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Abstract

Crossed products of
Cuntz-Pimsner algebras by
coactions of Hopf C'*-algebras

Dong-woon Kim

Department of Mathematical Sciences
The Graduate School
Seoul National University

Unifying two notions of an action and coaction of a locally compact group
on a C*-correspondence we introduce a coaction (o, d) of a Hopf C*-algebra S
on a C*-correspondence (X, A). We show that this coaction naturally induces
a coaction ¢ of S on the associated Cuntz-Pimsner algebra Ox under the
weak d-invariancy for the ideal Jx. When the Hopf C*-algebra S is a reduced
Hopf C*-algebra of a well-behaved multiplicative unitary, we construct from
the coaction (o,d) a C*-correspondence (X x, S, A §), and show that it
has a representation on the reduced crossed product Ox ¢ S by the induced
coaction (. If this representation is covariant, particularly if either the ideal
Iy, g of A X S is generated by the canonical image of Jy in M(A x4 §) or
the left action on X by A is injective, the C*-algebra Ox X S is shown to be
isomorphic to the Cuntz-Pimsner algebra O g associated to (X >40§, A >45§).
Under the covariance assumption, our results extend the isomorphism result
known for actions of amenable groups to arbitrary locally compact groups.
Also, the Cuntz-Pimsner covariance condition which was assumed for the same
isomorphism result concerning group coactions is shown to be redundant.

Key words: C*-correspondence, Cuntz-Pimsner algebra, multiplier corre-
spondence, Hopf C*-algebra, coaction, reduced crossed product
Student Number: 2005-30105
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Chapter 1

Introduction

In this dissertation, we introduce coactions of Hopf C*-algebras on C*-corre-
spondences, and study the induced coactions on the associated Cuntz-Pimsner
algebras and their crossed products.

A C*-correspondence (X, A) is a (right) Hilbert A-module X equipped with
a left action p4 : A — L(X). For each C*-correspondence (X, A) with injec-
tive p4, a C*-algebra Ox was constructed in [36] generalizing crossed product
by Z and Cuntz-Krieger algebra [10]. The construction was extended in [25]
to arbitrary C*-correspondences (X, A) by considering an ideal Jy of A —
the largest ideal that is mapped injectively into K(X) by ¢4 — and requiring
that a covariance-like relation should hold on Jx. The C*-algebra Oy, called
the Cuntz-Pimsner algebra associated to (X, A), is generated by kx(X) and
k4(A) for the universal covariant representation (kx, k) of (X, A). The class
of Cuntz-Pimsner algebras is known to be large enough and include in partic-
ular graph C*-algebras. In addition, there have been significant results con-
cerning Cuntz-Pimsner algebras such as gauge invariant uniqueness theorem,
criteria on nuclearity or exactness, six-term exact sequence, and description of
ideal structure ([36, 25, 26]). Thus the Cuntz-Pimsner algebras can be viewed
as a well-understood class of C*-algebras, and in view of this, it would be ad-
vantageous to know that a given C*-algebra is a Cuntz-Pimsner algebra.

Our work was inspired by [18] and [23] in which group actions and coactions
on C*-correspondences are shown to induce actions and coactions of the same
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groups on the associated Cuntz-Pimsner algebras, and the crossed products by
the induced actions or coactions are proved to be realized as Cuntz-Pimsner
algebras. (We refer to [13] for the definition of actions and coactions of locally
compact groups on C*-correspondences.) More precisely, if (7, «) is an action
of a locally compact group G on a C*-correspondence (X, A), one can form two
constructions: an action 3 of G on Ox induced by (v, «) [18, Lemma 2.6.(b)]
on the one hand, and the crossed product correspondence (X ., G, A X4, G)
of (X, A) by (v,«) ([13, Proposition 3.2] or [18]) on the other. It was shown
in [18] that if G is amenable, then the crossed product by the action g is
isomorphic to the Cuntz-Pimsner algebra associated to (X x, G, A x, G):

OX NQG%JOXXWG. (11)

Similarly, it was shown in [23] that a nondegenerate coaction (o,d) of a lo-
cally compact group G on (X, A) satisfying an invariance condition induces
a coaction ¢ of G on Oy [23, Proposition 3.1], and under the hypothesis of
Cuntz-Pimsner covariance, the crossed product by ( is again a Cuntz-Pimsner
algebra [23, Theorem 4.4]:

OX NCGgOang, (12)

where X x, G is the C*-correspondence over A x5 G arising from the coaction
(0,0) [13, Proposition 3.9].

The study in [3] proposed the framework of reduced Hopf C*-algebras aris-
ing from multiplicative unitaries including both Kac algebras [14] and com-
pact quantum groups [46, 48] (of course locally compact groups as well). The
study also established the reduced crossed products of C*-algebras by reduced
Hopf C*-algebra coactions, which are shown to be a natural generalization of
crossed products by group actions and coactions. To each multiplicative uni-
tary V', two reduced Hopf C*-algebras Sy and §V are associated in [3] under
the regularity condition which was modified later in [47, 38] with manageabil-
ity or modularity; in particular, the multiplicative unitaries of locally compact
quantum groups [31] are known to be manageable. Thus the reduced Hopf
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C*-algebras arising from multiplicative unitaries are a vast generalization of
groups and their dual structures.

The goal of this dissertation is to show that essentially the same results can
be obtained if group actions or coactions studied in [18, 23] are replaced by
Hopf C*-algebra coactions. To this end, we first need a concept of a coaction
of a Hopf C*-algebra on a C*-correspondence. In [2], coaction of a Hopf C*-
algebra S on a Hilbert A-module X was introduced as a pair (o, ) of a linear
map o : X — M(X ® S) and a homomorphism § : A - M(A ® S) which
are required to be, among other things, compatible with the Hilbert module
structure of X. This notion was originally aimed to define equivariant KK-
groups and generalize the Kasparov product in the setting of Hopf C*-algebras.
Since then, the notion of coactions on Hilbert modules has been extensively
dealt with in various situations: for example [7, 20, 17, 41, 9, 11, 8, 39, 43]. In
this dissertation, we propose a definition of coaction of a Hopf C*-algebra S on
a C*-correspondence (X, A) as a coaction (o,d) of S on the Hilbert A-module
X which is also compatible with the left action ¢4 (see Definition 3.2.1 for the
precise definition), and show that this definition unifies the separate notions of
group actions and nondegenerate group coactions on (X, A) (Remark 3.2.3).
We then proceed to show that the passage from a group action or coaction on
(X, A) to an action or coaction on Ox can be generalized nicely in the Hopf
C*-algebra framework (Theorem 3.2.7). When the Hopf C*-algebra under
consideration is a reduced one defined by a well-behaved multiplicative unitary
in the sense of [40], we construct the reduced crossed product correspondences
(Theorem 4.2.1), and prove an isomorphism result analogous to (1.1) and (1.2)
under a suitable condition (Theorem 5.2.4). Applying our results we improve
and extend the main results of [18] and [23] (Remark 5.1.6 and Corollary 5.2.5).

There have been plenty of works concerning “natural” coactions of compact
quantum groups on the Cuntz algebra O,, with the focus on their fixed point
algebras: for example, see [16, 27, 33, 35] among others. These coactions
are the ones induced by coactions on the finite dimensional C*-correspond-
ences (C",C), and actually, can be considered within a more general context
of graph C*-algebras [29, 28, 15]. In fact, we extend in Section 6 the notion
of labeling of a graph F given in [21] to the setting of compact quantum
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groups (Definition 6.2.1), and show that this labeling gives rise to a coaction
on the graph correspondence (X (E), A) [24], which in turn induces a coaction
on the graph C*-algebra C*(E) (Corollary 6.2.4). We also give a definition
of coaction of a compact quantum group on a finite graph (Definition 6.2.5)
and show that this coaction gives rise to a coaction on the graph C*-algebra
(Theorem 6.2.11). Natural coactions on O,, then can be viewed as the ones
arising from labelings of the graph consisting of one vertex and n edges, or
alternatively, the ones arising from coactions on such a graph. Moreover, the
crossed products by those natural coactions can be realized as Cuntz-Pimsner
algebras (Example 6.2.16). In light of these facts, it is natural and desirable
to extend the works of [18, 23] from the point of view of Hopf C*-algebra
coactions. It should be pointed out that a coaction of a compact quantum
group on a finite graph E was considered in [5] under the aim of constructing
the quantum automorphism group coacing on E along the principle of [45].
The definition however was given only for finite graphs with at most one edge
from a vertex to another. Our concern lies in the coactions of compact quantum
groups on the graph C*-algebras C*(F) arising from coactions on F as well as
the quantum automorphism groups for any finite graphs (Theorem 6.2.14).

This dissertation is organized as follows.

In Chapter 2, we review basic facts from [13, Chapter 1] and [12, Ap-
pendix A] on multiplier correspondences. We also collect from [25,; 3] defini-
tions and facts on Cuntz-Pimsner algebras and reduced crossed products by
Hopf C*-algebra coactions on C*-algebras. Note that in [13], Hilbert A-B bi-
modules were considered while we are concerned only with Hilbert A-A bi-
modules, namely nondegenerate C*-correspondences (X, A).

In Chapter 3, we define a coaction (o,9) of a Hopf C*-algebra S on a
C*-correspondence (X, A) (Definition 3.2.1) generalizing both an action and
nondegenerate coaction of a locally compact group on (X, A). We justify our
definition in Theorem A.2.1 by showing that it agrees with the definition of
an action of a locally compact group G on (X, A) when S is the commutative
Hopf C*-algebra Cy(G). We prove in Theorem 3.2.7 that if (o, d) is a coaction
of S on (X, A) such that the ideal Jx is weakly d-invariant (Definition 3.2.5),
then (o,0) induces a coaction ¢ of S on the associated Cuntz-Pimsner algebra
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Ox.

Chapter 4 is devoted to constructing the reduced crossed product corre-
spondence (X x, S, A x5 S) from a coaction (o,d) of a reduced Hopf C*-
algebra S defined by a well-behaved multiplicative unitary. Our space X X, S
coincides with the one given in [7, Definition 1.2] as a Hilbert (A x S )-module,
but further can be said, that is, it is a C*-correspondence over A X S. An
important step of [7] toward its main result of imprimitivity was the Baaj-
Skandalis type lemma [7, Proposition 1.3] in which the proof invokes a linking
algebra technique to utilize the strict continuity of slice maps. We provide an
alternative and intuitive proof for the lemma in our C*-correspondence setting.
We show that slice maps on the algebraic tensor product of a C*-correspond-
ence X and a C*-algebra B can be extended strictly to the multiplier corre-
spondence M (X ® B) (see Proposition 4.1.2), which enables us to construct
the C*-correspondence (X X, S yA X S ) directly. We show that our construc-
tion of (X X, S A X S ) reduces to the crossed product correspondence in the
sense of [13] if the Hopf C*-algebra coaction under consideration comes from a
group action or nondegenerate group coaction on (X, A) (Corollary B.2.3 and
Remark 4.2.4).

In Chapter 5, we prove an isomorphism analogous to (1.1) and (1.2) in
the reduced Hopf C*-algebra setting. Along the way we answer the question
posed in [23, Remark 4.5]; specifically, we prove that Theorem 4.4 of [23]
still holds without the hypothesis of the Cuntz-Pimsner covariance for the
canonical embedding of (X, A) into the crossed product correspondence (see
Remark 5.1.6). The C*-correspondence (X x, S, A x5 5) is shown to have a
canonical representation (kx X, id, k4 X4 id) on the reduced crossed product
Ox ¢ S by the induced coaction ¢ (Proposition 5.1.4). We then prove in
Theorem 5.2.4 that

Ox % §=0y, 3

under the assumption that (kx X, id, ka4 x5 id) is covariant. By applying this
to group actions, we extend Theorem 2.10 of [18] (see Corollary 5.2.5) to any
locally compact groups.

It is however, not so easy to determine whether the representation (kx X,
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id, k4 X id) is covariant or not without understanding the ideal x5 of
Axs8. Actually Jy 3 is not known even for the commutative case with some
exceptions. For an action (v, «) of a locally compact group G, it was shown
that Jx.,¢ = Jx X G if G is amenable ([18, Proposition 2.7]), which was the
most difficult part in proving the main result of [18] as was mentioned in the
introductory section there. Recently, the same has been shown for a discrete
group G if G is exact or if the action « has Exel’s Approximation Property ([4,
Theorem 5.5]). However, we only know in general that J g contains the ideal
of A x5S generated by the image §,(Jx) (Proposition 5.1.5). We bypass the
difficulty regarding the ideal Jy g by focusing our attention on the (A® J¢")-
multiplier correspondence (M agx (X @ H), M(A® %)) in which the C*-cor-
respondence (X X, S Axs S ) lies. This leads us to two equivalent conditions
that the representation (kx X, id, ka Xsid) is covariant (Theorem 5.2.1). From
these equivalent conditions we see that (kx X, id, k4 Xg id) is covariant if,
in particular, Jy, g is generated by 6,(Jx) or the left action ¢4 is injective
(Corollary 5.2.2), even though we do not know the ideal J _g explicitly.

Applying the results obtained in Chapter 3-5, we con81der in Chapter 6
coactions on crossed products by Z and directed graph C*-algebras which
form a special class of Cuntz-Pimsner algebras.

Finally, we provide two appendices. In Appendix A, we generalize [1, Corol-
lary 3.4] to our C*-correspondence setting, and then show that there exists a
one-to-one correspondence between actions of a locally compact group GG and
coactions of the commutative Hopf C*-algebra Cy(G) on a C*-correspondence.
In Appendix B, we prove a C*-correspondence analogue to the well-known fact
that LA(A®@ H) = M(A® K(H)) for a C*-algebra A and a Hilbert space H.
Using this, we recover from our construction of (X x S, A §) the crossed
product correspondences (X x,. G, Ax,.G) for actions of locally compact groups
G given in [13].



Chapter 2

Preliminaries

In this chapter, we review some definitions and properties related to multiplier
correspondences, Cuntz-Pimsner algebras, and reduced crossed products by
Hopf C*-algebra coactions. Our references include [3, 12, 13, 25, 32]. We also
fix some notations.

2.1 (C*-correspondences

Throughout the dissertation A denotes a C*-algebra. A (right) inner product
A-module is a right A-module X which is at the same time a linear space,
together with an A-valued inner product (-,-)4 : X x X — A that is sesquilin-
ear, respects the right action, and is positive definite. More precisely, the
scalar multiplication on X is consistent with the right action by A such that
(c€-a)=c(§-a)=¢€-(ca) forc € C, { € X, and a € A, and (-, )4 satisfies
the following:

(i) (€ en+n)a=c§;ma+(§n)a;

(ii) (§,m-a)a = (&, M) aa

(iil) (&, m)a = (,§)a;
(€,

(iv) (£,6)a>0; (£, )a =0 E=0.
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An inner product A-module X is called a Hilbert A-module if it is complete
with respect to the norm [[£]| := [[{&, €)A]|Y/2 (€ € X).

Hilbert spaces are Hilbert C-modules with the convention that the inner
product is conjugate linear in the first variable. Every C*-algebra A is itself
a Hilbert A-module with the inner product given by (a,b) 4 := a*b. When we
view a C*-algebra as a Hilbert module, we always refer to this Hilbert module.

For two Hilbert A-modules X and Y, a map T : X — Y is said to be
adjointable if there exists a map T* : Y — X such that

(TE,ma=(Ta (&neX).

It is not hard to see that an adjointable map is bounded, linear, and A-linear.
We denote by L£(X,Y) (or L4(X,Y)) the set of all adjointable maps from X
to Y. It is straightforward to see that £(X,Y) is a Banach space with the
operator norm. We denote by K(X,Y) = K4(X,Y) the closed subspace of
L(X,Y) generated by the operators 6 ,:

Ocy() =6-(n,mha (E€Y, n,n € X).

We simply write £(X) and K(X) for £(X, X) and (X, X); in this case L(X)
becomes a maximal unital C*-algebra containing /C(X) as an essential ideal.
For a C*-algebra A, we write M (A) = L(A) and call it the multiplier algebra of
A. Note that the left multiplication gives an isomorphism of A onto K(A), and
we always regard A as a C*-subalgebra of M(A) through this isomorphism.
For a Hilbert C-module X, £(X) and K(X) are, respectively, the usual C*-
algebras of bounded operators and compact operators on the Hilbert space X.

A C*-correspondence over a (C*-algebra A is a Hilbert A-module X
equipped with a homomorphism ¢, : A — L£(X), called the left action.
We use the notation (X, A) of [23] to refer to a C*-correspondence X over
A. We say that (X, A) is nondegenerate if ¢4 is nondegenerate, that is,
va(A)X = X. Every C*-algebra A has the natural structure of a nonde-
generate C*-correspondence over itself with the left action identifying A with

IC(A) through left multiplication, called the identity correspondence (p. 368 of
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[25]). When we regard A as a C*-correspondence, we always mean this C*-
correspondence

2.2 Multiplier correspondences

Throughout the dissertation, we restrict ourselves to nondegenerate C*-corre-
spondences, which in particular allows us to consider their multiplier corre-
spondences that are a generalization of multiplier C*-algebras.

Let (X, A) be a C*-correspondence, and let M(X) := L(A, X). The multi-
plier correspondence of X is the C*-correspondence M (X) over the multiplier
algebra M (A) with the Hilbert M (A)-module operations

m-a:=ma, (m,n)ya):=m'n (2.1)

and the left action
oy (a)m = ga(a)m (2.2)

for m,n € M(X) and a € M(A), where @4 is the strict extension of the
nondegenerate homomorphism ¢4 and ma, m*n, and Yy a)(a)m mean the
compositions m o a, m* on, and @pay(a) o m, respectively. The identification
of X with IC(A, X), in which each £ € X is regarded as the operator A 35 a
¢-a € X, gives an embedding of X into M (X), and we will always regard X as a
subspace of M (X)) through this embedding. Note that (M (X)) C M(K(X))
nondegenerately; but (M (X)) # M(KC(X)) in general. For example, if X =
H then K(M (X)) = K(H) and M(K(X)) = L(H).

The strict topology on M (X) is the locally convex topology such that a net
{m;} in M(X) converges strictly to 0 if and only if for 7" € K(X) and a € A,
the nets {T'm;} and {m; - a} both converge in norm to 0. It can be shown that
M (X) is the strict completion of X.

Let (X, A) and (Y, B) be C*-correspondences. A pair

(¥, m) = (X, A) = (M(Y), M(B))

of a linear map ¢ : X — M(Y) and a homomorphism 7 : A — M(B) is called
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a correspondence homomorphism if
(i) ¥(pala)) = oumm)(m(a))(§) for a € A and € € X;

(i) (& ma) = (L&), () for §,n € X.

It is automatic that (& - a) = ¥(§) - w(a) (see the comment below [26, Defini-
tion 2.3]). We say that (¢, ) is injective if 7 is injective; if so 9 is isometric.

We also say that (¢, ) is nondegenerate if (X)-B =Y and n(A)B = B.
In this case, (1, 7) extends uniquely to a strictly continuous correspondence
homomorphism

(,7) « (M(X), M(A)) = (M(Y), M(B))

([13, Theorem 1.30]). Note that if (1, 7) is injective, then so is (¥, 7).
A correspondence homomorphism (¢, 7) : (X, A) — (M(Y), M(B)) deter-
mines a (unique) homomorphism ¥ : KC(X) — K(M(Y)) € M(K(Y)) such
that
0 (Be) = WO (En € X)

(see for example [26, Definition 2.4] and the comment below it). If (¢, ) is
nondegenerate, then so is 1(); it is straightforward to verify that

(TE) = O(T)p(€), D (mn*) = Y(m)d(n)* (2.3)

for T € L(X), £ € X, and m,n € M(X). Indeed, write £ = 0, (¢) [37,
Proposition 2.31]. Since M (6,, ,,)0(n3) = ¥ (n1 - (N2, m3) 4), We have

W(TE) = P(TC - (¢, C)a) = v (Or¢ )Y (C)
= PO(T)YD (0, ) (C) = v (T)¥(€),

which verifies the first relation of (2.3). It then follows that

PO (mn*)P(€) - b= (mn*€) - b= (m) - 7((n, &) 4)b = Y(m)(n)* () - b.

This verifies the second relation of (2.3) since (¢, 7) is nondegenerate. We

10
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note that the first relation of (2.3) shows that () is injective whenever ¢ is
injective. We also note the following analogue to the fact that M(M(A)) =
M (A) for a C*-algebra A although we do not need it in the sequel.

Remark 2.2.1. We have M (M (X)) = M(X) for a C*-correspondence (X, A),
whose proof can be given as follows. The identity maps id;(x) and idys4) form
a correspondence homomorphism (idas(x), idas(a)) which is clearly nondegen-
erate. Consider the strict extension

(idar(xy, idaray) + (M(M (X)), M(M(A))) = (M(X), M(A)).

Obviously, idas(x) is surjective. It is injective as well since idys4) = idaz(a) is
injective. Consequently, M (M (X)) = M(X).

2.3 Tensor product correspondences

In this dissertation, the tensor product of two C*-algebras always means the
minimal tensor product. For two Hilbert A;-modules X; (i = 1, 2), their tensor
product X7 ® X5 denotes the exterior tensor product given in [32, pp. 34-35],
which is a Hilbert (A; ® As)-module such that

((1®&) (a1 ®@az) =& a1 ® &, - ay,
<£1 ® 527 fi ® §§>A1®A2 = <’£17£1>A1 ® <€27€Q>A2

fOI‘ fl,fi c Xl, fg,fé c XQ, a; € Al, and as € AQ.
Let (X3, A4;) and (X2, As) be C*-correspondences. We will freely use the
following identification

KX ® Xs) = K(X1) @ £(X?)
via ¢ 060, man, = 0e1m @ ey ny. Equipped with the left action
PA@A; = PA @ PAag,

11
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the tensor product X; ® X5 then becomes a C*-correspondence over A; ® A,
which we call the tensor product correspondence.

Let (¢4, m) @ (X3, Ai) — (M(Y;), M(B;)) (i = 1,2) be correspondence
homomorphisms. Then there exists a unique correspondence homomorphism

(Y1 @ g, m @ ma) 1 (X1 ® Xo, A1 ® Ag) = (M(Y1 ®Y3), M (B ® By))

such that (11 ®19)(§10&) = 1¥1(&1)@1Yo(&2). If both (v, m;) are nondegenerate
then (¢ ® 19, ™ ® my) is also nondegenerate ([13, Proposition 1.38]).

Remark 2.3.1. We can easily check that

(¥ @ 12)V = ¢tV @ 9,

that is, we have the commutative diagram

(1)
X1 ®X2) (V1®@v2) M(}C(le ®Y-2)>

K(X)) ® K(X3) M(K(Y)) @ K(Ys))

¢§1)®¢§1)

for two correspondence homomorphisms (¢, 1) and (15, m2). Indeed,

(1 ® 12) ™ (O 060, meny) = (101 @ 1) (&1 ® &) (%1 ® o) (m @ 12))”
=1 (51)1/11(771) ® o (2)1a(n2)"

( (1)) 051,771 ® 0527772)

for &,m € Xy and &, 1m0 € Xo.

2.4 Cuntz-Pimsner algebras

Let (X, A) be a C*-correspondence, and let

Jx =M (K(X)N{a€ A:ab=0for b € kerpa}.

12
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CHAPTER 2. PRELIMINARIES

Then Jy is characterized as the largest ideal of A which is mapped injectively
into (X)) by ¢a. A correspondence homomorphism (¢, 7) : (X, A) — (B, B)
into an identity correspondence (B, B) is called a representation of (X, A) on
B and denoted simply by (¢, ) : (X, A) — B. We say that (¢, 7) is covariant
if

vD(pa(a)) = n(a) (a€ Jx)

([25, Definition 3.4]). We denote by (kx, k4) the universal covariant represen-
tation of (X, A) which is known to be injective ([25, Proposition 4.9]). The
Cuntz-Pimsner algebra Ox is the C*-algebra generated by kx(X) and ka(A).
Note that the embedding ks : A — Ox is nondegenerate by our standing
assumption that (X, A) is nondegenerate. From the universality of (kx,ka),
if (¢, ) is a covariant representation of (X, A) on B, there exists a unique
homomorphism ¢ x 7 : Ox — B called the integrated form of (1, ) such that
Y=t xm)oky and m= (¢ X 1) 0 ky.

A representation (¢, ) of (X, A) is said to admit a gauge action if there
exists an action 3 of the unit circle T on the C*-subalgebra generated by (X))
and 7(A) such that 5,(¢(§)) = z¢(§) and B.(7w(a)) = w(a) for z € T, £ € X,
and a € A. The universal covariant representation (kx,ka) clearly admits
a gauge action. The gauge invariant uniqueness theorem [25, Theorem 6.4]
asserts that an injective covariant representation (¢, 7) admits a gauge action
if and only if ¢ x 7 is injective.

2.5 (C-multiplier correspondences

Let (X, A) be a C*-correspondence, C' be a C*-algebra, and x : C' — M (A) be
a nondegenerate homomorphism. The C-multiplier correspondence Mo (X) of
X and the C-multiplier algebra Mc(A) of A are defined by

Mco(X) :={m e M(X) : orma)(c(C))mUm - x(C) C X},

Mc(A) :={a € M(A) : k(C)aUakr(C) C A}.

13
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Under the restriction of the operations (2.1) and (2.2), (Mc(X), Mc(A)) be-
comes a C*-correspondence ([12, Lemma A.9.(2)]).

Notations 2.5.1. We mean by M4(X) the A-multiplier correspondence
Ma(X) = {m € M(X) s pa(A)m C X}
determined by k = id4, and by M4(IC(X)) the A-multiplier algebra
Ma(K(X)) = {m € M(K(X)) : pa(A)m Umea(A) € K(X)}

determined by the left action 4.

Note that K(Ma(X)) C M4(K(X)) ([12, Lemma A.9.(3)]).

The C-strict topology on M (X) is the locally convex topology whose neigh-
borhood system at 0 is generated by the family {m : ||@ara)(k(c))m|| < €} and
{m :|lm - k(c)|]| < €} (c € C, € >0). The C-strict topology is stronger than
the relative strict topology on M (X), and Mq(X) is the C-strict completion
of X. Likewise, the C-strict topology on Mc(A) is the locally convex topology
defined by the family of seminorms ||k(c) - || + || - k(¢)|| (c € C).

Remark 2.5.2. Let (X, A) be a C*-correspondence and M¢,(X) be the Cj-
multiplier correspondence determined by a nondegenerate homomorphism k; :
C; = M(A) (i = 1,2). It is clear that if x1(C}) is nondegenerately contained
in M(k2(C2))(C M(A)), then M¢, (X) € Me,(X) and the Cy-strict topology
on Mc, (X) is stronger than the relative Cy-strict topology. In particular,
Mc(X) € Ma(X) and the C-strict topology is stronger than the relative A-
strict topology.

For a possibly degenerate correspondence homomorphism, we still have an
extension by [12, Proposition A.11]. Let (¢, 7) : (X, A) — (Mp(Y), Mp(B))
be a correspondence homomorphism, where (Mp(Y'), Mp(B)) is a D-multipli-
er correspondence determined by a nondegenerate homomorphism xp : D —
M(B). Assume that k¢ : C' — M(A) and A : C — M(kp(D))(C M(B)) are
nondegenerate homomorphisms such that

m(ke(c)a) = Ae)w(a) (ce C, a € A).

14
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Then (¢, m) extends uniquely to a C-strict to D-strictly continuous correspon-
dence homomorphism

(,7) : (Mc(X), Mc(A)) — (Mp(Y), Mp(B)),

where (Mo (X), Mc(A)) is the C-multiplier correspondence determined by k.

Remarks 2.5.3. (1) If (¢, 7) is nondegenerate, then every C-strict to D-
strictly continuous extension of (¢, 7) coincides with the restriction of its usual
strict extension.

(2) Suppose that 1, : M¢,(X) — Mp,(Y) are Cj-strict to D;-strictly con-
tinuous extensions (i = 1,2). If Mg, (X) € Me,(X) and Mp,(Y) C Mp,(Y)
and if the C'j-strict and D;-strict topologies are stronger than the relative Cs-
strict and Ds-strict topologies, respectively, then v, = 1,| Me, (X)-

We will frequently need the following special form of [12, Proposition A.11].

Theorem 2.5.4 ([12, Corollary A.14]). Let (¢, 7) : (X, A) — B be a repre-
sentation with m nondegenerate. Then

(i) (v, m) extends uniquely to an A-strictly continuous correspondence ho-
momorphism
(1, 7) « (Ma(X), M(A)) — Ma(B),

where Ma(B) is the A-multiplier algebra determined by .

(ii) w(l)_lC(X) — B extends uniquely to an A-strictly continuous homo-
morphism Y1)« Ma(K(X)) — M4(B); moreover,

W:E(I)

on K(Ma(X)), that is, v (mn*) = P(m)p(n)* for m,n € Ma(X).

15
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CHAPTER 2. PRELIMINARIES

2.6 Reduced and dual reduced Hopf
(C*-algebras
By a Hopf C*-algebra we always mean a bisimplifiable Hopf C*-algebra in

the sense of [3], that is, a pair (5, A) of a C*-algebra S and a nondegenerate
homomorphism A : S — M(S ® S) called the comultiplication of S satisfying

(i) A®Rido A =id ® Ao A;

(i) AS)Amsy ®8) =95®@ 8 =A(S)(S® Las)).

Let G be a locally compact group. Then (Cy(G),Aq) is a Hopf C*-algebra
with the comultiplication Ag(f)(r,s) = f(rs) for f € Co(G) and r,s € G.
The full group C*-algebra C*(G) equipped with the comultiplication given by
r — r®r for r € G is also a Hopt C*-algebra. The same is true for the reduced
group C*-algebra C(G) such that the canonical surjection A : C*(G) — C*(QG)
is a morphism in the sense of [3] (also see [40, Example 4.2.2]).

Let ‘H be a Hilbert space. A unitary operator V' acting on H ® H is said
to be multiplicative if it satisfies the pentagonal relation VioVi3Ves = VosVio,
where we use the leg-numbering notations V;; such that Vi» € L(H Q@ H Q@ H)
denotes the unitary V ® 1 for example (see [3, p. 428]). For each functional
w € L(H)., define the operators L(w) and p(w) in L(H) by

Lw)=w®id(V), pw)=idxwV),

where the maps w ® id and id ® w denote the usual strict extension to the

multiplier algebra M (IC(H)QK(H))(= L(H®H)). The reduced algebra Sy and

~

the dual reduced algebra Sy are defined as the following norm closed subspaces

of L(H):

Sy ={Lw):we LH).}, Sv={pw):weLlH).}

They are known to be nondegenerate subalgebras of £(#) ([3, Proposition 1.4]).

16
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A multiplicative unitary V acting on H ® H is said to be well-behaved if
both Sy and Sy are Hopf C*-algebras with the comultiplications

Ay(s) =V(s@)V* Ay(z)=V(1®z)V (2.4)

forse Sandz e S, and Ve M(S®S) ([40, Definition 7.2.6.i)]).

Remark 2.6.1. When we consider a well-behaved multiplicative unitary V,
we will not need the last property V € M (§ ® S). In fact, we only need
the property that V' gives rise to two Hopf C*-algebras Sy and §V. We use
the terminology of well-behavedness just because we do not want to define
a new terminology. It should be stressed though that many important and
significant Hopf C*-algebras come from well-behaved multiplicative unitaries
the class of which includes those with regularity [3], manageability [47] and
modularity [38]. In particular, locally compact quantum groups [31] are the
Hopf C*-algebras arising from well-behaved multiplicative unitaries.

For a locally compact group G, let W and WG be the regular multiplicative
unitaries acting on L?(G) ® L*(G) by

(ch)(n S) = £(T> T_18)7 (/ch) (T‘, 8) - §(87’, S)

for ¢ € C.(G x G) and r, s € G. It can be shown that Sy, = C}(G) = §/Vl7@ as

T

Hopf C*-algebras. Let ug and fig be the nondegenerate embeddings Cy(G) —
L(L*(G)) given by

(uc(NR)(r) = f(r)h(r),  (fc(f)R)(r) = f(r~)h(r) (2.5)

for h € C.(G). Then ug and fig are isomorphisms from the Hopf C*-algebra
Co(G) onto Sw,, and Sy, respectively (see for example [40, Example 9.3.11]).

2.7 Reduced crossed products A x §

By a coaction of a Hopf C*-algebra (S, A) on a C*-algebra A we always mean
a nondegenerate homomorphism § : A — M (A ® S) such that

17
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(i) ¢ satisfies the coaction identity 0 ® id o § =id @ A o 6;

(ii) ¢ satisfies the coaction nondegeneracy 6(A)(1ya)®S) =A® S.

Let V' be a well-behaved multiplicative unitary acting on H ® H. Let ¢ be
a coaction of the reduced Hopf C*-algebra Sy on A and ¢, : Sy — M(K(H))
be the inclusion map. We denote by 6, the following composition

0, =ida®tg,00: A— MARK(H)). (2.6)

The reduced crossed product A X §V of A by the coaction ¢ of Sy is defined
to be the following norm closed subspace of M (A ® K(H))

A5 Sy = 6,(A) (Larcay ® Sv),

where 1,7(4) ®§V denotes the image of the canonical embedding §V — M(A®
KC(H)). By [3, Lemma 7.2], A x5 Sy is a C*-algebra.

Remark 2.7.1. In the literature, the reduced crossed product A s §V is
usually defined as a subalgebra of £4(A ® #) which can be identified with
M(A® KC(H)). For the arguments concerning multiplier correspondences and
the relevant strict topologies, it seems to be more convenient to work with
M(A® K(H)) rather than £4(A ® H). This leads us to regard A x Sy as a
subalgebra of M (A ® K(H)).

Let G be a locally compact group and A be a C*-algebra. It is well-known
that there exists a one-to-one correspondence between actions of G on A and
coactions of Cy(G) on A: to each action « there corresponds a coaction 6°,
and to a coaction ¢ there corresponds an action o such that

for a € A and r € G. Moreover, if a : G — Aut(A) is an action, then the
reduced crossed product A x,, , G coincides with the crossed product A X o, SWG
by the coaction

6g:idA®ﬂG05a1A—>M<A®S/WG)

18
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when viewed as subalgebras of M(A®RK(H)) (see for example [40, Chapter 9]).
We will freely use these facts in the proof of Corollary 5.2.5, Theorem A.2.1,
and Corollary B.2.3 with no further explanation.

A nondegenerate coaction of G on a C*-algebra A is an injective coaction

d of the Hopf C*-algebra C*(G) on A ([13, Definition A.21]). Let
Oy =ida®A0d: A= MA®CHG)) = M(A® Sw,). (2.7)

The crossed product A x5 G by ¢ is defined to be the reduced crossed crossed
product A x5, Sw, by dx ([13, Definition A.39]).

19
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Chapter 3

Coactions of Hopf C'*-algebras
on C*-correspondences

In this chapter, we define a coaction of a Hopf C*-algebra S on a C*-corre-
spondence (X, A) which unifies two notions of an action and nondegenerate
coaction of a locally compact group on a C*-correspondence. We prove that
a coaction of S on (X, A) induces a coaction of S on the associated Cuntz-
Pimsner algebra Ox under an invariance condition (Theorem 3.2.7). This
generalizes both [18, Lemma 2.6.(b)] for group actions and [23, Proposition 3.1]
for group coactions.

3.1 The extensions (ky ® id, ks ® id)

In this section, we prove among others that for a C*-correspondence (X, A)
and a C*-algebra C, the relation (kx ® ido)(l) 0 Yapc = ka ®ide on Jx @ C
is still valid on the strict closure of Jx ® C' (Lemma 3.1.3).

Recall that the C*-correspondences considered in this dissertation are al-
ways nondegenerate.

Notations 3.1.1. Let (X, A) be a C*-correspondence and C' be a C*-algebra.
Consider the representation (kx ®id¢, ka ®ide) : (X ®C,ARC) - Ox @ C.
Since k4 ® ide is nondegenerate, kx ® ide extends to the (A @ C)-strictly
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continuous map
kx ®ide : MA®C(X X O) — MA@C(OX X C)

by Theorem 2.5.4.(i). Throughout the dissertation, we mean by kx ® id¢ this
extension, and by Mugc(Ox ® C) the (A ® C)-multiplier algebra determined
by ka4 ®ide. On the other hand, (Mc(X ® C), Mc(A® C)) is the C-multiplier
correspondence determined by the embedding C' — M (A ® C') onto the last
factor.

For an ideal I of a C*-algebra B, let
M(B;I):={me€ M(B): mBUBm C I}

By [22, Lemma 2.4.(1)], M(B;I) is the strict closure of I in M(B).

Lemma 3.1.2. Let (X, A) be a C*-correspondence. Then the ideal Jyr,(x) s
contained in the strict closure of Jx, that is,

Jaiax) © M(A; Ix).

Proof. We need to show that the ideal AJys,(x) is contained in Jx. By defini-
tion, we have

Pa(Adu,(x)) C pa(A)K(Ma(X)) C pa(A)Ma(K(X)) C K(X).
We also have

AJMA(X) kergpA g JMA(X) kergpM(A) = 0.
Consequently, AJy,x) € Jx. O

The next lemma, contained in the proof of [23, Lemma 2.5], will be useful
in proving Theorem 3.2.7, Proposition 5.1.5, and Theorem 5.2.1.

Lemma 3.1.3. Let (X, A) be a C*-correspondence and C be a C*-algebra.
Then

(k‘X & idc)(l) O YM(ARC) = ks ®ide (31)
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C*-CORRESPONDENCES

holds on M(A® C; Jx ® C), that is, the diagram

Mage(K(X & C))
WM(A@C’)T

MA®C;Jx ®C)

(kx®idc)™

Muzc(Ox @ C)

ka®ido

commutes.

Proof. By definition, the vertical map makes sense and is (A ® C)-strictly
continuous. Also, Theorem 2.5.4.(ii) says that (kx ® idg)®) extends (4 ® C)-
strictly to the homomorphism (kx ® idg)™) indicated by the lower right arrow.
Hence the composition on the left side of (3.1) is well-defined on M (A®C; Jx®
(') and (A ® C)-strictly continuous. On the other hand, the horizontal map
is the restriction of the usual strict extension k4 ® ide and (A ® C)-strictly
continuous. Since (3.1) is valid on Jx ® C' by Remark 2.3.1, the conclusion now
follows by (A® C)-strict continuity and the fact that Jx ® C'is (A® C)-strictly
dense in M(A® C; Jx ® C). O

Remarks 3.1.4. (1) Let (¢, 7) : (X, A) — C be a covariant representation
such that 7 is nondegenerate. Then the relation W ° ¢4y = T holds on
M (A; Jx) for the strict extension (¥, 7) : (Ma(X), M(A)) — Ma(C). In
particular, (¥, %) is covariant. A proof of this can be given in the same way as
the one of Lemma 3.1.3.

(2) Let (p,w) : (Y,B) — (Ma(X), M(A)) be a nondegenerate correspon-
dence homomorphism such that w(Jx) € M(A; Jx), that is, (p,w) is Cuntz-
Pimsner covariant in the sense of [22, Definition 3.1] (see also [22, Lemma 3.2]).
Let (1, m) be as above. Then the representation (Yop, Tow) : (Y, B) — M4(C)
is covariant. Indeed, (1o p)® =M o pM on K(Y), and gasay ow = pM o pp
by [22, Lemma 3.3]. It then follows that

(100/?)(1)0%03ZWOP(I)OSOB:WOSOM(A)OWZWOM

on Jy, and consequently, (¢ o p, 7 o w) is covariant.
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Recall from [6, Definition 12.4.3] the following terminology. Let A and C

be C*-algebras and J be a closed subspace of A. The triple (J, A, C) is said
to satisfy the slice map property if the space

F(JLAC)={z e A C: (ild®w)(z) € J for w € C*}

equals the norm closure J ® C' of the algebraic tensor product J©®C in A® C.

Remarks 3.1.5. (1) If J is an ideal of A, then (J, A, C) satisfies the slice map
property if and only if the sequence

0 —>J®C—ARC — (A/J)@C —0

is exact; this is the case if A is locally reflexive or C' is exact (see below [6,
Definition 12.4.3]).

(2) Let ‘H be a Hilbert space. If C' is a C*-subalgebra of £(#), then
F(J, A, C) equals the norm closure of the following space

{re A C: ([d®w)(z) € J for w € L(H).}.

Indeed, let E be the latter space. Obviously the closure E contains F(J, A, C).
Conversely let z € E, w € C* with ||w|]| =1, and € > 0. Take an zp € A® C
with ||z — x¢|| < €. Since the unit ball of £L(H), is weak-star dense in the
unit ball of L(H)*, we can choose an wy € L(H). such that |lwy|| = 1 and
| (ida @ w)(x) — (ida @ wp)(x0)|| < €. The triangle inequality then verifies that

[(ida ® w)(z) — (ida ® wo)(2)]| < |[(ida ® w)(z — z0)||
+ [I(ida ® w)(zo) — (ida & wo) (o) ||
+ ||(ida ® wo)(xo — 2)|| < 3e.

This prove that (id4 ® w)(x) € E since (ids ® wy)(z) € E.

Corollary 3.1.6. Let (X, A) be a C*-correspondence and C' be a C*-algebra.
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Suppose that (Jx, A, C) satisfies the slice map property. Then
JX@C = JX ® C

Furthermore,
IMage(xac) © MA®C;Jx ®C)

and the injective representation

(]fX ®ide, ka ® ldc) : (MA®C<X X C),M(A X C)) — MA®C(OX (029 C)
1S covariant.

Proof. We always have Jxgc 2 Jx ® C as shown in the first part of the
proof of [23, Lemma 2.6]. We thus only need to show the converse Jxgc C
F(Jx,A,C) = Jx ®C. But, this can be done in the same way as the second
part of the proof of [23, Lemma 2.6], and then the first assertion of the corol-
lary follows. Lemma 3.1.2 then verifies the second assertion on the inclusion.
Finally, since @ar(aec) maps Jar,,o(xec) into K(Mage(X @ C)) on which

(bx @)D = kix @ 1do

by Theorem 2.5.4.(ii), the representation is covariant by Lemma 3.1.3. H

Corollary 3.1.7. Under the same hypothesis of Corollary 3.1.6, the injective
representation

(kx ®ide,ka®ide) : (X ®C,ARC) - Ox & C

is covariant and the integrated form (kx ®id¢) X (ka®ide) : Oxge — Ox RC
1S a surjective isomorphism.

Proof. Generally we have Jy C Jy, vy for a C*-correspondence (Y, B) since
Jy is an ideal of M(B) and is mapped injectively into K(Y) C K(Mp(Y))
by ¢mp). Hence Jxgo C Juygo(xec), and therefore (kx ® ide, ka ®ide) is
covariant by Corollary 3.1.6. The integrated form is clearly surjective. Since
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(kx,ka) admits a gauge action, and hence so does (kx ® id¢, k4 ® id¢), the
integrated form must be injective by [25, Theorem 6.4]. O

3.2 Coactions on C*-correspondences and
their induced coactions

Definition 3.2.1. A coaction of a Hopf C*-algebra (S, A) on a C*-correspond-
ence (X, A) is a nondegenerate correspondence homomorphism

(0,0) : (X, A) > (M(X®S),M(A®S))
such that
(i) ¢ is a coaction of S on the C*-algebra A;
(ii) o satisfies the coaction identity 0 ®idg oo =idx @ A o 0;

(iii) o satisfies the coaction nondegeneracy

omaes) (I ®S)o(X) =X ® 8.

Note that the strict extensions ¢ ® idg and idy ® A in (ii) are well-defined
because the tensor product of two nondegenerate correspondence homomor-
phisms is also nondegenerate ([13, Proposition 1.38]).

Remarks 3.2.2. (1) If we replace in Definition 3.2.1 the requirements on the
left actions such as the compatibility o(¢a(a)§) = Ymazs)(6(a))o(§) and
the coaction nondegeneracy by the corresponding requirements on the right
actions, we get the notion of coaction of a Hopf C*-algebra S on a Hilbert
A-module X given in [3, Definition 2.2].

(2) It should be noted that

o(X) Iy ®S) =X @S,
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which follows by the same argument as [13, Remark 2.11.(1) and (2)]. We then
have 0(X) C Mg(X ® S) C Mags(X ® 9).

Remark 3.2.3. Let G be a locally compact group and (X, A) be a C*-cor-
respondence. We show in Theorem A.2.1 that every action of G on (X, A) in
the sense of [13, Definition 2.5] determines a coaction of the Hopf C*-algebra
Co(G) on (X, A), and one can define in this way a one-to-one correspondence
between actions of G on (X, A) and coactions of Cy(G) on (X, A). On the other
hand, a nondegenerate coaction of G [13, Definition 2.10] is by definition a
coaction (a,0) of the Hopf C*-algebra C*(G) on (X, A) such that ¢ is injective.
Definition 3.2.1 thus unifies the notions of actions and nondegenerate coactions
of locally compact groups on C*-correspondences.

By Proposition 2.27 (Proposition 2.30, respectively) of [13], an action (non-
degenrate coaction, respectively) of a locally compact group G on (X, A) deter-
mines an action (coaction, respectively) of G on K(X), and the left action ¢4
satisfies an equivariance condition. The next proposition generalizes this in the
Hopf C*-algebra setting. Recall that we identify IC(X; ® X5) = K(X;) @ L(X3)
for two Hilbert modules X; and X5. In particular, if (X, A) is a C*-correspond-
ence and C' is a C*-algebra then (X ® C) = K(X) ® C because £(C) = C.

Proposition 3.2.4. Let (0,0) be a coaction of a Hopf C*-algebra S on a C*-
correspondence (X, A). Then the nondegenerate homomorphism

oM K(X) = MK(X ®8)) = M(K(X)®S)

is a coaction of S on IC( ) and the left action o4 is 6-0V) equivariant, that
is, o4 @idgod = oW oy, If § is injective then so is o).

Proof. Let S = (S,A). For £,n € X, we have

(0 ®ids)D(c(&)a(n)*) = 0 @ids(a(£)) (0 @ids(a(n)))”
1dX®A () (idx @ A(o(n))”
= (idx @ A)W(a(§)a(n)")
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by the second relation of (2.3) and the coaction identity of o. It then follows
by Remark 2.3.1 that

o @idg 0 oM (be,) = (0 ®ids)D (0(&)a(n)*)

— iy ® A (o(&)o(n)’)
~ en A 00 (0,

which verifies the coaction identity of ¢(!). We also have

U(l)(IC<X))(1M(IC(X)) & S) =o(X O'(X)*QOM(A®5)(1M( A) & S)

(X)
= o(X) (Prraes) (L) © S) o(X))"
:U(X)((U(X)'UM ®9)) - (Luea) ©5))”
= (0(X) - (Lara) ® 9)) (0(X) - (Lagay ® )
=(X® 99X ®S)* =K(X®59),

(3.2)
in the third and fifth step of which we use the coaction nondegeneracy of o.
This shows that (") satisfies the coaction nondegeneracy, and thus o) is a
coaction.
The first relation of (2.3) and the fact that (o, ) is a correspondence ho-
momorphism yield

oW (pa(a)) o (&) = a(pa(a)f) = Purass)(9(a)) o(S).

for a € A and § € X. Multiplying by 1y/4) ® s on both end sides from the
right gives

m(SOA(CL))(U(f) “(Lpeay ® 5)) = ¢M(A®S)(5(a))(0(f) “(Laeay ® 5))

which leads to oM (p4(a)) = ©um(aes)(0(a)) by the coaction nondegeneracy of
o. But oyaes) = v ®idg by definition, and then the §-0(!) equivariancy of
w4 follows.

For the last assertion, see the comment below [25, Lemma 2.4]. [
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Definition 3.2.5. Let (0,d) be a coaction of a Hopf C*-algebra S on a C*-
correspondence (X, A). We say that the ideal Jy is weakly §-invariant if

0(Jx) (I ®S8) C Jx ® S.

Remark 3.2.6. The coaction nondegeneracy of § implies that Jx is weakly
d-invariant if and only if §(Jx)(A® S) C Jx ® S, namely

5(Jx) C M(A® S; Jxy @ S).

Under the assumption of the last inclusion in Remark 3.2.6 with S = C*(G),
it was proved in [23, Proposition 3.1] that every coaction of a locally compact
group G on (X, A) induces a coaction of G on the associated Cuntz-Pimsner
algebra Ox. Modifying the proof of [23, Proposition 3.1] we now prove the
next theorem.

Theorem 3.2.7. Let (0,6) be a coaction of a Hopf C*-algebra S on a C*-
correspondence (X, A) such that the ideal Jx is weakly §-invariant. Then the
representation

(kX ® idg o o, kZA®id505) : (X,A) — MA@S(OX ®S)

is covariant, and its integrated form ¢ := (kx ® idg o 0) X (ka ®idg 0 d) is a
coaction of S on Ox such that the diagram

(9,9)

(X, A) (Mags(X ® S), M(A® S))
(kakA)l/ l/(k‘x@ids,k,é,@ids) (33)

Ox Mags(Ox ® )

¢

commutes. If § is injective then so is (.

Proof. Let us first prove that (kx ® idg o 0, k4 ® idg 0 §) is covariant, that is,
(kx ® idg OO')(l) opg=ksg®idgod
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on Jx. Since 0(X) € Mugs(X ®S) and thus M (K(X)) C K(Mags(X ®9)),
we have
(Fx ®1dg 0 0)"Y = (kx @ idg)® o gV

on K(X) by Theorem 2.5.4.(ii). We then have

(fx @ids 0 0)" 0 ps = (kx ®ids)D 0 0V 0 0
= (kx ®ids)M) 0o Pags 0§

on Jy since 0V o ps = Pags 0 d by [22, Lemma 3.3]. Hence, the requirement
that (kx ® idg 0 0, ks ® idg 0 §) be covariant amounts to that

(kx ®idg)M o Pags 00 =ka ®idgod
holds on Jx. By Remark 3.2.6, this equality will follow if we show that
(kx ®@ids)M o Pags = ka @ ids

on M(A® S; Jx ® S). But, this is the content of Lemma 3.1.3, and therefore
the representation (kx ® idg o 0, k4 ® idg 0 §) is covariant.

We now show that ¢ is a coaction of (S, A) on Ox. Since

(Imoy) ® S)C(kx (X)) = ka ®@ids(Laa) ® S)kx ®@ids(o(X))

= k?X X ldS(SOM(A@)S)(lM(A) X S) O'(X))
=kx(X)® S,

we have

((kx (X)) (Laox) ®5) = ((Laroy) ® S)((kx(X))) = kx(X)*© S.

We also have ((kx(X))(1moy) ® S) = kx(X) ® S. From these and the coac-
tion nondegeneracy of §, we can deduce that { satisfies the coaction nondegen-
eracy.

The coaction nondegeneracy of ¢ implies ((Ox) C Mags(Ox ® S), and
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then we have the commutative diagram (3.3).

We can easily see that ( ® idgo (0 ks =idp, ® Ao ok, by (3.3), strict
continuity, and the coaction identity of §. To prove the corresponding equality
for kx, we first note the followings. Let x € A ® S and m € Mags(Ox ® S).
Then

(C ®@ids)((ka ®ids)(z)m) = ks @ idg ® ids ((6 ® ids)(z)) ¢ @ idg(m),

and similarly for (( ®ids)(m (ka ®ids)(z)) and (ido, @ A)(m (ka ®@ids)(z)).
From these relations and also the nondegeneracy of § ® idg and idy ® A, we
deduce that the restrictions

C@ids, id@X & A MA@S(OX X S) — MA@S@S(OX & S@ S)

are (A ® S)-strict to (A ® S ® S)-strictly continuous (cf. [12, Lemma A.5]).
Therefore the following compositions

C®id30k}x®ids, id(f)X@AOk}X@idSZ
Mags(X ® S) = Magses(Ox @ S® ) (3.4)

are (A ® S)-strict to (A ® S ® S)-strictly continuous. Similarly, both maps

0'®id5, idy QA MA®S(X®S) — MA®S®S(X®S®S)

are (A ® S)-strict to (A ® S ® S)-strictly continuous, and hence so are the
maps

kx ®idg ® idg oo ® idg, kx ® idg ®idgoidx ® A :
Mugs(X ® S) = Magses(Ox @ S®S). (3.5)
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Since the equalities

(®idgokyxy ®idg = kx ®ids ®idg o 0 ® idg,
kX®id5®idSOidX®A:id@X®AO/€X®id5

hold on X ® S which is (A ® S)-strictly dense in Mygs(X ® S) and since
(X) C Mags(X ® 5), we now have

(®idgo(okxy =(®idgsoky ®idgoo
=kx®idg®idgoo ®idgo o
=kx ®idg ®idgoidy ® Ao o
:idoX®AokX®idSOJ:WoCokX

by the (A ® S)-strict to (A ® S ® S)-strict continuity of the maps of (3.4)
and (3.5) and also by the coaction identity of o. Thus ( satisfies the coaction
identity.

For the last assertion of the theorem, assume that ¢ is injective. We only
need to show by [25, Theorem 6.4] that the injective covariant representation
(kx ®idg 0 0, ks ®idg 0 §) admits a gauge action. Let 5 : T — Aut(Ox) be
the gauge action. Note that for each z € T, the strict extension 5, ® idg on
M(Ox ® S) maps Mags(Ox ® S) onto itself. Then the composition

(62 Ridgoky ®idg, 8, ®idgo ks ® ldS) :
(MA®S<X (24 S),M(A@ S)) — MA®S(OX X S) (36)

gives a representation which is clearly (A ® S)-strictly continuous. Since the
equalities

ﬁz X ldS e} .I{ZX X 1d5(m) = Zk?X & 1d5(m),
52 X ids oks® ids(ﬂ) =ks® idg(ﬂ)

are valid form € X® S and n € A® .S, and the representation (3.6) is (A®.S)-
strictly continuous, the above equalities still hold for m € Myg(X ® S) and
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neM(A®S). Since 0(X) C Mags(X ®.5), it thus follows that

ﬁz®id50kx®id500':ZkX®idSOO',

and similarly that 8, ® idgo ks ® idg 0 d = ks ® idg o . This proves that the
restrictions of 5, ® idg to ((Ox) (z € T) define a gauge action of T on ((Ox),
which establishes the theorem. O

Definition 3.2.8. We call ¢ in Theorem 3.2.7 the coaction induced by (o, 9).

Remarks 3.2.9. (1) Let G be a locally compact group. If (o,d) is a coaction
of Cy(G) on (X, A), then §(Jx)(1aa) ®S) = Jx ® S by [18, Lemma 2.6.(a)]
and Theorem A.2.1. Hence, Jy is automatically weakly d-invariant in this

case.

(2) Replacing in the diagram (3.3) the (A ® S)-multiplier correspondence
and (A ® S)-multiplier algebra by (Mg(X ® S), Ms(A® S)) and Ms(Ox ® S),
respectively, we can regard (kxy ®idg, k4 ® idg) as the S-strict extension by
Remarks 2.5.3.(2).
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Chapter 4

Reduced crossed product
correspondences

This chapter is dedicated to constructing the reduced crossed product corre-
spondence (X x, 5, A x5 S) from a coaction (o,8) on (X, A) of a Hopf C*-
algebra S defined by a well-behaved multiplicative unitary. When the Hopf
C*-algebra coaction under consideration comes from a group action or non-
degenerate group coaction, the C*-correspondence (X X, S , A X S ) is shown
to be equal to the crossed product correspondence in [13] (see Remark 4.2.4).
The first section proves the Baaj-Skandalis type lemma for C*-correspond-
ences (Lemma 4.1.5), which serves as a technical tool for the construction of
(X X, S, A xg §) The last section constructs (X X, S, A g §) and provides
some consequences of the construction needed to prove our results to be ob-
tained in Chapter 5.

4.1 Baaj-Skandalis type lemma for
C*-correspondences

Recall that the Toeplitz algebra Tx is the C*-algebra generated by ix(X) and
ia(A), where (ix,i4) is the universal representation of (X, A) ([25]). The
following lemma is a Toeplitz algebra analogue of Corollary 3.1.7.
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Lemma 4.1.1. Let (X, A) be a C*-correspondence and C be a C*-algebra.
Then the injective representation

(ix®idc,iA®idc) : (X@C,A@C) —Tx®C

gives rise to an isomorphism from Txgc onto Tx @ C.

Proof. By the universality of the Toeplitz algebra Txec, there exists a homo-
morphism ¥ : Txge — Tx ® C such that V(ixge(§ @ ¢)) = ix(§) ® ¢ and
U(igge(a @ c)) = igla) @ ¢ for £ € X, a € A, and ¢ € C. Clearly, VU is
surjective.

To see that W is injective, we first note that (ix ® ide,i4 ® ide) admits a
gauge action. Thus, we only need to show by [25, Theorem 6.2] that the space

I'={zecA®C: (ia@id)(r) € (ixy ®ide) V(K(X © C)) =i P (K(X)) ® C}

is zero. But for x € I' and w € C¥, applying the slice map idr, ® w to
(iA X ldc)(l‘) yields

(idr ®@w)((ia @ ide)(x)) = ia((ids @ w)(x)) € i (K(X)),

which implies by [25, Theorem 6.2] that (id4 ® w)(x) = 0. Therefore, z = 0 as
desired. 0

In what follows, for ¢ € C' and w € C*, we denote by wc and cw the
functionals on C' given by

(we)(b) = w(ceb), (cw)(b) =w(be) (be C).

Proposition 4.1.2. Let (X, A) be a C*-correspondence, C' be a C*-algebra,
and w € C*. Then the slice map idx ©@w : X ® C — X extends uniquely to a
strictly continuous linear map

idy ®@w: M(X®C) - M(X)

between the two multiplier correspondences.
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Proof. Uniqueness assertion will follow immediately once we show the existence
of a strict extension of idx ® w since X ® C' is strictly dense in M (X ® C).

By Lemma 4.1.1, X ® C can be embedded isometrically into Ty ® C.
Restricting to X ® C' the slice map id7, ®w on Ty ® C, we thus obtain a norm
continuous extension idy @ w : X ® C' — X of idy ® w.

We claim that the map idx ®w just obtained is strictly continuous. Indeed,
let {z;} be a net in X ® C' converging strictly to an z € X @ C, T' € K(X),
and a € A. Factor w into wic; or cawsy for some wy,ws € C* and ¢1, ¢y € C.
(The Hewitt-Cohen factorization theorem allows us to do this; see for example
[37, Proposition 2.33].) By norm continuity, we have

T(idx ® (wier))(y) = (idx @) (T @ er)y) (y € X ©0).

Hence the net {T'(idx ®wic1)(z;)} = {(idx ®w;)((T'®cy)z;)} in X converges to
(idy @w1)((T®¢p)x) = T(idy ®wier)(z) again by norm continuity. Similarly,
{(idx ® cows)(x;) - a} converges to (idx ® caws)(x) - a, which proves our claim.

By standard argument on continuous extensions (for example, see [30,
Proposition 7.2]), idy ® w extends strictly to all of M (X ® C). O

Remarks 4.1.3. (1) We note that X, D M(X), 2 (X)TStr, where X,
and M(X), are, respectively, the rballs in X and M(X), and the closures
are taken with respect to the strict topology. In particular, Zm = M(X),.
One can see the first inclusion by considering an approximate identity for A
with the norms bounded by 1. For the second, let m € M(X)Tsw, a € A with
la|l = 1, and € > 0. Take a net {m;} in M (X), strictly converging to m. Then

|m-a—m;-a|| < e for some i so that [|[m-al| < ||m-a—m;-a||+|m;-al < e+r.
This verifies that |[m|| < r and then the second inclusion follows.

(2) The strict extension idy ® w on M(X ® C) is norm bounded with
lidy ® w|| < [|w||. Indeed, let 2 € M(X ® C) with ||| = 1 and {u;} be an
approximate identity of A ® C with [ju;|| < 1. Then idy ® w(z) is the strict
limit of (idy ®w)(z-u;) by Proposition 4.1.2, and the latter vectors have norms

at most ||w|| by the proof of Proposition 4.1.2. The conclusion then follows by
the previous observation.

In the rest of this chapter and the next one, we restrict our attention to
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coactions of reduced Hopf C*-algebras defined by well-behaved multiplicative
unitaries.

Notations 4.1.4. Until the end of Chapter 6, we will denote by H the Hilbert
space on the two-fold tensor product of which a well-behaved multiplicative
unitary V acts. To simplify notation, we often write S and S for the “reduced”
and “dual reduced” Hopf C*-algebras Sy and §V defined by V', respectively.

Let (0,0) be a coaction of S on (X, A) and g : S — M(K(H)) be the
inclusion map. As ¢, in (2.6), we denote by o, the composition

o, =idx ® 15 00,

where idy ® tg is the strict extension. Evidently, (¢,,4,) is a nondegenerate
correspondence homomorphism:

(9:,6:)

(X, A) (M(X®KH)), M(ARK(H)))

(0,9) (Idx®ts,ida®tLs)

(M(X®S),M(A®YS))

If B is a C*-algebra, the canonical embeddings of x &€ S and s € S in
M (B ® K(H)) will be written as 1,z ® x and 1yp) ® s.

The next lemma generalizes [3, Lemma 7.2]. The proof is not significantly
different, but we provide it here for the reader’s convenience.

Lemma 4.1.5. Let (0,6) : (X, 4) - (M(X ®S), M(A® S)) be a coaction of
S on a C*-correspondence (X, A). Then the norm closures in M (X ® K(H))
of the subspaces 0,(X) - (1ara)®@S) and ©rrasicr) (v ®S) 0,(X) coincide.

Proof. Let us show that each of the subspaces is contained in the norm closure
of the other. Let S = Sy be the reduced Hopf C*-algebra obtained from a well-
behaved multiplicative unitary V € L(H ® H). Set % = K(#H). For £ € X
and w € L(H)., let m be the following element of ¢asaz.)(1ara) ® S)o,(X):

m = oy (Iua) @ pw))o.(§) = (idx ® idy @w(V)) 0 0,(§).
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Write Vog = 1pa) @ V € M(A® # ® 7). Similarly, write 0(§)12 = 0(§) ®
L) € M(X®S®S) and 0,(£)12 = idx ® 15 @ tg(0(&)12) € M(X @ X ®
). Consider a net {v;}; in X ® S strictly converging to o(&). Since S is a
nondegenerate subalgebra of M (), we can see that the net {(idy ®t5)(v;) ®
Ly} in M(X ® # ® ) converges strictly to 0,(£)12. Hence we deduce
from Proposition 4.1.2 that

m = idx ®idy ® w(emuerer)(Ves) 0.(E)i2).

We then have

m =idx @idy @ w((Pmasrer)(Vas)o(E)ia - Vas) - Vas)
=idy ®idy @ w(idy ® ts ® ts(idx ® AV(U(f))) : V23)
= idx ®idy @ w(idy ® tg @ 15(0 @idg(o(£))) - Vas)
—idx ®idy @ w (o, @ 1s(0(€)) - Vas)

again by Proposition 4.1.2 and also by the definition of Ay in (2.4) and the
coaction identity of 0. Write w = w's. Then

m =idy ®@idy ® W (ermerer) (L) @ Ly ® s)(0, @ us(o(€))) - Vas).

Since (0, ® tg,0, ® tg) is a correspondence homomorphism,

m =idy ®@idy ® W (0, ® ts(r(aes) (L) @ s)o(§)) - Vas).

The coaction nondegeneracy of ¢ then implies that m belongs to the space

M = ldX ®ld% ®w’((0L X L5>(X ® S) . ‘/23)

in which the elements idy ® id » ® w'((0,(§') ® §') - Va3) for ¢ € X and s’ € S
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are linearly dense by Remark 4.1.3.(2). But

idy ®idy @ W'((0,(€) ® ¢) - Vi) = 1dx @ idy @ w's'(0,( )12 - Vas)
= 0.(£) - (Lm(a) ® p(w's"))
€o,(X)- (1M(A) ® é\),

-~

and therefore m € M C 0,(X) - (1aa) ® S).

For the converse, let m' = 0,(§) - (1a¢a) ® p(ws)). Then

m' = 0,(6) - (Laeay @ idy @ ws(V))
=idx ®@idy @w(0.,(&)12 - ((Laray @ Lasr) ® s)Vas))
= idx ®idy @ w((0, @ 15)(E @ s) - Vas)

so that m’ is an element of the space

M =idy ®id, ®w((oL ®s)(X ®9) - V23)-

By coaction nondegeneracy and the fact that (o, ® tg,0, ® 1) is a correspon-
dence homomorphism, we have

M = dy ® id%/ ®w((m & LS)(SOM(A@)S)(IM(A) (029 S) O'(X)) . ‘/23)
Cidy ® idy @ w(emumsrer) (luw @ L @ S) o, @ ts(0(X)) - Vas).

Since

o, X L5(0'<X>) =idxy ®tsg® Ls((f X ldS(O'(X)))
=idx ® 15 ® 15 (idy ® A(o(X)))
= omaeror)(Vas) 0, (X)12 - Vas
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by coaction identity and strict continuity, we then have

M’ Cidx ®idy ® w(pmerer) (L) © Luwr) © S)Vas)0.(X)12)
C omasy) Ly ® §) 0, (X).

.

Consequently, m’ € M' C @M(A@J()(lM(A) ® S)o,(X). H

4.2 Reduced crossed product correspondences
(X % S,AxS)

For a coaction (o,8) of S on (X, A), we denote by X x, S the norm closure of
the subspaces considered in Lemma 4.1.5:

X x4 8= 0,(X) - (Largay ® S) = earcask)(Larcay ® 8) 0,(X).

The space X x, S is a Hilbert (A x5 S)-module as considered in [7], but more
can be said:

Theorem 4.2.1. Let (0,0) be a coaction of a reduced Hopf C*-algebra S on a
C*-correspondence (X, A). Then (X %, S, AxsS) is a nondegenerate C*-cor-
respondence such that the inclusion

(X %, 5, A x5 8) = (M(X @K(H)), M(A® K(H)))

1s a nondegenerate correspondence homomorphism. The left action P a5 U
injective if w4 is injective. Also,

K(X x, 8) = K(X) x,0 S,
where oM is the coaction in Proposition 3.2.4, and

?.40,5(0.(@) (L @ 7)) = 0 (9a(@)) Ly @ )
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foraEAand:ch.

Proof. Set # = KC(H). The first assertion is clearly equivalent to saying that
the following three conditions are satisfied:

(i) X x, S is a Hilbert (A x5 S)-module with respect to the operations on
the Hilbert M (A ® 2 )-module M (X ® £ ), namely

( (X) - (Largay ® 8)) - (6.(A)(Laray ® 8)) € X =, S,
(0.(X) - (Larcy ® 8), 00(X) - (1 (A)®§)>M(A®% Axs S

| ﬁ

(i) the Hilbert (A x S )-module X X, Sisa nondegenerate C*-correspond-

ence such that ¢, &= QOM(A®1/)|A>45§, namely

ear(asr) (0.(4) Ly ® 8)) 0.(X) - (Lagay ® ) = X %, S;

(iii) the inclusion (X %, 5, Axs5) < (M(X @ %), M(A® %)) is a nonde-

generate correspondence homomorphism, namely

(X%, 8) (AR ) =X@.4, (AxsS)A®X)=AR 1.

The condition (i) is clearly satisfied since (0,,d,) is a correspondence homo-
morphism and (174 ® §)5L(A)(1M(A) ® S) is contained in 0. (A)(Lareay ® S).
Lemma 4.1.5 shows that

orraon) (Lara) @ 8) 0(X) - (Lysay ® §) = 0,(X) - (Lysay @ S).

Since ¢4 is nondegenerate, this equality combined with the following

Puaex)(0.(A) 0.(X) = 0,(pa(A)X)

gives (ii). Since S and S are both nondegenerate subalgebras of M(J¢), we
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have

(X %, 8) (AR H) =0(X) (A SH)
= 0,(X) - (1) ®89) - (A® SH) (4.1)
— (XS Ao ) =XoX

and similarly (A x5 S)(A® %) = A® . This verifies (iii), and the first as-

sertion of the theorem is established. Since ¢, 5 is the restriction of p4 ® id »

which is injective if ¢4 is, the assertion on the injectivity of ¢, 3 follows.
As in the computation (3.2), but using Lemma 4.1.5 instead of coaction
nondegeneracy, we can deduce the equality (X x,5) = (X)) S. Finally,

P15 (@) (Lar(a) @ 7)) = pa @iy 01dy @ 15(3(a)) (Largexy @ @)
= idk(x) ® s 0 pa ©idg(8(a)) (Largex) © )
e 875 0 (e (e & 2
= 017 (a(0)) (L @ ),

in the third step of which we use the §-c(!) equivariancy of ¢4 obtained in
Proposition 3.2.4. This completes the proof. m

Definition 4.2.2. We call the C*-correspondence (X S, A x, §) in Theo-
rem 4.2.1 the reduced crossed product correspondence of (X, A) by the coaction
(0,0) of S.

Remark 4.2.3. We require no universal property of the crossed product A >45§

to define the left action ¢, 5 : A X S — L(X %, §) It is just the restriction
of Parask())-

Remark 4.2.4. For an action (7, «) of a locally compact group G on (X, A),
one can form the crossed product correspondence (X .., G, A X, G) by [13,
Proposition 3.2]. We will see in Corollary B.2.3 that it is isomorphic to the re-
duced crossed product correspondence (X X2 S s Axge S\A ), where (07, 08)
is the coaction of the Hopf C*-algebra Sy glven 1n (B. ) On the other hand,
if (o, 9) is a nondegenerate coaction of G on (X, A) ([13, Definition 2.10]) and
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if oy == idx ® Moo as (2.7), then the crossed product correspondence by (o, §)
in the sense of [13, Proposition 3.9] is just the reduced crossed product corre-
spondence by the coaction (o, d,) of the Hopf C*-algebra Sy,.. Construction
in Theorem 4.2.1 thus extends both of the crossed product correspondences
by actions and nondegenerate coactions of locally compact groups on C*-cor-
respondences.

As in [23, Remark 2.7], we have the following corollary, the proof of which
is routine.

Corollary 4.2.5. Let (0,0) be a coaction of S on (X, A). Then the map
(7%, 4%) 1 (X, A) = (M(X x, ), M(A %5 S))

defined by
]gf(f) cC = UL(S) e jf{(a)c = 5L<a>c

forE e X, a€e A, and c € A X S isa nondegenerate correspondence homo-

morphism such that j$(X) C M, &(X %, 3).

Remarks 4.2.6. (1) It will be seen that jo(Jx) € M(A x4 S; Jxy.5) (see
Proposition 5.1.5). Hence (j%,79) is Cuntz-Pimsner covariant in the sense of
[22, Definition 3.1].

(2) Applying Remarks 3.1.4 for (¢,7) = (ky, g k4,5 and (p,w) =
(7%, 7%), we see that the representation

(Fxu,50 0% kan,g0da) t (X, A) = My, 5Oy, 3)

1S covariant.

42



Chapter 5

Reduced crossed products

In this chapter, we first show that the C*-correspondence (X %, S L AXg S ) has
a representation (kx X, id, k4 x4 id) on the reduced crossed product Ox S.
We then provide a couple of equivalent conditions that this representation is
covariant, which is readily seen to be the case if the ideal Jy g of A X5 S is
generated by the image 0,(Jx) or the left action ¢4 is injective. Under this
covariance condition, the integrated form of the representation (X Xy S VA 155 )
will give an isomorphism between the C*-algebra Ox X, S and the Cuntz-
Pimsner algebra O .

Throughout this chapter, we simply write J# = K(H) as before. The
representation

(bx ®idy, ka ®@idy) : (Magy (X @ ), M(A® X)) = Magy(Ox @ X')

will play an important role in our analysis.

5.1 Representations of (X x S, Ax §) on Oy x5

Recall that ky ® id¢e denotes the (A ® C')-strict extension to Mage(X ® C).

Lemma 5.1.1. Let (X, A) be a C*-correspondence. Let S be a reduced Hopf
C*-algebra and s : S — M (%) be the inclusion. Then the following diagram
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commutes:

(Maps(X ® S), M(A @ §) &t Mstyr (X @ ), M(A® X))

(k;X®id57ka®idS)l l(kx@id)g,kA(X)id%)

MA®5<OX XK S) — MA@%(OX ® %)

idoX Qs

(5.1)

Proof. By [12, Proposition A.11], we see that the upper and lower horizontal
maps are (A ® S)-strict to (A ® J)-strictly continuous. Hence the two com-
positions in (5.1) are (A ® S)-strict to (A ® #)-strictly continuous. Since the
diagram commutes on (X ©® S, A ® 5), the conclusion follows by strict conti-
nuity. O

Corollary 5.1.2. Let (0,6) be a coaction of S on (X, A) such that Jx is weakly
d-invariant. Then o,(X) C Magy (X ® ) and

X %, 8 C Mpgn(X @ ).
Also,
kx ®idy(0.(€)) = G(kx(§)), ka®idy(d.(a)) = ((ka(a)) (5.2)

for& € X and a € A.

Proof. By Theorem 3.2.7, we can consider the induced coaction ¢ on Ox mak-
ing the diagram (3.3) commute. Combining (3.3) and (5.1) we see that

0(X) = idx ©15(0(X)) € Magn (X @ ),

and thus

X %45 = 0,(X) - (1aga) @ S)
C Maony(X@H) MARH) = Magrp(X @),

The equalities of (5.2) are also immediate from (3.3) and (5.1). O
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Remark 5.1.3. From Corollary 5.1.2 (and also from Theorem 4.2.1), we have
an injective correspondence homomorphism

(X %, 5, A%58) = (Magy (X ® ), M(A® ).
We then have
K(X %, 8) € K(Maga (X © #)) € Magr (K(X @ )).

Proposition 5.1.4. Let (0,d) be a coaction of S on (X, A) such that Jx is
weakly d-invariant. Then, the restriction of (kx @ 1idy, ks @ idy) to (X X,
S, A x5 S) defines an injective representation

(kx %, idg, ka ¥gidg) : (X %, 5, A x5 8) = Ox 3¢ S

such that

kx X idg(o,(€) - (Tarcay ®$)) G(kx(8)(1moy) ® ),
ka x51dg(8.(a)(Taray ® x)) = ((ka(a))(Larox) ®$) (5.3)
kx %6 1dg(earacs) (L) © )0 (€)) = (Laroy) @ )¢ (kx (€))

f0r§€X,:v€§, and a € A.
Proof. Since X ., S C Magn (X ® A'), the restriction

(kx %0 idg, ka x5idg) == (kx ® idr |y, g ka @ idr| 4, 3)

makes sense and is an injective representation of (X >4C,§, A>45§) on Myg» (Ox®
). Using the equalities (5.2), we have

kx ¥ 1dg(0,(€) - (Iagay ® 7)) = kx @iy (0,(8) - (Lag(a) © )
=kx® id;g/(UL(é)) ka® id%(lM(A) & J})
= G(kx(£))(Lm(ox) ® )

for ¢ € X and z € S , and similarly for k4 xsidg. This proves the first two

45



CHAPTER 5. REDUCED CROSSED PRODUCTS

equalities of (5.3), and hence (kx X, idg, ka X idg) is a representation on
Ox x¢ S. The last of (5.3) can be seen similarly. O

For an action (v, ) of a locally compact group group G on (X, A), the
ideal Jx. ¢ for the crossed product correspondence (X Xy, G, A x5, G) is
known to be equal to the crossed product Jx X,, G if G is amenable ([18,
Proposition 2.7]) or if G is discrete such that it is exact or o has Exel’'s Ap-
proximation Property ([4, Theorem 5.5]). We now give a partial analogue of
this fact in the Hopf C*-algebra setting.

Proposition 5.1.5. Let (0,9) be a coaction of S on (X, A) such that Jx is
weakly d-invariant. Then

6.(Jx) (Lascay ® 8) € Ty, 5 (5.4)
In particular, if Jx = A then Jy, = AX; S.

Proof. The last assertion of the proposition is an immediate consequence of
the first. Hence we only need to prove (5.4), which will follow by [26, Propo-
sition 3.3] if we show that

ka x5 1dg(6,(Jx) (Taray ® S)) C (kx xpide)V (K(X %, S))

since the representation (kx x, idg, k4 X5 idg) is injective. Let us first note
the following. By Theorem 2.5.4.(ii), we have

(hx @1d ) =iy @idy
on K(Magx (X ® #)). Hence

(kx @id) D (K(X %, 8)) = kiy ®1idy (KX %, 5))
= (kx %, idg)® (K(X %, §))

by Remark 5.1.3 and Proposition 5.1.4.
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In much the same way as the calculation (4.1) in the proof of Theorem 4.2.1,
we see that

8,(Jx)(1aray® S) C M(A® ' Jx © X))

since Jy is weakly d-invariant. It therefore follows by Proposition 5.1.4,
Lemma 3.1.3, and the above equality that

ka x5 idg(6,(Jx)(1arcay @ §))

= ka @ 1dr (6,(Jx)(Laray @ 9))

= (kx ®1idx)M o Yrrasr) (5L(JX)( 4)® S))
= (kx ®@idy)D (o] (SDA(JX))(lM ) ®8))
C T GHT(K(X) 50 §)
= (kx %, idg)M (K (X . 9)),

where the third and last step come from the §-0(!) equivariancy of ¢4 and
equality K(X) x,0) S = K(X %, 5), respectively. This establishes the propo-
sition. [

Remark 5.1.6. Recall from Definition 3.1 and Lemma 3.2 of [22] that a non-
degenerate correspondence homomorphism (¢, ) : (X, A) — (M(Y), M(B))
is Cuntz-Pimsner covariant if (X) C Mp(Y') and n(Jx) C M(B; Jy). Corol-
lary 4.2.5 and Proposition 5.1.5 then assure us that the representation (5%, 5%)
is always Cuntz-Pimsner covariant since (5.4) is obviously equivalent to

74 (Jx) C M(A x5 STy, 3)

which was a hypothesis of [23, Theorem 4.4] for S = C*(G). Therefore,
Theorem 4.4 of [23] can be improved as follows: if (0,d) is a nondegen-

erate coaction of a locally compact group G on (X, A) such that §(Jx) C
M(A® C*(G); Jx ® C*(G)), then we always have Ox X¢ G = Oxy,¢-
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5.2 An isomorphism between Oy x S and Oy.3

In this section, we present our main results.

Theorem 5.2.1. Let (0,0) be a coaction of a reduced Hopf C*-algebra S on
a C*-correspondence (X, A) such that Jx is weakly d-invariant. Then the
following conditions are equivalent:

(i) The representation (kx X, idg, ka xs5idg) : (X Xy S, A X §) — Ox X¢ 5
18 covariant.

(ii) The ideal Jy, g is contained in M(A® X Jx @ X').
(iii) The product Jy, g(ker pa ® ') is zero.

Proof. (i) < (ii): Suppose (i). Since (kx X, idg, k4 s idg) is injective, we
have
Ix,5 = (ka X, idg) ' ((kx X, idg)(l)(/C(X X, S5)))

by the comment below [26, Proposition 5.14]. The same reason shows

Ttre oy xor) = (ka @1d) " (Fix @ 1dp O (K(Mags (X ® X))

since £ is nuclear and then (ky ®id, ks ®idy) is covariant by Corol-
lary 3.1.6. It thus follows that Jang C JMugrn(xox) by Remark 5.1.3 and
Proposition 5.1.4. But, the latter is contained in M(A® £; Jx ® K) again by
Corollary 3.1.6. This proves (i) = (ii). Conversely, suppose (ii). Restricting
the equality (3.1) of Lemma 3.1.3 to the subalgebra Jy 3, we can write

(k’X A & 1d§)(1) o QDA><15§ = k‘A X 1d§7

which verifies (ii) = (i).
(ii) < (iii): Assuming (ii) we have

T alkerpa® #) = Iy, o(A® K )(ker pa @ )
C(Jx @) (kerps @ %) =0,
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and hence we get (iii). Finally, we always have
pasr (A®H) Iy, 5) Cpaen(A® AKX %, 8) CK(X @ X)

by Remark 5.1.3. Since ker pagr = ker(ps ® idy) = kergpys ® £ by the
exactness of J#, (iii) implies

(A@ )y, g) kerpagr = (A® X)) (Jy, glkerpa @ H)) =

Therefore (A®%/)JXXU§ C Jxgx- But Jxgr = Jx ® # by Corollary 3.1.6,
which proves (iii) = (ii). O

Corollary 5.2.2. Let (0,0) be a coaction of S on (X, A) such that Jx is weakly
d-invariant. Assume that either (i) the ideal Jy g of A x; S is generated by
0.(Jx) or (i) pa is injective. Then (kx X, idg, ka x5idg) is covariant.

Proof. Assume (i), that is, Jy g = (lara) ® §)5L(JX)(1M(A) ® S). The non-
degeneracy of S and S shows that

T, (A® H) = (Lagay ® S)3,(Jx) (Lasgay @ S) (A ® X))
= (Laea) © 8)0,(Jx) (A® )
= (Laa) @ 9)3.(Jx)(Lua) ® §) (A @ %)
C (I @) (Jx @ S) AR H) = Jx ® K,

in which the last inclusion follows from the weak d-invariancy of Jx. Hence
we get the equivalent condition (ii) in Theorem 5.2.1. On the other hand,
assuming (ii) we have (iii) in Theorem 5.2.1. O

Corollary 5.2.3. Let (0,9) be a coaction of S on (X, A) such that 0 is trivial,
that is, §(a) = a®1y sy fora € A. If the triple (Jx, A, S) satisfies the slice map
property, then (kx X, idg, ka x51dg) is covariant. Moreover, Jy  s= Jx®S.

Proof. Since ¢ is trivial, Jx is evidently weakly d-invariant. Hence the repre-
sentation (kx X, idg, ks x5idg) on Ox xS makes sense by Proposition 5.1.4.
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To show that it is covariant, we check the equivalent condition (iii) in Theo-
rem 5.2.1. First note that ¢, &= ¢35 = pa ®idg. Then

kergpr‘sg = ker(pa ® id§) =ker py ® g

by Remarks 3.1.5.(1). Since S is a nondegenerate subalgebra of £ (), it follows
that

JXXog(kergoA Q) = (JXNog(kergoA ® §))(1M(A) ® ) =0,

and therefore (kx %, idg, ka x;idg) is covariant.
Let w € L(H). and T € £ . Applying the slice map ida ® (wT) to Jy, g
and then multiplying a € A yields

a(ida ® (1)) (Jy,,,5) = (ida ©w)((a ® T) ]y, 5) € Jx.

in which the last inclusion is due to the equivalent condition (ii) of Theo-
rem 5.2.1. We thus have (ida ® w)(Jy, 35) € Jx for w € L(H)., and conclude
by Remarks 3.1.5.(2) that Jy, 5 C F(Jx, A, S) = Jx ® S. The converse fol-
lows from Proposition 5.1.5. O]

We now state and prove our main theorem.

Theorem 5.2.4. Let (0,0) be a coaction of a reduced Hopf C*-algebra S on a
C*-correspondence (X, A) such that Jx is weakly §-invariant. Suppose that the
representation (kx X, idg, ka X5 idg) is covariant. Then the integrated form

~

(k’X No 1d§) X (ij Nglds\) : OXNU,? — Ox A¢ S

1S a surjective isomorphism.

Proof. Set U = (kx %, idg) X (ka4 x5idg). Note that the embedding k4 x5idg
is clearly nondegenerate, and hence W is also nondegenerate.
We claim that W(Oy g) contains all the elements of the form

(1M(OX) ® x)(@(/ﬂx(fl) o kx (§n)kx ()" - - - kX(nl)*)) (1M((’)X) ®y)
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for nonnegative integers m and n, vectors &, ..., &, M, .-, Nm € X, and z,y €
S. This will prove that ¥ is surjective ([25, Proposition 2.7]). Since

G(ka(A))(Lariog) ® ) € U(Oy, 3)

by (5.3) of Proposition 5.1.4, we only show by considering adjoints that
(Lox) @ 2)G(kx (&) -+ kx(&n)) € ¥(Ox,, 5) (5.5)

for positive integers n, vectors &p,...,&, € X, and x € S. We now proceed
by induction on n. For n = 1, (5.5) follows from the last equality of (5.3).
Suppose that (5.5) is true for an n. Let £, &1, ...,&, be n+ 1 vectors in X and
z € S. Take an element C € Ox,., g such that

U(C) = (Laoy) ® )¢ (kx (&)kx (&) - kx (&)

By Remarks 4.2.6.(2), we have

kang(jg((g)) € MA>45§(OX><U§)'

We claim that
U (b, 5(7%(€))) = oy (kx(€)), (5.6)

where j(%x : Ox - M(Ox x¢ §) is the canonical homomorphism such that
jéX(C)D = ((c)D for c € Ox and D € Ox x¢ S. In fact, for

v="U(ky, g(0.(a)(1ara) ®2))) = ((kala)) (Lnoy) © T),

o1
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we have
U (ky,,5(0%(€))) v = (kx, 50(%(E)) ka,5(0(a)Larcay @ 2)))
= \Il(kXxgé\(]g((é) - (6.(a)(Lar(ay @ 2))))
= U(ky,,5(0(&a) - (Lara) ®2)))
= Q(

which verifies the equality (5.6) since k4 X5 idg is nondegenerate. It is now
obvious that for the product C'ky  5(j%(§)) € Oy, g we have

U(Chy, 35(5%(€) = Aoy ® )¢ (kx (&) - - kx (&) kx (£)).

Consequently, the statement (5.5) is shown to be true for all positive integer
n, and hence W is surjective.

Let : T — Aut(Ox) be the gauge action. Then the strict extensions
B, ®id » are automorphisms on M (Ox ® J£). We have

B: @ idy (G(kx(€))) = 2¢.(kx(€)),
B. ®idy (Gukala))) = C(ka(a)

in the same way as the last part of the proof of Theorem 3.2.7. Therefore,

B. @idy ((kx %o idg)(0.() - (Laray ® 2)))
= 3. ®idx (C(kx(€)(Laoy) @ 7))
= 2 G(kx (&) 1m(ox) ® 7)
= 2 (kx %, idg)(0.(§) - (1ar(a) ® 7))

and similarly
b, ® ldy((k‘A X s ldg) (6L(a)(lM(A) &® IL’))) = (/{ZA X 1d§) (5L(CL)(1M(A) &® .73))

This proves that the restriction 5, ® id | Oxxc8 defines an automorphism on
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Ox ¢ S = ¥(Oy,.35), and the injective covariant representation (kx X,
idg, ka x4 idg) admits a gauge action. We thus conclude by [25, Theorem 6.4]
that W is injective as well, which completes the proof. O

Applying Theorem 5.2.4 to group actions we can extend Theorem 2.10
of [18] as Corollary 5.2.5 states below, the proof of which will be given in
Appendix B. Let (v, @) be an action of a locally compact group G on (X, A).
By Theorem A.2.1, (v, «) defines a coaction (¢7,0%) of Cy(G) on (X, A), which
induces a coaction ¢ of Cy(G) on Ox by Theorem 3.2.7 and Remarks 3.2.9.(1).
Let 3¢ be the action of G on Oy corresponding to the coaction ¢. In a similar
way to [18, Corollary 2.9], we define a representation

(bx Xy G kA Xq G) 1 (X Xy G, A X, G) = Ox Xpe, G

by
(kx %y G)(f)(r) = kx(f(r)), (kaxa G)(9)(r) = ka(g(r))
for f € C.(G,X), g € C.(G,A), and 1 € G.

Corollary 5.2.5. Let (v,a) be an action of a locally compact group G on
(X, A). If the representation (kx X, G, kax,G) is covariant, then its integrated
form (kxx,G)x(kaxaG) : Oxy. ¢ = OxXg .G is a surjective isomorphism.

For the amenability in the next theorem, we refer to [3]. See also [34].

Theorem 5.2.6. Let (0,0) be a coaction on (X, A) of a reduced Hopf C*-
algebra S defined by an amenable reqular multiplicative unitary such that Jx
is weakly d-invariant. If A is nuclear (or exact, respectively), then the same is
true for Ox X¢ S.

Proof. 1t A is nuclear (or exact, respectively), then so is A X S by [34, Theo-
rem 3.4| (or by [34, Theorem 3.13], respectively). Hence, the Toeplitz algebra
Tx«, 3 is nuclear by [25, Corollary 7.2] (or exact by [25, Theorem 7.1], respec-
tively). Since nuclearity or exactness passes to quotients, it suffices to show
that the representation (kx X, idg, ka X5 idg) gives rise to a surjection from
T, 5 onto Ox >4§§ . The proof of this then goes parallel to the one given in the
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proof of Theorem 5.2.4 using the embedding (iy,,_g,i,,,5) of (X X, S, Axs8)
into Ty, g instead of (ky, g, k,,,g) used in there. O
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Chapter 6

Examples

Applying the previous results we consider in this chapter coactions on crossed
products by Z and directed graph C*-algebras which form an important ex-
ample of Cuntz-Pimsner algebras.

6.1 Coactions on crossed products by Z

Let ¢ be an automorphism on a C*-algebra A. Equipped with the left action
wala)b = p(a)b for a,b € A, the Hilbert A-module A then becomes a C*-
correspondence ([36, Examples (3)]), which we call a ¢-correspondence and
denote by A(y). For a p-correspondence A(yp), it is clear that the multiplier
correspondence M (A(yp)) coincides with the @-correspondence M (A)(®) and
the strict topology on M (A(p)) is the usual one on the multiplier algebra
M(A).

We want to consider a coaction of a Hopf C*-algebra on a ¢-correspondence
(A(p), A) and its induced coaction on Oy,). Before that, let us observe the
following.

Lemma 6.1.1. Let ¢ and ¢’ be automorphisms on C*-algebras A and B,
respectively, and m : A — M(B) be a nondegenerate homomorphism. Let
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v e M(B) be a unitary such that

vr(p(a)) = ¢'(n(a)) v (a € A).

Define
Y(a) :=vr(a) (a € A).
Then (Y, 7) : (A(p), A) = (M(B(¢)), M(B)) is a nondegenerate correspon-

dence homomorphism. Moreover, every nondegenerate correspondence homo-

morphism from (A(p), A) into (M(B(¢')), M(B)) is of this form.

Proof. For a,a’ € A,
P(p(a)d’) = vr(p(a)a’) = vr(p(a)) m(d') = ¢ (n(a)) vr(d') = ¢'(n(a)) ()

and (Y (a),¥(a)) vy = 7(a)v*vr(a’) = 7({a,a’)a). Hence (¢, m) is a corre-
spondence homomorphism, and obviously nondegenerate.

For the converse, let (¢, 1) : (A(p),A) — (M(B(¢')), M(B)) be a non-
degenerate correspondence homomorphism, and consider its strict extension
(1, 7). Let v = t)(1ar(a)). Since (¥,7) is a correspondence homomorphism, we
have

v = (v, v)m(m) = T((Laray, Laray) m(ay) = L)
We also have

vv*(P(a)b) = P(1arcay) (Y (1arca)), Y(a)b) ssy = Y(1ar(ay)m(a)b = Y(a)b

for a € A and b € B so that vv* = 1yp). Hence v is a unitary in M(B).
Finally,

vr(p(a)) = ¥(p(a)) = P (p(a)laay) = ¢'(r(a))v.
This completes the proof. n

Let § be a coaction of a Hopf C*-algebra (S, A) on a C*-algebra A and ¢ €
Aut(A). Let v be a cocycle for the coaction 4, that is, a unitary v € M(A® S)
satisfying

V126 ®idg(v) = ida @ A(v)
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([3, Definition 0.4]), and suppose that

vi(p(a)) = p®idg(d(a))v (a € A). (6.1)
Define 0 : A(p) > M(A® S(p ®idg)) = M(A(p) ® S) by
o(a) :==vd(a) (a€ A).

Then (o,d) is a coaction of S on the ¢-correspondence (A(y), A). Indeed, it
is a nondegenerate correspondence homomorphism by Lemma 6.1.1. Also, the
computation

o ®idg(o(a)) = v120 ® idg(vd(a))
= 0120 ®idg(v) d ®idg(d(a))
=ids @ A(v)ida ® A(d(a)) =1ids ® A(o(a))

verifies the coaction identity of o. The coaction nondegeneracy of § gives

(Lar(a) ® S)o(A) = (Lara) @ S)v6(A) = (Lara) ® ) vi(p(A))
= (1M(A) X S) (30 ® idg 5(A)) v
— 2@ 1ds (L ® ) 0(A) v=(A®S)u = A® S

so that o satisfies coaction nondegeneracy. Hence (o, ) is a coaction.

The Cuntz-Pimsner algebra Oy,) is isomorphic to the crossed product
A X, Z and an isomorphism O,y = A x, Z can be given as follows. Let
4 (%) ¢ g
(m,u) be the canonical covariant representation of the C*-dynamical system

(A, Z,p) on M(A x,Z). Define ¢ : A(p) = A X, Z by

P(a) = u'n(a) (a € Alp)).

It can be easily checked that (i, 7) is a covariant representation of (A(p), A)
on A X, Z. Furthermore, the integrated form ¢ x m: Oy, — A X, Z gives
a surjective isomorphism. We will identify in this way the universal covariant
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representations (kx,ka) = (¢, 7) as well as the C*-algebras O, = A X, Z.

Since Ju(,) = A is evidently weakly d-invariant, it follows by Theorem 3.2.7
that (o, §) induces a coaction ¢ of S on Oy(,) = A %, Z which can be described
explicitly on the canonical generators of A x,,Z as follows. Theorem 3.2.7 says
that

(((a)) = 7 @idg(d(a)),
((w'n(a)) = ((¥(a)) = ¥ ®ids(o(a)) = (" @ Las) T @idg(vd(a))
for a € A. Note that ((u*) = (u* ® Lyys)) ™ ® ids(v). Hence,

((r(a)u") =7 ® idg(é(a))((u* ® Lag(s)) ™ ® idg(v))_n

for a € A and n € Z.

Assume now that the Hopf C*-algebra S is reduced. Then we can form the
reduced crossed product correspondence (A(¢) %, S, Ax5S) by Theorem 4.2.1.
Let v, = id4 ® tg(v). Since the multiplication by v, from the left gives a Hilbert
module isomorphism from A x5S onto A(p) %, S, we may — and do — regard
the C*-correspondence A(y) X, S as the Hilbert module A x5 S with the left
action

SOAN(;:S'\(C) d= UZ(QD ® 1d/C(H) (C>UL d (62)

for an element ¢ in the C*-algebra A x5 S and a vector d in the Hilbert module
A x5 5. Note that ¢, 5 is injective. Since p4 is injective, Oy(p) X¢ S is the
Cuntz-Pimsner algebra O A(9)0 8 by Corollary 5.2.2 and Theorem 5.2.4.

We can summerize what we have seen so far as follows.

Proposition 6.1.2. Let ¢ be an automorphism on a C*-algebra A and § be a
coaction of a Hopf C*-algebra S on A. Let v be a cocyle for § satisfying (6.1).
Define 0 : A(p) = M(A(p) ® S) by o(a) = vd(a). Then the following hold.
(i) (0,0) is a coaction of S on the -correspondence (A(p), A).
(ii) Let (m,u) be the canonical covariant representation of (A,7Z,p) on
M(A x,Z). Then, the homomorphism

T®idgod: A= M((Ax,Z)®S)
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and the unitary ™ ® ids(v*)(u ® las)) € M((A %, Z) ® S) form a covariant
representation of (A, Z, ) on M((A %, Z)® S) such that the integrated form
giwes a coaction ¢ of S on A X, Z and coincides with the coaction induced by
(0,6).

(iii) If S is reduced then A(p) %45 = AxsS as Hilbert (Ax5S)-modules and
the left action is given by (6.2). The reduced crossed product (A X, Z) X S =
Oap) X¢ S is the Cuntz-Pimsner algebra OA(go)xg@

We can say further if we take the cocycle v in Proposition 6.1.2 to be the
identity. Let v = 1p7(ags). Then (6.1) reduces to

dop= m 09,
and then ¢, 5 maps A % S onto itself:
P 1,5 (0.(a) (Lara) @ 7)) = @ @ idica) (0.(a) Laray @ 7)) = 8.(0(a)) (Lar(ay @ )

fora € Aand z € S. Hence © 4,5 defines an automorphism ¢ x id on A x5 S
such that

(0 xid) (0.(a)(Larca) ® ) = d.(9(a))(Lar(a) ® )

fora € Aand z € S. We thus see that A(p) x5 is the (p xid)-correspondence

~

A x5 S(¢ xid). We have the equality

-~

OA(ap)xag T Y AxsS(pxid) T (A A5 S) X pxid Z (63)

as well as

~ ~

Oup) e S =(AXN,Z) x¢ S, (6.4)

and then have a surjective isomorphism

-~ -~ -~

U (AxsS5) xwidZ:OA( 5 Oay) Xe S =(AX,Z) % S.

)

Let us describe ¥ on the canonical generators of the iterated crossed products
(A X5 8) Npwia Z and (A X, Z) x¢ S. As (m,u) in Proposition 6.1.2, let (7, u)
be the canonical covariant representation of the C*-dynamical system (A X

29
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S, Z, ¢ xid) on M((A x5 8) Xya Z). Let

dy = kA(go)xég((SL(a) (Iua) @ 2)) € O s(o)ns 57
dg = ﬂ*%(éL(a)(lM(A) & ZL‘)) c (A A S) >q<p>4id Z,
)

~

We then have d; = ds in (6.3), and ds = dy in (6.4). Since ¥(d;) = d3, we may
write W(dy) = dy. Note that (@) = (,(u). Therefore

U (" 7(6,(a)(Lnrcay ® x))) = G (u"m(a))(Lr(axn,z) ® ),
or equivalently, by the fact that (7, «) and (7, @) are covariant representations,
(7 (6,(a)(Laray @ 2)) 0") = ((m(a)u™) (Laran,z) ® T) (6.5)
forae A,z € S , and n € Z. We summarize this in the next corollary.

Corollary 6.1.3. Under the hypothesis and notation in Proposition 6.1.2 with
v replaced by 1y(ags), the formula

((m(a)u") =7 ®idg(d(a))(v" ® lams)) (a €A, ne€Z)

defines a coaction ¢ of S on Ax,7Z. Moreover, if S is reduced then there exists
a surjective isomorphism

U (Axs8) Npuia Z — (AXy,Z) x¢ 8

between the iterated crossed products such that (6.5) holds.

6.2 Coactions on directed graph C*-algebras

In this section, we consider coactions of compact quantum groups on (directed)
graph C*-algebras arising from labelings or coactions on finite graphs. We
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begin by recalling some of basic facts about graph C*-algebras and compact
quamtum groups.

A directed graph E = (E°, E*, r, 5) consists of a countable set E° of vertices,
a countable set E' of edges, a range map r : E' — E° and source map s :
E' — EY describing the terminal and initial vertices of the edges, respectively.
The graph C*-algebra C*(E) of E is the universal C*-algebra generated by
mutually orthogonal projections p, (v € E°) and partial isometries s, (e € E')
with mutually orthogonal ranges such that s?s. = p.(e) and py)ses; = ses;, for
e € B, and p, = D ces—1(w) SeSe for v with 0 < |s71(v)| < oo ([29, 28, 15]).
Throughout we consider graphs with nonempty edge sets.

As in [24], one can associate to a directed graph E a C*-correspondence.
Denote by x. and x, the functions x.(f) = d.,r and x,(w) = d,,,, where the
symbols 6. ; and J,, are the Kronecker deltas. Let A be the commutative
C*-algebra of functions on E° vanishing at infinity. The graph correspondence
(X(FE), A) associated to E is the completion of the C.(E")-bimodule C.(E")
such that

Xe " Xv = (57“(6),1) Xes <Xea Xf>A = 5e,f Xr(e)s @A(XU)XB = 58(6),0 Xe

for e, f € E' and v € E°. It can be easily seen that Jxpy = {xo €A:0<
|s71(v)] < oo} and the map (¢, 7) : (X(E), A) — C*(E) given by ¥(xc) = Se
and m(,) = py is covariant. The integrated form ¢ X 7 gives an isomorphism
from the Cuntz-Pimsner algebra Ox gy onto the graph C*-algebra C*(E). We
will identify Ox gy = C*(E) through this isomorphism so that kxg)(x.) = se
and ka(xv) = po.

A unital Hopf C*-algebra (S,A) is called a compact quantum group. A
finite dimensional unitary corepresentation of S is a unitary U = (u;;) in a
matrix algebra M, (S) such that A(u;) = Y, uix @ ug; for 4,5 = 1,...,n
([46, 48]). We write dy for the dimension n of the unitary corepresentation
U = (u;j) € M,(S). We say that U is fundamental [46] if the C*-algebra is
generated by the matrix elements of U.

Let (H,A) be the GNS-representation of a compact quantum group S as-
sociated to its Haar state which is known to exist uniquely ([48, 42]). Then
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there corresponds to S a regular multiplicative unitary Vs € L(H ® H) (]3,
Proposition 3.4.4.b)]) such that A gives a compact quantum group morphism
(in the sense of [3, Definition 0.5]) from S onto the reduced Hopf C*-algebra
Sv-

6.2.1 Labelings and coactions on graph (C*-algebras

Definition 6.2.1. Let £ = (E° E',r,s) be a directed graph. Let S be a
compact quantum group and Zs be a set of finite dimensional unitary corep-
resentations of S. We call a function ¢ : E* — Zg a labeling if the edge set E*
admits a partition {(v,w; U)p,}(ww),un such that

(i) (v,w;U), C s tw)nr=Y(w)nc(U),
(i) |(v,w;U)nl = du,

where the indices (v,w) and U range over the sets {(s(e),r(e)) : e € E'} and
c(E'), respectively.

Remark 6.2.2. The terminology of labeling comes from [21] in which for a
directed graph E and a countable discrete group G, a labeling is defined to be a
function ¢ : E' — G. It was shown in [21] that a labeling gives rise to a coaction
¢ of G on the graph C*-algebra C*(E) and the crossed product C*(E) x; G
can be realized as a graph C*-algebra. Corollary 6.2.4 below generalizes this
fact to compact quantum groups. It is clear that if we let Zc-(qy = G, the set
of one dimensional unitary corepresentations of the compact quantum group
C*(G), then our definition of labeling coincides with the definition in [21]; in
this case B! admits a partition consisting of singleton sets.

Let ¢ : E' — %5 be a labeling and {(v,w;U),} be a partition of E'. For
each (v, w;U),, fix an order of the elements of (v, w;U), so that 1,2,..., dy
represents the elements of the set. The reason why we consider (v, w;U),, will
be clear from the proof of the next proposition.

Proposition 6.2.3. Let E be a directed graph and S be a compact quantum
group. Let ¢ : E' — Zs be a labeling. Then there exists a coaction (o,d) :
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(X(E),A) - (X(E)®S,A® S) of S on the graph correspondence (X (E), A)
such that

o(x;) = Z Xi ®@ui (4 € (v,w;U)y)

t€(v,w;U)n
and §(a) = a® lg for a € A.
Proof. Let j € (v,w;U), and [ € (v',w';U"),,. Then
(o(x7), o0 aes = (DX @iz Y X6 @ i)y = D (X0 Xaha @ iy
= (5v,v/5w7w/5n7n/ Z Xw & uij*uil

= 5v,v’5w,w’5n,n’ j,l(Xw ® 15) = <Xj7 Xl>A ®1g.

It then follows that (o(&),0(n))ags = (§,m)a @ 1g for £,n € C(E'). In
particular, o is isometric on C.(E'), and hence extends to all of X(E). Also,

U(@A(X'U)Xj) - 5v,s(j)a(XJ) (9014 Xv ® 1.5' Z Xi & Uiy

i€(v,w;U)pn

= 0aws(6(xv))o(X;))-

Therefore, (0,0) is a correspondence homomorphism. It is readily seen that
o satisfies the coaction identity. For the coaction nondegeneracy, consider the
antipode x of the dense Hopf *-algebra generated by the matrix elements of
all finite dimensional unitary corepresentations of S [48]. Then

( § K- u]k uzg) E R uz] Ujp = 5@ kls)

which gives ). &~ (u;)us; = dixls. Therefore,

Y pass(la® s (up) o(x;) = ) xi @ r (up)uy = xx ® 1s. (6.6)

J ij

This proves that pags(la ® S)o(X(F)) contains x. ® 1g for e € E', and
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consequently, coincides with X (E) ® S. O

Applying Theorem 3.2.7, Corollary 5.2.3, and Theorem 5.2.4 to the coaction
(0,0) in Proposition 6.2.3 we now obtain the following corollary in which oy =
(ide«(gy ® A) o o and similarly for 64 and (4.

Corollary 6.2.4. Let E be a directed graph and S be a compact quantum
group. Let ¢ : E* — Zg be a labeling. Then there exists a coaction ( :
C*(E) — C*(E)® S of S on the graph C*-algebra C*(E) such that

C(s;) = Z si®@uy  (j € (v,w;U)y)

i€(v,w;U)n

and ((py) = p» ® 1g for v € E°. Moreover, the crossed product C*(E) X, §Vs

~

is the Cuntz-Pimsner algebra associated to (X(E) X4, §VS, A x5, Svy).

6.2.2 Coactions on finite graphs

Definition 6.2.5. Let E = (E° E' r,s) be a finite directed graph and S be
a compact quantum group. A coaction of S on E is a pair (0,0) such that

(i) o and § are coactions of S on the commutative C*-algebras C'(E') and
C(E"), respectively,

(ii) the diagram
C(E") —>——~C(E")® S

e (Sx, resp.)L Lm@id (s+®id, resp.) (67)
C(EFYHYy® S

commutes, where r, is the homomorphism given by 7.(x,) = X, © r and
similarly for s,.

Remark 6.2.6. The notion of coaction of a compact quantum group on a
finite graph was considered in [5] under the aim of constructing the quantum
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automorphism group coacting on the graph, and given only for a finite graph
with at most one edge from a vertex to another ([5, Definition 3.1]). Our
definition allows for finitely many edges between two vertices.

Notations 6.2.7. For a coaction (o,d) of S on E, we denote by as. and by,
the elements of S such that

U(Xe) = Z Xf X Qfe, 5(Xv> = Z Xw & bwv-

feE! weEED

It is well-known by [45, Theorem 3.1] that the elements ay. are projections
such that > aj. = 1g = Zf afe, and similarly for by..

Lemma 6.2.8. Let E be a finite graph and S be a compact quantum group.
Let o and & be coactions of S on C(E') and C(E°), respectively. Then the
diagram (6.7) commutes if and only if for f € E' the following are satisfied:

(i) if r~H(v) =0 then by(p), =0,

(ii) if r='(v) # 0 then by(pyo = Xeer-1(u) Ores
(iil) if s (v) = 0 then bs(py, = 0,
(iv) if s (v) # O then bypy, = D ees—1(v) Qfe-

Proof. Assume that (6.7) commutes. We only prove (i) and (ii). The others
are treated in the same way. Note that

(r. ®idg) 0 6(xw) = D 7elxw) ® buo

weEo (6 8)
= D D s ®buw= D Xy by
r~H(w)#£0 fer—H(w) feE!

If r=1(v) = () then r,(x,) = 0 so that cor,(x,) = 0. Since oor, = (r,®idg)od,
we then have b,(s), = 0. If 771(v) # () then

rortw=o( ¥ )= X Tyoau. 69

ecr—1(v) ecr—1(v) feE?!
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Comparing (6.8) and (6.9) we have (ii). Conversely, assume (i)-(iv). From
(6.8) and (6.9) we readily see that the diagram (6.7) commutes. O

Applying the antipode of S to each of (i)-(iv) in Lemma 6.2.8, we have the

following.
Corollary 6.2.9. For f € E' the following hold:
(1) if r=H(v) =0 then by, =0,
(i) 4 770) 70 then by = Sy 0 et
(v) =
) #

(iil) if s7H(v) =0 then b, 4 =0,
if sTH(v) # O then by ) = 2665,1@) Qe f-
The next corollary corresponds to [5, Theorem 3.2].

Corollary 6.2.10. Let (o,9d) be a coaction of a compact quantum group S on
a finite graph E. Then

(i) the p’I“OdUCtS b br(f br(f)wbs(f)v; bwr(f)bvs(f)7 and bv s(f)bwr(f) are all
zero whenever s~Hv) N r‘l(w)

(i) the projections by(syse)y and by(pyre) commute,
(ili) the sum Y7 s bs(p) vbr(pyw is equal to [s~'(v) N~ (w)].

Proof. (i) We only show by by () = 0. The others are followed from this by
considering the adjoint or the antipode. We may assume that both b, and
br(f)w are nonzeoro. By Lemma 6.2.8 we have s™*(v) # 0 and r~'(w) # 0 so

that
baryobriryw = Y Gge D age

ecs—1(v) ecr—1(v)

which must be zero since s~!(v) Nr~t(w) = 0.
(ii) Let v = s(e) and w = r(e). By Lemma 6.2.8,

bs Z afe Z Qfqg = Z Qfe. (610)

ecs—1(v) ger—1(w) ecs1(v)Nr—1(w)
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Hence the product by(s)s(e)br(s)r(e) is @ projection, which verifies (ii).
(iii) We may assume that s7'(v) # 0 and r~(w) # 0. As (6.10) we have

D bapebrnw =Y, D>, are > agg

feE! FEEY ees—1(v) gEr—l(w)
which gives (iii). O

We now identify the space C(E') and the graph correspondence X (FE)
(algebraically) for a finite graph E.

Theorem 6.2.11. Let (0,9) be a coaction of a compact quantum group S on
a finite directed graph E. Write

— Z Xf®afe, 0(xo)= Z Yoo @ by -

fer?! weE°
fore € E' and v € E°. Then
(i) (o,0) is a coaction on (X(E), A) such that Jx(g) is weakly 6-invariant.

(i) (0,0) induces a coaction ¢ of S on the graph C*-algebra C*(E) such that

C(se) = D 81 @ase, (o) = D Puw @ buw.

feEL weEo

Moreover, C*(E) x¢, §Vs = Ox(p

><UASVS :

Proof. We have

@A@S((S

bs(fyvarye

(gw(xw) ® bwv) (;Xf ® afe)
>

= 511,8(6) Z Xf ® Afe = U(@A(Xv)Xe)
f
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since by(fyv = D yes-1(s) Af g if s71(v) # () and zero otherwise by Lemma 6.2.8.
For e, g € E' we also have

5<<X67 X9>A> =0 5(Xr () = e g ZXw & bwr(e

= eg Z Xw®bw7“e
0

w)#£

since by, () = 0 if 77! (w) = 0 by Corollary 6.2.9, and then

27& w® D a

0 fer—1(w)

again by Corollary 6.2.9, and hence

=0 D Xr(r) ® G
7

=" v ® ageapy = (0(xe), o (xg)) aws.
f

Hence (o, d) is a correspondence homomorphism. By definition, o satisfies the
coaction identity. Computation like (6.6) shows that o satisfies the coaction
nondegeneracy, and hence (o,6) is a coaction of S on (X(E), A). Let x, €
Jx(p), that is, s7!(v) # 0. Take an e € s~!(v). Then

ZXw®bwse)— Z Xw®bwse

s~ (w)#£0

by Corollary 6.2.9.(iii). This proves that Jx (g is weakly d-invariant. The as-
sertion on the induced coaction ( follows from Theorem 3.2.7. Finally, since
A is finite dimensional, the space ,(A)(14 ® S) is already closed and equal to
A x5 S. Hence, if s71(v) = 0 then §,(x.) (14 ® §) ¢ Jy,. g and consequently,
Jx g coincides with (14 ® §)5L(JX)(1A ® §) The last assertion on the iso-
morphism now follows from Corollary 5.2.2. ]
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It is easily seen that d(Jx(g))(1la ® S) = Jx(z) ® S. Hence, the restriction
5\JX(E) gives a coaction of S on Jx(g).

We now consider the quantum automorphism group of a finite graph F,
whose definition was given in [5, Definition 3.1] for £ with at most one edge
from a vertex to another.

Definition 6.2.12. Let F be a finite directed graph. Let Cg be the category
such that

(i) an object is a pair (S, (g,0)) of a compact quantum group S and a coac-
tion (o,d) of S on E,

(ii) a morphism from an object (S, (¢,0)) to another (S’, (¢/,¢")) is a compact
quantum group morphism ¢ : S — S’ satisfying

U/O¢:<idc(E1)®(Z)>OO', (SIO(b: (ldC(E0)®¢)O(5

The quantum automorphism group of E is an initial object (S, (0,d)) in Cpg,
that is, for an object (S', (¢/,¢")) in Cg there exists a morphism from (S, (o, 9))
to (5, (0',0)).

Recall from [44, Definition 2.9] that a Wononowicz ideal of a compact
quantum group (S, A) is an ideal I of the C*-algebra S such that (7 ® 7) o
A(I) = 0, where m : S — S/I is the quotient map. In this case, there exists
a unique compact quantum group structure on S/I such that 7 is a compact
quantum group morphism [44, Theorem 3.4].

Let E = (E° E',r,s) be a finite graph. Let (A,.(E"), ;) be the quantum
permutation group of E* (i = 0,1) [45, Theorem 3.1]. Denote by (as.)p1xp
and (byo)gpoxpo the fundamental unitaries of Ay (E') and Agy(E°), respec-
tively, such that

al(Xe) :ZXf®dfeu aO(XU) :ZX’IU@EU}’U'
f w

Notations 6.2.13. We denote by Iz the amalgamated free product Ag:(E°)x
Agut(EY) over C. By [44, Theorem 3.4], Fr has a unique compact quantum
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group structure such that the canonical embedding
Lt Agut(E") = Fp (i=0,1)

is a compact quantum group morphism. We denote by Ig the ideal of the
C*-algebra Fg generated by the relations (i)-(iv) in Lemma 6.2.8.

Theorem 6.2.14. Let E = (E°, E',r,s) be a finite graph, and (Aqu(E"), ;)
be the quantum permutation group on E (i = 0,1). Define

o= (idC(El) ® (7o Ll)) oay, 0:= (idC(EO) ® (mo LO)) o ay,
where 7 : Fp — Fg/Ig is the quotient map. Then
(i) Ig is a Woronowicz ideal of the compact quantum group Fg,

(i) (Fg/lg,(0,9)) is a quantum automorphism group of E. More precisely,
if (8',(0",8")) is an object in Cg such that o'(x.) = > ;x5 ® d}, and
8 (Xw) = D Xw @ U, then the formulas

wuv’

¢(7r(dfe)) = a/fev ¢(7T<l~7wv)) = b;w

define a morphism ¢ : (Fg/lg,(0,0)) — (5',(0',9")). The spectrum of
Fg/lIg is the usual automorphism group of E.

Proof. To simplify the notations, we identify A, (E") with its image in Fg.
By definition, I is generated by the elements of the following type:

(i) by(p)o for f € E' and v € E° with r~!(v) =0,

(i) br(ryo — Y eer-1(w Qpe for f € B and v € B with r~'(v) # 0,
(iii) bs(s)o for f € E' and v € E® with s~ (v) = 0),
(iv) D)o — D ecs1(w Qfe for f € E' and v € E® with s~ (v) # 0.
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Let A be the comultiplication of F. If r~(v) = () then

(r@m) 0 Alby(pye) = Y T (br(pyw) ® T(buo)

w

- Z ﬂ-(gr(f)w) ® T(ng) == 0

1 (w)

since the elements by(f),, for r=*(w) = § are of the type (i), and so are by, for

“Hw) #0. It r~'(v) # 0 then
(r @m0 A(brs)0) = > T(bo(ryw) @ (bu)

= Z W(Er(f)w)@)ﬂ'(ng)

r1(w)#0

= > Y wlary) @by

r—1(w)#£0 ger—1(w)

= > > D mlap)@nlay)

r~H(w)#£0 ger—1(w) eer—1(v)

= ¥ meg ®7Tage)=(7r®7r)OA( > dfe).

ecr—1(v)

This proves that (7 ® ) o A maps the elements of the type (ii) to 0. Similarly,
the same is true for the elements of the type (iii) and (iv), which proves the
assertion (i) of the theorem.

It is clear that o and § are coactions of the compact quantum group Fg/Ig
on C(EY) and C(E°), respectively. The elements 7(ds.) and m(by,) satisfy
(i)-(iv) in Lemma 6.2.8 by definition, and hence (o, ) is a coaction of Fg/Ig
on E, namely (Fg/Ig, (0,0)) is an object of the category Cg. Let (57, (¢7,4"))
be an object in C such that o’(x.) = >_; xy ®a}, and &'(x,) = >, Xuw @b},
Combining [45, Theorem 3.1] and [44, Theorem 3.4] we see that there exists a
compact quantum group morphism ¢ : Fg — S’ such that ¢g(as.) = a}e and
¢0(byy) =b,,. By Lemma 6.2.8, ¢, factors through Fip/I, that is, there exists
a morphism ¢ : F /Iy — S’ such that ¢(m(ays.)) = a’;, and O(m (b)) = b, ,
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This establishes the first part of the assertion (ii) of the theorem. The last
part is clear. O

Remark 6.2.15. Theorem 6.2.14 together with Corollary 6.2.10 extends [5,
Theorem 3.2] to any finite graphs, and shows that our notion of quantum
automorphism group on E coincides with the one given in [5] for £ with at
most one edge from a vertex to another.

Example 6.2.16. For a positive integer n > 2, let E be the directed graph
consisting of only one vertex and n edges {1,...,n}. Its graph C*-algebra
C*(E) is the Cuntz algebra O,,. Let S be a compact quantum group and Zs =
{U} for an n dimensional unitary corepresentation U = (u;;) of S. Define a
labeling ¢ by the constant function ¢(j) = u for j € E'. By Corollary 6.2.4,
the formula ((s;) = >, s ®u;; then determines a coaction ¢ of S on O,, and
the crossed product O,, ¢, §Vs is a Cuntz-Pimsner algebra. Alternatively, the
formulas o(x;) = >, xi ® w;; and §(1¢) = 1¢c ® 1g define a coaction (o, ) of
S on E. By Theorem 6.2.11, (0,6) induces the coaction ¢, and the crossed
product is a Cuntz-Pimsner algebra.

Example 6.2.17. Let E be the following two copies of the directed cycle of
length 2:

€1 €3

L X0b} V3@
e €4

One can readily check that C*(E) = C(T, My & M,), the C*-algebra of con-
tinuous functions from the unit circle T to the direct sum of the 2 x 2 matrix

v1® oy

algebras M. Hence C*(F) is generated by the four elements eq3, zeg;, €34, and
zey3, where e;; is the matrix units and z is the identity function on T
Now consider the quantum automorphism group Fg/Ip of E. We write

a;j and b, respectively, for the generators 7(de,.;) and 7 (by.;) of Fg/Ig
(i,j=1,...,4). By Lemma 6.2.8 we have

Aij = Qit1j+1 = bij = bi+1j+1 ((Zvj) = (17 1)7 (17 3)a (37 1)7 (37 3))7
Aij = Qjy1j-1 = bij = bi+1j—1 ((17]) = (1’ 2)7 (174)7 (37 2)7 (374))
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Thus, Fg/Ip is the universal C*-algebra generated by 8 projections a;; and
as,j (j=1,...,4) subject to the relations

E aljzlzg azj, ai3+ai4 = azs+ ase,

J J
and a compact quantum group with the fundamental unitary

11 di2 A13 Q14
12 Aairi; ai4 0Aa13
az1 Aagz Aazz (34
az2 az1 A34 (33

This is another description for the quantum automorphism group Ag.:(E)
given in [5, Proposition 3.3] (see also its proof). By Theorem 6.2.11 and
Theorem 6.2.14, we thus obtain a coaction ¢ of Fg/Ig on C(T, My @ M,) such
that

C(e12) = e12®arr + zea @ a1 + €34 @ agy + zea3 @ ago,
((z€21) = €12 @ a12 + 221 @ 11 + €34 ® aga + 2€43 ® az1,
Cezq) = €12 @ ajs + zea1 @ ajyg + €34 @ az3 + 243 ® azy,
((zeq3) = €12 @ a4 + z€21 @ a13 + €34 @ ags + zeq3 @ ags.

The crossed product is a Cuntz-Pimsner algebra.
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Appendix A

Coactions of Cj(G) on
C*-correspondences

The goal of this chapter is to prove that there exists a one-to-one correspon-
dence between actions of a locally compact group G on (X, A) in the sense
of [13] and coactions of the commutative Hopf C*-algebra Cy(G) on (X, A)
(Theorem A.2.1). For this, we first prove an Akemann-Pedersen-Tomiyama
type theorem for C*-correspondence (Theorem A.1.4), and using this we prove
the bijective correspondence.

A.1 Akemann-Pedersen-Tomiyama type
theorem for C*-correspondences

Let us fix some notations. Let (X, A) be a nondegenerate C*-correspondence
as before, and G be a locally compact Hausdorff space. By M (X); we mean
the multiplier correspondence M (X) endowed with the strict topology. We de-
note by Cy(G, M (X)) the Banach space of all bounded continuous functions
from G to M(X) with the sup-norm, and by C,(G, X) the closed subspace of
Cy(G, M(X)s) consisting of functions with values in X which are also contin-
uous with respect to the norm topology on X. We denote by C.(G, X) the
subspace of Cy(G, X) of all compactly supported functions; Co(G, X) is the
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norm closure of C.(G, X).
For an identity correspondence (X, A) = (A, A), the Banach space
Cy(G,M(X)s) becomes a C*-algebra under the usual point-wise operations.

In this case,
Co(G, M (X)) = M(X ® Co(G))

([1, Corollary 3.4]). We first generalize this in Theorem A.1.4 to nondegenerate
C*-correspondences, which will enable us to prove the bijective correspondence
between G-actions and Cy(G)-coactions on (X, A).

Proposition A.1.1. Let (X, A) be a C*-correspondence and G be a locally
compact Hausdorff space. Then (Cy(G, M(X)s), Co(G, M(A)s) is a C*-corre-

spondence with respect to the following point-wise operations

(m-1)(r) =m(r)-1(r),
(m, n)ayam(a),) (1) = (m(r),n(r)) ara), (A1)
(ecy@ ey (D) m)(r) = eurcay(l(r)) m(r)

form,n € Cy(G, M(X);), l € Co(G, M(A)s), and r € G.

Proof. Write ¢ = @c,@,m(a),)- The only part requiring proof is that the
functions on (A.1) are strictly continuous. We prove this only for the function
©(l)m. The others can be handled in the same way. Let {r;} be a net in
G converging to an r € G, a € A, and T' € K(X). Evidently, the difference
(p(D)ym)(r;) - a — (e(l)m)(r) - a converges to 0. Factor T' = T"p4(a’) for some
T" € K(X) and o’ € A, which is possible by the Hewitt-Cohen factorization
theorem (see for example [37, Proposition 2.33]) since the left action ¢y is
nondegenerate. Then the difference

T(e(l)m)(r;) — T(e(l)ym)(r) = (T"pa(d'l(r;)) m(r;) — T"pa(d'l(r)) m(r;))
+ (Trrcay(1(r)) m(r:) — Torrcay(1(r)) m(r))

converges to 0 by the strict continuity of both [ and m and also by the bound-
edness of m. Hence o(l)m is strictly continuous. O
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It is clear that (Co(G, X),Co(G, A)) is also a C*-correspondence with re-
spect to the restriction of operations (A.1).

We call a correspondence homomorphism (¢, 7) : (X,A4) — (V,B) an
isomorphism if both 1 and 7 are bijective. In this case, (X, A) and (Y, B) are

said to be isomorphic. The next corollary is an easy consequence of Corollary
3.1.7.

Corollary A.1.2. The C*-correspondence (Co(G, X),Co(G, A)) and the ten-
sor product correspondence (X @ Cy(G), A®@ Cy(G)) are isomorphic.

Lemma A.1.3. With respect to the operations (A.1), the following hold.

(i) way@ma),) (Co(G, M(A),)) Co(G, X) = Co(G, X),
(ﬁ> CO(G> X) ) Cb(G7 M(A>s) = CO(G7X)7

(iii) Cb(G7 M(X>s) ’ CO(G7A) = CO(G7X)

Proof. On each of (i) and (ii), the space in the right-hand side is evidently
contained in the left-hand space. The same is true for (iii) by the Hewitt-
Cohen factorization theorem since (Cy(G, X), Co(G, A)) is isomorphic to the
nondegenerate C*-correspondence (X ® Cy(G), A ® Cy(G)). For the inclusion
Cin (i), let I € Co(G, M(A),) and & € Cy(G, X), and write x = @y, (f)y
for some f € Cy(G, A) and y € Cop(G, X). Then

@Cb(G,M(A)s)(l) T = @CO(G,A)(lf) ye Co(GyX%

which proves (i). Similarly write z = z - g for z € Cy(G, X) and g € Cy(G, A).
Then z -1 =y - (gl) € Cy(G, X), which verifies the inclusion C in (ii). Finally,
the triangle inequality verifies that the functions in the left-hand side space of
(iii) are continuous, which gives C in (iii). O

Henceforth, we identify Cy(G, X) = X @ Cy(G) as well as Cp(G, M (A);) =
M(A ® Cy(G)). The next theorem generalizes [1, Corollary 3.4].
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Theorem A.1.4. The map
(¢,id) : (Co(G, M(X)s), Co(G, M(A),)) = (M(X @ Co(G)), M(A @ Co(G)))
gien by
p(m)-f=m-f
form € Co(G, M(X)s) and f € A® Co(G) is an isomorphism.
Proof. By Lemma A.1.3, we can apply [13, Proposition 1.28] to see that (¢,id)
is an injective correspondence homomorphism. It thus remains to show that

is surjective. Let n € M(X ® Cy(G)). For each r € G, define m,(r) : A - X
and m’(r): X — A by

ma(r)(a) = (n-(a@e,))(r), my(r)(§) = (n"(® ,))(r),

where ¢, € C.(G) such that ¢, = 1 on a neighborhood of r. It is immaterial
which ¢, we take to define m,,(r) and m?(r) as long as ¢, = 1 near r. Since

(n-(a®¢r),E® dr)asco@ = (a® ¢, 0" (§ ® 1)) avco(@)

we have (m,(r) - a,&)a = (a,m’(r))a by evaluating at r, and thus obtain a
function m,, : G — M (X) with m,,(r)* = m%(r). By definition, |m,(r)|| < ||n||
for r € GG, and hence m,, is bounded. To see that m,, is strictly continuous, let
{r;} be a net in G converging to an r € G, a € A, and {,n € X. Evidently,
{mu(r;) - a} converges to m,(r) - a. The same is true for the net {m,(r;)*¢},
and hence {0, ¢m,(r:)} = {Oym.)e} converges to 0, (e = Opemn(r),
and consequently {T'm,,(r;)} converges to Tm,(r) for T € K(X). Therefore
my, € Cy(G, M(X)s). Finally, we have

(n(a@¢n))(r) =mu(r) - a= (m, (a®¢,))(r)
for a € A and r € G, which shows (m,,) = n. O

In what follows, we identify Cy(G, M(X)s) = M(X ® Cy(Q)).
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Corollary A.1.5. The Cy(G)-multiplier correspondence Mcyc) (X ® Co(G))
coincides with Cy(G, X).

Proof. Evidently, Mc,q)(X ® Co(G)) 2 Cy(G, X). For the converse, let m €
Mey) (X @ Co(G)). Let r € G, and take a ¢, € C,(G) such that ¢, = 1 on
a neighborhood U of r. Since the function varascy(@))(1aay ® ¢r)m belongs
to X ® Cp(G) and agrees with m on U, we see that m is continuous at r with
m(r) € X. This proves the converse. O

A.2 One-to-one correspondence between
G-actions and Cj(G)-coactions

Let Aut(X, A) be the group of isomorphisms from (X, A) onto itself. Recall
from [13, Definition 2.5] that an action of a locally compact group G on (X, A)
is a homomorphism (v,«) : G — Aut(X, A) such that for each £ € X and
a € A, the maps

Gor—E)eX, Gor—afaeA

are both continuous.

Theorem A.2.1. If (v, «) is an action of a locally compact group G on (X, A),
then there ezists a coaction (c7,0%) of Co(G) on (X, A) such that

o' (E)(r) = (&), 0%(a)(r) = an(a) (A.2)

foré € X, a€ A, andr € G. Moreover, the formulas in (A.2) define a one-
to-one correspondence between actions of G on (X, A) and coactions of Co(G)

on (X, A).

Proof. 1t is well-known that 6% is a coaction of Cy(G) on A (see for example
[40, Chapter 9]). By Corollary A.1.5, the first formula in (A.2) defines a map

07 X = Meyo)(X @ Co(G)) € M(X @ Co(G)).
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By definition, (7, a;) is a correspondence homomorphism for r € G, that is,
(1) m(pala)g) = walar(a))r(8);
(i) (% (€), 7 (m)a = ar((€m)a)

for r € GG, which is equivalent to
(i) o7 (pal(a)§) = pu(ascoc) (0%(a)) o7 (§);

(i) (07(£), 07 () m(aecoa) = 6*((€;m) a)-

Hence (07,%) is a correspondence homomorphism. Let £ € X, ¢ € C.(G),
and € > 0. Take a neighborhood U of the neutral element of G such that
|17 (&) —&|| < € for r € U. Choose a finite subcover {Ur;} of the support of ¢,
and a partition of unity {¢;} subordinate to {Ur;}. One can easily check that

H £®¢— Z er(asco@) (Laray @ ¢id) o7 (7, ( H

which proves that Yarasc, (@) (1M(A) ® C'O(G)) 07(X) 2 X ® Cy(G). The op-
posite inclusion is obvious, and hence o7 satisfies the coaction nondegeneracy.
For the coaction identity of o7, let ev, : Cy(G) — C be the evaluation at
r € G. It then suffices to show that

idy ® ev, ® evy 007 ®idey g 00! =idx ®ev, ®ev,oidy ® Agoo”

for r;s € G since the strict extensions idy ® ev, ® evy on M(X ® Cy(G) ®
Co(@)) correspond to the evaluations m(r, s) for m € Cy(G x G, M (X)), and
hence separate the points of M (X ® Cy(G) @ Cy(G)). Note that on X @ Cy(G)

idx ®ev, ®evy o (07 ®idey(@) = (Idx ®ev, 007) ® evy

=idx ®ev, 007 o (idx ® evy)

and

idy ® ev, @ evso (idy ® Ag) =idy ® (ev, ® evg 0 Ag) = idy ® ev,s.
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Also note that if (¢, m) @ (Xi, Ai) = (M(Xi41), M(Ai11)) are nondegenerate
correspondence homomorphism (i = 1,2), then v 0 91 = 15 0 ;. We thus
have

idy ®ev, ®evgo0T ® idC’o(G) oo”" =idx ® ev, ®evg o0 (0'7 X idCo(G’)) oo”

=idx ® ev, 007 o (idx ® evy) o o”
=idy ®ev,00" oidx @ ev,00”

=Tr©O%s = Urs

=idy ® ev,g 00”7

=idx ®ev, ®evso (idy ® Ag) o o”

=ildy ®ev, ®evyoidy ® Agoo’.

This establishes the first part of the theorem.
To prove the remaining part, let (o,d) be a coaction of Cy(G) on (X, A).
Note that (&) € Meya)(X ® Co(G)) = Cy(G, X). Hence by setting

(€)= 0(§)(r), a(a):=6(a)(r) (E€X, acA)

)

T

for each 7 € G, we have a map (77, a?) : (X, A) — (X, A). Since a
and (77, a’) is the composition (idxy ® ev, 0 ,id4 ® ev, o) of two correspon-

is injective

dence homomorphisms, (77, a9) is an injective correspondence homomorphism.
Reversing the order of the above computation leading to the coaction identity
of 07 shows that 77 o 77 = 7, for r, s € G, which also proves that 7 is sur-
jective. Consequently, (77, a?) is an action of G on (X, A). It is now obvious
that (A.2) gives a one-to-one correspondence between actions and coactions.
This completes the proof. n

80



Appendix B

C*-correspondences

(X x S/WG’ A X S/WG)

It is well-known that L4(A®@ H) = M(A® K(H)) for a C*-algebra A and a
Hilbert space H. We generalize this in Proposition B.1.3 to a nondegenerate
C*-correspondence:

LAAQH, XQ@H)=MX®K(H)).

Using this, we show in Corollary B.2.3 that the construction of Theorem 4.2.1
reduces to the crossed product correspondence (X X, G, AX,,G) in the sense
of [13] when the coaction under consideration comes from an action (v, «) of
G on (X, A). Since we always want to use the left Haar measure, our reduced
crossed product correspondence in this commutative case must be regarded as
the one by a coaction of the Hopf C*-algebra S/WG defined by the multiplicative

unitary /Wg.
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B.1 (C*-correspondences

(LAAQH, X @H), Li(ADH))
We first clarify the C*-correspondence (LA(AQH, X @H), LA(ARH)) in the
next lemma whose proof is trivial, and so we omit it.

Lemma B.1.1. Let (X, A) be a C*-correspondence and H be a Hilbert space.
Then (LaA(A®H, X @H),La(A®H)) is a C*-correspondence with respect to
the following operations

m-l=mol, (m,n)c,aem) =M ON, Qr,aen) = PMackH) (B.1)

formn € LA(AQH, X QH) andl € LA(ARH).

Note that (KA(A®@ H, X @ H),Ka(A® H)) is also a C*-correspondence
with the restriction of the operations given in (B.1).

Lemma B.1.2. There exists an isomorphism
(1g,1d) : (KaA(AH, X @ H),Ka(ARH)) = (X QK(H),AR K(H))

such that Vo(Ocon,axk) =& - a* @ 0py foré € X, a € A, and h, k € H.

Proof. Let & € X, a; € A, and h;, k; € H for i = 1,...,n. We claim that the
norm of the operator Y1 O¢,on,, a0k agrees with that of 7" | & - af @ O, 1,
which will proves that 1 is well-defined and isometric. For this, we may

assume that the vectors h; are mutually orthonormal and similarly for k;.
Then

n
2
= H E eai®ki7£i®hi6£j®hjvaj®kjH
1,j=1

n
H E :0§¢®hi,az‘®ki
=1

n
= H Z e(ai®ki)'<fi®hi7§j®hj>A7aj®k’j H
ij=1

n
= H Z 0ai<€i’fi>A®ki7ai®ki
i=1
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By [19, Lemma 2.1], the last of the above equalities coincides with the norm
of the following product of two positive n x n matrices

1/2

(<ai<§w §i)a @ ki, a;(§5,8)a ® kj>A>1/2 (W ® ki a; & kj)A)
which is diagonal by orthogonality. Let
bi=(&-al,&)a (i=1,...,n).
Then

n
|| Z 0£i®hi7ai®ki
=1

2

= mmax | ((& - a, &)il& - ar, §¢>A)1/2(afai)1/2H

..... n

On the other hand,

n
*
H E & a; & th,ki
=1

= ” Z <§i Ca; @ On g, &G a;f ® 9hj:’€j>A®/C(H)”

ij=1

= || Z (& -ai, & a;):‘l ® 0ki<hiyhj>rkj ”

ij=1
= max [|(§-a;, &)aaj|| = max [|baf]]
i=1,...,n i=1,...,n
again by orthonormality. Our claim then follows since
1(00:) 12 () V2 |1* = [[(a7as) b bi(a; i) V2
= ||bi(aga:) 2| = [lbia;a:b; || = [bia; >

What is left is now to show that (¢,id) is a correspondence homomor-
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phism. Let a,b,0' € A, h,k, k' € H, £, € X, and T € K(H). Then,

Yo (rca(aemy (@ ® T) Ocan,bar) = Yo (0, (@earn, bon)
= pa(a)§ - b* @ Ok
= packcan(@®@T)(E - b" @ Ohy)
= pasic)(a @ T) Yo(ben, bok)

and

(V0 (Bcon, bok), ¢0(95/®h/,b/®k/)>A®K(H) = (-0 @by, &V 9h'v”>A®/€(H)
= (&0, & V) a® Ong, O ) k30
= Opieerya, v @ Oriny, i
= Obie.&') aok(h) b @k
= Opsk, con Ocron yor

= (Bean,bon, Oean,ver ) g, aon):
This proves that (1p,1d) is a correspondence homomorphism. O

In the next proposition, we identify A(AQH, X @ H) = X @ KL(H). Note
that for m € LA(AQH, X @H) and f € A® K(H) = Ka(A ® H), the right
action m - f defines an element of X ® K(H).

Proposition B.1.3. There exists an isomorphism
(¥,1d) : (LAA@H, X OH), LA(ADH)) = (M(X @ K(H)), M(A® K(H)))

such that
v(m)- f=m-f
form e LA(AQH, X @H) and f € AR K(H).

Proof. With respect to the operations on (B.1), the following can be easily
seen to hold:

(1) KAARH, XQH) - LAARH) =KA(ARDH, X @H);
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(i) @raaen (La(AQH)) KA(ARH, X @H) = Ka(A@H, X @ H);
(i) LA(ARH, X @H) Ka(A®H) = Ka(A2H, X @ H),

Thus (¢, id) is an injective correspondence homomorphism by [13, Proposition
1.28]. To see that 1 is surjective, let n € M(X ® K(H)). Take a net {z;}
in X ® KC(H) strictly converging to n. Then the limits lim; 2;4 and lim; zjk
clearly exist for h € AQH and k € X ® H. Define m,, : AQH — X ® H and
my: X®H—+A®H by

mph =limz;h, mpk =limx k.
We see from
(mph, k) a =lm{x;h, k)4 = lim{h, 27 k)4 = (h,m k) 4

that m, € Li(A® H,X ® H) with the adjoint m}. It is now obvious that
(my,) = n, which completes the proof. ]

From now on, we identify Ly(AQ@ H, X @ H) = M(X @ K(H)).

Remark B.1.4. Let ug : Co(G) — L(L*(G)) be the embedding in (2.5). The
strict extension idy ® ue then embeds M (X ® Co(G)) into M (X @ K(L*(G)))
such that if m € Cy(G, M(X),) and h € C.(G,A) C A® L*(G), then

(id @ pg(m)h)(r) =m(r) - h(r) (r € G)

by strict continuity.

B.2 Crossed product correspondences

(X %, G, A %, G)

Let (v, @) be an action of a locally compact group G on (X, A). The crossed
product correspondence (X X, G, A X, ,G) is the completion of the C.(G, A)-
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bimodule C.(G, X) such that

(- f)(r) = /G £(s) - o f(s7'r)) ds,
(2,9 Ay a(r) = /G a7 (((s), y(sr))a) ds,
(Pam () 2) () = /G alf(5)) vala(s™'r)) ds

for x,y € C.(G, X), f € C.(G, A), and r € G ([13, Proposition 3.2]).

Remark B.2.1. The algebraic tensor product X ® C,(G) is dense in X x, . G.
This is because X ® C.(G) is L'-norm dense in C.(G,X) and the crossed
product norm on C,(G, A) is dominated by its L*-norm.

Theorem B.2.2. Let (y,a) be an action of a locally compact group G on
a C*-correspondence (X, A). Then, there exists an injective correspondence
homomorphism

(Uys7a) (X 030 Gy Ao G) — (LA(A®LHG), X & LA(G)), La(A® L(G))
such that

(@) () = [ 27 el (s s

(al DR) () = [ o (7 (5)) B~ s

forx € C.(G,X), f € C.(G,A), h € C.(G,A), andr € G.

Proof. 1t is well-known that 7, gives a nondegenerate embedding.
For each z € C.(G, X) C X %, G, define p,(z) : C.(G, X) = C.(G, A) by

(o)) = [ Ao (o) () s
for k € C.(G, X) and r € G, where A is the modular function of G. We claim
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that

(Uy(@)h k) a = (hy py(D)K) A, oy (2)04(y) = Ta ({2, Y) 2006 (B.2)

for h € C.(G,A) C A® L*(G), k € C.(G,X) C X ® L*(G), and z,y €
C.(G, X). Indeed, we have

(W (@)h k) = /G (0 (@)1) (1), (1)) a d

:/G/GWr_l(x(s)).h(s‘lr),k(T»Adsdr
N /G/G h(s™Hr) (0 ((s)), k(r)) a ds dr

-1

by definition. Replacing s by rs and then s by s™ we get

@)= [ ] B A6 ™), k)adr ds = hpy @)
which verifies the first equality in (B.2). Also,
(@) = [ AGT) 03 lor ™), 0 (s
= [ A0 et ) o) - hie ) e s
//(% Ve H(@(9)), 7, s ) (T sr) dt ds

://ar o ((z(s), y(st))a)h(t ™ r) ds dt,
ala

the last of which is by definition equal to

/G 0 () a6 (D) () dE = ({2, 9 ane ) 1) (1)

Thus we get the second equality in (B.2), and then the claim follows.
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Now we can see from (B.2) that 1, and p, both extend continuously to all
of X X, G and ¢, (1) € LA(A® L*(G), X ® L*(GQ)) for z € X x.,, G with the
adjoint ¥, (x)* = p,(x).

The second relation in (B.2) also gives one of the condition that (¢, 7,)
is a correspondence homomorphism, namely

(U (), Yy (Y)) £aa0L2(@)) = Ta((T, Y) Ana )

for x,y € X x,, G. To see that the other one is also satisfied, it suffices to
show that

Uy (P ana,0(a® ) x) = 01, (as12() (Tala ® ¢)) Yy (x)
forae A, ¢ € C.(G) CC¥(G), and z € Co(G,X) C X %, G, or

(¥ (Paxa,cla® d)x)h)(r) = (praaerz@) (Tala @ @)y (2)h) (r)

for h € C.(G,A) C A® L*(G) and r € G. For this, let us first note the
following. Since the strict extension T, embeds A into L4(A ® L*(G)) such
that (7o (a)h)(r) = a; (a)h(r), we can deduce that

(PLacaerz@) (Tala) k) (r) = pala; " (a)k(r) (B.3)

for k € C.(G,X) and r € G. Similarly,
(e ooy (Fa(@)R) () = /G o()k(s™r) ds. (B.4)
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APPENDIX B. C*-CORRESPONDENCES (X x S A X SA )

We now have
(¢ (Pasa,cla® @)z)h)(r)
= [ (a0 0115 s ) s
//% palad()y(x(t™"s))) - h(s™'r) dt ds
-/ / a0 Ha)0(0) 2 ela(s) - bl 1) d

— pala /¢ (6, (D) (1) dit

= <90LA(A®L2(G))(%(@))(WA(A@L?(G (7Ta(¢))¢v(93)h)> (r)
= (eraaerz @) (mala ® @), (z)h)(r),

in the fifth step of which we use (B.3) and (B.4). Since 7, is injective, (¢, 7, )
is therefore an injective correspondence homomorphism. O

Let (v, @) be an action of G on (X, A), and (¢7,46%) be the corresponding
coaction. Define

0} =1dx @ figoo”, 8% =1dx @ fic 0 0%, (B.5)

where fic : Co(G) — Spp,, is the Hopf C*-algebra isomorphism given in (2.5).
Then (07, 6¢) is a coaction of S on (X, A). In the next corollary, we regard
05, (X) = idx @ 15 (04(X)) as a subspace of L4(A® L*(G), X ® L*(G)).

G

Corollary B.2.3. Let (v,«a) be an action of a locally compact group G on
(X, A). Then (¢, m,) in Theorem B.2.2 gives an isomorphism from (X .,
G, AXq, G) onto (X X,y Si, A Xse Sipr ) such that

’ G G G G

Uy (§® @) = 04,(8) - (lma) @ @), Tala® @) =0¢,(a)(luw) ® @)  (B.6)

foré € X, a€ A, and ¢ € C.(G).
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APPENDIX B. C*-CORRESPONDENCES (X x S5, A x Sg; )

Proof. We only need to prove that 1., satisfies the first equality in (B.6) and
gives a surjection onto X X3 Sg . Let £ € X and ¢ € Co(G). We see from
Remark B.1.4 that

(02,(&) h)(r) =7, 1(€) - h(r)
for h € C.(G, A) and r € G. Hence

(Vr (€@ D)) (r) =7 1(&) - /GfD(S)h(S_lT) ds = (04,(&) (Larca) @ 9)R)) (7)),

which shows the first equality in (B.6). Since X ® C.(G) is dense in X x.,, G
by Remark B.2.1 and ¢, is isometric, we must have ¢ (X x,, G) = X X,

SWG' ]
We now provide a proof of Corollary 5.2.5.

Proof of Corollary 5.2.5. Let
(e =idoy ® fig o C.

Clearly, (¢ is the coaction of SWG on Oy induced by (0/,6%). Define a repre-
sentation

(kX Xy G, ]{JA Xy G) : (X Xy r G,A Har G) — OX X3¢ G
to be the composition as indicated in the following diagram:

(w%ﬂ'a)

(X Xoy,r G,A Ao, r G) (X NUZ; SWG’A x](% SWG)

|
(kx %G kaxaG) | l(kxmdgw kaxidg_ )

G Wa
Y

OX ><]/3<’TG OX Ao SWG

By definition ((5.3) and (B.6)), we have
(kx 3y G)(f)(r) = kx(f(r)),  (kaxa G)(9)(r) = ka(g(r))

90

fx--! _CI:I_ ]-H -{j]- =
| |



APPENDIX B. C*-CORRESPONDENCES (X x S5, A x Sg; )

for f € C.(G,X), g € C.(G,A), and r € G. The conclusion then follows by
Theorem 5.2.4. [
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