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Abstract

In this study, we establish uniform W1P? estimates for weak solutions in
homogenization of elliptic systems in divergence-form with measurable coef-
ficients in nonsmooth domains. We consider first an interior regularity and
then we study boundary value problems, a Dirichlet problem and a conormal
derivative problem. Our main purpose is to find an answer for minimal re-
quirements on the coefficients and the boundary condition of the domains to
ensure that Calderén-Zygmund theory holds in a homogenization problem.

Key words: Regularity theory, Homogenization, Elliptic system, BMO
space, Reifenberg domain
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Chapter 1

Introduction

This thesis is based on the papers [5, 6, 7]. In this thesis we consider a
divergence-form elliptic system in the homogenization problem :

Do (43(2)Dygul(@)) = Dafa(z) in 2, (L.1)
under suitable boundary conditions, a Dirichlet problem

{Da (Agﬁje(l‘)Dﬁlé(x)) = Dafé(x) in 2 (1 2)
ul(x) = 0 on 02 .

and a conormal derivative problem

Da (A?jﬁ’e(x)DguZ (a:)) — Dufi(z) i 2 "

, , 1.3

(A%ﬁ’eDguﬁ — fé) Vo = 0 on Of.

Here, 2 is a bounded domain in R"™ with n > 2, A%ﬁ’e : R" — R for

1< a,f<n 1<4j<mand0 < e <1, the nonhomogeneous term

F = {f.} is a given m x n matrix valued function, and v = (vq,--- ,1,) is

the outward pointing unit normal vector to the boundary 902 of a bounded

domain €2 which is not well-defined in the classical sense, but is well-defined

with a weak formulation of (1.3) in Definition 1.0.1. The tensor coefficients
A€ = {A%ﬁ’g} are defined from A = {Af‘jﬁ}, Af‘jﬁ :R" = R, to be

af T-TA| af,e _ gqaB (%
AP () = AP (@) and  ASPC(x) = A2 (7) (1.4)

€



CHAPTER 1. INTRODUCTION

The coeflicients are assumed to have uniform ellipticity and uniform bound-
edness. More precisely, there exist positive constants A and A such that

NEP < A (@)elg] (15)
for every matrix & € R™" and for almost every z € R™ and
T (1.6)
Further, we assume the following periodicity condition on {A'iljﬁ (x)} :
AP (z+2) = A (z) (zeR™ze€ZM). (1.7)
We state now definitions of weak solutions for (1.1)-(1.3).

Definition 1.0.1.

1. We say that u, € H'(Q,R™) is a weak solution (1.1) if

/Q Agﬁvfpgugpawdx = /Q fiDy¢'dr, Vo € HJ(Q,R™). (1.8)
2. We say that u, € H}(Q,R™) is a weak solution of (1.2) if

/Q A%B’eDguzDa¢idx = /Q fiDyoldz, Vo € HF(Q,R™). (1.9)
3. We say that u. € H(Q,R™) is a weak solution of (1.3) if

AA%B’CDBugDa¢idx = /QfZ;DaqSidm, Vo € HY(Q,R™). (1.10)

We remark that in this thesis the summation convention, where repeated
indices are automatically summed over, is employed. Also, throughout this
paper we denote by ¢ to mean any universal constants that can be computed
in terms of known data such as A\, A, m,n, p, and the domain structure, and
may change from line to line. If necessary, we use c1, ¢, - - -, to specify them.

According to Lax-Milgram lemma, if F' € L?(£2,R™"), then the problem
(1.2) and (1.3) has a unique (up to a constant for (1.3)) weak solution
ue € HY(Q,R™) (HY(Q,R™) for (1.3)) with the estimate

[Duellr20) < el FllL2(e), (1.11)

2



CHAPTER 1. INTRODUCTION

where the constant ¢ does not depend on €, F' and u.. The goal of this thesis
is to obtain an optimal WP regularity for weak solutions of the periodic
homogenization problems (1.2) and (1.3). More precisely, we want to ask
what is a minimal regularity requirement on A%ﬁ and the boundary of €
under which we have the following relation :

Fel?= Du. e LP forevery 1 <p < 0. (1.12)
In particular, we are interested in the uniform WP estimate like
[ Duel o) < el Fllzr ), (1.13)

where c is independent of F' and wu., especially of €. In other words, we want
to obtain a uniform estimate like (1.13) with respect to e.

Homogenization is a mathematical analysis for studying partial differ-
ential equations which have rapidly oscillating coefficients. Homogenization
issues arise in many parts of science such as mechanics, physics, chemistry,
engineering, etc., where we deal with inhomogeneous materials (or compos-
ite materials), molecular structure, etc., see [3, 26, 28, 42]. Starting from
a microscopic structure of a problem, we find a macroscopic, or effective,
description. This process of making an asymptotic analysis and seeking an
averaged formulation is called homogenization. In this theory, we are in-
terested in homogeneous effective parameters from heterogeneous media.
Homogenization is not restricted to the periodic case but in this thesis we
focus on the periodic homogenization.

Here we record some basic facts about the periodic homogenization prob-
lem (1.1). The matrix of correctors x = {Xi{}, 1<i,j<m,1<a<n,is
the weak solution of the following cell problem:

“Da (A?jﬁ(x)Dﬂxjyk(x)) - DoAY (x) in R",
'k
[ _ 0, (1.14)
Xy 4" periodic.

Under our condition on the coefficients of this paper (Definition 2.2.1 and
Definition 2.2.2), we have the L* estimate with the estimate

Xl oo (mny < (v, Lym,m), (1.15)



CHAPTER 1. INTRODUCTION

see [4, 9, 12]. Let
0 kj
AP0 / (A%!B n A‘;JDWX;) . (1.16)
[071]77'
Then the following linear elliptic system
D (A%’B’UDgué(x)) = Dofi(z) in 2 (1.17)

is the homogenized problem whose weak solutions wug of (1.17) is the weak
limit of weak solutions u, in H} (€2, R™) for the case (1.2) and H'(2,R™)
for the case (1.3) with the same boundary condition as € — 0, see [3].

To obtain a uniform WP regularity in the homogenization problem,
WP regulariry for € = 1, meaning there is no homogenization issue, will play
an important role. This is because from the results of WP theory without
homogenization issue we can extract our main results in the homogenization
problem. More precisely, WP theory, where there is no homogenization, will
be used in the following when we use a blow-up argument. In this sense, we
study WP regularity for homogenization problems under the situation that
WP theory for € = 1 is established.

Much research has been devoted to the global WP regularity theory,
when there is no homogenization, in various situations, [2, 4, 9, 10, 11, 12,
13, 16, 17, 18, 23, 33, 37] and the references therein for related results.
However, since WP regularity for every 1 < p < oo does not always hold
even when there is no homogenization issue (¢ = 1), see [27, 36], we need
some additional conditions both on the coefficients Af‘jﬁ and on the boundary
of Q.

Without homogenization, for (1.2), WP regularity was proved when Af‘jﬁ
are in the class VMO (vanishing mean oscillation) and the boundary of €2 is
C11 see [18]. This result extended to the class of small BMO (bounded mean
ascillation) functions in a d-Reifenberg flat domain, see [10, 12]. In recent
papers [9, 13], A%ﬁ were allowed to be merely measurable with respect to
one variable but have small BMO semi-norms with respect to the other
variables. For (1.3), when ¢ = 1, WP estimate was obtained in [23] for
%—61 < p <3+ 0; when n > 3, and%—él < p <4+ 46 when n = 2,
for some small §; > 0, regarding a similar Neumann problem to (1.1) under
the assumptions that the coefficients are in the class of VMO functions

4



CHAPTER 1. INTRODUCTION

and the domain is a general Lipschitz domain. In [4, 11], WP estimate
was obtained for the full range of p € (1,00) with small BMO coefficients
and in a d-Reifenberg flat domain. A §-Reifenberg flat domain is a natural
generalization of Lipschitz domains with a small Lipschitz constant whose
boundary might be fractal, see [38].

Until now WP regularity theory of the homogenization problem has
been developed in various ways, as follows from [1, 16, 21, 22, 30, 39]. For
the Dirichlet problems, in [1], a uniform WP regularity for (1.1) was proved
when the coefficients are Holder continuous and the boundary of the domain
is O'1*, Following this, given continuous coefficients, the interior W? regu-
larity for linear elliptic equations was established in [16]. Also, the estimate
(1.7) of a linear elliptic equation for 1 < p < 3 + §; when n > 3, and
for 1 < p < 44 6, when n = 2 under the conditions that the coefficients
are in the VMO class and the domain is a general Lipschitz domain was
established [40]. For the conormal derivative problems, research on global
WLP regularity for the problem (1.1) has been limited to C® coefficients and
CY domains, [30]. From these points of view, we look for optimal global
WP regularity theory in both a Dirichlet problem and a conormal deriva-
tive problem for (1.1) under weaker conditions as in [4, 12| than those in
[30, 40]. To be more precise, we want to extend the previous results of WP
regularity in [4, 12] to the homogenization problem (1.1) with the same as-
sumptions that €2 is a d-Reifenberg domain and the coefficients A%B are in
the BMO class with small BMO seminorms.

It should be noted that for ¢ = 1, WP regularity for the Dirichlet
problem was established under a weaker condition on the coefficients than
a small BMO condition, see [9, 13]. However, in order to remain consistent
with the conditions between the periodic coefficients in the homogenization
and the domain, we should use a small BMO condition on the coefficients
for the global regularity.

The rest of this thesis is organized as follows. In the next chapter, we
introduce notations, definitions related to our main assumptions, and basic
tools to obtain main results. In chapter 3, we prove interior WP regularity
for (1.1) when A%ﬁ are allowed to be merely measurable with respect to one
variable but have small BMO semi-norms with respect to the other variables.
In chapter 4 and chapter 5, we obtain global WP estimates for (1.2) and
(1.3), respectively, under the assumptions that the coefficients are in the

Ty
o
sy



CHAPTER 1. INTRODUCTION

class of BMO functions with small BMO seminorms and the domain is a
0-Reifenberg flat domain.



Chapter 2

Preliminaries

This chapter describes the main assumptions on the coefficients and the
boundary of the domain and introduces some tools to obtain the main results
of the present thesis. We start with some notations.

2.1 Notations

We start this chapter with some notations.

1. The open ball in R™ with center 0 and radius r > 0 is defined by
B, ={z eR": |z| <r}.
2. B,(y) = B, +y : the open balls in R"™ with center y and radius r > 0.
3. The elliptic cylinder in R™ with center 0 and size r > 0 is defined by
Qr =1, zp) = (21, ,xpn_1,2,) €ER" : |2| <7 and |z,] < r}.

4. The integral average of g € L*(U) over a bounded domain U in R” is
denoted by

Ju = ][Ug(x)dx = |1U’ /Ug(x)dx.

5. For each z, € R and each bounded subset E’ of R"~! the integral
average of g(-,x,) over E’ is denoted by

_ 1
gE’(xn) - ][ /g(xlyxn)dl'/ = W /;/ g(x',a:n)dm’.
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6. Bf = B, N{x, >0} and B} (y) = B +y.
7. T, =B, N{x, =0} and T, (y) =T, + y.

8. O =B, NN and Q- (y) = By (y) N

9. 0, = B, N 0N : the wiggled part of 052,.

10. 9., = 992, \0 Y, : the curved part of 99Q;.

2.2 Main assumptions

Here, we introduce some definitions related to our main assumptions.

To obtain WP regularity, we need some kinds of smallness conditions on
the coefficients. First, the regularity requirement on the coefficients is that
they belong to BMO space with their BMO semi-norms sufficiently small.
We introduce the following definition :

Definition 2.2.1. Let U be a bounded domain in R™. We say that A%ﬁ is
(0, R)-vanishing if

sup sup ][ ’Af}’g(az) — A%BB W) 2da: < 62 (2.1)
0<r<Ry€eR" J B.(y) "

For the interior case, we can give a weaker condition on the coefficients
than the condition in Definition 2.2.1. This condition is that A%ﬂ are allowed
to be merely measurable with respect to one variable but have small BMO
semi-norms with respect to the other variables.

Definition 2.2.2. We say that A%’B is (0, R)-vanishing of codimension 1 if
for every point zp € R™ and for every number r € (0, R], there exists a
coordinate system depending on zy and r, whose variables we still denote
by x = (¢',2,) = (1, ..., Tpn_1,%y,), so that in this new coordinate system,
z¢ is the origin and

/.

We assume that the boundary of the bounded domain can be locally

2

O‘B / aﬁ 2
Ay (@ wn) = Ay i (zn)| dz < 0% (2.2)

T

V2r

trapped between two hyperplanes sufficiently close.
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Definition 2.2.3. Let U be a bounded domain in R™. We say that U is
(0, R)-Reifenberg flat if for every x € 9 and every r € (0, R], there exists a
coordinate system {y1,...,yn} dependent on r and = so that z = 0 in this
coordinate system and

B, N{y, >dr} C B,NQC B, N{y, > —0r}. (2.3)

Remark 2.2.4. Throughout this paper we assume that 0 is a small positive
number since the concept of Reifenberg flatness (2.3) is only meaningful
when 0 < § < £, see [43]. Because our primary problems (1.1)-(1.3) have a
scaling invariance property, the constant R can be 1 or any other constant
greater than 1 while the constant § is still invariant under this scaling. §
requires a small oscillation of the coefficients from being their local integral
averages. At the same time it only allows locally a small deviation of 02
from being (n — 1)-dimensional hyperplanes for each sufficiently small scale
r > 0.

Remark 2.2.5. By a change of variables, we know from Definition 2.2.1
(respectively, Definition 2.2.2) that if Afjﬂ is (0, R)-vanishing (respectively,
(0, R)-vanishing of codimension 1), then fl%ﬁ (2) = A%’B (pz)is (6, %)—vanishing
(respectively, (4, %)—vanishing of codimension 1). Similarly from Definition
2.2.3, if Q is (0, R)-Reifenberg flat, then Q = {%x cx € Q) is (5,%)—
Reifenberg flat.

2.3 Tools

In this section, we introduce analytic and geometric tools that will be used
later in the proof of our main theorem. Our approach is based on the Hardy-
Littlewood maximal function, classical measure theory, and a Vitali-type
covering argument.

First, let us recall the Hardy-Littlewood maximal function and its basic
properties. If we suppose g is a locally integrable function on R™, then the
Hardy-Littlewood maximal function is given by

1
(Mo)(a) =sup s [ lo(wldy. (24)
r>0 |Br(z)] By (x)
If g is defined only on a bounded subset of R™, then we define
Mg = Mg,
9
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where g is the zero extension of g from the bounded set to R™. This maximal
function satisfies the weak 1-1 estimate and strong p-p estimate as follows
(see [41]) :

For g € LY(R"), there is a constant ¢ = ¢(n) > 0 such that

Cc
[{z € R" : (Mg)(2) > t}] < 1 llgllrr@n), Vt>0. (2.5)

Also, given g € LP(R") for some p € (1,00), Mg € LP(R") holds with the
estimate 1
EHQHLP(IR{”) < Mgl zp@ny < cllgll e mn) (2.6)

for some constant ¢ = ¢(n,p) > 0.
In order to apply it later, we need to review some classical measure
theory.

Lemma 2.3.1. [15] Assume g is a nonnegative, measurable function defined
on the bounded domain Q C R™, and let > 0 and A > 1 be constants. Then
for 0 < g < 00, we have

ge L)) = S:Z,u,qk’{xeﬂ:g(x)>9uk}‘<oo (2.7)
k>1

and
1
=5 < |lgly 0 < (19 +5), (2.8)

where the positive constant ¢ depends only on 0, u, and q.

In addition, we will use the following version of the Vitalli-type covering

lemma for the proof of our main results.

Lemma 2.3.2. [10, 44] Assume that C' and D are measurable sets with
C C D C Q and Q being (0,1)-Reifenberg flat. Also assume there exists a
small n > 0 such that

Cl < 0Bl (2.9)

and that for each x € Q and r € (0,1] with |C N B,(z)| > n|B,(z)|, we have
By (z)NQ C D. (2.10)

Then 0 \"
< | — D|. 2.11

10



Chapter 3

Interior estimates

3.1 Main result

In this chapter, we obtain uniform interior WP estimates for the problem
(1.1). For this, we allow the coefficients to be merely measurable with respect
to one variable but have small BMO semi-norms with respect to the other
variables. This condition includes a small BMO condition which will be used
in the next two chapters. Our main result in this chapter is the following :

Theorem 3.1.1. For any constant 2 < p < oo, suppose F € LP(Q,R™")
and By C Q. Then there exists a small positive constant 6 = §(\, A, m,n,p)
such that if Aiajﬁ is (0, R)-vanishing of codimension 1, then for any weak
solution u. € HY(Q,R™) of (1.1) we have

Du, € LP(B;,R™), (3.1)

with estimate
/ Du P dz < c/ P + | FIP da, (3.2)
B1 Bs

where the constant ¢ = ¢(\, A, m,n,p) is independent of e.

Remark 3.1.2. The case that p = 2 is a classical one. After the estimate
(3.2) for 2 < p < oo is obtained, the case 1 < p < 2 follows from a duality
argument.

11



CHAPTER 3. INTERIOR ESTIMATES

3.2 Interior Holder estimates

To obtain our main result in this chapter, we need boundedness of weak
solutions of homogeneous systems. To do this, we first investigate interior
Holder regularity.

Theorem 3.2.1. Let v € (0,1). Suppose that v. € H(B;5,R™) is a weak
solution of
D, (43 “Dgvl) =0 in B,. (3.3)

Then there exists a small positive constant 6 = 6(\, A, m,n) such that if A?jﬁ
is (0, R)-vanishing of codimension 1, then for any z,y € B,

o) vl < e (1) ( r|ve<z>|2dz>é SR

where ¢ > 0 depends only on A\, A, m,n, and ~.
The following two lemmas will be used for the proof of Theorem 3.2.1.

Lemma 3.2.2. Let v € (0,1). Then there exists ¢g € (0,1] and 6 € (0,1)
depending only on X\, A, m,n, and v such that if for 0 < € < €y, v is a weak

solution of

Da (A;vaeDﬁvg') —0 i B, (3.5)
with
][ e — (80) 5, 2z < 1, (3.6)
By
then
f lve — (80) g, [2d < 077, (3.7)
By

Proof. We will prove this lemma by contradiction. If not, then there exists
sequences €y, and v, such that ¢, — 0, v, is a weak solution of

D (Ag”f‘kpﬁvgk) —0 in B, (3.8)
with
£, oo = Gam P <1, (3.9)
1
12
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but for every 6 € (0, %)a

][ |U€k - (ﬁﬁk)39|2dl‘ > 027- (310)
By

By subtracting a constant, we assume that (v¢, )p, = 0. Then from Cac-
cioppoli inequality for (3.8) and (3.9), we have

/ | Do, |*dx < C/ v, |Pda < c. (3.11)
Bi By
2
Thus v,, is uniformly bounded in H'(B1), and then by passing to a subse-
2
quence, we assume that v, — vg strongly in L?(B.1) for some v, € H'(B1).
2 2

Consequently we have that for any 6 € (0, i),

[ o= mPae s [ - @l @12

By By

and so from (3.10), we find that for every 6 € (0, %),
£ oo o)s, e > 07 (3.13)
By

In addition, recalling (3.8) and existing homogenization theory as in [3], we
see that vg solves
0 j .
D, (A5°Dg}) =0 in B, (3.14)

where A%ﬁ ¥ is the constant matrix defined as in (1.13). According to interior
Holder regularity for solutions of elliptic systems with constant coefficients,
we discover that

][ [vo — (B0) B, [*dx < 167, (3.15)
By

for some universal constant ¢; = ¢1 (A, A, m,n, 7).
We finally combine (3.13) and (3.15), to discover

62 < ][ 00 — (50) 5 [P < 2™ (3.16)
By

for every v € (0,1) and every 6 € (0,1). However, we take 6 € (0,1) so

small to deduce
927 > 0101+“/,

which contradicts (3.16). This finishes the proof. O

13
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CHAPTER 3. INTERIOR ESTIMATES

Lemma 3.2.3. Fiz v € (0,1). Let g and 0 be the constants as in Lemma
3.2.2 and let ve be a weak solution of (3.5). Then for all k such that e <
0% ley, we have

][ [ve — (8, [2d < 627 ][ v — (8.) 5, |2 (3.17)
By B
Proof. The proof is by induction on k. By Lemma 3.2.2, (3.17) holds for
k = 1. Now we assume that (3.17) holds for some k > 1. Let
ak
w(z) = ve(072) _ forz€ B (3.18)

(3, 0c = (@), )

D=

(We divide v (6% 2) into ({ng [ve — (V) B, \2dw> +o for any 0 > 0 and then
we let o — 0T if{ng [ve — (Ve) B, |2dx = 0 ). Then w satisfies

v

D, <A9.5’9’“D5wj) =0 in B (3.19)

with
][ |w — wp, |*dz < 1. (3.20)
B1

Thus by applying Lemma 3.2.2 again to w, we obtain
][ lw — wp,|*dz < 6. (3.21)
By

Then by the induction hypothesis we find that

This completes the proof. O

14
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Remark 3.2.4. Before giving the proof of Theorem 3.2.1, we would like to
point out that in the paper [9], WP regularity for a weak solution to (3.3)
with € = 1 was established for all 1 < p < oo where the coeflicients A%ﬁ are
assumed to be (§, R)-vanishing of codimension 1. From this, we know that
the equation (3.3) with € = 1 has C%? regularity for any fixed v € (0,1) as
a consequence of Morrey embedding for p large enough.

Proof of Theorem 3.2.1. Let ¢y and 6 be constants given in Lemma 3.2.2. By
scaling, we may assume that r = 1. The case € > f¢ follows from Remark
3.2.4 with an appropriate scaling.

We next consider 0 < € < f¢g. We divide this into two cases, p > % and
p < é For the first case, we can take k > 0 such that 671 < p < 6*. Since
€ < 0%€y, we apply Lemma 3.2.3 to find that

P

][ v — (), Pz < ][ lve — (@), *de
B By o

IN

692]”][ lve — (D) B, |2da
By

cp%][ v | dzx.
B1

For the second one, we use a blow-up argument by letting w(z) = ve(ez).

2
€0

IN

Since = < % < %, w satisfies

D (A?fleﬁwj) —0 inBas. (3.22)

€0
By the C%7 regularity for (3.22), we see that

2
f lw — g, [2dz < (3) ”][ w — wp, 2dz (3.23)
Bp € € B €0

€0

for some constant ¢ = ¢(vy, A, A,m,n). Since & < 0, we apply Lemma 3.2.3

15
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again to find that

][ lve — (D) B, |*da = ][ lw —wp, |*dz (3.24)
B, €

Bp
€

2y
C<B> ][ lw —wp, [*dz
€ B, <

<0

2
c(2) Vf v — (8B |Pdz
€ Be €0

€0

2y
AN S () n |2
C<€) <€0> ][Bl|v€ (ve) [

< chV][B |ve|2d.
1

IN

IN

IN

This completes the proof of Theorem 3.2.1. O

3.3 Uniform W estimates for homogeneous sys-
tems

We first recall the local boundedness of weak solutions of
DoAY “Dgvl) =0 in By (3.25)

with the estimate )

2
[Vel|Loo(By) < € <][ !m!Qdac) (3.26)
B>

for some constant ¢ which is independent of € from the result of the previous
section. Also, by scaling the problem (1.14), we see from (1.1) that for the
identity matrix I in R™ and each constant matrix B € R™"

Do (A (@)D (1 @ @) + exd! (%)) BY) =o. (3.27)

For simplicity, in this section, we use the notation (x + €ex (%)) B instead of
ik ik
(@ +ed (2)) B
To obtain our main result, we need to control the case that € is sufficiently
small. The following lemma gives us a criterion of sufficient smallness of ¢,
which was previously proved in [1, 34] by a compactness argument.

16



CHAPTER 3. INTERIOR ESTIMATES

Lemma 3.3.1. Let v € Hl(Bg,Rm) be a weak solution of

DoAY “Dgvl) =0 in Bs. (3.28)

Then there exist constants 6 € (0,3) and ¢y € (0,1) both depending on

A, A, myn such that for 0 < e < €

sup [vew) = ve(0) = (-+ ex (7)) Dvcn| < 0oy (329)

Proof. We will prove this lemma by contradiction. Without loss of generality,
we assume that
[vell oo () < 1.

If not, then there exists sequences ¢, and v, such that €, — 0, v, is a weak
solution of

Da (A;”f‘kpﬁvgk) =0 in B, (3.30)
with
[vegllLoo(my) <1 (3.31)
but
T _—_ 5
Sup |V, () — v, (0) — (fv + exx <>> Dug, p,| > 07. (3.32)
rEBy €k

As the proof of Lemma 3.2.2, v, is uniformly bounded in H*(B.), and

N

then by passing to a subsequence, we assume that

Dv., — Dvy  weakly in  L?*(Bi,R™
{ €k 0 y ( % ) (333)

Ve, — Vo strongly in LZ(B%,R’”)

as k — oo. Since x is bounded in L>*(R"), see (1.15), ¢4 — 0 and for
0€(0,%)
DkaBo — Dugp,

as k — oo by (3.33), we obtain

sup ‘vo(x) —v9(0) — zDwop, | > o1. (3.34)
r€By

In addition, recalling (3.30) and existing homogenization theory as in [3],
we see that vg solves

D, (437°Dyeg) =0 in By (3.35)

17
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CHAPTER 3. INTERIOR ESTIMATES

where Afjﬁ ¥ is the constant matrix defined as in (1.16). According to the
theory for elliptic systems with constant coefficients, we discover that

1
2

sup |vo(z) — vo(0) — 2D, | < c06? ][ lvol?dz | (3.36)
€ By B

2

for some universal constant co = ca2(A, A, m,n).
We finally combine (3.34) and (3.36) to have

(NI

01 < sup ’Uo(l’) —v0(0) — achng’ < 262 ][ lvo|?dz | < a6
By

€ By
(3.37)
However, we take 6 € (0, %) so small to deduce
01 > 62, (3.38)
which contradicts (3.37). This finishes the proof. O

Hereafter we fix the universal constants 6 and €y given in Lemma 3.3.1.
Based on this lemma, we deal with (1.1) for ¢ > fe¢p and € < ey in two
different ways.

We first consider the case € > f¢g. In this case, we define

Q = {iz:2€q},

1
~ €~ _ ue(ex) ~ 1
Ue(T) = = (7 € ),
O € N 3.39
R@) = e (el B
A(®) = Ay (ex) = A7 (2) T €R")
Then, @ € H'(1Q,R") is a weak solution of
, - 1
Do (AP () Dgiid (7)) = Do fi(7)  in - (3.40)

According to the previous known results in [8] and [9], there exists a small
positive constant § = §(A, A, m,n,p) such that if A%ﬁ is (9, 5)-vanishing of
codimension 1, then for any weak solution @ € H'(2Q,R") of (3.40) with
B; C %Q, we have

][ |Dﬂ6|pd5:§c][ @|P + | FiPdz
Bl BS

18
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for some constant ¢ = ¢(A, A, m,n,p). Rescale back and use feg < e <1 to

find that
][ |Due|Pdx < c][ | Due|Pdz
B Be

Oeq
1

1
< ¢ / —|ueP 4+ |FPdx
Bal B5E€! [P+ | F]

| Bs5| Lo
c —|u|P + | F|Pdx
|B59€0’ B5960’ E’ ’ ’

< c][ lucP + |F|Pde
Bs

for some constant ¢ = ¢(\, A, m,n,p). Then by standard covering argument
, we get the required estimate (3.1).

From now we only consider the case € < f¢y. The following lemma comes

from Lemma 3.3.1 by an iteration argument.

Lemma 3.3.2. Let ve be a weak solution of (3.25). Then for all k with
€ < OF¢q, there exist constants aj, € R"™ and B € R™" such that

|ai.| + Bl < cllvell o= (5y) (3.41)
for some constant ¢ = c¢(A, A,m,n) and
ve() — ve(0) — €aj, — (:U + ex <E)> B;,
€

5
sup < 04k||'UEHLoo(B1). (3.42)

xEB@k

Proof. The proof is by induction on k. By Lemma 3.3.1, for k =1, a] =0
and B} = Dv.pg,. Then by Caccioppoli inequality we see that

€ 2 : c 2 :
Bil< (f 1Dufde) <55 (f folde)” < clloclie)  (3.43)
Bg By

for some constant ¢ = ¢(\, A, m,n). Thus, this holds for k = 1.
Now, we assume that (3.42) holds for some k& > 1. Let

k
w(z) = ve(62) — ve(0) — eay, — (sz + ex <92)> By for z € By. (3.44)
€

Then w satisfies
aﬁ’eik

D, (AU Dﬁwf'> =0 in By. (3.45)

19
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Thus by applying Lemma 3.3.1 again to w, we obtain

e _ 5
_ _ — < f1 oo . .
sup [u(z) - w(0) (z+ex (%)) Dws,| < 0Fwlpep,).  (346)

In addition, by the induction hypothesis, we find that

€ T €
lwllpee(By)y = sup |ve(z) — ve(0) — €ap, — <:1: + ex (—)) By | (3.47)
xeB@k €
5
< 010 o]l e ().
Now, we combine (3.44), (3.46), and (3.47) to find that
sup  |ve(x) — ve(0) — ex(0) By, (3.48)
TE€EByp+1

(e (7)) (Bir o Dum,) |

< 030D v | oo 3y)-

Here we use, for simplicity, the expression w in (3.44). Therefore, aj_ , and
Bj.,, are inductively defined by

a1 = x(0) By (3.49)
and
Bi., = Bf + 0 "Duwsg,, (3.50)

respectively.

Finally, we need to chech that aj_ ; and By satisfy the condition (3.41).
For aj |, since x is bounded in L>(R"), see (1.15) and |By| < ¢f[ve| zoo(m))
by the induction hypothesis, we see that

g1 1] < cllvellLoo(B,)- (3.51)
To compute Bj_ |, we use Caccioppoli inequality as in (3.43) and (3.47) to
find that
- 5
|Dw,| < cllwll(s,) < B |[ve]l o= (5,), (3.52)
for some constant ¢ = ¢(\, A, m,n). Therefore, by the induction hypothesis,
we have
1
[Bial < IBEl+ 0 v Lo ) (3.53)
< (14054 05) ol oo
< cllvellpee(my)

20

&

| &1
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since 6 € (0,1). This completes the proof.
O

According to Lemma 3.3.2, one can derive if A%ﬁ is (9, 5)-vanishing of
codimension 1, then

Ve(x) — v (0
sup —’ (z) (0)] < CH’UEHLoo(Bl). (3.54)
zEB e €

€0

Indeed, choose k such that 8¥tley < e < 6%¢, then

(rveos) —ve(0)]  |eag + (z +ex (%)) By

€ €

|v6(x) — ve(0) — eaj, — (a: + €ex (f)) BZ‘

< sup
IGBGk €
pik 1

<

THUeHLw(Bl) < HT()HweHLOO(Bl)

g1k _ gtk _ 1
since < < 4—. Thus, for x € B
€ Oeo feo ) w0’

[eaf + (= +ex (£)) Bi
€

IN

€ L € €z €
lail+ 155l + | (5) | 188
€ 1 € €z €
|aj.| + . | Bi| + ‘X (*)) | B! -
0 €
We recall (1.15) and use (3.41) to find that

Jea + (2 + ex (2)) By
€

IN

< cl|vell oo (By)

then (3.54) follows.

For the case 0 < € < fe¢g, we need the following uniform regularity
estimate of (3.28). We here point out that it is important that the following
lemma holds for any 2 < g < co.

Lemma 3.3.3. Given any € with 0 < € < fe¢q, let ve be a weak solution of
(8.25). Then for any 2 < q < oo, there exists 6 = §(\, A, m,n,q) such that
if Afjﬁ is (0, 5)-vanishing of codimension 1, then we have

|Dve| € LY(B1,R™)

21
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with the estimate

1 1
7 2
<][ \Dve\qda:) <o <][ \Dve\Qdm) (3.55)
Bl B3

for some positive constant ¢ = c¢(A\, A, m,n,q), independent of e.

Proof. Fix any € with 0 < € < feg and any ¢ with 2 < ¢ < co. Without loss

of generality, we assume that Uc, = 0. Define v(z) = v (ex), € B3, then

one can readily check that v € H'(B1,R™) is a weak solution of
Do (A} Dgv?) =0 in By (3.56)

In particular, since € < f¢g, % > % > % > % and we have

Do(Af' Dgv?) =0 in Ba. (3.57)

€0

By interior W4 estimate (see [8, 9]) for (3.57), there exists § = 6(\, A, m, n,q)
such that if A%’B is (0, 5)-vanishing of codimension 1, then we have

1 1
q
][ |Dv|9dx | <e¢ ][ | Dv|*dx (3.58)
B 1 B 1
4eg 2¢q
for some positive constant ¢ = ¢(\, A,m,n,q). Let ¢ € C(Q 1) be a cutoff
)
function with |D(| < 2ceq, then by the Caccioppoli inequality we have
1 1
2 2
][ | Dv|*dx < C?|Dv|dx (3.59)
B B

1
Zeg €0

N

N

IN

(1R - v P
5%
< ¢ sup ’U(x)—v(())]

T€EB 1
€0

for some constant ¢ = ¢(A, A, m,n). We then rescale back and use (3.54),
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(3.58), and (3.59) to find that

q

— (0
][ | Dve|%dx < ¢ sup M (3.60)
B_e r€B e €
Teg <0

1
2
< cloclieg < (7[3 |ve|2dm>
2

for some constant ¢ = ¢(\, A, m,n,q) where for the last inequality we use
(3.26). Note that z& < &, we then apply (3.60) to each y € By to find the
following estimate

1

% 5
][ |Dv|?dz | <c¢ ][ [ve|?dz | .
B Ba(y)

By the standard covering argument and Poincaré inequality, we get the re-

5 (v)

quired estimate (3.55). That is, by choosing yx for k = 1,-- - , [ appropriately
such that {B_c (yx) L_, covers By and | = c(n) (%2)", we have
€0

][ |Dve|%dx < c/ | Dve|%dx
B1 Ul_ B e (yk)

k=17 165

l
< CZ/ | Dve|%dx
k=1 B%(yk)
l :
< CZ‘B; c<][ |ve|2dx)
P 4eq By
q
9 2
S c <][ ’1)6’ dm) i
B3

and hence

: 3 :
(][ |Dv6|qu> ’ <c (][ |U6|2d$> <c <][ |Dve|2das> (3.61)
B B3 B3

by the Poincaré inequality. This completes the proof.
O
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3.4 Proof of Theorem 3.1.1

Now, we ready to prove the following lemma which is a key ingredient in
our approach.

Lemma 3.4.1. Let 2 < p < oco. Suppose that u. € H*(Q,R™) is a weak
solution of (1.1). Then there exists a universal comstant n = n(\, A, m,n,p)
so that one can select a small 6 = 6(\, A, m,n,p) > 0 such that if A%ﬂ 18
(0,5)-vanishing of codimension 1 and if for all y € Q and for every 0 < r <1
with Bz, (y) C Q, Br(y) satisfies

[{z € @: M(IDu?) > N*} N B,(y)| > n|B:(y)], (3.62)
where S0\ " .
i Py —

( 7) NPy =2, (3.63)

then there holds
By(y) C{z € Q: M(|Duc’) > 1} U{z € Q: M(|F|]?) >6°}.  (3.64)

Proof. Since the problem (1.1) is invariant under scaling and translation, it
suffices to prove this lemma for By. We prove it by contradiction. Assume
that (3.62) and (3.63) hold but (3.64) is false. Then there is a point 21 € B
such that

1
—_— |Duc|?dz <1 and

Fl2dz < §2
Bo(en)] J, e Flde <

|Bo(z1)| JB,(21)n0

(3.65)
for all p > 0. Since x; € By, we see that
Bs C Bg(x1) € By C Q. (3.66)
Then a direct computation and (3.65) yield
B
][ | Due|*dz < [Be(z1)| |Duc|*dx < c. (3.67)
Bs 1Bs| J Be(ar)
Similarly, we have
]l |F[?dx < 6. (3.68)
Bs
24



CHAPTER 3. INTERIOR ESTIMATES

Let v. € H'(By,R™) be the weak solution of

D, (A;”ﬂf(x)ngﬁ (x)) =0 in By, (3.69)
Then u, — v, € H& (B4, R™) is the weak solution of
D. (A%Bf(x)pﬁ(ug z) — vj(:c)) = Dafg(x) in By, (3.70)
ul(x) —vi(x) = 0 on 0B

By the definition of weak solution v, of (3.69) with ¢ = ve — u, and (3.67),
we see that

][ |Dv|?dz < c. (3.71)
By

By a standard L? estimate and (3.68), we also see that
][ |Due — Do |2 dz < ¢b2. (3.72)
By

We now apply Lemma 3.3.3 to (3.69) with ¢ = p+ 1, there exists a small
0 = (A, A,m,n,p) such that if A%’B is (4, 5)-vanishing of codimension 1,
then we have

1 1
H T 5
<][ ]Dve\pﬂda:) ! <c <][ |Dv6|2d1‘> <c (3.73)
B1 B3

for some constant ¢ = ¢(\, A, m, n,p) where we have used (3.67) for the last
inequality.

For some large constant N, as selected below along with n according to
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(3.63), we compute

1
®|{x € By : M(|Duc|* > N?}|
1
< @Hx € By : M(2|Du. — Dvc|* + 2|Dv |?) > N?}|
1 N?
S @ {l' € Bl M(’Dug - D’Ue‘Q) > 4}’
1 N?
— By : M(|Dvef*) > —
+\Bll {xe 1: M(|Dvel?) > 1 H
4 4\
< ¢ () f |Du, — Dve|*dx + c3 () ][
N2 B N2 B1
p+1
C3 C3
< N2][ 4\Fy2dx+ N <][B4\Dv€|2da:>
< (esn P +c3nrd®) by (3.63)
< nles (nr +0p 6]

for some constant cs = c3(A\, A, m,n,p). Finally, we first take n so that

1 1

63775 = 5,

and then select N from (3.63). We then select ¢ in order to have

Consequently, we

cagne 00 < —.
37 =3

conclude that for such N and 7,

{z € By : M(|Duc* > N?}| < n|By|

which contradicts to (3.62). This completes the proof.

(3.74)

O]

We now derive the required an interior WP estimate for the homoge-

nization problem.

Proof of Theorem 3.1.1. Given any p with 2 < p < oo, assume F' € LP(Q, R™")

and Af‘jﬁ is (8, 5)-vanishing of codimension 1. Also, let u. € H'(Q,R™) be a
weak solution of (1.1). We now take n, N, and § given by Lemma 3.4.1.
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We can further suppose that

[well o Bs) + 1l Le(B5) < 6 (3.75)

and F

by replacing u, and F' b g
Yy rep g Ue y%(Hue\\Lp(35)+||F||LP(Bs))+U

for 0 > 0, respectively. We want to show that

2
IMADuCP) g, < €

for some universal constant ¢ > 0, after letting o — 0.
To do this, we write

C={zebB: M(|Duc)?) > NQ}
and
D ={z € By : M(|Du]?) > 1} U{x € B; : M(|F|*) > §*}.

We use weak 1-1 estimates, the standard L? estimates, and Holder’s inequal-
ity, we see that

C] < ﬁfBl | Due|*dz
< ﬁst uc|* + |F|*da (3.76)
< (luellosy + 11 '
— N2 € LP(B5) LP(B5)
2
< 9 <n|B,

by further taking § > 0 satisfying the inequality (3.76). This asserts the
first condition of Lemma 2.3.2. On the other hand, the second condition of
Lemma 2.3.2 follows from Lemma 3.4.1. Then, we apply Lemma 2.3.2 to
discover that

|C] <ml|D],

m = <870)n 7, (3.77)

where

by Remark 2.2.4.

Note that the problem (1.1) is invariant under normalization, we obtain
Ue

a) (&5 %), ..., inductively. Therefore,

the same results for (% F), (Ng, e

N°N

27
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we obtain the following power decay estimates of M (| Du,|?):

-
<k Hx € B : M(|Ducl?) > 1}|

k
+) nt
=1

Applying Lemma 2.3.1 to

9= M(’DWP); n= NQ, =1, and g = g,

we compute as follows :

e
IMADu
< c[1Bi+ > N*E erBle(\Du€|2) >N2k}]
k>1
< (1+ZN’“”77 |{z € By : (]Du€\2)>1}|
k>1

k
FY
k>1 =1
= S + 5.

{x € By : M(|FP?) > 52N2(k_i)}‘ )

S1 < ¢ 1—1-21\71‘3”77’1“‘{30631:M(|Du€|2)>1}}
k>1

< e 1+ Bl Y NF)
k>1

28
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k
Sy < CZN]CPZ”% {.’L‘ € By M(’F|2) > 52N2(k7¢)}‘
k>1 i=1
- CZZNkpUZi {33 € By: M(|F|2) > 52N2(k—i)}’
i>1 k>i
- CZ (Npﬁl)iZ(Np)k_i {:L’ € By : M(|F*) > 62N2(k—i)}‘
i>1 k>i
; , 5
izl 3>0
. F 2
< cZ(NPm) M ('5 ) )
i>1 L5 (81
. o
< e (N'm) —5z = ¢ (NPm)" by (3.75).
B2l i>1
Therefore, we have
p
HM(WUEP)H;% ) s ¢ 1+Z(Np771)k <e,

since NPy = NP (2) p = § from (3.63) and (3.77). Using the

estimate of maximal operator, we finally obtain
[ Duellpr(py) < ¢

which is the required one. This finishes the proof.
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Chapter 4

Dirichlet problems

4.1 Main result

To start with boundary value problems in chapter 4 and chapter 5, we recall
that, as we stated in the first chapter, we use (¢, R)-vanishing condition
on the coefficients instead of (9, R)-vanishing of codimension 1 condition
for consistency with the conditions between the periodic coefficients in the
homogenization and the domain. Also, as in chapter 3, by proving global
WP estimates for 2 < p < oo, we will prove our main results for 2 < p < oo
since we can obtain the same results for every 1 < p < oo by the classical
estimate and a duality argument, see Remark 3.1.2. First, in this chapter,
we consider the problem (1.2) which has the Dirichlet boundary condition.
The following is our main result.

Theorem 4.1.1. For any positive constant 2 < p < oo, suppose F &
LP(Q,R™). Then there exists a small positive constant 6 = 6(\, A, m,n,p)
such that if A%’B is (0, R)-vanishing and S is (J, R)-Reifenberg flat, then for
the weak solution u. € H}(Q,R™) of (1.2) we have

Du, € LP(Q,R™) (4.1)

with estimate
[ Duell o) < ellFllzre), (4.2)

where the positive constant ¢ = ¢(|Q, A\, A, m,n,p) is independent of e.
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CHAPTER 4. DIRICHLET PROBLEMS

4.2 Boundary Holder estimates and uniform W4
estimates for homogeneous systems for the flat
boundary

Similar to the interior case, for the global regularity, we need the following
boundary Holder estimates and W14 estimates for homogeneous systems up
to the flat boundary. In fact, the contents in this section can be proved in
the same ways as in section 5.2 and section 5.3 except for using the result
in [12] instead of [4]. For this reason, in this section, we state some results
without proofs and we will give precise proofs later in chapter 5.

Boundary Hélder estimates is the following :

Theorem 4.2.1. Let v € (0,1). Suppose that v. € H*(B,7,R™) is a weak
solution of

(4.3)

(2—
ve = 0 on T,

{Da (A?jﬁ’engg) - 0 in B}

Then there exists a small positive constant 6 = 6(\, A, m,n) such that if A%ﬁ
is (0, R)-vanishing, then for any x,y € BT,
2

o) = vl < e (1) (][Bjrm(z)sz)é e

where ¢ > 0 depends only on X\, A, m,n, and ~.

In addition, W' regularity for homogeneous systems is given by the
following lemma :

Lemma 4.2.2. Let v. € HY(B,",R™) be a weak solution of (4.3). Then
for any 2 < q < oo, there exists § = 6(\,A,m,n,q) such that if A%ﬂ is
(0, R)-vanishing, then we have

q

1
2
][ |Dvc|?dx §c<][ \Dv€|2d:r> (4.5)
Bf B

2

for some positive constant ¢ = c¢(\, A, m,n,q), independent of €.

31



CHAPTER 4. DIRICHLET PROBLEMS

4.3 Approximation Lemmas

We next localize our problem near the flat boundary. We first assume that
B C Q5 C Bs N {x, > —105}. (4.6)

Let us suppose that u. € H'(Q5,R™) is a weak solution of

Da (A%«B’E(:U)Dﬁuz(x)) = D.fi(x) in Qs @
ul(z) = 0 on 0,5,
which means
/ A Dgul Do¢'dr = | fiDo¢'dx (4.8)
Q5 Q5

for all ¢ € H(Q5,R™) and the zero extension i, of u is in H!(Bs, R™). We

further assume that 1

|Bs| Jas

Then we consider the homogeneous problem :

|Du|?dx < 1. (4.9)

Do (457 (@) Dgui(@)) = in 0
() (.Z') B’UJ (l‘) 0 m 4 (410)
wi(z) = wul(x) on 0.
and the following homogeneous problem on the flat boundary :
CY,B,E .7 — 1 +
D, (Aij (x)Dgv! (ZL‘)) = 0 in B3 (4.11)
vi(z) = 0 on T3

with the following definitions.

Definition 4.3.1. 1. w. € H'(Q4,R™) is a weak solution of (4.10) if

/ AP Dgwl Dod'dr =0 (4.12)
Q4

for all ¢ € Hg (04, R™) and the zero extension we of w, is in H'(By, R™).

2. ve € HY(BF,R™) is a weak solution of (4.11) if
/ A Dgvi Dodida = 0 (4.13)
By
for all ¢ € H}(BF,R™) and the zero extension o, of v, is in H!(Bs, R™).
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(4.7), (4.9), and (4.10) lead us to the following regularity result.

Lemma 4.3.2. [31] Let u. € H'(Q5,R™) be a weak solution of (4.7) sat-
isfying (4.9) and let we € HY(Qq, R™) be the weak solution of (4.10). Then
there exist small positive constants o1 and ¢, which depend only on A, A, m,

and n, such that
||D’LU6”L2+01 (Q3) <ec. (414)

In order to justify our argument in a Reifenberg domain, we need the

following approximation lemma.

Lemma 4.3.3. Let u. € H'(Q5,R™) be a weak solution of (4.7) satisfying
(4.9), and let we € H* (4, R™) be the weak solution of (4.10). Then for any
fized k > 0, there exists a small 6 = §(k, A, A,m,n) > 0 such that if

B C Q5 C Bs N {x, > —106} (4.15)

holds for &, then there exists a weak solution v. € H'(Bf ,R™) of (4.11)

with

][ |Dve|?dz < ¢ (4.16)
Bt

3

for some positive constant ¢ = c¢(\, A, m,n) such that
][ |D(we — ve)|*dx < k2. (4.17)
Bf

Proof. We argue this by contradiction. To do this, we assume that there
exist kg > 0, {Uek}pe,, and {Q’g};‘;l such that uj is a weak solution of

e ) =0 i :
Do (A5 @)Ds(uesV) = 0 i 0h (4.18)
(ue)' = 0 on 9,04
with
QF
and 10
Bf cQf ¢ Bsn {xn > _k}' (4.20)
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However,

][ |D(we j, — ve)|?dx > K3 (4.21)
Bf 7
for any weak solution v, of

Bv j i H
D ( AP () Dﬁvg)‘ = 0 in Bf )
v. = 0 on T,
where
][ |Dv|?dz < ¢ (4.23)
By
for the same positive constant c as in (4.16) and w, , is the weak solution of
ﬁ7 j —_ 1

D, (AZO; e(x)Dﬁwﬁﬁ(x)) = O{ in  OF (4.24)

wep(®) = ugy(z) on o9

Applying (4.19) and the standard L?-estimate for (4.24), we know that
1 1
/ |Dwe g|?dx < c—— |Du, |*dz < c. (4.25)
|Bal Jak | Bs| Jap

Also, using the fact that w,; = 0 on 8wQ’§ and (4.20), we apply Poincaré’s
inequality to find that

1 / 2 1 2 ¢ 2
— |we | °dr < / |we i |“d < / | Dwe 1| “da(4.26)
B3| Jpy Bs| Jos ' Bs| Jox

< C/ |Dup|*dr < c
1Bs| Jag

for some positive constant ¢ = ¢(v, L, m,n). If we apply the zero extension of
We ; from ng to Bs, say, We , then (4.25) and (4.26) imply that {we},- is
uniformly bounded in H'(Bsz, R™). Thus, there exists a subsequence, which

we will continue to denote as {wx}, and w.o € H'(Bs, R™) is such that

(4.27)

Dy, — Dwey  weakly in  L?(Bs, R™)
We | — We,0 strongly in ~ L?(Bs, R™)

as k — 0o. We define we ¢ on B; UT3 by we o(z) = Weo(z) for all z € B; uTs;.
Hence, w o is a weak solution of

{Da (A%B’E(x)Dﬁwzp) = 0 in Bf

(4.28)
weg = 0 on T
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From (4.25) and the lower semicontinuity with respect to weak convergence,
we see that

][ | Dwe o|*dx < likm inf][ |Dw, 1.|*dx < c. (4.29)
+ —00 B;

3

Thus, we derive a contradiction by showing that

In order to do this, we begin with the cut-off function ¢ € C§°(Bs) that
satisfies

0<¢<1, ¢=1 on By, ¢=0 on Bs\By, and |D¢| <2. (4.30)

Then,

I,

1

D(we — weo) 2dz < / ID(ej — i) Pda
By

< C/ A%ﬂ’eD/B(’u_}Qk — U_]E’())jDa(U_JQk — U_}@o)idw
B1

< C/ A%ﬁ’€Dﬁ(@e,k — We0)! Do (Wep — Wep) ¢ da
B3

<c A%ﬂyeDﬁ(we,k)jDa(weyk - w€70)i¢2d$
B3

—c / A2 D (t0) Do (e — e)'¢*da
Bs

<ec Agﬂvepﬁ(we,k)jpa(&(we,k — b)) da
Bs
—c / AP Dg(we k) (20Dad) (e — Wep)ida
B3

—c / AP D (e0) Do (e s, — Weo) ¢ d
B3

—0

as k — oo by applying (4.24) and (4.27). This completes the proof.
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4.4 Proof of Theorem 4.1.1

Now we are ready to prove the following lemma, which is a key ingredient

in our argument.

Lemma 4.4.1. Let 2 < p < co. Suppose that uec € H(Q,R™) is the weak
solution of (1.2). Then there exists a universal constant n = n(\, A, m,n,p)
so that one can select a small 6 = 6(\, A, m,n,p) > 0 such that if AZC-;B is
(0,70)-vanishing, if Q is (0,70)-Reifenberg flat, and if ,for all y € Q and
every 0 < r <1, B,(y) satisfies

[{z € @: M(IDuc?) > N*} 0 B, (y)| > n|B:(y)], (4.31)
where . )
oY Py —

< - > NPp 5 (4.32)

then there holds
QN B,(y) C {z € Q: M(|Duc?) > 1} U{z € Q: M(|F|?) > 6*}. (4.33)

Proof. We prove this by contradiction. Using a scaling argument, it suffices
to prove this lemma for » = 1. We assume (4.31) holds, but (4.33) is false.
Then there is a point x; € N B;(y) such that

1 / 2 1 2 2
_ |Due|“de <1 and / |F|*dx < 6% (4.34)
|Bo(z1)| Jo, (1) |Bo(z1)| Jo, (1)

for all p > 0.

We divide this into the two cases : an interior case when B7(y) C §2 and
a boundary case where B7(y) ¢ Q. Here, we only consider the boundary
case as we already proved the interior case in Lemma 3.4.1. Because ) is
(0, 70)-Reifenberg flat, there exists an appropriate coordinate system such
that

B7(y) NQC BiunN (435)
and
B3, C Q79 C BN {x,, > —1405}. (4.36)
It directly follows from (4.34) that
1 B 1
L[\ purds < [Brolzy)l |Ducl?dz <2 (4.37)
| Brol Jar, [Brol  |Buaol Ja,u0(a)
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since B7g C Bigo(x1). Similarly, we have

1

S |F|2dx < 262 (4.38)
|Brol Ja,

We consider the following rescaled maps :

- ue(14z) ~ F(14Z) Taf,e afB,e ~
Ue(2) = , F(z)= , AT (z) = AL (142 z €}
( ) 14\/27 ( ) \/27 i ( ) ij ( ) ( 5)
(4.39)
where Q5 = ﬁQm satisfying
Bf € Q5 € BsN {z, > —106}. (4.40)
Therefore, @ € H'(Q5,R™) is a weak solution of
Do (AP“(Ds) = Dafits) W B
at(z) = 0 on 9,0 '
with
1 |Diic|?dz <1 and 1 |F|?dz < 6% (4.42)
| Bs| Jay - |Bs| Jay -
Let . € H'(€4, R™) be the weak solution of
jope il = i O
D, (AU (2)Dgwe (z)) O‘ in L (4.43)
wi(z) = dl(z) on Ofy.
Then i — . € H}(Q4,R™) is the weak solution of
Naﬁve ”’j _ "j — i o O
Do (AP (Ds(E() ~#l(2) = Dafilz) i Qw0
ur(z) —wi(z) = 0 on 0.
Applying a standard L? estimate to (4.44) and (4.42), we obtain
1 c -
—— | |Diic — D |*dz < / |F2dz < c6® (4.45)
Bl o, T8 e,

for some positive constant ¢ = ¢(\, A, m,n).
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In addition, if we apply Lemma 4.3.3, then for any fixed x > 0, there
exists a small 6 = d(k,\,A,m,n) > 0 such that a weak solution o, €
HY(BF,R™) exists for

D (A%B’e(z)D/g@g)' — 0 in B (4.46)
o = 0 on T3,
with
][ |Do|?dz < ¢ (4.47)
Bf

for some constant ¢ = ¢(\, A, m,n) such that

][ |D(, — 9¢)|?dz < k2. (4.48)
By

Applying Lemma 4.2.2 to (4.46) with ¢ = p + 1, we know there is a small
d =0(X\, A,m,n,p) so that

1 %
pF1
| Do |[PHdz <c |Do|dz (4.49)
B+ B+
3

1

for some constant ¢ = ¢(\, A, m,n, p). Therefore, for the zero extension o, of
U from B:}f to Bg we have

1
| B1

[{z € Q: M(|Duc|)®> > N?} N By ()]
< éHz € Q1 : M(3|Diic — D> + 3| Dio. — Do|? + 3|D5|?) > N?}|
1
c ~ N2
< — e Dia, — Do) > —
< \BI\HZ v M{Die = D) 9}'
c ~ - N2
— QO : D, — Do) > —
+|Bl| {ZE 1: M(|Dw 0el?) 9 H
c ~ - N?
— Q D~E2 —
+|Bﬂ {ze 1: M(|Dv|?) > 9 H
9 1 9 1 _
< e =) — DaGDu}€2dz+c() D, — Do |%dz
<N2>|Bl| o | N2 ) 1B Jo, |
9\ %
5 |p+l
+c <]\72> ][B;r |_D'U€|p dZ
= L+ 1L+ I
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Estimate of I; : the inequality (4.45) gives us
c

for some positive constant ¢ = ¢(\, A, m,n).
Estimate of I : applying Lemma 4.3.2, Holder’s inequality, and (4.48),
we see that

c 1 1
L, < — |5/ |Dwe—Dv sz+/ | D |*dz |(4.51)
N? <|Bl| Bf ‘ 1Bi| Jansr
< = K>+ (/ \Dw5]2+”1dz) / dz
N Qs 0\B}
< C (W)

for some positive constant ¢ = c(A, A, m,n).
Estimate of I3 : from (4.47) and (4.49) we can conclude

e
c 9 c
I3 < NorT <][B+’DUE’ dz) < wp (4.52)
3

for some positive constant ¢ = ¢(\, A, m,n, p).
Therefore, if we combine (4.50), (4.51), and (4.52), we see that

1
®|{$693M(|Due|)2>N2}ﬂ31(y)’
< Li+hL+13
< ot ( 2+52+5Q%1>
= wprt TNz \F

p+1

cn P+ 0477% (/12 + 6%+ 52173’1> by (4.32)
= 17 [64 (n% ! <f<a2 + 6%+ 52%’1))]

for some constant ¢4 = c4(A\, A, m, n,p). Finally, we first take n so that

IN

0 1<1
< D —
0477_3

and then select N from (4.32). Secondly, we select kappa in order to have

1

0<cynr k< 3 (4.53)
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Finally, one can find the corresponding 6 = §(\, A, m,n, p) satisfying (4.53)
and

0< 0477%71 <(52 + 6217}’1> < %
such that this n and § we can conclude that
{z € Q: M(|Duc))? > N*} 1 Bi(y)| < nlBl. (4.54)
This contradicts (4.31) and completes the proof. O

Now, we are all ready to prove our main result in this chapter.

Proof of Theorem 4.1.1. Given any p with 2 < p < oo, assume that I’ €
LP(Q,R™"), A%.B is (9, 70)-vanishing and € is (9, 70)-Reifenberg flat. Also
let ue € H'(2,R™) be the weak solution of (1.2). We now take 1, N, and &
given by Lemma 4.4.1.

We can further suppose that

| Fllry <0 (4.55)

U F
£ and
sIFlLp)+o sIF L )+o
tively. We want to show that

by replacing u. and F' with for o > 0, respec-

2
IMUDu) g g, < €

for some universal constant ¢ > 0 when o — 0.
To do this, we write

C = {zr e Q: M(|Duc?) > N?}

and
D={zeQ: M(|Dul?) > 1} U{z € Q: M(|F|*) > §*}.

Using the weak 1-1 estimate, the standard L? estimate, and Holder’s in-
equality, we see that

o] < ]\(;2/Q|Du6|2dm§]$2/Q\F]2dz (4.56)
c p=2 co?
< W!Q\ P HFH%p(Q) SNz < n|Bil,
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by further taking ¢ satisfying the inequality (4.56). This asserts the first con-
dition of Lemma 2.3.2. On the other hand, the second condition of Lemma
2.3.2 follows from Lemma 4.4.1. Then we apply Lemma 2.3.2 to discover
that

1C| <m[D]

10 \" 80\"
= — <= 4.57
m <1_5> 77_<7> , (4.57)
by Remark 2.2.4.

Note that the problem (1.2) is invariant under normalization, we obtain
the same results for (%, %), (w2 %), (w5 %),

we obtain the following power decay estimates of M(|Du,|?) :

where

. inductively. Therefore,

Hx € Q: M(|Duf?) > N%H
< T]lf H:U eN: M(|Du€|2) > 1}‘

k
+) ni

i=1

{x €Q: M(FP?) > 52N2(’H’>H .
Applying Lemma 2.3.1 to
g=M(|Dug?), p=N? 6=1, and q= g,
we compute as follows :

IM(IDucl?)|

N
[V

(@)

< ¢

Q+ 3 N Hx € 0 M(|Du?) > N%H
k>1

< ¢ 1—1—2]\7"”?77{“ [{z € Q: M(|Ducl?) > 1}

k>1

k
2N
k>1 =1
= 51 + S

—

{x €Q: M(F]?) > 52N2<'H'>})>
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S < ¢ 1+2Nkpnlf‘{x€Q:M(]DuE]2)>1}‘
k>1
< e 14190 Nyt

k>1

k
cZNkpZn’i

S < {z eQ: M(|F|?) > 52N2(k—i)})
k>1 i=1
- CZZN]CPU% {:L‘ e N: M(\FP) > (52]\72(]“’7;)}’
i>1 k>i
= > (NPp) Y () {x €Q: M(F]?) > 52N2(’f—i)}’
i>1 k>
= cZ(Npm)iZ(Np)j {x cQ: M <‘F 2) > sz}‘
; . 5
i>1 >0
. F 2
< CZ(NPm) M (‘5 ) .
izl L2(Q)
Tal.

< ey (NPm)' =5 < ey (N'm)’ by (4.55).

i>1 i>1

Therefore, we have

IM(IDuc)2, < el 1+ (NPm)" | <,

“) k>1

ook

since NPy = NP (%)nn < NP (%)nn = 1 from (4.32) and (4.57). Using

the strong p-p estimate of the maximal operator, we finally obtain
[ Duellpro) < ¢,

which is the required one. This completes the proof.
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Chapter 5

Conormal derivative
problems

5.1 Main result

In this chapter, we consider the conormal derivative problem (1.3). The
following is our desired global WP regularity.

Theorem 5.1.1. For any positive constant 2 < p < oo, suppose F €
LP(Q,R™). Then there exists a small positive constant 6 = §(\, A, m,n,p)
such that if A%’B is (0, R)-vanishing and Q) is (J, R)-Reifenberg flat, then for
any weak solution uc € H'(Q,R™) of (1.8) we have

Du, € LP(Q,R™) (5.1)

with estimate
[ Duell o) < el Fllre ), (5.2)

where the constant ¢ = ¢(|Q], A, A, m,n,p) is independent of €.

5.2 Boundary Holder estimates

We begin this section with boundary Holder regularity for homogeneous
systems. This will be crucially used in the next section.
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Theorem 5.2.1. Let v € (0,1). Suppose that v. € H(B;},R™) is a weak

solution of
{Da (457 <Dael) = in  BF

0
] . (5.3)
A% “Dgvive = 0 on T,

Then there exists a small positive constant 6 = 6(A\, A, m,n) such that if A%ﬁ
is (0, R)-vanishing, then for any x,y € BT,
2

\w@ﬂ—m@ﬂSc<u;yvv<fmhA@Fﬁ){ 5.4

where ¢ > 0 depends only on A\, A, m,n, and ~.

The following two lemmas are needed for the proof of Theorem 5.2.1.

Lemma 5.2.2. Let v € (0,1). Then there ezists ey € (0,1] and 0 € (0, %)
depending only on X\, A, m,n, and v such that if for 0 < € < €q, v s a weak
solution of

Da (A%B‘DMQ -0 in Bf 5.5
A%ﬁ’engiya = 0 on T,
with
][ lve — (B0) g [Pda < 1, (5.6)
By !
then
(B 2 2y
][B;\UE (1) [2d < 6. (5.7)

Proof. We will prove this lemma by contradiction. If not, then there exists
sequences €y, and v, such that e, — 0, v, is a weak solution of

A%ﬁ’ekDﬁvnga = 0 on T, '
with
oo = )P <1 (59)
1
but for every 6 € (0, %),
][ L Jve, = (@Ek)39+|2da: > 6%, (5.10)

[4
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By subtracting a constant, we assume that (7, ) gy = 0. Then from
Caccioppoli inequality for (5.8) and (5.9), we have
/ | Dve, |*dx < c/ v, [Pda < c. (5.11)
BT By

1
2
Thus v, is uniformly bounded in H'(B7), and then by passing to a subse-
2
quence, we assume that v, — vg strongly in L?(BY) for some v. € H'(B7).
2 2

Consequently we have that for any 6 € (0, %),

[ o= G Pie > [ oo Go)ele, (512)
Bf " B} 9

0

and so from (5.10), we find that for every 6 € (0, ),

][ oo — (@) s [Pz > 67 (5.13)
B

0

In addition, recalling (5.8) and existing homogenization theory as in [3, 30],
we see that vg solves

D (A%’B’Ongg) - 0 in Bf _—
. 2 :
A%’B’Ongéya = 0 on T%,
where A%B ¥ is the constant matrix defined as in (1.16). According to bound-
ary Holder regularity for solutions of elliptic systems with constant coeffi-
cients on the flat boundaries, we discover that

][ 00 — (50) 5 [2dr < 5617, (5.15)
+
4
for some universal constant c¢5 = c5(\, A, m,n, 7).
We finally combine (5.13) and (5.15), to discover

0% < ][ lvo — (Vo) g+ |2z < c50' 7 (5.16)
BS 0

for every v € (0,1) and every 6 € (0,1). However, we take 6 € (0,1) so

small to deduce
627 > ¢501 1, (5.17)

which contradicts (5.16). This finishes the proof. O
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Lemma 5.2.3. Fiz v € (0,1). Let g and 0 be the constants as in Lemma
5.2.2 and let ve be a weak solution of (5.5). Then for all k such that € <
0% ley, we have

][ |ve — (66)B+k |2da: < 021“7% lve — (Q_’G)Bﬂde- (5.18)
B;‘k 0 Bf

Proof. The proof is by induction on k. By Lemma 5.2.2, (5.18) holds for
k = 1. Now we assume that (5.18) holds for some k > 1. Let

k
w(z) = ve(62) - for 2 € Bf (5.19)

(7‘]9+

1
2
(We divide v (6%2) by (JBZ |ve — (EG)BQ ]2d1:> + o for any o > 0 and then
2 0

we let 0 — 07 iff g+ |ve — (UE)B+k |2dx = 0). Then w satisfies
ok 0

D, (A o D5w3> = 0 in Bf
g (5.20)

A "ok Dgwjua = 0 on T

with
][ Jw— Wp[?dz < 1. (5.21)
1
Thus by applying Lemma 5.2.2 again to w, we obtain
2 2

][B;\w - wB;] dz < 67, (5.22)

Then by the induction hypothesis, we find that

_ _ 2 . 2
£, =gy P <][B+\w wB;\dz) (][B;k\ve <vE>B;krdx>

ok+1 6
< 2’7 _ = 2
<0 ][B+ e~ (80) s, [P
ok
< p2(k+1)y (= 2
<4 Bl+|v6 (UG)BH dx.
This completes the proof. O
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Remark 5.2.4. Before giving the proof of Theorem 5.2.1, we would like to
point out that in the paper [4], WP regularity for a weak solution to (5.3)
with € = 1 was established for all 1 < p < oo where the coeflicients A%ﬁ are
assumed to be (0, R)-vanishing. From this, we know that the equation (5.3)
with € = 1 has C°7 regularity for any fixed v € (0,1) as a consequence of
Morrey embedding for p large enough.

Proof of Theorem 5.2.1. Let ¢y and 6 be constants given in Lemma 5.2.2. By
scaling, we may assume that r = 1. The case € > ¢ follows from Remark
5.2.4 with an appropriate scaling.

We next consider 0 < € < feg. We divide this into two cases, p > % and
p < é For the first case, we can take k > 0 such that 671 < p < 6*. Since
€ < 0%€y, we apply Lemma 5.2.3 to find that

][ ]ve—(q‘)e)3+]2dx < c][
Bt " B

|'Ue - ('l_)e)BJr ’2d.’IJ
P ok

+
ok

092’”][ [ve — (Te) g+ |*da
Bf !

cp27f v|?da.
Bt

1

IN

IN

For the second one, we use a blow-up argument by letting w(z) = ve(ez).
Since g < % < L w satisfies
0 €0 €

Do (4" Dguwl) = 0 in BY
5.1 , ) (5.23)
A% "Dgwlv, = 0 on Tz

By the C%7 regularity for (5.23), we see that

2
][ lw—wg+|?dz < c (8> 7][ lw— g+ [*dz (5.24)
B} 2 € B o

€0

€ €0

for some constant ¢ = ¢(y, A\, A, m,n). Since < < 0, we apply Lemma 5.2.3
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again to find that

— 2 — 2
][BJUE — (1) 3 2dr = ][BJw ~ iy, Pz (5.25)
o P €
2y
< c(B) ][ lw—wg+ [*dz
) Ty T

€0

2y
<c(7) ][Bt Joe = (@), P

€0
€0

2y
PN (€ B2
c(e) <60> ][B;JUE (UE)BH dz

< cp27][ v | dzx.
B

1

IA

This completes the proof of Theorem 5.2.1. O

5.3 Uniform W' estimates for homogeneous sys-
tems for the flat boundary
Now, we are now ready to derive uniform W4 regularity.

Lemma 5.3.1. Let v. € HY (B, R™) be a weak solution of (5.3). Then
for any 2 < q < oo, there exists § = 6(\, A, m,n,q) such that if A%’B is
(0, R)-vanishing, then we have

@ 1
2
][ \Dufids | < e <][ |Dv€|2dx> (5.26)
B B
2
for some positive constant ¢ = c¢(A\, A, m,n,q), independent of e.
Proof. By dilation, we assume that » = 1 and it suffices to show that

%
/+ |Dve(y)|%dy < ¢ </+ \DUE|2dz> (5.27)
Bl Bl

4

for some constant ¢ = ¢(\, A, m,n,q) since we can obtain (5.26) by using
Lemma 3.3.3, (5.27), and standard covering argument.
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For any x = (x1,---,x,) € BY, by the interior W14 regularity, see
4
Theorem 3.1.1, we find that

1 1
q q

f ey < S @i 629

lon(a) " Lon (o)

for some constant ¢ = ¢(\, A, m, n,q) which is independent of e.
Here, we observe that if y = (y1,--+ ,Yn) € Bis, () for some t € (0,1),
then
[T — yn| < |z —y| < tz,. (5.29)

This implies that
(1 - t)xn SYn < (1 + t)xn- (5'30)

Now, we apply (5.30), boundary Hélder estimates and Poincaré inequal-
ity, then for any v € (0,1), (5.28) becomes

q

1 )4 2
/ |Dv|9dy < ¢ / (Zn) dy ][ |Dv|?dz
(zn)"™ JB, ()" By, (yn)? B

(5.31)
for some constant ¢ = ¢(\, A, m,n,q,7). Now, we integrate (5.31) over B .
4
Then we apply (5.30) to the left hand side of (5.31) to see that

// |DU€ ‘dd (5.32)
Bl () 71

1
|Dvc(y )|q/ ——dxdy
/B+ z€B+ Jz— y\< Ty (xn)

Z

>c [ Dur dady
Bt ‘ IGBT,|x7y|§%yn (yn)n
4

1
4

> e / Do (y)|“dy
B+

1
4

for some constant ¢ = ¢(n). Similarly, we apply (5.30) again to the right
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hand side of (5.31) to find that

Tn g dvde (5.33)
/ /31 ()™ n)

/ /;1 (a) TL n)

= C/

+

L

2
1 / 1

c —_— dxdy
/B (Un) 1= JaeBt lo—yi<yn (Un)"

2

1
C/T (Yn)? a(1=7) %
3

for some constant ¢ = ¢(n).
Now, we choose v € (0,1) so that ¢(1 —~) < 1 for ¢ > 2, and then we
insert (5.32) and (5.33) into (5.31) to discover that

— dydx

1
S - dady
(yn) ( —) /IEBT,|xy|§;mn (mn)n
2

IA
NI

IN

Do (y)|?
[ 1wy < / [ B (531
By B1 () Zn)
1
Y4 3
< ¢ / (Zn) dy ][ | Dve|dz
o \Js, G 5t
2 n
q
< _ 4 |Dvc|*d 2
= Bt (yn)11=7) Y B vel
’ q
2
< ¢ / | D |*dz
By
for some constant ¢ = ¢(\, A, m,n,q). This completes the proof. O

5.4 Approximation lemmas
We next localize our problem near the flat boundary. We first assume that

B C Qs C Bs N {x, > —106}. (5.35)
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Then we let u. € H' (25, R™) be a weak solution of

D, (A%B’g(a:)Dgug (m)) = Dufi(r) in 25

5 S (5.36)
<Al-aj ’GD/guﬁ — fé) vo = 0 on Oyl
and v, € HY (B} ,R™) be a weak solution of
ﬁ? ] — 3
D, (AZ E(x)ﬁngg (x)) = 0 in Bf (5.37)
Aiaj “Dgvlve = 0 on Ty

with the following definitions.

Definition 5.4.1. 1. u. € H(Q5,R™) is a weak solution of (5.36) if
/ A?jﬁ’EDgugDaqﬁidx = / fiDo¢'dx (5.38)
Qs Qs

for all ¢ € H' (925, R™) with ¢ = 0 on 9.0s.

2. v € HY(BJ,R™) is a weak solution of (5.37) if
/ X A Dl Dodida = 0 (5.39)
B4

for all ¢ € H'(B},R™) with ¢ = 0 on 9.B] .
We need the following approximation lemma.

Lemma 5.4.2. Let uc € H'(Qs5,R™) be a weak solution of (5.36) satisfying

1
|Bs| Jog

Then for any 0 < 7 < 1 fized, there exists a small § = §(7,\,A,m,n) > 0
such that if

|Du|?dx < 1. (5.40)

Bf C Q5 C Bs N {x, > —106}, (5.41)
and 1
—— [ |F|?dx < §? (5.42)
|Bs| Jos

for such &, then there exists a weak solution ve € HY(Bf ,R™) of (5.37) with
e Do |?dr <c 5.43
| Bal J} [Dve (543)
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for some constant ¢ = c(m,n) such that

1

— lue — ve|2d:v < 72 (5.44)
| Bal Bf

Proof. We argue this by contradiction. To do this, we assume that there exist
70 > 0, {tek}oeqs {Fr}re and {ng}:; such that u.j, is a weak solution of

D, (A%B’e(:c)Dguik(x)) = Daflf:,a@) in 0k (5.45)
(47D, — £ ) v = 0 on 0,0k
with
1 2
T / DucyPdr < 1, (5.46)
Qk
10
B;'CQ]gCB5ﬂ{xn>—k}, (5.47)
and
1 1\°
— | |FPde < () . 5.48
!B5\/ng| ke < <k> (548)
However,
1 2 2
@ N ”U/E’k — UE’ dx > ) (549)
B4
for any weak solution v, of
D (A%ﬁ’e(x)ngg(x)) - 0 i B} (5.50)
A%B’Enggua =0 on Ty .
with 1
— D |?dx < c. 5.51
By [, PP < (551

In view of (5.46), the Poincaré inequality, and the property of average
which minimizes variance, we have

1 2
- ey, |2
|Bs| /B; e =Tk,

1 2
- e P
| Bs| /Ql; e = Ueigy [

o,
c—— Due
551 Jos

C

2dx

IN

&

| &1
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for some constant ¢ = c¢(m,n). This implies that {ucp — Uek . Fe s
5

bounded in H'(B:). Therefore, there exists a subsequence, which we still
denote by {uex — Uek 12, and uep € H'(B]) such that
5

Ue = ek, — Ucp weakly in HI(BI) (5.52)
5

Ue g — ﬂeka; — ucp strongly in L2(B2')
as k — oo. Using (5.47), (5.48) and (5.52) and letting k& — oo in (5.45), we
discover that u. is a weak solution of (5.50). On the other hand, by using
weakly lower semicontinuity for weak convergence,

A

1 1
— Du, o|?d lim inf —— Du, 1.|*d 5.53
B s 1Dreolls < tpmint gy [ \Dusfie (a5

IN

1
climinf — | Due |2 dz < ¢
k—o0 |B5’ QF ’

for some constant ¢ = ¢(m,n). Then u is a weak solution of (5.50) satis-
fying (5.51) by (5.53), but (5.49) can not hold from (5.52). Hence we reach
a contradiction. This finishes the proof. O

Lemma 5.4.3. Let 2 < q < oo. Let ue € HY(Q5,R™) be a weak solution of
(5.36) satisfying
1
1Bs| Jo,

Then for any 0 < k < 1 fized, there exists a small 6 = d(k, \, A, m,n,q) >0
such that if A%ﬂ is (9, 5)-vanishing,

| Duc?dx < 1. (5.54)

B C Q5 C Bs N {x, > —106}, (5.55)

and 1
— F|?dx < 62 5.56
Bs] Jo, |F| (5.56)

for such &, then there exists a weak solution v, € H' (B ,R™) of (5.37) such

that
1

— |D(ue — e)|?dx < k2. (5.57)
1B1] Jo,

where v¢ is an W4 extension of ve from ij to By.
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Proof. According to Lemma 5.4.2, for each 0 < 7 < 1, with the assumptions
(5.54),(5.55),and (5.56), there exists a small § such that there exists a weak
solution v, € HY(B},R™) of (5.37) with

1
B /B+ Do, Pds < ¢ (5.58)
4

satisfying
1

— lue — ve|?dx < 72. (5.59)
| B4l Bf

By a standard W4 extension of v, from BI to By, there exists v, € H'(By)
such that 9. = v¢ in B;f and

[1DVellLa(Bs) < el Dvell Loty (5.60)

where ¢ = ¢(m,n, q) is independent of v,.
Now we choose a standard cut-off function ¢ € C§°(B2) that satisfies

0<¢p<1 ¢=1on By, $=0 on BQ\B%, and |D¢| <4. (5.61)
Since u, is a weak solution of (5.36), we take ¢?(u. — ¥,) as a test function
in the definition of a weak solution (5.38) for Q5 to discover that

1

afB,e ] NN 1 ; o
@ o Azjﬁv DﬁugDa(QZﬂ(UE — 1)6)) dr = |B2|L faDa(¢2(U5 _ Ug)) de.
2 2

(5.62)

54
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We compute the left hand side of (5.62) as follows :

oe,B, 2 = \)\¢
Bl / Ay “Dgul Do (¢* (ue — ) dx

A D (ue — ) Da(6? (ue — vc))'dz
|B2|

T / AP D g7 D (62 (e — )
1

B | By Qg
1 j j
[ 2645 Dyt~ P Daslu w0

Qo

$* AL D (ue — Be) Do (ue — Be)'da
n
+ L /B+ AP D3 Do (6 (e — 1)) e

AP D! Do (¢ (ue — 00)) dar

|B2| Q\B;
=0+ 1o+ I3+ 14

The uniform ellipticity condition (1.5) implies

1
I > A— [ ¢*|D(uc — v)|*d. (5.63)
|B2| Ja,
Cauchy’s inequality with s, (1.6), and (5.61) imply that
A
bl < [ @D —5)Pdz+ SN [ — o Pde. (564
|Ba| Ja, |B2| Jay,

In order to estimate the second term on the right hand side of (5.64), we

use Sobolev inequality, (5.54), (5.55), (5.58), (5.59), and (5.60) to see that

1
o [ - o (5.65)
2
1

— 2
= — — V| dx
Bal ot ;

lue — Te|?dx + ——
‘ ‘ |B2| 92\3+

n—2

2
1 n n n
<c|7m4 — / \ug—ﬁg\%da: / dx
’Bz‘ Q2\BF Q2\By
2 1 = |2 2
<c|lT4+ — |D(ue — ve)|*dx |
|B2| \Ja,
2
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for some constant ¢ = ¢(A\,A,m,n) (This is valid for n > 3 but we can

justify for n = 2 by using any p; > 2 instead of 2* = % and then applying

Holder’s inequality to the exponents p% and p}—;l). From (5.64) with s = 5

and (5.65) we have
A

L) < @2 D(uc — v)2dz + c(72 + o)

~ 2|Ba| Jo,

for some constant ¢ = ¢(\, A, m,n).

As 7. = v, in BI and v, is a weak solution of (5.37), we find that

I3 =0

We next estimate I4 as follows

equality with 1 + % + % =1 to discover that

A

(5.66)

(5.67)

: we recall (1.6) and apply Holder’s in-

(5.68)

for some constant ¢ = ¢(A). Since A%ﬁ is (0,5)-vanishing, we obtain by

Lemma 5.3.1, (5.58), and (5.60)

1 _
@ o ‘D’Ug‘qdm S
2
<
<
<

1
|B2| /B,

1
c| — Dv.|%dx
<|B2| By [Dvd )

! / Dutde )
C — v, X
| Bz Bf ‘

c

| D |"dw

(5.69)

for some constant ¢ = ¢(\, A,m,n,q) and by (5.54), (5.55), (5.58), (5.60),

56
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1 3 T
C q
Iy < — / D@Equ) / D(¢?(ue — ) |Pdx: / dx
< o ([ 10w (m\B;’ (e — 5) [
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(5.61), and Sobolev inequality

1
|Ba| Jo,\B}

557 (L

2

< / ue—q_)e\zdx—i—/ D(ue — 5.)2da
’B2‘ QQ\B; Qo

for some constant ¢ = ¢(A, A, m,n) with the same computation as in (5.65).

Thus, we have from (5.68), (5.69), and (5.70)

|D(¢*(ue — ) [*da (5.70)

IN

&*|Do|*ue — ?75‘2d:1:—|—/ﬂ ¢*| D (ue —m)\de)
2

2.1 .9-2 =2
[Is] < c(l+0dn)20 20 <cd 2 (5.71)
for some constant ¢ = ¢(\, A, m,n,q) with ¢ small.
Using (5.56) and Hélder’s inequality we compute the right hand side of
(5.62) with the same computations as in (5.65) and (5.70) to see that

1

B3] o, JADa( (e — ) (5.72)

<e (g [, 17 . far) (rézrAQ‘D(¢2(“€‘”€))’2dx>é
<c

<ed(1 472+ 6w )%

for some constant ¢ = ¢(\, A, m,n), as 7 is small and 0 is small.
Now, we insert the estimates (5.63), (5.66), (5.67), (5.71), and (5.72) into
(5.62) to discover that

1
L[ Du—s))2dzr < £ / PID(u—t)Pdr < e (72 + 6+ 5" +6%)
|B1] Ja, |Ba|
(5.73)
for some constant cg = cg(A, A, m, n,q). Thus, we can select T satisfying
1
067'2 < 5#;2

and then we can take § which depends on the choice of 7 according to Lemma

5.4.2 and satisfies
1 12

(5+52q o ) 55
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to obtain
2 a2 2 2
CG(T Lo+ o +5n)§/<c. (5.74)

This finishes the proof.

5.5 Proof of Theorem 5.1.1

Now we are ready to prove the following key lemma of our argument.

Lemma 5.5.1. Let 2 < p < oo. Suppose that u. € H*(Q,R™) is a weak
solution of (1.8). Then there exists a universal constant n = n(A\, A, m,n,p)
so that one can select a small 6 = 6(n,\, A, m,n,p) > 0 such that if Aiajﬁ
is (9,70)-vanishing, if Q is (J,70)-Reifenberg flat, and if, for all y € Q and
every 0 < r <1, B,(y) satisfies

[{z € Q: M(|Du*) > N*} N B,(y)| > n|B.(y)|, (5.75)

80\" 1
— ) NPyp=_ :

where

then there holds
QN B(y) C {z € Q: M(|Du*) > 1} U {z € Q: M(|F|?) > 6%}, (5.77)

Proof. We prove this by contradiction. Using a scaling argument, it suffices
to prove this lemma for » = 1. We assume (5.75) holds, but (5.77) is false.
Then there is a point x; € QN B;(y) such that

1 / 2 1 2 2
_ |Due|*dx <1 and / |F|°dz < §° (5.78)
|Bo(z1)| Jo, (21) |Bo(z1)| Jo,(21)

for all p > 0.
We divide this into the two cases : an interior case when B7(y) C © and
a boundary case where B7(y) ¢ . Here, we only consider the boundary
case as we have already proved the interior case in Lemma 3.4.1. Because 2
is (9, 70)-Reifenberg flat, there exists an appropriate coordinate system such
that
B7(y) N C BigaN (579)
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and
B3, C Q79 C BN {x, > —1405}. (5.80)

It directly follows from (5.78) that

|Brao(z1)| 1
| B7o] ’B140| Q140(z1)

1
|Brol Jas,

| Duc|?dx < |Du*dz < 2" (5.81)

since B7g C Bigo(x1). Similarly, we have

1

|F|2da < 2"6%. (5.82)
|Brol Jar

We consider the following rescaled maps :

- U6(14Z) ~ F(14Z) Taf,e afB,e ~
Ue(2) = , F(z)= , AT (z) = AT (142 z €
(=" Pe)== 20 AP = 4504 (e )
(5.83)
where Q5 = 1—14970.
B € Q5 C BN {z, > —106}. (5.84)
Then u, € Hl(Q5, R™) is a weak solution of
Dq </~1%5’6(2)D511Z(z)> = Dofi(z) in Qs (5.85)
(A%B’eDﬁﬂ‘Z — f&) Vo = 0 on an5 .
satisfying that
1
— Dac|*dz < 1, 5.86
Bl Jo, (5:50)
Tap8 . C 1.
A;;" is (6,5)-vanishing, (5.87)
B € Q5 C BsN {z, > —105}, (5.88)
and 1
—— [ |F|Pdz < &% (5.89)
1Bs| Jas

We now apply Lemma 5.4.3 to find that for any fixed x > 0, there
exists a small § = d(k, A\, A, m,n) > 0 such that there exists a weak solution
v € HY(Bf,R™) of

{Da (Agﬂve(z)pﬁﬁg') = 0 in B}

3 . (5.90)
A Dgilve = 0 on Ty
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with 1 ,
‘B4|/Bj |Dve|*dz < ¢ (5.91)
such that 1
—— | |D(tie — 9.)|?dz < K? (5.92)
[B1] Ja,
where 7, is a standard W1P+! extension of 9. from BJ to Bs. Applying
Lemma 5.3.1 to ¢ = p+ 1, we see that

1 1

1 T L 1 e, )

Bl Jue | Dve|PT dz <ec Bl o |Dv|*dz | <c¢ (5.93)
2 4

for some constant ¢ = ¢(\, A, m,n,p).
Consequently, we have

1
@HxGQZM(\DUeDZ>N2}QB1(Z/)’
< U;L'Hz e Q1 : M(2|Diic — Di.|? + 2|DaJ?) > N2}
1
c ~ - = N?
< ﬁ {zEQl:M(|DuE—D05]2)>4H
C7 ~ = 2 N2
T Ot M(ID3?) > =
+’31’ {ze 1 M(|Dv|?) > 1 }'
4\ 1 }
< — ) — [ |Di.— Di|*d
< () gy y, 103 - P
4NT 1
. D: p+1d
wor () B Jyy 1P
Cc7 Cc7
< ﬁnz + 3prr by (5:92) — (5.93)

2 5 pt+1
= cmrk“+cem v by (5.76)
)
for some constant ¢; = ¢7(A\, A, m, n,p). Finally, we first take n so that
0 1 < 1
» < =
<emr s %
and then select N from (5.76). We then select x in order to have

1

2_
0 <ecme 1?2 < 5
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From this choice of k, one can find the corresponding small 6 = §(\, A, m, n, p)
such that this n and § we can conclude that

{z € Q: M(|Duc|)? > N?} N By (y)| < n|Bi. (5.94)
This contradicts (5.75) and completes the proof. O
We are all set to prove Theorem 5.1.1.

Proof of Theorem 5.1.1. Given any p with 2 < p < oo, assume that ' €
LP(Q,R™™), A%.B is (0, 70)-vanishing and Q is (4, 70)-Reifenberg flat. Also
let u. € H'(2,R™) be a weak solution of (1.3). We now take 1, N, and &
given by Lemma 5.5.1.

We can further suppose that

| Fllry <0 (5.95)

F
and

5HFHL1‘7(Q)+U sIF L )+o

tively. We want to show that

by replacing u. and F' with for o > 0, respec-

IM(Duc)ll 5, <

for some universal constant ¢ > 0 when o — 0.
To do this, we write

C={z e Q: M(|Dul?) > N?}

and
D={zeQ: M(|Dul?) > 1} U{z € Q: M(|F|*) > §*}.

Using the weak 1-1 estimate, the standard L? estimate, and Holder’s in-
equality, we see that

IC| < N2/ | Du| dm</ |F|?dx (5.96)

< !Q\ g HFHLp(Q <77|Bll

N

by further taking § satisfying the inequality (5.96). This asserts the first con-
dition of Lemma 2.3.2. On the other hand, the second condition of Lemma
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2.3.2 follows from Lemma 5.5.1. Then we apply Lemma 2.3.2 to discover
that
[C] <m|D|

10 \" 80\"
m (1_5> 77_<7> , (5.97)
by Remark 2.2.4.

Note that the problem (1.3) is invariant under normalization, we obtain

the same results for (%, %), (w2 %), (w5 %), ... inductively. Therefore,

we obtain the following power decay estimates of M (|Duc|?) :

where

Haz € Q: M(|Duc|*) > N%H
<y [{z € Q: M(|Ducl*) > 1}|

k
+)

=1

{x € Q: M(F]?) > 52N2<’H'>H .

Applying Lemma 2.3.1 to
g=M(Dul?), p=N? 6=1, and q= g,
we compute as follows :

IM(| Duel )2

D
2
LE
< (Q+ZN% HxGQ:M(|Du6|2)>N2kH
k>1
< 1+ZNkp77 {ze: M(|Ducl?) > 1}
k>1
k
+ ZNkpZn’i
k>1 i=1
=: S1 + So.

{x €Q: M(F]?) > 52N2<’”>})>
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S1

IN

cl|1 +2Nkp17]f [{z € Q: M(|Duc|*) > 1}
k>1

IN

cl1+ ]Q|ZNkpnlf
k>1

k
cZNkpZn’i

S < {z eQ: M(|F|?) > 52N2(k—i)})
k>1 i=1
- CZZN]CPU% {:L‘ e N: M(\FP) > (52]\72(]“’7;)}’
i>1 k>i
= > (NPp) Y () {x €Q: M(F]?) > 52N2(’f—i)}’
i>1 k>
= cZ(Npm)iZ(Np)j {x cQ: M <‘F 2) > sz}‘
; . 5
i>1 >0
. F 2
< CZ(NPm) M (‘5 ) .
izl L2(Q)
Tal.

< ey (NPm)' 5 < ey (N'm)' by (5.95).

i>1 i>1

Therefore, we have

IM(|Duel?)]

ook

D k
B < c(1+Z(N ) ) <e,

k>1

since NPy = N7 (19) "y < N7 (82)"y = 4 from (5.76) and (5.97). Using

the strong p-p estimate of the maximal operator, we finally obtain
[ Duellpro) < ¢,

which is the required one. This completes the proof.
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