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Abstract

In this study, we establish uniform W 1,p estimates for weak solutions in

homogenization of elliptic systems in divergence-form with measurable coef-

ficients in nonsmooth domains. We consider first an interior regularity and

then we study boundary value problems, a Dirichlet problem and a conormal

derivative problem. Our main purpose is to find an answer for minimal re-

quirements on the coefficients and the boundary condition of the domains to

ensure that Calderón-Zygmund theory holds in a homogenization problem.
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Chapter 1

Introduction

This thesis is based on the papers [5, 6, 7]. In this thesis we consider a

divergence-form elliptic system in the homogenization problem :

Dα

(
Aαβ,εij (x)Dβu

j
ε(x)

)
= Dαf

i
α(x) in Ω, (1.1)

under suitable boundary conditions, a Dirichlet problem{
Dα

(
Aαβ,εij (x)Dβu

j
ε(x)

)
= Dαf

i
α(x) in Ω

uiε(x) = 0 on ∂Ω
(1.2)

and a conormal derivative problem Dα

(
Aαβ,εij (x)Dβu

j
ε(x)

)
= Dαf

i
α(x) in Ω(

Aαβ,εij Dβu
j
ε − f iα

)
να = 0 on ∂Ω.

(1.3)

Here, Ω is a bounded domain in Rn with n ≥ 2, Aαβ,εij : Rn → R for

1 ≤ α, β ≤ n, 1 ≤ i, j ≤ m and 0 < ε ≤ 1, the nonhomogeneous term

F = {f iα} is a given m × n matrix valued function, and ν = (ν1, · · · , νn) is

the outward pointing unit normal vector to the boundary ∂Ω of a bounded

domain Ω which is not well-defined in the classical sense, but is well-defined

with a weak formulation of (1.3) in Definition 1.0.1. The tensor coefficients

Aε = {Aαβ,εij } are defined from A = {Aαβij }, A
αβ
ij : Rn → R, to be

Aαβij (x) = Aαβ,1ij (x) and Aαβ,εij (x) = Aαβij

(x
ε

)
. (1.4)
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CHAPTER 1. INTRODUCTION

The coefficients are assumed to have uniform ellipticity and uniform bound-

edness. More precisely, there exist positive constants λ and Λ such that

λ|ξ|2 ≤ Aαβij (x)ξiαξ
j
β (1.5)

for every matrix ξ ∈ Rmn and for almost every x ∈ Rn and

‖A‖L∞(Rn,Rmn×mn) ≤ Λ, (1.6)

Further, we assume the following periodicity condition on
{
Aαβij (x)

}
:

Aαβij (x+ z) = Aαβij (x) (x ∈ Rn, z ∈ Zn). (1.7)

We state now definitions of weak solutions for (1.1)-(1.3).

Definition 1.0.1.

1. We say that uε ∈ H1(Ω,Rm) is a weak solution (1.1) if∫
Ω
Aαβ,εij Dβu

j
εDαφ

idx =

∫
Ω
f iαDαφ

idx, ∀φ ∈ H1
0 (Ω,Rm). (1.8)

2. We say that uε ∈ H1
0 (Ω,Rm) is a weak solution of (1.2) if∫

Ω
Aαβ,εij Dβu

j
εDαφ

idx =

∫
Ω
f iαDαφ

idx, ∀φ ∈ H1
0 (Ω,Rm). (1.9)

3. We say that uε ∈ H1(Ω,Rm) is a weak solution of (1.3) if∫
Ω
Aαβ,εij Dβu

j
εDαφ

idx =

∫
Ω
f iαDαφ

idx, ∀φ ∈ H1(Ω,Rm). (1.10)

We remark that in this thesis the summation convention, where repeated

indices are automatically summed over, is employed. Also, throughout this

paper we denote by c to mean any universal constants that can be computed

in terms of known data such as λ,Λ,m, n, p, and the domain structure, and

may change from line to line. If necessary, we use c1, c2, · · · , to specify them.

According to Lax-Milgram lemma, if F ∈ L2(Ω,Rmn), then the problem

(1.2) and (1.3) has a unique (up to a constant for (1.3)) weak solution

uε ∈ H1
0 (Ω,Rm) (H1(Ω,Rm) for (1.3)) with the estimate

‖Duε‖L2(Ω) ≤ c‖F‖L2(Ω), (1.11)

2



CHAPTER 1. INTRODUCTION

where the constant c does not depend on ε, F and uε. The goal of this thesis

is to obtain an optimal W 1,p regularity for weak solutions of the periodic

homogenization problems (1.2) and (1.3). More precisely, we want to ask

what is a minimal regularity requirement on Aαβij and the boundary of Ω

under which we have the following relation :

F ∈ Lp ⇒ Duε ∈ Lp for every 1 < p <∞. (1.12)

In particular, we are interested in the uniform W 1,p estimate like

‖Duε‖Lp(Ω) ≤ c‖F‖Lp(Ω), (1.13)

where c is independent of F and uε, especially of ε. In other words, we want

to obtain a uniform estimate like (1.13) with respect to ε.

Homogenization is a mathematical analysis for studying partial differ-

ential equations which have rapidly oscillating coefficients. Homogenization

issues arise in many parts of science such as mechanics, physics, chemistry,

engineering, etc., where we deal with inhomogeneous materials (or compos-

ite materials), molecular structure, etc., see [3, 26, 28, 42]. Starting from

a microscopic structure of a problem, we find a macroscopic, or effective,

description. This process of making an asymptotic analysis and seeking an

averaged formulation is called homogenization. In this theory, we are in-

terested in homogeneous effective parameters from heterogeneous media.

Homogenization is not restricted to the periodic case but in this thesis we

focus on the periodic homogenization.

Here we record some basic facts about the periodic homogenization prob-

lem (1.1). The matrix of correctors χ =
{
χijα
}

, 1 ≤ i, j ≤ m, 1 ≤ α ≤ n, is

the weak solution of the following cell problem:
−Dα

(
Aαβij (x)Dβχ

jk
γ (x)

)
= DαA

αγ
ik (x) in Rn,∫

[0,1]n χ
jk
γ = 0,

χjkγ Zn periodic.

(1.14)

Under our condition on the coefficients of this paper (Definition 2.2.1 and

Definition 2.2.2), we have the L∞ estimate with the estimate

‖χ‖L∞(Rn) ≤ c(ν, L,m, n), (1.15)

3



CHAPTER 1. INTRODUCTION

see [4, 9, 12]. Let

Aαβ,0ij =

∫
[0,1]n

(
Aαβij +Aαγik Dγχ

kj
β

)
. (1.16)

Then the following linear elliptic system

Dα

(
Aαβ,0ij Dβu

j
0(x)

)
= Dαf

i
α(x) in Ω (1.17)

is the homogenized problem whose weak solutions u0 of (1.17) is the weak

limit of weak solutions uε in H1
0 (Ω,Rm) for the case (1.2) and H1(Ω,Rm)

for the case (1.3) with the same boundary condition as ε→ 0, see [3].

To obtain a uniform W 1,p regularity in the homogenization problem,

W 1,p regulariry for ε = 1, meaning there is no homogenization issue, will play

an important role. This is because from the results of W 1,p theory without

homogenization issue we can extract our main results in the homogenization

problem. More precisely, W 1,p theory, where there is no homogenization, will

be used in the following when we use a blow-up argument. In this sense, we

study W 1,p regularity for homogenization problems under the situation that

W 1,p theory for ε = 1 is established.

Much research has been devoted to the global W 1,p regularity theory,

when there is no homogenization, in various situations, [2, 4, 9, 10, 11, 12,

13, 16, 17, 18, 23, 33, 37] and the references therein for related results.

However, since W 1,p regularity for every 1 < p < ∞ does not always hold

even when there is no homogenization issue (ε = 1), see [27, 36], we need

some additional conditions both on the coefficients Aαβij and on the boundary

of Ω.

Without homogenization, for (1.2),W 1,p regularity was proved when Aαβij
are in the class VMO (vanishing mean oscillation) and the boundary of Ω is

C1,1, see [18]. This result extended to the class of small BMO (bounded mean

ascillation) functions in a δ-Reifenberg flat domain, see [10, 12]. In recent

papers [9, 13], Aαβij were allowed to be merely measurable with respect to

one variable but have small BMO semi-norms with respect to the other

variables. For (1.3), when ε = 1, W 1,p estimate was obtained in [23] for
3
2 − δ1 < p < 3 + δ1 when n ≥ 3, and 4

3 − δ1 < p < 4 + δ1 when n = 2,

for some small δ1 > 0, regarding a similar Neumann problem to (1.1) under

the assumptions that the coefficients are in the class of VMO functions

4



CHAPTER 1. INTRODUCTION

and the domain is a general Lipschitz domain. In [4, 11], W 1,p estimate

was obtained for the full range of p ∈ (1,∞) with small BMO coefficients

and in a δ-Reifenberg flat domain. A δ-Reifenberg flat domain is a natural

generalization of Lipschitz domains with a small Lipschitz constant whose

boundary might be fractal, see [38].

Until now W 1,p regularity theory of the homogenization problem has

been developed in various ways, as follows from [1, 16, 21, 22, 30, 39]. For

the Dirichlet problems, in [1], a uniform W 1,p regularity for (1.1) was proved

when the coefficients are Hölder continuous and the boundary of the domain

is C1,α. Following this, given continuous coefficients, the interior W 1,p regu-

larity for linear elliptic equations was established in [16]. Also, the estimate

(1.7) of a linear elliptic equation for 1 < p < 3 + δ1 when n ≥ 3, and

for 1 < p < 4 + δ1 when n = 2 under the conditions that the coefficients

are in the VMO class and the domain is a general Lipschitz domain was

established [40]. For the conormal derivative problems, research on global

W 1,p regularity for the problem (1.1) has been limited to Cα coefficients and

C1,α domains, [30]. From these points of view, we look for optimal global

W 1,p regularity theory in both a Dirichlet problem and a conormal deriva-

tive problem for (1.1) under weaker conditions as in [4, 12] than those in

[30, 40]. To be more precise, we want to extend the previous results of W 1,p

regularity in [4, 12] to the homogenization problem (1.1) with the same as-

sumptions that Ω is a δ-Reifenberg domain and the coefficients Aαβij are in

the BMO class with small BMO seminorms.

It should be noted that for ε = 1, W 1,p regularity for the Dirichlet

problem was established under a weaker condition on the coefficients than

a small BMO condition, see [9, 13]. However, in order to remain consistent

with the conditions between the periodic coefficients in the homogenization

and the domain, we should use a small BMO condition on the coefficients

for the global regularity.

The rest of this thesis is organized as follows. In the next chapter, we

introduce notations, definitions related to our main assumptions, and basic

tools to obtain main results. In chapter 3, we prove interior W 1,p regularity

for (1.1) when Aαβij are allowed to be merely measurable with respect to one

variable but have small BMO semi-norms with respect to the other variables.

In chapter 4 and chapter 5, we obtain global W 1,p estimates for (1.2) and

(1.3), respectively, under the assumptions that the coefficients are in the

5



CHAPTER 1. INTRODUCTION

class of BMO functions with small BMO seminorms and the domain is a

δ-Reifenberg flat domain.

6



Chapter 2

Preliminaries

This chapter describes the main assumptions on the coefficients and the

boundary of the domain and introduces some tools to obtain the main results

of the present thesis. We start with some notations.

2.1 Notations

We start this chapter with some notations.

1. The open ball in Rn with center 0 and radius r > 0 is defined by

Br = {x ∈ Rn : |x| < r}.

2. Br(y) = Br + y : the open balls in Rn with center y and radius r > 0.

3. The elliptic cylinder in Rn with center 0 and size r > 0 is defined by

Qr = {(x′, xn) = (x1, · · · , xn−1, xn) ∈ Rn : |x′| < r and |xn| < r}.

4. The integral average of g ∈ L1(U) over a bounded domain U in Rn is

denoted by

ḡU =

∫
−
U
g(x)dx =

1

|U |

∫
U
g(x)dx.

5. For each xn ∈ R and each bounded subset E′ of Rn−1 the integral

average of g(·, xn) over E′ is denoted by

ḡE′(xn) =

∫
−
E′
g(x′, xn)dx′ =

1

|E′|

∫
E′
g(x′, xn)dx′.

7



CHAPTER 2. PRELIMINARIES

6. B+
r = Br ∩ {xn > 0} and B+

r (y) = B+
r + y.

7. Tr = Br ∩ {xn = 0} and Tr(y) = Tr + y.

8. Ωr = Br ∩ Ω and Ωr(y) = Br(y) ∩ Ω.

9. ∂wΩr = Br ∩ ∂Ω : the wiggled part of ∂Ωr.

10. ∂cΩr = ∂Ωr\∂wΩr : the curved part of ∂Ωr.

2.2 Main assumptions

Here, we introduce some definitions related to our main assumptions.

To obtain W 1,p regularity, we need some kinds of smallness conditions on

the coefficients. First, the regularity requirement on the coefficients is that

they belong to BMO space with their BMO semi-norms sufficiently small.

We introduce the following definition :

Definition 2.2.1. Let U be a bounded domain in Rn. We say that Aαβij is

(δ,R)-vanishing if

sup
0<r≤R

sup
y∈Rn

∫
−
Br(y)

∣∣∣Aαβij (x)−Aαβij Br(y)

∣∣∣2 dx ≤ δ2. (2.1)

For the interior case, we can give a weaker condition on the coefficients

than the condition in Definition 2.2.1. This condition is that Aαβij are allowed

to be merely measurable with respect to one variable but have small BMO

semi-norms with respect to the other variables.

Definition 2.2.2. We say that Aαβij is (δ,R)-vanishing of codimension 1 if

for every point x0 ∈ Rn and for every number r ∈ (0, R], there exists a

coordinate system depending on x0 and r, whose variables we still denote

by x = (x′, xn) = (x1, . . . , xn−1, xn), so that in this new coordinate system,

x0 is the origin and∫
−
Q√2r

∣∣∣∣Aαβij (x′, xn)−Aαβij B′√
2r

(xn)

∣∣∣∣2 dx ≤ δ2. (2.2)

We assume that the boundary of the bounded domain can be locally

trapped between two hyperplanes sufficiently close.

8



CHAPTER 2. PRELIMINARIES

Definition 2.2.3. Let U be a bounded domain in Rn. We say that U is

(δ,R)-Reifenberg flat if for every x ∈ ∂Ω and every r ∈ (0, R], there exists a

coordinate system {y1, . . . , yn} dependent on r and x so that x = 0 in this

coordinate system and

Br ∩ {yn > δr} ⊂ Br ∩ Ω ⊂ Br ∩ {yn > −δr} . (2.3)

Remark 2.2.4. Throughout this paper we assume that δ is a small positive

number since the concept of Reifenberg flatness (2.3) is only meaningful

when 0 < δ < 1
8 , see [43]. Because our primary problems (1.1)-(1.3) have a

scaling invariance property, the constant R can be 1 or any other constant

greater than 1 while the constant δ is still invariant under this scaling. δ

requires a small oscillation of the coefficients from being their local integral

averages. At the same time it only allows locally a small deviation of ∂Ω

from being (n− 1)-dimensional hyperplanes for each sufficiently small scale

r > 0.

Remark 2.2.5. By a change of variables, we know from Definition 2.2.1

(respectively, Definition 2.2.2) that if Aαβij is (δ,R)-vanishing (respectively,

(δ,R)-vanishing of codimension 1), then Ãαβij (z) = Aαβij (ρz) is (δ, Rρ )-vanishing

(respectively, (δ, Rρ )-vanishing of codimension 1). Similarly from Definition

2.2.3, if Ω is (δ,R)-Reifenberg flat, then Ω̃ = {1
ρx : x ∈ Ω} is (δ, Rρ )-

Reifenberg flat.

2.3 Tools

In this section, we introduce analytic and geometric tools that will be used

later in the proof of our main theorem. Our approach is based on the Hardy-

Littlewood maximal function, classical measure theory, and a Vitali-type

covering argument.

First, let us recall the Hardy-Littlewood maximal function and its basic

properties. If we suppose g is a locally integrable function on Rn, then the

Hardy-Littlewood maximal function is given by

(Mg)(x) = sup
r>0

1

|Br(x)|

∫
Br(x)

|g(y)|dy. (2.4)

If g is defined only on a bounded subset of Rn, then we define

Mg =Mḡ,

9



CHAPTER 2. PRELIMINARIES

where ḡ is the zero extension of g from the bounded set to Rn. This maximal

function satisfies the weak 1-1 estimate and strong p-p estimate as follows

(see [41]) :

For g ∈ L1(Rn), there is a constant c = c(n) > 0 such that

|{x ∈ Rn : (Mg)(x) > t}| ≤ c

t
‖g‖L1(Rn), ∀t > 0. (2.5)

Also, given g ∈ Lp(Rn) for some p ∈ (1,∞), Mg ∈ Lp(Rn) holds with the

estimate
1

c
‖g‖Lp(Rn) ≤ ‖Mg‖Lp(Rn) ≤ c‖g‖Lp(Rn) (2.6)

for some constant c = c(n, p) > 0.

In order to apply it later, we need to review some classical measure

theory.

Lemma 2.3.1. [15] Assume g is a nonnegative, measurable function defined

on the bounded domain Ω ⊂ Rn, and let θ > 0 and λ > 1 be constants. Then

for 0 < q <∞, we have

g ∈ Lq(Ω) ⇐⇒ S =
∑
k≥1

µqk
∣∣∣{x ∈ Ω : g(x) > θµk

}∣∣∣ <∞ (2.7)

and
1

c
S ≤ ‖g‖qLq(Ω) ≤ c(|Ω|+ S), (2.8)

where the positive constant c depends only on θ, µ, and q.

In addition, we will use the following version of the Vitalli-type covering

lemma for the proof of our main results.

Lemma 2.3.2. [10, 44] Assume that C and D are measurable sets with

C ⊂ D ⊂ Ω and Ω being (δ, 1)-Reifenberg flat. Also assume there exists a

small η > 0 such that

|C| < η|B1| (2.9)

and that for each x ∈ Ω and r ∈ (0, 1] with |C ∩Br(x)| > η|Br(x)|, we have

Br(x) ∩ Ω ⊂ D. (2.10)

Then

|C| ≤
(

10

1− δ

)n
η|D|. (2.11)

10



Chapter 3

Interior estimates

3.1 Main result

In this chapter, we obtain uniform interior W 1,p estimates for the problem

(1.1). For this, we allow the coefficients to be merely measurable with respect

to one variable but have small BMO semi-norms with respect to the other

variables. This condition includes a small BMO condition which will be used

in the next two chapters. Our main result in this chapter is the following :

Theorem 3.1.1. For any constant 2 < p < ∞, suppose F ∈ Lp(Ω,Rmn)

and B7 ⊂ Ω. Then there exists a small positive constant δ = δ(λ,Λ,m, n, p)

such that if Aαβij is (δ,R)-vanishing of codimension 1, then for any weak

solution uε ∈ H1(Ω,Rm) of (1.1) we have

Duε ∈ Lp(B1,Rmn), (3.1)

with estimate ∫
B1

|Duε|p dx ≤ c

∫
B5

|uε|p + |F |p dx, (3.2)

where the constant c = c(λ,Λ,m, n, p) is independent of ε.

Remark 3.1.2. The case that p = 2 is a classical one. After the estimate

(3.2) for 2 < p < ∞ is obtained, the case 1 < p < 2 follows from a duality

argument.

11



CHAPTER 3. INTERIOR ESTIMATES

3.2 Interior Hölder estimates

To obtain our main result in this chapter, we need boundedness of weak

solutions of homogeneous systems. To do this, we first investigate interior

Hölder regularity.

Theorem 3.2.1. Let γ ∈ (0, 1). Suppose that vε ∈ H1(B+
r ,Rm) is a weak

solution of

Dα

(
Aαβ,εij Dβv

j
ε

)
= 0 in Br. (3.3)

Then there exists a small positive constant δ = δ(λ,Λ,m, n) such that if Aαβij
is (δ,R)-vanishing of codimension 1, then for any x, y ∈ B r

2
,

|vε(x)− vε(y)| ≤ c
(
|x− y|
r

)γ (∫
−
Br

|vε(z)|2dz
) 1

2

, (3.4)

where c > 0 depends only on λ,Λ,m, n, and γ.

The following two lemmas will be used for the proof of Theorem 3.2.1.

Lemma 3.2.2. Let γ ∈ (0, 1). Then there exists ε0 ∈ (0, 1] and θ ∈
(
0, 1

4

)
depending only on λ,Λ,m, n, and γ such that if for 0 < ε < ε0, vε is a weak

solution of

Dα

(
Aαβ,εij Dβv

j
ε

)
= 0 in B1, (3.5)

with ∫
−
B1

|vε − (v̄ε)B1 |2dx ≤ 1, (3.6)

then ∫
−
Bθ

|vε − (v̄ε)Bθ |
2dx ≤ θ2γ . (3.7)

Proof. We will prove this lemma by contradiction. If not, then there exists

sequences εk, and vεk such that εk → 0, vεk is a weak solution of

Dα

(
Aαβ,εkij Dβv

j
εk

)
= 0 in B1, (3.8)

with ∫
−
B1

|vεk − (v̄εk)B1 |2dx ≤ 1, (3.9)

12
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but for every θ ∈ (0, 1
4),∫
−
Bθ

|vεk − (v̄εk)Bθ |
2dx > θ2γ . (3.10)

By subtracting a constant, we assume that (v̄εk)B1 = 0. Then from Cac-

cioppoli inequality for (3.8) and (3.9), we have∫
B 1

2

|Dvεk |
2dx ≤ c

∫
B1

|vεk |
2dx ≤ c. (3.11)

Thus vεk is uniformly bounded in H1(B 1
2
), and then by passing to a subse-

quence, we assume that vεk → v0 strongly in L2(B 1
2
) for some vε ∈ H1(B 1

2
).

Consequently we have that for any θ ∈ (0, 1
4),∫

Bθ

|vεk − (v̄εk)Br |2dx→
∫
Bθ

|v0 − (v̄0)Bθ |
2dx, (3.12)

and so from (3.10), we find that for every θ ∈ (0, 1
4),∫

−
Bθ

|v0 − (v̄0)Bθ |
2dx > θ2γ . (3.13)

In addition, recalling (3.8) and existing homogenization theory as in [3], we

see that v0 solves

Dα

(
Aαβ,0ij Dβv

j
0

)
= 0 in B 1

2
(3.14)

where Aαβ,0ij is the constant matrix defined as in (1.13). According to interior

Hölder regularity for solutions of elliptic systems with constant coefficients,

we discover that ∫
−
Bθ

|v0 − (v̄0)Bθ |
2dx ≤ c1θ

1+γ , (3.15)

for some universal constant c1 = c1(λ,Λ,m, n, γ).

We finally combine (3.13) and (3.15), to discover

θ2γ <

∫
−
Bθ

|v0 − (v̄0)B+
θ
|2dx ≤ c2θ

1+γ (3.16)

for every γ ∈ (0, 1) and every θ ∈ (0, 1
4). However, we take θ ∈ (0, 1

4) so

small to deduce

θ2γ ≥ c1θ
1+γ ,

which contradicts (3.16). This finishes the proof.

13
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Lemma 3.2.3. Fix γ ∈ (0, 1). Let ε0 and θ be the constants as in Lemma

3.2.2 and let vε be a weak solution of (3.5). Then for all k such that ε <

θk−1ε0, we have∫
−
B
θk

|vε − (v̄ε)B
θk
|2dx ≤ θ2kγ

∫
−
B1

|vε − (v̄ε)B1 |2dx. (3.17)

Proof. The proof is by induction on k. By Lemma 3.2.2, (3.17) holds for

k = 1. Now we assume that (3.17) holds for some k ≥ 1. Let

w(z) =
vε(θ

kz)(∫
−B

θk
|vε − (v̄ε)B

θk
|2dx

) 1
2

for z ∈ B1 (3.18)

(We divide vε(θ
kz) into

(∫
−B

θk
|vε − (v̄ε)B

θk
|2dx

) 1
2

+σ for any σ > 0 and then

we let σ → 0+ if
∫
−B

θk
|vε − (v̄ε)B

θk
|2dx = 0 ). Then w satisfies

Dα

(
A
αβ, ε

θk

ij Dβw
j

)
= 0 in B1 (3.19)

with ∫
−
B1

|w − w̄B1 |2dz ≤ 1. (3.20)

Thus by applying Lemma 3.2.2 again to w, we obtain∫
−
Bθ

|w − w̄Bθ |
2dz ≤ θ2γ . (3.21)

Then by the induction hypothesis we find that∫
−
B
θk+1

|vε − (v̄ε)B
θk+1
|2dx =

(∫
−
Bθ

|w − w̄Bθ |
2dz

)(∫
−
B
θk

|vε − (v̄ε)B
θk
|2dx

)

≤ θ2γ

∫
−
B
θk

|vε − (v̄ε)B
θk
|2dx

≤ θ2(k+1)γ

∫
−
B1

|vε − (v̄ε)B1 |2dx.

This completes the proof.

14
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Remark 3.2.4. Before giving the proof of Theorem 3.2.1, we would like to

point out that in the paper [9], W 1,p regularity for a weak solution to (3.3)

with ε = 1 was established for all 1 < p <∞ where the coefficients Aαβij are

assumed to be (δ,R)-vanishing of codimension 1. From this, we know that

the equation (3.3) with ε = 1 has C0,γ regularity for any fixed γ ∈ (0, 1) as

a consequence of Morrey embedding for p large enough.

Proof of Theorem 3.2.1. Let ε0 and θ be constants given in Lemma 3.2.2. By

scaling, we may assume that r = 1. The case ε ≥ θε0 follows from Remark

3.2.4 with an appropriate scaling.

We next consider 0 < ε < θε0. We divide this into two cases, ρ ≥ ε
ε0

and

ρ < ε
ε0

. For the first case, we can take k ≥ 0 such that θk+1 ≤ ρ < θk. Since

ε ≤ θkε0, we apply Lemma 3.2.3 to find that∫
−
Bρ

|vε − (v̄ε)Br |2dx ≤ c

∫
−
B
θk

|vε − (v̄ε)B
θk
|2dx

≤ cθ2kγ

∫
−
B1

|vε − (v̄ε)B1 |2dx

≤ cρ2γ

∫
−
B1

|vε|2dx.

For the second one, we use a blow-up argument by letting w(z) = vε(εz).

Since 2
ε0
< 1

θε0
< 1

ε , w satisfies

Dα

(
Aαβ,1ij Dβw

j
)

= 0 in B 2
ε0

. (3.22)

By the C0,γ regularity for (3.22), we see that∫
−
B ρ
ε

|w − w̄B ρ
ε
|2dz ≤ c

(ρ
ε

)2γ
∫
−
B 1
ε0

|w − w̄B 1
ε0

|2dz (3.23)

for some constant c = c(γ, λ,Λ,m, n). Since ε
ε0
< θ, we apply Lemma 3.2.3

15
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again to find that∫
−
Bρ

|vε − (v̄ε)Bρ |2dx =

∫
−
B ρ
ε

|w − w̄B ρ
ε
|2dz (3.24)

≤ c
(ρ
ε

)2γ
∫
−
B 1
ε0

|w − w̄B 1
ε0

|2dz

≤ c
(ρ
ε

)2γ
∫
−
B ε
ε0

|vε − (v̄ε)B ε
ε0

|2dx

≤ c
(ρ
ε

)2γ
(
ε

ε0

)2γ ∫
−
B1

|vε − (v̄ε)B1 |2dx

≤ cρ2γ

∫
−
B1

|vε|2dx.

This completes the proof of Theorem 3.2.1.

3.3 Uniform W 1,q estimates for homogeneous sys-

tems

We first recall the local boundedness of weak solutions of

Dα(Aαβ,εij Dβv
j
ε ) = 0 in B3 (3.25)

with the estimate

‖vε‖L∞(B1) ≤ c
(∫
−
B2

|vε|2dx
) 1

2

(3.26)

for some constant c which is independent of ε from the result of the previous

section. Also, by scaling the problem (1.14), we see from (1.1) that for the

identity matrix I in Rm and each constant matrix B ∈ Rmn

Dα

(
Aαβ,εij (x)Dβ

(
(I ⊗ x)jkγ + εχjkγ

(x
ε

))
Bk
γ

)
= 0. (3.27)

For simplicity, in this section, we use the notation
(
x+ εχ

(
x
ε

))
B instead of(

(I ⊗ x)jkγ + εχjkγ
(
x
ε

))
Bk
γ .

To obtain our main result, we need to control the case that ε is sufficiently

small. The following lemma gives us a criterion of sufficient smallness of ε,

which was previously proved in [1, 34] by a compactness argument.

16
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Lemma 3.3.1. Let vε ∈ H1(B3,Rm) be a weak solution of

Dα(Aαβ,εij Dβv
j
ε ) = 0 in B3. (3.28)

Then there exist constants θ ∈ (0, 1
4) and ε0 ∈ (0, 1) both depending on

λ,Λ,m, n such that for 0 < ε < ε0

sup
x∈Bθ

∣∣∣vε(x)− vε(0)−
(
x+ εχ

(x
ε

))
DvεBθ

∣∣∣ ≤ θ 5
4 ‖vε‖L∞(B1). (3.29)

Proof. We will prove this lemma by contradiction. Without loss of generality,

we assume that

‖vε‖L∞(B1) ≤ 1.

If not, then there exists sequences εk, and vεk such that εk → 0, vεk is a weak

solution of

Dα

(
Aαβ,εkij Dβv

j
εk

)
= 0 in B1, (3.30)

with

‖vεk‖L∞(B1) ≤ 1 (3.31)

but

sup
x∈Bθ

∣∣∣∣vεk(x)− vεk(0)−
(
x+ εkχ

(
x

εk

))
DvεkBθ

∣∣∣∣ > θ
5
4 . (3.32)

As the proof of Lemma 3.2.2, vεk is uniformly bounded in H1(B 1
2
), and

then by passing to a subsequence, we assume that{
Dvεk ⇀ Dv0 weakly in L2(B 1

2
,Rmn)

vεk → v0 strongly in L2(B 1
2
,Rm)

(3.33)

as k → ∞. Since χ is bounded in L∞(Rn), see (1.15), εk → 0 and for

θ ∈ (0, 1
4)

DvεkBθ → Dv0Bθ

as k →∞ by (3.33), we obtain

sup
x∈Bθ

∣∣v0(x)− v0(0)− xDv0Bθ

∣∣ > θ
5
4 . (3.34)

In addition, recalling (3.30) and existing homogenization theory as in [3],

we see that v0 solves

Dα

(
Aαβ,0ij Dβv

j
0

)
= 0 in B 1

2
(3.35)

17
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where Aαβ,0ij is the constant matrix defined as in (1.16). According to the

theory for elliptic systems with constant coefficients, we discover that

sup
x∈Bθ

∣∣v0(x)− v0(0)− xDv0Bθ

∣∣ ≤ c2θ
2

∫−
B 1

2

|v0|2dx

 1
2

, (3.36)

for some universal constant c2 = c2(λ,Λ,m, n).

We finally combine (3.34) and (3.36) to have

θ
5
4 < sup

x∈Bθ

∣∣v0(x)− v0(0)− xDv0Bθ

∣∣ ≤ c2θ
2

∫−
B 1

2

|v0|2dx

 1
2

≤ c2θ
2.

(3.37)

However, we take θ ∈ (0, 1
4) so small to deduce

θ
5
4 ≥ c2θ

2, (3.38)

which contradicts (3.37). This finishes the proof.

Hereafter we fix the universal constants θ and ε0 given in Lemma 3.3.1.

Based on this lemma, we deal with (1.1) for ε ≥ θε0 and ε < θε0 in two

different ways.

We first consider the case ε ≥ θε0. In this case, we define
1
εΩ = {1

εx : x ∈ Ω},
ũε(x̃) = uε(εx̃)

ε (x̃ ∈ 1
εΩ),

f̃ iα(x̃) = f iα(εx̃) (x̃ ∈ 1
εΩ),

Ãαβ,εij (x̃) = Aαβ,εij (εx̃) = Aαβij (x̃) (x̃ ∈ Rn).

(3.39)

Then, ũε ∈ H1(1
εΩ,R

n) is a weak solution of

Dα(Aαβ,1ij (x̃)Dβũ
j
ε(x̃)) = Dαf̃

i
α(x̃) in

1

ε
Ω. (3.40)

According to the previous known results in [8] and [9], there exists a small

positive constant δ = δ(λ,Λ,m, n, p) such that if Aαβij is (δ, 5)-vanishing of

codimension 1, then for any weak solution ũε ∈ H1(1
εΩ,R

n) of (3.40) with

B7 ⊂ 1
εΩ, we have ∫

−
B1

|Dũε|pdx̃ ≤ c
∫
−
B5

|ũε|p + |F̃ |pdx̃

18
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for some constant c = c(λ,Λ,m, n, p). Rescale back and use θε0 ≤ ε ≤ 1 to

find that ∫
−
Bθε0

|Duε|pdx ≤ c

∫
−
Bε

|Duε|pdx

≤ c
1

|B5ε|

∫
B5ε

1

ε
|uε|p + |F |pdx

≤ c
|B5|
|B5θε0 |

∫
−
B5

1

θε0
|uε|p + |F |pdx

≤ c

∫
−
B5

|uε|p + |F |pdx

for some constant c = c(λ,Λ,m, n, p). Then by standard covering argument

, we get the required estimate (3.1).

From now we only consider the case ε < θε0. The following lemma comes

from Lemma 3.3.1 by an iteration argument.

Lemma 3.3.2. Let vε be a weak solution of (3.25). Then for all k with

ε < θkε0, there exist constants aεk ∈ Rn and Bε
k ∈ Rmn such that

|aεk|+ |Bε
k| ≤ c‖vε‖L∞(B1) (3.41)

for some constant c = c(λ,Λ,m, n) and

sup
x∈B

θk

∣∣∣vε(x)− vε(0)− εaεk −
(
x+ εχ

(x
ε

))
Bε
k

∣∣∣ ≤ θ 5
4
k‖vε‖L∞(B1). (3.42)

Proof. The proof is by induction on k. By Lemma 3.3.1, for k = 1, aε1 = 0

and Bε
1 = DvεBθ . Then by Caccioppoli inequality we see that

|Bε
1| ≤

(∫
−
Bθ

|Dvε|2dx
) 1

2

≤ c

1− θ

(∫
−
B1

|vε|2dx
) 1

2

≤ c‖vε‖L∞(B1) (3.43)

for some constant c = c(λ,Λ,m, n). Thus, this holds for k = 1.

Now, we assume that (3.42) holds for some k ≥ 1. Let

w(z) = vε(θ
kz)− vε(0)− εaεk −

(
θkz + εχ

(
θkz

ε

))
Bε
k for z ∈ B1. (3.44)

Then w satisfies

Dα

(
A
αβ, ε

θk

ij Dβw
j

)
= 0 in B1. (3.45)
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Thus by applying Lemma 3.3.1 again to w, we obtain

sup
x∈Bθ

∣∣∣w(x)− w(0)−
(
x+ εχ

(x
ε

))
DwBθ

∣∣∣ ≤ θ 5
4 ‖w‖L∞(B1). (3.46)

In addition, by the induction hypothesis, we find that

‖w‖L∞(B1) = sup
x∈B

θk

∣∣∣vε(x)− vε(0)− εaεk −
(
x+ εχ

(x
ε

))
Bε
k

∣∣∣ (3.47)

≤ θ
5
4
k‖vε‖L∞(B1).

Now, we combine (3.44), (3.46), and (3.47) to find that

sup
x∈B

θk+1

∣∣∣vε(x)− vε(0)− εχ(0)Bε
k (3.48)

−
(
x+ εχ

(x
ε

))(
Bε
k + θ−kDwBθ

) ∣∣∣
≤ θ

5
4

(k+1)‖vε‖L∞(B1).

Here we use, for simplicity, the expression w in (3.44). Therefore, aεk+1 and

Bε
k+1 are inductively defined by

aεk+1 = χ(0)Bε
k (3.49)

and

Bε
k+1 = Bε

k + θ−kDwBθ , (3.50)

respectively.

Finally, we need to chech that aεk+1 and Bε
k+1 satisfy the condition (3.41).

For aεk+1, since χ is bounded in L∞(Rn), see (1.15) and |Bε
k| ≤ c‖vε‖L∞(B1)

by the induction hypothesis, we see that

|aεk+1| ≤ c‖vε‖L∞(B1). (3.51)

To compute Bε
k+1, we use Caccioppoli inequality as in (3.43) and (3.47) to

find that

|DwBθ | ≤ c‖w‖L∞(B1) ≤ cθ
5
4
k‖vε‖L∞(B1), (3.52)

for some constant c = c(λ,Λ,m, n). Therefore, by the induction hypothesis,

we have

|Bε
k+1| ≤ |Bε

k|+ cθ
1
4
k‖vε‖L∞(B1) (3.53)

≤ c
(

1 + θ
1
4 + · · ·+ θ

1
4
k
)
‖vε‖L∞(B1)

≤ c‖vε‖L∞(B1)
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since θ ∈ (0, 1
4). This completes the proof.

According to Lemma 3.3.2, one can derive if Aαβij is (δ, 5)-vanishing of

codimension 1, then

sup
x∈B ε

ε0

|vε(x)− vε(0)|
ε

≤ c‖vε‖L∞(B1). (3.54)

Indeed, choose k such that θk+1ε0 ≤ ε < θkε0, then

sup
x∈B ε

ε0

(
|vε(x)− vε(0)|

ε
−
∣∣εaεk +

(
x+ εχ

(
x
ε

))
Bε
k

∣∣
ε

)

≤ sup
x∈B

θk

∣∣vε(x)− vε(0)− εaεk −
(
x+ εχ

(
x
ε

))
Bε
k

∣∣
ε

≤ θ
5
4
k

ε
‖vε‖L∞(B1) ≤

1

θε0
‖wε‖L∞(B1)

since θ
5
4 k

ε ≤
θ

1
4 k

θε0
≤ 1

θε0
. Thus, for x ∈ B ε

ε0
,∣∣εaεk +

(
x+ εχ

(
x
ε

))
Bε
k

∣∣
ε

≤ |aεk|+
∣∣∣x
ε

∣∣∣ |Bε
k|+

∣∣∣χ(x
ε

)∣∣∣ |Bε
k|

≤ |aεk|+
1

ε0
|Bε

k|+
∣∣∣χ(x

ε

)∣∣∣ |Bε
k| .

We recall (1.15) and use (3.41) to find that∣∣εaεk +
(
x+ εχ

(
x
ε

))
Bε
k

∣∣
ε

≤ c‖vε‖L∞(B1),

then (3.54) follows.

For the case 0 < ε < θε0, we need the following uniform regularity

estimate of (3.28). We here point out that it is important that the following

lemma holds for any 2 < q <∞.

Lemma 3.3.3. Given any ε with 0 < ε < θε0, let vε be a weak solution of

(3.25). Then for any 2 < q < ∞, there exists δ = δ(λ,Λ,m, n, q) such that

if Aαβij is (δ, 5)-vanishing of codimension 1, then we have

|Dvε| ∈ Lq(B1,Rm)
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with the estimate (∫
−
B1

|Dvε|qdx
) 1
q

≤ c
(∫
−
B3

|Dvε|2dx
) 1

2

(3.55)

for some positive constant c = c(λ,Λ,m, n, q), independent of ε.

Proof. Fix any ε with 0 < ε < θε0 and any q with 2 < q <∞. Without loss

of generality, we assume that vεB3
= 0. Define v(x) = 1

ε vε(εx), x ∈ B 3
ε
, then

one can readily check that v ∈ H1(B 1
ε
,Rm) is a weak solution of

Dα(Aαβ,1ij Dβv
j) = 0 in B 1

ε
. (3.56)

In particular, since ε < θε0, 1
ε >

1
θε0

> 4
ε0
> 2

ε0
and we have

Dα(Aαβ,1ij Dβv
j) = 0 in B 2

ε0

. (3.57)

By interiorW 1,q estimate (see [8, 9]) for (3.57), there exists δ = δ(λ,Λ,m, n, q)

such that if Aαβij is (δ, 5)-vanishing of codimension 1, then we have

∫−
B 1

4ε0

|Dv|qdx

 1
q

≤ c

∫−
B 1

2ε0

|Dv|2dx

 1
2

(3.58)

for some positive constant c = c(λ,Λ,m, n, q). Let ζ ∈ C1
0 (Q 1

ε0

) be a cutoff

function with |Dζ| ≤ 2cε0, then by the Caccioppoli inequality we have∫−
B 1

2ε0

|Dv|2dx

 1
2

≤

∫−
B 1
ε0

ζ2|Dv|2dx

 1
2

(3.59)

≤ c

∫−
B 1
ε0

|Dζ|2|v(x)− v(0)|2dx

 1
2

≤ c sup
x∈B 1

ε0

|v(x)− v(0)|

for some constant c = c(λ,Λ,m, n). We then rescale back and use (3.54),
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(3.58), and (3.59) to find that∫−
B ε

4ε0

|Dvε|qdx

 1
q

≤ c sup
x∈B ε

ε0

|vε(x)− vε(0)|
ε

(3.60)

≤ c‖vε‖L∞(B1) ≤ c
(∫
−
B2

|vε|2dx
) 1

2

for some constant c = c(λ,Λ,m, n, q) where for the last inequality we use

(3.26). Note that ε
4ε0

< 1
16 , we then apply (3.60) to each y ∈ B1 to find the

following estimate∫−
B ε

4ε0
(y)
|Dvε|qdx

 1
q

≤ c

(∫
−
B2(y)

|vε|2dx

) 1
2

.

By the standard covering argument and Poincaré inequality, we get the re-

quired estimate (3.55). That is, by choosing yk for k = 1, · · · , l appropriately

such that {B ε
4ε0

(yk)}lk=1 covers B1 and l = c(n)
(

4ε0
ε

)n
, we have∫

−
B1

|Dvε|qdx ≤ c

∫
∪lk=1B ε

4ε0
(yk)
|Dvε|qdx

≤ c
l∑

k=1

∫
B ε

4ε0
(yk)
|Dvε|qdx

≤ c
l∑

k=1

∣∣∣B ε
4ε0

∣∣∣ c(∫−
B3

|vε|2dx
) q

2

≤ c

(∫
−
B3

|vε|2dx
) q

2

,

and hence(∫
−
B1

|Dvε|qdx
) 1
q

≤ c
(∫
−
B3

|vε|2dx
) 1

2

≤ c
(∫
−
B3

|Dvε|2dx
) 1

2

(3.61)

by the Poincaré inequality. This completes the proof.
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3.4 Proof of Theorem 3.1.1

Now, we ready to prove the following lemma which is a key ingredient in

our approach.

Lemma 3.4.1. Let 2 < p < ∞. Suppose that uε ∈ H1(Ω,Rm) is a weak

solution of (1.1). Then there exists a universal comstant η = η(λ,Λ,m, n, p)

so that one can select a small δ = δ(λ,Λ,m, n, p) > 0 such that if Aαβij is

(δ, 5)-vanishing of codimension 1 and if for all y ∈ Ω and for every 0 < r ≤ 1

with B7r(y) ⊂ Ω, Br(y) satisfies∣∣{x ∈ Ω :M(|Duε|2) > N2
}
∩Br(y)

∣∣ > η |Br(y)| , (3.62)

where (
80

7

)n
Npη =

1

2
, (3.63)

then there holds

Br(y) ⊂
{
x ∈ Ω :M(|Duε|2) > 1

}
∪
{
x ∈ Ω :M(|F |2) > δ2

}
. (3.64)

Proof. Since the problem (1.1) is invariant under scaling and translation, it

suffices to prove this lemma for B1. We prove it by contradiction. Assume

that (3.62) and (3.63) hold but (3.64) is false. Then there is a point x1 ∈ B1

such that

1

|Bρ(x1)|

∫
Bρ(x1)∩Ω

|Duε|2dx ≤ 1 and
1

|Bρ(x1)|

∫
Bρ(x1)∩Ω

|F |2dx ≤ δ2

(3.65)

for all ρ > 0. Since x1 ∈ B1, we see that

B5 ⊂ B6(x1) ⊂ B7 ⊂ Ω. (3.66)

Then a direct computation and (3.65) yield∫
−
B5

|Duε|2dx ≤
|B6(x1)|
|B5|

∫
−
B6(x1)

|Duε|2dx ≤ c. (3.67)

Similarly, we have ∫
−
B5

|F |2dx ≤ cδ2. (3.68)
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Let vε ∈ H1(B4,Rm) be the weak solution of{
Dα

(
Aαβ,εij (x)Dβv

j
ε (x)

)
= 0 in B4,

viε(x) = uiε(x) on ∂B4.
(3.69)

Then uε − vε ∈ H1
0 (B4,Rm) is the weak solution of{

Dα

(
Aαβ,εij (x)Dβ(ujε(x)− vjε (x)

)
= Dαf

i
α(x) in B4,

uiε(x)− viε(x) = 0 on ∂B4.
(3.70)

By the definition of weak solution vε of (3.69) with φ = vε − uε and (3.67),

we see that ∫
−
B4

|Dvε|2dx ≤ c. (3.71)

By a standard L2 estimate and (3.68), we also see that∫
−
B4

|Duε −Dvε|2dx ≤ cδ2. (3.72)

We now apply Lemma 3.3.3 to (3.69) with q = p+ 1, there exists a small

δ = δ(λ,Λ,m, n, p) such that if Aαβij is (δ, 5)-vanishing of codimension 1,

then we have (∫
−
B1

|Dvε|p+1dx

) 1
p+1

≤ c
(∫
−
B3

|Dvε|2dx
) 1

2

≤ c (3.73)

for some constant c = c(λ,Λ,m, n, p) where we have used (3.67) for the last

inequality.

For some large constant N , as selected below along with η according to
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(3.63), we compute

1

|B1|
|{x ∈ B1 :M(|Duε|2 > N2}|

≤ 1

|B1|
|{x ∈ B1 :M(2|Duε −Dvε|2 + 2|Dvε|2) > N2}|

≤ 1

|B1|

∣∣∣∣{x ∈ B1 :M(|Duε −Dvε|2) >
N2

4

}∣∣∣∣
+

1

|B1|

∣∣∣∣{x ∈ B1 :M(|Dvε|2) >
N2

4

}∣∣∣∣
≤ c3

(
4

N2

)∫
−
B1

|Duε −Dvε|2dx+ c3

(
4

N2

) p+1
2
∫
−
B1

|Dvε|p+1dx

≤ c3

N2

∫
−
B4

|F |2dx+
c3

Np+1

(∫
−
B4

|Dvε|2dx
) p+1

2

≤ c3

N2
δ2 +

c3

Np+1
by (3.72)− (3.73)

≤ (c3η
p+1
p + c3η

2
p δ2) by (3.63)

≤ η
[
c3

(
η

1
p + η

2
p
−1
δ2
)]

for some constant c3 = c3(λ,Λ,m, n, p). Finally, we first take η so that

c3η
1
p =

1

2
,

and then select N from (3.63). We then select δ in order to have

c3η
2
p
−1
δ2 ≤ 1

2
.

Consequently, we conclude that for such N and η,

|{x ∈ B1 :M(|Duε|2 > N2}| ≤ η|B1| (3.74)

which contradicts to (3.62). This completes the proof.

We now derive the required an interior W 1,p estimate for the homoge-

nization problem.

Proof of Theorem 3.1.1. Given any p with 2 < p <∞, assume F ∈ Lp(Ω,Rmn)

and Aαβij is (δ, 5)-vanishing of codimension 1. Also, let uε ∈ H1(Ω,Rm) be a

weak solution of (1.1). We now take η, N , and δ given by Lemma 3.4.1.
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We can further suppose that

‖uε‖Lp(B5) + ‖F‖Lp(B5) ≤ δ (3.75)

by replacing uε and F by uε
1
δ (‖uε‖Lp(B5)+‖F‖Lp(B5))+σ

and F
1
δ (‖uε‖Lp(B5)+‖F‖Lp(B5))+σ

for σ > 0, respectively. We want to show that

‖M(|Duε|2)‖
L
p
2 (B1)

≤ c

for some universal constant c > 0, after letting σ → 0.

To do this, we write

C =
{
x ∈ B1 :M(|Duε|2) > N2

}
and

D =
{
x ∈ B1 :M(|Duε|2) > 1

}
∪
{
x ∈ B1 :M(|F |2) > δ2

}
.

We use weak 1-1 estimates, the standard L2 estimates, and Hölder’s inequal-

ity, we see that

|C| ≤ c
N2

∫
B1
|Duε|2dx

≤ c
N2

∫
B5
|uε|2 + |F |2dx

≤ c
N2

(
‖uε‖2Lp(B5) + ‖F‖2Lp(B5)

)
≤ cδ2

N2 < η|B1|,

(3.76)

by further taking δ > 0 satisfying the inequality (3.76). This asserts the

first condition of Lemma 2.3.2. On the other hand, the second condition of

Lemma 2.3.2 follows from Lemma 3.4.1. Then, we apply Lemma 2.3.2 to

discover that

|C| < η1|D|,

where

η1 =

(
80

7

)n
η, (3.77)

by Remark 2.2.4.

Note that the problem (1.1) is invariant under normalization, we obtain

the same results for (uεN ,
F
N ), ( uε

N2 ,
F
N2 ), ( uε

N3 ,
F
N3 ), . . ., inductively. Therefore,
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we obtain the following power decay estimates of M(|Duε|2):∣∣∣{x ∈ B1 :M(|Duε|2) > N2k
}∣∣∣

≤ ηk1
∣∣{x ∈ B1 :M(|Duε|2) > 1

}∣∣
+

k∑
i=1

ηi1

∣∣∣{x ∈ B1 :M(|F |2) > δ2N2(k−i)
}∣∣∣ .

Applying Lemma 2.3.1 to

g =M(|Duε|2), µ = N2, θ = 1, and q =
p

2
,

we compute as follows :

‖M(|Duε|2)‖
p
2

L
p
2 (B1)

≤ c

|B1|+
∑
k≥1

N2k p
2

∣∣∣{x ∈ B1 :M(|Duε|2) > N2k
}∣∣∣


≤ c

1 +
∑
k≥1

Nkpηk1
∣∣{x ∈ B1 :M(|Duε|2) > 1

}∣∣
+
∑
k≥1

Nkp
k∑
i=1

ηi1

∣∣∣{x ∈ B1 :M(|F |2) > δ2N2(k−i)
}∣∣∣)

=: S1 + S2.

S1 ≤ c

1 +
∑
k≥1

Nkpηk1
∣∣{x ∈ B1 :M(|Duε|2) > 1

}∣∣
≤ c

1 + |B1|
∑
k≥1

Nkpηk1

 .
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S2 ≤ c
∑
k≥1

Nkp
k∑
i=1

ηi1

∣∣∣{x ∈ B1 :M(|F |2) > δ2N2(k−i)
}∣∣∣

= c
∑
i≥1

∑
k≥i

Nkpηi1

∣∣∣{x ∈ B1 :M(|F |2) > δ2N2(k−i)
}∣∣∣

= c
∑
i≥1

(Npη1)i
∑
k≥i

(Np)k−i
∣∣∣{x ∈ B1 :M(|F |2) > δ2N2(k−i)

}∣∣∣
= c

∑
i≥1

(Npη1)i
∑
j≥0

(Np)j

∣∣∣∣∣
{
x ∈ B1 :M

(∣∣∣∣Fδ
∣∣∣∣2
)
> N2j

}∣∣∣∣∣
≤ c

∑
i≥1

(Npη1)i

∥∥∥∥∥M
(∣∣∣∣Fδ

∣∣∣∣2
)∥∥∥∥∥

L
p
2 (B1)

≤ c
∑
i≥1

(Npη1)i
‖F‖2Lp(B5)

δ2
≤ c

∑
i≥1

(Npη1)i by (3.75).

Therefore, we have

‖M(|Duε|2)‖
p
2

L
p
2 (B1)

≤ c

1 +
∑
k≥1

(Npη1)k

 ≤ c,
since Npη1 = Np

(
80
7

)
η = 1

2 from (3.63) and (3.77). Using the strong p-p

estimate of maximal operator, we finally obtain

‖Duε‖Lp(B1) ≤ c

which is the required one. This finishes the proof.
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Chapter 4

Dirichlet problems

4.1 Main result

To start with boundary value problems in chapter 4 and chapter 5, we recall

that, as we stated in the first chapter, we use (δ,R)-vanishing condition

on the coefficients instead of (δ,R)-vanishing of codimension 1 condition

for consistency with the conditions between the periodic coefficients in the

homogenization and the domain. Also, as in chapter 3, by proving global

W 1,p estimates for 2 < p <∞, we will prove our main results for 2 < p <∞
since we can obtain the same results for every 1 < p < ∞ by the classical

estimate and a duality argument, see Remark 3.1.2. First, in this chapter,

we consider the problem (1.2) which has the Dirichlet boundary condition.

The following is our main result.

Theorem 4.1.1. For any positive constant 2 < p < ∞, suppose F ∈
Lp(Ω,Rmn). Then there exists a small positive constant δ = δ(λ,Λ,m, n, p)

such that if Aαβij is (δ,R)-vanishing and Ω is (δ,R)-Reifenberg flat, then for

the weak solution uε ∈ H1
0 (Ω,Rm) of (1.2) we have

Duε ∈ Lp(Ω,Rmn) (4.1)

with estimate

‖Duε‖Lp(Ω) ≤ c‖F‖Lp(Ω), (4.2)

where the positive constant c = c(|Ω|, λ,Λ,m, n, p) is independent of ε.

30



CHAPTER 4. DIRICHLET PROBLEMS

4.2 Boundary Hölder estimates and uniform W 1,q

estimates for homogeneous systems for the flat

boundary

Similar to the interior case, for the global regularity, we need the following

boundary Hölder estimates and W 1,q estimates for homogeneous systems up

to the flat boundary. In fact, the contents in this section can be proved in

the same ways as in section 5.2 and section 5.3 except for using the result

in [12] instead of [4]. For this reason, in this section, we state some results

without proofs and we will give precise proofs later in chapter 5.

Boundary Hölder estimates is the following :

Theorem 4.2.1. Let γ ∈ (0, 1). Suppose that vε ∈ H1(B+
r ,Rm) is a weak

solution of {
Dα

(
Aαβ,εij Dβv

j
ε

)
= 0 in B+

r

viε = 0 on Tr.
(4.3)

Then there exists a small positive constant δ = δ(λ,Λ,m, n) such that if Aαβij
is (δ,R)-vanishing, then for any x, y ∈ B+

r
2

,

|vε(x)− vε(y)| ≤ c
(
|x− y|
r

)γ (∫
−
B+
r

|vε(z)|2dz
) 1

2

, (4.4)

where c > 0 depends only on λ,Λ,m, n, and γ.

In addition, W 1,q regularity for homogeneous systems is given by the

following lemma :

Lemma 4.2.2. Let vε ∈ H1(B+
r ,Rm) be a weak solution of (4.3). Then

for any 2 < q < ∞, there exists δ = δ(λ,Λ,m, n, q) such that if Aαβij is

(δ,R)-vanishing, then we have∫−
B+
r
2

|Dvε|qdx

 1
q

≤ c
(∫
−
B+
r

|Dvε|2dx
) 1

2

(4.5)

for some positive constant c = c(λ,Λ,m, n, q), independent of ε.
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4.3 Approximation Lemmas

We next localize our problem near the flat boundary. We first assume that

B+
5 ⊂ Ω5 ⊂ B5 ∩ {xn > −10δ}. (4.6)

Let us suppose that uε ∈ H1(Ω5,Rm) is a weak solution of{
Dα

(
Aαβ,εij (x)Dβu

j
ε(x)

)
= Dαf

i
α(x) in Ω5

uiε(x) = 0 on ∂wΩ5,
(4.7)

which means ∫
Ω5

Aαβ,εij Dβu
j
εDαφ

idx =

∫
Ω5

f iαDαφ
idx (4.8)

for all φ ∈ H1
0 (Ω5,Rm) and the zero extension ūε of uε is in H1(B5,Rm). We

further assume that
1

|B5|

∫
Ω5

|Duε|2dx ≤ 1. (4.9)

Then we consider the homogeneous problem :{
Dα

(
Aαβ,εij (x)Dβw

j
ε(x)

)
= 0 in Ω4

wiε(x) = uiε(x) on ∂Ω4.
(4.10)

and the following homogeneous problem on the flat boundary :{
Dα

(
Aαβ,εij (x)Dβv

j
ε (x)

)
= 0 in B+

3

viε(x) = 0 on T3

(4.11)

with the following definitions.

Definition 4.3.1. 1. wε ∈ H1(Ω4,Rm) is a weak solution of (4.10) if∫
Ω4

Aαβ,εij Dβw
j
εDαφ

idx = 0 (4.12)

for all φ ∈ H1
0 (Ω4,Rm) and the zero extension w̄ε of wε is inH1(B4,Rm).

2. vε ∈ H1(B+
3 ,Rm) is a weak solution of (4.11) if∫

B+
3

Aαβ,εij Dβv
j
εDαφ

idx = 0 (4.13)

for all φ ∈ H1
0 (B+

3 ,Rm) and the zero extension v̄ε of vε is inH1(B3,Rm).
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(4.7), (4.9), and (4.10) lead us to the following regularity result.

Lemma 4.3.2. [31] Let uε ∈ H1(Ω5,Rm) be a weak solution of (4.7) sat-

isfying (4.9) and let wε ∈ H1(Ω4,Rm) be the weak solution of (4.10). Then

there exist small positive constants σ1 and c, which depend only on λ,Λ,m,

and n, such that

‖Dwε‖L2+σ1 (Ω3) ≤ c. (4.14)

In order to justify our argument in a Reifenberg domain, we need the

following approximation lemma.

Lemma 4.3.3. Let uε ∈ H1(Ω5,Rm) be a weak solution of (4.7) satisfying

(4.9), and let wε ∈ H1(Ω4,Rm) be the weak solution of (4.10). Then for any

fixed κ > 0, there exists a small δ = δ(κ, λ,Λ,m, n) > 0 such that if

B+
5 ⊂ Ω5 ⊂ B5 ∩ {xn > −10δ} (4.15)

holds for δ, then there exists a weak solution vε ∈ H1(B+
3 ,Rm) of (4.11)

with ∫
−
B+

3

|Dvε|2dx ≤ c (4.16)

for some positive constant c = c(λ,Λ,m, n) such that∫
−
B+

1

|D(wε − vε)|2dx ≤ κ2. (4.17)

Proof. We argue this by contradiction. To do this, we assume that there

exist κ0 > 0, {uε,k}∞k=1, and
{

Ωk
5

}∞
k=1

such that uε,k is a weak solution of{
Dα

(
Aαβ,εij (x)Dβ(uε,k)

j
)

= 0 in Ωk
5

(uε,k)
i = 0 on ∂wΩk

5

(4.18)

with ∫
−

Ωk5

|Duε,k|2dx ≤ 1 (4.19)

and

B+
5 ⊂ Ωk

5 ⊂ B5 ∩
{
xn > −

10

k

}
. (4.20)
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However, ∫
−
B+

1

|D(wε,k − vε)|2dx > κ2
0 (4.21)

for any weak solution vε of{
Dα

(
Aαβ,εij (x)Dβv

j
ε

)
= 0 in B+

3

viε = 0 on T3,
(4.22)

where ∫
−
B+

3

|Dvε|2dx ≤ c (4.23)

for the same positive constant c as in (4.16) and wε,k is the weak solution of{
Dα

(
Aαβ,εij (x)Dβw

j
ε,k(x)

)
= 0 in Ωk

4

wiε,k(x) = uiε,k(x) on ∂Ωk
4.

(4.24)

Applying (4.19) and the standard L2-estimate for (4.24), we know that

1

|B4|

∫
Ωk4

|Dwε,k|2dx ≤ c
1

|B5|

∫
Ωk5

|Duε,k|2dx ≤ c. (4.25)

Also, using the fact that wε,k = 0 on ∂wΩk
3 and (4.20), we apply Poincaré’s

inequality to find that

1

|B3|

∫
B+

3

|wε,k|2dx ≤ 1

|B3|

∫
Ωk3

|wε,k|2dx ≤
c

|B3|

∫
Ωk3

|Dwε,k|2dx(4.26)

≤ c

|B5|

∫
Ωk5

|Duε,k|2dx ≤ c

for some positive constant c = c(ν, L,m, n). If we apply the zero extension of

wε,k from Ωk
3 to B3, say, w̄ε,k, then (4.25) and (4.26) imply that {w̄ε,k}∞k=1 is

uniformly bounded in H1(B3,Rm). Thus, there exists a subsequence, which

we will continue to denote as {w̄ε,k}, and w̄ε,0 ∈ H1(B3,Rm) is such that{
Dw̄ε,k ⇀ Dw̄ε,0 weakly in L2(B3,Rmn)

w̄ε,k → w̄ε,0 strongly in L2(B3,Rm)
(4.27)

as k →∞. We define wε,0 on B+
3 ∪T3 by wε,0(x) = w̄ε,0(x) for all x ∈ B+

3 ∪T3.

Hence, wε,0 is a weak solution of{
Dα

(
Aαβ,εij (x)Dβw

j
ε,0

)
= 0 in B+

3

wiε,0 = 0 on T3.
(4.28)
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From (4.25) and the lower semicontinuity with respect to weak convergence,

we see that ∫
−
B+

3

|Dwε,0|2dx ≤ lim inf
k→∞

∫
−
B+

3

|Dwε,k|2dx ≤ c. (4.29)

Thus, we derive a contradiction by showing that

Dwε,k → Dwε,0 strongly in L2(B+
1 ,R

mn).

In order to do this, we begin with the cut-off function φ ∈ C∞0 (B3) that

satisfies

0 ≤ φ ≤ 1, φ = 1 on B1, φ = 0 on B3\B2, and |Dφ| ≤ 2. (4.30)

Then,∫
B+

1

|D(wε,k − wε,0)|2dx ≤
∫
B1

|D(w̄ε,k − w̄ε,0)|2dx

≤ c
∫
B1

Aαβ,εij Dβ(w̄ε,k − w̄ε,0)jDα(w̄ε,k − w̄ε,0)idx

≤ c
∫
B3

Aαβ,εij Dβ(w̄ε,k − w̄ε,0)jDα(w̄ε,k − w̄ε,0)iφ2dx

≤ c
∫
B3

Aαβ,εij Dβ(w̄ε,k)
jDα(w̄ε,k − w̄ε,0)iφ2dx

− c

∫
B3

Aαβ,εij Dβ(w̄ε,0)jDα(w̄ε,k − w̄ε,0)iφ2dx

≤ c
∫
B3

Aαβ,εij Dβ(w̄ε,k)
jDα(φ2(w̄ε,k − w̄ε,0))idx

− c

∫
B3

Aαβ,εij Dβ(w̄ε,k)
j(2φDαφ)(w̄ε,k − w̄ε,0)idx

− c

∫
B3

Aαβ,εij Dβ(w̄ε,0)jDα(w̄ε,k − w̄ε,0)iφ2dx

→ 0

as k →∞ by applying (4.24) and (4.27). This completes the proof.
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4.4 Proof of Theorem 4.1.1

Now we are ready to prove the following lemma, which is a key ingredient

in our argument.

Lemma 4.4.1. Let 2 < p < ∞. Suppose that uε ∈ H1
0 (Ω,Rm) is the weak

solution of (1.2). Then there exists a universal constant η = η(λ,Λ,m, n, p)

so that one can select a small δ = δ(λ,Λ,m, n, p) > 0 such that if Aαβij is

(δ, 70)-vanishing, if Ω is (δ, 70)-Reifenberg flat, and if ,for all y ∈ Ω and

every 0 < r ≤ 1, Br(y) satisfies∣∣{x ∈ Ω :M(|Duε|2) > N2
}
∩Br(y)

∣∣ > η |Br(y)| , (4.31)

where (
80

7

)n
Npη =

1

2
, (4.32)

then there holds

Ω ∩Br(y) ⊂
{
x ∈ Ω :M(|Duε|2) > 1

}
∪
{
x ∈ Ω :M(|F |2) > δ2

}
. (4.33)

Proof. We prove this by contradiction. Using a scaling argument, it suffices

to prove this lemma for r = 1. We assume (4.31) holds, but (4.33) is false.

Then there is a point x1 ∈ Ω ∩B1(y) such that

1

|Bρ(x1)|

∫
Ωρ(x1)

|Duε|2dx ≤ 1 and
1

|Bρ(x1)|

∫
Ωρ(x1)

|F |2dx ≤ δ2 (4.34)

for all ρ > 0.

We divide this into the two cases : an interior case when B7(y) ⊂ Ω and

a boundary case where B7(y) 6⊂ Ω. Here, we only consider the boundary

case as we already proved the interior case in Lemma 3.4.1. Because Ω is

(δ, 70)-Reifenberg flat, there exists an appropriate coordinate system such

that

B7(y) ∩ Ω ⊂ B14 ∩ Ω (4.35)

and

B+
70 ⊂ Ω70 ⊂ B70 ∩ {xn > −140δ}. (4.36)

It directly follows from (4.34) that

1

|B70|

∫
Ω70

|Duε|2dx ≤
|B140(x1)|
|B70|

1

|B140|

∫
Ω140(x1)

|Duε|2dx ≤ 2n (4.37)
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since B70 ⊂ B140(x1). Similarly, we have

1

|B70|

∫
Ω70

|F |2dx ≤ 2nδ2. (4.38)

We consider the following rescaled maps :

ũε(z) =
uε(14z)

14
√

2n
, F̃ (z) =

F (14z)√
2n

, Ãαβ,εij (z) = Aαβ,εij (14z) (z ∈ Ω̃5)

(4.39)

where Ω̃5 = 1
14Ω70 satisfying

B+
5 ⊂ Ω̃5 ⊂ B5 ∩ {zn > −10δ}. (4.40)

Therefore, ũε ∈ H1(Ω̃5,Rm) is a weak solution of{
Dα

(
Ãαβ,εij (z)Dβũ

j
ε(z)

)
= Dαf̃

i
α(z) in Ω̃5

ũiε(z) = 0 on ∂wΩ̃5

(4.41)

with

1

|B5|

∫
Ω̃5

|Dũε|2dz ≤ 1 and
1

|B5|

∫
Ω̃5

|F̃ |2dz ≤ δ2. (4.42)

Let w̃ε ∈ H1(Ω̃4,Rm) be the weak solution of{
Dα

(
Ãαβ,εij (z)Dβw̃

j
ε(z)

)
= 0 in Ω̃4

w̃iε(z) = ũiε(z) on ∂Ω̃4.
(4.43)

Then ũε − w̃ε ∈ H1
0 (Ω̃4,Rm) is the weak solution of{

Dα

(
Ãαβ,εij (z)Dβ(ũjε(z)− w̃jε(z)

)
= Dαf̃

i
α(z) in Ω̃4,

ũiε(z)− w̃iε(z) = 0 on ∂Ω̃4.
(4.44)

Applying a standard L2 estimate to (4.44) and (4.42), we obtain

1

|B4|

∫
Ω̃4

|Dũε −Dw̃ε|2dz ≤
c

|B4|

∫
Ω̃4

|F̃ |2dz ≤ cδ2 (4.45)

for some positive constant c = c(λ,Λ,m, n).
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In addition, if we apply Lemma 4.3.3, then for any fixed κ > 0, there

exists a small δ = δ(κ, λ,Λ,m, n) > 0 such that a weak solution ṽε ∈
H1(B+

3 ,Rm) exists for{
Dα

(
Ãαβ,εij (z)Dβ ṽ

j
ε

)
= 0 in B+

3

ṽiε = 0 on T3,
(4.46)

with ∫
−
B+

3

|Dṽε|2dz ≤ c (4.47)

for some constant c = c(λ,Λ,m, n) such that∫
−
B+

1

|D(w̃ε − ṽε)|2dz ≤ κ2. (4.48)

Applying Lemma 4.2.2 to (4.46) with q = p + 1, we know there is a small

δ = δ(λ,Λ,m, n, p) so that(∫
−
B+

1

|Dṽε|p+1dz

) 1
p+1

≤ c

(∫
−
B+

3

|Dṽε|2dz

) 1
2

(4.49)

for some constant c = c(λ,Λ,m, n, p). Therefore, for the zero extension ¯̃vε of

ṽε from B+
3 to B3 we have

1

|B1|
|{x ∈ Ω :M(|Duε|)2 > N2} ∩B1(y)|

≤ c

|B1|
|{z ∈ Ω̃1 :M(3|Dũε −Dw̃ε|2 + 3|Dw̃ε −D¯̃vε|2 + 3|D¯̃vε|2) > N2}|

≤ c

|B1|

∣∣∣∣{z ∈ Ω̃1 :M(|Dũε −Dw̃ε|2) >
N2

9

}∣∣∣∣
+

c

|B1|

∣∣∣∣{z ∈ Ω̃1 :M(|Dw̃ε −D¯̃vε|2) >
N2

9

}∣∣∣∣
+

c

|B1|

∣∣∣∣{z ∈ Ω̃1 :M(|D¯̃vε|2) >
N2

9

}∣∣∣∣
≤ c

(
9

N2

)
1

|B1|

∫
Ω̃1

|Dũε −Dw̃ε|2dz + c

(
9

N2

)
1

|B1|

∫
Ω̃1

|Dw̃ε −D¯̃vε|2dz

+c

(
9

N2

) p+1
2
∫
−
B+

1

|Dṽε|p+1dz

=: I1 + I2 + I3.
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Estimate of I1 : the inequality (4.45) gives us

I1 ≤
c

N2
δ2 (4.50)

for some positive constant c = c(λ,Λ,m, n).

Estimate of I2 : applying Lemma 4.3.2, Hölder’s inequality, and (4.48),

we see that

I2 ≤ c

N2

(
1

|B1|

∫
B+

1

|Dw̃ε −Dṽε|2dz +
1

|B1|

∫
Ω1\B+

1

|Dw̃ε|2dz

)
(4.51)

≤ c

N2

κ2 +

(∫
Ω3

|Dw̃ε|2+σ1dz

) 2
2+σ1

(∫
Ω1\B+

1

dz

) σ1
2+σ1


≤ c

N2

(
κ2 + δ

σ1
2+σ1

)
for some positive constant c = c(λ,Λ,m, n).

Estimate of I3 : from (4.47) and (4.49) we can conclude

I3 ≤
c

Np+1

(∫
−
B+

3

|Dṽε|2dz

) p+1
2

≤ c

Np+1
(4.52)

for some positive constant c = c(λ,Λ,m, n, p).

Therefore, if we combine (4.50), (4.51), and (4.52), we see that

1

|B1|
|{x ∈ Ω :M(|Duε|)2 > N2} ∩B1(y)|

≤ I1 + I2 + I3

≤ c4

Np+1
+

c4

N2

(
κ2 + δ2 + δ

σ1
2+σ1

)
≤ c4η

p+1
p + c4η

2
p

(
κ2 + δ2 + δ

σ1
2+σ1

)
by (4.32)

= η
[
c4

(
η

1
p + η

2
p
−1
(
κ2 + δ2 + δ

σ1
2+σ1

))]
for some constant c4 = c4(λ,Λ,m, n, p). Finally, we first take η so that

0 < c4η
1
p ≤ 1

3

and then select N from (4.32). Secondly, we select kappa in order to have

0 < c4η
2
p
−1
κ2 ≤ 1

3
. (4.53)
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Finally, one can find the corresponding δ = δ(λ,Λ,m, n, p) satisfying (4.53)

and

0 < c4η
2
p
−1
(
δ2 + δ

σ1
2+σ1

)
≤ 1

3

such that this η and δ we can conclude that

|{x ∈ Ω :M(|Duε|)2 > N2} ∩B1(y)| ≤ η|B1|. (4.54)

This contradicts (4.31) and completes the proof.

Now, we are all ready to prove our main result in this chapter.

Proof of Theorem 4.1.1. Given any p with 2 < p < ∞, assume that F ∈
Lp(Ω,Rmn), Aαβij is (δ, 70)-vanishing and Ω is (δ, 70)-Reifenberg flat. Also

let uε ∈ H1(Ω,Rm) be the weak solution of (1.2). We now take η, N , and δ

given by Lemma 4.4.1.

We can further suppose that

‖F‖Lp(Ω) ≤ δ (4.55)

by replacing uε and F with uε
1
δ
‖F‖Lp(Ω)+σ

and F
1
δ
‖F‖Lp(Ω)+σ

for σ > 0, respec-

tively. We want to show that

‖M(|Duε|2)‖
L
p
2 (Q1)

≤ c

for some universal constant c > 0 when σ → 0.

To do this, we write

C =
{
x ∈ Ω :M(|Duε|2) > N2

}
and

D =
{
x ∈ Ω :M(|Duε|2) > 1

}
∪
{
x ∈ Ω :M(|F |2) > δ2

}
.

Using the weak 1-1 estimate, the standard L2 estimate, and Hölder’s in-

equality, we see that

|C| ≤ c

N2

∫
Ω
|Duε|2dx ≤

c

N2

∫
Ω
|F |2dx (4.56)

≤ c

N2
|Ω|

p−2
p ‖F‖2Lp(Ω) ≤

cδ2

N2
< η|B1|,
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by further taking δ satisfying the inequality (4.56). This asserts the first con-

dition of Lemma 2.3.2. On the other hand, the second condition of Lemma

2.3.2 follows from Lemma 4.4.1. Then we apply Lemma 2.3.2 to discover

that

|C| < η1|D|

where

η1 =

(
10

1− δ

)n
η ≤

(
80

7

)n
η, (4.57)

by Remark 2.2.4.

Note that the problem (1.2) is invariant under normalization, we obtain

the same results for (uεN ,
F
N ), ( uε

N2 ,
F
N2 ), ( uε

N3 ,
F
N3 ), . . . inductively. Therefore,

we obtain the following power decay estimates of M(|Duε|2) :∣∣∣{x ∈ Ω :M(|Duε|2) > N2k
}∣∣∣

≤ ηk1
∣∣{x ∈ Ω :M(|Duε|2) > 1

}∣∣
+

k∑
i=1

ηi1

∣∣∣{x ∈ Ω :M(|F |2) > δ2N2(k−i)
}∣∣∣ .

Applying Lemma 2.3.1 to

g =M(|Duε|2), µ = N2, θ = 1, and q =
p

2
,

we compute as follows :

‖M(|Duε|2)‖
p
2

L
p
2 (Ω)

≤ c

|Ω|+∑
k≥1

N2k p
2

∣∣∣{x ∈ Ω :M(|Duε|2) > N2k
}∣∣∣


≤ c

1 +
∑
k≥1

Nkpηk1
∣∣{x ∈ Ω :M(|Duε|2) > 1

}∣∣
+
∑
k≥1

Nkp
k∑
i=1

ηi1

∣∣∣{x ∈ Ω :M(|F |2) > δ2N2(k−i)
}∣∣∣)

=: S1 + S2.

41



CHAPTER 4. DIRICHLET PROBLEMS

S1 ≤ c

1 +
∑
k≥1

Nkpηk1
∣∣{x ∈ Ω :M(|Duε|2) > 1

}∣∣
≤ c

1 + |Ω|
∑
k≥1

Nkpηk1

 .

S2 ≤ c
∑
k≥1

Nkp
k∑
i=1

ηi1

∣∣∣{x ∈ Ω :M(|F |2) > δ2N2(k−i)
}∣∣∣

= c
∑
i≥1

∑
k≥i

Nkpηi1

∣∣∣{x ∈ Ω :M(|F |2) > δ2N2(k−i)
}∣∣∣

= c
∑
i≥1

(Npη1)i
∑
k≥i

(Np)k−i
∣∣∣{x ∈ Ω :M(|F |2) > δ2N2(k−i)

}∣∣∣
= c

∑
i≥1

(Npη1)i
∑
j≥0

(Np)j

∣∣∣∣∣
{
x ∈ Ω :M

(∣∣∣∣Fδ
∣∣∣∣2
)
> N2j

}∣∣∣∣∣
≤ c

∑
i≥1

(Npη1)i

∥∥∥∥∥M
(∣∣∣∣Fδ

∣∣∣∣2
)∥∥∥∥∥

L
p
2 (Ω)

≤ c
∑
i≥1

(Npη1)i
‖F‖2Lp(Ω)

δ2
≤ c

∑
i≥1

(Npη1)i by (4.55).

Therefore, we have

‖M(|Duε|2)‖
p
2

L
p
2 (Ω)

≤ c

1 +
∑
k≥1

(Npη1)k

 ≤ c,
since Npη1 = Np

(
10

1−δ

)n
η ≤ Np

(
80
7

)n
η = 1

2 from (4.32) and (4.57). Using

the strong p-p estimate of the maximal operator, we finally obtain

‖Duε‖Lp(Ω) ≤ c,

which is the required one. This completes the proof.
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Chapter 5

Conormal derivative

problems

5.1 Main result

In this chapter, we consider the conormal derivative problem (1.3). The

following is our desired global W 1,p regularity.

Theorem 5.1.1. For any positive constant 2 < p < ∞, suppose F ∈
Lp(Ω,Rmn). Then there exists a small positive constant δ = δ(λ,Λ,m, n, p)

such that if Aαβij is (δ,R)-vanishing and Ω is (δ,R)-Reifenberg flat, then for

any weak solution uε ∈ H1(Ω,Rm) of (1.3) we have

Duε ∈ Lp(Ω,Rmn) (5.1)

with estimate

‖Duε‖Lp(Ω) ≤ c‖F‖Lp(Ω), (5.2)

where the constant c = c(|Ω|, λ,Λ,m, n, p) is independent of ε.

5.2 Boundary Hölder estimates

We begin this section with boundary Hölder regularity for homogeneous

systems. This will be crucially used in the next section.
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Theorem 5.2.1. Let γ ∈ (0, 1). Suppose that vε ∈ H1(B+
r ,Rm) is a weak

solution of {
Dα

(
Aαβ,εij Dβv

j
ε

)
= 0 in B+

r

Aαβ,εij Dβv
j
ενα = 0 on Tr.

(5.3)

Then there exists a small positive constant δ = δ(λ,Λ,m, n) such that if Aαβij
is (δ,R)-vanishing, then for any x, y ∈ B+

r
2

,

|vε(x)− vε(y)| ≤ c
(
|x− y|
r

)γ (∫
−
B+
r

|vε(z)|2dz
) 1

2

, (5.4)

where c > 0 depends only on λ,Λ,m, n, and γ.

The following two lemmas are needed for the proof of Theorem 5.2.1.

Lemma 5.2.2. Let γ ∈ (0, 1). Then there exists ε0 ∈ (0, 1] and θ ∈
(
0, 1

4

)
depending only on λ,Λ,m, n, and γ such that if for 0 < ε < ε0, vε is a weak

solution of {
Dα

(
Aαβ,εij Dβv

j
ε

)
= 0 in B+

1

Aαβ,εij Dβv
j
ενα = 0 on T1,

(5.5)

with ∫
−
B+

1

|vε − (v̄ε)B+
1
|2dx ≤ 1, (5.6)

then ∫
−
B+
θ

|vε − (v̄ε)B+
θ
|2dx ≤ θ2γ . (5.7)

Proof. We will prove this lemma by contradiction. If not, then there exists

sequences εk, and vεk such that εk → 0, vεk is a weak solution of{
Dα

(
Aαβ,εkij Dβv

j
εk

)
= 0 in B+

1

Aαβ,εkij Dβv
j
εkνα = 0 on T1,

(5.8)

with ∫
−
B+

1

|vεk − (v̄εk)B+
1
|2dx ≤ 1, (5.9)

but for every θ ∈ (0, 1
4),∫
−
B+
θ

|vεk − (v̄εk)B+
θ
|2dx > θ2γ . (5.10)
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By subtracting a constant, we assume that (v̄εk)B+
1

= 0. Then from

Caccioppoli inequality for (5.8) and (5.9), we have∫
B+

1
2

|Dvεk |
2dx ≤ c

∫
B+

1

|vεk |
2dx ≤ c. (5.11)

Thus vεk is uniformly bounded in H1(B+
1
2

), and then by passing to a subse-

quence, we assume that vεk → v0 strongly in L2(B+
1
2

) for some vε ∈ H1(B+
1
2

).

Consequently we have that for any θ ∈ (0, 1
4),∫

B+
θ

|vεk − (v̄εk)B+
r
|2dx→

∫
B+
θ

|v0 − (v̄0)B+
θ
|2dx, (5.12)

and so from (5.10), we find that for every θ ∈ (0, 1
4),∫

−
B+
θ

|v0 − (v̄0)B+
θ
|2dx > θ2γ . (5.13)

In addition, recalling (5.8) and existing homogenization theory as in [3, 30],

we see that v0 solves Dα

(
Aαβ,0ij Dβv

j
0

)
= 0 in B+

1
2

Aαβ,0ij Dβv
j
0να = 0 on T 1

2
,

(5.14)

where Aαβ,0ij is the constant matrix defined as in (1.16). According to bound-

ary Hölder regularity for solutions of elliptic systems with constant coeffi-

cients on the flat boundaries, we discover that∫
−
B+
θ

|v0 − (v̄0)B+
θ
|2dx ≤ c5θ

1+γ , (5.15)

for some universal constant c5 = c5(λ,Λ,m, n, γ).

We finally combine (5.13) and (5.15), to discover

θ2γ <

∫
−
B+
θ

|v0 − (v̄0)B+
θ
|2dx ≤ c5θ

1+γ (5.16)

for every γ ∈ (0, 1) and every θ ∈ (0, 1
4). However, we take θ ∈ (0, 1

4) so

small to deduce

θ2γ ≥ c5θ
1+γ , (5.17)

which contradicts (5.16). This finishes the proof.
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Lemma 5.2.3. Fix γ ∈ (0, 1). Let ε0 and θ be the constants as in Lemma

5.2.2 and let vε be a weak solution of (5.5). Then for all k such that ε <

θk−1ε0, we have∫
−
B+

θk

|vε − (v̄ε)B+

θk
|2dx ≤ θ2kγ

∫
−
B+

1

|vε − (v̄ε)B+
1
|2dx. (5.18)

Proof. The proof is by induction on k. By Lemma 5.2.2, (5.18) holds for

k = 1. Now we assume that (5.18) holds for some k ≥ 1. Let

w(z) =
vε(θ

kz)(∫
−B+

θk

∣∣∣∣vε − (v̄ε)B+

θk

∣∣∣∣2 dx
) 1

2

for z ∈ B+
1 (5.19)

(We divide vε(θ
kz) by

(∫
−B+

θk
|vε − (v̄ε)B+

θk
|2dx

) 1
2

+σ for any σ > 0 and then

we let σ → 0+ if
∫
−B+

θk
|vε − (v̄ε)B+

θk
|2dx = 0). Then w satisfies Dα

(
A
αβ, ε

θk

ij Dβw
j

)
= 0 in B+

1

A
αβ, ε

θk

ij Dβw
jνα = 0 on T1

(5.20)

with ∫
−
B+

1

|w − w̄B+
1
|2dz ≤ 1. (5.21)

Thus by applying Lemma 5.2.2 again to w, we obtain∫
−
B+
θ

|w − w̄B+
θ
|2dz ≤ θ2γ . (5.22)

Then by the induction hypothesis, we find that∫
−
B+

θk+1

|vε − (v̄ε)B+

θk+1
|2dx =

(∫
−
B+
θ

|w − w̄B+
θ
|2dz

)(∫
−
B+

θk

|vε − (v̄ε)B+

θk
|2dx

)

≤ θ2γ

∫
−
B+

θk

|vε − (v̄ε)B+

θk
|2dx

≤ θ2(k+1)γ

∫
−
B+

1

|vε − (v̄ε)B+
1
|2dx.

This completes the proof.
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Remark 5.2.4. Before giving the proof of Theorem 5.2.1, we would like to

point out that in the paper [4], W 1,p regularity for a weak solution to (5.3)

with ε = 1 was established for all 1 < p <∞ where the coefficients Aαβij are

assumed to be (δ,R)-vanishing. From this, we know that the equation (5.3)

with ε = 1 has C0,γ regularity for any fixed γ ∈ (0, 1) as a consequence of

Morrey embedding for p large enough.

Proof of Theorem 5.2.1. Let ε0 and θ be constants given in Lemma 5.2.2. By

scaling, we may assume that r = 1. The case ε ≥ θε0 follows from Remark

5.2.4 with an appropriate scaling.

We next consider 0 < ε < θε0. We divide this into two cases, ρ ≥ ε
ε0

and

ρ < ε
ε0

. For the first case, we can take k ≥ 0 such that θk+1 ≤ ρ < θk. Since

ε ≤ θkε0, we apply Lemma 5.2.3 to find that∫
−
B+
ρ

|vε − (v̄ε)B+
r
|2dx ≤ c

∫
−
B+

θk

|vε − (v̄ε)B+

θk
|2dx

≤ cθ2kγ

∫
−
B+

1

|vε − (v̄ε)B+
1
|2dx

≤ cρ2γ

∫
−
B+

1

|vε|2dx.

For the second one, we use a blow-up argument by letting w(z) = vε(εz).

Since 2
ε0
< 1

θε0
< 1

ε , w satisfies Dα

(
Aαβ,1ij Dβw

j
)

= 0 in B+
2
ε0

Aαβ,1ij Dβw
jνα = 0 on T 2

ε0

.
(5.23)

By the C0,γ regularity for (5.23), we see that∫
−
B+
ρ
ε

|w − w̄B+
ρ
ε

|2dz ≤ c
(ρ
ε

)2γ
∫
−
B+

1
ε0

|w − w̄B+
1
ε0

|2dz (5.24)

for some constant c = c(γ, λ,Λ,m, n). Since ε
ε0
< θ, we apply Lemma 5.2.3
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again to find that∫
−
B+
ρ

|vε − (v̄ε)B+
ρ
|2dx =

∫
−
B+
ρ
ε

|w − w̄B+
ρ
ε

|2dz (5.25)

≤ c
(ρ
ε

)2γ
∫
−
B+

1
ε0

|w − w̄B+
1
ε0

|2dz

≤ c
(ρ
ε

)2γ
∫
−
B+
ε
ε0

|vε − (v̄ε)B+
ε
ε0

|2dx

≤ c
(ρ
ε

)2γ
(
ε

ε0

)2γ ∫
−
B+

1

|vε − (v̄ε)B+
1
|2dx

≤ cρ2γ

∫
−
B+

1

|vε|2dx.

This completes the proof of Theorem 5.2.1.

5.3 Uniform W 1,q estimates for homogeneous sys-

tems for the flat boundary

Now, we are now ready to derive uniform W 1,q regularity.

Lemma 5.3.1. Let vε ∈ H1(B+
r ,Rm) be a weak solution of (5.3). Then

for any 2 < q < ∞, there exists δ = δ(λ,Λ,m, n, q) such that if Aαβij is

(δ,R)-vanishing, then we have∫−
B+
r
2

|Dvε|qdx

 1
q

≤ c
(∫
−
B+
r

|Dvε|2dx
) 1

2

(5.26)

for some positive constant c = c(λ,Λ,m, n, q), independent of ε.

Proof. By dilation, we assume that r = 1 and it suffices to show that

∫
B+

1
4

|Dvε(y)|qdy ≤ c

(∫
B+

1

|Dvε|2dz

) q
2

(5.27)

for some constant c = c(λ,Λ,m, n, q) since we can obtain (5.26) by using

Lemma 3.3.3, (5.27), and standard covering argument.
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For any x = (x1, · · · , xn) ∈ B+
1
4

, by the interior W 1,q regularity, see

Theorem 3.1.1, we find that∫−
B 1

4xn(x)

|Dvε|qdy

 1
q

≤ c

xn

∫−
B 1

2xn(x)

|vε(y)− vε(x)|qdy

 1
q

(5.28)

for some constant c = c(λ,Λ,m, n, q) which is independent of ε.

Here, we observe that if y = (y1, · · · , yn) ∈ Btxn(x) for some t ∈ (0, 1),

then

|xn − yn| ≤ |x− y| ≤ txn. (5.29)

This implies that

(1− t)xn ≤ yn ≤ (1 + t)xn. (5.30)

Now, we apply (5.30), boundary Hölder estimates and Poincaré inequal-

ity, then for any γ ∈ (0, 1), (5.28) becomes

1

(xn)n

∫
B 1

4xn(x)

|Dvε|qdy ≤
c

(xn)n

∫
B 1

2xn(x)

(xn)γq

(yn)q
dy

(∫−
B+

1

|Dvε|2dz

) q
2

(5.31)

for some constant c = c(λ,Λ,m, n, q, γ). Now, we integrate (5.31) over B+
1
4

.

Then we apply (5.30) to the left hand side of (5.31) to see that∫
B+

1
4

∫
B 1

4xn(x)

|Dvε(y)|q

(xn)n
dydx (5.32)

=

∫
B+

1
4

|Dvε(y)|q
∫
x∈B+

1
4

,|x−y|≤ 1
4
xn

1

(xn)n
dxdy

≥ c
∫
B+

1
4

|Dvε(y)|q
∫
x∈B+

1
4

,|x−y|≤ 1
5
yn

1

(yn)n
dxdy

≥ c
∫
B+

1
4

|Dvε(y)|qdy

for some constant c = c(n). Similarly, we apply (5.30) again to the right
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hand side of (5.31) to find that∫
B+

1
4

∫
B 1

2xn(x)

(xn)γq

(xn)n(yn)q
dydx (5.33)

≤ c
∫
B+

1
2

∫
B 1

2xn(x)

(yn)γq

(xn)n(yn)q
dydx

= c

∫
B+

1
2

1

(yn)q(1−γ)

∫
x∈B+

1
2

,|x−y|≤ 1
2
xn

1

(xn)n
dxdy

≤ c
∫
B+

1
2

1

(yn)q(1−γ)

∫
x∈B+

1
2

,|x−y|≤yn

1

(yn)n
dxdy

≤ c
∫
B+

1
2

1

(yn)q(1−γ)
dy

for some constant c = c(n).

Now, we choose γ ∈ (0, 1) so that q(1 − γ) < 1 for q > 2, and then we

insert (5.32) and (5.33) into (5.31) to discover that∫
B+

1
4

|Dvε(y)|qdy ≤
∫
B+

1
4

∫
B 1

4xn(x)

|Dvε(y)|q

(xn)n
dydx (5.34)

≤ c

(xn)n

∫
B 1

2xn(x)

(xn)γq

(yn)q
dy

(∫−
B+

1

|Dvε|2dz

) q
2

≤ c

∫
B+

1
2

1

(yn)q(1−γ)
dy

(∫−
B+

1

|Dvε|2dz

) q
2

≤ c

(∫
B+

1

|Dvε|2dz

) q
2

for some constant c = c(λ,Λ,m, n, q). This completes the proof.

5.4 Approximation lemmas

We next localize our problem near the flat boundary. We first assume that

B+
5 ⊂ Ω5 ⊂ B5 ∩ {xn > −10δ}. (5.35)
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Then we let uε ∈ H1(Ω5,Rm) be a weak solution of Dα

(
Aαβ,εij (x)Dβu

j
ε(x)

)
= Dαf

i
α(x) in Ω5(

Aαβ,εij Dβu
j
ε − f iα

)
να = 0 on ∂wΩ5

(5.36)

and vε ∈ H1(B+
4 ,Rm) be a weak solution of{

Dα

(
Aαβ,εij (x)Dβv

j
ε (x)

)
= 0 in B+

4

Aαβ,εij Dβv
j
ενα = 0 on T4

(5.37)

with the following definitions.

Definition 5.4.1. 1. uε ∈ H1(Ω5,Rm) is a weak solution of (5.36) if∫
Ω5

Aαβ,εij Dβu
j
εDαφ

idx =

∫
Ω5

f iαDαφ
idx (5.38)

for all φ ∈ H1(Ω5,Rm) with φ = 0 on ∂cΩ5.

2. vε ∈ H1(B+
4 ,Rm) is a weak solution of (5.37) if∫

B+
4

Aαβ,εij Dβv
j
εDαφ

idx = 0 (5.39)

for all φ ∈ H1(B+
4 ,Rm) with φ = 0 on ∂cB

+
4 .

We need the following approximation lemma.

Lemma 5.4.2. Let uε ∈ H1(Ω5,Rm) be a weak solution of (5.36) satisfying

1

|B5|

∫
Ω5

|Duε|2dx ≤ 1. (5.40)

Then for any 0 < τ < 1 fixed, there exists a small δ = δ(τ, λ,Λ,m, n) > 0

such that if

B+
5 ⊂ Ω5 ⊂ B5 ∩ {xn > −10δ}, (5.41)

and
1

|B5|

∫
Ω5

|F |2dx ≤ δ2 (5.42)

for such δ, then there exists a weak solution vε ∈ H1(B+
4 ,Rm) of (5.37) with

1

|B4|

∫
B+

4

|Dvε|2dx ≤ c (5.43)
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for some constant c = c(m,n) such that

1

|B4|

∫
B+

4

|uε − vε|2dx ≤ τ2. (5.44)

Proof. We argue this by contradiction. To do this, we assume that there exist

τ0 > 0, {uε,k}∞k=1, {Fk}∞k=1 and
{

Ωk
5

}∞
k=1

such that uε,k is a weak solution of Dα

(
Aαβ,εij (x)Dβu

j
ε,k(x)

)
= Dαf

i
k,α(x) in Ωk

5(
Aαβ,εij Dβu

j
ε,k − f

i
k,α

)
να = 0 on ∂wΩ

k
5

(5.45)

with
1

|B5|

∫
Ωk5

|Duε,k|2dx ≤ 1, (5.46)

B+
5 ⊂ Ωk

5 ⊂ B5 ∩
{
xn > −

10

k

}
, (5.47)

and

1

|B5|

∫
Ωk5

|Fk|2dx ≤
(

1

k

)2

. (5.48)

However,
1

|B4|

∫
B+

4

|uε,k − vε|2dx > τ2
0 (5.49)

for any weak solution vε of{
Dα

(
Aαβ,εij (x)Dβv

j
ε (x)

)
= 0 in B+

4

Aαβ,εij Dβv
j
ενα = 0 on T4

(5.50)

with
1

|B4|

∫
B+

4

|Dvε|2dx ≤ c. (5.51)

In view of (5.46), the Poincaré inequality, and the property of average

which minimizes variance, we have

1

|B5|

∫
B+

5

|uε,k − ūε,k
B+

5

|2dx ≤ 1

|B5|

∫
Ωk5

|uε,k − ūε,k
Ωk5

|2dx

≤ c
1

|B5|

∫
Ωk5

|Duε,k|2dx

≤ c
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for some constant c = c(m,n). This implies that {uε,k − ūε,k
B+

5

}∞k=1 is

bounded in H1(B+
5 ). Therefore, there exists a subsequence, which we still

denote by {uε,k − ūε,k
B+

5

}∞k=1, and uε,0 ∈ H1(B+
4 ) such that uε,k − ūε,k

B+
5

⇀ uε,0 weakly in H1(B+
4 )

uε,k − ūε,k
B+

5

→ uε,0 strongly in L2(B+
4 )

(5.52)

as k →∞. Using (5.47), (5.48) and (5.52) and letting k →∞ in (5.45), we

discover that uε,0 is a weak solution of (5.50). On the other hand, by using

weakly lower semicontinuity for weak convergence,

1

|B4|

∫
B+

4

|Duε,0|2dx ≤ lim inf
k→∞

1

|B4|

∫
B+

4

|Duε,k|2dx (5.53)

≤ c lim inf
k→∞

1

|B5|

∫
Ωk5

|Duε,k|2dx ≤ c

for some constant c = c(m,n). Then uε,0 is a weak solution of (5.50) satis-

fying (5.51) by (5.53), but (5.49) can not hold from (5.52). Hence we reach

a contradiction. This finishes the proof.

Lemma 5.4.3. Let 2 < q <∞. Let uε ∈ H1(Ω5,Rm) be a weak solution of

(5.36) satisfying
1

|B5|

∫
Ω5

|Duε|2dx ≤ 1. (5.54)

Then for any 0 < κ < 1 fixed, there exists a small δ = δ(κ, λ,Λ,m, n, q) > 0

such that if Aαβij is (δ, 5)-vanishing,

B+
5 ⊂ Ω5 ⊂ B5 ∩ {xn > −10δ}, (5.55)

and
1

|B5|

∫
Ω5

|F |2dx ≤ δ2 (5.56)

for such δ, then there exists a weak solution vε ∈ H1(B+
4 ,Rm) of (5.37) such

that
1

|B1|

∫
Ω1

|D(uε − v̄ε)|2dx ≤ κ2. (5.57)

where v̄ε is an W 1,q extension of vε from B+
4 to B4.
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Proof. According to Lemma 5.4.2, for each 0 < τ < 1, with the assumptions

(5.54),(5.55),and (5.56), there exists a small δ such that there exists a weak

solution vε ∈ H1(B+
4 ,Rm) of (5.37) with

1

|B4|

∫
B+

4

|Dvε|2dx ≤ c (5.58)

satisfying
1

|B4|

∫
B+

4

|uε − vε|2dx ≤ τ2. (5.59)

By a standard W 1,q extension of vε from B+
4 to B4, there exists v̄ε ∈ H1(B4)

such that v̄ε = vε in B+
4 and

‖Dv̄ε‖Lq(B4) ≤ c‖Dvε‖Lq(B+
4 ), (5.60)

where c = c(m,n, q) is independent of vε.

Now we choose a standard cut-off function φ ∈ C∞0 (B2) that satisfies

0 ≤ φ ≤ 1, φ = 1 on B1, φ = 0 on B2\B 3
2
, and |Dφ| ≤ 4. (5.61)

Since uε is a weak solution of (5.36), we take φ2(uε − v̄ε) as a test function

in the definition of a weak solution (5.38) for Ω5 to discover that

1

|B2|

∫
Ω2

Aαβ,εij Dβu
j
εDα(φ2(uε − v̄ε))idx =

1

|B2|

∫
Ω2

f iαDα(φ2(uε − v̄ε))idx.

(5.62)
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We compute the left hand side of (5.62) as follows :

1

|B2|

∫
Ω2

Aαβ,εij Dβu
j
εDα(φ2(uε − v̄ε))idx

=
1

|B2|

∫
Ω2

Aαβ,εij Dβ(uε − v̄ε)jDα(φ2(uε − v̄ε))idx

+
1

|B2|

∫
Ω2

Aαβ,εij Dβ v̄
j
εDα(φ2(uε − v̄ε))idx

=
1

|B2|

∫
Ω2

φ2Aαβ,εij Dβ(uε − v̄ε)jDα(uε − v̄ε)idx

+
1

|B2|

∫
Ω2

2φAαβ,εij Dβ(uε − v̄ε)jDαφ(uε − v̄ε)idx

+
1

|B2|

∫
B+

2

Aαβ,εij Dβ v̄
j
εDα(φ2(uε − v̄ε))idx

+
1

|B2|

∫
Ω2\B+

2

Aαβ,εij Dβ v̄
j
εDα(φ2(uε − v̄ε))idx

=: I1 + I2 + I3 + I4.

The uniform ellipticity condition (1.5) implies

I1 ≥ λ
1

|B2|

∫
Ω2

φ2|D(uε − v̄ε)|2dx. (5.63)

Cauchy’s inequality with s, (1.6), and (5.61) imply that

|I2| ≤
s

|B2|

∫
Ω2

φ2|D(uε − v̄ε)|2dx+
c(s,Λ)

|B2|

∫
Ω2

|uε − v̄ε|2dx. (5.64)

In order to estimate the second term on the right hand side of (5.64), we

use Sobolev inequality, (5.54), (5.55), (5.58), (5.59), and (5.60) to see that

1

|B2|

∫
Ω2

|uε − v̄ε|2dx (5.65)

=
1

|B2|

∫
B+

2

|uε − v̄ε|2dx+
1

|B2|

∫
Ω2\B+

2

|uε − v̄ε|2dx

≤ c

τ2 +
1

|B2|

(∫
Ω2\B+

2

|uε − v̄ε|
2n
n−2dx

)n−2
n
(∫

Ω2\B+
2

dx

) 2
n


≤ c

(
τ2 +

1

|B2|

(∫
Ω2

|D(uε − v̄ε)|2dx
)
δ

2
n

)
≤ c

(
τ2 + δ

2
n

)
55



CHAPTER 5. CONORMAL DERIVATIVE PROBLEMS

for some constant c = c(λ,Λ,m, n) (This is valid for n ≥ 3 but we can

justify for n = 2 by using any p1 > 2 instead of 2∗ = 2n
n−2 and then applying

Hölder’s inequality to the exponents 1
p1

and p1−1
p1

). From (5.64) with s = λ
2

and (5.65) we have

|I2| ≤
λ

2|B2|

∫
Ω2

φ2|D(uε − v̄ε)|2dx+ c(τ2 + δ
2
n ) (5.66)

for some constant c = c(λ,Λ,m, n).

As v̄ε = vε in B+
4 and vε is a weak solution of (5.37), we find that

I3 = 0 (5.67)

We next estimate I4 as follows : we recall (1.6) and apply Hölder’s in-

equality with 1
2 + 1

q + q−2
2q = 1 to discover that

|I4| ≤
c

|B2|

(∫
Ω2

|Dv̄ε|qdx
) 1
q

(∫
Ω2\B+

2

|D(φ2(uε − v̄ε))|2dx

) 1
2
(∫

Ω2\B+
2

dx

) q−2
2q

(5.68)

for some constant c = c(Λ). Since Aαβij is (δ, 5)-vanishing, we obtain by

Lemma 5.3.1, (5.58), and (5.60)

1

|B2|

∫
Ω2

|Dv̄ε|qdx ≤ 1

|B2|

∫
B2

|Dv̄ε|qdx (5.69)

≤ c

(
1

|B2|

∫
B+

2

|Dvε|qdx

)

≤ c

(
1

|B2|

∫
B+

4

|Dvε|2dx

) 2
q

≤ c

for some constant c = c(λ,Λ,m, n, q) and by (5.54), (5.55), (5.58), (5.60),
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(5.61), and Sobolev inequality

1

|B2|

∫
Ω2\B+

2

|D(φ2(uε − v̄ε))|2dx (5.70)

≤ c

|B2|

(∫
Ω2\B+

2

φ2|Dφ|2|uε − v̄ε|2dx+

∫
Ω2

φ4|D(uε − v̄ε)|2dx

)

≤ c

|B2|

(∫
Ω2\B+

2

|uε − v̄ε|2dx+

∫
Ω2

|D(uε − v̄ε)|2dx

)
≤ c(1 + δ

2
n )

for some constant c = c(λ,Λ,m, n) with the same computation as in (5.65).

Thus, we have from (5.68), (5.69), and (5.70)

|I4| ≤ c(1 + δ
2
n )

1
2 δ

q−2
2q ≤ cδ

q−2
2q (5.71)

for some constant c = c(λ,Λ,m, n, q) with δ small.

Using (5.56) and Hólder’s inequality we compute the right hand side of

(5.62) with the same computations as in (5.65) and (5.70) to see that

1

|B2|

∫
Ω2

f iαDα(φ2(uε − v̄ε))idx (5.72)

≤ c
(

1

|B2|

∫
Ω2

|F |2dx
) 1

2
(

1

|B2|

∫
Ω2

|D(φ2(uε − v̄ε))|2dx
) 1

2

≤ cδ(1 + τ2 + δ
2
n )

1
2 ≤ cδ

for some constant c = c(λ,Λ,m, n), as τ is small and δ is small.

Now, we insert the estimates (5.63), (5.66), (5.67), (5.71), and (5.72) into

(5.62) to discover that

1

|B1|

∫
Ω1

|D(u−v̄ε)|2dx ≤
c

|B2|

∫
Ω2

φ2|D(u−v̄ε)|2dx ≤ c6

(
τ2 + δ + δ

q−2
2q + δ

2
n

)
(5.73)

for some constant c6 = c6(λ,Λ,m, n, q). Thus, we can select τ satisfying

c6τ
2 ≤ 1

2
κ2

and then we can take δ which depends on the choice of τ according to Lemma

5.4.2 and satisfies

c6

(
δ + δ

q−2
2q + δ

2
n

)
≤ 1

2
κ2
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to obtain

c6

(
τ2 + δ + δ

q−2
2q + δ

2
n

)
≤ κ2. (5.74)

This finishes the proof.

5.5 Proof of Theorem 5.1.1

Now we are ready to prove the following key lemma of our argument.

Lemma 5.5.1. Let 2 < p < ∞. Suppose that uε ∈ H1(Ω,Rm) is a weak

solution of (1.3). Then there exists a universal constant η = η(λ,Λ,m, n, p)

so that one can select a small δ = δ(η, λ,Λ,m, n, p) > 0 such that if Aαβij
is (δ, 70)-vanishing, if Ω is (δ, 70)-Reifenberg flat, and if, for all y ∈ Ω and

every 0 < r ≤ 1, Br(y) satisfies∣∣{x ∈ Ω :M(|Duε|2) > N2
}
∩Br(y)

∣∣ > η |Br(y)| , (5.75)

where (
80

7

)n
Npη =

1

2
, (5.76)

then there holds

Ω ∩Br(y) ⊂
{
x ∈ Ω :M(|Duε|2) > 1

}
∪
{
x ∈ Ω :M(|F |2) > δ2

}
. (5.77)

Proof. We prove this by contradiction. Using a scaling argument, it suffices

to prove this lemma for r = 1. We assume (5.75) holds, but (5.77) is false.

Then there is a point x1 ∈ Ω ∩B1(y) such that

1

|Bρ(x1)|

∫
Ωρ(x1)

|Duε|2dx ≤ 1 and
1

|Bρ(x1)|

∫
Ωρ(x1)

|F |2dx ≤ δ2 (5.78)

for all ρ > 0.

We divide this into the two cases : an interior case when B7(y) ⊂ Ω and

a boundary case where B7(y) 6⊂ Ω. Here, we only consider the boundary

case as we have already proved the interior case in Lemma 3.4.1. Because Ω

is (δ, 70)-Reifenberg flat, there exists an appropriate coordinate system such

that

B7(y) ∩ Ω ⊂ B14 ∩ Ω (5.79)
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and

B+
70 ⊂ Ω70 ⊂ B70 ∩ {xn > −140δ}. (5.80)

It directly follows from (5.78) that

1

|B70|

∫
Ω70

|Duε|2dx ≤
|B140(x1)|
|B70|

1

|B140|

∫
Ω140(x1)

|Duε|2dx ≤ 2n (5.81)

since B70 ⊂ B140(x1). Similarly, we have

1

|B70|

∫
Ω70

|F |2dx ≤ 2nδ2. (5.82)

We consider the following rescaled maps :

ũε(z) =
uε(14z)

14
√

2n
, F̃ (z) =

F (14z)√
2n

, Ãαβ,εij (z) = Aαβ,εij (14z) (z ∈ Ω̃5)

(5.83)

where Ω̃5 = 1
14Ω70.

B+
5 ⊂ Ω̃5 ⊂ B5 ∩ {zn > −10δ}. (5.84)

Then ũε ∈ H1(Ω̃5,Rm) is a weak solution of Dα

(
Ãαβ,εij (z)Dβũ

j
ε(z)

)
= Dαf̃

i
α(z) in Ω̃5(

Ãαβ,εij Dβũ
j
ε − f̃ iα

)
να = 0 on ∂wΩ̃5

(5.85)

satisfying that
1

|B5|

∫
Ω̃5

|Dũε|2dz ≤ 1, (5.86)

Ãαβij is (δ, 5)-vanishing, (5.87)

B+
5 ⊂ Ω̃5 ⊂ B5 ∩ {zn > −10δ}, (5.88)

and
1

|B5|

∫
Ω̃5

|F̃ |2dz ≤ δ2. (5.89)

We now apply Lemma 5.4.3 to find that for any fixed κ > 0, there

exists a small δ = δ(κ, λ,Λ,m, n) > 0 such that there exists a weak solution

ṽε ∈ H1(B+
4 ,Rm) of{

Dα

(
Ãαβ,εij (z)Dβ ṽ

j
ε

)
= 0 in B+

4

Ãαβ,εij Dβ ṽ
j
ενα = 0 on T4,

(5.90)
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with
1

|B4|

∫
B+

4

|Dṽε|2dz ≤ c (5.91)

such that
1

|B1|

∫
Ω̃1

|D(ũε − ¯̃vε)|2dz ≤ κ2 (5.92)

where ¯̃vε is a standard W 1,p+1 extension of ṽε from B+
4 to B4. Applying

Lemma 5.3.1 to q = p+ 1, we see that(
1

|B2|

∫
B+

2

|D¯̃vε|p+1dz

) 1
p+1

≤ c

(
1

|B4|

∫
B+

4

|Dṽε|2dz

) 1
2

≤ c (5.93)

for some constant c = c(λ,Λ,m, n, p).

Consequently, we have

1

|B1|
|{x ∈ Ω :M(|Duε|)2 > N2} ∩B1(y)|

≤ c7

|B1|
|{z ∈ Ω̃1 :M(2|Dũε −D¯̃vε|2 + 2|D¯̃vε|2) > N2}|

≤ c7

|B1|

∣∣∣∣{z ∈ Ω̃1 :M(|Dũε −D¯̃vε|2) >
N2

4

}∣∣∣∣
+

c7

|B1|

∣∣∣∣{z ∈ Ω̃1 :M(|D¯̃vε|2) >
N2

4

}∣∣∣∣
≤ c7

(
4

N2

)
1

|B1|

∫
Ω̃1

|Dũε −D¯̃vε|2dz

+c7

(
4

N2

) p+1
2 1

|B1|

∫
B+

1

|D¯̃vε|p+1dz

≤ c7

N2
κ2 +

c7

Np+1
by (5.92)− (5.93)

= c7η
2
pκ2 + c7η

p+1
p by (5.76)

= η
[
c7

(
η

2
p
−1
κ2 + η

1
p

)]
for some constant c7 = c7(λ,Λ,m, n, p). Finally, we first take η so that

0 < c7η
1
p ≤ 1

2
,

and then select N from (5.76). We then select κ in order to have

0 < c7η
2
p
−1
κ2 ≤ 1

2
.
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From this choice of κ, one can find the corresponding small δ = δ(λ,Λ,m, n, p)

such that this η and δ we can conclude that

|{x ∈ Ω :M(|Duε|)2 > N2} ∩B1(y)| ≤ η|B1|. (5.94)

This contradicts (5.75) and completes the proof.

We are all set to prove Theorem 5.1.1.

Proof of Theorem 5.1.1. Given any p with 2 < p < ∞, assume that F ∈
Lp(Ω,Rmn), Aαβij is (δ, 70)-vanishing and Ω is (δ, 70)-Reifenberg flat. Also

let uε ∈ H1(Ω,Rm) be a weak solution of (1.3). We now take η, N , and δ

given by Lemma 5.5.1.

We can further suppose that

‖F‖Lp(Ω) ≤ δ (5.95)

by replacing uε and F with uε
1
δ
‖F‖Lp(Ω)+σ

and F
1
δ
‖F‖Lp(Ω)+σ

for σ > 0, respec-

tively. We want to show that

‖M(|Duε|2)‖
L
p
2 (Q1)

≤ c

for some universal constant c > 0 when σ → 0.

To do this, we write

C =
{
x ∈ Ω :M(|Duε|2) > N2

}
and

D =
{
x ∈ Ω :M(|Duε|2) > 1

}
∪
{
x ∈ Ω :M(|F |2) > δ2

}
.

Using the weak 1-1 estimate, the standard L2 estimate, and Hölder’s in-

equality, we see that

|C| ≤ c

N2

∫
Ω
|Duε|2dx ≤

c

N2

∫
Ω
|F |2dx (5.96)

≤ c

N2
|Ω|

p−2
p ‖F‖2Lp(Ω) ≤

cδ2

N2
< η|B1|,

by further taking δ satisfying the inequality (5.96). This asserts the first con-

dition of Lemma 2.3.2. On the other hand, the second condition of Lemma

61



CHAPTER 5. CONORMAL DERIVATIVE PROBLEMS

2.3.2 follows from Lemma 5.5.1. Then we apply Lemma 2.3.2 to discover

that

|C| < η1|D|

where

η1 =

(
10

1− δ

)n
η ≤

(
80

7

)n
η, (5.97)

by Remark 2.2.4.

Note that the problem (1.3) is invariant under normalization, we obtain

the same results for (uεN ,
F
N ), ( uε

N2 ,
F
N2 ), ( uε

N3 ,
F
N3 ), . . . inductively. Therefore,

we obtain the following power decay estimates of M(|Duε|2) :∣∣∣{x ∈ Ω :M(|Duε|2) > N2k
}∣∣∣

≤ ηk1
∣∣{x ∈ Ω :M(|Duε|2) > 1

}∣∣
+

k∑
i=1

ηi1

∣∣∣{x ∈ Ω :M(|F |2) > δ2N2(k−i)
}∣∣∣ .

Applying Lemma 2.3.1 to

g =M(|Duε|2), µ = N2, θ = 1, and q =
p

2
,

we compute as follows :

‖M(|Duε|2)‖
p
2

L
p
2 (Ω)

≤ c

|Ω|+∑
k≥1

N2k p
2

∣∣∣{x ∈ Ω :M(|Duε|2) > N2k
}∣∣∣


≤ c

1 +
∑
k≥1

Nkpηk1
∣∣{x ∈ Ω :M(|Duε|2) > 1

}∣∣
+
∑
k≥1

Nkp
k∑
i=1

ηi1

∣∣∣{x ∈ Ω :M(|F |2) > δ2N2(k−i)
}∣∣∣)

=: S1 + S2.
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S1 ≤ c

1 +
∑
k≥1

Nkpηk1
∣∣{x ∈ Ω :M(|Duε|2) > 1

}∣∣
≤ c

1 + |Ω|
∑
k≥1

Nkpηk1

 .

S2 ≤ c
∑
k≥1

Nkp
k∑
i=1

ηi1

∣∣∣{x ∈ Ω :M(|F |2) > δ2N2(k−i)
}∣∣∣

= c
∑
i≥1

∑
k≥i

Nkpηi1

∣∣∣{x ∈ Ω :M(|F |2) > δ2N2(k−i)
}∣∣∣

= c
∑
i≥1

(Npη1)i
∑
k≥i

(Np)k−i
∣∣∣{x ∈ Ω :M(|F |2) > δ2N2(k−i)

}∣∣∣
= c

∑
i≥1

(Npη1)i
∑
j≥0

(Np)j

∣∣∣∣∣
{
x ∈ Ω :M

(∣∣∣∣Fδ
∣∣∣∣2
)
> N2j

}∣∣∣∣∣
≤ c

∑
i≥1

(Npη1)i

∥∥∥∥∥M
(∣∣∣∣Fδ

∣∣∣∣2
)∥∥∥∥∥

L
p
2 (Ω)

≤ c
∑
i≥1

(Npη1)i
‖F‖2Lp(Ω)

δ2
≤ c

∑
i≥1

(Npη1)i by (5.95).

Therefore, we have

‖M(|Duε|2)‖
p
2

L
p
2 (Ω)

≤ c

1 +
∑
k≥1

(Npη1)k

 ≤ c,
since Npη1 = Np

(
10

1−δ

)n
η ≤ Np

(
80
7

)n
η = 1

2 from (5.76) and (5.97). Using

the strong p-p estimate of the maximal operator, we finally obtain

‖Duε‖Lp(Ω) ≤ c,

which is the required one. This completes the proof.
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국문초록

이논문에서우리는부드럽지않은영역에서측정가능한계수를가지는발

산 함수 형태의 타원형 연립 편미분 방정식의 균질화 문제의 약해에 대한 고른

W 1,p 가늠에 대해서 연구한다. 우리는 먼저 내부에서의 정칙성에 대해서 고려

할 것이며, 이어서 경계값 문제인 디리클레 문제와 쌍대 정규 도함수 문제에

대해서 살펴볼 것이다. 우리의 주요 목적은 균질화 문제에서 칼데론-지그문트

이론이 성립하는 계수와 주어진 영역의 경계의 최소 조건을 찾는 데 있다.

주요어휘: 정칙성 이론, 균질화 문제, 타원형 연립 방정식, BMO 공간, 라이펜

버그 영역

학번: 2009-20280
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