d}

Pr[S2(i1, i1)] +
∑

i1 ̸=i2∈{1,...,d}

Pr[S2(i1, i2)]

= d+ d(d− 1)
1

22τ
= d

(
1 +

d− 1

22τ

)
,

since Pr[S2(i1, i1)] = 1 for i1 ∈ {1, . . . , d} and Pr[S2(i1, i2)] =
1

22τ
for distinct

i1, i2 ∈ {1, . . . , d} from (2.2.1).
Now, we consider the relation between Ej and Ej+1. When (s

(i1)
1 , . . . , s

(ij)
j )

is a linkable pair, consider the case when (s
(i1)
1 , . . . , s

(ij)
j , s

(ij+1)
j+1 ) is a linkable

pair. This case can be classified into the following three subcases:

1. ij+1 = ij,

2. (ij+1 ̸= ij) ∧ (ij+1 = ij−1),

3. (ij+1 ̸= ij) ∧ (ij+1 ̸= ij−1).
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For the first case, if ij+1 = ij and (s
(i1)
1 , . . . , s

(ij)
j ) is a linkable pair, then

(s
(i1)
1 , . . . , s

(ij)
j , s

(ij+1)
j+1 ) is always a linkable pair. Hence,

E(1)
j+1 :=

∑
i1,...,ij+1

Pr [Sj+1(i1, . . . , ij, ij+1) ∧ (ij+1 = ij)]

=
∑

i1,...,ij

Pr [Sj(i1, . . . , ij)] = Ej.

For the second case, if ij+1 = ij−1 ̸= ij and (s
(i1)
1 , . . . , s

(ij)
j ) form a linkable

pair, then the relation sij−1,j+1 = sij ,j+1 = sij+1,j+1 is satisfied from the
encoding rule of ι. Hence,

E(2)
j+1 :=

∑
i1,...,ij+1∈{1,...,d}

Pr[Sj+1(i1, . . . , ij , ij+1) ∧ (ij+1 = ij−1 ̸= ij)]

=
∑

i1,...,ij+1∈{1,...,d}
ij+1=ij−1 ̸=ij

Pr [Sj(i1, . . . , ij) ∧ S2(ij , ij+1)]

=
∑

i1,...,ij+1∈{1,...,d}
ij+1=ij−1 ̸=ij

Pr[Sj(i1, . . . , ij) ∧ (sij ,j+1||sij ,j+2 = sij+1,j+1||sij+1,j+2)]

=
∑

i1,...,ij+1∈{1,...,d}
ij+1=ij−1 ̸=ij

Pr
[
Sj(i1, . . . , ij) ∧ (sij ,j+2 = sij+1,j+2)

]
=

∑
i1,...,ij+1∈{1,...,d}

ij+1=ij−1 ̸=ij

Pr [Sj(i1, . . . , ij)]Pr
[
sij ,j+2 = sij+1,j+2

]

=
1

2τ

∑
i1,...,ij+1∈{1,...,d}

ij+1=ij−1 ̸=ij

Pr [Sj(i1, . . . , ij)]

≤ 1

2τ

∑
i1,...,ij∈{1,...,d}

Pr [Sj(i1, . . . , ij)] =
1

2τ
Ej .
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For the last case, the following result can be obtained:

E(3)
j+1 :=

∑
i1,...,ij+1∈{1,...,d}

Pr[Sj+1(i1, . . . , ij , ij+1) ∧ ((ij+1 ̸= ij) ∧ (ij+1 ̸= ij−1))]

=
∑

i1,...,ij+1∈{1,...,d}
ij+1 /∈{ij−1,ij}

Pr [Sj(i1, . . . , ij) ∧ S2(ij , ij+1)]

=
∑

i1,...,ij+1∈{1,...,d}
ij+1 /∈{ij−1,ij}

Pr[Sj(i1, . . . , ij) ∧ (sij ,j+1||sij ,j+2 = sij+1,j+1||sij+1,j+2)]

=
∑

i1,...,ij+1∈{1,...,d}
ij+1 /∈{ij−1,ij}

(
Pr [Sj(i1, . . . , ij)]× Pr

[
sij ,j+1||sij ,j+2 = sij+1,j+1||sij+1,j+2

] )

≤ d− 1

22τ

∑
i1,...,ij∈{1,...,d}

Pr [Sj(i1, . . . , ij)] =
d− 1

22τ
Ej .

The above results yield the following recurrence formula for Ej:

Ej+1 = E(1)
j+1 + E(2)

j+1 + E(3)
j+1 ≤

(
1 +

1

2τ
+

d− 1

22τ

)
Ej

for j ≥ 2; hence

Eℓ̄ ≤ d

(
1 +

1

2τ
+

d− 1

22τ

)ℓ̄−1

,

since E2 = d
(
1 + d−1

22τ

)
≤ d

(
1 + 1

2τ
+ d−1

22τ

)
.

Now, we show that ℓ̄ ≤ 22τ

2τ+d
. From the parameter settings, it follows that

ℓ̄ ≤ min{d, ⌊logN⌋−2
3τ

}. When d0 ≥ 8d,

min
{
d,
⌊logN⌋ − 2

3τ

}
≤ d ≤ d

1/3
0 d2/3

2
.

Consider the case when d0 < 8d. Then it is also true that

min
{
d,
⌊logN⌋ − 2

3τ

}
≤ ⌊logN⌋ − 2

3τ
≤ d0

3τ
≤ d

1/3
0 d2/3

2
,
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since τ ≥ 3. Hence,

ℓ̄ ≤ min
{
d,
⌊logN⌋ − 2

3τ

}
≤ d

1/3
0 d2/3

2
≤ (d20d)

2/3

2d0
≤ 22τ

2τ + d
,

since 2d0 > 2τ + d. Therefore, we obtain the following result:

Eℓ̄ ≤ d

(
1 +

1

2τ
+

d− 1

22τ

)ℓ̄−1

< ed < 3d,

where e ≈ 2.718 is the base of the natural logarithm. Equivalently, the upper
bound of the expected number of linkable pairs of an ℓ̄-tuple is 3d.

2.2.3 The Proper Size of α

We consider the proper size of α. Let α = b
a

for relatively prime numbers a

and b with a < b, and assume ℓ and ℓ′ are divisible by b. Let h : {0, 1}∗ →
{0, 1}3(1−α)τ and hi : {0, 1}∗ → {0, 1}3ατ be uniform hash functions for 1 ≤
i ≤ ℓ′. Note that the prime factor qj of the message modulus σ on the NS
AHE scheme is a (3τ +1)-bit prime, and the outputs of the hash functions h
and hi are less than qj for all j. Assume that 3ατ and 3(1−α)τ are integers.
Parse a message si ∈ U ⊆ {0, 1}3ατℓ into ℓ blocks si,1, · · · , si,ℓ of 3ατ -bit so
that si = si,1|| · · · ||si,ℓ. Let si,ℓ+j = hj(si) for 1 ≤ j ≤ ℓ′ and parse h(sj) into
(a− b) blocks si,ℓ̄+1, · · · , si,ℓ̄+a−b of 3ατ -bit. Set ℓ̄ = ℓ+ ℓ′.

We define an encoding function ια : U ⊆ {0, 1}3ατℓ → Zσ, where ια(si) is
the unique element in Zσ satisfying ια(si) = si,(j−1)b+1|| · · · ||si,(j−1)b+a mod qj

for a composite σ =
∏ℓ̄

j=1 qj. Then a set S can be represented as a polynomial
f(x) =

∏
si∈S (x− ια(si)) ∈ Zσ[x].

For each message si = si,1|| · · · ||si,ℓ, denote ια(si) mod qj by s
(i)
j . We now

generalize the definition of a linkable pair. Specifically, define (s
(i)
j , s

(i′)
j+1) ∈

Zqj × Zqj+1
to be a linkable pair if the last 3(1 − α)τ -bit of s(i)j are equal to

the first 3(1−α)τ -bit of s(i
′)

j+1. Inductively, we also define (s
(i1)
1 , · · · , s(ij+1)

j+1 ) ∈
Zq1 × · · · ×Zqj+1

to be a linkable pair if (s(i1)1 , · · · , s(ij)j ) and (s
(ij)
j , s

(ij+1)
j+1 ) are

linkable pairs.
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Let ια(si) and ια(si′) be the images of si and si′ , respectively, of the
encoding function ια with si ̸= si′ . Assume that si and si′ are uniformly
chosen strings from {0, 1}3ατℓ. Then,

Pr[(s(i)j , s
(i′)
j ) is a linkable pair]

= Pr
[
si,jb+1|| · · · ||si,(j−1)b+a = si′,jb+1|| · · · ||si′,(j−1)b+a

]
=

1

23(1−α)τ
(2.2.4)

for fixed 1 ≤ j ≤ ℓ̄.
In the decoding phase, when a polynomial f(x) =

∏d
i=1(x − ια(si)) is

given, one can compute all roots {s(1)j , · · · , s(d)j } over Zqj . Then, sequen-
tially for each j from 1 to ℓ̄ − 1, we determine all linkable pairs between
{s(1)j , · · · , s(d)j } and {s(1)j+1, · · · , s

(d)
j+1} and check the hash values to find the d

correct si values.

Theorem 2.2.2. Let S = {s1, . . . , sd} be a uniformly and randomly chosen
set in the set of subsets of cardinality d of the set {0, 1}3ατℓ for 0 < α < 1.
Define an encoding function ια : {0, 1}3ατℓ → Zσ so that ια(si) is the unique
element in Zσ satisfying ια(si) ≡ si,(j−1)b+1|| · · · ||si,(j−1)b+a mod qj for all
1 ≤ j ≤ ℓ̄ when si = si,1|| · · · ||si,ℓ, where si,j is 3ατ -bit and α = b

a
for

relatively prime a and b. Assume that ℓ and ℓ′ are divisible by b and assume
h and hj utilized in the encoding function ι are uniform hash functions.

The expected number of linkable pairs of an ℓ̄-tuple is at most

d

(
1 +

3

2min{3ατ,(2−3α)τ}

)ℓ̄−1

,

for a polynomial f(x) =
∏d

i=1(x− ια(si)).

Proof. Let Ej be the expected number of linkable pairs of a j-tuple in Zq1 ×
· · · × Zqj for j ≥ 2. For 1 ≤ j ≤ j′ ≤ ℓ̄, let Sj′−j+1(ij, . . . , ij′) be the event
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that (s
(ij)
j , . . . , s

(i′j)

j′ ) is a linkable pair. Then,

E2 =
∑

i1,i2∈{1,...,d}

1 · Pr[S2(i1, i2)]

=
∑

i1,i2∈{1,...,d}

Pr[S2(i1, i2) ∧ (i1 = i2)] +
∑

i1,i2∈{1,...,d}

Pr[S2(i1, i2) ∧ (i1 ̸= i2)]

=
∑

i1∈{1,...,d}

Pr[S2(i1, i1)] +
∑

i1 ̸=i2∈{1,...,d}

Pr[S2(i1, i2)]

= d+ d(d− 1)
1

23ατ
= d

(
1 +

d− 1

23ατ

)
,

since Pr[S2(i1, i1)] = 1 for i1 ∈ {1, . . . , d} and Pr[S2(i1, i2)] =
1

23ατ for distinct
i1, i2 ∈ {1, . . . , d} from (2.2.4).

Now, we consider the relation between Sj and Sj+1. When (s
(i1)
1 , . . . , s

(ij)
j )

is a linkable pair, consider the case when (s
(i1)
1 , . . . , s

(ij)
j , s

(ij+1)
j+1 ) is a linkable

pair. This case can be classified into the following subcases:

1. ij+1 = ij,

2. ij+1 = ij−k /∈ {ij−k+1, . . . , ij} for k = 0, . . . , ⌊a−1
b
⌋ − 1,

3. ij+1 = ij−k /∈ {ij−k+1, . . . , ij} for k = ⌊a−1
b
⌋, . . . , j − 1.

For the first case, if ij+1 = ij and {s(i1)1 , · · · , s(ij)j } is a linkable pair, then
{s(i1)1 , · · · , s(ij)j , s

(ij+1)
j+1 } always forms a linkable pair. Hence,

E(1)
j+1 :=

∑
i1,...,ij+1∈{1,...,d}

Pr [Sj+1(i1, . . . , ij , ij+1) ∧ (ij+1 = ij)]

=
∑

i1,...,ij∈{1,...,d}

Pr [Sj(i1, . . . , ij)] = Ej .
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For the second case, if 0 ≤ k ≤ ⌊a−1
b
⌋ − 1,

E(2)
j+1 :=

∑
i1,...,ij+1∈{1,...,d}

Pr[Sj+1(i1, . . . , ij+1)d ∧ (ij+1 = ij−k /∈ {ij−k+1, . . . , ij})]

=
∑

i1,...,ij+1∈{1,...,d}
ij+1=ij−k /∈{ij−k+1,...,ij}

Pr
[
Sj(i1, . . . , ij) ∧ S′

j(ij , ij+1)
]

≤
⌊a−1

b ⌋−1∑
k=0

∑
i1,...,ij∈{1,...,d}

1

23kατ
Pr[Sj(i1, . . . , ij) ≤

2

23ατ
Ej ,

since the last τ(1 − (k+1)b+1
a

)-bit of s(ij−k)

j−k and the first τ(1 − (k+1)b+1
a

)-bit
of s(ij+1)

j+1 are equal from the encoding rule of ια when S′j(ij, ij+1) is the event
that sij ,(j−k−1)b+a+1|| · · · ||sij ,(j−1)b+a = sij+1,(j−k−1)b+a+1|| · · · ||sij+1,(j−1)b+a.

For ⌊a−1
b
⌋ ≤ k < j, if ij+1 = ij−k /∈ {ij−k+1, . . . , ij}, then

{(j − k)b+ 1, . . . , (j − k − 1)b+ a)} ∩ {jb+ 1, . . . , jb+ a} = ∅.

Hence,

E(3)
j+1 :=

∑
i1,...,ij+1∈{1,...,d}

Pr[Sj+1(i1, . . . , ij+1) ∧ (ij+1 = ij−k /∈ {ij−k+1, . . . , ij})]

=
∑

i1,...,ij+1∈{1,...,d}
ij+1=ij−k /∈{ij−k+1,...,ij}

Pr[Sj(i1, . . . , ij)] · Pr[S2(ij , ij+1)]

=

j−1∑
k=⌈ a−1

b ⌉

∑
i1,...,ij∈{1,...,d}

1

23(1−α)τ
Pr[Sj(i1, . . . , ij)] ≤

d

23(1−α)τ
Ej ,

since
∑j−1

k=⌈a−1
b
⌉

1
23(1−α)τ ≤ ℓ̄

23(1−α)τ ≤ d
23(1−α)τ .

The above results yield the following recurrence formula for Ej:

Ej+1 = E(1)
j+1 + E(2)

j+1 + E(3)
j+1 ≤

(
1 +

2

23ατ
+

d

23(1−α)τ

)
Ej
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for j ≥ 2. Therefore,

Eℓ̄ ≤
(
1 +

2

23ατ
+

d

23(1−α)τ

) ∑
i1,...,iℓ̄−1∈{1,...,d}

Pr[Sℓ̄(i1, . . . , iℓ̄−1)]

≤
(
1 +

2

23ατ
+

d

23(1−α)τ

)ℓ̄−2 ∑
i1,i2∈{1,...,d}

Pr[S2(i1, i2)]

≤ d

(
1 +

3

2min{3ατ,(2−3α)τ}

)ℓ̄−1

.

If ℓ̄ ≥ 2min{3ατ,(2−3α)τ}, then d
(
1 + 3

2min{3ατ,(2−3α)τ}

)ℓ̄−1 exponentially in-
creases. Hence, a restriction on ℓ̄ is required to ensure ℓ̄ < 2min{3ατ,(2−3α)τ}.
However, if α ̸= 1

3
, then either 3α or (2−3α) is less than 1; hence, 2min{3ατ,(2−3α)τ}

less than min
{
d, ⌊logN⌋−2

3τ

}
if d and logN are increasing. This limits the size

of the universe since |U| ≤ 23ατℓ when α ̸= 1
3
. Therefore, we fix α so that the

universe U is a subset of {0, 1}τℓ, i.e., α = 1
3
.

2.3 New Privacy-preserving Set Union Pro-
tocols

In this section, we present set union protocols based on our polynomial rep-
resentation described in Section 2.2. Our construction exploits the NS AHE
scheme to encrypt a rational function whose denominator corresponds to a
participant’s set. We also explain how to modify our polynomial representa-
tion for the construction of a multi-set union protocol. Note that some parts
of this section are collaborated with results from Hyung Tae Lee [Lee12].

2.3.1 Application of Our Polynomial Representation

In our protocol, we represent each participant’s set Si using the polynomial
representation fSi

:=
∏

sj∈Si
(x − ι(sj)) ∈ Zσ[x], where ι is an encoding
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function. Then, we convert the rational function 1/fSi
to its RLS over Zσ.

Since the RationalToRLS algorithm only requires polynomial divisions and
the polynomial fSi

is monic, the conversion algorithm works well on Zσ[x].
After the interactions among participants conclude, each participant ob-

tains 2nk higher-order terms of the RLS representation of the rational func-
tion u(x)

U(x)
, where U(x) = lcm(fS1(x), . . . , fSn(x)). Note that there is no algo-

rithm to recover u′(x) and U ′(x) in Zσ[x] such that u(x)
U(x)

= u′(x)
U ′(x)

. However,
from our polynomial representation, this only requires knowing U ′(x) mod qj

for each j, which can be obtained from the RLS representation modulo qj by
running the polynomial recovery algorithm on Zqj [x].

The following lemma guarantees that in a polynomial ring Zσ[x], a mod-
ular operation by a prime divisor q of σ and the RationalToRLS algorithm
are commutative. We will use this lemma to prove the correctness of our
protocol.

Lemma 2.3.1. Let f and g be polynomials in Zσ[x] with deg f < deg g and
g is the monic polynomial. For each prime q that divides σ and an integer
k > deg g,

RationalToRLS(f mod q, g mod q, k) = RationalToRLS(f, g, k) mod q.

Proof. Let RationalToRLS(f, g, k) = Q(x)x−k, where xkf(x) = Q(x)g(x) +

R(x) in Zσ[x] with R = 0 and degR < deg g. For each polynomial p(x)

in Zσ[x], denote p(x) mod q by pq(x). Then xkfq(x) = Qq(x)gq(x) + Rq(x)

in Zq[x], where Rq = 0 or degRq ≤ degR < deg g = deg gq. Since the
division algorithm uniquely outputs the quotient and remainder in Zq[x],
RationalToRLS(f mod q, g mod q, k) = Qq(x)x

−k ≡ Q(x)x−k mod q.

The following lemma provides information on the distribution of uj(x) :=

u(x) mod qj in our protocol, which will be used to prove the security of
our set union protocol. This lemma guarantees that the distributions of
uj(x) and u(x) are uniformly distributed among the polynomials in the set
of polynomials of degree at most deg(lcm(fS1 , . . . , fSn)) − 1 in Zqj [x] and
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Zσ[x], respectively. The proof of Lemma 2.3.2 is given in [SCK12].

Lemma 2.3.2 ([SCK12, Lemma 1]). Let fS1(x), . . . , fSn(x) ∈ Zq[x] be poly-
nomials of degree k ≥ 1 for a prime q. Suppose r1(x), . . . , rn(x) are polyno-
mials in Zq[x] chosen uniformly and independently in the set of polynomials
of degree at most k − 1. Let u(x) be a polynomial such that

u(x)

lcm(fS1(x), . . . , fSn(x))
=

n∑
i=1

ri(x)

fSi
(x)

.

Then u(x) is uniformly distributed among the polynomials in the set of poly-
nomials in Zq[x] with degree at most deg(lcm(fS1(x), . . . , fSn(x)))− 1.

Finally, to recover the exact U(x) = lcm(fS1 , . . . , fSn) from the rational
function u(x)

U(x)
, the relation gcd(u(x), U(x)) = 1 must be satisfied. In our set

union protocol, since uj(x) := u(x) mod qj is uniformly distributed in Zqj [x]

and the expected number of roots of a random polynomial is one [Leo06],
we expect our RLS representation to fail to output all the elements in the
set union with probability d

qj
≈ 2−2τ . Furthermore, for a certain j, the

probability this occurs is approximately 1− (1− d
qj
)ℓ̄ ≈ ℓ̄d

qj
≤ 2−τ ; although

this value is not negligible, it is still sufficiently small.

2.3.2 Honest-But-Curious Model

Threshold Naccache-Stern Encryption In our protocol, group decryp-
tion requires a semantically secure threshold NS AHE scheme. We provide
a threshold version of the NS encryption scheme in the full version of this
paper [CHL12]. Our construction is based on the technique of Fouque et
al. [FPS01], which transforms the original Paillier homomorphic encryption
scheme into a threshold version using Shoup’s technique [Sho00].

Parameter Settings Let U be the universe, n be the number of partic-
ipants, and k be the maximum size of participant datasets. Let d be the
possible maximum size of the set union, i.e., , d = nk. Let the bit size
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be N by considering the security of the threshold NS AHE scheme, which
is the modulus of the scheme. Furthermore, let d0 = max{d, ⌈logN⌉} and
τ = 1

3
(log d + 2 log d0). Set ℓ so that U ⊆ {0, 1}τℓ, set a proper size of ℓ′

so that (2.2.3) is satisfied, and let ℓ̄ = ℓ + ℓ′. Note that ℓ̄ must be smaller
than min

{
d, ⌊logN⌋−2

3 log logN

}
since τ ≥ log logN . Generate the parameters of the

threshold NS encryption scheme, including the size of the message space σ,
which is a product of ℓ̄ (3τ + 1)-bit distinct primes qi.

Our Set Union Protocol for the Honest-But-Curious Case Our set
union protocol against Honest-But-Curious (HBC) adversaries is described
in Figure 2.4. In this set union protocol, each participant computes the 2nk

higher-order terms of the RLS representation of FSi
= 1

fSi
= 1∏

si,j∈Si
(x−ι(si,j)) ∈

Zσ[x] for the encoding function ι and sends its encryption to all other par-
ticipants. When the encryptions of FSj

for 1 ≤ j ≤ n are received, each
participant Pi multiplies by a polynomial ri,j using the additive homomor-
phic property and adds all the resulting polynomials to obtain the encryp-
tion of ϕi(x) =

∑n
j=1 FSj

· ri,j. Note that ri,j is randomly chosen by the
participant Pi. Then, the participant sends the encryption of ϕi(x) to all
other participants. After interactions among participants conclude, each
participant obtains the 2nk higher-order term of the RLS representation of
F (x) =

∑n
i=1

(∑n
j=1

1
fSj
· ri,j

)
∈ Zσ[x] using group decryption. Further-

more, the participants recover the polynomials uj(x) and Uj(x) such that(
uj(x)

Uj(x)

)
[−2nk,−1]

= (F (x) mod qj)[k−1,(2n+1)k−2]·x−(2n+1)k+1 and gcd(uj(x), Uj(x)) =

1 in Zqj [x] from these values. Thereafter, each participant extracts all roots
of Uj(x) over Zqj for each j and recovers all elements based on the criteria
of our representation.

Security Analysis We consider the correctness and privacy of our pro-
posed protocol described in Figure 2.4. The following theorems guarantee
the correctness and privacy of our construction.

Theorem 2.3.1. In the protocol described in Figure 2.4, every participant
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learns the set union of private inputs of participating players with high prob-
ability.

Proof. After Step 3(b), all participants obtain the 2nk higher-order terms of
F (x) =

∑n
i=1

(∑n
j=1

1
fSj
· ri,j

)
∈ Zσ[x]; hence, they obtain the 2nk higher-

order terms of the RLS representation of F (x) mod qj. From these values,
using a polynomial recovery algorithm, they reconstruct polynomials uj(x)

and Uj(x) so that uj(x)

Uj(x)
≡ Fj(x) mod qj and gcd(uj(x), Uj(x)) = 1. From (4)

and Lemma 2.3.1, Uj = (lcm(fS1 , fS2 , . . . , fSn) mod qj) with high probability.
Since our polynomial representation produces the exact corresponding set
with overwhelming probability, it provides S1 ∪ . . . ∪ Sn.

Theorem 2.3.2. Assume that the utilized AHE scheme is semantically se-
cure. Then in the set union protocol for the HBC case described in Figure 2.4,
any adversary Adv, colluding fewer than n HBC participants, learns no more
information than would be gained by using the same private inputs in the
ideal model with a trusted third party.

Proof. Since the utilized AHE scheme is semantically secure, each participant
learns only F (x) =

∑n
j=1 (

∑n
i=1 ri,j)FSj

in Zσ[x]. All players contribute to
generate the polynomial

∑n
i=1 ri,j, and the polynomial

∑n
i=1 ri,j is uniformly

distributed and unknown. Moreover, the resulting polynomials uj are uni-
formly distributed according to Lemma 2.3.2. Hence, no information can
be recovered from the polynomial F , Uj, or uj, other than that given by
revealing the union set.

Performance Analysis It is clear that our protocol runs in O(1) rounds.
We now consider the computational and communicational costs of each par-
ticipant.

Step 1(a) requires Õ(k) multiplications in Zσ for a polynomial expansion
of degree k and O(kd) multiplications to run the RationalToRLS algorithm
and compute FSi

.
Step 1(b) requires O(d) exponentiations for 2d encryptions and O(nd)

communication costs.
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Step 2(b) requires O(d2) exponentiations for computing the encryption
ϕ̃i :=

∑n
j=1 F̃Sj

· ri,j using the additive homomorphic property and O(nd)

communication costs.
Step 3(a) requires O(nd) multiplications for computing

∑n
i=1 ϕ̃i.

Step 3(b) requires O(d) exponentiations for the decryption sharing com-
putation for 2d ciphertexts and O(ℓ̄

√
dqi) multiplications for solving d dis-

crete logarithm problems (DLPs) for ℓ̄ groups of order qj†. The communica-
tion cost is O(nd).

Step 4(a) requires O(d2) multiplications in Zqj to recover Uj(x) using an
extended Euclidean algorithm for each j.

Step 4(b) requires O(d1.5+o(1)) multiplications in Zqj for each j to factor
a polynomial of degree d.

Step 4(c) requires O(ℓ̄d log d log qj) bit operations for sorting and O(d)

hash computations.
The computational complexity is dominated by one of the O(d2) expo-

nentiation terms in Step 2(b) and O(ℓ̄
√
dqi) multiplications in Step 3(b).

Since one modular exponentiation for a modulus N requires O(logN) multi-
plications and ℓ̄ < min

{
d, ⌊logN⌋−2

3 log logN

}
, the computational complexity for each

participant is dominated by O(d2) = O(n2k2) exponentiations in ZN , and the
total complexity is O(n3k2) exponentiations in ZN . The total communication
cost for our protocol is O(n2d) = O(n3k) (logN)-bit elements.

2.3.3 Malicious Model

Zero-knowledge Proofs We exploit the following zero-knowledge proofs
for the malicious adversary model. We can efficiently construct the required
zero-knowledge proofs for the NS encryption scheme by applying standard
techniques [CS97, CDN01]. We briefly introduce how to construct the follow-
ing zero-knowledge proofs. Let Epk be the encryption of a polynomial defined

†Note that one must solve ℓ̄ DLPs over a group of order qi for one decryption in the
NS encryption scheme. In Step 3(b), one must solve 2d = 2nk DLPs over a group of order
qi for each qi. It requires O(

√
dqi) multiplications to solve d DLPs over a group of order

qi [KS01]; hence, the total complexity of this step is O(ℓ̄
√
dqj) multiplications.
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in Section 2.1.3.

• ZKPK[g(x)|Epk(g(x)), Epk(f(x)), Epk(f(x) · g(x))]: this is a zero-knowledge
proof that Epk(f(x) · g(x)) is an encryption of f(x)g(x) when polyno-
mial encryptions Epk(g(x)), Epk(f(x)), and Epk(f(x) · g(x)) are given.
In this case, the participant knows only g(x), not f(x). We obtain this
protocol by generalizing the zero-knowledge proof of correct multipli-
cation, which proves Encpk(c) is an encryption of ab when Encpk(a) and
Encpk(b) are given for an AHE scheme Encpk with public key pk. This
protocol requires O(nk2) exponentiations for computation and O(nk2)

(logN)-bit elements for communication when f(x) is a polynomial of
degree 2nk and g(x) is a polynomial of degree k.

• ZKPK[f(x), g(x)]: this is a zero-knowledge proof that g(x) is the RLS
representation of 1/f(x) when encryptions of f(x) and g(x) are given.
By Lemma 2 in [SCK12], if f(x) and g(x) satisfy

deg (f(x)g(x)− x(deg f+deg g)) < deg f,

then g(x) is the RLS representation of a rational function 1/f(x).
Hence, it suffices to prove that the deg(g(x)) + 1 higher-order coeffi-
cients of f(x)g(x) are equal to 1, 0, …, 0. To prove this, the participant
first gives Epk(f(x) · g(x)) with the zero-knowledge proof

ZKPK[g(x)|Epk(g(x)), Epk(f(x)), Epk(f(x) · g(x))].

In this case, the participant also knows f(x), but the protocol is the
same. Then, using zero-knowledge protocols that a ciphertext is an
encryption of 0 and a ciphertext is an encryption of 1, the participant
proves that the encryption of the (deg g) + 1 higher-order coefficients
of Epk(f(x) · g(x)) is an encryption of 1, 0, . . . , 0. This requires O(nk2)

exponentiations and O(nk2) (logN)-bit elements for communications
when f(x) is a polynomial of degree k and g(x) is a polynomial of
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degree 2nk.

Commitment Scheme We also exploit some equivocal commitment schemes
[KO04, MY04] so that the simulator in the malicious adversary model can
open the envelope to an arbitrary value without being detected by the ad-
versary.

Our Set Union Protocol for the Malicious Case We give a PPSU
Malicious protocol that is secure against malicious adversaries in Figure 2.5.
The parameters are the same as those of the protocols for the HBC model
in Section 2.3.2.

This protocol also runs in O(1) rounds. The complexities are the same as
those of the protocol for the HBC model except but for the zero-knowledge
proof protocols. However, to give a zero-knowledge proof of polynomial mul-
tiplication and an inverse relation, we require O(nk2) communication costs
and O(nk2) computational costs. In particular, a zero-knowledge proof pro-
tocol ZKPK[ri,j|Λ(ri,j), Epk(FSi,j

), µi,j] must execute for all 1 ≤ i ̸= j ≤ n,
and the total communication and computational complexities are O(n3k2)

(logN)-bit elements and O(n3k2) exponentiations, respectively; this is the
most expensive part of our malicious protocol.

The correctness is similar to that of the HBC case. The following theorem
guarantees the security of the protocol proposed in Figure 2.5.

Theorem 2.3.3. In the set union protocol for the malicious case described
in Figure 2.5, there is a simulator S for a player (or a group of players)
operating in the ideal model such that the view of the players in the ideal
model is computationally indistinguishable from the view of the honest players
and any adversaries Adv of colluding players in the real world.

2.3.4 Extension to the Multi-set Union Protocol

We can easily extend our set union protocol to a multi-set union protocol
by modifying our encoding function. Assume that each participant Pi has a
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multi-set Si ⊆ U for the known universe U ⊆ {0, 1}τℓ. Define the function η :

U → U ′′ ⊆ {0, 1}τ(ℓ+ℓ′′) by η(s) = s||r, where r is a randomly chosen element
in {0, 1}τℓ′′ . Then each participant takes part in our set union protocol with
a set {η(s1), . . . , η(sk)} instead of {s1, . . . , sk}. For the same messages s1 and
s2, if η(s1) is different from η(s2), one can obtain η(s1) and η(s2) as a part
of a set union so the frequency of s1 in the union can be revealed. Hence, if
all values of η are distinct, a multi-set union can be established.

Consider the probability that there exist at least two same values among
the d values of function η. Specifically, this probability is given by

1−
(
1− 1

2τℓ′′

)
· · ·
(
1− d− 1

2τℓ′′

)
≈ d2

2τℓ′′

and is less than 2−λ if ℓ′′ > λ+ 2 log d− 1

log d . For example, when λ = 80 and

d ≈ d0 ≈ 210, then ℓ′′ is approximately 10.
Both the computational and communicational complexities of our multi-

set union protocol are the same as those of our set union protocol. It is more
complex than the previous best result [HKK+13], which requires O(n2k)

exponentiations in Fq and O(n2k log q) bits, where q is similar to the size of
the universe. However, the public key size of our protocol is O(1) elements,
while that of the previous result in [HKK+13] is O(d) elements for a multi-set
union of size d since this particular construction utilizes ElGamal encryption
schemes defined over an extension field Fpd of extension degree d.

2.4 Conclusion
We provided a new representation of a set using a polynomial over Zσ that
can be efficiently inverted by finding all linear factors of a polynomial whose
roots are in the image of our encoding function when the factorization of σ
is public. Furthermore, we presented an efficient constant-round set union
protocol to transform our representation into a rational function and com-
bined it with the threshold NS AHE scheme. We also extended our set union
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protocol to a multi-set union protocol by modifying the rational function
representation.

We showed that our encoding function is quite efficient on average; how-
ever, it still requires exponential time in the degree of the polynomial to
recover a set from a polynomial represented by our encoding function. The
probability of the worst-case was sufficiently small. Hence, constructing an
encoding function that enables the recovery a set in polynomial time in the
worst-case is of particular interest.
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Input There are n ≥ 2 HBC participants Pi with a private input set
Si ⊆ U , where |Si| = k. The participants share the secret key sk,
where pk is the corresponding public key for the threshold NS AHE
scheme. Let ι : {0, 1}∗ → Zσ be the encoding function provided in
Section 2.2 and set d = nk.

Goal Each participant obtains ∪Si without learning other information.

Each participant Pi, i = 1, . . . , n:

1. (a) Computes the polynomial fSi
(x) =

∏
si,j∈Si

(x − ι(si,j)) ∈
Zσ[x], executes RationalToRLS(1, fSi

, (2n+1)k−1) to obtain(
1

fSi
(x)

)
[−(2n+1)k+1,−k]

, and defines

FSi
(x) :=

(
1

fSi
(x)

)
[−(2n+1)k+1,−k]

· x(2n+1)k−1.

(b) Computes F̃Si
, the encrypted polynomial of FSi

, and sends
F̃Si

to all other participants.

2. (a) Chooses n random polynomials ri,1(x), · · · , ri,n(x) ∈ Zσ[x]
of degree at most k.

(b) Computes ϕ̃i, the encryption of the polynomial ϕi(x) =∑n
j=1 FSj

· ri,j, and sends ϕ̃i to all other participants.

3. (a) Calculates the encryption of the polynomial F (x) =∑n
i=1 ϕi(x).

(b) Performs a group decryption with all other participants to
obtain the 2nk higher-order terms of F (x).

4. (a) Recovers a polynomial pair (uj(x), Uj(x)) ∈ Zqj [x]× Zqj [x]

for all 1 ≤ j ≤ ℓ̄ such that
(

uj(x)

Uj(x)

)
[−2nk,−1]

= (F (x) mod

qj)[k−1,(2n+1)k−2] · x−(2n+1)k+1 and gcd(uj(x), Uj(x)) = 1 in
Zqj [x] using the 2nk higher-order terms of F (x) obtained
in Step 3(b).

(b) Extracts all roots of Uj(x) in Zqj [x] for all j using a factor-
ization algorithm.

(c) Determines the set union using the encoding rule of ι.

Figure 2.4: Set union protocol in the Honest-But-Curious case.
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Input There are n ≥ 2 participants Pi with a private input set Si ⊆ U ,
where |Si| = k. The participants share the secret key sk, where pk is
the corresponding public key for the threshold NS AHE scheme. Let
ι : {0, 1}∗ → Zσ be the encoding function provided in Section 2.2 and
set d = nk. We utilize an equivocal commitment scheme and zero-
knowledge proof protocols.

Goal Each participant obtains ∪Si without learning other information.

Each participant Pi, i = 1, . . . , n:
1. (a) Computes the polynomial fSi(x) =

∏
si,j∈Si

(x − ι(si,j)) ∈
Zσ[x], runs RationalToRLS(1, fSi , (2n + 1)k − 1) to obtain(

1
fSi

(x)

)
[−(2n+1)k+1,−k]

, and defines

FSi(x) :=

(
1

fSi(x)

)
[−(2n+1)k+1,−k]

· x(2n+1)k−1.

(b) Computes f̃Si and F̃Si , the encrypted polynomials of fSi and
FSi , respectively, and sends them to all other participants with
proofs of ZKPK[fSi , FSi ].

(c) Chooses n random polynomials ri,1(x), · · · , ri,n(x) of degree
at most k and sends a commitment of Λ(ri,j) to all other
participants, where Λ(ri,j) is the encrypted polynomial of ri,j .

2. (a) Verifies the zero-knowledge proof ZKPK[fSi , FSi ].
(b) Opens the commitment to Λ(ri,j) and calculates µi,j , the en-

crypted polynomial of FSj × ri,j with proofs of correct multi-
plication ZKPK[ri,j |Λ(ri,j), F̃Si , µi,j ].

(c) Sends {µi,j}i,j∈[1,n] with proofs to all other participants.
3. (a) Computes the encrypted polynomial of F (x) =∑n

i=1

∑n
j=1 FSj × ri,j and verifies all attached proofs.

(b) Performs a group decryption with all other participants to
obtain the 2nk higher-order terms of F (x).

4. (a) Recovers a polynomial pair (uj(x), Uj(x)) in Zqj [x] × Zqj [x]

for all 1 ≤ j ≤ ℓ̄ such that
(

uj(x)
Uj(x)

)
[−2nk,−1]

· x(2n+1)k+1 =

(F (x) mod qj)[k−1,(2n+1)k−2] and gcd(uj(x), Uj(x)) = 1 over
Zqj , using the 2nk higher-order terms of F (x) obtained in
Step 3(b).

(b) Extracts all roots of Uj(x) in Zqj [x] for all j using a factoriza-
tion algorithm.

(c) Determines the set union using the encoding rule of ι.

Figure 2.5: Set union protocol in the malicious case.
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Chapter 3

Secure Static Program Analysis

Program analysis to find bugs, error, defects and logical flaws in the program
can be performed when analyzer or the target program is published. In other
words, it is possible that analyzer is provided to the owner of program or the
target program is provided on the side to perform this analysis. However,
both analyzer and target program often contain sensitive information. Secure
program analysis is desirable to protect the sensitive information in program
or analyzer.

We report that the homomorphic encryption scheme can unleash the pos-
sibility of static analysis of encrypted programs. In our approach, a target
program is provided only in the form of encrypted constraints, and analysis
is performed on the data without decryption. Only owner of the decryption
key is able to decrypt the analysis result. For more widespread use of our
system, we explored a method of performing static analysis on encrypted
programs. Figure 3.1 depicts the system.

Our work is based on homomorphic encryption (HE). A HE scheme en-
ables computation of arbitrary functions on encrypted data. In other words,
a HE scheme provides the functions f⊕ and f∧ that satisfy the following
homomorphic properties for plaintexts x, y ∈ {0, 1} without any secrets:

Enc(x⊕ y) = f⊕(Enc(x),Enc(y)), Enc(x ∧ y) = f∧(Enc(x),Enc(y))

37



CHAPTER 3. SECURE STATIC PROGRAM ANALYSIS

Bug finder

?

?
User

Program

Bug report

Figure 3.1: Secure static analysis is performed in 3 steps: 1) target program
encryption 2) analysis in secrecy, and 3) analysis result decryption

A HE scheme was first shown in the work of Gentry [Gen09]. Since then,
although there have been many efforts to improve the efficiency [Bra12,
BGV12, CS15, SV14], the cost is still too large for immediate applications
into daily computations.

Due to the high complexity of HE operation, practical deployments of
HE require application-specific techniques. Application-specific techniques
are often demonstrated in other fields. Kim et al. [CKL15] introduced an op-
timization technique to reduce the depth of an arithmetic circuit computing
edit distance on encrypted DNA sequences. In addition, methods of bub-
ble sort and insertion sort on encrypted data have been proposed [CKS13].
Also, private database query protocol using somewhat homomorphic encryp-
tion has been proposed [BGH+13].

Our Results As a first step, we propose an inclusion-based pointer analysis
in secrecy. As many analyses depends on the pointer information, we expect
our work to have significant implications along the way to static analysis
in secrecy. In our method, a somewhat homomorphic encryption scheme
of depth O(logm) is able to evaluate the pointer analysis with O(logm)

homomorphic matrix multiplications, for the number m of pointer variables
when the maximal pointer level is bounded.

Although our interest in this paper is limited to inclusion-based pointer
analysis, we expect other analyses in the same family will be performed in a
similar manner to our method. Analyses in the family essentially compute
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a transitive closure of a graph subject to dynamic changes; new edges may
be added during the analysis. Our method computes an encrypted transitive
closure of a graph when both edge insertion queries and all the edges are
encrypted. Thus, we expect only a few modifications to our method will
make other similar analyses (e.g. 0-CFA) be in secrecy.

Note that some parts of this chapter were collaborated with results from
Woosuk Lee [Lee14]. Woosuk Lee gave the idea that homomorphic encryption
probably could be used for secure program analysis. He played an important
role in introducing basic construction of pointer analysis in Section 3.2 and
in the implementation of the pointer analysis in secrecy in Section 3.4.

3.1 Preliminaries
In this section, we introduce the concept of homomorphic encryption, and
describe the security model of our static analysis in secrecy.

3.1.1 Homomorphic Encryption

A homomorphic encryption (HE) scheme HE=(KG, Enc, Dec, Eval) is a
quadruple of probabilistic polynomial-time algorithm as follows:

• (pk, evk; sk)← HE.KG(1λ): The algorithm takes the security parameter
λ as input and outputs a public encryption key pk, a public evaluation
key evk, and a secret decryption key sk.

• c̄ ← HE.Encpk(µ, r): The algorithm takes the public key pk, a single
message µ ∈ {0, 1},* and a randomizer r. It outputs a ciphertext c̄. If
we have no confusion, we omit the randomizer r.

• µ← HE.Decsk(c̄): The algorithm takes the secret key sk and a ciphertext
c̄ = HE.Encpk(µ) and outputs a message µ ∈ {0, 1}

*For simplicity, we assume that the plaintext space is Z2 = {0, 1} but extension to
larger plaintext space is immediate.
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• c̄f ← HE.Evalevk(f ; c̄1, . . . , c̄l): The algorithm takes the evaluation key
evk, a function f : {0, 1}l → {0, 1} represented by an arithmetic circuit
over Z2 = {0, 1} with the addition and multiplication gates, and a
set of l ciphertexts {c̄i = HE.Encpk(µi)}li=1, and outputs a ciphertext
c̄f = HE.Encpk(f(µ1, · · · , µl)).

We say that a scheme HE=(KG, Enc, Dec, Eval) is f -homomorphic if for any
set of inputs (µ1, · · · , µl), and all sufficiently large λ, it holds that

Pr [HE.Decsk (HE.Evalevk(f ; c̄1, · · · , c̄l)) ̸= f(µ1, · · · , µl)] = negl(λ),

where negl is a negligible function, (pk, evk; sk) ← HE.KG(1λ), and c̄i ←
HE.Encpk(µi).

If a HE scheme can evaluate all functions represented by arithmetic cir-
cuits over Z2 (equivalently, boolean circuits with AND and XOR gates†), the
HE scheme is called fully homomorphic.

To facilitate understanding of HE schemes, we introduce a simple sym-
metric version of the HE scheme [vDGHV10] based on approximate common
divisor problems [HG01]:

• sk← KG(1λ): Choose an integer p and outputs the secret key sk = p.

• c̄ ← Enc(µ ∈ {0, 1}): Choose a random integer q and a random noise
integer r with |r| ≪ |p|. It outputs c̄ = pq + 2r + µ.

• µ← Decsk(c̄): Outputs µ = ((c̄ mod p) mod 2).

• c̄add ← Add(c̄1, c̄2): Outputs c̄add = c̄1 + c̄2.

• c̄mult ← Mult(c̄1, c̄2): Outputs c̄mult = c̄1 × c̄2.

For ciphertexts c̄1 ← Enc(µ1) and c̄2 ← Enc(µ2), we know each c̄i is of the
form c̄i = pqi+2ri+µi for some integer qi and noise ri. Hence ((c̄i mod p) mod 2) =

†AND and XOR gates are sufficient to simulate all binary circuits.
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µi, if |2ri + µi| < p/2. Then, the following equations hold:

c̄1 + c̄2 = p(q1 + q2) + 2(r1 + r2) + µ1 + µ2︸ ︷︷ ︸
noise

,

c̄1 × c̄2 = p(pq1q2 + · · · ) + 2(2r1r2 + r1µ2 + r2µ1) + µ1 · µ2︸ ︷︷ ︸
noise

Based on these properties,

Decsk(c̄1 + c̄2) = µ1 + µ2 and Decsk(c̄1 × c̄2) = µ1 · µ2

if the absolute value of 2(2r1r2 + r1µ2 + r2µ1) + µ1µ2 is less than p/2. The
noise in the resulting ciphertext increases during homomorphic addition and
multiplication (twice and quadratically as much noise as before respectively).
If the noise becomes larger than p/2, the decryption result of the above
scheme will be spoiled. As long as the noise is managed, the scheme is able
to potentially evaluate all boolean circuits as the addition and multiplication
in Z2 corresponds to the XOR and AND operations.

We consider somewhat homomorphic encryption (SWHE) schemes that
adopt the modulus-switching [BGV12, BV11a, CNT12, GHS12b] for the
noise-management. The modulus-switching reduces the noise by scaling the
factor of the modulus in the ciphertext space. SWHE schemes support a lim-
ited number of homomorphic operations on each ciphertext, as opposed to
fully homomorphic encryption schemes [CCK+13, vDGHV10, Gen09, SV10]
which are based on a different noise-management technique. But SWHE
schemes are more efficient to support low-degree homomorphic computa-
tions.

In this paper, we will measure the efficiency of homomorphic evaluation
by the multiplicative depth of an underlying circuit. The multiplicative depth
is defined as the number of multiplication gates encountered along the longest
path from input to output. When it comes to the depth of a circuit com-
puting a function f , we discuss the circuit of the minimal depth among any
circuits computing f . For example, if a somewhat homomorphic encryption
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scheme can evaluate circuits of depth L, we may maximally perform 2L mul-
tiplications on the ciphertexts maintaining the correctness of the result. We
do not consider the number of addition gates in counting the depth of a cir-
cuit because the noise increase by additions is negligible compared with the
noise increase by multiplications. The multiplicative depth of a circuit is the
most important factor in the performance of homomorphic evaluation of the
circuit in the view of both the size of ciphertexts and the cost of per-gate ho-
momorphic computation. Thus, minimizing the depth is the most important
in performance.

3.1.2 The BGV-type Cryptosystem

Notations. For an integer q, we denote the ring of integers modulo q by
Zq. Let Φ(X) be an irreducible polynomial over Z. Our implementation is
based on the operations in polynomial ring R = Z[X]/ (Φ(X)) which is the
set of integer polynomials of degree less than degΦ. We identify the quotient
ring Rq := R/qR with the set of integer polynomials of degree up to degΦ−1
reduced modulo q for the integer q.

Our underlying HE scheme is a variant of the Brakerski-Gentry-Vaikuntanathan
(BGV) cryptosystem [BGV12, GHS12a] using a modulus switching tech-
nique. We recall that the BGV cryptosystem [BGV12] based on the hardness
of the “ring learning with errors ” (RLWE) problem [LPR10]. The RLWE
problem is to distinguish pair (ai, bi = ai · s + ei) ∈ Rq × Rq from uniformly
random pairs, where s ∈ Rq is a random “secret” polynomial which remains
fixed over all pairs, the ai ∈ Rq are uniformly random and independent, and
the “noise” terms ei ∈ R are sampled from a noise distribution that out-
puts polynomials whose coefficients much “smaller” than q (an example is a
discrete Gaussian distribution over R with small standard deviation).

For a polynomial ring R = Z[X]/ (Φ(X)), we set the message space to
Rp for some fixed prime p ≥ 2 and the ciphertext space to Rq × Rq for an
integer q. Then all the ciphertexts are treated as vectors of elements in Rq.
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Now, we describe the BGV cryptosystem as follows:

• ((a, b), evk; s) ← BGV.KG(1λ, w, σ, q): Chooses a weight w secret key s
and generates a RLWE instance (a, b) relative to the secret key s. Compute
a evaluation key for a homomorphic evaluation of ciphertexts. Output the
public key pk = (a, b), the evaluation key evk, and the secret key sk = s.

• c̄ ← BGV.Encpk(µ): To encrypt a message µ ∈ Rt, choose a random poly-
nomial v whose coefficients are in {0,±1} and two noise polynomials e0, e1

from a discrete Gaussian distribution over R with standard deviation σ.
Outputs the ciphertext c = (c0, c1) = (bv + pe0 + µ, av + pe1) mod q.

• µ ← BGV.Decsk(c̄): Given a ciphertext c̄ = (c0, c1), it outputs µ = ((c0 −

c1 · s mod q) mod p).

• c̄add ← BGV.Addevk(c̄1, c̄2): Given ciphertext c̄1 = BGV.Encpk(µ1) and
c̄2 = BGV.Encpk(µ2), it outputs the ciphertext c̄add = BGV.Encpk(µ1 + µ2).

• c̄mult ← BGV.Multevk(c̄1, c̄2): Given ciphertext c̄1 = BGV.Encpk(µ1) and
c̄2 = BGV.Encpk(µ2), it outputs the ciphertext c̄mult = BGV.Encpk(µ1 · µ2).

In the BGV scheme, homomorphic addition is done by simple component-
wise addition of the ciphertexts and homomorphic multiplication is by tensor
product over Rq. Since the norm of the noise and the degree of the ciphertext
are increased after operations of ciphertexts, modulus and key switching
operation should be performed to reduce the norm of the noise and the degree
of the ciphertext. For more details to the homomorphic operations on the
BGV-type cryptosystem such as the key switching and modulus switching,
please refer to [BGV12, GHS12b].

3.1.3 Security Model

We assume that program owners and analyzer servers are semi-honest. In
this model, the analyzer runs the protocol exactly as specified, but may try to
learn as much as possible about the program information. However, in our
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method, since programs are encrypted under the BGV-type cryptosystem
which is secure under the hardness of the RLWE problem, analyzers cannot
learn no more information than the program size.

3.2 A Basic Construction of a Pointer Anal-
ysis in Secrecy

In this section, we explain how to perform an inclusion-based pointer analysis
in secrecy.

3.2.1 Inclusion-based Pointer Analysis

We begin with a brief review of inclusion-based pointer analysis. We consider
flow- and context-insensitive pointer analyses. To simplify our presentation,
we consider a tiny language consisting of primitive assignments involving just
the operations * and &. A program P is a finite set of assignments A:

A → x = &y | x = y | ∗x = y | x = ∗y

We present inclusion-based pointer analysis algorithm with simple resolution
rules in a similar manner to [HT01]. Given some program P , we construct
resolution rules as specified in Table 3.1. In the first rule, the side condition
“if x = &y in P” indicates that there is an instance of this rule for each
occurrence of an assignment of the form x = &y in P . The side conditions
in the other rules are similarly interpreted. Intuitively, an edge x −→ &y
indicates that x can point to y. An edge x −→ y indicates that for any
variable v, if y may point to v then x may point to v. The pointer analysis
is applying the resolution rules until reaching a fixpoint.
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x −→ &y (if x = &y in P ) (New)

x −→ y (if x = y in P ) (Copy)

x −→ &z
y −→ z (if y = ∗x in P ) (Load)

x −→ &z
z −→ y (if ∗x = y in P ) (Store)

x −→ z z −→ &y
x −→ &y (Trans)

Table 3.1: Resolution rules for pointer analysis.

3.2.2 The Pointer Analysis in Secrecy

The analysis in secrecy will be performed in the following 3 steps. First,
a program owner derives numbers that represent his program and encrypt
them under a HE scheme. The encrypted numbers will be given to an analysis
server. Next, the server performs homomorphic evaluation of an underlying
arithmetic circuit representing the inclusion-based pointer analysis with the
inputs from the program owner. Finally, the program owner obtains an en-
crypted analysis result and recovers a set of points-to relations by decryption.

Before beginning, we define some notations. We assume a program owner
assigns a number to every variable using some numbering scheme. In the rest
of the paper, we will denote a variable numbered i by xi. In addition, to
express the arithmetic circuit of the pointer analysis algorithm, we define the
notations δi,j and ηi,j in Z for i, j = 1, · · · ,m by

δi,j ̸= 0 iff An edge xi −→ &xj is derived by the resolution rules.

ηi,j ̸= 0 iff An edge xi −→ xj is derived by the resolution rules.

for variables xi and xj, and the number m of pointer variables.
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Inputs from Client A client (program owner) derives the following num-
bers that represent his program P (here, m is the number of variables):

{(δi,j, ηi,j, ui,j, vi,j) ∈ Z× Z× {0, 1} × {0, 1} | 1 ≤ i, j ≤ m}

which are initially assigned as follows:

δi,j ←

{
1 if ∃xi = &xj

0 otherwise
ηi,j ←

{
1 if ∃xi = xj or i = j

0 otherwise

ui,j ←

{
1 if ∃xj = ∗xi

0 otherwise
vi,j ←

{
1 if ∃∗xj = xi

0 otherwise

In the assignment of δi,j, the side condition ∃xi = &xj indicates that there
is the assignment xi = &xj in the program P . The other side conditions are
similarly interpreted.

The program owner encrypts the numbers using a HE scheme and pro-
vides them to the server. We denote the encryption of δi,j, ηi,j, ui,j, and
vi,j by δ̄i,j, η̄i,j, ūi,j, and v̄i,j, respectively. Therefore, the program owner
generates 4m2 ciphertexts where m is the number of pointer variables.

Server’s Analysis Provided the set of the ciphertexts from the program
owner, the server homomorphically applies the resolution rules. With a slight
abuse of notation, we will denote + and · as homomorphic addition and
multiplication respectively to simplify the presentation.

We begin with applying the Trans rule in Table 3.1. For i, j = 1, · · · ,m,
the server updates δ̄i,j as follows:

δ̄i,j ←
∑m

k=1 η̄i,k · δ̄k,j

If edges xi −→ xk and xk −→ &xj are derived by the resolution rules for
some variable xk, then the edge xi −→ &xj will be derived by the Trans rule
and the value δi,j will have a positive integer. If there is no variable xk

46



CHAPTER 3. SECURE STATIC PROGRAM ANALYSIS

that satisfies the conditions for all k = 1, · · · ,m, there will be no update on
δi,j (∵ ηi,i = 1).

Next, we describe applying the Load rule.

η̄i,j ← η̄i,j +
∑m

k=1 ūi,k · δ̄k,j

If an edge xk −→ &xj is derived and the program P has a command xi := ∗xk

and for some integer k, then the edge xi −→ xj will be derived and ηi,j will
have a positive value. If none of variables xk satisfies the conditions, there
will be no update on ηi,j.

Finally, to apply the Store rule, the server performs the following opera-
tions:

η̄i,j ← η̄i,j +
∑m

k=1 v̄j,k · δ̄k,i

If an edge xk −→ &xi is derived and the program P has a command ∗xk := xj

for some variable xk, then an edge xi −→ xj will be derived and ηi,j will have
a non-zero value.

Note that the server must repeat applying the rules as if in the worst
case since the server cannot know whether a fixpoint is reached during the
operations. The server may obtain a fixpoint by repeating the following two
steps in turn m2 times:

1. Applying the Trans rule m times

2. Applying the Load and Store rules

The reason for doing step 1 is that we may have a m-length path through
edges as the longest one in the worst case. The reason for repeating the two
steps m2 times is that we may have a new edge by applying the Load and
Store rules, and we may have at most m2 edges at termination of the analysis.

We need O(m2 logm) multiplicative depth in total. Because performing
the step 1 entails m homomorphic multiplications on each δ̄i,j, and repeating
the two steps m2 times performs about mm2 homomorphic multiplications
on each δ̄i,j.
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Output Determination The client receives the updated {δ̄i,j | 1 ≤ i, j ≤
m} from the server and recovers a set of points-to relations as follows:

{xi −→ &xj | HE.Decsk(δ̄i,j) ̸= 0 and 1 ≤ i, j ≤ m}

Why don’t we represent the algorithm by a Boolean circuit? One
may wonder why we represent the pointer analysis algorithm by an arithmetic
circuit rather than a Boolean circuit. As an example of applying the Trans
rule, we might update δi,j by the following method:

δi,j ←
∨

1≤k≤m

ηi,k ∧ δk,j

However, this representation causes more multiplicative depth than our cur-
rent approach. The OR operation consists of the XOR and AND operations
as follows:

x ∨ y
def
= (x ∧ y)⊕ x⊕ y

Note that the addition and multiplication in Z2 correspond to the XOR
and AND operations, respectively. Since the OR operation requires a single
multiplication over ciphertexts, this method requires m more multiplications
than our current method to update δi,j once.

3.3 Improvement of the Pointer Analysis in
Secrecy

In this section, we present three techniques to reduce the cost of the basic
approach described in the section 3.2.2. We begin with problems of the basic
approach followed by our solutions.
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3.3.1 Problems of the Basic Approach

The basic scheme has the following problems that make the scheme imprac-
tical.

• Huge # of homomorphic multiplications: The scheme described in the
section 3.2.2 can be implemented with a SWHE scheme of the depth
O(m2 logm). Homomorphic evaluation of a circuit over the hundreds
depth is regarded unrealistic in usual. The depth of the arithmetic
circuit described in the section 3.2.2 exceeds 300 even if a program has
only 10 variables.

• Huge # of ciphertexts: The basic approach requires 4m2 ciphertexts,
where m is the number of pointer variables. When a program has 1000
variables, 4 million ciphertexts are necessary. For instance, the size of
a single ciphertext in the BGV cryptosystem is about 2MB when the
depth is 20. In this case, the scheme requires 7.6 TB memory space for
all the ciphertexts.

• Decryption error may happen: In our underlying HE scheme, the mes-
sage space is the polynomial ring over modulus p. During the opera-
tions, δi,j and ηi,j increase and may become p which is congruent to 0

modulo p. Since we are interested in whether each value is zero or not,
incorrect results may be derived if the values become congruent to 0

modulo p by accident.

3.3.2 Overview of Improvement

For the number m of pointer variables and the maximal pointer level n, the
followings are our solutions.

• Level-by-level Analysis: We analyze pointers of the same level to-
gether from the highest to lowest in order to decrease the depth of the
arithmetic circuit described in the section 3.2.2. To apply the tech-
nique, program owners are required to reveal an upper bound of the
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maximal pointer level. By this compromise, the depth of the arith-
metic circuit significantly decreases: from O(m2 logm) to O(n logm).
We expect this information leak is not much compromise because the
maximal pointer level is well known to be a small number in usual
cases.

• Ciphertext Packing: We adopt ciphertext packing not only for per-
formance boost but also for decreasing the huge number of ciphertexts
required for the basic scheme. The technique makes total ciphertext
sizes be linear to the number of variables.

• Randomization of Ciphertexts: We randomize ciphertexts to bal-
ance the probability of incorrect results and ciphertext size. We may
obtain correct results with the probability of

(
1− 1

p−1

)n(⌈logm⌉+3)

.

The following table summarizes the improvement.

Multiplicative depth # Ctxt
Basic O(m2 logm) 4m2

Improved O(n logm) (2n+ 2)m

m : the number of pointer variables in the target program
n : the maximum level of pointer in the program, which
does not exceed 5 in usual

Table 3.2: The comparison between the basic and the improved scheme

3.3.3 Level-by-level Analysis

We significantly decrease the multiplicative depth by doing the analysis in
a level by level manner in terms of level of pointers. The level of a pointer
is the maximum level of possible indirect accesses from the pointer, e.g. the
pointer level of p in the definition “int** p” is 2. From this point, we denote
the level of a pointer variable x by ptl(x).
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We assume that type-casting a pointer value to a lower or higher-level
pointer is absent in programs. For example, we do not consider a program
that has type-casting from void* to int** because the pointer level increases
from 1 to 2. On the assumption, we analyze the pointers of the same level
together from the highest to lowest. The correctness is guaranteed because
lower-level pointers cannot affect pointer values of higher-level pointers dur-
ing the analysis. For example, pointer values of x initialized by assignments
of the form x = &y may change by assignments of the form x = y, x = ∗y,
or ∗p = y (∵ p may point to x) during the analysis.

The following table presents pointer levels of involved variables in the
assignments that affects pointer values of x. Note that all the variables affect
pointer values of x have higher or equal pointer level compared to x.

Assignment Levels
x = y ptl(x) = ptl(y)
x = ∗y ptl(y) = ptl(x) + 1

∗p = y ptl(p) = ptl(x) + 1 ∧ ptl(y) = ptl(x)

Now we describe the level-by-level analysis in secrecy similarly to the
basic scheme. Before beginning, we define the notations δ(ℓ)i,j and η

(ℓ)
i,j in Z for

i, j = 1, · · · ,m by

δ
(ℓ)
i,j ̸= 0 iff An edge xi −→ &xj is derived and ptl(xi) = ℓ

η
(ℓ)
i,j ̸= 0 iff An edge xi −→ xj is derived and ptl(xi) = ℓ.

Inputs from Client For the level-by-level analysis, a program owner de-
rives the following numbers that represent his program P (n is the maximal
level of pointer in the program):

{(δ(ℓ)i,j , η
(ℓ)
i,j ) | 1 ≤ i, j ≤ m, 1 ≤ ℓ ≤ n} ∪ {(ui,j, vi,j) | 1 ≤ i, j ≤ m}
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where δ
(ℓ)
i,j and η

(ℓ)
i,j are defined as follows.

δ
(ℓ)
i,j =

{
1 if ∃xi = &xj and ptl(xi) = ℓ

0 o.w.

η
(ℓ)
i,j =

{
1 if (∃xi = xj or i = j) and ptl(xi) = ℓ

0 o.w.

The definitions of ui,j and vi,j are the same as in the section 3.2.2. We denote
the encryption of δ(ℓ)i,j and η

(ℓ)
i,j by δ̄

(ℓ)
i,j , η̄(ℓ)i,j , respectively.

Server’s Analysis Server’s analysis begins with propagating pointer val-
ues of the maximal level n by applying the Trans rule as much as possible.
In other words, for i, j = 1, · · · ,m, the server repeats the following update
m times:

δ̄
(n)
i,j ←

∑m
k=1 η̄

(n)
i,k · δ̄

(n)
k,j

Next, from the level n − 1 down to 1, the analysis at a level ℓ is carried
out in the following steps:

1. applying the Load rule

η̄
(ℓ)
i,j ← η̄

(ℓ)
i,j +

∑m
k=1 ūi,k · δ̄(ℓ+1)

k,j

2. applying the Store rule

η̄
(ℓ)
i,j ← η̄

(ℓ)
i,j +

∑m
k=1 v̄j,k · δ̄

(ℓ+1)
k,i

3. applying the Trans rule: repeating the following update m times

δ̄
(ℓ)
i,j ←

∑m
k=1 η̄

(ℓ)
i,k · δ̄

(ℓ)
k,j

Through step 1 and 2, edges of the form xi −→ xj are derived where either xi
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or xj is determined by pointer values of the immediate higher level ℓ+ 1. In
step 3, pointer values of a current level ℓ are propagated as much as possible.

We need O(n logm) multiplicative depth in total because repeating the
above 3 steps n times entails maximally mn homomorphic multiplications on
a single ciphertext.

Output Determination The client receives the updated {δ̄(ℓ)i,j | 1 ≤ i, j ≤
m, 1 ≤ ℓ ≤ n} from the server and recovers a set of points-to relations as
follows:

{xi −→ &xj | HE.Decsk(δ̄
(ℓ)
i,j ) ̸= 0, 1 ≤ i, j ≤ m, and 1 ≤ ℓ ≤ n}

3.3.4 Ciphertext Packing

Our use of ciphertext packing aims to decrease total ciphertext size by using
fewer ciphertexts than the basic scheme. Thanks to ciphertext packing, a
single ciphertext can hold multiple plaintexts rather than a single value. For
given a vector of plaintexts (µ1, · · · , µm), the BGV cryptosystem allows to
obtain a ciphertext c̄← BGV.Enc(µ1, · · · , µm).

As each ciphertext holds a vector of multiple plaintexts, homomorphic op-
erations between such ciphertexts are performed component-wise. For given
ciphetexts c̄1 = BGV.Enc(µ1,1, · · · , µ1,m) and c̄2 = BGV.Enc(µ2,1, · · · , µ2,m),
the homomorphic addition and multiplication in the BGV scheme satisfy the
following properties:

BGV.Add(c̄1, c̄2) returns a ciphertext BGV.Enc(µ1,1 + µ2,1, · · · , µ1,m + µ2,m)

BGV.Mult(c̄1, c̄2) returns a ciphertext BGV.Enc(µ1,1 · µ2,1, · · · , µ1,m · µ2,m)

The BGV scheme provides other homomorphic operations such as cyclic rota-
tion. For example, we can perform cyclic rotation of vector by any amount on
ciphertexts (e.g. BGV.Enc(µm, µ1, · · · , µm−1) from BGV.Enc(µ1, µ2, · · · , µm)).
Using the homomorphic addition, multiplication, and other operations, we
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can perform the matrix addition, multiplication and transposition operations
on encrypted matrices.

In this subsection, we describe ciphertext packing and the homomorphic
matrix operations in more detail.

Principle of Ciphertext Packing We begin with some notations. For
an integer q, Zq

def
= [−q/2, q/2) ∩ Z and x mod q denotes a number in

[−q/2, q/2) ∩ Z which is equivalent to x modulo q. Recall that the mes-
sage space of the BGV cryptosystem is Rp = Z[X]/ (p,Φ(X)) for a prime
p and an irreducible polynomial Φ(X). We identify the polynomial ring Rp

with {a0 + a1X + · · ·+ adegΦ−1X
degΦ−1 | ai ∈ Zp and 0 ≤ i < degΦ}.

In the basic approach, although the message space of the BGV scheme is
the polynomial ring Rp, we have used only constant polynomials (i.e., num-
bers) for plaintexts. Thus, if a vector of plaintexts is represented as a single
non-constant polynomial, a single ciphertext can hold multiple plaintexts
rather than a single value. Therefore we can save the total memory space by
using fewer ciphertexts than the basic scheme.

Suppose the factorization of Φ(X) modulo p is Φ(X) =
∏m

i=1 Fi(X) mod
p where each Fi is an irreducible polynomial in Zp[X]. Then a polyno-
mial µ(X) ∈ Rp can be viewed as a vector of m different small polyno-
mials, (µ1(X), · · · , µm(X)) such that µi(X) = (µ(X) modulo Fi(X)) for
i = 1, · · · ,m.

From this observation, we can encrypt a vector µ = (µ1, · · · , µm) of plain-
texts in

∏m
i=1 Zp into a single ciphertext by the following transitions:

Zp × · · · × Zp −→
∏m

i=1 Zp[X]/ (Fi(X)) −→ Zp[X]/ (Φ(X)) −→ Rq

(µ1, · · · , µm)
id7−→ (µ1, · · · , µm)

CRT7−→ µ(X)
BGV.Enc7−→ c̄

First, we view a component µi in a vector µ = (µ1, · · · , µm) as a constant
polynomial µi ∈ Zp[X]/ (Fi(X)) for i = 1, · · · ,m. Then, we can compute the
unique polynomial µ(X) ∈ Rp satisfying µ(X) = µi mod (p, Fi(X)) for i =

1, · · · ,m by the Chinese Remainder Theorem (CRT) of polynomials. Finally,
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to encrypt a vector µ = (µ1, · · · , µm) in
∏m

i=1 Zp, we encrypt the polynomial
µ(X) ∈ Rp into a ciphertext c̄ which is denoted by BGV.Enc (µ1, · · · , µm) .

Homomorphic Matrix Operations Applying the resolution rules in the
level-by-level analysis in the section 3.3.3 can be re-written in a matrix
form as shown in Table 3.3. In Table 3.3, ∆ℓ = [δ

(ℓ)
i,j ], Hℓ = [η

(ℓ)
i,j ], U =

[ui,j], and V = [vi,j] are m × m integer matrices. Let the i-th row of ∆ℓ

and Hℓ be δ
(ℓ)
i and η

(ℓ)
i respectively. And we denote the encryptions as

δ̄
(ℓ)
i = BGV.Enc(δ(ℓ)

i ) and η̄
(ℓ)
i = BGV.Enc(η(ℓ)

i ).

Rule Integer form Matrix form
Trans δ

(ℓ)
i,j ←

∑m
k=1 η

(ℓ)
i,k · δ

(ℓ)
k,j ∆ℓ ← Hℓ ·∆ℓ

Load η
(ℓ)
i,j ← η

(ℓ)
i,j +

∑m
k=1 ui,k · δ(ℓ+1)

k,j Hℓ ← Hℓ + U ·∆ℓ+1

Store η
(ℓ)
i,j ← η

(ℓ)
i,j +

∑m
k=1 vj,k · δ

(ℓ+1)
k,i Hℓ ← Hℓ + (V ·∆ℓ+1)

T

Table 3.3: Circuit expression of the level-by-level analysis

We follow the methods in [HS14] to perform multiplication between en-
crypted matrices. We use the Replicate homomorphic operation supported by
the BGV scheme [HS14]. For a given ciphertext c̄ = BGV.Enc(µ1, · · · , µm),
the operation Replicate(c̄, i) generates a ciphertext BGV.Enc(µi, · · · , µi) for
i = 1, · · · ,m. Using the operation, we can generate an encryption of the i-th
row of (Hℓ ·∆ℓ) as follows:

BGV.Mult
(

Replicate(η̄(ℓ)
i , 1), δ̄

(ℓ)
1

)
+ · · · + BGV.Mult

(
Replicate(η̄(ℓ)

i ,m), δ̄
(ℓ)
m

)
.

Note that this method does not affect the asymptotic notation of the multi-
plicative depth since the operation Replicate entails only a single multiplica-
tion.

To compute a transpose of an encrypted matrix, we use the masking and
cyclic rotation techniques described in [HS14]. Algorithms for the homomor-
phic operations on encrypted matrices are described in Figure 3.3–3.5 at the
end of this chapter.
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3.3.5 Randomization of Ciphertexts

During the matrix multiplications, components of resulting matrices may
become p by coincidence, which is congruent to 0 in Zp. In this case, incorrect
results may happen. We randomize intermediate results to decrease the
failure probability.

To multiply the matrices Hℓ = [η
(ℓ)
i,j ] and ∆ℓ = [δ

(ℓ)
i,j ], we choose non-zero

random elements {ri,j} in Zp for i, j = 1, · · · ,m and compute H ′ℓ = [ri,j ·η(ℓ)i,j ].
Then, each component of a resulting matrix of the matrix multiplication
(H ′ℓ ·∆ℓ) is almost uniformly distributed over Zp.

Thanks to the randomization, the probability for each component of
H ′ · ∆ of being congruent to zero modulo p is in inverse proportion to p.
We may obtain a correct component with the probability of (1 − 1

p−1). Be-
cause we perform in total n(⌈logm⌉ + 3) − 2 matrix multiplications for the
analysis, the probability for a component of being correct is greater than
(1 − 1

p−1)
n(⌈logm⌉+3). For example, in the case where n = 2,m = 1000 and

p = 503, the success probability for a component is about 95%.
Putting up altogether, we present the final protocol in Figure 3.2.

3.4 Experimental Result
In this section, we demonstrate the performance of the pointer analysis in
secrecy. In our experiment, we use HElib library [HS14], an implementation
of the BGV cryptosystem. We test on 4 small C example programs including
tiny Linux packages. The experiment was done on a Linux 3.13 system
running on 8 cores of Intel 3.2 GHz box with 24GB of main memory. Our
implementation runs in parallel on 8 cores using shared memory.

Table 3.4 shows the result. We set the security parameter 72 which is
usually considered large enough. It means a ciphertext can be broken in
a worst case time proportional to 272. In all the programs, the maximum
pointer level is 2.
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Table 3.4: Experimental Result
Program # Var Enc Propagation Edge addition Total

toy 9 26s 28m 49s 5m 58s 35m 13s
buthead-1.0 17 1m 26s 5h 41m 36s 56m 19s 6h 39m 21s
wysihtml-0.13 32 2m 59s 18h 11m 50s 2h 59m 38s 21h 14m 27s
cd-discid-1.1 41 3m 49s 32h 22m 33s 5h 22m 35s 37h 48m 57s
Enc : time for program encryption
Propagation : time for homomorphic applications of the Trans rule
Edge addition : time for homomorphic applications of the Load and Store rules

3.5 Discussions
Why “Basic” Algorithm? Many optimization techniques to scale inclusion-
based pointer analysis to larger programs [FFSA98, FS98, HL07, HT01,
PKH03] cannot be applied into our setting without exposing much infor-
mation of the program. Two key optimizations for inclusion-based pointer
analysis are the cycle elimination and the difference propagation. But neither
method is applicable. The cycle elimination [FFSA98, HL07, HT01, PKH03]
aims to prevent redundant computation of transitive closure by collapsing
each cycle’s components into a single node. The method cannot be applied
into our setting because cycles cannot be detected and collapsed as all the
program information and intermediate analysis results are encrypted. The
other technique, difference propagation [FS98, PKH03], only propagates new
reachability facts. Also, we cannot consider the technique because analysis
server cannot determine which reachability fact is new as intermediate anal-
ysis results are encrypted.

Privacy Preserving App Reviews Our method may be used for app
store review systems. App review systems (e.g. Apple App Store, Sam-
sung Apps) aim to filter malicious apps before deployments. In app review
systems, a server-side analysis in secrecy may help for the following reasons:

• Analysis cannot be performed on the client-side because they may tam-
per with the analysis results.
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• Revealed analysis mechanism may be used to avoid the detection.

• App source codes often require privacy for copyright protection.

A prerequisite for the realization of this scenario is a threshold cryptosystem.
In threshold cryptosystems, two parties must cooperate in the decryption
protocol. In our setting, the secret key is shared between analysis server and
program owner. This decryption mechanism is for preventing the program
owner from doing the decryption by himself and tampering with the result.
Another prerequisite is a zero-knowledge protocol by which that the program
owner did not maliciously change his original program is proved.

Conclusion We report that the homomorphic encryption scheme can un-
leash the possibility of static analysis of encrypted programs. As a repre-
sentative example, we have described an inclusion-based pointer analysis in
secrecy. In our method, a somewhat homomorphic encryption scheme of
depth O(logm) is able to evaluate the pointer analysis with O(logm) homo-
morphic matrix multiplications.

We also show the viability of our work by implementing the pointer anal-
ysis in secrecy. We expect our method will scale to larger programs thanks
to new developments and advances in HE that are constantly being made.
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Main Protocol

Client Input: There m pointer variables in the client’s program with the max-
imal pointer level n. The sets {(δ(ℓ)i,j , η

(ℓ)
i,j ) | 1 ≤ i, j ≤ m, 1 ≤ ℓ ≤ n} and

{(ui,j , vi,j) | 1 ≤ i, j ≤ m} are initialized by the manner in the section 3.2.2
and 3.3.3. For a security parameter λ, the client generates the parameters
(pk, evk; sk)← BGV.KG(1λ) of the BGV scheme.

Sub-algorithms: In this protocol, we use sub-algorithms in Figure 3.3–3.5.

– Program Encryption (Client’s work)
1. for ℓ = 1 to n and for i = 1 to m do
2. δ̄

(ℓ)
i ← BGV.Enc(δ(ℓ)i,1 , · · · , δ

(ℓ)
i,m), η̄

(ℓ)
i ← BGV.Enc(η(ℓ)i,1 , · · · , η

(ℓ)
i,m)

3. ūi ← BGV.Enc(ui,1, · · · , ui,m), v̄i ← BGV.Enc(vi,1, · · · , vi,m)
4. for ℓ = 1 to n do
5. ∆̄ℓ ←

⟨
δ̄
(ℓ)
1 | · · · |δ̄

(ℓ)
m

⟩T
, H̄ℓ ←

⟨
η̄
(ℓ)
1 | · · · |η̄

(ℓ)
m

⟩T
// the i-th row of ∆̄ℓ is δ̄

(ℓ)
i .

6. Ū ← ⟨ū1| · · · |ūm⟩T , V̄ ← ⟨v̄1| · · · |v̄m⟩T // the i-th row of Ū is ūi.
7. Client sends the sets {(∆̄ℓ, H̄ℓ) | 1 ≤ ℓ ≤ n} and {(Ū , V̄ )} to server.

– Analysis in Secrecy (Server’s work)
1. ∆̄n ← HE.MatMult

(
HE.MatPower(H̄n,m), ∆̄n

)
2. for ℓ = n− 1 to 1 do
3. Ā← HE.MatMult(Ū , ∆̄ℓ+1), B̄ ← HE.MatTrans

(
HE.MatMult(V̄ , ∆̄ℓ+1)

)
4. H̄ℓ ← HE.MatAdd

(
HE.MatAdd(H̄ℓ, Ā), B̄

)
// apply Load and Store rules

5. ∆̄ℓ ← HE.MatMult(HE.MatPower(H̄ℓ,m), ∆̄ℓ) // apply Trans rule
6. Server sends the ciphertext set {δ̄(ℓ)i | 1 ≤ ℓ ≤ n, 1 ≤ i ≤ m} to client.

– Output Determination (Client’s work)
1. for i = 1 to m and for ℓ = 1 to n do
2. Client computes (δ(ℓ)i,1 , · · · , δ

(ℓ)
i,m)← BGV.Dec(δ̄(ℓ)i ).

3. Client determines the set {xi −→ &xj | δ(ℓ)i,j ̸= 0, 1 ≤ i, j ≤ m, 1 ≤ ℓ ≤ n}.

Figure 3.2: The Pointer Analysis in Secrecy
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// We assume that m is the same as the number of plaintext slots in the BGV scheme.
// A prime p is the modulus of message space in the BGV-type cryptosystem.
// We denote the encryption of the matrix A = [ai,j ] ∈ Zm×m

p by Ā.
// The i-th row āi of Ā is the ciphertext BGV.Enc(ai,1, · · · , ai,m) for i = 1, · · · ,m.
// For ciphertexts c̄1, · · · , c̄m, we denote the matrix whose rows are c̄i by ⟨c̄1| · · · |c̄m⟩T .

HE.MatAdd(Ā, B̄)
// Input: Ā, B̄ are encryptions of A = [ai,j], B = [bi,j].
// Output: A+B is an encryption of A+B = [ai,j + bi,j].
1 for i = 1 to m do
2 z̄i ← BGV.Add(āi, b̄j)

3 return Z̄ ← ⟨z̄1|z̄2| · · · |z̄m⟩T // the i-th row of Z̄ is z̄i

HE.MatMult(Ā, B̄)
// Input: Ā, B̄ are encryptions of A = [ai,j], B = [bi,j].
// Output: RA ·B is an encryption of RA ·B = [

∑m
k=1 ri,k · (ai,kbk,j)],

// where ri,j
$←− [−p/2, p/2) ∩ Z with ri,j ̸= 0.

1 R̄← HE.MatRandomize(Ā)
2 for i = 1 to m do
3 z̄i ←

∑m
j=1 BGV.Mult

(
HE.Replicate(r̄i, j), b̄j

)
// ciphertext additions

4 return Z̄ ← ⟨z̄1|z̄2| · · · |z̄m⟩T // the i-th row of Z̄ is z̄i

HE.MatPower(Ā, k)
// Input: Ā is an encryption of A.
// Output: Aw is an encryption of Aw, where w = 2⌈log k⌉.
1 Z̄ ← Ā
2 for i = 1 to ⌈log k⌉ do
3 Z̄ ← HE.MatrixMult

(
Z̄, Z̄

)
4 return Z̄

Figure 3.3: Pseudocode for the Homomorphic Matrix Operations I
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HE.MatTrans(Ā)
// Input: Ā is an encryption of A = [ai,j].
// Output: AT is an encryption of AT = [aj,i].
1 for i = 1 to m do
2 for j = 1 to m do
3 z̄i,j ← HE.Masking(āj, i)
4 z̄i ←

∑i−1
j=1 HE.Rotate(z̄i,j , j − i+m) +

∑m
j=i HE.Rotate(z̄i,j , j − i)

// △ ciphertext additions
5 return Z̄ ← ⟨z̄1|z̄2| · · · |z̄m⟩T // the i-th row of Z̄ is z̄i

HE.MatRandomize(Ā)
// Input: Ā is an encryption of A = [ai,j].
// Output: RA is an encryption of RA = [ri,j · ai,j ], where ri,j

$←− Zp with ri,j ̸= 0.
1 for i = 1 to m do
2 Choose a vector ri = (ri,1, · · · , ri,m)

$←− Zm
p with ri,j ̸= 0 mod p.

3 z̄i ← BGV.multByConst(ri, āi)

4 return Z̄ ← ⟨z̄1|z̄2| · · · |z̄m⟩T // the i-th row of Z̄ is z̄i

Figure 3.4: Pseudocode for the Homomorphic Matrix Operations II
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// The following algorithms are in the library HElib.
// Here, we only give preview of the algorithms.

HE.Replicate(c̄, k)
// The ciphertext c̄ is the encryption of (µ1, · · · , µm)

return the ciphertext BGV.Enc(µk, · · · , µk)

HE.Masking(c̄, k)
// The ciphertext c̄ is the encryption of (µ1, · · · , µm)

return the ciphertext BGV.Enc(0, · · · , 0, µk, 0 · · · , 0) // k-th of plaintext slots is µk

HE.Rotate(c̄, k)
// The ciphertext c̄ is the encryption of (µ1, · · · , µm)

// This operation is the right rotation as a linear array
return the ciphertext BGV.Enc(µm−k+2, · · · , µm, µ1, · · · , µm−k+1)

BGV.multByConst(r, �c)
// The operation of the multiply-by-constant induces “moderate” noise-growth,
// while a multiplication of ciphertexts induces “expensive” noise-growth.
// The constant vector r = (r1, · · · , rm) ∈ Zp × · · · × Zp

// The ciphertext c̄ is the encryption of (µ1, · · · , µm)

return the ciphertext BGV.Enc(r1µ1, · · · , rmµm)

Figure 3.5: Pseudocode for Some Homomorphic Algorithms
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Chapter 4

New Fully Homomorphic
Encryption

Homomorphic encryption enables computing certain functions over encrypted
data. This property would be very useful in applications like secure cloud
computing. The first fully homomorphic encryption (FHE) scheme which can
compute arbitrary functions was proposed by Gentry [Gen09] based on ideal
lattices. After that, many follow-up works appeared and the performances
of FHE schemes are improved dramatically, whereas only few base problems
are known. To date, there are three main families of the FHE schemes:

1. Gentry’s scheme [Gen09] based on ideal lattices and early follow-up
works [SV10, GH11]. Ideal coset problem is used to prove the semantic
security.

2. van Dijk et al.’s scheme (DGHV scheme) [vDGHV10] based on the ap-
proximate common divisor (ACD) problem introduced by Howgrave-
Graham in [HG01]. It’s efficiency is much improved, implemented
[CMNT11, CNT12], and batch variants are proposed [CCK+13].

3. Brakerski and Vaikuntanathan’s schemes based on the (Ring) Learn-
ing with Errors ((R)LWE) problem [BV11a, BV11b]. Follow-up works
include [BGV12] and the NTRU-variant [LATV12].
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In this chapter, we propose a FHE scheme whose security is based on a
new hard problem called polynomial Approximate Common Divisor (poly-
ACD) problem, which is a polynomial analogue of the ACD problem. The
symmetric version of our scheme is as follows: Let R = ZN [x]/(p(x)) be poly-
nomial ring where N is hard-to-factor integer and p(x) is a (d + 1)-degree
polynomial in ZN [x] with linear factors. One of the roots of p(x) is a secret
key, and the ciphertext is a polynomial of degree d in R whose evaluation at
the secret key is a small integer. Note that the message space of our basic
scheme is an integer ring ZQ with Q < N . More precisely, encryption and
decryption with secret key α is as follows:

Encα(m): Choose a random noise integer e with |e| ≪ N and a random
polynomial q(x) of degree ≤ d − 1 in ZN [x]. Output c(x) = q(x)(x −
α) + eQ+m mod N .

Decα (c(x)): Output m′ = ((c(α) mod N) mod Q).

This conceptually simple scheme is a natural analogue of the DGHV scheme.
Similar to the batch DGHV scheme [CCK+13], our scheme can be extended
to encrypt multiple messages using other roots of p(x). The resulting scheme
can support not only SIMD style operations but also large integer arith-
metic. Using multi-point evaluation of a ciphertext polynomial, decryption
of multiple messages can be done efficiently. Unlike other homomorphic
schemes [BV11b, BGV12, LATV12] based on polynomial rings, our scheme
needs only single polynomial p(x) for homomorphic evaluations. Using p(x),
it is easy to see that we can homomorphically add and multiply ciphertexts in
the ring R in a natural way. For this reason, the multiplication timing of ci-
phertexts of our scheme is faster than RLWE-based homomorphic encryption
using polynomial rings, YASHE by Bos et al.[BLLN13].

Since our base problem is rather new, we extensively cryptanalyze the
polyACD problem by applying all known attacks such as Chen-Nguyen’s
attack, Coppersmith’s attack, and distinguishing attack. Through this anal-
ysis, we get more confidence on the hardness of the base problem.
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Our scheme is yet another homomorphic encryption using polynomials.
It is very simple and gives useful polynomial analogue of van Dijk et al.’s
scheme. As Brakerski writes in [Bra13], it is important to diversify and base
FHE on different assumptions. This study enriches FHE and we believe that
it is helpful to the future development of homomorphic encryption.

Comparison to other FHEs It is interesting to compare the proposed
scheme with other FHE schemes. Unlike the RLWE-based FHE [BLLN13],
our scheme performs simple and efficient homomorphic multiplications. More-
over, our scheme can use different message spaces in each slot, which is similar
to the ACD-based FHEs [CCK+13, CLT14]. Our scheme naturally supports
both SIMD style operations and large integer arithmetic. Compared to the
ACD-based leveled-FHEs [CNT12, CLT14], our scheme does not use the sub-
set sum of the secret key since division with a secret key is not required.

4.1 Preliminaries
Notations. Let a← A denote choosing a uniform random element a from
a set A. When D is a probability distribution, the notation a← D refers to
choosing a random element a according to the distribution D. For arbitrary
numbers x and y, we denote by [x, y] the set of integers contained within the
interval and use a ← I to denote randomly choosing an integer a from the
interval I.

We adopt the convention that ZN is a ring of integers modulo N . Given
x ∈ Z, let x mod N or [x]N denote the unique number in Z∩

(
−N

2
, N

2

]
, which

is congruent to x modulo N . Lowercase bold letters are used for vectors
whereas uppercase letters are used for matrices. The transpose of a vector v
or matrix A is denoted by vT or AT , respectively.

For an integer d, we define the set of polynomials in ZN [x] of degree less
than or equal to d as Zd

N [x] := {f(x) ∈ ZN [x] | deg f(x) ≤ d}. We use Ud(N)

to represent a uniform distribution over Zd
N [x]. For a polynomial f(x) =
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∑deg f
i=0 fix

i in Z[x], let f(x) mod N denote the polynomial
∑deg f

i=0 [fi]N xi in
ZN [x]. We say p(x) ∈ ZN [x] splits completely if there exist α1, · · · , αd ∈ Z
such that

p(x) =
d∏

i=1

(x− αi) mod N

and gcd(αi − αj, N = 1) for 1 ≤ i ̸= j ≤ d. We denote by S(N,d) the set of
such polynomials.

4.1.1 Lattices

A lattice Λ is a discrete additive subgroup of Rm. For a linearly independent
set {b1, · · · ,bn} in Rm (m ≥ n), the lattice Λ generated by {b1, · · · ,bn} is
the set of integer linear combinations of bi,

Λ = L(B) := Zn ·B =

{
n∑

i=1

libi

∣∣ li ∈ Z

}
,

where B is an n × m matrix whose ith row is bi. The set of vectors
{b1, · · · ,bn} is called a lattice basis, and B is called a basis matrix of a
lattice Λ. The rank and dimension of a lattice Λ is n and m, respectively. If
n = m, then Λ is said to be a full rank lattice. The determinant (or volume)
of a lattice Λ is given by

√
det(BBT ).

For an integer q ≥ 2, a q-ary lattice Λ of dimension n is a lattice in Zn

that contains qZn as a sublattice. For example, if B is an integer matrix in
Zn×m, the following is a q-ary lattice of dimension n:

Λ⊥q (B) = {y ∈ Zn | y ·B ≡ 0 (mod q)}.

Note that a vector x ∈ Zn is in the q-ary lattice Λ if and only if x mod q is
also in Λ.
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4.1.2 Chinese Remaindering for Polynomials over Com-
posite Modulus

Let N be a composite modulus and m(x), n(x) be nonzero polynomials in
Z[x]. We say m(x) and n(x) are relatively prime modulo N if there exist
polynomials m̄(x) and n̄(x) in Z[x] such that mm̄+ nn̄ ≡ 1 (mod N).

For i = 1, · · · , k and j = 1, · · · , l, let mi and nj be polynomials in
Z[x] which are pairwise relatively prime modulo N . Then, for arbitrary
polynomials f1, · · · , fk, g1, · · · , gl in Z[x], there exists a polynomial h in Z[x]
of degree less than deg

(∏
i mi ·

∏
j nj

)
such that

h ≡ fi (mod(mi, N)) for 1 ≤ i ≤ k and h ≡ gj (mod(nj, N)) for 1 ≤ j ≤ l,

by the Chinese remainder theorem for commutative rings [Lan02]. Further-
more, h is uniquely determined up to congruence modulo N . Now, let us
introduce the following notation to simplify h instead of writing in words:

h := polyCRTN,((mi)ki=1,(nj)lj=1)
(
(fi)

k
i=1, (gj)

l
j=1

)
whose coefficients belong to

(
−N

2
, N

2

]
. If mi and nj are polynomials of degree

one, then polyCRT is identical to the polynomial interpolation that takes
values fi and gj at the roots of mi and nj, respectively, for all i and j.

Throughout the paper, the modulus N in polyCRT may be omitted when
there is no confusion.

4.1.3 Distributions

Given two distributions D1 and D2, and a probabilistic polynomial time
distinguisher A, the advantage of A is defined by

Adv(A) = |Pr[A(D1) = 1]− Pr[A(D2) = 1]| ,
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where A(Di) is given by gi ← Di for i = 1, 2. Note that a function f is
negligible if for every positive polynomial p(·), there exists some N ∈ N such
that f(n) < 1/|p(n)| for all n > N .

If Adv(A) is negligible for any polynomial time distinguisher A, then
we say that D1 and D2 are computationally indistinguishable and write
D1 ≈c D2. When the statistical distance of D1 and D2 is negligible, we
say distributions D1 and D2 are statistically close and write D1 ≈s D2.

Let ρ, γ, and d be integers. For a γ-bit integer N and α, α1, · · · , αl ←
ZN with gcd(αi − αj, N) = 1 for 1 ≤ i ̸= j ≤ l, we define the following
distributions:

Dρ,d(N ;α) :=

{
Choose q(x)← Zd−1

N [x], e← (−2ρ, 2ρ) :
Output f(x) = (x− α)q(x) + e mod N

}

Dρ,d(N ; (αi)
l
i=1) :=

{
Choose ei ← (−2ρ, 2ρ), i = 1, · · · , l, q(x)← Zd−1

N [x] :

Output f(x) = q(x)
∏l

i=1(x− αi) + polyCRT(x−αi)li=1

(
(ei)

l
i=1

)} .

4.2 Our Fully Homomorphic Encryption Scheme
We propose a new homomorphic encryption scheme over the polynomial
ring ZN [x] for a hard-to-factor integer N . Let p(x) be a S(N,d+1)-polynomial
for a positive integer d. Our homomorphic encryption scheme is based on
the polynomial operations in ring Z[x]/(p(x)). The message space of the
basic scheme is ZQ for an integer Q ≥ 2. This can be extended to ZQ1 ×
· · · × ZQl

for integers Qi ≥ 2 using other roots of p(x). After describing its
basic parameters, we present a somewhat homomorphic encryption scheme in
Section 4.2.2. The leveled FHE scheme is briefly described in Section 4.2.3.

4.2.1 Basic Parameters

The parameters of the proposed scheme are as follows:

λ: the security parameter
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ρ: the bit length of the errors
γ: the bit length of the composite modulus N

τ : the number of encryptions of zero in the public key
µ: the bit length of linear combination coefficients during encryption
ℓQ: the bit length of the message

The parameter of our scheme should satisfy the following constraints:

– γ = Ω(λ3), to resist integer factoring algorithms.
– d = Θ(γ), to avoid a distinguishing attack (see Section 4.4.1).
– ρ ≥ max{2λ − 2 log d − 2 log γ, γ/d + λ}, to avoid Chen-Nguyen’s
attack [CN12] (see Section 4.4.2) and Coppersmith’s attack [Cop96]
(see Section 4.4.3).
– µτ > dγ + 2λ, to apply the leftover hash lemma (see Section 4.3.2).
Note that µ should be less than the bit length of the smallest factor of
N .

4.2.2 The Somewhat Homomorphic Encryption Scheme

We describe our somewhat homomorphic encryption scheme.

• KeyGen(λ): Choose a γ-bit hard-to-factor integer N and a polynomial
p(x) = (x−α)

∏d
j=1(x−βj) mod N from S(N,d+1). Choose ℓQ-bit integer

Q such that gcd(N,Q) = 1. Choose polynomials

fk(x) = polyCRT(x−α,(x−βj)dj=1)
(
Qek, (rkj)

d
j=1

)
for 1 ≤ k ≤ τ,

where ek ← (−2ρ, 2ρ) and rkj ← ZN . Output the public parameter
pp = (N,Q), the public key pk = ({fk(x)}τk=1), the evaluation key
evk = p(x), and the secret key sk = α.

• Encpk(m): To encrypt a message m ∈ ZQ, choose a random vector
b = (b1, · · · , bτ ) ∈ [0, 2µ)τ and output c(x) = m+

∑τ
i=1 bifi(x) mod N .

• Decsk(c(x)): Output m′ = [c(α)]N mod Q.
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• Add(c1(x), c2(x)): Output cadd(x) = (c1(x) + c2(x) mod N).

• Multevk(c1(x), c2(x)): Output cmult(x) = (c1(x)× c2(x) mod (N, p(x))).

Correctness For a ciphertext c(x) ← Encpk(m) with m ∈ ZQ, we know
c(x) is of the form c(x) = (x−α)q(x) +Qe+m for some polynomial q(x) in
Zd−1

N [x] and integer e with |Qe+m| < τ2ℓQ+µ+ρ+1. Hence, [c(α)]N mod Q =

m, if τ2ℓQ+µ+ρ+1 < N/2.
For ciphertexts c1(x)← Encpk(m1) and c2(x)← Encpk(m2), the following

equations hold:

c1(α) + c2(α) ≡ (m1 +m2) +Q(e1 + e2) (mod N),

c1(α)× c2(α) ≡ m1 ·m2 +Q(m1e2 +m2e1 +Qe1e2) (mod N).

for some noise integers e1 and e2. Based on these properties,

Decsk(c1 + c2) = m1 +m2 and Decsk(c1 × c2) = m1 ·m2,

if the absolute value of Q(m1e2+m2e1+Qe1e2) is less than N/2. In general,
decryption works correctly after evaluating a polynomial of degree up to
D = ⌊ γ−1

ℓQ+ρ+µ+log τ+1
⌋.

Remark 4.2.1. One may consider the polyACD problem without an exact
multiple of x − α. In that case, it is not necessary to use a hard-to-factor
integer as a modulus. The multiplication process needs to be modified similar
to [vDGHV10], adding the set of polynomials of degree from d+1 to 2d, which
are noisy polynomial multiples of x−α, to the evaluation key. To control the
noise increase, d⌈logN/µ⌉ polynomials are needed. Moreover, the modulus
should be large enough to provide a reasonable number of multiplications.
So, the modulus in this case is not necessarily smaller than a hard-to-factor
integer. For example, the modulus should be larger than 1000-bit for degree-
10 evaluation. Thus, there is no clear benefit to remove p(x) in the definition
of the polyACD problem.
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Remark 4.2.2. For a batch variant, we choose a polynomial p(x) =
∏l

i=1(x−
αi)
∏d

j=1(x−βj) from S(N,l+d), and ℓQ-bit integers Q1, · · · , Ql with gcd(N,Qi) =

1 for i = 1, · · · , l. Furthermore, choose the following polynomials:

fk(x) = polyCRTN,((x−αi)li=1,(x−βj)dj=1)
((Qieki)

l
i=1, (rkj)

d
j=1), for 1 ≤ k ≤ τ,

hk(x) = polyCRTN,((x−αi)li=1,(x−βj)dj=1)
((Qie

′
ki + δki)

l
i=1, (r

′
kj)

d
j=1), for 1 ≤ k ≤ l,

where eki, e
′
ki ← (−2ρ, 2ρ) and rkj, r

′
kj ← ZN . The public key consists of

these polynomials: pk =
(
{fk(x)}τk=1, {hk(x)}lk=1

)
.

4.2.3 Leveled Fully Homomorphic Encryption Scheme

In this subsection, we propose a leveled FHE by applying the scale-invariant
technique in [Bra12, CLT14]. A leveled FHE is defined as follows:

Definition 4.2.1 (Leveled Fully Homomorphic Encryption [BGV12]). We
say that a family of homomorphic encryption schemes {E (L) : L ∈ Z+} is
leveled fully homomorphic if, for all L ∈ Z+, all encryption schemes use the
same decryption circuit. E (L) compactly evaluates all circuits of depth at
most L, which use some specified complete set of gates. The computational
complexity of E (L)’s algorithms is polynomial (the same polynomial for all
L) in the security parameter, L and (in the case of the evaluation algorithm)
the size of the circuit.

Let N be a hard-to-factor integer and p(x) be a polynomial in S(N2,l+d)

where l and d are positive integers. The ciphertext space of our leveled FHE
is a polynomial ring ZN2 [x]/(p(x)) and the message space space is

∏l
i=1Qi.

When Qi’s are pairwise coprime, the message space can be considered as ZQ

where Q =
∏l

i=1Qi. Hence our scheme can support not only SIMD style
operations, but also large integers arithmetic.

• LHE.KeyGen(λ): Choose a
(
γ
2

)
-bit hard-to-factor integer N and a poly-

nomial p(x) =
∏l

i=1(x−αi)
∏d

j=1(x−βj) from S(N2,l+d). Choose ℓQ-bit
integers Q1, · · · , Ql with gcd(N,Qi) = 1 for i = 1, · · · , l. Furthermore,
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choose the following polynomials: for 1 ≤ k ≤ τ and 1 ≤ t ≤ l,

fk(x) = polyCRTN2,((x−αi)li=1,(x−βj)dj=1)

(
(eki)

l
i=1, (rkj)

d
j=1

)
,

ht(x) = polyCRTN2,((x−αi)li=1,(x−βj)dj=1)

(
(e′ti + δti · ⌊ NQi

⌋)li=1, (r
′
tj)

d
j=1

)
,

where eki, e
′
ti ← (−2ρ, 2ρ), rkj, r′tj ← ZN2 , and δti is the Kronecker

delta.
For each ν = 0, · · · , ⌊2 logN⌋, k = 0, · · · , d + l − 1, choose integers
ẽν,k,i ← (−2ρ, 2ρ) for i = 1, · · · , l, r̃ν,k,j ← ZN2 for j = 1, · · · , d, and
compute polynomials

f̃ν,k(x) = polyCRTN2,((x−αi)li=1,(x−βj)dj=1)

(
(ẽν,k,i +

⌊
Qi

N [2ναk
i ]N2

⌉
)li=1, (r̃ν,k,j)

d
j=1

)
.

Output the the secret key sk = ({αi}li=1), the public parameter pp =(
N, {Qi}li=1

)
, the public key pk =

(
{fk(x)}τk=1, {ht(x)}lt=1

)
, and the

evaluation key evk =
(
p(x), {f̃ν,k}ν∈[0,⌈2 logN⌉),k∈[0,l+d)

)
.

• LHE.Encpk(m): To encrypt a message vector m = (m1, · · · ,ml) ∈∏l
i=1 ZQi

, choose a random vector b = (b1, · · · , bτ ) ∈ [0, 2µ)τ and out-
put c(x) =

∑l
i=1mihi(x) +

∑τ
i=1 bifi(x) mod N2.

• LHE.Decsk(c(x)): Compute m′i =
(⌊
[c(αi)]N2

Qi

N

⌉
mod Qi

)
for i = 1, · · · , l

and output m′ = (m′1, · · · ,m′l).

• LHE.Add(c1(x), c2(x)): Output cadd(x) = (c1(x) + c2(x) mod N2).

• LHE.Multevk(c1(x), c2(x)): To homomorphically multiply ciphertexts c1(x)
and c2(x), compute the polynomial c̃mult(x) := c1(x)×c2(x) in ZN2 [x]/ (p(x)).
Write c̃mult(x) =

∑⌊2 logN⌋
ν=0 2ν c̃ν(x) where all coefficients of c̃ν(x) are

numbers in {0, 1}. Output cmult(x) =
∑⌊2 logN⌋

ν=0

∑d+l−1
k=0 c̃ν,k · f̃ν,k(x) in

ZN2 [x]/ (p(x)) where c̃ν,k is the coefficient of xk in c̃ν(x).

One can write the polynomial c̃mult(x) in 2w-base representation so that
c̃mult(x) =

∑⌊2 logN⌋
ν=0 2wν c̃ν(x) where all coefficients of c̃ν(x) are numbers in

(−2w−1, 2w−1] instead of {0, 1}. In this case, f̃ν,k(x) is modified to be the
encryption of ⌊Qi

N
[2wναk

i ]N2⌉.

72



CHAPTER 4. NEW FULLY HOMOMORPHIC ENCRYPTION

Note that the above scheme has features similar to the variant of van Dijk
et al.’s scheme by Coron et al [CLT14]. However, the leveled FHE scheme
presented by Coron et al. needs an additional assumption, the so called
subset sum assumption, to provide efficient homomorphic divisions of the
secret key. On the other hand, our scheme does not need the hardness of
subset sum assumption since the division with a secret key is not required in
the decryption process.

Correctness For a ciphertext c(x)← LHE.Encpk(m) with m = (m1, · · · ,ml) ∈
ZQ1 × · · · × ZQl

, it is in the form of

c(αi) = qi ·N2 + (mi +Q2
i e
∗
i )⌊ NQi

⌋+ ei,

for some integers qi, noises e∗i ∈ (−2ρ∗, 2ρ∗), and ei ∈ (−2ρ′ , 2ρ′) with ρ′ ≤
ρ+ µ+ log τ for all i = 1, · · · , l. Therefore,

⌊
[c(αi)]N2 · Qi

N

⌉
mod Qi = mi for

i = 1, · · · , l if |e∗i |, |ei| < N/2Qi. For the ciphertexts c1(x)← LHE.Encpk(m1)

and c2(x)← LHE.Encpk(m2), we know that

c1(αi) + c2(αi) = qadd,i ·N2 + (m1,i +m2,i +Q2
i e
∗
add,i)⌊ NQi

⌋+ eadd,i,

for some integers qadd,i, e
∗
add,i, and eadd,i with |e∗add,i| < 2ρ∗+1 and |eadd,i| <

2ρ
′+1 where m1 = (m1,1, · · · ,m1,l) and m2 = (m2,1, · · · ,m2,l). Next, to

perform homomorphic multiplication, we compute c̃mult(x) = c1(x) · c2(x) in
ZN2 [x]/ (p(x)). Then, we have

c̃mult(αi) = c1(αi) · c2(αi) = qmult,i ·N2 + (m1,im2,i) ⌊ NQi
⌋2 + emult,i,

for some integers qmult,i and emult,i with |emult,i| < QiN2ρ
′+ρ∗+2, assuming

2 logQi + ρ∗ < ρ′.
The following lemma gives the homomorphic property of our scheme.

Lemma 4.2.1. Let m1 = (m1,1, · · · ,m1,l) and m2 = (m2,1, · · · ,m2,l) be mes-
sage vectors and let c1(x) and c2(x) be encryptions of m1 and m2 respectively.
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Define cmult(x)←LHE.Multevk(c1(x), c2(x)). Then, for i = 1, · · · , l,

[cmult(αi)]N2 = (mi +Q2
i e
∗
mult,i)⌊ NQi

⌋+ emult,i

for some integers e∗mult,i and emult,i with |e∗mult,i| < (d + l)⌈2 logN⌉ and
|emult,i| < Q2

i (d+ l)⌈2 logN⌉2ρ′+3, where mi = m1,im2,i.

Proof. Let c̃(x) = c1(x)× c2(x) in ZN2 [x]/ (p(x)) and rewrite c̃(x) such that
c̃(x) =

∑⌊2 logN⌋
ν=0 2ν c̃ν(x) where all coefficients of c̃ν(x) are numbers in {0, 1}.

For k = 0, · · · , d + l − 1, let c̃ν,k is the k-th coefficient of c̃ν(x). Then, for
each i = 1, · · · , l,

cmult(αi) ≡N2

⌊2 logN⌋∑
ν=0

d+l−1∑
k=0

c̃ν,k · f̃ν,k(αi)

≡N2

⌊2 logN⌋∑
ν=0

d+l−1∑
k=0

c̃ν,k

(
ẽν,k,i +

⌊
Qi

N [2ναk
i ]N2

⌉)

≡N2

⌊2 logN⌋∑
ν=0

d+l−1∑
k=0

c̃ν,k

(
Qi

N [2ναk
i ]N2

)
+

⌊2 logN⌋∑
ν=0

d+l−1∑
k=0

c̃ν,k (ẽν,k,i + w̃ν,k,i)︸ ︷︷ ︸
:=δ1,i

,

where w̃ν,k,i =
⌊
Qi

N
[2ναk

i ]N2

⌉
− Qi

N
[2ναk

i ]N2 with |w̃ν,k,i| ≤ 1/2. Moreover,

⌊2 logN⌋∑
ν=0

d+l−1∑
k=0

c̃ν,k

(
Qi

N [2ναk
i ]N2

)
= Qi

N

⌊2 logN⌋∑
ν=0

d+l−1∑
k=0

(
c̃ν,k2

ναk
i + qν,k,iN

2
)

= Qi
N

(
[c̃(αi)]N2 + e∗mult,iN

2
)

= Qi

N

(
m1,im2,i⌊ NQi

⌋2 + emult,i + e∗mult,iN
2
)

= (mmult,i +Q2
i e
∗
mult,i)⌊ NQi

⌋+ Qi

N emult,i + δ2,i,

for some qν,k,i ∈ Z, |e∗mult,i| < (d+ l)⌈2 logN⌉ and |δ2,i| < 2Qi(d+ l)⌈2 logN⌉.
Therefore,

[cmult(αi)]N2 = (mmult,i +Q2
i e
∗
mult,i)⌊ NQi

⌋+ δ3,i + δ2,i + δ1,i

where δ3,i = Qi

N
emult,i and δ3,i + δ2,i + δ1,i ∈ Z with |δ3,i + δ2,i + δ1,i| <
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Q2
i (d+ l)⌈2 logN⌉2ρ′+3.

When evaluated at the secret key, the fresh ciphertexts have noise about
ρ′-bit for ρ′ < ρ+µ+ log τ . After LHE.Mult of two fresh ciphertexts, the noise
of the resulting ciphertext increase 8ΘQ2

i times, where Θ = (d+ l)⌈2 logN⌉.
If all Qi’s are the same, the value of c̃mult in LHE.Mult should be c̃mult(x) =

Q · c1(x)× c2(x) and f̃ν,k in LHE.KeyGen is modified to encrypt
⌊

1
N
[2ναk

i ]N2

⌉
instead of

⌊
Qi

N
[2ναk

i ]N2

⌉
. In this case, the noise after the multiplication in-

creases only 8ΘQ times. The following theorem states that our scheme is a
leveled FHE scheme.

Theorem 4.2.1. The proposed homomorphic encryption scheme with pa-
rameters (ρ′, N, d) can correctly evaluate circuits of multiplicative depth L

with
N/2ρ

′ ≥ (O(d logN))L+O(1) .

Therefore, the proposed scheme is an L-leveled FHE.

If Qi = 2 for all i, our scheme can be transformed into an FHE scheme,
which can compute arbitrary functions on encrypted data, using Gentry’s
bootstrapping technique [Gen09] assuming circular security.

Note that the decryption process can be accelerated by the multi-point
evaluation method [VZGG13]. For example, the decryption process that
applies fast, multi-point evaluation takes 1.84 seconds while the original basic
decryption takes 119.608 seconds when γ = 1024, d = 17833, and l = 2048.
This test was conducted on an ordinary laptop with an Intel Core i7 processor
running at 1.7 GHz with 4 GB RAM.

4.3 Security
We prove the security of our scheme. The security of our scheme is based
on the hardness of a polynomial ACD problem, which is an analogue of
the ACD problem [HG01] on which the DGHV scheme [vDGHV10] and its
variants [CMNT11, CNT12, CCK+13] are based.
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In ACD problem, only the approximate multiple of p are given in the
form of xi = qi · p + ei, where ei’s are small noise integers. Viewing p as
a polynomial x − α for a secret α ∈ ZN , and qi as a random polynomial
in some polynomial ring ZN [x], we get the following problem: Given many
approximate polynomial multiples of x − α, which is of the form fi(x) =

qi(x)(x − α) + ei mod N where “noise” integers ei are uniformly sampled
from [−B,B] ∩ Z with B is much “smaller” than N , find α. If fi(x) =

qi(x)(x − α) + ei over Z, then the problem can be reduced to the ACD
problem. However, this is not the case; efficient reduction between the ACD
problem and the polynomial ACD problem does not seem to exist since they
equal modulo N .

Note that some parts of this section were collaborated with results from
Hansol Ryu and Moon Sung Lee [CHLR14]. Hansol Ryu played a key role
in providing the relations of the polynomial ACD problem and its variants.
Moon Sung Lee played a important role in proving the semantic security of
our scheme based on the hardness of the polynomial ACD problem.

4.3.1 The Polynomial ACD Problems

Definition 4.3.1 (Computational Polynomial Approximate Com-
mon Divisor Problem: polyACD). The (ρ, γ, d)-polyACD problem is
defined as follows: Given a γ-bit integer N and α ← ZN , and a polynomial
p(x) = (x − α)p̃(x), where p̃(x) is randomly chosen from S(N,d) such that
gcd(p̃(α), N) = 1 and polynomially many samples from Dρ,d(N ;α), find α.

Definition 4.3.2 (Decisional Polynomial Approximate Common Di-
visor Problem: DpolyACD). The (ρ, γ, d)-DpolyACD problem is defined
as follows: Given a γ-bit integer N and α← ZN , g(x) = f(x)+r(x)·b mod N

where f(x) ← Dρ,d(N ;α), r(x) ← Zd
N [x] and b ← {0, 1}, and a polynomial

p(x) = (x − α)p̃(x), where p̃(x) is randomly chosen from S(N,d) such that
gcd(p̃(α), N) = 1 and polynomially many samples from Dρ,d(N ;α), deter-
mine b.
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Since p(x) is also given, which is an exact polynomial multiple of x− α,
the polynomial factorization of p(x) should be difficult. For this reason, we
use a polynomial ring ZN [x] where N is a hard-to-factor integer. Applying
the method in [CLT14], we can show that polyACD problem is reducible to
the DpolyACD problem. Therefore, we obtain the equivalence between the
polyACD problem and DpolyACD problem.

To proof the security of our leveled FHE scheme, we define the extended
polyACD problem.

Definition 4.3.3 (l-Decisional Polynomial Approximate Common
Divisor Problem: l-DpolyACD). The (ρ, γ, d)-l-DpolyACD problem is
as follows: For a γ-bit integer N , let p(x) =

∏l
i=1(x − αi)

∏d
j=1(x − βj) be

a polynomial from S(N,l+d). Given p(x), polynomially many samples from
Dρ,d(N ; (αi)

l
i=1), and g(x) = f(x)+r(x)·b mod N , where f(x)← Dρ,d(N ; (αi)

l
i=1),

r(x)← Zl+d−1
N [x] and b← {0, 1}, determine b.

Intuitively, the l-DpolyACD problem seems to be easier than the Dpoly-
ACD problem since sampled polynomials have more specific structure. The
following lemma show that the l-DpolyACD problem is not easier than
the DpolyACD problem. We provide the proof of the following theorem
in [CHLR14].

Lemma 4.3.1. The (ρ, γ, d)-DpolyACD problem is reducible to the (ρ, γ, d)-
l-DpolyACD problem.

4.3.2 Security Proof

To prove the security of the proposed scheme, we recall the definition of lossy
encryption schemes [BHY09, HLOV11]. As is noted in [HLOV11], semantic
security is implied by the properties of lossy encryption schemes. To prove
that our encryption scheme is lossy, we recall the leftover hash lemma.

Leftover Hash Lemma A family H of hash functions from finite sets X

to Y is said to be 2-universal if for all distinct x, x′ ∈ X, Prh←H[h(x) =
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h(x′)] = 1/|Y |. A distribution D is ϵ-uniform if its statistical distance from
the uniform distribution is at most ϵ. We now state the simplified leftover
hash lemma in [vDGHV10].

Lemma 4.3.2 (Simplified Leftover Hash Lemma). Let H be a family of 2-
universal hash functions from X to Y . Suppose h ← H and x ← X are
chosen uniformly and independently. Then, (h, h(x)) is 1

2

√
|Y |/|X|-uniform

over H× Y .

This lemma is applied to our construction.
Lemma 4.3.3. Let N be an integer whose smallest prime factor is p, and
let µ be a positive integer such that 2µ is less than p. Pick x1, · · · ,xτ ← Zd+1

N

uniformly and independently, choose s = (s1, . . . , sτ ) ← [0, 2µ)τ , and set
xτ+1 =

∑τ
i=1 sixi mod N . Then, (x1, · · · ,xτ ,xτ+1) is 1

2

√
Nd+1/2µτ -uniform

over Z(d+1)(τ+1)
N .

Proof. Define a family of hash functions H from [0, 2µ)τ to Zd+1
N as follows:

A member h ∈ H is defined by elements h1, · · · ,hτ ∈ Zd+1
N such that for any

s ∈ [0, 2µ)τ , h(s) =
∑τ

i=1 sihi mod N . For any distinct s and s′, there exists
i such that si ̸= s′i with gcd(si − s′i, N) = 1; this is based on the fact that
si − s′i is less than any prime factor of N . This family is 2-universal since

Prh←H[h(s) = h(s′)] = Prh←H[h(s)− h(s′) = 0]

= Prh←H

[
τ∑

i=1

(si − s′i)hi mod N = 0
]

= 1/Nd+1.

Therefore, by the leftover hash lemma, (h, h(x)) is 1
2
ϵ-uniform over Z(d+1)(τ+1)

N

where ϵ =
√

Nd+1/2µτ . And, it is negligible when µτ > (d+1) logN+2λ.

Lossy Encryption In the lossy encryption scheme [HLOV11], a key gen-
eration algorithm outputs two kinds of keys, injective keys and lossy keys
based on the input parameter and the following properties*. First, under

*We do not consider openablility since it is implied by the other properties.
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injective keys, traditional correctness is satisfied. Second, injective public
keys pkinj and lossy public keys pklossy are computationally indistinguish-
able. Third, under lossy public keys, the distributions of any two messages
are statistically close.

Using properties of lossy encryption, it is easy to show that a lossy en-
cryption scheme is semantically secure under the chosen plaintext attack
[HLOV11]. Namely, for messages m0 and m1 of the lossy encryption scheme,
the second and third properties of lossy encryptions imply

E(pkinj,m0) ≈c E(pklossy,m0) ≈s E(pklossy,m1) ≈c E(pkinj,m1),

where E(pk,m) is the distribution of encryptions of m under the public key
pk.

We are now ready to prove the semantic security of our scheme based on
the hardness of the polynomial ACD problem.

Theorem 4.3.1. Our scheme is semantically secure based on the hardness
of the polynomial ACD problem.

Proof. Since polynomial ACD problem is reducible to DpolyACD problem, it
is sufficient to prove security based on the hardness of the DpolyACD prob-
lem. We first view our basic scheme in Section 4.2.2 as a lossy encryption
scheme. Injective keys are generated by KeyGen step. Correctness under the
injective keys is easily verified. For lossy keys, the key generation algorithm
is identical to the one used for injective keys with the exception that fk(x)

are chosen uniformly and randomly from Ud(N) rather than Dρ,d(N ;α). Us-
ing the DpolyACD assumption and a standard hybrid argument, it is easy to
see that lossy keys and injective keys are computationally indistinguishable.
Lastly, by the leftover hash lemma under lossy keys, when µτ > (d+1)γ+2λ,
encryptions of m0 and m1 are statistically close for any two messages m0 and
m1.

By using the l-DpolyACD assumption instead of the DpolyACD assump-
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tion, the semantic security of leveled FHE scheme in Section 4.2.3 can be
proved similarly. From the equivalence in [CHLR14], the DpolyACD prob-
lem is reducible to the l-DpolyACD problem and so the polyACD problem is
also reducible to the l-DpolyACD problem. Thus, our scheme is semantically
secure under the hardness of the polynomial ACD problem.

4.4 Analysis of the Polynomial ACD Prob-
lems

In this section we provide an extensive cryptanalysis of the polyACD problem
and consider all known attacks applicable to the polyACD problem. We
first consider a distinguishing attack based on lattices using the similarities
to the LWE problem. Next, we apply attacks against the ACD problem
to the polyACD problem in Sections 4.4.2 and 4.4.3. In Section 4.4.4, we
present a method for finding common solutions of multivariate polynomials
over composite modulus when solutions are small. We combine Cohn and
Heninger’s analysis [CH13] with ours to determine secure parameters for
the polyACD assumption.

Section 4.4.1 is an analysis of the DpolyACD problem and the remaining
subsections pertain to the polyACD problem.

4.4.1 Distinguishing Attack

Due to its structural similarity, a distinguishing attack on the LWE prob-
lem [MR09] can be applied to the polyACD problem. This attack is described
as follows.

Let fi(x) =
∑d

j=0 fi,jx
j be samples from Dρ,d(N ;α) with fi(α) mod N =

ei, where ei ∈ (−2ρ, 2ρ) for 1 ≤ i ≤ m. Given such samples and g(x) =∑d
i=0 gix

i = f(x) + r(x) · b where f(x)← Dρ,d(N ;α) and r(x)← Zd
N [x] with

g(α) ≡ e0 + r(α) · b (mod N), our goal is to distinguish whether b = 0 or
b = 1; that is, whether g(x) is from Dρ,d(N ;α) or not.

80



CHAPTER 4. NEW FULLY HOMOMORPHIC ENCRYPTION

Let fi = (fi,j)1≤j≤d, g = (gj)1≤j≤d, s = (αj mod N)1≤j≤d, and v =

(vi)1≤i≤m+1 = (f1,0, · · · , fm,0, g0). The inner product of fi and s is given
by

⟨fi, s⟩ =
d∑

j=1

fi,jsj =
d∑

j=1

fi,j(α
j mod N) ≡ fi(α)− fi,0 ≡ ei − vi (mod N),

for i = 1, · · · ,m. Let A be the (m + 1) × d matrix whose rows are fi
and g. By the previous calculation, eT − AsT ≡ vT (mod N) where e =

(e1, · · · , em, e0 + r(α)b).
Consider the following lattice Λ,

Λ = {x ∈ Zm+1 | xA ≡ 0 (mod N)}.

If w ∈ Λ is a vector of norm smaller than ϵ
2
N/(2ρ

√
m+ 1) where 0 < ϵ < 1,

then

⟨w,v⟩ mod N = ⟨w, e⟩ mod N ≤ ∥w∥∥e∥ < ϵ

2
N/(2ρ

√
m+ 1)∥e∥.

When b = 0, this value is smaller than ϵN
2

; hence, we can distinguish whether
b = 0 or not with high probability.

To thwart this attack, we set the parameters such that finding short
vectors of norm less than N/(2ρ

√
m+ 1) in Λ is difficult. Since A is a random

matrix modulo M , we follow the estimates in [MR09]. The length of the
shortest vector that can be obtained is close to

min{N, (det(Λ))
1

m+1 · δm+1} = min{N,N
d

m+1 δm+1},

where δ is a root-Hermite factor that depends on lattice reduction algorithms.
The value N

d
m+1 δm+1 is minimized whenever m + 1 =

√
d logN/ log δ. By

using polynomial time lattice reduction algorithms, the shortest vector one
can find in Λ is at least min{N, 22

√
d logN log δ}; thus, we arrive at the following

condition:
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N/(2ρ
√
m+ 1)≪ 22

√
d logN log δ.

Therefore, if
d >

logN
4 log δ ,

the distinguishing attack is not effective. We refer to [LP11, LN14] for the
minimal achievable value of δ.

4.4.2 Chen-Nguyen’s Attack

The basic attack against the polyACD problem involves a simple exhaustive
search. Specifically, for every possible noise e, check whether gcd(p(x), f(x)−
e) yields a non-trivial factor of p(x). More efficient method was proposed by
Chen and Nguyen [CN12] for the integer ACD problem. Their algorithm
has Õ(2ρ/2) time complexity, which is essentially “square root” of that of
the exhaustive search. In this subsection, we adapt their algorithm to the
polyACD problem.

Let f(x) = (x− α)q(x) + e be a polynomial from Dρ,d(N ;α) and p(x) =

(x − α)p̃(x) in S(N,d+1). For simplicity, we only consider e ∈ [0, 2ρ) rather
than (−2ρ, 2ρ). With high probability, we have

x− α = gcd
(
p(x),

2ρ−1∏
i=0

(f(x)− i) mod p(x)

)
.

To compute this polynomial efficiently, we first construct a bivariate polyno-
mial F2ρ

′ (x, t) =
∏2ρ

′−1
i=0 (f(x)−(t+i)) mod p(x), where ρ′ = ⌊ρ

2
⌋ and evaluate

the polynomial at 2ρ
′+(ρ mod 2) points using the multi-point evaluation algo-
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rithm. We observe that

2ρ−1∏
i=0

(f(x)− i) ≡
2ρ

′+(ρ mod 2)−1∏
k=0

(
2ρ−1∏
i=0

(
f(x)− (2ρ

′
k + i)

))

≡
2ρ

′+(ρ mod 2)−1∏
k=0

F2ρ
′ (x, 2ρ

′
k) (mod p(x)).

Note that polynomials in ZN [x, t], of degree less than d1 in x and less
than d2 in t can be multiplied using Õ(d1d2) operations in ZN [VZGG13].
Thus, we can construct a bivariate polynomial F2ρ′ (x, t) in Õ(2ρ

′
d) multipli-

cations in ZN using the product tree method. On the other hand, dividing
a polynomial over ZN of degree d1 by a polynomial over ZN of degree d2

has complexity Õ(d1) when using Newton’s method. Overall, using multi-
point evaluation, we can evaluate the polynomial at 2 × 2ρ

′+(ρ mod 2) points
in Õ(2ρ

′
d) multiplications in ZN . Therefore, the total complexity of this

method is Õ(2ρ/2d) operations in ZN .

4.4.3 Coppersmith’s Attack

Finding roots of a polynomial over ZN is difficult since the factorization of
N is unknown. However, if the polynomial has small roots, Coppersmith’s
algorithm [Cop96] gives such solutions. Let p(x) be a polynomial in S(N,d+1)

for integers N, d, and let f(x) be polynomial in Dρ,d(N ;α) for a root α of
p(x). Since the error is quite smaller than the modulus in the polyACD
problem, we may apply Coppersmith’s algorithm if we know a polynomial
which has f(α) as a root.

We first recall Coppersmith’s result.

Lemma 4.4.1. (Coppersmith method [Cop96]) Let N be a positive
integer and let f(x) be a monic polynomial in ZN [x] of degree d. Then one
can find all solutions x0 to the equation

f(x0) ≡ 0 (mod N) with |x0| < N
1
d ,
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in time O
(
d5 log9N

)
.

To apply this lemma, we first prove the following theorem, which is related
to the construction of a polynomial that has f(α) as a root.

Theorem 4.4.1. Given an instance (p(x), f(x)) of the (ρ, γ, d)-polyACD
problem, one can find g(x) in ZN [x] of degree ≤ d+1 such that g (f(α)) ≡ 0

(mod N) in O(d3) operations in ZN where α is a root of p(x).

Proof. Let fi(x) = (f(x))i mod p(x) be a polynomial in ZN [x] for i = 1, · · · , d+
1. Since p(α) = 0, fi(α) is equal to f(α)i mod N . Define bivariate polyno-
mials Fi(x, y) = yi − fi(x) ∈ ZN [x, y] for i = 1, · · · , d + 1. Using the Gaus-
sian elimination, one can find a1, · · · , ad+1 ∈ ZN such that

∑d+1
i=1 aifi(x) is

a constant and a1, · · · , ad+1 ∈ ZN are not all zero. Hence,
∑d+1

i=1 aifi(x) =∑d+1
i=1 aifi(α).
By defining g(y) =

∑d+1
i=1 aiFi(x, y), we can observe that

g(y) =
d+1∑
i=1

ai(y
i − fi(x)) =

d+1∑
i=1

ai(y
i − fi(α)),

g(f(α)) =
d+1∑
i=1

ai(f(α)
i − fi(α)) ≡ 0 (mod N).

Hence g(y) is a univariate polynomial of degree (d + 1) and has f(α) as a
root modulo N .

Computing fi(x) for 1 ≤ i ≤ d+ 1 requires O (d3) operations in ZN , and
the cost of Gaussian elimination is O(d3) operations in ZN . Thus, the total
complexity is O(d3) operations in ZN .

Combining with the Coppersmith method, one can compute f(α) in time
O(d5 log9 N) if |f(α)| < N

1
d+1 . Therefore, if we choose

ρ ≥ 1

d+ 1
logN + λ,

then the time complexity of this attack is at least 2λ.
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4.4.4 Extension of Cohn-Heninger’s Attack
In [CH13], Cohn and Heninger give an analysis of the polynomial approx-

imate common divisor problem over fields. It can be seen as an extension
of Section 4.4.3 to the multi-instance case. Since we use a polynomial ring
over ZM , which is not a field, their analysis can not be applied directly.
However, their strategy can be used to obtain several multivariate polyno-
mials which have a common root. These polynomials are used to analyze the
polyACD problem.

Let f1(x), · · · , fm(x) be polynomials from Dρ,d(N ;α) and let p(x) be the
corresponding polynomial in S(N,d+1). Similar to Section 4.4.3, we first con-
struct m variable polynomials Q(z1, · · · , zm) such that Q(f1(α), · · · , fm(α)) =
0 mod N and consider the bound of roots one can find in polynomial time.
We define a lattice Λ generated by coefficient (in ZN [x]) vectors of the poly-
nomials

(z1 − f1(x))
i1 · · · (zm − fm(x))

imp(x)max(s−
∑

j ij ,0)

with i1 + · · · + im ≤ t for proper parameters t and s. The dimension of the
lattice is

(
t+m
m

)
and degx(detΛ) = (d+1)

(
s+m
m

)
s

m+1
. By the polynomial ana-

logue of lattice basis reduction [Kai80], we obtain a reduced basis v1, · · · , vn
with corresponding polynomials Q1, · · · , Qn for Λ such that

degx(Q1) + · · ·+ degx(Qn) = degx(detΛ)

and degx(Q1) ≤ · · · ≤ degx(Qn), where n = dimΛ =
(
t+m
m

)
. As a result,

degx(Qi) ≤
degx det(Λ)
n− (i− 1)

.

By the construction of Qi(z1, · · · , zm), Qi(f1(α), · · · , fm(α)) is divided by
(x− α)s. Hence we choose

degx det(Λ)
dim(Λ)− (k − 1)

< s (4.4.1)
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so that Qi(f1(α), · · · , fm(α)) ≡ 0 mod N for i = 1, · · · , k and k ≤ m. There-
fore, we have Q1(z1, · · · , zm), · · · , Qk(z1, · · · , zm) in ZN [z1, · · · , zm] of total
degree t such that

Q1(f1(α), · · · , fm(α)) ≡ · · · ≡ Qk(f1(α), · · · , fm(α)) ≡ 0 mod N,

for proper parameters t, s, and k with k ≤ m.
In general, finding solutions of modular multivariate polynomials is diffi-

cult if factorizations of the modulus are unknown. However, such problems
may be solved in polynomial time if the solutions are quite small. In [JM06],
Jochemsz and May describe a strategy for finding small modular roots of a
multivariate polynomial. They use the Coppersmith technique to obtain the
bound of small roots when m-variable polynomial of total degree t is given.
That is,

X1 · · ·Xm < N
1
t
(1+o(1)),

where Xi is the bound of the root of the ith variable.
As an extension, we now present a method for finding small solutions of

multivariate polynomials over ZM with multiple instances using the lattice-
based Coppersmith technique. This technique achieves better bounds since
we used two or more polynomials whereas only single polynomial is used
in [JM06]. Combining the following theorem with the results of Cohn-
Heninger’s, we examine the hardness of the polyACD problem.
Theorem 4.4.2. Let N be a positive integer and Q1, · · · , Qk be m variable
polynomials over ZN of total degree t such that

Q1(e1, · · · , em) ≡ · · · ≡ Qk(e1, · · · , em) ≡ 0 mod N, (4.4.2)

for some e1, · · · , em ∈ Z and k ≤ m. Moreover, let bounds Xi ∈ N with
|ei| ≤ Xi for i = 1, · · · ,m. Then nontrivial polynomials R(x1, · · · , xm) can
be found with R(e1, · · · , em) = 0 for all tuples (e1, · · · , em) ∈ Zm satisfying
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(4.4.2) and |ei| ≤ Xi in polynomial time in logM , m, and t, provided that

X1 · · ·Xm <
1

2
N

k
t
− m+1

4th log N (
th+m

m )

for some integer h ≥ m.

Proof. After several polynomial operations, we obtain polynomials Qi such
that Qi has no monomial xt

j for j < i. We assume that the coefficients of xt
i

of Qi(x1, · · · , xm) are one since we can easily multiply Qi(x1, · · · , xm) by the
inverse of the coefficients of xt

i. If the inverse does not exist for some i, we
factorize N .

Let h ≥ m be an integer. Consider the collection of polynomials that
have a common root modulo Nh:

xi1
1 · · · xim

m Qδ1
1 (x1, · · · , xm) · · ·Qδk

k (x1, · · · , xm)N
(h−

∑
j δj),

where 0 ≤ i1 + · · · + im + t(δ1 + · · · + δk) ≤ th, 0 ≤ δ1 + · · · + δk ≤ h, and
0 ≤ i1, · · · , ik < t. Define the lattice Λ that is spanned by the coefficient
vectors of the above polynomials at (x1X1, · · · , xmXm). The dimension of Λ
is

n = dimΛ =

(
th+m

m

)
.

Since Λ can be represented by a lower triangular basis matrix, the volume of
Λ is simply the product of all entries on the diagonal. Specifically, detΛ =

(X1 · · ·Xm)
sXN sN where

sX =
∑

j1+···+jm≤th
0≤j1,··· ,jm≤th

j1 =

(
th+m

m+ 1

)
= n · th

m+ 1
,

sN =
∑

δ1+···+δk≤h
0≤δ1,··· ,δm≤h

∑
0≤i1+···+im≤t(h−(δ1+···+δk))

0≤i1,··· ,ik<t

(h− (δ1 + · · ·+ δk))

≈ h

(
th+m

m

)
− k

t

(
th+m

m+ 1

)
= n

(
h− kh

m+ 1

)
.
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Running the Lenstra-Lenstra-Lovász (LLL) lattice basis reduction algo-
rithm on this basis results in an LLL-reduced basis with the m shortest
vectors v1, · · · , vm satisfying

|v1| ≤ · · · ≤ |vm| ≤ 2dimΛ/4(detΛ)1/(dimΛ+1−m).

Therefore the corresponding polynomials Ri(x1, · · · , xm) satisfy

|Ri(e1, · · · , em)| ≤
√

dimΛ 2dimΛ/4(detΛ)1/(dimΛ+1−m),

for i = 1, · · · ,m, by the Cauchy-Schwarz inequality. It remains to show that

√
dimΛ 2dimΛ/4(detΛ)1/(dimΛ+1−m) < Nh (4.4.3)

in order for Ri(e1, · · · , em) = 0 over Z for i = 1, · · · ,m. The following is a
condition on the bound of X1, · · · , Xm :

X1 · · ·Xm ≤ n−
(n+1−k)(m+1)

2nth 2−
(m+1)(n+1−m)

4th N
k
t
−m2−1

nt .

Note that n−
(n+1−m)(m+1)

2nth ≥ 2−
m+1
2th

logn ≥ 2−1 for h ≥ m and 2−
(m+1)(n+1−m)

4th ≥
2−

(m+1)n
4th . Therefore, if

X1 · · ·Xm ≤
1

2
N

k
t
− m+1

4th log N (
th+m

m ),

inequality (4.4.3) holds.

For a sufficiently large modulus N , we apply Theorem 4.4.2 to the poly-
ACD problem. Parameter h is set according to the following conditions:

h ≤


(

4km! logN
tm+1(m+1)

)1/(m−1)
, if t ≥ m(

4km! logN
tm(m+1)

)1/(m)

, if t < m.
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With this in hand, we can find all tuples (e1, · · · , em) ∈ Zm satisfying

Q1(e1, · · · , em) ≡ · · · ≡ Qk(e1, · · · , em) ≡ 0 mod N with |ei| ≤ Xi

and
X1 · · ·Xm < N

k
t
(1+o(1)),

as long as Qi’s are algebraically independent.
Recall that it is possible to obtain m variable polynomials Q1, · · · , Qk

over ZN of total degree t when (d+ 1)
(
s+m
m

)
1

m+1
<
(
t+m
m

)
− (k− 1) such that

Q1(f1(α), · · · , fm(α)) ≡ · · · ≡ Qk(f1(α), · · · , fm(α)) ≡ 0 mod N,

for some integer t, s, and k with k ≤ m, and |fi(α)| < 2ρ. From the attacker’s
perspective, we set s = 1 to minimize t and m and to maximize the bound of
Theorem 4.4.2. As a result, inequality in (4.4.1) holds when

(
t+m
m

)
> d+m.

However, if

ρ ≥ max
k,h

{
k

mt
− m+ 1

4mth logN

(
th+m

m

)}
logN =

(
1

t
− m+ 1

4m2t logM

(
tm+m

m

))
logN,

then this attack does not work. Thus, the polyACD problem cannot be
solved by the above attack on the condition that ρ > 1

t
logN

(
1− d+m

4 logN

)
+λ

for positive integers t and m when
(
t+m
m

)
> d + m. On the other hand, we

recommended choosing d > 4 logM to avoid the distinguishing attack in
Section 4.4.1. This results in a weaker condition upon ρ in Theorem 4.4.2
than in Section 4.4.2.

4.5 Implementation
In this section, we describe the implementation results when large integers
are encrypted for the public evaluation of low degree polynomial. We im-
plemented batch variant of our somewhat homomorphic encryption scheme
in Section 4.2.2. In Section 4.5.1, we first describe the compression method
of the public key. Then, our implementation results are described and com-
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pared with RLWE-based scheme in Section 4.5.2.

4.5.1 Public Key Compression

Since our public key consists of many encryptions of zero, we compress the
encryptions with a pseudo-random number generator using a technique in-
troduced in [CNT12]. In brief, a random polynomial is generated by a
pseudo-random number generator, and it is adjusted to the proper form
using secret keys. More precisely, after αi, βj, and p(x) are generated, a
pseudo-random number generator h with a random seed se is used to gener-
ate fk(x), which are encryptions of zero in the public key for 1 ≤ k ≤ τ . The
process begins by generating random polynomials f ′k(x) in Zl+d−1

N [x] using h

and se. Next, f ′′k (x) = polyCRTN,(x−αi)li=1
(f ′k(αi) − Qieki)

l
i=1 are computed

where eki ← (−2ρ, 2ρ). Moreover, set fk(x) = f ′k(x) − f ′′k (x) mod N . Since
fk(αi) = f ′k(αi) − f ′′k (αi) = Qieki in ZN , it is an encryption of zero. Fur-
thermore, fk(x) can be reconstructed from h, se, and f ′′k (x). Thus, instead
of publishing fk(x), we publish only f ′′k (x) with h and se; this significantly
compresses the size of the public key since the degree of f ′′k (x) is l−1 whereas
the degree of fk(x) is l+d−1. Note that hk(x) in the public key can be com-
pressed similarly. Assuming polynomials generated by the pseudo-random
number generator are uniformly random in Zl+d−1

N [x], the public key gen-
erated by this process is indistinguishable from the one generated by the
usual key generation process. Semantic security of the scheme follows from
Lemma 4.5.1 below in the random oracle model.

Lemma 4.5.1. Given N and a polynomial p(x) =
∏l

i=1(x − αi)
∏d

j=1(x −
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βj) ∈ S(N,l+d), the followings distributions are the same:

D =


(f(x), f ′(x), f ′′(x)) | f ′(x)← Zl+d−1

N [x], ej ← (−2ρ, 2ρ),
f ′′(x) = polyCRTN,(x−αj)lj=1

(f ′(αj)−Qjej),

f(x) = f ′(x)− f ′′(x) mod N


D′ =


(f(x), f ′(x), f ′′(x)) | ej ← (−2ρ, 2ρ), rj ← ZN , f ′′(x)← Zl−1

N [x],

f(x) = polyCRTN,(x−αj)lj=1,(x−βj)dj=1
((Qjej)

l
j=1, (rj)

d
j=1),

f ′(x) = f(x) + f ′′(x) mod N

 .

Proof. Let p1(x) =
∏l

i=1(x−αi) mod N . Then one can easily verify that the
below two distributions are the same:

D0 = {f(x) | f(x)← Zl+d−1
N [x]},

D1 = {q(x)p1(x) + r(x) | q(x)← Zd−1
N [x], r(x)← Zl−1

N [x]}.

Now let (f(x), f ′(x), f ′′(x)) be sampled from D′. Then f(x) can be written as
f(x) = q(x)p1(x)+r(x),where q(x)← Zd−1

N [x], r(x) = polyCRT(x−αi)li=1
(Qiei), ei ∈

(−2ρ, 2ρ). Since (f(x), f ′(x), f ′′(x)) is determined by (q(x), r(x), f ′′(x)), we
only consider the following distribution:

D̄′ = {(q(x), r(x), f ′′(x)) | (f(x), f ′(x), f ′′(x))← D′, f(x) = q(x)p1(x) + r(x)}

=

{
(q(x), r(x), f ′′(x)) | q(x)← Zd−1

N [x], ei ← (−2ρ, 2ρ),
r(x) = polyCRT(x−αi)li=1

(Qiei), f
′′(x)← Zl−1

N [x]

}

On the other hand, if (f(x), f ′(x), f ′′(x)) is sampled from D, then f ′(x) =

q′(x)p1(x) + r′(x) and f ′(αi) = r′(αi) where q′(x) ← Zd−1
N [x] and r′(x) ←

Zl−1
N [x]. This leads to the following equations:
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f(x) = f ′(x)− f ′′(x)

= q′(x)p1(x) + polyCRT(x−αi)li=1
(r′(αi))− polyCRT(x−αi)li=1

(f ′(αi)−Qiei)

= q′(x)p1(x) + polyCRT(x−αi)li=1
(Qiei),

f ′′(x) = polyCRT(x−αi)li=1
(f ′(αi)−Qiei)

= polyCRT(x−αi)li=1
(r′(αi))− polyCRT(x−αi)li=1

(Qiei))

= r′(x)− polyCRT(x−αi)li=1
(Qiei)).

Thus, the following holds:

D̄ = {(q(x), r(x), f ′′(x)) | (f(x), f ′(x), f ′′(x))← D, f(x) = q(x)p1(x) + r(x)}

=


(q(x), r(x), f ′′(x)) | q(x)← Zd−1

N [x], e′i ← (−2ρ, 2ρ), r′(x)← Zl−1
N [x]

r(x) = polyCRT(x−αi)li=1
(Qiei), ei ← (−2ρ, 2ρ),

f ′′(x) = r′(x)− polyCRT(x−αi)li=1
(Qie

′
i)),


= D̄′,

and the lemma is proved.

4.5.2 Implementation Results

As is noted before, the message space of this batch variant is ZQ where
Q =

∏l
i=1Qi for relatively prime Qi’s. To evaluate the degree-3 polynomial

of 170-bit integers, we need to choose Q larger than 2510.
We provide the run times for key generation, encryption, decryption, and

homomorphic addition and multiplication for various values of the maximal
degree (i.e., for the polynomial whose homomorphic evaluation supported)
and the bit-length of message space, logQ with a security parameter λ = 80.
The experiments are conducted on an Intel Core i7 processor running at
3.4 GHz with 16 GB RAM. We used the number theory library (NTL) [Sho]
running over the GNU multiple precision arithmetic library (GMP) [Gt] to
provide the required big integer and polynomial arithmetics.

As is shown in Table 4.1, the time for encryption, addition, and multipli-
cation is not significantly affected by the size of the message. In contrast, the
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time for key generation and decryption increase moderately as the message
size grows. For example, when the maximal degree is three, encryption and
multiplication take 7 to 10 seconds and less than one seconds, respectively,
for all parameters. In contrast, the key generation time increases from 65
seconds to 496 seconds when the message size grows from 512-bit to 16384-
bit. The reason is that, we mainly used larger l to increase the message
space, and this affects the key generation time mostly. Other timings are
only slightly affected.

We compare the result to the timings of the recent RLWE-based scheme,
YASHE [BLLN13], which has a publicly available implementation [LN14,
Lep14]. To encrypt the large integer using YASHE, we combine the ap-
proaches taken in [NLV11] and [BLLN13]. Recall that the message and ci-
phertext of YASHE scheme are polynomials in R/tR and R/qR, respectively,
for the polynomial ring R. Note that one can choose R = Z[x]/(xn+1) where
n is a power of two. To encrypt an integer m, we take the binary represen-
tation of m = mk−12

k−1 + · · ·+m12 +m0, and convert it into a polynomial
m(x) = mk−1x

k−1+· · ·+m1x+m0 with binary coefficients as in [NLV11]. For
efficiency, we also use the CRT approach in [BLLN13] on the coefficients of
m(x). With this combined method, we can evaluate the degree-10 polynomial
of 819-bit integers encoded in three different ciphertexts of which 31-bit t’s
are used, and it is more efficient than using only one 93-bit t. Experiments
are conducted on the same processor as before, using the implementation
in [Lep14].

Table 4.2 shows the experimental results where the maximal degree is
ten. To evaluate degree-10 polynomial of 51-bit integers, we choose n and∏

tj larger than 510 (= 10 ∗ 51 < 512) and 128 · 109, respectively, and the
timings are shown in the first row in the table. As it shows, our scheme
becomes more efficient as the size of message space grows. When evaluating
polynomials of 819-bit integers, our scheme is slightly faster in decryption,
addition, and multiplication. For the homomorphic evaluation of 1638-bit
integers, our scheme is about ten times faster in multiplication.
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Table 4.1: Timings of our batch somewhat homomorphic encryption scheme
Deg. logQ ct size pk size KeyGen(s) Enc(s) Dec(s) Add(s) Mult(s)

3

512 2.18 MB 3.27 MB 65.052 7.699 0.037 0.0004 0.983
1024 2.18 MB 4.36 MB 110.099 7.844 0.056 0.0006 0.984
2048 2.18 MB 6.56 MB 192.928 8.275 0.095 0.0006 0.983
4096 2.18 MB 11.01 MB 375.752 8.083 0.175 0.0006 0.984
8192 2.18 MB 20.09 MB 760.219 8.318 0.330 0.0006 0.986
16384 2.18 MB 39.01 MB 492.175 9.371 0.645 0.0006 0.984

5

512 2.18 MB 4.36 MB 114.451 8.496 0.057 0.0004 1.182
1024 2.18 MB 6.56 MB 197.536 7.936 0.096 0.0008 1.177
2048 2.18 MB 11.01 MB 366.199 8.389 0.171 0.0004 1.172
4096 2.19 MB 20.26 MB 820.299 9.690 0.362 0.0008 1.195
8192 2.21 MB 39.88 MB 528.961 10.120 0.718 0.0008 1.220
16384 2.23 MB 82.68 MB 671.042 11.632 0.430 0.0008 1.231

7

512 2.18 MB 6.56 MB 198.544 7.861 0.096 0.0005 1.252
1024 2.18 MB 11.01 MB 380.736 8.981 0.174 0.0005 1.249
2048 2.18 MB 20.14 MB 744.439 8.283 0.330 0.0005 1.264
4096 2.18 MB 39.11 MB 500.811 10.316 0.683 0.0008 1.277
8192 2.18 MB 80.04 MB 632.576 11.521 0.411 0.0008 1.274
16384 2.20 MB 176.15 MB 1185.399 14.290 0.471 0.0005 1.300

10

512 3.51 MB 21.48 MB 998.586 21.421 0.341 0.0010 1.967
1024 3.51 MB 39.77 MB 2334.649 21.933 0.649 0.0010 1.922
2048 3.51 MB 77.30 MB 1319.139 23.173 0.668 0.0010 1.908
4096 3.51 MB 156.17 MB 1598.169 25.448 0.695 0.0010 1.901
8192 4.39 MB 215.16 MB 2497.199 35.413 0.891 0.0012 2.310
16384 4.39 MB 448.65 MB 3959.849 39.236 0.969 0.0012 2.288

(*) All timings are in seconds.

Table 4.2: Timings of YASHE for the evaluation of degree-10 polynomial
Deg. logm ct size pk size KeyGen(s) Enc(s) Dec(s) Add(s) Mult(s)

10

51 1.15 MB 15.45 MB 82.363 0.192 0.183 0.0062 0.998
102 1.22 MB 17.43 MB 84.419 0.218 0.204 0.0074 1.099
204 1.53 MB 23.24 MB 109.818 0.252 0.244 0.0082 1.330
409 2.43 MB 54.35 MB 401.271 0.750 0.736 0.0120 3.038
819 3.12 MB 87.08 MB 571.914 0.933 0.917 0.0141 4.737
1638 9.71 MB 405.71MB 4183.168 3.041 3.001 0.0400 20.294

(*) In this table, m is a maximum size of the input integers.
(*) This table corresponds to the degree-10 part of Table 4.1.
(*) All timings are in seconds.

We believe that the results in this section shows that our scheme is effi-
cient when evaluating low degree polynomial of large integers.
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4.6 Conclusion
In this chapter, we examined the polynomial analogue of the ACD problem–
the polynomial approximate common divisor (polyACD) problem and pro-
vided extensive cryptanalysis on this new problem. The structure of the poly-
ACD problem is very similar to several problems (e.g., (R)LWE, ACD); how-
ever, its properties are slightly different. Because of its similarity, we apply
several attacks to the polyACD problem, such as Chen-Nguyen’s attack, Cop-
persmith’s attack and the distinguishing attack. We also proposed a method
for finding small solutions of modular multivariate polynomials with multiple
instances.

We presented a somewhat homomorphic encryption scheme whose secu-
rity is based on the polyACD problem as an application of our new prob-
lem. Our scheme is conceptually simple and does not require a complicated
re-linearization process. For this reason, the multiplication timing of cipher-
texts of our scheme is faster than RLWE-based homomorphic encryption
using polynomial rings. Our scheme can be easily converted into a leveled
FHE scheme using the technique in [Bra12, CLT14]. The resulting scheme
has features similar to the variant of van Dijk et al.’s scheme by Coron et al.
Our scheme, however, did not use the hardness of subset sum assumption,
while the leveled FHE scheme presented by Coron et al. needs an additional
subset sum assumption, to provide homomorphic divisions of the secret key.

Providing a reduction between polyACD problem and other cryptographic
hard problems remains as an interesting open problem.
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Conclusions

This paper dealt with application and development for the homomorphic
encryption. In the applied research, an additive homomorphic encryption
scheme, proposed by Naccache and Stern, was used for the privacy-preserving
set union protocol, and a RLWE-based BGV homomorphic encryption scheme
was used for the program static-analysis in secrecy.

To support an effective set union operation, the special encoding function
that expressed set’s elements of the participants was proposed, which was
used to develop the technology that enabled effective recovery of the root of
polynomials even if the polynomials are in the unique factorization domain.
Applying this encoding function to polynomial representation for sets, we
obtained an efficient constant round threshold set union protocol without
assuming an honest majority.

As the next step, in the secure program analysis, we applied homomorphic
encryption to propose a secure pointer analysis. By exposing type informa-
tion of variables in the target program, we could dramatically reduce the cost
of homomorphic operations. The level-by-level fashioned analysis decreased
the depth of the arithmetic circuit for the pointer analysis from O(m2 logm)

to O(logm), where m is the number of pointer variables in the program.
Without this technique, even a tiny program of 10 variables cannot be an-
alyzed in secrecy. Through this, it became possible to analyze whether the
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pointer variables in the program can point to the intended variable or storage
location during execution from the encrypted program information.

Finally, we proposed the polynomial approximate common divisor prob-
lem, a new cryptographic hard problem, along with a new leveled fully homo-
morphic encryption based on this problem. We examined the relations of the
variants for the proposed problem and cryptanalyze the proposed problems
by applying all known attacks such as Chen-Nguyen’s attack, Coppersmith’s
attack, and distinguishing attack. The proposed homomorphic encryption
scheme support not only SIMD style operations, but also large integer arith-
metic. Unlike other homomorphic schemes over the polynomial rings, the
proposed scheme needs only single polynomial for homomorphic evaluations,
and so does not require a complicated re-linearization process. For this rea-
son, the proposed scheme is more efficient than RLWE-based homomorphic
encryption over polynomial ring when evaluation low degree polynomial of
large integers.

In general, the ciphertext of somewhat homomorphic encryption contains
a certain noise, which increases with successive homomorphic operations, and
the noise increasing during homomorphic evaluation should be managed for
correctness. The leveled fully homomorphic encryptions over the integers ex-
ploit the subset sum of the secret key to provide the homomorphic operations
for dividing the secret key while applying the noise-management technique.
In contrast, the proposed homomorphic encryption does not require dividing
of secret information in the decryption process; hence, it is not necessary to
use the subset sum of the secret key.
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국문초록

동형 암호는 복호화 과정을 거치지 않고 암호화 된 상태에서 암호문끼리 연산을 통해

데이터의 자료 처리를 가능하게 하는 암호 기술로 최근 많이 사용되고 있는 클라우드

서비스 환경에서 발생 할 수 있는 보안 문제들을 해결 할 수 있는 암호시스템으로 주목

받고 있다.

본 학위 논문에서는 동형 암호 응용 기술 연구와 함께 새로운 동형암호 알고리즘

개발에 대해 연구한다. 응용기술 연구에서는 Naccache-Stern 덧셈 동형 암호를 이용

하여 프라이버시를 보존하는 합집합 연산 프로토콜과 RLWE기반 BGV 동형암호를

이용하여 비밀 프로그램 정적 분석 방법을 제안한다.

효율적인 합집합 연산을 지원하기 위해, 참여자의 집합원소들을 표현하는 특별한

인코딩 함수 제안하고, 제안한 인코딩 함수를 적용하여 유일 인수 분해 정역 (unique
factorization domain)이 아닌 공간에서도 다항식들의 근을 효율적으로 복구 할 수

있는 방법을 제안한다. 이를 바탕으로, 현존하는 가장 효율적인 상수라운드의 합집합

연산 프로토콜을 제안한다. 프로그램 비밀 분석에서는 동형암호를 이용하여 비밀

포인터 분석방법을 제시한다. 프로그램 변수의 타입 정보를 이용하여, 동형암호 연산시

필요한 곱 연산의 횟수를 O(m2 logm) 에서 O(logm) 로 획기적으로 줄일 수 있는

방법을 제시하고, 이를 바탕으로 실제 생활에 이용 가능한 수준의 프로그램 비밀 분석

방법을 제안한다. 이를 통해 분석가는 암호화된 프로그램 정보를 이용하여 프로그램에

있는 포인터 변수가 실행 중 어느 변수 혹은 저장 장소를 가리킬 수 있는 지에 대한

분석이 가능해진다.

마지막으로 새로운 암호학적 난제인 다항식 근사공약수 문제를 제안하고, 이

문제에 기반하는 새로운 동형암호를 제안한다. 제안한 동형암호는 Djik 등이 제안한

동형암호의 다항식 버전으로 볼 수 있으며, 이에 따라 데이터 병렬처리뿐만 아니라 큰

정수 연산 지원하는 특징을 가지고 있다. Djik 등이 제안한 동형암호계열의 완전동

형암호들은 비밀키를 나누는 연산을 제공하기 위해 부분합 문제가 어렵다는 가정을

사용하는 반면, 제안한 동형암호는 복호화 과정에서 비밀 정보를 나누는 과정이 필요

없기 때문에 부분합 문제의 가정을 필요로 하지 않는다.

주요어휘: 덧셈동형암호, 준동형 암호, 프라이버시를 보존하는 합집합, 비밀

프로그램 정적 분석, 포인터분석, 다항식 근사 최대공약수 문제

학번: 2009-22898
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